ML062760240: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:I Duke EnergyGARY R. PETERSON Vice President McGuire Nuclear Station Duke Energy Corporation MGOIVP / 12700 Hagers Ferry Rd.Huntersville, NC 28078 704 875 5333 704 875 4809 fax grpeters@duke-energy.com September 20, 2006 U. S. Nuclear Regulatory Commission Document Control Desk Washington, D.C. 20555  
{{#Wiki_filter:GARY R. PETERSON I Duke                                                                      Vice President Energy                                                                    McGuire Nuclear Station Duke Energy Corporation MGOIVP / 12700 Hagers Ferry Rd.
Huntersville, NC 28078 704 875 5333 704 875 4809 fax grpeters@duke-energy.com September 20, 2006 U. S. Nuclear Regulatory Commission Document Control Desk Washington, D.C. 20555


==Subject:==
==Subject:==
Duke Power Company LLC d/b/a Duke Energy Carolinas, LLC (Duke)McGuire Nuclear Station Docket Nos. 50-370 Unit 2, Cycle 18, Revision 26 Core Operating Limits Report (COLR)Pursuant to McGuire Technical Specification (TS) 5.6.5.d, please find enclosed Revision 26 to the McGuire Unit 2 Cycle 18 Core Operating Limits Report (COLR).Questions regarding this submittal should be directed to Kay Crane, McGuire Regulatory Compliance at (704) 875-4306.Gary R. Peterson Attachment 7DO I www.duke-energy.
Duke Power Company LLC d/b/a Duke Energy Carolinas, LLC (Duke)
com U. S. Nuclear Regulatory Commission September 20, 2006 Page 2 cc: Mr. John Stang, Project Manager U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation Washington, D.C. 20555 Mr. W. D. Travers, Regional Administrator U. S. Nuclear Regulatory Commission, Region II Atlanta Federal Center 61 Forsyth St., SW, Suite 23T85 Atlanta, GA 30323 Mr. Joe Brady Senior Resident Inspector McGuire Nuclear Station MCEI-0400-47 Page I of 32 Revision 26 McGuire Unit 2 Cycle 18 Core Operating Limits Report Revision 26 August 2006 Calculation Number: MCC-1553.05-00-0447 (Rev. 0)Duke Energy Date Prepared By: Checked By: Checked By: Approved By: AN q 1-aeL,0/ /QA Condition 1 The information presented in this report has been prepared and issued in accordance with McGuire Technical Specification 5.6.5.
McGuire Nuclear Station Docket Nos. 50-370 Unit 2, Cycle 18, Revision 26 Core Operating Limits Report (COLR)
MCEI-0400-47 Page 2 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report INSPECTION OF ENGINEERING INSTRUCTIONS Inspection Waived By: (Sponsor)Date:f/CATAWBA MCE (Mechanical  
Pursuant to McGuire Technical Specification (TS) 5.6.5.d, please find enclosed Revision 26 to the McGuire Unit 2 Cycle 18 Core Operating Limits Report (COLR).
& Civil)RES (Electrical Only)RES (Reactor)MOD Other ( )Inspection Waived E]El El El El Inspected By/Date: Inspected By/Date: Inspected By/Date: Inspected By/Date: Inspected By/Date: OCONEE MCE (Mechanical
Questions regarding this submittal should be directed to Kay Crane, McGuire Regulatory Compliance at (704) 875-4306.
& Civil)RES (Electrical Only)RES (Reactor)MOD Other( )Inspection Waived El El El El El Inspected By/Date: Inspected By/Date: Inspected By/Date: Inspected By/Date: Inspected By/Date: MCGUIRE MCE (Mechanical
Gary R. Peterson Attachment 7DO I www.duke-energy. com
& Civil)RES (Electrical Only)RES (Reactor)MOD Other ( )Inspection Inspected By/Date: Inspected By/Date: Inspected By/Date: Inspected By/Date: Inspected By/Date:
 
MCEI-0400-47 Page 3 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Implementation Instructions For Revision 26 Revision Description and PIP Tracking Revision 26 of the McGuire Unit 2 COLR contains limits specific to the McGuire 2 Cycle 18 reload core. There is no PIP associated with this revision.Implementation Schedule Revision 26 may become effective any time during No Mode between Cycles 17 and 18 but must become effective prior to entering Mode 6, which starts Cycle 18.This revision replaces the current revision (MCEI-0400-47, Rev. 25).Data riles to be Implemented No data files are transmitted as part of this document.Insertion/Deletion Instructions Remove Insert pages 1- 33 of Rev. 25 pages 1- 32 of Rev 26 (including Appendix A*) (including Appendix A*)Appendix A contains power distribution monitoring factors used in Technical Specification Surveillance.
U. S. Nuclear Regulatory Commission September 20, 2006 Page 2 cc:   Mr. John Stang, Project Manager U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation Washington, D.C. 20555 Mr. W. D. Travers, Regional Administrator U. S. Nuclear Regulatory Commission, Region II Atlanta Federal Center 61 Forsyth St., SW, Suite 23T85 Atlanta, GA 30323 Mr. Joe Brady Senior Resident Inspector McGuire Nuclear Station
Appendix A is included only in the electronic COLR copy sent to the NRC.
 
MCEI-04(X)-47 Page 4 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report REVISION LOG Revision Revisions 0-2 Revisions 3-6 Revisions 7-12 Revision 13-15 Revision 16-17 Revision 18-20 Revision 21-22 Revision 23-24 Revision 25 Revision 26 Issuance Date Superseded Superseded Superseded Superseded Superseded Superseded Superseded Superseded March 2005 August 2006 Effective Pages N/A N/A N/A N/A N/A N/A N/A N/A 1-33 1-32 COLR M2C09 M2CIO M2CI1 M2C12 M2C13 M2C14 M2C15 M2C16 M2CI7 M2CI8 (Orig. Issue)
MCEI-0400-47 Page I of 32 Revision 26 McGuire Unit 2 Cycle 18 Core Operating Limits Report Revision 26 August 2006 Calculation Number: MCC-1553.05-00-0447 (Rev. 0)
MCEI-0400-47 Page 5 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 1.0 Core Operating Limits Report This Core Operating Limits Report (COLR) has been prepared in accordance with the requirements of Technical Specification 5.6.5. The Technical Specifications that reference the COLR are summarized below.TS'Number 1.1 2.1.1 3.1.1 3.1.3 3.1.4 3.1.5 3.1.5 Technical Specifications Requirements for Operational Mode 6 Reactor Core Safety Limits Shutdown Margin Moderator Temperature Coefficient Rod Group Alignment Limits Shutdown Bank Insertion Limits Shutdown Bank Insertion Limits 3.1.6 Control Bank Insertion Limits 3.1.6 Control Bank Insertion Limits 3.1.8 Physics TestsExceptions 3.2.1 Heat Flux Hot Channel Factor 3.2.2 Nuclear Enthalpy Rise Hot Channel Factor 3.2.3 Axial Flux Difference 3.3.1 Reactor Trip System Instrumentation 3.4.1 RCS Pressure, Temperature, and Flow DNB limits 3.5.1 Accumulators 3.5.4 Refueling Water Storage Tank 3.7.14 Spent Fuel Pool Boron Concentration 3.9.1 Refueling Operations
Duke Energy Date Prepared By:
-Boron Concentration 5.6.5 Core Operating Limits Report (COLR)COLR Parameter Mode 6 Definition RCS Temperature and Pressure Safety Limits Shutdown Margin MTC Shutdown Margin Shutdown Margin Shutdown Bank Insertion Limit Shutdown Margin Control Bank Insertion Limit Shutdown Margin Fq, AFD, OTAT and Penalty Factors FAIl, AFD and Penalty Factors AFD OTAT and OPAT Constants RCS Pressure, Temperature and Flow Max and Min Boron Cone.Max and Min Boron Cone.Min Boron Concentration Min Boron Concentration Analytical Methods COLR Section 2.1 2.2 2.3 2.4 2.3 2.3 2.5 2.3 2.6 2.3 2.7 El Page 9 9 9 11 9 9 11 9 11 9 15 2.8 20 2.9 2.10 2.11 2.12 2.13 2.14 2.15 1.1 21 24 26 26 26 28 28 6 The Selected Licensee Commitments that reference this report are listed below: SLC Number Selected Licensing Commitment COLR Parameter 16.9.14 16.9.11 Borated Water Source -Shutdown Borated Water Volume and Cone. for BAT/RWST Borated Water Source -Operating Borated Water Volume and Cone. for BAT/RWST COLR Section 2.16 2.17 El Page 29 30 MCEI-0400-47 Page 6 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 1.1 Analytical Methods The analytical methods used to determine core operating limits for parameters identified in Technical Specifications and previously reviewed and approved by the NRC, as specified in Technical Specification 5.6.5, are as follows.1. WCAP-9272-P-A, "Westinghouse Reload Safety Evaluation Methodology," (W Proprietary).
Checked By:       AN q1      - aeL,0                                 /
Revision 0 Report Date: July 1985 Not Used for M2C18 2. WCAP-10054-P-A, "Westinghouse Small Break ECCS Evaluation Model using the NOTRUMP Code, " (W Proprietary).
                                                                            /
Revision 0 Report Date: August 1985 3. WCAP-10266-P-A, "The 1981 Version Of Westinghouse Evaluation Model Using BASH Code", (W Proprietary).
Checked By:
Revision 2 Report Date: March 1987 Not Used for M2C18 4. WCAP-12945-P-A, Volume 1 and Volumes 2-5, "Code Qualification Document for Best-Estimate Loss of Coolant Analysis," (W Proprietary).
Approved By:
Revision:
QA Condition 1 The information presented in this report has been prepared and issued in accordance with McGuire Technical Specification 5.6.5.
Volume I (Revision
 
: 2) and Volumes 2-5 (Revision 1)Report Date: March 1998 5. BAW-10168P-A, "B&W Loss-of-Coolant Accident Evaluation Model for Recirculating Steam Generator Plants," (B&W Proprietary).
MCEI-0400-47 Page 2 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report INSPECTION OF ENGINEERING INSTRUCTIONS Inspection Waived By:                                             Date:f/
Revision 1 SER Date: January 22, 1991 Revision 2 SER Dates: August 22, 1996 and November 26, 1996.Revision 3 SER Date: June 15, 1994.Not Used for M2C18 6. DPC-NE-3000PA, 'Thermal-Hydraulic Transient Analysis Methodology," (DPC Proprietary).
(Sponsor)
Revision 3 SER Date: September
CATAWBA Inspection Waived MCE (Mechanical & Civil)           E]      Inspected By/Date:
: 24. 2003 MCEI-0400-47 Page 7 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 1.1 Analytical Methods (continued)
RES (Electrical Only)               El      Inspected By/Date:
RES (Reactor)                       El      Inspected By/Date:
MOD                                El    Inspected By/Date:
Other  (                  )        El    Inspected By/Date:
OCONEE Inspection Waived MCE (Mechanical & Civil)            El    Inspected By/Date:
RES (Electrical Only)               El    Inspected  By/Date:
RES (Reactor)                       El     Inspected By/Date:
MOD                                El    Inspected By/Date:
Other(                    )        El    Inspected By/Date:
MCGUIRE Inspection MCE (Mechanical & Civil)                  Inspected By/Date:
RES (Electrical Only)                      Inspected By/Date:
RES (Reactor)                             Inspected By/Date:
MOD                                        Inspected By/Date:
Other  (                  )                Inspected By/Date:
 
MCEI-0400-47 Page 3 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Implementation Instructions For Revision 26 Revision Description and PIP Tracking Revision 26 of the McGuire Unit 2 COLR contains limits specific to the McGuire 2 Cycle 18 reload core. There is no PIP associated with this revision.
Implementation Schedule Revision 26 may become effective any time during No Mode between Cycles 17 and 18 but must become effective prior to entering Mode 6, which starts Cycle 18.
This revision replaces the current revision (MCEI-0400-47, Rev. 25).
Data riles to be Implemented No data files are transmitted as part of this document.
Insertion/Deletion Instructions Remove                                           Insert pages 1- 33 of Rev. 25                           pages 1- 32 of Rev 26 (including Appendix A*)                         (including Appendix A*)
Appendix A contains power distribution monitoring factors used in Technical Specification Surveillance. Appendix A is included only in the electronic COLR copy sent to the NRC.
 
MCEI-04(X)-47 Page 4 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report REVISION LOG Revision       Issuance Date        Effective Pages          COLR Revisions 0-2     Superseded                N/A                M2C09 Revisions 3-6     Superseded                N/A                M2CIO Revisions 7-12     Superseded                N/A                M2CI1 Revision 13-15     Superseded                N/A                M2C12 Revision 16-17     Superseded                N/A                M2C13 Revision 18-20     Superseded                N/A                M2C14 Revision 21-22     Superseded                N/A                M2C15 Revision 23-24     Superseded                N/A                M2C16 Revision 25       March 2005                1-33              M2CI7 Revision 26       August 2006               1-32              M2CI8 (Orig. Issue)
 
MCEI-0400-47 Page 5 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 1.0     Core Operating Limits Report This Core Operating Limits Report (COLR) has been prepared in accordance with the requirements of Technical Specification 5.6.5. The Technical Specifications that reference the COLR are summarized below.
TS'                                                                               COLR          El Number               Technical Specifications            COLR Parameter              Section    Page 1.1     Requirements for Operational Mode 6      Mode 6 Definition                  2.1         9 2.1.1     Reactor Core Safety Limits              RCS Temperature and                2.2          9 Pressure Safety Limits 3.1.1     Shutdown Margin                          Shutdown Margin                    2.3        9 3.1.3      Moderator Temperature Coefficient        MTC                                2.4        11 3.1.4      Rod Group Alignment Limits               Shutdown Margin                   2.3          9 3.1.5      Shutdown Bank Insertion Limits           Shutdown Margin                    2.3        9 3.1.5      Shutdown Bank Insertion Limits           Shutdown Bank Insertion            2.5        11 Limit 3.1.6      Control Bank Insertion Limits            Shutdown Margin                    2.3        9 3.1.6      Control Bank Insertion Limits            Control Bank Insertion            2.6        11 Limit 3.1.8      Physics TestsExceptions                  Shutdown Margin                    2.3         9 3.2.1     Heat Flux Hot Channel Factor            Fq, AFD, OTAT and                 2.7        15 Penalty Factors 3.2.2      Nuclear Enthalpy Rise Hot Channel        FAIl, AFD and                      2.8        20 Factor                                  Penalty Factors 3.2.3     Axial Flux Difference                    AFD                                2.9         21 3.3.1     Reactor Trip System Instrumentation      OTAT and OPAT                    2.10        24 Constants 3.4.1      RCS Pressure, Temperature, and Flow      RCS Pressure,                    2.11        26 DNB limits                              Temperature and Flow 3.5.1      Accumulators                            Max and Min Boron Cone.          2.12        26 3.5.4      Refueling Water Storage Tank            Max and Min Boron Cone.           2.13        26 3.7.14      Spent Fuel Pool Boron Concentration     Min Boron Concentration           2.14        28 3.9.1      Refueling Operations - Boron            Min Boron Concentration          2.15        28 Concentration 5.6.5      Core Operating Limits Report (COLR)      Analytical Methods                1.1        6 The Selected Licensee Commitments that reference this report are listed below:
COLR            El SLC Number      Selected Licensing Commitment          COLR Parameter                Section        Page 16.9.14        Borated Water Source - Shutdown    Borated Water Volume and            2.16          29 Cone. for BAT/RWST 16.9.11        Borated Water Source - Operating    Borated Water Volume and            2.17          30 Cone. for BAT/RWST
 
MCEI-0400-47 Page 6 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 1.1    Analytical Methods The analytical methods used to determine core operating limits for parameters identified in Technical Specifications and previously reviewed and approved by the NRC, as specified in Technical Specification 5.6.5, are as follows.
: 1. WCAP-9272-P-A, "Westinghouse Reload Safety Evaluation Methodology," (W Proprietary).
Revision 0 Report Date: July 1985 Not Used for M2C18
: 2. WCAP-10054-P-A, "Westinghouse Small Break ECCS Evaluation Model using the NOTRUMP Code, " (W Proprietary).
Revision 0 Report Date: August 1985
: 3. WCAP-10266-P-A, "The 1981 Version Of Westinghouse Evaluation Model Using BASH Code",
(W Proprietary).
Revision 2 Report Date: March 1987 Not Used for M2C18
: 4. WCAP-12945-P-A, Volume 1 and Volumes 2-5, "Code Qualification Document for Best-Estimate Loss of Coolant Analysis," (W Proprietary).
Revision: Volume I (Revision 2) and Volumes 2-5 (Revision 1)
Report Date: March 1998
: 5. BAW-10168P-A, "B&W Loss-of-Coolant Accident Evaluation Model for Recirculating Steam Generator Plants," (B&W Proprietary).
Revision 1 SER Date: January 22, 1991 Revision 2 SER Dates: August 22, 1996 and November 26, 1996.
Revision 3 SER Date: June 15, 1994.
Not Used for M2C18
: 6. DPC-NE-3000PA, 'Thermal-Hydraulic Transient Analysis Methodology," (DPC Proprietary).
Revision 3 SER Date: September 24. 2003
 
MCEI-0400-47 Page 7 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 1.1     Analytical Methods (continued)
: 7. DPC-NE-3001PA, "Multidimensional Reactor Transients and Safety Analysis Physics Parameter Methodology," (DPC Proprietary).
: 7. DPC-NE-3001PA, "Multidimensional Reactor Transients and Safety Analysis Physics Parameter Methodology," (DPC Proprietary).
Revision 0 Report Date: November 1991 (Republished December 2000)8. DPC-NE-3002A, "FSAR Chapter 15 System Transient Analysis Methodology".
Revision 0 Report Date: November 1991 (Republished December 2000)
Revision 4 SER Date: April 6, 2001 9. DPC-NE-2004P-A. "Duke Power Company McGuire and Catawba Nuclear Stations Core Thermal-Hydraulic Methodology using VIPRE-0 1," (DPC Proprietary).
: 8. DPC-NE-3002A, "FSAR Chapter 15 System Transient Analysis Methodology".
Revision 1 SER Date: February 20, 1997 10. DPC-NE-2005P-A, "Thermal Hydraulic Statistical Core Design Methodology," (DPC Proprietary).
Revision 4 SER Date: April 6, 2001
Revision 3 SER Date: September 16, 2002 11. DPC-NE-2008P-A, "Fuel Mechanical Reload Analysis Methodology Using TACO3." (DPC Proprietary).
: 9. DPC-NE-2004P-A. "Duke Power Company McGuire and Catawba Nuclear Stations Core Thermal-Hydraulic Methodology using VIPRE-0 1," (DPC Proprietary).
Revision 0 SER Date: April 3, 1995 Not Used for M2C18 12. DPC-NE-2009-P-A, "Westinghouse Fuel Transition Report," (DPC Proprietary).
Revision 1 SER Date: February 20, 1997
Revision 2 SER Date: December 18, 2002 13. DPC-NE-1004A, "Nuclear Design Methodology Using CASMO-3/SIMULATE-3P." Revision I SER Date: April 26, 1996 Not Used for M2C18 MCEI-0400-47 Page 8 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 1.1 Analytical Methods (continued)
: 10. DPC-NE-2005P-A, "Thermal Hydraulic Statistical Core Design Methodology," (DPC Proprietary).
: 14. DPC-NF-2010A, "Duke Power Company McGuire Nuclear Station Catawba Nuclear Station Nuclear Physics Methodology for Reload Design." Revision 2 SER Date: June 24,2003 15. DPC-NE-201 IPA, "Duke Power Company Nuclear Design Methodology for Core Operating Limits of Westinghouse Reactors," (DPC Proprietary).
Revision 3 SER Date: September 16, 2002
Revision 1 SER Date: October 1, 2002 16. DPC-NE-1005-P-A, "Nuclear Design Methodology Using CASMO-4 / SIMULATE-3 MOX," (DPC Proprietary).
: 11. DPC-NE-2008P-A, "Fuel Mechanical Reload Analysis Methodology Using TACO3." (DPC Proprietary).
Revision 0 SER Date: August 20, 2004 MCEI-0400-47 Page 9 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.0 Operating Limits The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections.
Revision 0 SER Date: April 3, 1995 Not Used for M2C18
These limits have been developed using the NRC approved methodologies specified in Section 1.1.2.1 Requirements for Operational Mode 6 The following condition is required for operational mode 6.2.1.1 The Reactivity Condition requirement for operational mode 6 is that kff must be less than, or equal to 0.95.2.2 Reactor Core Safety Limits (TS 2.1.1)2.2.1 The Reactor Core Safety Limits are shown in Figure 1.2.3 Shutdown Margin -SDM (TS 3.1.1, TS 3.1.4, TS 3.1.5, TS 3.1.6 and TS 3.1.8)2.3.1 ForTS 3.1.1; SDM shall be> 1.3% AK/K in mode 2 with k-eff < 1.0 and in modes 3 and 4.2.3.2 ForTS 3.1.1, SDM shall be> 1.0% AK/K in mode 5.2.3.3 For TS 3.1.4, SDM shall be > 1.3% AK/K in modes I and 2.2.3.4 For TS 3.1.5, SDM shall be > 1.3% AK/K in mode 1 and mode 2 with any control bank not fully inserted.2.3.5 For TS 3.1.6, SDM shall be > 1.3% AK/K in mode I and mode 2 with K-eff > 1.0.2.3.6 ForTS 3.1.8, SDM shall be > 1.3% AK/K in mode 2 during Physics Testing.
: 12. DPC-NE-2009-P-A, "Westinghouse Fuel Transition Report," (DPC Proprietary).
MCE1-0400-47 Page 10 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Figure 1 Reactor Core Sarety Limits Four Loops in Operation 670 DO NOT OPERATE IN THIS AREA 660 650 620 600 .....590 1-.ACCEPTABLE 580 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Fraction of Rated Thermal Power MCEI-0400-47 Page 11 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.4 Moderator Temperature Coefficient  
Revision 2 SER Date: December 18, 2002
-MTC (TS 3.1.3)2.4.1 The Moderator Temperature Coefficient (MTC) Limits are: The MTC shall be less positive than the upper limits shown in Figure 2. The BOC, ARO, HZP MTC shall be less positive than 0.7E-04 AK/K/0 F.The EOC, ARO, RTP MTC shall be less negative than the -4.3E-04 AK/K/&deg;F lower MTC limit.2.4.2 The 300 ppm MTC Surveillance Limit is: The measured 300 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to -3.65E-04 AK/K/0 F.2.4.3 The 60 PPM MTC Surveillance Limit is: The 60 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to-4.125E-04 AK/K/0 F.Where, BOC = Beginning of Cycle (Burnup corresponding to the most positive MTC)EOC = End of Cycle ARO = All Rods Out HZP = Hot Zero Power RTP = Rated Thermal Power PPM = Parts per million (Boron)2.5 Shutdown Bank Insertion Limit (TS 3.1.5)2.5.1 Each shutdown bank shall be withdrawn to at least 222 steps. Shutdown banks are withdrawn in sequence and with no overlap.2.6 Control Bank Insertion Limits (TS 3.1.6)2.6.1 Control banks shall be within the insertion, sequence, and overlap limits shown in Figure 3. Specific control bank withdrawal and overlap limits as a function of the fully withdrawn position are shown in Table 1.
: 13. DPC-NE-1004A, "Nuclear Design Methodology Using CASMO-3/SIMULATE-3P."
MCEI-0400-47 Page 12 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Figure 2 Moderator Temperature Coefficient Upper Limit Versus Power Level 0Q 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0 10 20 30 40 50 60 70 80 90 100 Percent of Rated Thermal Power NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits.Refer to OP/2/AI6100/22 Unit 2 Data Book for details.
Revision I SER Date: April 26, 1996 Not Used for M2C18
MCEI-0400-47 Page 13 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Figure 3 Control 'Bank Insertion Limits Versus Percent Rated Thermal Power Fully Withdrawn (Maximum = 231)N S..U, a.U, a 0 a C I-'C 0 231 220 200 180 160 140 120 100 80 60 40 (o%. 16.3.) 7-(0%.,47)  
 
-(29.) --.6%,231) .-.(80 .2 1)J Control Bank 20 0 -0 10 20 30 40 50 60 70 80 90 100 Percent of Rated Thermal Power The Rod Insertion Limits (RIL) for Control Bank D (CD), Control Bank C (CC), and Control Bank B (CB) can be calculated by: Bank CD RIL= 2.3(P) -69 {30<5 P5 100}Bank CCRIL = 2.3(P) + 47 {0 < P < 80}Bank CBRIL = 2.3(P) + 163 {O< P5 <29.6}where P = %Rated Thermal Power NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits.Refer to OP/2/A16100122 Unit 2 Data Book for details.
MCEI-0400-47 Page 8 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 1.1     Analytical Methods (continued)
MCEI-0400-47 Page 14 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Table 1 RCCA Withdrawal Steps and Sequence Fully Withdrawn at 222 Steps Control Control Control Control Bank A Bank B Bank C Bank D 0 Start 0 0 0 116 0 Start 0 0 222 Stop 106 0 0 222 116 0 Star 0 222 222 Stop 106 0 222 222 116 0 Start 222 222 222 Stop 106 Fully Withdrawn at 224 Steps Control Control Control Control BankA BankB BankC BankD Fully Withdrawn at 223 Steps Control Control Control Control Bank A Bank B Bank C BankD 0 Start 0 0 0 116 0 Stan 0 0 223 Stop 107 0 0 223 116 0Stant 0 223 223 Stop 107 0 223 223 116 0 Start 223 223 223 Stop 107 Fully Withdrawn at 225 Steps Control Control Control Control Bank A Bank B Bank C Bank D 0 Start 0 0 0 116 0 Start 0 0 225 Stop 109 0 0 225 116 0 Start 0 225 225 Stop 109 0 225 225 116 0 Start 225 225 225 Stop 109 Fully Withdrawn at 227 Steps Control Control Control Control Bank A Bank B Bank C Bank D 0 Start 0 0 0 116 0 Start 0 0 224 Stop 108 0 0 224 116 0 Start 0 224 224 Stop 108 0 224 224 116 0 Sart 224 224 224 Stop 108 Fully Withdrawn at 226 Steps Control Control Control Control Bank A Bank B Bank C Bank D 0 Start 0 0 0 116 0 Start 0 0 226 Stop [10 0 0 226 116 0 Start 0 226 226 Stop 110 0 226 226 116 0 Start 226 226 226 Stop 110 Fully Withdrawn at 228 Steps Control Control Control Control BankA BankB BankC BankD 0 Start 0 0 0 116 0 Start 0 0 228 Stop 112 0 0 228 116 0 Start 0 228 228 Stop 112 0 228 228 116 0 Start 228 228 228 Stop 112 Fully Withdrawn at 230 Steps Control Control Control Control BankA BankB BankC BankD 0 Start 0 0 0 116 0Start 0 0 2 2 7 Stop II1 0 0 227 116 0Start 0 227 2 2 7 Stop 11I 0 227 227 116 0 Start 227 227 227 stop IlI Fully Withdrawn at 229 Steps Control Control Control Control Bank A Bank B Bank C Bank D 0 Start 0 0 0 116 0 Start 0 0 229 Stop 113 0 0 229 116 OStart 0 229 229 Stop 113 0 229 229 116 0 Start 229 229 229 Stop 113 Fully Withdrawn at 231 Stcps Control Control Control Control Bank A Bank B Bank C Bank D 0 Start 0 0 0 116 0 Start 0 0 231 Stop 115 0 0 231 116 0Stan 0 231 231 Stop 115 0 231 231 116 0 Sart 231 231 231 Stop 115 0 Start 0 0 0 116 0 Start 0 0 230 Stop 114 0 0 230 116 0 Start 0 230 230 Stop 114 0 230 230 116 0 Start 230 230 230 Stop 114 MCEI-0400-47 Page 15 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.7 Heat Flux Hot Channel Factor -FQ(X,Y,Z) (TS 3.2.1)2.7.1 FQ(X,Y,Z) steady-state limits are defined by the following relationships:
: 14. DPC-NF-2010A, "Duke Power Company McGuire Nuclear Station Catawba Nuclear Station Nuclear Physics Methodology for Reload Design."
F *K(Z)/P for P > 0.5 0 F RrP *K(Z)/0.5 for P < 0.5 Q where, P = (Thermal Power)/(Rated Power)Note: The measured FQ(X,Y,Z) shall be increased by 3% to account for manufacturing tolerances and 5% to account for measurement uncertainty when comparing against the LCO limits. The manufacturing tolerance and measurement uncertainty are implicitly included in the FQ surveillance limits as defined in COLR Sections 2.7.5 and 2.7.6.2.7.2 F R, = 2.60 x K(BU)-Q 2.7.3 K(Z) is the normalized FQ(X,Y,Z) as a function of core height. The K(Z) function for Westinghouse RFA fuel is provided in Figure 4.2.7.4 K(BU) is the normalized FQ(X,Y,Z) as a function of burnup. K(BU) for Westinghouse RFA fuel is 1.0 for all burnups.The following parameters are required for core monitoring per the Surveillance Requirements of Technical Specification 3.2.1: D 2.7.5 F((X,Y,Z)OP
Revision 2 SER Date: June 24,2003
= F6(X,Y,Z)
: 15. DPC-NE-201 IPA, "Duke Power Company Nuclear Design Methodology for Core Operating Limits of Westinghouse Reactors," (DPC Proprietary).
* MQ(X,Y,Z)UMT
Revision 1 SER Date: October 1, 2002
: 16. DPC-NE-1005-P-A, "Nuclear Design Methodology Using CASMO-4 / SIMULATE-3 MOX,"
(DPC Proprietary).
Revision 0 SER Date: August 20, 2004
 
MCEI-0400-47 Page 9 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.0 Operating Limits The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using the NRC approved methodologies specified in Section 1.1.
2.1   Requirements for Operational Mode 6 The following condition is required for operational mode 6.
2.1.1 The Reactivity Condition requirement for operational mode 6 is that kff must be less than, or equal to 0.95.
2.2   Reactor Core Safety Limits (TS 2.1.1) 2.2.1   The Reactor Core Safety Limits are shown in Figure 1.
2.3 Shutdown Margin - SDM (TS 3.1.1, TS 3.1.4, TS 3.1.5, TS 3.1.6 and TS 3.1.8) 2.3.1   ForTS 3.1.1; SDM shall be> 1.3% AK/K in mode 2 with k-eff < 1.0 and in modes 3 and 4.
2.3.2   ForTS 3.1.1, SDM shall be> 1.0% AK/K in mode 5.
2.3.3   For TS 3.1.4, SDM shall be > 1.3% AK/K in modes I and 2.
2.3.4   For TS 3.1.5, SDM shall be > 1.3% AK/K in mode 1 and mode 2 with any control bank not fully inserted.
2.3.5   For TS 3.1.6, SDM shall be > 1.3% AK/K in mode I and mode 2 with K-eff > 1.0.
2.3.6   ForTS 3.1.8, SDM shall be > 1.3% AK/K in mode 2 during Physics Testing.
 
MCE1-0400-47 Page 10 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Figure 1 Reactor Core Sarety Limits Four Loops in Operation 670 DO NOT OPERATE IN THIS AREA 660 650 620 1-.
600                           .....
590 ACCEPTABLE 580 0.0   0.2         0.4           0.6       0.8         1.0           1.2 Fraction of Rated Thermal Power
 
MCEI-0400-47 Page 11 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.4 Moderator Temperature Coefficient - MTC (TS 3.1.3) 2.4.1 The Moderator Temperature Coefficient (MTC) Limits are:
The MTC shall be less positive than the upper limits shown in Figure 2. The BOC, ARO, HZP MTC shall be less positive than 0.7E-04 AK/K/ 0 F.
The EOC, ARO, RTP MTC shall be less negative than the -4.3E-04 AK/K/&deg;F lower MTC limit.
2.4.2 The 300 ppm MTC Surveillance Limit is:
The measured 300 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to -3.65E-04 AK/K/ 0 F.
2.4.3 The 60 PPM MTC Surveillance Limit is:
The 60 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to
          -4.125E-04 AK/K/ 0 F.
Where, BOC = Beginning of Cycle (Burnup corresponding to the most positive MTC)
EOC = End of Cycle ARO = All Rods Out HZP = Hot Zero Power RTP = Rated Thermal Power PPM = Parts per million (Boron) 2.5 Shutdown Bank Insertion Limit (TS 3.1.5) 2.5.1 Each shutdown bank shall be withdrawn to at least 222 steps. Shutdown banks are withdrawn in sequence and with no overlap.
2.6 Control Bank Insertion Limits (TS 3.1.6) 2.6.1 Control banks shall be within the insertion, sequence, and overlap limits shown in Figure 3. Specific control bank withdrawal and overlap limits as a function of the fully withdrawn position are shown in Table 1.
 
MCEI-0400-47 Page 12 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Figure 2 Moderator Temperature Coefficient Upper Limit Versus Power Level 1.0 0.9 0.8 0.7 0.6 0      0.5 U* Q 0.4 0.3 0.2 0.1 0.0 0     10   20   30     40     50   60     70   80     90   100 Percent of Rated Thermal Power NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits.
Refer to OP/2/AI6100/22 Unit 2 Data Book for details.
 
MCEI-0400-47 Page 13 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Figure 3 Control 'Bank Insertion Limits Versus Percent Rated Thermal Power Fully Withdrawn (Maximum = 231)N 231 220                                                                                  (80 .2 1)
J 200 180 S..
160 (o%. 16.3.) 7 U,
: a. 140 U,
a 120                                  (29.)
                                          -   6%,231)
                                                -.       .-.
0 100 a
C 80 I-Control Bank 60
'C 0
            -(0%.,47)    -
40 20 0  -
0            10     20     30           40         50   60     70       80       90     100 Percent of Rated Thermal Power The Rod Insertion Limits (RIL) for Control Bank D (CD), Control Bank C (CC), and Control Bank B (CB) can be calculated by:
Bank CD RIL= 2.3(P) - 69 {30<5 P5 100}
Bank CCRIL = 2.3(P) + 47 {0 < P < 80}
Bank CBRIL = 2.3(P) + 163 {O*< P5       <29.6}
where P = %Rated Thermal Power NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits.
Refer to OP/2/A16100122 Unit 2 Data Book for details.
 
MCEI-0400-47 Page 14 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Table 1 RCCA Withdrawal Steps and Sequence Fully Withdrawn at 222 Steps                       Fully Withdrawn at 223 Steps Control Control Control Control                  Control     Control   Control Control Bank A Bank B Bank C Bank D                       Bank A        Bank B    Bank C  BankD 0 Start          0        0      0             0 Start          0        0        0 116       0 Start       0      0                116      0 Stan        0       0 222 Stop         106         0       0            223 Stop          107        0        0 222         116     0 Star     0                223          116    0Stant      0 222     222 Stop     106       0                223      223 Stop      107      0 222         222       116   0 Start              223        223        116    0 Start 222         222    222 Stop   106               223          223    223 Stop    107 Fully Withdrawn at 224 Steps                       Fully Withdrawn at 225 Steps Control Control Control Control                   Control      Control    Control  Control BankA BankB           BankC BankD               Bank A       Bank B     Bank C   Bank D 0 Start         0         0       0             0 Start          0        0       0 116      0 Start        0       0                 116       0 Start      0        0 224 Stop        108        0      0           225 Stop         109        0        0 224          116     0 Start     0                225         116     0 Start     0 224      224 Stop      108      0               225      225 Stop     109       0 224        224        116  0 Sart              225          225       116     0 Start 224        224    224 Stop     108              225         225   225 Stop     109 Fully Withdrawn at 226 Steps                        Fully Withdrawn at 227 Steps Control Control Control Control                   Control      Control    Control  Control Bank A Bank B Bank C Bank D                        Bank A       Bank B     Bank C   Bank D 0 Start         0         0       0             0 Start           0         0       0 116      0 Start      0        0                116       0Start        0       0 2
226 Stop         [10        0       0           2 7 Stop         II1        0        0 226           116    0 Start     0               227          116     0Start      0 22 226      226 Stop       110      0               227          7 Stop    11I        0 226         226        116   0 Start             227          227      116    0 Start 226         226   226 Stop   110               227          227    227 stop    IlI Fully Withdrawn at 228 Steps                       Fully Withdrawn at 229 Steps Control Control Control Control                  Control       Control   Control Control BankA BankB             BankC BankD               Bank A      Bank B    Bank C  Bank D 0 Start         0         0       0             0 Start         0         0        0 116      0 Start      0        0                116        0 Start      0        0 228 Stop         112         0        0            229 Stop        113        0       0 228         116     0 Start   0                229          116    OStart      0 228     228 Stop       112     0                229      229 Stop      113        0 228         228       116  0 Start              229        229        116     0 Start 228         228   228 Stop   112               229          229    229 Stop    113 Fully Withdrawn at 230 Steps                         Fully Withdrawn at 231 Stcps Control Control Control Control                    Control      Control  Control  Control BankA BankB BankC BankD                           Bank A        Bank B    Bank C    Bank D 0 Start         0         0       0             0 Start          0         0       0 116       0 Start        0      0                 116       0 Start       0       0 230 Stop        114        0       0            231 Stop        115        0        0 230          116     0 Start     0                 231          116    0Stan        0 230      230 Stop       114      0                 231      231 Stop     115        0 230          230        116   0 Start             231        231       116   0 Sart 230          230    230 Stop   114                231         231     231 Stop   115
 
MCEI-0400-47 Page 15 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.7  Heat Flux Hot Channel Factor - FQ(X,Y,Z) (TS 3.2.1) 2.7.1  FQ(X,Y,Z) steady-state limits are defined by the following relationships:
F 0Rr* *K(Z)/P         for P > 0.5 F QRrP *K(Z)/0.5       for P < 0.5 where, P = (Thermal Power)/(Rated Power)
Note: The measured FQ(X,Y,Z) shall be increased by 3% to account for manufacturing tolerances and 5% to account for measurement uncertainty when comparing against the LCO limits. The manufacturing tolerance and measurement uncertainty are implicitly included in the FQ surveillance limits as defined in COLR Sections 2.7.5 and 2.7.6.
2.7.2   F-QR, = 2.60 x K(BU) 2.7.3   K(Z) is the normalized FQ(X,Y,Z) as a function of core height. The K(Z) function for Westinghouse RFA fuel is provided in Figure 4.
2.7.4 K(BU) is the normalized FQ(X,Y,Z) as a function of burnup. K(BU) for Westinghouse RFA fuel is 1.0 for all burnups.
The following parameters are required for core monitoring per the Surveillance Requirements of Technical Specification 3.2.1:
D 2.7.5  F((X,Y,Z)OP = F6(X,Y,Z)
* MQ(X,Y,Z)
UMT
* MT
* MT
* TILT where: FL (X,Y,Z)OP  
* TILT where:
= Cycle dependent maximum allowable design peaking factor that ensures the FQ(X,Y,Z)
FL (X,Y,Z)OP =       Cycle dependent maximum allowable design peaking factor that ensures the FQ(X,Y,Z) LOCA limit will be preserved for operation within the LCO limits. F L(X,Y,Z)OP includes allowances for calculation and measurement uncertainties.
LOCA limit will be preserved for operation within the LCO limits. F L (X,Y,Z)OP includes allowances for calculation and measurement uncertainties.
F0D(X,Y,Z) = Design power distribution for FQ. F n(X,Y,Z) is provided in Appendix Table A-I for normal operating conditions, and in
F 0 D (X,Y,Z) = Design power distribution for FQ. F n (X,Y,Z) is provided in Appendix Table A-I for normal operating conditions, and in MCET-0400-47 Page 16 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Appendix Table A-4 for power escalation testing during initial startup operation.
 
MQ(X,Y,Z)  
MCET-0400-47 Page 16 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Appendix Table A-4 for power escalation testing during initial startup operation.
=Margin remaining in core location X,Y,Z to the LOCA limit in the transient power distribution.
MQ(X,Y,Z)     = Margin remaining in core location X,Y,Z to the LOCA limit in the transient power distribution. MQ(X,Y,Z) is provided in Appendix Table A-1 for normal operating conditions, and in Appendix Table A-4 for power escalation testing during initial startup operation.
MQ(X,Y,Z) is provided in Appendix Table A-1 for normal operating conditions, and in Appendix Table A-4 for power escalation testing during initial startup operation.
UMT = Total Peak Measurement Uncertainty. (UMT = 1.05)
UMT = Total Peak Measurement Uncertainty. (UMT = 1.05)MT = Engineering Hot Channel Factor. (MT = 1.03)TILT = Peaking penalty that accounts for the peaking increase from an allowable quadrant power tilt ratio of 1.02. (TILT = 1.035)2.7.6 FL(X,Y,Z)
MT = Engineering Hot Channel Factor. (MT = 1.03)
RPS D F6(X,Y,Z)
TILT = Peaking penalty that accounts for the peaking increase from an allowable quadrant power tilt ratio of 1.02. (TILT = 1.035)
* Mc(X,YZ)UMT
D F6(X,Y,Z)
* Mc(X,YZ) 2.7.6 FL(X,Y,Z) RPS        UMT
* MT
* MT
* TILT where: L FQ(X,Y,Z)RP  
* TILT where:
=F&#xfd;(X,Y,Z)
L FQ(X,Y,Z)RP   =   Cycle dependent maximum allowable design peaking factor that ensures the FQ(X,Y,Z) Centerline Fuel Melt (CFM) limit will be preserved for operation within the LCO limits.
=MC(X,Y,Z)
FLQ(X,Y,Z)RPS includes allowances for calculation and measurement uncertainties.
=Cycle dependent maximum allowable design peaking factor that ensures the FQ(X,Y,Z)
F&#xfd;(X,Y,Z) = Design power distributions for FQ. F6(X,Y,Z) is provided in Appendix Table A-I for normal operating conditions, and in Appendix Table A-4 for power escalation testing during initial startup operation.
Centerline Fuel Melt (CFM) limit will be preserved for operation within the LCO limits.FLQ(X,Y,Z)RPS includes allowances for calculation and measurement uncertainties.
MC(X,Y,Z)    = Margin remaining to the CFM limit in core location X,Y,Z in the transient power distribution. Mc(X,Y,Z) is provided in Appendix Table A-2 for normal operating conditions, and in Appendix Table A-5 for power escalation testing during initial startup operation.
Design power distributions for FQ. F6(X,Y,Z) is provided in Appendix Table A-I for normal operating conditions, and in Appendix Table A-4 for power escalation testing during initial startup operation.
 
Margin remaining to the CFM limit in core location X,Y,Z in the transient power distribution.
MCEI-0400-47 Page 17 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report UMT = Total Peak Measurement Uncertainty (UMT = 1.05)
Mc(X,Y,Z) is provided in Appendix Table A-2 for normal operating conditions, and in Appendix Table A-5 for power escalation testing during initial startup operation.
MT = Engineering Hot Channel Factor (MT = 1.03)
MCEI-0400-47 Page 17 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report UMT = Total Peak Measurement Uncertainty (UMT = 1.05)MT = Engineering Hot Channel Factor (MT = 1.03)TILT = Peaking penalty that accounts for the peaking increase from an allowable quadrant power tilt ratio of 1.02. (TILT = 1.035)2.7.7 KSLOPE = 0.0725 where: KSLOPE is the adjustment to the K 1 value from the OTAT trip setpoint required R PS to compensate for each 1% that F,' (X,YZ) exceeds FL (X,YZ)2.7.8 FQ(X,Y,Z) penalty factors for Technical Specification Surveillance's 3.2.1.2 and 3.2.1.3 are provided in Table 2.
TILT = Peaking penalty that accounts for the peaking increase from an allowable quadrant power tilt ratio of 1.02. (TILT = 1.035) 2.7.7 KSLOPE = 0.0725 where:
MCEI-0400-47 Page 18 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Figure 4 K(Z), Normalized FQ(XY,Z) as a Function of Core Height for Westinghouse RFA Fuel 1.200 1.000 (0.0. 1.00)(4.0, 1.00)(40I .61) 1.,.65 (4.0,.0.9615)( 12.0, 0.9615)0.800 -0.600 +0.400 0.200 Core Height (fIt) K(Z)0.0 1.000<4 1.000>4 0.9615 12.0 0.9615 0.000 -0.00 2.00 4.00 6.00 Core Height (ft)8.00 10.00 12.00 MCEI-0400-47 Page 19 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Table 2 FQ(X,Y,Z) and FAH(X,Y) Penalty Factors For Technical Specification Surveillance's 3.2.1.2,3.2.1.3 and 3.2.2.2 Burnup (EFPD)0 4 12 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 464 489 499 514 FQ(X,Y,Z)Penalty Factor (%)2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 F~A(X,Y,Z)
KSLOPE is the adjustment to the K1 value from the OTAT trip setpoint required RPS to compensate for each 1% that F,' (X,YZ) exceeds FL (X,YZ) 2.7.8 FQ(X,Y,Z) penalty factors for Technical Specification Surveillance's 3.2.1.2 and 3.2.1.3 are provided in Table 2.
Penalty Factor (%)2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Note: Linear interpolation is adequate for intermediate cycle burnups. All cycle bumups outside of the range of the table shall use a 2% penalty factor for both FQ(X,Y,Z) and FAH(X,Y) for compliance with the Technical Specification Surveillances 3.2.1.2, 3.2.1.3 and 3.2.2.2.
 
MCEI-0400-47 Page 20 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.8 Nuclear Enthalpy Rise Hot Channel Factor -FjH(X,Y) (TS 3.2.2)The FAH steady-state limits referred to in Technical Specification 3.2.2 is defined by the following relationship.
MCEI-0400-47 Page 18 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Figure 4 K(Z), Normalized FQ(XY,Z) as a Function of Core Height for Westinghouse RFA Fuel 1.200 (0.0. 1.00)           (4.0, 1.00) 1.000                                                                      1.,.65 (40I  .61)
2.8.1 FLI (X, Y) Lco = MARP (X,Y)
(4.0,.0.9615)                 ( 12.0, 0.9615) 0.800 -
* 1.0 + R- (1.0 -where: FAnj (X, Y)tco is defined as the steady-state, maximum allowed radial peak.FAI (X,Y)Lco includes allowances for calculation/measurement uncertainty.
0.600 +
MARP(X,Y)  
0.400           Core Height (fIt)         K(Z) 0.0           1.000
=Cycle-specific operating limit Maximum Allowable Radial Peaks. MARP(X,Y) radial peaking limits are provided in Table 3.-Thermal Power Rated Thermal Power RRH =Thermal Power reduction required to compensate for each 1% that the measured radial peak, (X,Y), exceeds its limit. RRH also is used to scale the MARP limits as a function of power per the [FAH (X, Y)]tco equation. (RRH = 3.34 (0.0 < P < 1.0))The following parameters are required for core monitoring per the Surveillance requirements of Technical Specification 3.2.2.L StURV xMAn (X,Y)2.8.2 FL (X,Y) = U MR X TL UMR w TrLT where: FAL (XY)sURv Cycle dependent maximum allowable design peaking factor that ensures the F AH(XY) limit will be preserved for operation within the LCO limits. FL,L (X,Y)SURv includes allowances for calculation/measurement uncertainty.
                      <4           1.000 0.200                >4           0.9615 12.0         0.9615 0.000 -
MCEI-0400-47 Page 21 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report F,'H (XY) = Design radial power distribution for F'a" FDH MY)provided in Appendix Table A-3 for normal operation, and in Appendix Table A-6 for power escalation testing during initial startup operation.
0.00             2.00             4.00             6.00       8.00 10.00           12.00 Core Height (ft)
MAH(X,Y)=The margin remaining in core location X,Y relative to the Operational DNB limits in the transient power distribution.
 
MCEI-0400-47 Page 19 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Table 2 FQ(X,Y,Z) and FAH(X,Y) Penalty Factors For Technical Specification Surveillance's 3.2.1.2,3.2.1.3 and 3.2.2.2 Burnup                   FQ(X,Y,Z)                 F~A(X,Y,Z)
(EFPD)              Penalty Factor (%)       Penalty Factor (%)
0                        2.00                     2.00 4                        2.00                     2.00 12                        2.00                     2.00 25                        2.00                     2.00 50                        2.00                     2.00 75                        2.00                     2.00 100                        2.00                     2.00 125                        2.00                     2.00 150                        2.00                     2.00 175                        2.00                     2.00 200                        2.00                     2.00 225                        2.00                     2.00 250                        2.00                     2.00 275                        2.00                     2.00 300                        2.00                     2.00 325                        2.00                     2.00 350                        2.00                     2.00 375                      2.00                     2.00 400                      2.00                     2.00 425                      2.00                     2.00 450                      2.00                     2.00 464                      2.00                     2.00 489                      2.00                     2.00 499                      2.00                     2.00 514                      2.00                     2.00 Note: Linear interpolation is adequate for intermediate cycle burnups. All cycle bumups outside of the range of the table shall use a 2% penalty factor for both FQ(X,Y,Z) and FAH(X,Y) for compliance with the Technical Specification Surveillances 3.2.1.2, 3.2.1.3 and 3.2.2.2.
 
MCEI-0400-47 Page 20 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.8 Nuclear Enthalpy Rise Hot Channel Factor - FjH(X,Y) (TS 3.2.2)
The FAH steady-state limits referred to in Technical Specification 3.2.2 is defined by the following relationship.
2.8.1   FLI (X, Y) Lco = MARP (X,Y)
* 1.0 + R-               (1.0 -
where:
FAnj (X, Y)tco is defined as the steady-state, maximum allowed radial peak.
FAI (X,Y)Lco includes allowances for calculation/measurement uncertainty.
MARP(X,Y) =             Cycle-specific operating limit Maximum Allowable Radial Peaks. MARP(X,Y) radial peaking limits are provided in Table 3.
                -     Thermal Power Rated Thermal Power RRH =Thermal Power reduction required to compensate for each 1% that the measured radial peak, F* (X,Y), exceeds its limit. RRH also is used to scale the MARP limits as a function of power per the [FAH (X, Y)]tco equation. (RRH = 3.34 (0.0 < P < 1.0))
The following parameters are required for core monitoring per the Surveillance requirements of Technical Specification 3.2.2.
L   StURV -F*I(X,Y)          xMAn (X,Y) 2.8.2   FL (X,Y)         =             U MR TL  X UMRw TrLT where:
FAL (XY)sURv               Cycle dependent maximum allowable design peaking factor that ensures the FAH(XY) limit will be preserved for operation within the LCO limits. FL,L (X,Y)SURv includes allowances for calculation/measurement uncertainty.
 
MCEI-0400-47 Page 21 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report F,'H (XY) = Design radial power distribution for F'a" FDH MY) provided in Appendix Table A-3 for normal operation, and in Appendix Table A-6 for power escalation testing during initial startup operation.
MAH(X,Y) =The margin remaining in core location X,Y relative to the Operational DNB limits in the transient power distribution.
MAH(X,Y) is provided in Appendix Table A-3 for normal operation, and in Appendix Table A-6 for power escalation testing during initial startup operation.
MAH(X,Y) is provided in Appendix Table A-3 for normal operation, and in Appendix Table A-6 for power escalation testing during initial startup operation.
UMR = Uncertainty value for measured radial peaks. UMR is set to 1.0 since a factor of 1.04 is implicitly included in the variable MAH(X,Y).TILT = Peaking penalty that accounts for the peaking increase for an allowable quadrant power tilt ratio of 1.02 (TILT = 1.035).2.8.3 RRH = 3.34 where: RRH = Thermal power reduction required to compensate for each 1% that the measured radial peak, Fa (X,Y) exceeds its limit. (0 < P < 1.0)2.8.4 TRH = 0.04 where: TRH = Reduction in the OTAT K 1 setpoint required to compensate for each 1%that the measured radial peak, F&#xfd; (X,Y) exceeds its limit.2.8.5 FAH (X,Y) penalty factors forTechnical Specification Surveillance 3.2.2.2 are provided in Table 2.2.9 Axial Flux Difference  
UMR = Uncertainty value for measured radial peaks. UMR is set to 1.0 since a factor of 1.04 is implicitly included in the variable MAH(X,Y).
-AFD (TS 3.2.3)2.9.1 The Axial Flux Difference (AFD) Limits are provided in Figure 5.
TILT = Peaking penalty that accounts for the peaking increase for an allowable quadrant power tilt ratio of 1.02 (TILT = 1.035).
MCEI-0400-47 Page 22 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Table 3 Maximum Allowable Radial Peaks (MARPS)RFA MARPS Core Axial Peak Ht (ft.) 1.05 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.1 3.0 3.25 0.12 1.809 1.855 1.949 1.995 1.974 2.107 2.050 2.009 1.933 1.863 1.778 1.315 1.246 1.2 1.810 1.854 1.940 1.995 1.974 2.107 2.019 1.978 1.901 1.831 1.785 1.301 1.224 2.4 1.809 1.853 1.931 1.978 1.974 2.074 1.995 1.952 1.876 1.805 1.732 1.463 1.462 3.6 1.810 1.851 1.920 1.964 1.974 2.050 1.966 1.926 1.852 1.786 1.700 1.468 1.387 4.8 1.810 1.851 1.906 1.945 1.974 2.006 1.944 1.923 1.854 1.784 1.671 1.299 1.258 6.0 1.810 1.851 1.892 1.921 1.946 1.934 1.880 1.863 1.802 1.747 1.671 1.329 1.260 7.2 1.807 1.844 1.872 1.893 1.887 1.872 1.809 1.787 1.733 1.681 1.598 1.287 1.220 8.4 1.807 1.832 1.845 1.857 1.816 1.795 1.736 1.709 1.654 1.601 1.513 1.218 1.158 9.6 1.807 1.810 1.809 1.791 1.738 1.718 1.657 1.635 1-581 1.530 1.444 1.143 1.091 10.8 1.798 1.787 1.761 1.716 1.654 1.632 1.574 1.557 1.509 1.462 1.383 1.101 1.047 11.4 1.789 1.765 1.725 1.665 1.606 1.583 1.529 1.510 1.464 1.422 1.346 1.067 1.014 MCEI-0400-47 Page 23 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Figure 5 Percent of Rated Thermal Power Versus Percent Axial Flux Difference Limits (-18, 100)(+10, 100)_ I _40 a.t Unacceptable Operation 90 80-Acceptable Operation 70-60 50 (-36, 50)U nacceptable Operation 40-30+(+21, 50)0I 20 30I4 5 10 20 30 40 50 20+10--50 30 10 I 0 Axial Flux Difference
2.8.3 RRH = 3.34 where:
(% Delta 1)NOTE: Compliance with Technical Specification 3.2.1 may require more restrictive AFD limits. Refer to OPI2IA/6100122 Unit 2 Data Book for more details.
RRH = Thermal power reduction required to compensate for each 1% that the measured radial peak, Fa (X,Y) exceeds its limit. (0 < P < 1.0) 2.8.4 TRH = 0.04 where:
MCEI-0400-47 Page 24 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.10 Reactor Trip System Instrumentation Setpoints (TS 3.3.1) Table 3.3.1-1 2.10.1 Overtemperature AT Setpoint Parameter Values Parameter Value Nominal Tavg at RTP T' <585.1 0 F Nominal RCS Operating Pressure Overtemperature AT reactor trip setpoint Overtemperature AT reactor trip heatup setpoint penalty coefficient Overtemperature AT reactor trip depressurization setpoint penalty coefficient Time constants utilized in the lead-lag compensator for AT Time constant utilized in the lag compensator for AT Time constants utilized in the lead-lag compensator for T.,9 Time constant utilized in the measured Tv, lag compensator P' = 2235 psig KI < 1.1978 K2 = 0.0334/&deg;F K3 = 0.001601/psi"t > 8 sec.t2 < 3 sec.x 3 < 2 sec.*t4 > 28 sec.'r 5< 4 sec.x6 < 2 sec.fl(AI) "positive" breakpoint fl(AI) "negative" breakpoint fl(AI) "positive" slope fl(AI) "negative" slope= 19.0 %AI= NIA*= 1.769 %AT 0/ %AI= N/A*The fl(AI) "negative" breakpoints and the fl(AI) "negative" slope are less restrictive than the OPAT f 2 (Al) negative breakpoint and slope. Therefore, during a transient which challenges the negative imbalance limits, the OPAT f 2 (AI) limits will result in a reactor trip before the OTAT fl(AI) limits are reached. This makes implementation of the OTAT fl (AT) negative breakpoint and slope unnecessary.
TRH = Reduction in the OTAT K1 setpoint required to compensate for each 1%
MCEI-0400-47 Page 25 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.10.2 Overpower AT Setpoint Parameter Values Parameter Nominal Tavg at RTP Overpower AT reactor trip setpoint Overpower AT reactor trip Penalty Overpower AT reactor trip heatup setpoint penalty coefficient Time constants utilized in the lead-lag compensator for AT Time constant utilized in the lag compensator for AT Time constant utilized in the measured Tavg lag compensator Time constant utilized in the rate-lag controller for Tvg f 2 (AI) "positive" breakpoint f 2 (AI) "negative" breakpoint f 2 (AI) "positive" slope f 2 (AI) "negative" slope Value T'" < 585.11F K4 < 1.0864 K5 = 0.021/F for increasing Tavg K5 = 0.0 for decreasing Tavg K6 = 0.001179/&deg;F for T > T" K 6 = 0.0 forT< T" T, > 8 sec.T2 < 3 sec.T3 < 2 sec.r6 <2 sec.T7 > 5 sec.= 35.0 %AI= -35.0 %AI= 7.0 %ATd %AI= 7.0 %ATo/ %AI MCEI-0400-47 Page 26 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.11 RCS Pressure, Temperature and Flow Limits for DNB (TS 3.4.1)2.11.1 The RCS pressure, temperature and flow limits for DNB are shown in Table 4.2.12 Accumulators (TS 3.5.1)2.12.1 Boron concentration limits during modes I and 2, and mode 3 with RCS pressure>1000 psi: Parameter Cold Leg Accumulator minimum boron concentration.
that the measured radial peak, F&#xfd; (X,Y) exceeds its limit.
Cold Leg Accumulator maximum boron concentration.
2.8.5 FAH (X,Y) penalty factors forTechnical Specification Surveillance 3.2.2.2 are provided in Table 2.
Limit 2,475 ppm 2,875 ppm 2.13 Refueling Water Storage Tank -RWST (TS 3.5.4)2.13.1 Boron concentration limits during modes 1, 2, 3, and 4: Parameter Refueling Water Storage Tank minimum boron concentration.
2.9 Axial Flux Difference - AFD (TS 3.2.3) 2.9.1 The Axial Flux Difference (AFD) Limits are provided in Figure 5.
Refueling Water Storage Tank maximum boron concentration.
 
Limit 2,675 ppm 2,875 ppm MCEI-0400-47 Page 27 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Table 4 Reactor Coolant System DNB Parameters No. Operable Parameter Indication Channels Limits 1. Indicated RCS Average Temperature meter 4 < 587.2 IF meter 3 < 586.9 OF computer 4 < 587.7 IF computer 3 < 587.5 OF 2. Indicated Pressurizer Pressure meter 4 > 2219.8 psig meter 3 > 2222.1 psig computer 4 > 2215.8 psig computer 3 > 2217.5 psig 3. RCS Total Flow Rate > 388,000 gpm MCEI-0400-47 Page 28 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.14 Spent Fuel Pool Boron Concentration (TS 3.7.14)2.14.1 Minimum boron concentration limit for the spent fuel pool. Applicable when fuel assemblies are stored in the spent fuel pool.Parameter Limit Spent fuel pool minimum boron concentration.
MCEI-0400-47 Page 22 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Table 3 Maximum Allowable Radial Peaks (MARPS)
2,675 ppm 2.15 Refueling Operations
RFA MARPS Core                                   Axial Peak Ht (ft.) 1.05   1.1   1.2   1.3   1.4     1.5     1.6   1.7   1.8   1.9   2.1     3.0     3.25 0.12   1.809 1.855 1.949 1.995 1.974   2.107   2.050 2.009 1.933 1.863 1.778   1.315   1.246 1.2   1.810 1.854 1.940 1.995 1.974   2.107   2.019 1.978 1.901 1.831 1.785   1.301   1.224 2.4   1.809 1.853 1.931 1.978 1.974   2.074   1.995 1.952 1.876 1.805 1.732   1.463   1.462 3.6     1.810 1.851 1.920 1.964 1.974   2.050   1.966 1.926 1.852 1.786 1.700   1.468   1.387 4.8   1.810 1.851 1.906 1.945 1.974   2.006   1.944 1.923 1.854 1.784 1.671   1.299   1.258 6.0   1.810 1.851 1.892 1.921 1.946   1.934   1.880 1.863 1.802 1.747 1.671   1.329   1.260 7.2   1.807 1.844 1.872 1.893 1.887   1.872   1.809 1.787 1.733 1.681 1.598   1.287   1.220 8.4   1.807 1.832 1.845 1.857 1.816   1.795   1.736 1.709 1.654 1.601 1.513   1.218   1.158 9.6   1.807 1.810 1.809 1.791 1.738   1.718   1.657 1.635 1-581 1.530 1.444   1.143   1.091 10.8   1.798 1.787 1.761 1.716 1.654   1.632   1.574 1.557 1.509 1.462 1.383   1.101   1.047 11.4   1.789 1.765 1.725 1.665 1.606   1.583   1.529 1.510 1.464 1.422 1.346   1.067   1.014
-Boron Concentration (TS 3.9.1)2.15.1 Minimum boron concentration limit for the filled portions of the Reactor Coolant System, refueling canal, and refueling cavity for mode 6 conditions.
 
The minimum boron concentration limit and plant refueling procedures ensure that the Keff of the core will remain within the mode 6 reactivity requirement of Keff <0.95.Parameter Limit Minimum Boron concentration of the Reactor Coolant System, the refueling canal, and the refueling cavity.2,675 ppm MCEI-0400-47 Page 29 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.16 Borated Water Source -Shutdown (SLC 16.9.14)2.16.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during mode 4 with any RCS cold leg temperature
MCEI-0400-47 Page 23 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Figure 5 Percent of Rated Thermal Power Versus Percent Axial Flux Difference Limits
< 300 'F and modes 5 and 6.Parameter Limit Boric Acid Tank minimum contained borated water volume 10,599 gallons 13.6% Level Note: When cycle burnup is > 460 EFPD, Figure 6 may be used to determine the required BAT minimum level.Boric Acid Tank minimum boron concentration Boric Acid Tank minimum water volume required to maintain SDM at 7,000 ppm Refueling Water Storage Tank minimum contained borated water volume Refueling Water Storage Tank minimum boron concentration Refueling Water Storage Tank minimum water volume required to maintain SDM at 2,675 ppm 7,000 ppm 2,300 gallons 47,700 gallons 41 inches 2,675 ppm 8,200 gallons MCEI-0400-47 Page 30 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.17 Borated Water Source -Operating (SLC 16.9.11)2.17.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during modes 1, 2, 3, and mode 4 with all RCS cold leg temperature
(-18, 100)                       (+10, 100)
> 300 'F.Parameter Limit Boric Acid Tank minimum contained borated water volume 22,049 gallons 38.0% Level Note: When cycle burnup is > 460 EFPD, Figure 6 may be used to determine the required BAT minimum level. I Boric Acid Tank minimum boron concentration Boric Acid Tank minimum water volume required to maintain SDM at 7,000 ppm Refueling Water Storage Tank minimum contained borated water volume Refueling Water Storage Tank minimum boron concentration Refueling Water Storage Tank maximum boron concentration (TS 3.5.4)Refueling Water Storage Tank minimum water volume required to maintain SDM at 2,675 ppm 7,000 ppm 13,750 gallons 96,607 gallons 103.6 inches 2,675 ppm 2,875 ppm 57,107 gallons MCEI-0400-47 Page 31 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Figure 6 Boric Acid Storage Tank Indicated Level Versus RCS Boron Concentration (Valid When Cycle Burnup is > 460 EFPD)This figure includes additional volumes listed in SLC 16.9.14 and 16.9.11 40.0-- -.-RCS Boron 35.0, Concentration;:
_             I [?:*          _
BAT Level (ppm) (%/.level) 0 < 300 --37.0 30-<5 :-33.0-'700'<1I000....
90 Unacceptable Operation                                                Unacceptable Operation 80-Acceptable Operation 70-40 a.t                                                  60
23.0-Z. 3-0.0 "13.6 C> 1300 "- 8.7;&#xfd;- 25.0 -.. ... .... ..-20.0.Acceptable Operation 15.0o 10.0 -I Unacceptable Operation 5.0 0.0 0 200 400 600 800 1000 1200 1400 1600 1800 20O0 20 2400 2600 2800 RCS Boron Concentration (ppmb)
(-36, 50)                               50
MCEI-0400-47 Page 32 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report NOTE: Appendix A contains power distribution monitoring factors used in Technical Specification Surveillance.
(+21, 50) 40-30+
This data was generated in the McGuire 2 Cycle 18 Maneuvering Analysis calculation file, MCC-1553.05-00-0437.
20+
Due to the size of the monitoring factor data, Appendix A is controlled electronically within Duke and is not included in the Duke internal copies of the COLR. The Plant Nuclear Engineering Section will control this information via computer file(s) and should be contacted if there is a need to access this information.
10-I        0I     20       30I4               5
    -50     -40        -30       -20        -10           0       10        20      30        40        50 Axial Flux Difference (% Delta 1)
NOTE: Compliance with Technical Specification 3.2.1 may require more restrictive AFD limits. Refer to OPI2IA/6100122 Unit 2 Data Book for more details.
 
MCEI-0400-47 Page 24 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.10     Reactor Trip System Instrumentation Setpoints (TS 3.3.1) Table 3.3.1-1 2.10.1 Overtemperature AT Setpoint Parameter Values Parameter                                       Value Nominal Tavg at RTP                                           T' <585.10 F Nominal RCS Operating Pressure                                 P' = 2235 psig Overtemperature AT reactor trip setpoint                       KI < 1.1978 Overtemperature AT reactor trip heatup setpoint                 K2 = 0.0334/&deg;F penalty coefficient Overtemperature AT reactor trip depressurization               K3 = 0.001601/psi setpoint penalty coefficient Time constants utilized in the lead-lag compensator           "t > 8 sec.
for AT                                                         t2 < 3 sec.
Time constant utilized in the lag compensator for AT           x 3 < 2 sec.
Time constants utilized in the lead-lag compensator           *t4 > 28 sec.
for T.,9                                                       'r5 < 4 sec.
Time constant utilized in the measured Tv, lag                 x6 < 2 sec.
compensator fl(AI) "positive" breakpoint                                    = 19.0 %AI fl(AI) "negative" breakpoint                                    = NIA*
fl(AI) "positive" slope                                        = 1.769 %AT0 / %AI fl(AI) "negative" slope                                        = N/A*
The fl(AI) "negative" breakpoints and the fl(AI) "negative" slope are less restrictive than the OPAT f 2 (Al) negative breakpoint and slope. Therefore, during a transient which challenges the negative imbalance limits, the OPAT f2 (AI) limits will result in a reactor trip before the OTAT fl(AI) limits are reached. This makes implementation of the OTAT fl (AT) negative breakpoint and slope unnecessary.
 
MCEI-0400-47 Page 25 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.10.2 Overpower AT Setpoint Parameter Values Parameter                                  Value Nominal Tavg at RTP                        T'" < 585.11F Overpower AT reactor trip setpoint          K4 < 1.0864 Overpower AT reactor trip Penalty          K5 = 0.021/F for increasing Tavg K5 = 0.0 for decreasing Tavg Overpower AT reactor trip heatup            K6 = 0.001179/&deg;F for T > T" setpoint penalty coefficient                K6 = 0.0 forT< T" Time constants utilized in the lead-lag    T, > 8 sec.
compensator for AT                          T2 < 3 sec.
Time constant utilized in the lag           T3 < 2 sec.
compensator for AT Time constant utilized in the               r6 <2 sec.
measured Tavg lag compensator Time constant utilized in the rate-lag     T7 > 5 sec.
controller for Tvg f2 (AI) "positive" breakpoint               = 35.0 %AI f2(AI) "negative" breakpoint               = -35.0 %AI f2(AI) "positive" slope                     = 7.0 %ATd %AI f2(AI) "negative" slope                     = 7.0 %ATo/ %AI
 
MCEI-0400-47 Page 26 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.11 RCS Pressure, Temperature and Flow Limits for DNB (TS 3.4.1) 2.11.1 The RCS pressure, temperature and flow limits for DNB are shown in Table 4.
2.12 Accumulators (TS 3.5.1) 2.12.1 Boron concentration limits during modes I and 2, and mode 3 with RCS pressure
            >1000 psi:
Parameter                                Limit Cold Leg Accumulator minimum boron concentration.             2,475 ppm Cold Leg Accumulator maximum boron concentration.             2,875 ppm 2.13 Refueling Water Storage Tank - RWST (TS 3.5.4) 2.13.1 Boron concentration limits during modes 1, 2, 3, and 4:
Parameter                                 Limit Refueling Water Storage Tank minimum boron                   2,675 ppm concentration.
Refueling Water Storage Tank maximum boron                   2,875 ppm concentration.
 
MCEI-0400-47 Page 27 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Table 4 Reactor Coolant System DNB Parameters No. Operable Parameter                    Indication    Channels          Limits
: 1. Indicated RCS Average Temperature      meter                4      < 587.2 IF meter                3     < 586.9 OF computer            4     < 587.7 IF computer            3      < 587.5 OF
: 2. Indicated Pressurizer Pressure          meter                4      > 2219.8 psig meter                3      > 2222.1 psig computer            4      > 2215.8 psig computer            3      > 2217.5 psig
: 3. RCS Total Flow Rate                                                > 388,000 gpm
 
MCEI-0400-47 Page 28 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.14 Spent Fuel Pool Boron Concentration (TS 3.7.14) 2.14.1 Minimum boron concentration limit for the spent fuel pool. Applicable when fuel assemblies are stored in the spent fuel pool.
Parameter                                  Limit Spent fuel pool minimum boron concentration.                      2,675 ppm 2.15 Refueling Operations - Boron Concentration (TS 3.9.1) 2.15.1 Minimum boron concentration limit for the filled portions of the Reactor Coolant System, refueling canal, and refueling cavity for mode 6 conditions. The minimum boron concentration limit and plant refueling procedures ensure that the Keff of the core will remain within the mode 6 reactivity requirement of Keff <
0.95.
Parameter                                   Limit Minimum Boron concentration of the Reactor Coolant                2,675 ppm System, the refueling canal, and the refueling cavity.
 
MCEI-0400-47 Page 29 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.16 Borated Water Source - Shutdown        (SLC 16.9.14) 2.16.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during mode 4 with any RCS cold leg temperature < 300 'F and modes 5 and 6.
Parameter                              Limit Boric Acid Tank minimum contained borated            10,599 gallons water volume                                          13.6% Level Note: When cycle burnup is > 460 EFPD, Figure 6 may be used to determine the required BAT minimum level.
Boric Acid Tank minimum boron concentration             7,000 ppm Boric Acid Tank minimum water volume                  2,300 gallons required to maintain SDM at 7,000 ppm Refueling Water Storage Tank minimum                47,700 gallons contained borated water volume                          41 inches Refueling Water Storage Tank minimum boron              2,675 ppm concentration Refueling Water Storage Tank minimum water           8,200 gallons volume required to maintain SDM at 2,675 ppm
 
MCEI-0400-47 Page 30 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.17 Borated Water Source - Operating      (SLC 16.9.11) 2.17.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during modes 1, 2, 3, and mode 4 with all RCS cold leg temperature > 300 'F.
Parameter                            Limit Boric Acid Tank minimum contained borated            22,049 gallons water volume                                         38.0% Level Note: When cycle burnup is > 460 EFPD, Figure 6 may be used to determine the required BAT minimum level.                          I Boric Acid Tank minimum boron concentration            7,000 ppm Boric Acid Tank minimum water volume                13,750 gallons required to maintain SDM at 7,000 ppm Refueling Water Storage Tank minimum                96,607 gallons contained borated water volume                        103.6 inches Refueling Water Storage Tank minimum boron            2,675 ppm concentration Refueling Water Storage Tank maximum boron            2,875 ppm concentration (TS 3.5.4)
Refueling Water Storage Tank minimum water           57,107 gallons volume required to maintain SDM at 2,675 ppm
 
MCEI-0400-47 Page 31 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Figure 6 Boric Acid Storage Tank Indicated Level Versus RCS Boron Concentration (Valid When Cycle Burnup is > 460 EFPD)
This figure includes additional volumes listed in SLC 16.9.14 and 16.9.11 40.0--        -.-
RCS Boron 35.0,                                                       Concentration;: BAT Level (ppm)            (%/.level) 0 < 300--            37.0 30-<5         :-33.0
                                                                  -'700'<1I000....          23.0-Z.                                                                  1*0        3-0.0
                                                                              *1          "13.6 C>
;&#xfd;- 25.0 -..                                                       .   .. 1300
                                                                              . .     ..  ."-8.7
                                                                                                .
-   20.0.
Acceptable Operation 15.0o 10.0 -I Unacceptable Operation 5.0 0.0 0   200    400  600  800  1000  1200  1400 1600 1800    20O0    20       2400      2600  2800 RCS Boron Concentration (ppmb)
 
MCEI-0400-47 Page 32 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report NOTE: Appendix A contains power distribution monitoring factors used in Technical Specification Surveillance. This data was generated in the McGuire 2 Cycle 18 Maneuvering Analysis calculation file, MCC-1553.05-00-0437. Due to the size of the monitoring factor data, Appendix A is controlled electronically within Duke and is not included in the Duke internal copies of the COLR. The Plant Nuclear Engineering Section will control this information via computer file(s) and should be contacted if there is a need to access this information.
Appendix A is included in the COLR copy transmitted to the NRC.}}
Appendix A is included in the COLR copy transmitted to the NRC.}}

Revision as of 13:35, 23 November 2019

Cycle 18, Revision 26 to Core Operating Limits Report (COLR)
ML062760240
Person / Time
Site: Mcguire
Issue date: 09/20/2006
From: Gordon Peterson
Duke Energy Carolinas, Duke Power Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
MCC-1553.05-00-0447, Rev 0 MCEI-0400-47, Rev 26
Download: ML062760240 (34)


Text

GARY R. PETERSON I Duke Vice President Energy McGuire Nuclear Station Duke Energy Corporation MGOIVP / 12700 Hagers Ferry Rd.

Huntersville, NC 28078 704 875 5333 704 875 4809 fax grpeters@duke-energy.com September 20, 2006 U. S. Nuclear Regulatory Commission Document Control Desk Washington, D.C. 20555

Subject:

Duke Power Company LLC d/b/a Duke Energy Carolinas, LLC (Duke)

McGuire Nuclear Station Docket Nos. 50-370 Unit 2, Cycle 18, Revision 26 Core Operating Limits Report (COLR)

Pursuant to McGuire Technical Specification (TS) 5.6.5.d, please find enclosed Revision 26 to the McGuire Unit 2 Cycle 18 Core Operating Limits Report (COLR).

Questions regarding this submittal should be directed to Kay Crane, McGuire Regulatory Compliance at (704) 875-4306.

Gary R. Peterson Attachment 7DO I www.duke-energy. com

U. S. Nuclear Regulatory Commission September 20, 2006 Page 2 cc: Mr. John Stang, Project Manager U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation Washington, D.C. 20555 Mr. W. D. Travers, Regional Administrator U. S. Nuclear Regulatory Commission, Region II Atlanta Federal Center 61 Forsyth St., SW, Suite 23T85 Atlanta, GA 30323 Mr. Joe Brady Senior Resident Inspector McGuire Nuclear Station

MCEI-0400-47 Page I of 32 Revision 26 McGuire Unit 2 Cycle 18 Core Operating Limits Report Revision 26 August 2006 Calculation Number: MCC-1553.05-00-0447 (Rev. 0)

Duke Energy Date Prepared By:

Checked By: AN q1 - aeL,0 /

/

Checked By:

Approved By:

QA Condition 1 The information presented in this report has been prepared and issued in accordance with McGuire Technical Specification 5.6.5.

MCEI-0400-47 Page 2 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report INSPECTION OF ENGINEERING INSTRUCTIONS Inspection Waived By: Date:f/

(Sponsor)

CATAWBA Inspection Waived MCE (Mechanical & Civil) E] Inspected By/Date:

RES (Electrical Only) El Inspected By/Date:

RES (Reactor) El Inspected By/Date:

MOD El Inspected By/Date:

Other ( ) El Inspected By/Date:

OCONEE Inspection Waived MCE (Mechanical & Civil) El Inspected By/Date:

RES (Electrical Only) El Inspected By/Date:

RES (Reactor) El Inspected By/Date:

MOD El Inspected By/Date:

Other( ) El Inspected By/Date:

MCGUIRE Inspection MCE (Mechanical & Civil) Inspected By/Date:

RES (Electrical Only) Inspected By/Date:

RES (Reactor) Inspected By/Date:

MOD Inspected By/Date:

Other ( ) Inspected By/Date:

MCEI-0400-47 Page 3 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Implementation Instructions For Revision 26 Revision Description and PIP Tracking Revision 26 of the McGuire Unit 2 COLR contains limits specific to the McGuire 2 Cycle 18 reload core. There is no PIP associated with this revision.

Implementation Schedule Revision 26 may become effective any time during No Mode between Cycles 17 and 18 but must become effective prior to entering Mode 6, which starts Cycle 18.

This revision replaces the current revision (MCEI-0400-47, Rev. 25).

Data riles to be Implemented No data files are transmitted as part of this document.

Insertion/Deletion Instructions Remove Insert pages 1- 33 of Rev. 25 pages 1- 32 of Rev 26 (including Appendix A*) (including Appendix A*)

Appendix A contains power distribution monitoring factors used in Technical Specification Surveillance. Appendix A is included only in the electronic COLR copy sent to the NRC.

MCEI-04(X)-47 Page 4 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report REVISION LOG Revision Issuance Date Effective Pages COLR Revisions 0-2 Superseded N/A M2C09 Revisions 3-6 Superseded N/A M2CIO Revisions 7-12 Superseded N/A M2CI1 Revision 13-15 Superseded N/A M2C12 Revision 16-17 Superseded N/A M2C13 Revision 18-20 Superseded N/A M2C14 Revision 21-22 Superseded N/A M2C15 Revision 23-24 Superseded N/A M2C16 Revision 25 March 2005 1-33 M2CI7 Revision 26 August 2006 1-32 M2CI8 (Orig. Issue)

MCEI-0400-47 Page 5 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 1.0 Core Operating Limits Report This Core Operating Limits Report (COLR) has been prepared in accordance with the requirements of Technical Specification 5.6.5. The Technical Specifications that reference the COLR are summarized below.

TS' COLR El Number Technical Specifications COLR Parameter Section Page 1.1 Requirements for Operational Mode 6 Mode 6 Definition 2.1 9 2.1.1 Reactor Core Safety Limits RCS Temperature and 2.2 9 Pressure Safety Limits 3.1.1 Shutdown Margin Shutdown Margin 2.3 9 3.1.3 Moderator Temperature Coefficient MTC 2.4 11 3.1.4 Rod Group Alignment Limits Shutdown Margin 2.3 9 3.1.5 Shutdown Bank Insertion Limits Shutdown Margin 2.3 9 3.1.5 Shutdown Bank Insertion Limits Shutdown Bank Insertion 2.5 11 Limit 3.1.6 Control Bank Insertion Limits Shutdown Margin 2.3 9 3.1.6 Control Bank Insertion Limits Control Bank Insertion 2.6 11 Limit 3.1.8 Physics TestsExceptions Shutdown Margin 2.3 9 3.2.1 Heat Flux Hot Channel Factor Fq, AFD, OTAT and 2.7 15 Penalty Factors 3.2.2 Nuclear Enthalpy Rise Hot Channel FAIl, AFD and 2.8 20 Factor Penalty Factors 3.2.3 Axial Flux Difference AFD 2.9 21 3.3.1 Reactor Trip System Instrumentation OTAT and OPAT 2.10 24 Constants 3.4.1 RCS Pressure, Temperature, and Flow RCS Pressure, 2.11 26 DNB limits Temperature and Flow 3.5.1 Accumulators Max and Min Boron Cone. 2.12 26 3.5.4 Refueling Water Storage Tank Max and Min Boron Cone. 2.13 26 3.7.14 Spent Fuel Pool Boron Concentration Min Boron Concentration 2.14 28 3.9.1 Refueling Operations - Boron Min Boron Concentration 2.15 28 Concentration 5.6.5 Core Operating Limits Report (COLR) Analytical Methods 1.1 6 The Selected Licensee Commitments that reference this report are listed below:

COLR El SLC Number Selected Licensing Commitment COLR Parameter Section Page 16.9.14 Borated Water Source - Shutdown Borated Water Volume and 2.16 29 Cone. for BAT/RWST 16.9.11 Borated Water Source - Operating Borated Water Volume and 2.17 30 Cone. for BAT/RWST

MCEI-0400-47 Page 6 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 1.1 Analytical Methods The analytical methods used to determine core operating limits for parameters identified in Technical Specifications and previously reviewed and approved by the NRC, as specified in Technical Specification 5.6.5, are as follows.

1. WCAP-9272-P-A, "Westinghouse Reload Safety Evaluation Methodology," (W Proprietary).

Revision 0 Report Date: July 1985 Not Used for M2C18

2. WCAP-10054-P-A, "Westinghouse Small Break ECCS Evaluation Model using the NOTRUMP Code, " (W Proprietary).

Revision 0 Report Date: August 1985

3. WCAP-10266-P-A, "The 1981 Version Of Westinghouse Evaluation Model Using BASH Code",

(W Proprietary).

Revision 2 Report Date: March 1987 Not Used for M2C18

4. WCAP-12945-P-A, Volume 1 and Volumes 2-5, "Code Qualification Document for Best-Estimate Loss of Coolant Analysis," (W Proprietary).

Revision: Volume I (Revision 2) and Volumes 2-5 (Revision 1)

Report Date: March 1998

5. BAW-10168P-A, "B&W Loss-of-Coolant Accident Evaluation Model for Recirculating Steam Generator Plants," (B&W Proprietary).

Revision 1 SER Date: January 22, 1991 Revision 2 SER Dates: August 22, 1996 and November 26, 1996.

Revision 3 SER Date: June 15, 1994.

Not Used for M2C18

6. DPC-NE-3000PA, 'Thermal-Hydraulic Transient Analysis Methodology," (DPC Proprietary).

Revision 3 SER Date: September 24. 2003

MCEI-0400-47 Page 7 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 1.1 Analytical Methods (continued)

7. DPC-NE-3001PA, "Multidimensional Reactor Transients and Safety Analysis Physics Parameter Methodology," (DPC Proprietary).

Revision 0 Report Date: November 1991 (Republished December 2000)

8. DPC-NE-3002A, "FSAR Chapter 15 System Transient Analysis Methodology".

Revision 4 SER Date: April 6, 2001

9. DPC-NE-2004P-A. "Duke Power Company McGuire and Catawba Nuclear Stations Core Thermal-Hydraulic Methodology using VIPRE-0 1," (DPC Proprietary).

Revision 1 SER Date: February 20, 1997

10. DPC-NE-2005P-A, "Thermal Hydraulic Statistical Core Design Methodology," (DPC Proprietary).

Revision 3 SER Date: September 16, 2002

11. DPC-NE-2008P-A, "Fuel Mechanical Reload Analysis Methodology Using TACO3." (DPC Proprietary).

Revision 0 SER Date: April 3, 1995 Not Used for M2C18

12. DPC-NE-2009-P-A, "Westinghouse Fuel Transition Report," (DPC Proprietary).

Revision 2 SER Date: December 18, 2002

13. DPC-NE-1004A, "Nuclear Design Methodology Using CASMO-3/SIMULATE-3P."

Revision I SER Date: April 26, 1996 Not Used for M2C18

MCEI-0400-47 Page 8 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 1.1 Analytical Methods (continued)

14. DPC-NF-2010A, "Duke Power Company McGuire Nuclear Station Catawba Nuclear Station Nuclear Physics Methodology for Reload Design."

Revision 2 SER Date: June 24,2003

15. DPC-NE-201 IPA, "Duke Power Company Nuclear Design Methodology for Core Operating Limits of Westinghouse Reactors," (DPC Proprietary).

Revision 1 SER Date: October 1, 2002

16. DPC-NE-1005-P-A, "Nuclear Design Methodology Using CASMO-4 / SIMULATE-3 MOX,"

(DPC Proprietary).

Revision 0 SER Date: August 20, 2004

MCEI-0400-47 Page 9 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.0 Operating Limits The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using the NRC approved methodologies specified in Section 1.1.

2.1 Requirements for Operational Mode 6 The following condition is required for operational mode 6.

2.1.1 The Reactivity Condition requirement for operational mode 6 is that kff must be less than, or equal to 0.95.

2.2 Reactor Core Safety Limits (TS 2.1.1) 2.2.1 The Reactor Core Safety Limits are shown in Figure 1.

2.3 Shutdown Margin - SDM (TS 3.1.1, TS 3.1.4, TS 3.1.5, TS 3.1.6 and TS 3.1.8) 2.3.1 ForTS 3.1.1; SDM shall be> 1.3% AK/K in mode 2 with k-eff < 1.0 and in modes 3 and 4.

2.3.2 ForTS 3.1.1, SDM shall be> 1.0% AK/K in mode 5.

2.3.3 For TS 3.1.4, SDM shall be > 1.3% AK/K in modes I and 2.

2.3.4 For TS 3.1.5, SDM shall be > 1.3% AK/K in mode 1 and mode 2 with any control bank not fully inserted.

2.3.5 For TS 3.1.6, SDM shall be > 1.3% AK/K in mode I and mode 2 with K-eff > 1.0.

2.3.6 ForTS 3.1.8, SDM shall be > 1.3% AK/K in mode 2 during Physics Testing.

MCE1-0400-47 Page 10 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Figure 1 Reactor Core Sarety Limits Four Loops in Operation 670 DO NOT OPERATE IN THIS AREA 660 650 620 1-.

600 .....

590 ACCEPTABLE 580 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Fraction of Rated Thermal Power

MCEI-0400-47 Page 11 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.4 Moderator Temperature Coefficient - MTC (TS 3.1.3) 2.4.1 The Moderator Temperature Coefficient (MTC) Limits are:

The MTC shall be less positive than the upper limits shown in Figure 2. The BOC, ARO, HZP MTC shall be less positive than 0.7E-04 AK/K/ 0 F.

The EOC, ARO, RTP MTC shall be less negative than the -4.3E-04 AK/K/°F lower MTC limit.

2.4.2 The 300 ppm MTC Surveillance Limit is:

The measured 300 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to -3.65E-04 AK/K/ 0 F.

2.4.3 The 60 PPM MTC Surveillance Limit is:

The 60 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to

-4.125E-04 AK/K/ 0 F.

Where, BOC = Beginning of Cycle (Burnup corresponding to the most positive MTC)

EOC = End of Cycle ARO = All Rods Out HZP = Hot Zero Power RTP = Rated Thermal Power PPM = Parts per million (Boron) 2.5 Shutdown Bank Insertion Limit (TS 3.1.5) 2.5.1 Each shutdown bank shall be withdrawn to at least 222 steps. Shutdown banks are withdrawn in sequence and with no overlap.

2.6 Control Bank Insertion Limits (TS 3.1.6) 2.6.1 Control banks shall be within the insertion, sequence, and overlap limits shown in Figure 3. Specific control bank withdrawal and overlap limits as a function of the fully withdrawn position are shown in Table 1.

MCEI-0400-47 Page 12 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Figure 2 Moderator Temperature Coefficient Upper Limit Versus Power Level 1.0 0.9 0.8 0.7 0.6 0 0.5 U* Q 0.4 0.3 0.2 0.1 0.0 0 10 20 30 40 50 60 70 80 90 100 Percent of Rated Thermal Power NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits.

Refer to OP/2/AI6100/22 Unit 2 Data Book for details.

MCEI-0400-47 Page 13 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Figure 3 Control 'Bank Insertion Limits Versus Percent Rated Thermal Power Fully Withdrawn (Maximum = 231)N 231 220 (80 .2 1)

J 200 180 S..

160 (o%. 16.3.) 7 U,

a. 140 U,

a 120 (29.)

- 6%,231)

-. .-.

0 100 a

C 80 I-Control Bank 60

'C 0

-(0%.,47) -

40 20 0 -

0 10 20 30 40 50 60 70 80 90 100 Percent of Rated Thermal Power The Rod Insertion Limits (RIL) for Control Bank D (CD), Control Bank C (CC), and Control Bank B (CB) can be calculated by:

Bank CD RIL= 2.3(P) - 69 {30<5 P5 100}

Bank CCRIL = 2.3(P) + 47 {0 < P < 80}

Bank CBRIL = 2.3(P) + 163 {O*< P5 <29.6}

where P = %Rated Thermal Power NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits.

Refer to OP/2/A16100122 Unit 2 Data Book for details.

MCEI-0400-47 Page 14 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Table 1 RCCA Withdrawal Steps and Sequence Fully Withdrawn at 222 Steps Fully Withdrawn at 223 Steps Control Control Control Control Control Control Control Control Bank A Bank B Bank C Bank D Bank A Bank B Bank C BankD 0 Start 0 0 0 0 Start 0 0 0 116 0 Start 0 0 116 0 Stan 0 0 222 Stop 106 0 0 223 Stop 107 0 0 222 116 0 Star 0 223 116 0Stant 0 222 222 Stop 106 0 223 223 Stop 107 0 222 222 116 0 Start 223 223 116 0 Start 222 222 222 Stop 106 223 223 223 Stop 107 Fully Withdrawn at 224 Steps Fully Withdrawn at 225 Steps Control Control Control Control Control Control Control Control BankA BankB BankC BankD Bank A Bank B Bank C Bank D 0 Start 0 0 0 0 Start 0 0 0 116 0 Start 0 0 116 0 Start 0 0 224 Stop 108 0 0 225 Stop 109 0 0 224 116 0 Start 0 225 116 0 Start 0 224 224 Stop 108 0 225 225 Stop 109 0 224 224 116 0 Sart 225 225 116 0 Start 224 224 224 Stop 108 225 225 225 Stop 109 Fully Withdrawn at 226 Steps Fully Withdrawn at 227 Steps Control Control Control Control Control Control Control Control Bank A Bank B Bank C Bank D Bank A Bank B Bank C Bank D 0 Start 0 0 0 0 Start 0 0 0 116 0 Start 0 0 116 0Start 0 0 2

226 Stop [10 0 0 2 7 Stop II1 0 0 226 116 0 Start 0 227 116 0Start 0 22 226 226 Stop 110 0 227 7 Stop 11I 0 226 226 116 0 Start 227 227 116 0 Start 226 226 226 Stop 110 227 227 227 stop IlI Fully Withdrawn at 228 Steps Fully Withdrawn at 229 Steps Control Control Control Control Control Control Control Control BankA BankB BankC BankD Bank A Bank B Bank C Bank D 0 Start 0 0 0 0 Start 0 0 0 116 0 Start 0 0 116 0 Start 0 0 228 Stop 112 0 0 229 Stop 113 0 0 228 116 0 Start 0 229 116 OStart 0 228 228 Stop 112 0 229 229 Stop 113 0 228 228 116 0 Start 229 229 116 0 Start 228 228 228 Stop 112 229 229 229 Stop 113 Fully Withdrawn at 230 Steps Fully Withdrawn at 231 Stcps Control Control Control Control Control Control Control Control BankA BankB BankC BankD Bank A Bank B Bank C Bank D 0 Start 0 0 0 0 Start 0 0 0 116 0 Start 0 0 116 0 Start 0 0 230 Stop 114 0 0 231 Stop 115 0 0 230 116 0 Start 0 231 116 0Stan 0 230 230 Stop 114 0 231 231 Stop 115 0 230 230 116 0 Start 231 231 116 0 Sart 230 230 230 Stop 114 231 231 231 Stop 115

MCEI-0400-47 Page 15 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.7 Heat Flux Hot Channel Factor - FQ(X,Y,Z) (TS 3.2.1) 2.7.1 FQ(X,Y,Z) steady-state limits are defined by the following relationships:

F 0Rr* *K(Z)/P for P > 0.5 F QRrP *K(Z)/0.5 for P < 0.5 where, P = (Thermal Power)/(Rated Power)

Note: The measured FQ(X,Y,Z) shall be increased by 3% to account for manufacturing tolerances and 5% to account for measurement uncertainty when comparing against the LCO limits. The manufacturing tolerance and measurement uncertainty are implicitly included in the FQ surveillance limits as defined in COLR Sections 2.7.5 and 2.7.6.

2.7.2 F-QR, = 2.60 x K(BU) 2.7.3 K(Z) is the normalized FQ(X,Y,Z) as a function of core height. The K(Z) function for Westinghouse RFA fuel is provided in Figure 4.

2.7.4 K(BU) is the normalized FQ(X,Y,Z) as a function of burnup. K(BU) for Westinghouse RFA fuel is 1.0 for all burnups.

The following parameters are required for core monitoring per the Surveillance Requirements of Technical Specification 3.2.1:

D 2.7.5 F((X,Y,Z)OP = F6(X,Y,Z)

  • MQ(X,Y,Z)

UMT

  • TILT where:

FL (X,Y,Z)OP = Cycle dependent maximum allowable design peaking factor that ensures the FQ(X,Y,Z) LOCA limit will be preserved for operation within the LCO limits. F L(X,Y,Z)OP includes allowances for calculation and measurement uncertainties.

F0D(X,Y,Z) = Design power distribution for FQ. F n(X,Y,Z) is provided in Appendix Table A-I for normal operating conditions, and in

MCET-0400-47 Page 16 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Appendix Table A-4 for power escalation testing during initial startup operation.

MQ(X,Y,Z) = Margin remaining in core location X,Y,Z to the LOCA limit in the transient power distribution. MQ(X,Y,Z) is provided in Appendix Table A-1 for normal operating conditions, and in Appendix Table A-4 for power escalation testing during initial startup operation.

UMT = Total Peak Measurement Uncertainty. (UMT = 1.05)

MT = Engineering Hot Channel Factor. (MT = 1.03)

TILT = Peaking penalty that accounts for the peaking increase from an allowable quadrant power tilt ratio of 1.02. (TILT = 1.035)

D F6(X,Y,Z)

  • Mc(X,YZ) 2.7.6 FL(X,Y,Z) RPS UMT
  • TILT where:

L FQ(X,Y,Z)RP = Cycle dependent maximum allowable design peaking factor that ensures the FQ(X,Y,Z) Centerline Fuel Melt (CFM) limit will be preserved for operation within the LCO limits.

FLQ(X,Y,Z)RPS includes allowances for calculation and measurement uncertainties.

Fý(X,Y,Z) = Design power distributions for FQ. F6(X,Y,Z) is provided in Appendix Table A-I for normal operating conditions, and in Appendix Table A-4 for power escalation testing during initial startup operation.

MC(X,Y,Z) = Margin remaining to the CFM limit in core location X,Y,Z in the transient power distribution. Mc(X,Y,Z) is provided in Appendix Table A-2 for normal operating conditions, and in Appendix Table A-5 for power escalation testing during initial startup operation.

MCEI-0400-47 Page 17 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report UMT = Total Peak Measurement Uncertainty (UMT = 1.05)

MT = Engineering Hot Channel Factor (MT = 1.03)

TILT = Peaking penalty that accounts for the peaking increase from an allowable quadrant power tilt ratio of 1.02. (TILT = 1.035) 2.7.7 KSLOPE = 0.0725 where:

KSLOPE is the adjustment to the K1 value from the OTAT trip setpoint required RPS to compensate for each 1% that F,' (X,YZ) exceeds FL (X,YZ) 2.7.8 FQ(X,Y,Z) penalty factors for Technical Specification Surveillance's 3.2.1.2 and 3.2.1.3 are provided in Table 2.

MCEI-0400-47 Page 18 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Figure 4 K(Z), Normalized FQ(XY,Z) as a Function of Core Height for Westinghouse RFA Fuel 1.200 (0.0. 1.00) (4.0, 1.00) 1.000 1.,.65 (40I .61)

(4.0,.0.9615) ( 12.0, 0.9615) 0.800 -

0.600 +

0.400 Core Height (fIt) K(Z) 0.0 1.000

<4 1.000 0.200 >4 0.9615 12.0 0.9615 0.000 -

0.00 2.00 4.00 6.00 8.00 10.00 12.00 Core Height (ft)

MCEI-0400-47 Page 19 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Table 2 FQ(X,Y,Z) and FAH(X,Y) Penalty Factors For Technical Specification Surveillance's 3.2.1.2,3.2.1.3 and 3.2.2.2 Burnup FQ(X,Y,Z) F~A(X,Y,Z)

(EFPD) Penalty Factor (%) Penalty Factor (%)

0 2.00 2.00 4 2.00 2.00 12 2.00 2.00 25 2.00 2.00 50 2.00 2.00 75 2.00 2.00 100 2.00 2.00 125 2.00 2.00 150 2.00 2.00 175 2.00 2.00 200 2.00 2.00 225 2.00 2.00 250 2.00 2.00 275 2.00 2.00 300 2.00 2.00 325 2.00 2.00 350 2.00 2.00 375 2.00 2.00 400 2.00 2.00 425 2.00 2.00 450 2.00 2.00 464 2.00 2.00 489 2.00 2.00 499 2.00 2.00 514 2.00 2.00 Note: Linear interpolation is adequate for intermediate cycle burnups. All cycle bumups outside of the range of the table shall use a 2% penalty factor for both FQ(X,Y,Z) and FAH(X,Y) for compliance with the Technical Specification Surveillances 3.2.1.2, 3.2.1.3 and 3.2.2.2.

MCEI-0400-47 Page 20 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.8 Nuclear Enthalpy Rise Hot Channel Factor - FjH(X,Y) (TS 3.2.2)

The FAH steady-state limits referred to in Technical Specification 3.2.2 is defined by the following relationship.

2.8.1 FLI (X, Y) Lco = MARP (X,Y)

  • 1.0 + R- (1.0 -

where:

FAnj (X, Y)tco is defined as the steady-state, maximum allowed radial peak.

FAI (X,Y)Lco includes allowances for calculation/measurement uncertainty.

MARP(X,Y) = Cycle-specific operating limit Maximum Allowable Radial Peaks. MARP(X,Y) radial peaking limits are provided in Table 3.

- Thermal Power Rated Thermal Power RRH =Thermal Power reduction required to compensate for each 1% that the measured radial peak, F* (X,Y), exceeds its limit. RRH also is used to scale the MARP limits as a function of power per the [FAH (X, Y)]tco equation. (RRH = 3.34 (0.0 < P < 1.0))

The following parameters are required for core monitoring per the Surveillance requirements of Technical Specification 3.2.2.

L StURV -F*I(X,Y) xMAn (X,Y) 2.8.2 FL (X,Y) = U MR TL X UMRw TrLT where:

FAL (XY)sURv Cycle dependent maximum allowable design peaking factor that ensures the FAH(XY) limit will be preserved for operation within the LCO limits. FL,L (X,Y)SURv includes allowances for calculation/measurement uncertainty.

MCEI-0400-47 Page 21 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report F,'H (XY) = Design radial power distribution for F'a" FDH MY) provided in Appendix Table A-3 for normal operation, and in Appendix Table A-6 for power escalation testing during initial startup operation.

MAH(X,Y) =The margin remaining in core location X,Y relative to the Operational DNB limits in the transient power distribution.

MAH(X,Y) is provided in Appendix Table A-3 for normal operation, and in Appendix Table A-6 for power escalation testing during initial startup operation.

UMR = Uncertainty value for measured radial peaks. UMR is set to 1.0 since a factor of 1.04 is implicitly included in the variable MAH(X,Y).

TILT = Peaking penalty that accounts for the peaking increase for an allowable quadrant power tilt ratio of 1.02 (TILT = 1.035).

2.8.3 RRH = 3.34 where:

RRH = Thermal power reduction required to compensate for each 1% that the measured radial peak, Fa (X,Y) exceeds its limit. (0 < P < 1.0) 2.8.4 TRH = 0.04 where:

TRH = Reduction in the OTAT K1 setpoint required to compensate for each 1%

that the measured radial peak, Fý (X,Y) exceeds its limit.

2.8.5 FAH (X,Y) penalty factors forTechnical Specification Surveillance 3.2.2.2 are provided in Table 2.

2.9 Axial Flux Difference - AFD (TS 3.2.3) 2.9.1 The Axial Flux Difference (AFD) Limits are provided in Figure 5.

MCEI-0400-47 Page 22 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Table 3 Maximum Allowable Radial Peaks (MARPS)

RFA MARPS Core Axial Peak Ht (ft.) 1.05 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.1 3.0 3.25 0.12 1.809 1.855 1.949 1.995 1.974 2.107 2.050 2.009 1.933 1.863 1.778 1.315 1.246 1.2 1.810 1.854 1.940 1.995 1.974 2.107 2.019 1.978 1.901 1.831 1.785 1.301 1.224 2.4 1.809 1.853 1.931 1.978 1.974 2.074 1.995 1.952 1.876 1.805 1.732 1.463 1.462 3.6 1.810 1.851 1.920 1.964 1.974 2.050 1.966 1.926 1.852 1.786 1.700 1.468 1.387 4.8 1.810 1.851 1.906 1.945 1.974 2.006 1.944 1.923 1.854 1.784 1.671 1.299 1.258 6.0 1.810 1.851 1.892 1.921 1.946 1.934 1.880 1.863 1.802 1.747 1.671 1.329 1.260 7.2 1.807 1.844 1.872 1.893 1.887 1.872 1.809 1.787 1.733 1.681 1.598 1.287 1.220 8.4 1.807 1.832 1.845 1.857 1.816 1.795 1.736 1.709 1.654 1.601 1.513 1.218 1.158 9.6 1.807 1.810 1.809 1.791 1.738 1.718 1.657 1.635 1-581 1.530 1.444 1.143 1.091 10.8 1.798 1.787 1.761 1.716 1.654 1.632 1.574 1.557 1.509 1.462 1.383 1.101 1.047 11.4 1.789 1.765 1.725 1.665 1.606 1.583 1.529 1.510 1.464 1.422 1.346 1.067 1.014

MCEI-0400-47 Page 23 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Figure 5 Percent of Rated Thermal Power Versus Percent Axial Flux Difference Limits

(-18, 100) (+10, 100)

_ I [?:* _

90 Unacceptable Operation Unacceptable Operation 80-Acceptable Operation 70-40 a.t 60

(-36, 50) 50

(+21, 50) 40-30+

20+

10-I 0I 20 30I4 5

-50 -40 -30 -20 -10 0 10 20 30 40 50 Axial Flux Difference (% Delta 1)

NOTE: Compliance with Technical Specification 3.2.1 may require more restrictive AFD limits. Refer to OPI2IA/6100122 Unit 2 Data Book for more details.

MCEI-0400-47 Page 24 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.10 Reactor Trip System Instrumentation Setpoints (TS 3.3.1) Table 3.3.1-1 2.10.1 Overtemperature AT Setpoint Parameter Values Parameter Value Nominal Tavg at RTP T' <585.10 F Nominal RCS Operating Pressure P' = 2235 psig Overtemperature AT reactor trip setpoint KI < 1.1978 Overtemperature AT reactor trip heatup setpoint K2 = 0.0334/°F penalty coefficient Overtemperature AT reactor trip depressurization K3 = 0.001601/psi setpoint penalty coefficient Time constants utilized in the lead-lag compensator "t > 8 sec.

for AT t2 < 3 sec.

Time constant utilized in the lag compensator for AT x 3 < 2 sec.

Time constants utilized in the lead-lag compensator *t4 > 28 sec.

for T.,9 'r5 < 4 sec.

Time constant utilized in the measured Tv, lag x6 < 2 sec.

compensator fl(AI) "positive" breakpoint = 19.0 %AI fl(AI) "negative" breakpoint = NIA*

fl(AI) "positive" slope = 1.769 %AT0 / %AI fl(AI) "negative" slope = N/A*

The fl(AI) "negative" breakpoints and the fl(AI) "negative" slope are less restrictive than the OPAT f 2 (Al) negative breakpoint and slope. Therefore, during a transient which challenges the negative imbalance limits, the OPAT f2 (AI) limits will result in a reactor trip before the OTAT fl(AI) limits are reached. This makes implementation of the OTAT fl (AT) negative breakpoint and slope unnecessary.

MCEI-0400-47 Page 25 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.10.2 Overpower AT Setpoint Parameter Values Parameter Value Nominal Tavg at RTP T'" < 585.11F Overpower AT reactor trip setpoint K4 < 1.0864 Overpower AT reactor trip Penalty K5 = 0.021/F for increasing Tavg K5 = 0.0 for decreasing Tavg Overpower AT reactor trip heatup K6 = 0.001179/°F for T > T" setpoint penalty coefficient K6 = 0.0 forT< T" Time constants utilized in the lead-lag T, > 8 sec.

compensator for AT T2 < 3 sec.

Time constant utilized in the lag T3 < 2 sec.

compensator for AT Time constant utilized in the r6 <2 sec.

measured Tavg lag compensator Time constant utilized in the rate-lag T7 > 5 sec.

controller for Tvg f2 (AI) "positive" breakpoint = 35.0 %AI f2(AI) "negative" breakpoint = -35.0 %AI f2(AI) "positive" slope = 7.0 %ATd %AI f2(AI) "negative" slope = 7.0 %ATo/ %AI

MCEI-0400-47 Page 26 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.11 RCS Pressure, Temperature and Flow Limits for DNB (TS 3.4.1) 2.11.1 The RCS pressure, temperature and flow limits for DNB are shown in Table 4.

2.12 Accumulators (TS 3.5.1) 2.12.1 Boron concentration limits during modes I and 2, and mode 3 with RCS pressure

>1000 psi:

Parameter Limit Cold Leg Accumulator minimum boron concentration. 2,475 ppm Cold Leg Accumulator maximum boron concentration. 2,875 ppm 2.13 Refueling Water Storage Tank - RWST (TS 3.5.4) 2.13.1 Boron concentration limits during modes 1, 2, 3, and 4:

Parameter Limit Refueling Water Storage Tank minimum boron 2,675 ppm concentration.

Refueling Water Storage Tank maximum boron 2,875 ppm concentration.

MCEI-0400-47 Page 27 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Table 4 Reactor Coolant System DNB Parameters No. Operable Parameter Indication Channels Limits

1. Indicated RCS Average Temperature meter 4 < 587.2 IF meter 3 < 586.9 OF computer 4 < 587.7 IF computer 3 < 587.5 OF
2. Indicated Pressurizer Pressure meter 4 > 2219.8 psig meter 3 > 2222.1 psig computer 4 > 2215.8 psig computer 3 > 2217.5 psig
3. RCS Total Flow Rate > 388,000 gpm

MCEI-0400-47 Page 28 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.14 Spent Fuel Pool Boron Concentration (TS 3.7.14) 2.14.1 Minimum boron concentration limit for the spent fuel pool. Applicable when fuel assemblies are stored in the spent fuel pool.

Parameter Limit Spent fuel pool minimum boron concentration. 2,675 ppm 2.15 Refueling Operations - Boron Concentration (TS 3.9.1) 2.15.1 Minimum boron concentration limit for the filled portions of the Reactor Coolant System, refueling canal, and refueling cavity for mode 6 conditions. The minimum boron concentration limit and plant refueling procedures ensure that the Keff of the core will remain within the mode 6 reactivity requirement of Keff <

0.95.

Parameter Limit Minimum Boron concentration of the Reactor Coolant 2,675 ppm System, the refueling canal, and the refueling cavity.

MCEI-0400-47 Page 29 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.16 Borated Water Source - Shutdown (SLC 16.9.14) 2.16.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during mode 4 with any RCS cold leg temperature < 300 'F and modes 5 and 6.

Parameter Limit Boric Acid Tank minimum contained borated 10,599 gallons water volume 13.6% Level Note: When cycle burnup is > 460 EFPD, Figure 6 may be used to determine the required BAT minimum level.

Boric Acid Tank minimum boron concentration 7,000 ppm Boric Acid Tank minimum water volume 2,300 gallons required to maintain SDM at 7,000 ppm Refueling Water Storage Tank minimum 47,700 gallons contained borated water volume 41 inches Refueling Water Storage Tank minimum boron 2,675 ppm concentration Refueling Water Storage Tank minimum water 8,200 gallons volume required to maintain SDM at 2,675 ppm

MCEI-0400-47 Page 30 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report 2.17 Borated Water Source - Operating (SLC 16.9.11) 2.17.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during modes 1, 2, 3, and mode 4 with all RCS cold leg temperature > 300 'F.

Parameter Limit Boric Acid Tank minimum contained borated 22,049 gallons water volume 38.0% Level Note: When cycle burnup is > 460 EFPD, Figure 6 may be used to determine the required BAT minimum level. I Boric Acid Tank minimum boron concentration 7,000 ppm Boric Acid Tank minimum water volume 13,750 gallons required to maintain SDM at 7,000 ppm Refueling Water Storage Tank minimum 96,607 gallons contained borated water volume 103.6 inches Refueling Water Storage Tank minimum boron 2,675 ppm concentration Refueling Water Storage Tank maximum boron 2,875 ppm concentration (TS 3.5.4)

Refueling Water Storage Tank minimum water 57,107 gallons volume required to maintain SDM at 2,675 ppm

MCEI-0400-47 Page 31 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report Figure 6 Boric Acid Storage Tank Indicated Level Versus RCS Boron Concentration (Valid When Cycle Burnup is > 460 EFPD)

This figure includes additional volumes listed in SLC 16.9.14 and 16.9.11 40.0-- -.-

RCS Boron 35.0, Concentration;: BAT Level (ppm) (%/.level) 0 < 300-- 37.0 30-<5  :-33.0

-'700'<1I000.... 23.0-Z. 1*0 3-0.0

  • 1 "13.6 C>
ý- 25.0 -.. . .. 1300

. . .. ."-8.7

.

- 20.0.

Acceptable Operation 15.0o 10.0 -I Unacceptable Operation 5.0 0.0 0 200 400 600 800 1000 1200 1400 1600 1800 20O0 20 2400 2600 2800 RCS Boron Concentration (ppmb)

MCEI-0400-47 Page 32 of 32 Revision 26 McGuire 2 Cycle 18 Core Operating Limits Report NOTE: Appendix A contains power distribution monitoring factors used in Technical Specification Surveillance. This data was generated in the McGuire 2 Cycle 18 Maneuvering Analysis calculation file, MCC-1553.05-00-0437. Due to the size of the monitoring factor data, Appendix A is controlled electronically within Duke and is not included in the Duke internal copies of the COLR. The Plant Nuclear Engineering Section will control this information via computer file(s) and should be contacted if there is a need to access this information.

Appendix A is included in the COLR copy transmitted to the NRC.