ML16357A556: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 15: Line 15:


=Text=
=Text=
{{#Wiki_filter:Tennessee Valley Authority , P ost O ff ice B ox 2000, So d dy Da i sy , T e nn essee 37384-2000 December 21, 2016 ATTN: Document Control Desk U.S. Nuclear Regulatory Commission Washington , D.C. 20555-0001 Sequoyah Nuclear Plant, Unit 1 Renewed Facility Operating License No. DPR-77 NRC Docket No. 50-327 10 CFR 50.4
{{#Wiki_filter:Tennessee Valley Authority , Post Office Box 2000, Soddy Daisy, Tennessee 37384-2000 December 21, 2016 10 CFR 50.4 ATTN : Document Control Desk U.S. Nuclear Regulatory Commission Washington , D.C. 20555-0001 Sequoyah Nuclear Plant, Unit 1 Renewed Facility Operating License No. DPR-77 NRC Docket No. 50-327


==Subject:==
==Subject:==
SEQUOYAH UNIT 1 CYCLE 22 CORE OPERATING LIMITS REPORT REVISION 0 In accordance with Sequoyah Nuclear Plant (SQN) Unit 1 Technical Specification (TS) 5.6.3.d, enclosed is the Unit 1 Cycle 22 Core Operating Limits Report (COLR), Revision 0 that was issued on December 7, 2016. SQN has completed the transition from the Mark-BW fuel design to the Advanced W17 HTP fuel design in Unit 1. Accordingly, the COLR only includes core operating limits associated with the use of Advanced W17 HTP fuel. There are no new regulatory commitments in this letter. If you have any questions, please contact Michael McBrearty , SQN Site Licensing Manager at (423) 843-7170.
SEQUOYAH UNIT 1 CYCLE 22 CORE OPERATING LIMITS REPORT REVISION 0 In accordance with Sequoyah Nuclear Plant (SQN) Unit 1 Technical Specification (TS) 5.6.3.d, enclosed is the Unit 1 Cycle 22 Core Operating Limits Report (COLR), Revision 0 that was issued on December 7, 2016.
Respectfully , Gregory A. Boerschig Site Vice President (interim)
SQN has completed the transition from the Mark-BW fuel design to the Advanced W17 HTP fuel design in Unit 1. Accordingly, the COLR only includes core operating limits associated with the use of Advanced W17 HTP fuel.
There are no new regulatory commitments in this letter. If you have any questions, please contact Michael McBrearty, SQN Site Licensing Manager at (423) 843-7170.
Respectfully,
~~
Gregory A. Boerschig Site Vice President (interim)
Sequoyah Nuclear Plant Enclosure Sequoyah Unit 1 Cycle 22 Core Operating Limits Report cc (Enclosure):
Sequoyah Nuclear Plant Enclosure Sequoyah Unit 1 Cycle 22 Core Operating Limits Report cc (Enclosure):
NRC Regional Administrator-Region II NRC Senior Resident Inspector-SQN ENCLOSURE SEQUOYAH UNIT 1 CYCLE 22 CORE OPERA TING LIMITS REPORT QA Record Prepared by: SEQUOYAH UNIT 1 CYCLE 22 CORE OPERATING LIMITS REPORT REVISION 0 December 2016 Verified by: L36 161201 800 I 2 / o l / 2-o Date / 1zto\/L.o\(o fvt:JR. Fuel Engineering
NRC Regional Administrator- Region II NRC Senior Resident Inspector- SQN
_
I 1z-2-2-01(p Date Manager /2 ;, h<. . Date Approved by:
Date I Pl Date Date of PORC Affected Revision Approval Pages Reason for Revision 0 17 1-:i-/1111 All Initial issue. SEQUOYAH-UNIT 1 Page 1 of 16 Revision 0 COLR FOR SEQUOYAH UNIT 1 CYCLE 22 SEQUOYAH UNIT 1 Page 2 of 16 Revision 0 1.0 CORE OPERATING LIMITS REPORT This CORE OPERATING LIMITS REPORT (COLR) for Sequoyah Unit 1 Cycle 22 has been prepared in accordance with the requirements of Technical Specification (TS) 5.6.3. The TSs affected by this Report are listed below:
TS Section Technical Specification COLR Parameter COLR SectionCOLR Page3.1.1 SHUTDOWN MARGIN (SDM) SDM 2.1 3 3.1.3 Moderator Temperature Coefficient (MTC) BOL MTC Limit EOL MTC Limit 300 ppm Surveillance Limit 60 ppm Surveillance Limit 2.2.1 2.2.2 2.2.3 2.2.4 4 4 4 4 3.1.4 Rod Group Alignment Limits SDM 2.1.3 3 3.1.5 Shutdown Bank Insertion LimitsShutdown Bank Insertion Limits SDM 2.3 4 2.1.4 3 3.1.6 Control Bank Insertion Limits Control Bank Insertion Limits 2.4 5 SDM 2.1.5 3 3.1.8 PHYSICS TESTS Exceptions -
MODE 2 SDM 2.1.6 3 3.2.1 Heat Flux Hot Channel Factor (F Q(X,Y,Z)) F Q RTP 2.5.1 6 K(Z) 2.5.2 6 NSLOPE AFD2.5.3 6 PSLOPE AFD 2.5.4 6 NSLOPE f2(I) 2.5.5 6 PSLOPE f2(I) 2.5.6 6 F Q(X,Y,Z) Appropriate Factor 2.5.7 6 TS LCO 3.2.1 Required Action A.3 2.5.8 6 3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FH(X,Y)) MAP(X,Y,Z) 2.6.1 6 RRH 2.6.2 6 TRH 2.6.3 6 FH(X,Y) Appropriate Factor 2.6.4 7 TS 3.2.2 Required Action A.4 2.6.5 7 TS 3.2.2 Required Action B.1 2.6.6 7 3.2.3 AXIAL FLUX DIFFERENCE (AFD) AFD Limits 2.7 7 3.3.1 Reactor Trip System (RTS) QTNL, QTPL, QTNS, and QTPS QPNL, QPPL, QPNS, and QPPS 2.8.1 8 Instrumentation 2.8.2 9 3.9.1 Boron Concentration Refueling Boron Concentration 2.9 9 5.6.3 CORE OPERATING LIMITS REPORT (COLR)
Analytical Methods Table 110 COLR FOR SEQUOYAH UNIT 1 CYCLE 22 SEQUOYAH UNIT 1 Page 3 of 16 Revision 0 2.0 OPERATING LIMITS The cycle-specific parameter limits for the TS listed in section 1.0 are presented in the following subsections.
These limits have be en developed using the NRC approved methodologies specified in TS 5.6.3.
T he versions of the topical reports, which describe the methodologies used for this cycle are listed in Table 1. The following abbreviations are used in this section:
BOL stands for Beginning of Cycle Life


EOL stands for End of Cycle Life
ENCLOSURE SEQUOYAH UNIT 1 CYCLE 22 CORE OPERATING LIMITS REPORT


RTP stands for R2.1 SHUTDOWN MARGIN - SDM (TS 3.1.
QA Record                                                                        L36 161201 800 SEQUOYAH UNIT 1 CYCLE 22 CORE OPERATING LIMITS REPORT REVISION 0 December 2016 Prepared by :
1, 3.1.4, 3.1.5, 3.1.6, 3.1.8) 2.1.1 For TS 3.1.1, SDM shall be  1.6 %k/k  in MODE 2 with k eff < 1.0, MODE 3 and MODE 4 2.1.2 For TS 3.1.1, SDM shall be  1.0 %k/k  in MODE 5.
Kelly ~~~~
2.1.3 For TS 3.1.4, SDM shall be  1.6 %k/k  in MODE 1 and MODE 2.
I 2 / o l / 2-o I~
2.1.4 For TS 3.1.5, SDM shall be  1.6 %k/k  in MODE 1 and MODE 2.
Date Verified by:
2.1.5 For TS 3.1.6, SDM shall be  1.6 %k/k  in MODE 1 and MODE 2 with k eff  1.0. 2.1.6 For TS 3.1.8, SDM shall be  1.6 %k/k  in MODE 2.
11 ~1fvt:JR. Fuel Ch~i~tfe'17etler,           ~-    Engineering
COLR FOR SEQUOYAH UNIT 1 CYCLE 22 SEQUOYAH UNIT 1 Page 4 of 16 Revision 0 2.2 Moderator Temperature Coefficient - MTC (TS 3.1.3) 2.2.1 The BOL MTC limit is: less positive than  -0.11 x 10
                                                                /_ 1zto\/L.o\(o
-5  k/k/&#xba;F. 2.2.2 The EOL MTC limit is: less negative than or equal to  -4.50 x 10
_,_,____,...,_..~D~a-te-~~~-
-4 k/k/&#xba;F. 2.2.3 The 300 ppm Surveillance limit is: less negative than or equal to  -3.75 x 10
I        1z 2-01(p Date sl;&f.talan~~gineering                            Manager
-4 k/k/&#xba;F. 2.2.4 The 60 ppm Surveillance limit is: less negative than or equal to  -4.15 x 10
                                                                        /2 ;.h<.
-4  k/k/&#xba;F. 
Date Approved by:
tZ-/1/~6 Date I      /z.hb.d"/~
Pl                                                                        Date Date of PORC        Affected Revision    Approval      Pages      Reason for Revision 0    17 1-:i-/1111    All      Initial issue.
SEQUOYAH-UNIT 1                                    Page 1 of 16                      Revision 0


2.3 Shutdown Bank Insertion Limits (TS 3.1.5) 2.3.1 Each shutdown bank shall be withdrawn to a position as defined below:
COLR FOR SEQUOYAH UNIT 1 CYCLE 22 1.0      CORE OPERATING LIMITS REPORT This CORE OPERATING LIMITS REPORT (COLR) for Sequoyah Unit 1 Cycle 22 has been prepared in accordance with the requirements of Technical Specification (TS) 5.6.3.
Cycle Burnup (MWd/mtU)
The TSs affected by this Report are listed below:
Steps Withdrawn  0  225 to  231 COLR FOR SEQUOYAH UNIT 1 CYCLE 22 SEQUOYAH UNIT 1 Page 5 of 16 Revision 0 2.4 Control Bank Insertion Limits (TS 3.1.6) 2.4.1 The control banks shall be limited in physical insertion as shown in Figure 1.
TS                                                                     COLR COLR Section    Technical Specification              COLR Parameter          Section Page 3.1.1  SHUTDOWN MARGIN (SDM)           SDM                                2.1    3 BOL MTC Limit                    2.2.1   4 Moderator Temperature          EOL MTC Limit                    2.2.2    4 3.1.3 Coefficient (MTC)               300 ppm Surveillance Limit        2.2.3    4 60 ppm Surveillance Limit        2.2.4    4 3.1.4 Rod Group Alignment Limits      SDM                              2.1.3    3 Shutdown Bank Insertion Limits    2.3    4 3.1.5 Shutdown Bank Insertion Limits SDM                              2.1.4    3 Control Bank Insertion Limits      2.4     5 3.1.6  Control Bank Insertion Limits SDM                              2.1.5    3 PHYSICS TESTS Exceptions -
2.4.2 Each control bank shall be considered fully withdrawn from the core at 225 steps. 2.4.3 The control banks shall be operated in sequence by withdrawal of Bank A, Bank B, Bank C, and Bank D. The control banks shall be sequenced in reverse order upon insertion.
3.1.8                                  SDM                              2.1.6   3 MODE 2 RTP FQ                                2.5.1    6 K(Z)                             2.5.2    6 NSLOPEAFD                        2.5.3    6 Heat Flux Hot Channel Factor    PSLOPEAFD                        2.5.4   6 3.2.1 (FQ(X,Y,Z))                    NSLOPEf2(I)                      2.5.5    6 f2(I)
2.4.4 Each control bank not fully withdrawn from the core shall be operated with the following overlap as a function of full out position.
PSLOPE                            2.5.6    6 FQ(X,Y,Z) Appropriate Factor      2.5.7  6 TS LCO 3.2.1 Required Action A.3 2.5.8  6 MAP(X,Y,Z)                        2.6.1    6 RRH                              2.6.2    6 Nuclear Enthalpy Rise Hot      TRH                              2.6.3   6 3.2.2 Channel Factor (FH(X,Y))      FH(X,Y) Appropriate Factor      2.6.4  7 TS 3.2.2 Required Action A.4     2.6.5  7 TS 3.2.2 Required Action B.1      2.6.6  7 AXIAL FLUX DIFFERENCE 3.2.3                                  AFD Limits                        2.7    7 (AFD)
Full Out Position (steps) Bank Overlap (steps) Bank Difference (steps) 225 97 128 226 98 128 227 99 128 228 100 128 229 101 128 230 102 128 231 103 128
Reactor Trip System (RTS)       QTNL, QTPL, QTNS, and QTPS        2.8.1    8 3.3.1 Instrumentation                QPNL, QPPL, QPNS, and QPPS        2.8.2    9 3.9.1  Boron Concentration            Refueling Boron Concentration      2.9    9 CORE OPERATING LIMITS 5.6.3                                  Analytical Methods              Table 1  10 REPORT (COLR)
SEQUOYAH UNIT 1                    Page 2 of 16                        Revision 0


COLR FOR SEQUOYAH UNIT 1 CYCLE 22 SEQUOYAH UNIT 1 Page 6 of 16 Revision 0 2.5 Heat Flux Hot Channel Factor - F Q(X,Y,Z) (TS 3.2.1) 2.5.1 F QRTP = 2.62 2.5.2 K(Z) is provided in Figure 2 2.5.3 NSLOPE AFD = 1.17 2.5.4 PSLOPE AFD = 1.54 2.5.5 NSLOPE f2(I) = 1.48 2.5.6 PSLOPE f2(I) = 2.27 2.5.7 The appropriate factor for increase in F Q M(X,Y,Z) for compliance with SR 3.2.1.2 and SR 3.2.1.3 is specified as follows:
COLR FOR SEQUOYAH UNIT 1 CYCLE 22 2.0      OPERATING LIMITS The cycle-specific parameter limits for the TS listed in section 1.0 are presented in the following subsections. These limits have been developed using the NRC approved methodologies specified in TS 5.6.3. The versions of the topical reports, which describe the methodologies used for this cycle, are listed in Table 1.
The following abbreviations are used in this section:
BOL stands for Beginning of Cycle Life EOL stands for End of Cycle Life RTP stands for RATED THERMAL POWER 2.1      SHUTDOWN MARGIN - SDM (TS 3.1.1, 3.1.4, 3.1.5, 3.1.6, 3.1.8) 2.1.1  For TS 3.1.1, SDM shall be  1.6 %k/k in MODE 2 with keff < 1.0, MODE 3 and MODE 4 2.1.2  For TS 3.1.1, SDM shall be  1.0 %k/k in MODE 5.
2.1.3  For TS 3.1.4, SDM shall be  1.6 %k/k in MODE 1 and MODE 2.
2.1.4  For TS 3.1.5, SDM shall be  1.6 %k/k in MODE 1 and MODE 2.
2.1.5  For TS 3.1.6, SDM shall be  1.6 %k/k in MODE 1 and MODE 2 with keff  1.0.
2.1.6  For TS 3.1.8, SDM shall be  1.6 %k/k in MODE 2.
SEQUOYAH UNIT 1                    Page 3 of 16                            Revision 0
 
COLR FOR SEQUOYAH UNIT 1 CYCLE 22 2.2  Moderator Temperature Coefficient - MTC (TS 3.1.3) 2.2.1  The BOL MTC limit is:
less positive than                -0.11 x 10-5 k/k/&#xba;F.
2.2.2  The EOL MTC limit is:
less negative than or equal to    -4.50 x 10-4 k/k/&#xba;F.
2.2.3  The 300 ppm Surveillance limit is:
less negative than or equal to    -3.75 x 10-4 k/k/&#xba;F.
2.2.4  The 60 ppm Surveillance limit is:
less negative than or equal to    -4.15 x 10-4 k/k/&#xba;F.
2.3  Shutdown Bank Insertion Limits (TS 3.1.5) 2.3.1  Each shutdown bank shall be withdrawn to a position as defined below:
Cycle Burnup                      Steps (MWd/mtU)                      Withdrawn 0                      225 to  231 SEQUOYAH UNIT 1               Page 4 of 16                        Revision 0
 
COLR FOR SEQUOYAH UNIT 1 CYCLE 22 2.4  Control Bank Insertion Limits (TS 3.1.6) 2.4.1    The control banks shall be limited in physical insertion as shown in Figure 1.
2.4.2    Each control bank shall be considered fully withdrawn from the core at  225 steps.
2.4.3    The control banks shall be operated in sequence by withdrawal of Bank A, Bank B, Bank C, and Bank D. The control banks shall be sequenced in reverse order upon insertion.
2.4.4    Each control bank not fully withdrawn from the core shall be operated with the following overlap as a function of full out position.
Full Out Position (steps)    Bank Overlap (steps)        Bank Difference (steps) 225                          97                          128 226                          98                          128 227                          99                          128 228                          100                          128 229                          101                          128 230                          102                          128 231                          103                          128 SEQUOYAH UNIT 1                  Page 5 of 16                         Revision 0
 
COLR FOR SEQUOYAH UNIT 1 CYCLE 22 2.5   Heat Flux Hot Channel Factor - FQ(X,Y,Z) (TS 3.2.1)
RTP 2.5.1   FQ    =       2.62 2.5.2   K(Z) is provided in Figure 2 2.5.3   NSLOPEAFD =     1.17 2.5.4   PSLOPEAFD =     1.54 2.5.5   NSLOPEf2(I) = 1.48 2.5.6   PSLOPEf2(I) = 2.27 M
2.5.7   The appropriate factor for increase in FQ (X,Y,Z) for compliance with SR 3.2.1.2 and SR 3.2.1.3 is specified as follows:
For cycle burnups >1302 MWd/mtU to 3631 MWd/mtU, use 3.15%.
For cycle burnups >1302 MWd/mtU to 3631 MWd/mtU, use 3.15%.
For all other burnups, use 2.0%
For all other burnups, use 2.0%
2.5.8 TS LCO 3.2.1 Required Action A.3 reduces the Overpower Delta-T Trip setpoints (value of K
2.5.8   TS LCO 3.2.1 Required Action A.3 reduces the Overpower Delta-T Trip setpoints (value of K4) at least 1% (in T span) for each 1% that FQC(X,Y,Z) exceeds its limit.
: 4) at least 1% (in T span) for each 1% that F Q C(X,Y,Z) exceeds its limit.  
2.6  Nuclear Enthalpy Rise Hot Channel Factor - FH(X,Y) (TS 3.2.2) 2.6.1  MAP(X,Y,Z) is provided in Table 2.
2.6.2  RRH = 3.34      when 0.8 < P  1.0 RRH = 1.67      when P  0.8 Where RRH = Thermal power reduction required to compensate for each 1% that FH(X,Y) exceeds its limit.
P = THERMAL POWER / RATED THERMAL POWER 2.6.3  TRH = 0.0334 when 0.8 < P  1.0 TRH = 0.0167 when P  0.8 Where TRH = Reduction in Overtemperature Delta-T K1 setpoint required to compensate for each 1% that FH(X,Y) exceeds its limit.
P = THERMAL POWER / RATED THERMAL POWER SEQUOYAH UNIT 1                Page 6 of 16                        Revision 0


2.6 Nuclear Enthalpy Rise Hot Channel Factor - FH(X,Y) (TS 3.2.2) 2.6.1 MAP(X,Y,Z) is provided in Table 2.
COLR FOR SEQUOYAH UNIT 1 CYCLE 22 2.6.4   The appropriate factor for increase in FHM (X,Y) for compliance with SR 3.2.2.1 and SR 3.2.2.2 is specified as follows:
2.6.2 RRH = 3.34 when 0.8 < P  1.0 RRH = 1.67 when P  0.8  Where RRH = Thermal power reduction required to compensate for each 1% that FH(X,Y) exceeds its limit. P = THERMAL POWER / RATED THERMAL POWER 2.6.3 TRH = 0.0334 when 0.8 < P  1.0 TRH = 0.0167 when P  0.8 Where TRH = Reduction in Overtemperature Delta-T K 1 setpoint required to compensate for each 1% that FH (X,Y) exceeds its limit. P = THERMAL POWER / RATED THERMAL POWER COLR FOR SEQUOYAH UNIT 1 CYCLE 22 SEQUOYAH UNIT 1 Page 7 of 16 Revision 0 2.6.4 The appropriate factor for increase in FH M (X,Y) for compliance with SR 3.2.2.1 and SR 3.2.2.2 is specified as follows:
For all cycle burnups, use 2.0%
For all cycle burnups, use 2.0%
2.6.5 TS LCO 3.2.2 Required Action A.
2.6.5   TS LCO 3.2.2 Required Action A.4 reduces the Overtemperature Delta-T setpoint (K1 term in Table 3.3.1-1) by  TRH multiplied by the FH minimum margin.
4 reduces the Overtemperature Delta-T setpoint (K 1 term in Table 3.3.1-1) by  TRH multiplied by the FH minimum margin.
2.6.6   TS LCO 3.2.2 Required Action B.1 reduces the Overtemperature Delta-T setpoint (K1 term in Table 3.3.1-1) by  TRH multiplied by the f1(I) minimum margin.
2.6.6 TS LCO 3.2.2 Required Action B.
2.7   Axial Flux Difference - AFD (TS 3.2.3) 2.7.1   The AFD limits are specified in Figure 3 SEQUOYAH UNIT 1                 Page 7 of 16                         Revision 0
1 reduces the Overtemperature Delta-T setpoint (K 1 term in Table 3.3.1-1) by  TRH multiplied by the f 1 (I) minimum margin.  
 
2.7 Axial Flux Difference - AFD (TS 3.2.3) 2.7.1 The AFD limits are specified in Figure 3  
 
COLR FOR SEQUOYAH UNIT 1 CYCLE 22 SEQUOYAH UNIT 1 Page 8 of 16 Revision 0 2.8 Reactor Trip System Instrumentation (TS 3.3.1) 2.8.1 Trip Reset Term [f 1 (I)] for Overtemperature Delta-T Trip The following parameters are required to specify the power level-dependent f 1 (I) trip reset term limits for Tabl e 3.3.1-1 (function 6), Overtemperature Delta-T trip function:
2.8.1.1 QTNL = -20%


COLR FOR SEQUOYAH UNIT 1 CYCLE 22 2.8  Reactor Trip System Instrumentation (TS 3.3.1) 2.8.1      Trip Reset Term [f1(I)] for Overtemperature Delta-T Trip The following parameters are required to specify the power level-dependent f1(I) trip reset term limits for Table 3.3.1-1 (function 6), Overtemperature Delta-T trip function:
2.8.1.1    QTNL = -20%
where QTNL = the maximum negative I setpoint at RATED THERMAL POWER at which the trip setpoint is not reduced by the axial power distribution.
where QTNL = the maximum negative I setpoint at RATED THERMAL POWER at which the trip setpoint is not reduced by the axial power distribution.
2.8.1.2 QTPL = +5%
2.8.1.2     QTPL = +5%
where QTPL = the maximum positive I setpoint at RATED THERMAL POWER at which the trip setpoint is not reduced by the axial power distribution.
where QTPL = the maximum positive I setpoint at RATED THERMAL POWER at which the trip setpoint is not reduced by the axial power distribution.
2.8.1.3 QTNS = 2.50%  
2.8.1.3     QTNS = 2.50%
where QTNS = the percent reduction in Overtemperature Delta-T trip setpoint for each percent that the magnitude of I exceeds its negative limit at RATED THERMAL POWER (QTNL).
2.8.1.4    QTPS = 1.40%
where QTPS = the percent reduction in Overtemperature Delta-T trip setpoint for each percent that the magnitude of I exceeds its positive limit at RATED THERMAL POWER (QTPL).
SEQUOYAH UNIT 1                    Page 8 of 16                            Revision 0


where QTNS = the percent reducti on in Overtemperature Delta-T trip setpoint for each per cent that the magnitude of I exceeds its negative limit at RATED THERMAL POWER (QTNL).
COLR FOR SEQUOYAH UNIT 1 CYCLE 22 2.8.2       Trip Reset Term [f2(I)] for Overpower Delta-T Trip The following parameters are required to specify the power level-dependent f2(I) trip reset term limits for Table 3.3.1-1 (function 7), Overpower Delta-T trip function:
2.8.1.4 QTPS = 1.40% 
2.8.2.1     QPNL = -25%
 
where QTPS = the percent reducti on in Overtemperature Delta-T trip setpoint for each per cent that the magnitude of I exceeds its positive limit at RATED THERMAL POWER (QTPL).
 
COLR FOR SEQUOYAH UNIT 1 CYCLE 22 SEQUOYAH UNIT 1 Page 9 of 16 Revision 0 2.8.2 Trip Reset Term [f 2 (I)] for Overpower Delta-T Trip The following parameters are required to specify the power level-dependent f 2 (I) trip reset term limits for Table 3.3.1-1 (function 7), Overpower Delta-T trip function:
2.8.2.1 QPNL = -25%
where QPNL = the maximum negative I setpoint at RATED THERMAL POWER at which the trip setpoint is not reduced by the axial power distribution.
where QPNL = the maximum negative I setpoint at RATED THERMAL POWER at which the trip setpoint is not reduced by the axial power distribution.
2.8.2.2 QPPL = +25%
2.8.2.2     QPPL = +25%
where QPPL = the maximum positive I setpoint at RATED THERMAL POWER at which the trip setpoint is  
where QPPL = the maximum positive I setpoint at RATED THERMAL POWER at which the trip setpoint is not reduced by the axial power distribution.
 
2.8.2.3     QPNS = 1.70%
not reduced by the axial power distribution.
where QPNS = the percent reduction in Overpower Delta-T trip setpoint for each percent that the magnitude of I exceeds its negative limit at RATED THERMAL POWER (QPNL).
2.8.2.3 QPNS = 1.70%
2.8.2.4     QPPS = 1.70%
where QPNS = the percent reduction in Overpower Delta-T trip setpoint for eac h percent that the magnitude of I exceeds its negative limit at RATED THERMAL POWER (QPNL).
where QPPS = the percent reduction in Overpower Delta-T trip setpoint for each percent that the magnitude of I exceeds its positive limit at RATED THERMAL POWER (QPPL).
2.8.2.4 QPPS = 1.70%
2.9   Boron Concentration (TS 3.9.1) 2.9.1       The refueling boron concentration shall be  2000 ppm.
where QPPS = the percent reduction in Overpower Delta-T trip setpoint for eac h percent that the  
SEQUOYAH UNIT 1                   Page 9 of 16                           Revision 0
 
magnitude of I exceeds its positive limit at RATED THERMAL POWER (QPPL).  
 
2.9 Boron Concentration (TS 3.9.1) 2.9.1 The refueling boron concentration shall be  2000 ppm.  
 
COLR FOR SEQUOYAH UNIT 1 CYCLE 22 SEQUOYAH UNIT 1 Page 10 of 16 Revision 0 Table 1 COLR Methodology Topical Reports 1. BAW-10180-A, Revision 1, "NEMO-Nodal Expansion Method Optimized," March 1993.
(Methodology for TS 3.1.1-SHUTDOWN MARGIN, 3.1.3-Moderator Temperature Coefficient, 3.9.1-Boron Concentration) 2. BAW-10169P-A, Revision 0, "RSG Plant Safety Analysis-B&W Safety Analysis Methodology for Recirculating Steam Generator Plants," October 1989.
(Methodology for TS 3.1.3-Moderator Temperature Coefficient) 3. BAW-10163P-A, Revision 0, "Core Operating Limit Methodology for Westinghouse-Designed PWRs," June 1989.
(Methodology for TS 3.3.1-Reactor Trip System Instrumentation [f 1 (I), f 2 (I) limits], 3.1.5-Shutdown Bank Insertion Limits, 3.1.6-Control Bank Insertion Limits, 3.2.1-Heat Flux Hot Channel Factor, 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.2.3-AXIAL FLUX DIFFERENCE) 4. EMF-2328(P)(A), Revision 0 "PWR Small Break LOCA Evaluation Model," March 2001.
(Methodology for TS 3.2.1-Heat Flux Hot Channel Factor) 5. BAW-10227P-A, Revision 1, "Evaluation of Advanced Cladding and Structural Material (M5) in PWR Reactor Fuel," June 2003.
(Methodology for TS 3.2.1-Heat Flux Hot Channel Factor) 6. BAW-10186P-A, Revision 2, "Extended Burnup Evaluation," June 2003.


(Methodology for TS 3.2.1-Heat Flux Hot Channel Factor) 7. EMF-2103P-A, Revision 0, "Realistic Large Break LOCA Methodology for Pressurized Water Reactors," April 2003.
COLR FOR SEQUOYAH UNIT 1 CYCLE 22 Table 1 COLR Methodology Topical Reports
(Methodology for TS 3.2.1-Heat Flux Hot Channel Factor) 8. BAW-10241P-A, Revision 1, "BHTP DNB Correlation Applied with LYNXT," July 2005.
: 1. BAW-10180-A, Revision 1, NEMO-Nodal Expansion Method Optimized, March 1993.
(Methodology for TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.3.1-Reactor Trip System Instrumentation [f 1 (I) limits]) 9. BAW-10199P-A, Revision 0, "The BWU Critical Heat Flux Correlations," August 1996.  
(Methodology for TS 3.1.1-SHUTDOWN MARGIN, 3.1.3-Moderator Temperature Coefficient, 3.9.1-Boron Concentration)
: 2. BAW-10169P-A, Revision 0, RSG Plant Safety Analysis-B&W Safety Analysis Methodology for Recirculating Steam Generator Plants, October 1989.
(Methodology for TS 3.1.3-Moderator Temperature Coefficient)
: 3. BAW-10163P-A, Revision 0, Core Operating Limit Methodology for Westinghouse-Designed PWRs, June 1989.
(Methodology for TS 3.3.1-Reactor Trip System Instrumentation [f1(I), f2(I) limits],
3.1.5-Shutdown Bank Insertion Limits, 3.1.6-Control Bank Insertion Limits, 3.2.1-Heat Flux Hot Channel Factor, 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.2.3-AXIAL FLUX DIFFERENCE)
: 4. EMF-2328(P)(A), Revision 0 PWR Small Break LOCA Evaluation Model, March 2001.
(Methodology for TS 3.2.1-Heat Flux Hot Channel Factor)
: 5. BAW-10227P-A, Revision 1, Evaluation of Advanced Cladding and Structural Material (M5) in PWR Reactor Fuel, June 2003.
(Methodology for TS 3.2.1-Heat Flux Hot Channel Factor)
: 6. BAW-10186P-A, Revision 2, Extended Burnup Evaluation, June 2003.
(Methodology for TS 3.2.1-Heat Flux Hot Channel Factor)
: 7. EMF-2103P-A, Revision 0, Realistic Large Break LOCA Methodology for Pressurized Water Reactors, April 2003.
(Methodology for TS 3.2.1-Heat Flux Hot Channel Factor)
: 8. BAW-10241P-A, Revision 1, BHTP DNB Correlation Applied with LYNXT, July 2005.
(Methodology for TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.3.1-Reactor Trip System Instrumentation [f1(I) limits])
: 9. BAW-10199P-A, Revision 0, The BWU Critical Heat Flux Correlations, August 1996.
(Methodology for TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.3.1-Reactor Trip System Instrumentation [f1(I) limits])
: 10. BAW-10189P-A, CHF Testing and Analysis of the Mark-BW Fuel Assembly Design, January 1996.
(Methodology for TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.3.1-Reactor Trip System Instrumentation [f1(I) limits])
: 11. BAW-10159P-A, BWCMV Correlation of Critical Heat Flux in Mixing Vane Grid Fuel Assemblies, August 1990.
(Methodology for TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.3.1-Reactor Trip System Instrumentation [f1(I) limits])
: 12. BAW-10231P-A, Revision 1, COPERNIC Fuel Rod Design Computer Code, January 2004.
(Methodology for TS 3.3.1-Reactor Trip System Instrumentation [f2(I) limits])
SEQUOYAH UNIT 1                  Page 10 of 16                          Revision 0


(Methodology for TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.3.1-Reactor
COLR FOR SEQUOYAH UNIT 1 CYCLE 22 Table 2 Maximum Allowable Peaking Limits MAP(X,Y,Z) for Operation AXIAL(X,Y)  Elevation (ft) MAP(X,Y,Z)        AXIAL(X,Y)  Elevation (ft) MAP(X,Y,Z) 1          1.8764                            1        2.7078 2          1.8761                            2        2.6846 3           1.8758                            3        2.6349 4          1.8755                            4        2.5983 5          1.8750                            5        2.5933 1.1            6          1.8746              1.4          6        2.6505 7          1.8732                            7        2.6394 8          1.8731                            8        2.5563 9          1.8729                            9        2.4572 10          1.8733                          10        2.2668 11          1.8320                          11        2.1190 1          2.1327                            1        2.8223 2          2.1321                            2        2.7591 3          2.1315                            3        2.6985 4          2.1306                            4        2.6542 5          2.1295                            5        2.6482 1.2            6          2.1290              1.5          6        2.7162 7          2.1286                            7        2.7495 8          2.1274                            8        2.6507 9          2.1254                            9        2.5578 10          2.0247                          10        2.3791 11          1.9355                          11        2.2011 1          2.4093                            1        2.8935 2          2.4077                            2        2.8252 3          2.4068                            3         2.7571 4          2.4063                            4        2.7055 5          2.4050                            5        2.6985 1.3           6          2.4043              1.6          6        2.7776 7          2.4034                            7        2.8428 8          2.3923                            8        2.7401 9          2.3053                            9        2.6471 10          2.1479                          10        2.4862 11          2.0305                          11        2.2766 SEQUOYAH UNIT 1               Page 11 of 16                  Revision 0


Trip System Instrumentation [f 1 (I) limits]) 10. BAW-10189P-A, "CHF Testing and Analysis of the Mark-BW Fuel Assembly Design,"
COLR FOR SEQUOYAH UNIT 1 CYCLE 22 Table 2 (continued)
January 1996.
AXIAL(X,Y) Elevation (ft) MAP(X,Y,Z)        AXIAL(X,Y) Elevation (ft) MAP(X,Y,Z) 1          2.9545                          1          2.6005 2          2.8786                          2          2.5794 3          2.8103                          3          2.5536 4          2.7522                          4          2.5118 5          2.7457                          5          2.4500 1.7          6          2.8308              >1.9        6          2.4520 7          2.9230                          7          2.6494 8          2.8209                          8          2.5446 9          2.7287                          9          2.4371 10         2.5873                          10        2.2595 11          2.3478                          11        2.0819 1          2.9942                          1          2.7049 2          2.9271                          2          2.6623 3          2.8570                          3          2.6375 4          2.7942                          4          2.5288 5          2.7875                          5          2.5460 1.8          6          2.8823              2.1        6          2.5252 7          2.9967                          7          2.7990 8          2.8980                          8          2.6963 9          2.8027                          9          2.5830 10          2.6853                          10        2.4527 11          2.4156                          11        2.1796 1          3.0267                          1          2.7475 2          2.9676                          2          2.7275 3          2.8960                          3         2.6457 4          2.8345                          4          2.6125 5          2.8256                          5          2.5774 1.9          6          2.9291              2.3         6          2.5707 7          3.0655                          7          2.9015 8          2.9714                          8          2.7773 9          2.8741                          9          2.6757 10          2.7780                          10        2.4740 11          2.4797                          11        2.2722 SEQUOYAH UNIT 1             Page 12 of 16                  Revision 0
(Methodology for TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.3.1-Reactor


Trip System Instrumentation [f 1 (I) limits]) 11. BAW-10159P-A, "BWCMV Correlation of Critical Heat Flux in Mixing Vane Grid Fuel Assemblies," August 1990.
COLR FOR SEQUOYAH UNIT 1 CYCLE 22 Table 2 (continued)
(Methodology for TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.3.1-Reactor
AXIAL(X,Y) Elevation (ft) MAP(X,Y,Z) 1          2.8372 2          2.7099 3         2.7081 4          2.6340 5          2.6483 2.5            6          2.6284 7          3.0303 8          2.8965 9          2.8111 10        2.7019 11        2.3542 SEQUOYAH UNIT 1         Page 13 of 16                Revision 0


Trip System Instrumentation [f 1 (I) limits]) 12. BAW-10231P-A, Revision 1, "COPERNIC Fuel Rod Design Computer Code," January 2004. (Methodology for TS 3.3.1-Reactor Trip System Instrumentation [f 2 (I) limits])
COLR FOR SEQU        UOYAH UNIT    T 1 CYCLE 22  2 Fractiion of RAT      TED THERM        MAL POWE    ER FIGURE 1 Rod Bank Inse        ertion Limits Versus THERMAL                  L POWER, Four Loop          p Operation    n (TTS 3.1.6)
* Fully F    withdraw wn region shall be the cond    dition where sshutdown and  d control bankks are att a position wiithin the interv val of 225 an  nd 231stepss withdrawn.
Fuully withdrawn n shall be the position as de    efined below,,
Cyycle Burnup (M  MWd/mtU)                                  Stepps Withdrawn 0                                                  2 225 to 231 This figure is valid for ope eration at a RA ATED THERMA      AL POWER of 3   3455 MWth wh hen the LEFM iis in operation.
If the LEFMM becomes ino  operable, then prior p    to the nexxt NIS calibratio on, the maximu um allowable power level musst be reduced by  y 1.3% in powe                                                ncreased by 3 steps withdraw er, and the rod insertion limit lines must be in                          wn until the LEF FM is returned too operation.
SEQUO    OYAH UNIT 1                            Page 14  1 of 16                                  Reevision 0


COLR FOR SEQUOYAH UNIT 1 CYCLE 22 SEQUOYAH UNIT 1 Page 11 of 16 Revision 0 Table 2 Maximum Allowable Peaking Limits MAP(X,Y,Z) for Operation AXIAL(X,Y) Elevation (ft) MAP(X,Y,Z)  AXIAL(X,Y) Elevation (ft) MAP(X,Y,Z) 1.1 1 2 3
COLR FOR SEQUOYAH UNIT 1 CYCLE 22 1.2 1.0 0.8 K(Z)   0.6 Elevation     K(z)
4 5
(ft) 0.000      1.0000 0.4                   6.285      1.0000 7.995      1.0000 9.705      1.0000 12.000      1.0000 0.2 0.0 0        2           4             6           8   10           12 Core Height (Feet)
6 7 8 9 10 11 1.8764 1.8761 1.8758 1.8755 1.8750 1.8746 1.8732 1.8731 1.8729 1.8733 1.8320  1.4 1 2
FIGURE 2 K(Z) - Normalized FQ(X,Y,Z) as a Function of Core Height (TS 3.2.1)
3 4
SEQUOYAH UNIT 1                           Page 15 of 16                  Revision 0
5 6 7 8 9 10 11 2.7078 2.6846 2.6349 2.5983 2.5933 2.6505 2.6394 2.5563 2.4572 2.2668 2.1190 1.2 1 2
3 4
5 6
7 8
9 10 11 2.1327 2.1321 2.1315 2.1306 2.1295 2.1290 2.1286 2.1274 2.1254 2.0247 1.9355  1.5 1 2
3 4
5 6
7 8
9 10 11 2.8223 2.7591 2.6985 2.6542 2.6482 2.7162 2.7495 2.6507 2.5578 2.3791 2.2011 1.3 1 2
3 4
5 6
7 8
9 10 11 2.4093 2.4077 2.4068 2.4063 2.4050 2.4043 2.4034 2.3923 2.3053 2.1479 2.0305  1.6 1 2
3 4
5 6
7 8
9 10 11 2.8935 2.8252 2.7571 2.7055 2.6985 2.7776 2.8428 2.7401 2.6471 2.4862 2.2766 COLR FOR SEQUOYAH UNIT 1 CYCLE 22 SEQUOYAH UNIT 1 Page 12 of 16 Revision 0 Table 2 (continued) AXIAL(X,Y) Elevation (ft) MAP(X,Y,Z) AXIAL(X,Y) Elevation (ft) MAP(X,Y,Z) 1.7 1 2 3
4 5
6 7 8 9 10 11 2.9545 2.8786 2.8103 2.7522 2.7457 2.8308 2.9230 2.8209 2.7287 2.5873 2.3478  >1.9 1 2
3 4
5 6
7 8 9 10 11 2.6005 2.5794 2.5536 2.5118 2.4500 2.4520 2.6494 2.5446 2.4371 2.2595 2.0819 1.8 1 2
3 4
5 6
7 8
9 10 11 2.9942 2.9271 2.8570 2.7942 2.7875 2.8823 2.9967 2.8980 2.8027 2.6853 2.4156  2.1 1 2
3 4
5 6
7 8
9 10 11 2.7049 2.6623 2.6375 2.5288 2.5460 2.5252 2.7990 2.6963 2.5830 2.4527 2.1796 1.9 1 2
3 4
5 6
7 8
9 10 11 3.0267 2.9676 2.8960 2.8345 2.8256 2.9291 3.0655 2.9714 2.8741 2.7780 2.4797  2.3 1 2
3 4
5 6
7 8
9 10 11 2.7475 2.7275 2.6457 2.6125 2.5774 2.5707 2.9015 2.7773 2.6757 2.4740 2.2722 


COLR FOR SEQUOYAH UNIT 1 CYCLE 22 SEQUOYAH UNIT 1 Page 13 of 16 Revision 0 Table 2 (continued) AXIAL(X,Y) Elevation (ft) MAP(X,Y,Z) 2.5 1 2 3
COLR FOR SEQU      UOYAH UNIT     T 1 CYCLE 22   2 FIGURE 3 AXIAL  L FLUX DIF      FFERENCE      E Limits As      sA Function of RAT        TED THERM      MAL POWER For Burnup Range  R        0 EFPD to EOL        L (T
4 5
TS 3.2.3)
6 7 8 9 10 11 2.8372 2.7099 2.7081 2.6340 2.6483 2.6284 3.0303 2.8965 2.8111 2.7019 2.3542 SEQU O Rod
This figure is valid for ope eration at a RA ATED THERMA    AL POWER of 3   3455 MWth wh    hen the LEFM iis in operation.
* F a t F u C y This figure If the LEF Mreduced b y returned t o OYAH UNIT  Bank Ins e F ully withdra w t a position w i u lly withdraw n ycle Burnup (M 0 is valid for op e M becomes in o y 1.3% in pow e o operation.
If the LEFM M becomes ino  operable, then prior p    to the nexxt NIS calibratio on, the maximu um allowable power level musst be reduced by y 1.3% in powe  er, and the AFD D limit lines must be made mo  ore restrictive b by 1% in AFD uuntil the LEFM is returned to o operation.
COL 1 Fract i e rtion Lim i wn region sha i thin the inter v n shall be the MWd/mtU)  eration at a R A operable, then p er, and the rod R FOR SEQ U Page 1 i on of R AT Fts Versusll be the con d v al of 225 a nposition as d e ATED THERM A prior to the ne xinsertion limit l UOYAH UNI T 1 4 of 16 TED THER M IGURE 1 THERMA L dition where s n d 231step s efined below, Ste p     2 AL POWER of 3 xt NIS calibrati oines must be i n T 1 CYCLE 2 2 M AL POW E L POWER, shutdown an d s withdrawn.
SEQUO    OYAH UNIT 1                            Page 16  1 of 16                                    Reevision 0}}
, ps Withdrawn 2 25 to  231 3455 MWth w h o n, the maxim u ncreased by 3 2 R e E R Four Loo p d control ban k hen the LEFM i um allowable psteps withdra wevision 0 p Operatio n ks are is in operation.ower level mu s wn until the LE F n  s t be F M is COLR FOR SEQUOYAH UNIT 1 CYCLE 22 SEQUOYAH UNIT 1 Page 15 of 16 Revision 0 FIGURE 2  K(Z) - Normalized F Q (X,Y,Z) as a Function of Core Height 0.00.20.4 0.60.81.01.202468101 2Core Height (Feet)K(Z)Elevation        K(z)      (ft)        0.000          1.0000      6.285          1.0000    7.995          1.0000    9.705          1.0000  12.000          1.0000 SEQU O This figure If the LEF Mreduced b y returned t o OYAH UNIT is valid for op e M becomes in o y 1.3% in pow e o operation.
COL 1 AXIA L Funct For eration at a R A operable, then p er, and the AF DR FOR SEQ U Page 1 F L FLUX DI F ion of R AT Burnup R ATED THERM A prior to the ne x D limit lines mu UOYAH UNI T 1 6 of 16 IGURE 3  F FERENC E TED THER M R ange 0 EF  AL POWER of 3 xt NIS calibrati ost be made m o T 1 CYCLE 2 2 E Limits A s M AL POW PD to EO L 3455 MWth w h o n, the maxim u ore restrictive b 2 R e s A ER L hen the LEFM i um allowable p by 1% in AFD uevision 0 is in operation.ower level mu s until the LEFM s t be is}}

Revision as of 09:57, 30 October 2019

Cycle 22 Core Operating Limits Report, Revision 0
ML16357A556
Person / Time
Site: Sequoyah Tennessee Valley Authority icon.png
Issue date: 12/21/2016
From: Boerschig G
Tennessee Valley Authority
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
Download: ML16357A556 (18)


Text

Tennessee Valley Authority , Post Office Box 2000, Soddy Daisy, Tennessee 37384-2000 December 21, 2016 10 CFR 50.4 ATTN : Document Control Desk U.S. Nuclear Regulatory Commission Washington , D.C. 20555-0001 Sequoyah Nuclear Plant, Unit 1 Renewed Facility Operating License No. DPR-77 NRC Docket No. 50-327

Subject:

SEQUOYAH UNIT 1 CYCLE 22 CORE OPERATING LIMITS REPORT REVISION 0 In accordance with Sequoyah Nuclear Plant (SQN) Unit 1 Technical Specification (TS) 5.6.3.d, enclosed is the Unit 1 Cycle 22 Core Operating Limits Report (COLR), Revision 0 that was issued on December 7, 2016.

SQN has completed the transition from the Mark-BW fuel design to the Advanced W17 HTP fuel design in Unit 1. Accordingly, the COLR only includes core operating limits associated with the use of Advanced W17 HTP fuel.

There are no new regulatory commitments in this letter. If you have any questions, please contact Michael McBrearty, SQN Site Licensing Manager at (423) 843-7170.

Respectfully,

~~

Gregory A. Boerschig Site Vice President (interim)

Sequoyah Nuclear Plant Enclosure Sequoyah Unit 1 Cycle 22 Core Operating Limits Report cc (Enclosure):

NRC Regional Administrator- Region II NRC Senior Resident Inspector- SQN

ENCLOSURE SEQUOYAH UNIT 1 CYCLE 22 CORE OPERATING LIMITS REPORT

QA Record L36 161201 800 SEQUOYAH UNIT 1 CYCLE 22 CORE OPERATING LIMITS REPORT REVISION 0 December 2016 Prepared by :

Kelly ~~~~

I 2 / o l / 2-o I~

Date Verified by:

11 ~1fvt:JR. Fuel Ch~i~tfe'17etler, ~- Engineering

/_ 1zto\/L.o\(o

_,_,____,...,_..~D~a-te-~~~-

I 1z 2-01(p Date sl;&f.talan~~gineering Manager

/2 ;, .h<.

Date Approved by:

tZ-/1/~6 Date I /z.hb.d"/~

Pl Date Date of PORC Affected Revision Approval Pages Reason for Revision 0 17 1-:i-/1111 All Initial issue.

SEQUOYAH-UNIT 1 Page 1 of 16 Revision 0

COLR FOR SEQUOYAH UNIT 1 CYCLE 22 1.0 CORE OPERATING LIMITS REPORT This CORE OPERATING LIMITS REPORT (COLR) for Sequoyah Unit 1 Cycle 22 has been prepared in accordance with the requirements of Technical Specification (TS) 5.6.3.

The TSs affected by this Report are listed below:

TS COLR COLR Section Technical Specification COLR Parameter Section Page 3.1.1 SHUTDOWN MARGIN (SDM) SDM 2.1 3 BOL MTC Limit 2.2.1 4 Moderator Temperature EOL MTC Limit 2.2.2 4 3.1.3 Coefficient (MTC) 300 ppm Surveillance Limit 2.2.3 4 60 ppm Surveillance Limit 2.2.4 4 3.1.4 Rod Group Alignment Limits SDM 2.1.3 3 Shutdown Bank Insertion Limits 2.3 4 3.1.5 Shutdown Bank Insertion Limits SDM 2.1.4 3 Control Bank Insertion Limits 2.4 5 3.1.6 Control Bank Insertion Limits SDM 2.1.5 3 PHYSICS TESTS Exceptions -

3.1.8 SDM 2.1.6 3 MODE 2 RTP FQ 2.5.1 6 K(Z) 2.5.2 6 NSLOPEAFD 2.5.3 6 Heat Flux Hot Channel Factor PSLOPEAFD 2.5.4 6 3.2.1 (FQ(X,Y,Z)) NSLOPEf2(I) 2.5.5 6 f2(I)

PSLOPE 2.5.6 6 FQ(X,Y,Z) Appropriate Factor 2.5.7 6 TS LCO 3.2.1 Required Action A.3 2.5.8 6 MAP(X,Y,Z) 2.6.1 6 RRH 2.6.2 6 Nuclear Enthalpy Rise Hot TRH 2.6.3 6 3.2.2 Channel Factor (FH(X,Y)) FH(X,Y) Appropriate Factor 2.6.4 7 TS 3.2.2 Required Action A.4 2.6.5 7 TS 3.2.2 Required Action B.1 2.6.6 7 AXIAL FLUX DIFFERENCE 3.2.3 AFD Limits 2.7 7 (AFD)

Reactor Trip System (RTS) QTNL, QTPL, QTNS, and QTPS 2.8.1 8 3.3.1 Instrumentation QPNL, QPPL, QPNS, and QPPS 2.8.2 9 3.9.1 Boron Concentration Refueling Boron Concentration 2.9 9 CORE OPERATING LIMITS 5.6.3 Analytical Methods Table 1 10 REPORT (COLR)

SEQUOYAH UNIT 1 Page 2 of 16 Revision 0

COLR FOR SEQUOYAH UNIT 1 CYCLE 22 2.0 OPERATING LIMITS The cycle-specific parameter limits for the TS listed in section 1.0 are presented in the following subsections. These limits have been developed using the NRC approved methodologies specified in TS 5.6.3. The versions of the topical reports, which describe the methodologies used for this cycle, are listed in Table 1.

The following abbreviations are used in this section:

BOL stands for Beginning of Cycle Life EOL stands for End of Cycle Life RTP stands for RATED THERMAL POWER 2.1 SHUTDOWN MARGIN - SDM (TS 3.1.1, 3.1.4, 3.1.5, 3.1.6, 3.1.8) 2.1.1 For TS 3.1.1, SDM shall be 1.6 %k/k in MODE 2 with keff < 1.0, MODE 3 and MODE 4 2.1.2 For TS 3.1.1, SDM shall be 1.0 %k/k in MODE 5.

2.1.3 For TS 3.1.4, SDM shall be 1.6 %k/k in MODE 1 and MODE 2.

2.1.4 For TS 3.1.5, SDM shall be 1.6 %k/k in MODE 1 and MODE 2.

2.1.5 For TS 3.1.6, SDM shall be 1.6 %k/k in MODE 1 and MODE 2 with keff 1.0.

2.1.6 For TS 3.1.8, SDM shall be 1.6 %k/k in MODE 2.

SEQUOYAH UNIT 1 Page 3 of 16 Revision 0

COLR FOR SEQUOYAH UNIT 1 CYCLE 22 2.2 Moderator Temperature Coefficient - MTC (TS 3.1.3) 2.2.1 The BOL MTC limit is:

less positive than -0.11 x 10-5 k/k/ºF.

2.2.2 The EOL MTC limit is:

less negative than or equal to -4.50 x 10-4 k/k/ºF.

2.2.3 The 300 ppm Surveillance limit is:

less negative than or equal to -3.75 x 10-4 k/k/ºF.

2.2.4 The 60 ppm Surveillance limit is:

less negative than or equal to -4.15 x 10-4 k/k/ºF.

2.3 Shutdown Bank Insertion Limits (TS 3.1.5) 2.3.1 Each shutdown bank shall be withdrawn to a position as defined below:

Cycle Burnup Steps (MWd/mtU) Withdrawn 0 225 to 231 SEQUOYAH UNIT 1 Page 4 of 16 Revision 0

COLR FOR SEQUOYAH UNIT 1 CYCLE 22 2.4 Control Bank Insertion Limits (TS 3.1.6) 2.4.1 The control banks shall be limited in physical insertion as shown in Figure 1.

2.4.2 Each control bank shall be considered fully withdrawn from the core at 225 steps.

2.4.3 The control banks shall be operated in sequence by withdrawal of Bank A, Bank B, Bank C, and Bank D. The control banks shall be sequenced in reverse order upon insertion.

2.4.4 Each control bank not fully withdrawn from the core shall be operated with the following overlap as a function of full out position.

Full Out Position (steps) Bank Overlap (steps) Bank Difference (steps) 225 97 128 226 98 128 227 99 128 228 100 128 229 101 128 230 102 128 231 103 128 SEQUOYAH UNIT 1 Page 5 of 16 Revision 0

COLR FOR SEQUOYAH UNIT 1 CYCLE 22 2.5 Heat Flux Hot Channel Factor - FQ(X,Y,Z) (TS 3.2.1)

RTP 2.5.1 FQ = 2.62 2.5.2 K(Z) is provided in Figure 2 2.5.3 NSLOPEAFD = 1.17 2.5.4 PSLOPEAFD = 1.54 2.5.5 NSLOPEf2(I) = 1.48 2.5.6 PSLOPEf2(I) = 2.27 M

2.5.7 The appropriate factor for increase in FQ (X,Y,Z) for compliance with SR 3.2.1.2 and SR 3.2.1.3 is specified as follows:

For cycle burnups >1302 MWd/mtU to 3631 MWd/mtU, use 3.15%.

For all other burnups, use 2.0%

2.5.8 TS LCO 3.2.1 Required Action A.3 reduces the Overpower Delta-T Trip setpoints (value of K4) at least 1% (in T span) for each 1% that FQC(X,Y,Z) exceeds its limit.

2.6 Nuclear Enthalpy Rise Hot Channel Factor - FH(X,Y) (TS 3.2.2) 2.6.1 MAP(X,Y,Z) is provided in Table 2.

2.6.2 RRH = 3.34 when 0.8 < P 1.0 RRH = 1.67 when P 0.8 Where RRH = Thermal power reduction required to compensate for each 1% that FH(X,Y) exceeds its limit.

P = THERMAL POWER / RATED THERMAL POWER 2.6.3 TRH = 0.0334 when 0.8 < P 1.0 TRH = 0.0167 when P 0.8 Where TRH = Reduction in Overtemperature Delta-T K1 setpoint required to compensate for each 1% that FH(X,Y) exceeds its limit.

P = THERMAL POWER / RATED THERMAL POWER SEQUOYAH UNIT 1 Page 6 of 16 Revision 0

COLR FOR SEQUOYAH UNIT 1 CYCLE 22 2.6.4 The appropriate factor for increase in FHM (X,Y) for compliance with SR 3.2.2.1 and SR 3.2.2.2 is specified as follows:

For all cycle burnups, use 2.0%

2.6.5 TS LCO 3.2.2 Required Action A.4 reduces the Overtemperature Delta-T setpoint (K1 term in Table 3.3.1-1) by TRH multiplied by the FH minimum margin.

2.6.6 TS LCO 3.2.2 Required Action B.1 reduces the Overtemperature Delta-T setpoint (K1 term in Table 3.3.1-1) by TRH multiplied by the f1(I) minimum margin.

2.7 Axial Flux Difference - AFD (TS 3.2.3) 2.7.1 The AFD limits are specified in Figure 3 SEQUOYAH UNIT 1 Page 7 of 16 Revision 0

COLR FOR SEQUOYAH UNIT 1 CYCLE 22 2.8 Reactor Trip System Instrumentation (TS 3.3.1) 2.8.1 Trip Reset Term [f1(I)] for Overtemperature Delta-T Trip The following parameters are required to specify the power level-dependent f1(I) trip reset term limits for Table 3.3.1-1 (function 6), Overtemperature Delta-T trip function:

2.8.1.1 QTNL = -20%

where QTNL = the maximum negative I setpoint at RATED THERMAL POWER at which the trip setpoint is not reduced by the axial power distribution.

2.8.1.2 QTPL = +5%

where QTPL = the maximum positive I setpoint at RATED THERMAL POWER at which the trip setpoint is not reduced by the axial power distribution.

2.8.1.3 QTNS = 2.50%

where QTNS = the percent reduction in Overtemperature Delta-T trip setpoint for each percent that the magnitude of I exceeds its negative limit at RATED THERMAL POWER (QTNL).

2.8.1.4 QTPS = 1.40%

where QTPS = the percent reduction in Overtemperature Delta-T trip setpoint for each percent that the magnitude of I exceeds its positive limit at RATED THERMAL POWER (QTPL).

SEQUOYAH UNIT 1 Page 8 of 16 Revision 0

COLR FOR SEQUOYAH UNIT 1 CYCLE 22 2.8.2 Trip Reset Term [f2(I)] for Overpower Delta-T Trip The following parameters are required to specify the power level-dependent f2(I) trip reset term limits for Table 3.3.1-1 (function 7), Overpower Delta-T trip function:

2.8.2.1 QPNL = -25%

where QPNL = the maximum negative I setpoint at RATED THERMAL POWER at which the trip setpoint is not reduced by the axial power distribution.

2.8.2.2 QPPL = +25%

where QPPL = the maximum positive I setpoint at RATED THERMAL POWER at which the trip setpoint is not reduced by the axial power distribution.

2.8.2.3 QPNS = 1.70%

where QPNS = the percent reduction in Overpower Delta-T trip setpoint for each percent that the magnitude of I exceeds its negative limit at RATED THERMAL POWER (QPNL).

2.8.2.4 QPPS = 1.70%

where QPPS = the percent reduction in Overpower Delta-T trip setpoint for each percent that the magnitude of I exceeds its positive limit at RATED THERMAL POWER (QPPL).

2.9 Boron Concentration (TS 3.9.1) 2.9.1 The refueling boron concentration shall be 2000 ppm.

SEQUOYAH UNIT 1 Page 9 of 16 Revision 0

COLR FOR SEQUOYAH UNIT 1 CYCLE 22 Table 1 COLR Methodology Topical Reports

1. BAW-10180-A, Revision 1, NEMO-Nodal Expansion Method Optimized, March 1993.

(Methodology for TS 3.1.1-SHUTDOWN MARGIN, 3.1.3-Moderator Temperature Coefficient, 3.9.1-Boron Concentration)

2. BAW-10169P-A, Revision 0, RSG Plant Safety Analysis-B&W Safety Analysis Methodology for Recirculating Steam Generator Plants, October 1989.

(Methodology for TS 3.1.3-Moderator Temperature Coefficient)

3. BAW-10163P-A, Revision 0, Core Operating Limit Methodology for Westinghouse-Designed PWRs, June 1989.

(Methodology for TS 3.3.1-Reactor Trip System Instrumentation [f1(I), f2(I) limits],

3.1.5-Shutdown Bank Insertion Limits, 3.1.6-Control Bank Insertion Limits, 3.2.1-Heat Flux Hot Channel Factor, 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.2.3-AXIAL FLUX DIFFERENCE)

4. EMF-2328(P)(A), Revision 0 PWR Small Break LOCA Evaluation Model, March 2001.

(Methodology for TS 3.2.1-Heat Flux Hot Channel Factor)

5. BAW-10227P-A, Revision 1, Evaluation of Advanced Cladding and Structural Material (M5) in PWR Reactor Fuel, June 2003.

(Methodology for TS 3.2.1-Heat Flux Hot Channel Factor)

6. BAW-10186P-A, Revision 2, Extended Burnup Evaluation, June 2003.

(Methodology for TS 3.2.1-Heat Flux Hot Channel Factor)

7. EMF-2103P-A, Revision 0, Realistic Large Break LOCA Methodology for Pressurized Water Reactors, April 2003.

(Methodology for TS 3.2.1-Heat Flux Hot Channel Factor)

8. BAW-10241P-A, Revision 1, BHTP DNB Correlation Applied with LYNXT, July 2005.

(Methodology for TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.3.1-Reactor Trip System Instrumentation [f1(I) limits])

9. BAW-10199P-A, Revision 0, The BWU Critical Heat Flux Correlations, August 1996.

(Methodology for TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.3.1-Reactor Trip System Instrumentation [f1(I) limits])

10. BAW-10189P-A, CHF Testing and Analysis of the Mark-BW Fuel Assembly Design, January 1996.

(Methodology for TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.3.1-Reactor Trip System Instrumentation [f1(I) limits])

11. BAW-10159P-A, BWCMV Correlation of Critical Heat Flux in Mixing Vane Grid Fuel Assemblies, August 1990.

(Methodology for TS 3.2.2-Nuclear Enthalpy Rise Hot Channel Factor, 3.3.1-Reactor Trip System Instrumentation [f1(I) limits])

12. BAW-10231P-A, Revision 1, COPERNIC Fuel Rod Design Computer Code, January 2004.

(Methodology for TS 3.3.1-Reactor Trip System Instrumentation [f2(I) limits])

SEQUOYAH UNIT 1 Page 10 of 16 Revision 0

COLR FOR SEQUOYAH UNIT 1 CYCLE 22 Table 2 Maximum Allowable Peaking Limits MAP(X,Y,Z) for Operation AXIAL(X,Y) Elevation (ft) MAP(X,Y,Z) AXIAL(X,Y) Elevation (ft) MAP(X,Y,Z) 1 1.8764 1 2.7078 2 1.8761 2 2.6846 3 1.8758 3 2.6349 4 1.8755 4 2.5983 5 1.8750 5 2.5933 1.1 6 1.8746 1.4 6 2.6505 7 1.8732 7 2.6394 8 1.8731 8 2.5563 9 1.8729 9 2.4572 10 1.8733 10 2.2668 11 1.8320 11 2.1190 1 2.1327 1 2.8223 2 2.1321 2 2.7591 3 2.1315 3 2.6985 4 2.1306 4 2.6542 5 2.1295 5 2.6482 1.2 6 2.1290 1.5 6 2.7162 7 2.1286 7 2.7495 8 2.1274 8 2.6507 9 2.1254 9 2.5578 10 2.0247 10 2.3791 11 1.9355 11 2.2011 1 2.4093 1 2.8935 2 2.4077 2 2.8252 3 2.4068 3 2.7571 4 2.4063 4 2.7055 5 2.4050 5 2.6985 1.3 6 2.4043 1.6 6 2.7776 7 2.4034 7 2.8428 8 2.3923 8 2.7401 9 2.3053 9 2.6471 10 2.1479 10 2.4862 11 2.0305 11 2.2766 SEQUOYAH UNIT 1 Page 11 of 16 Revision 0

COLR FOR SEQUOYAH UNIT 1 CYCLE 22 Table 2 (continued)

AXIAL(X,Y) Elevation (ft) MAP(X,Y,Z) AXIAL(X,Y) Elevation (ft) MAP(X,Y,Z) 1 2.9545 1 2.6005 2 2.8786 2 2.5794 3 2.8103 3 2.5536 4 2.7522 4 2.5118 5 2.7457 5 2.4500 1.7 6 2.8308 >1.9 6 2.4520 7 2.9230 7 2.6494 8 2.8209 8 2.5446 9 2.7287 9 2.4371 10 2.5873 10 2.2595 11 2.3478 11 2.0819 1 2.9942 1 2.7049 2 2.9271 2 2.6623 3 2.8570 3 2.6375 4 2.7942 4 2.5288 5 2.7875 5 2.5460 1.8 6 2.8823 2.1 6 2.5252 7 2.9967 7 2.7990 8 2.8980 8 2.6963 9 2.8027 9 2.5830 10 2.6853 10 2.4527 11 2.4156 11 2.1796 1 3.0267 1 2.7475 2 2.9676 2 2.7275 3 2.8960 3 2.6457 4 2.8345 4 2.6125 5 2.8256 5 2.5774 1.9 6 2.9291 2.3 6 2.5707 7 3.0655 7 2.9015 8 2.9714 8 2.7773 9 2.8741 9 2.6757 10 2.7780 10 2.4740 11 2.4797 11 2.2722 SEQUOYAH UNIT 1 Page 12 of 16 Revision 0

COLR FOR SEQUOYAH UNIT 1 CYCLE 22 Table 2 (continued)

AXIAL(X,Y) Elevation (ft) MAP(X,Y,Z) 1 2.8372 2 2.7099 3 2.7081 4 2.6340 5 2.6483 2.5 6 2.6284 7 3.0303 8 2.8965 9 2.8111 10 2.7019 11 2.3542 SEQUOYAH UNIT 1 Page 13 of 16 Revision 0

COLR FOR SEQU UOYAH UNIT T 1 CYCLE 22 2 Fractiion of RAT TED THERM MAL POWE ER FIGURE 1 Rod Bank Inse ertion Limits Versus THERMAL L POWER, Four Loop p Operation n (TTS 3.1.6)

  • Fully F withdraw wn region shall be the cond dition where sshutdown and d control bankks are att a position wiithin the interv val of 225 an nd 231stepss withdrawn.

Fuully withdrawn n shall be the position as de efined below,,

Cyycle Burnup (M MWd/mtU) Stepps Withdrawn 0 2 225 to 231 This figure is valid for ope eration at a RA ATED THERMA AL POWER of 3 3455 MWth wh hen the LEFM iis in operation.

If the LEFMM becomes ino operable, then prior p to the nexxt NIS calibratio on, the maximu um allowable power level musst be reduced by y 1.3% in powe ncreased by 3 steps withdraw er, and the rod insertion limit lines must be in wn until the LEF FM is returned too operation.

SEQUO OYAH UNIT 1 Page 14 1 of 16 Reevision 0

COLR FOR SEQUOYAH UNIT 1 CYCLE 22 1.2 1.0 0.8 K(Z) 0.6 Elevation K(z)

(ft) 0.000 1.0000 0.4 6.285 1.0000 7.995 1.0000 9.705 1.0000 12.000 1.0000 0.2 0.0 0 2 4 6 8 10 12 Core Height (Feet)

FIGURE 2 K(Z) - Normalized FQ(X,Y,Z) as a Function of Core Height (TS 3.2.1)

SEQUOYAH UNIT 1 Page 15 of 16 Revision 0

COLR FOR SEQU UOYAH UNIT T 1 CYCLE 22 2 FIGURE 3 AXIAL L FLUX DIF FFERENCE E Limits As sA Function of RAT TED THERM MAL POWER For Burnup Range R 0 EFPD to EOL L (T

TS 3.2.3)

This figure is valid for ope eration at a RA ATED THERMA AL POWER of 3 3455 MWth wh hen the LEFM iis in operation.

If the LEFM M becomes ino operable, then prior p to the nexxt NIS calibratio on, the maximu um allowable power level musst be reduced by y 1.3% in powe er, and the AFD D limit lines must be made mo ore restrictive b by 1% in AFD uuntil the LEFM is returned to o operation.

SEQUO OYAH UNIT 1 Page 16 1 of 16 Reevision 0