ML080710432: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot change)
(StriderTol Bot change)
 
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:. e"I Duke                                                                 BRUCE HHAMILTON Vice President Energyo                                                               McGuire Nuclear Station Duke Energy Corporation MG01 VP / 12700 Hagers Ferry Road Huntersville, NC 28078 704-875-5333 704-875-4809 fax bhhamilton@duke-energy.com March 4, 2008 U. S. Nuclear Regulatory Commission Document Control Desk Washington, D.C. 20555
{{#Wiki_filter:.e"I Duke BRUCE H HAMILTON Vice President Energyo McGuire Nuclear Station Duke Energy Corporation MG01 VP / 12700 Hagers Ferry Road Huntersville, NC 28078 704-875-5333 704-875-4809 fax bhhamilton@duke-energy. com March 4, 2008 U. S. Nuclear Regulatory Commission Document Control Desk Washington, D.C. 20555


==Subject:==
==Subject:==
Line 23: Line 23:
This revision will become effective prior to entering Mode 6 which begins Cycle 19.
This revision will become effective prior to entering Mode 6 which begins Cycle 19.
Questions regarding this submittal should be directed to Kay Crane, McGuire Regulatory Compliance at (704) 875-4306.
Questions regarding this submittal should be directed to Kay Crane, McGuire Regulatory Compliance at (704) 875-4306.
Bruce H. Hamilton Attachment www. duke-energy.corn
Bruce H. Hamilton Attachment www. duke-energy. corn


U. S. Nuclear Regulatory Commission March 4, 2008 Page 2 cc:   Mr. John Stang, Project Manager U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation Washington, D.C. 20555 Mr. Victor McCree, Acting Regional Administrator U. S. Nuclear Regulatory Commission, Region II Atlanta Federal Center 61 Forsyth St., SW, Suite 23T85 Atlanta, GA 30323 Mr. Joe Brady Senior Resident Inspector McGuire Nuclear Station
U. S. Nuclear Regulatory Commission March 4, 2008 Page 2 cc:
Mr. John Stang, Project Manager U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation Washington, D.C. 20555 Mr. Victor McCree, Acting Regional Administrator U. S. Nuclear Regulatory Commission, Region II Atlanta Federal Center 61 Forsyth St., SW, Suite 23T85 Atlanta, GA 30323 Mr. Joe Brady Senior Resident Inspector McGuire Nuclear Station


4 MCEI-0400-198 Page 1 of 32 Revision 0 McGuire Unit 2 Cycle .19 Core Operating Limits Report Revision 0 February 2008 Calculation Number: MCC-1553.05-00-0478 (Rev. 0)
4 MCEI-0400-198 Page 1 of 32 Revision 0 McGuire Unit 2 Cycle.19 Core Operating Limits Report Revision 0 February 2008 Calculation Number: MCC-1553.05-00-0478 (Rev. 0)
Duke Energy Date Prepared By:
Duke Energy Date Prepared By:
                                                                      .12Ij.21ky Checked By:                                                   -0hz& 45 Checked By:
Checked By:
(S   o2. and2.10 -2.17) 9 ý-ZA       7-ý 9 Approved By:                                                  1121- / Ild J>
Checked By:
Approved By:
(S o2.
and2.10 -2.17)
.12.21ky Ij
-0 hz& 4 5 9 ý-ZA 7-ý 9 1121- / Ild J>
QA Condition 1 The information presented in this report has been prepared and issued in accordance with McGuire Technical Specification 5.6.5.
QA Condition 1 The information presented in this report has been prepared and issued in accordance with McGuire Technical Specification 5.6.5.


MCEI-0400-198 Page 2 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report INSPECTION OF ENGINEERING INSTRUCTIONS Inspection Waived By:
MCEI-0400-198 Page 2 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report INSPECTION OF ENGINEERING INSTRUCTIONS ARC Inspection Waived By:
(Sponsor)
Date: 2-1-1Ia (Sponsor)
ARC            CTW Date: 2- 1-1Ia CATAWBA Inspection Waived MCE (Mechanical & Civil)             El       Inspected By/Date:
CTW CATAWBA MCE (Mechanical & Civil)
                                    .[ '-
RES (Electrical Only)
RES (Electrical Only)                          Inspected By/Date:
RES (Reactor)
RES (Reactor)                        El      Inspected By/Date:
MOD Other (
MOD El      Inspected-By/Date:
Inspection Waived El
Other (                              El      Inspected By/Date:
.[ '-
OCONEE Inspection Waived MCE (Mechanical & Civil)             El     Inspected By/Date:.
El El El Inspected By/Date:
RES (Electrical Only)                El      Inspected By/Date:
Inspected By/Date:
RES (Reactor)                        El      Inspected.By/Date:
Inspected By/Date:
MOD                                  El      Inspected By/Date:
Inspected-By/Date:
Other(                    )                  Inspected By/Date:
Inspected By/Date:
MCGUIRE Inspection Waived MCE (Mechanical & Civil)                     Inspected By/Date:
OCONEE MCE (Mechanical & Civil)
RES (Electrical Only)                        Inspected By/Date:
RES (Electrical Only)
RES (Reactor)                                Inspected By/Date:
RES (Reactor)
MOD                                          Inspected By/Date:
MOD Other(
Other (                  )          El      Inspected By/Date:
)
Inspection Waived El El El El El Inspected By/Date:.
Inspected By/Date:
Inspected.By/Date:
Inspected By/Date:
Inspected By/Date:
MCGUIRE MCE (Mechanical & Civil)
RES (Electrical Only)
RES (Reactor)
MOD Other (
)
Inspection Waived El Inspected By/Date:
Inspected By/Date:
Inspected By/Date:
Inspected By/Date:
Inspected By/Date:


MCEI-0400-198 Page 3 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Implementation Instructions For Revision 0 Revision Description and PIP Tracking Revision 0 of the McGuire Unit 2 COLR contains limits specific to the McGuire 2 Cycle 19 reload core. There is no PIP associated with this revision.
MCEI-0400-198 Page 3 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Implementation Instructions For Revision 0 Revision Description and PIP Tracking Revision 0 of the McGuire Unit 2 COLR contains limits specific to the McGuire 2 Cycle 19 reload core. There is no PIP associated with this revision.
Line 57: Line 78:
Data files to be Implemented No data files are transmitted as part of this document.
Data files to be Implemented No data files are transmitted as part of this document.


MCEI-0400-198 Page 4 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report REVISION LOG Revision           Effective Date       Pages Affected             COLR 0              February 2008      1-32, Appendix A* M2C19 COLR, Rev. 0 Appendix A contains power distribution monitoring factors used in Technical Specification Surveillance. Appendix A is included only in the electronic COLR copy sent to the NRC.
MCEI-0400-198 Page 4 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report REVISION LOG Revision 0
Effective Date February 2008 Pages Affected COLR 1-32, Appendix A* M2C19 COLR, Rev. 0 Appendix A contains power distribution monitoring factors used in Technical Specification Surveillance. Appendix A is included only in the electronic COLR copy sent to the NRC.


MCEI-0400-198 Page 5 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 1.0       Core Operating Limits Report This Core Operating Limits Report (COLR) has been prepared in accordance with the
MCEI-0400-198 Page 5 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 1.0 Core Operating Limits Report This Core Operating Limits Report (COLR) has been prepared in accordance with the
* requirements of Technical Specification 5.6.5. The Technical Specifications that reference the COLR are summarized below.
* requirements of Technical Specification 5.6.5. The Technical Specifications that reference the COLR are summarized below.
TS                                                                                   COLR        El Number                 Technical Specifications            COLR Parameter            Section      Page 1.1         Requirements for Operational Mode 6    Mode 6 Definition                2.1         9 2.1.1         Reactor Core Safety Limits              RCS Temperature and              2.2        9 Pressure Safety Limits 3.1.1        Shutdown Margin                        Shutdown Margin                  2.3         9 3.1.3        Moderator Temperature Coefficient        MTC                              2.4       11 3.1.4        Rod Group Alignment Limits              Shutdown Margin                  2.3        9 3.1.5         Shutdown Bank Insertion Limits         Shutdown Margin                   2.3        9 3.1.5        Shutdown Bank Insertion Limits           Shutdown Bank Insertion           2.5        11 Limit 3.1.6         Control Bank Insertion Limits           Shutdown Margin                  2.3        9 3.1.6         Control Bank Insertion Limits           Control Bank Insertion            2.6        11 Limit 3.1.8         Physics Tests Exceptions               Shutdown Margin                    2.3        9 3.2.1         Heat Flux Hot Channel Factor           Fq, AFD, OTAT and                  2.7        15 Penalty Factors 3.2.2         Nuclear Enthalpy Rise Hot Channel       FAH, AFD and                      2.8        20 Factor                                 Penalty Factors 3.2.3         Axial Flux Difference                   AFD                              2.9        21 3.3.1         Reactor Trip System Instrumentation     OTAT and OPAT                    2.10        24 Constants 3.4.1         RCS Pressure, Temperature, and Flow     RCS Pressure,                    2.11        26 DNB limits                             Temperature and Flow 3.5.1         Accumulators                           Max and Min Boron Conc.          2.12        26 3.5.4         Refueling Water Storage Tank           Max and Min Boron Cone.          2.13        26 3.7.14         Spent Fuel Pool Boron Concentration     Min Boron Concentration          2.14        28 3.9.1         Refueling Operations - Boron           Min Boron Concentration          2.15        28 Concentration 5.6.5       Core Operating Limits Report (COLR)     Analytical Methods               1.1         6 The Selected Licensee Commitments that reference this report are listed below:
TS Number 1.1 2.1.1 3.1.1 3.1.3 3.1.4 3.1.5 3.1.5 Technical Specifications Requirements for Operational Mode 6 Reactor Core Safety Limits Shutdown Margin Moderator Temperature Coefficient Rod Group Alignment Limits Shutdown Bank Insertion Limits Shutdown Bank Insertion Limits 3.1.6 Control Bank Insertion Limits 3.1.6 Control Bank Insertion Limits 3.1.8 Physics Tests Exceptions 3.2.1 Heat Flux Hot Channel Factor 3.2.2 Nuclear Enthalpy Rise Hot Channel Factor 3.2.3 Axial Flux Difference 3.3.1 Reactor Trip System Instrumentation 3.4.1 RCS Pressure, Temperature, and Flow DNB limits 3.5.1 Accumulators 3.5.4 Refueling Water Storage Tank 3.7.14 Spent Fuel Pool Boron Concentration 3.9.1 Refueling Operations - Boron Concentration 5.6.5 Core Operating Limits Report (COLR)
COLR            El SLC Number         Selected Licensing Commitment         COLR Parameter               Section       Page 16.9.14           Borated Water Source - Shutdown   Borated Water Volume and           2.16          29, I     Conc. for BAT/RWST 16.9.11          Borated Water Source - Operating   Borated Water Volume and           2.17          30 Conc. for BAT/RWST
COLR Parameter Mode 6 Definition RCS Temperature and Pressure Safety Limits Shutdown Margin MTC Shutdown Margin Shutdown Margin Shutdown Bank Insertion Limit Shutdown Margin Control Bank Insertion Limit Shutdown Margin Fq, AFD, OTAT and Penalty Factors FAH, AFD and Penalty Factors AFD OTAT and OPAT Constants RCS Pressure, Temperature and Flow Max and Min Boron Conc.
Max and Min Boron Cone.
Min Boron Concentration Min Boron Concentration Analytical Methods COLR Section 2.1 2.2 2.3 2.4 2.3 2.3 2.5 2.3 2.6 2.3 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 1.1 El Page 9
9 9
11 9
9 11 9
11 9
15 20 21 24 26 26 26 28 28 6
The Selected Licensee Commitments that reference this report are listed below:
SLC Number Selected Licensing Commitment COLR Parameter COLR Section 2.16 El Page 29, 16.9.14 16.9.11 Borated Water Source - Shutdown Borated Water Volume and I
Conc. for BAT/RWST Borated Water Source - Operating Borated Water Volume and Conc. for BAT/RWST 2.17 30


MCEI-0400-198 Page 6 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 1.1     Analytical Methods The analytical methods used to determine core operating limits for parameters identified in Technical Specifications and previously reviewed and approved by the NRC, as specified in Technical Specification 5.6.5, are as follows.
MCEI-0400-198 Page 6 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 1.1 Analytical Methods The analytical methods used to determine core operating limits for parameters identified in Technical Specifications and previously reviewed and approved by the NRC, as specified in Technical Specification 5.6.5, are as follows.
: 1. WCAP-9272-P-A, "'WestinghouseReload Safety Evaluation Methodology," &VProprietary).
: 1. WCAP-9272-P-A, "'Westinghouse Reload Safety Evaluation Methodology," &V Proprietary).
Revision 0 Report Date: July 1985 Not Used for M2C19
Revision 0 Report Date: July 1985 Not Used for M2C19
: 2. WCAP-10054-P-A, "Westinghouse Small Break ECCS Evaluation Model using the NOTRUMP Code, "1 Proprietary).
: 2. WCAP-10054-P-A, "Westinghouse Small Break ECCS Evaluation Model using the NOTRUMP Code, "1 Proprietary).
Revision 0 Report Date: August 1985
Revision 0 Report Date: August 1985
: 3. WCAP-10266-P-A, 'The 1981 Version Of Westinghouse Evaluation Model Using BASH Code",
: 3. WCAP-10266-P-A, 'The 1981 Version Of Westinghouse Evaluation Model Using BASH Code",
        & Proprietary).
& Proprietary).
Revision 2 Report Date: March 1987 Not Used for M2C19
Revision 2 Report Date: March 1987 Not Used for M2C19
: 4. WCAP-12945-P-A, Volume 1 and Volumes 2-5, "Code Qualification Document for Best-Estimate Loss of Coolant Analysis," & Proprietary).
: 4. WCAP-12945-P-A, Volume 1 and Volumes 2-5, "Code Qualification Document for Best-Estimate Loss of Coolant Analysis," & Proprietary).
Line 82: Line 114:
Revision 3 SER Date: September 24, 2003
Revision 3 SER Date: September 24, 2003


MCEI-0400-198 Page 7 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 1.1       Analytical Methods (continued)
MCEI-0400-198 Page 7 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 1.1 Analytical Methods (continued)
: 7. DPC-NE-3001PA, "Multidimensional Reactor Transients and Safety Analysis Physics Parameter Methodology," (DPC Proprietary).
: 7. DPC-NE-3001PA, "Multidimensional Reactor Transients and Safety Analysis Physics Parameter Methodology," (DPC Proprietary).
Revision 0 Report Date: November 15, 1991 (Republished December 2000)
Revision 0 Report Date: November 15, 1991 (Republished December 2000)
Line 98: Line 130:
Revision 1 SER Date: April 26, 1996 Not Used for M2C19
Revision 1 SER Date: April 26, 1996 Not Used for M2C19


MCEI-0400-198 Page 8 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 1.1     Analytical Methods (continued)
MCEI-0400-198 Page 8 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 1.1 Analytical Methods (continued)
: 14. DPC-NF-2010A, "Duke Power Company McGuire Nuclear Station Catawba Nuclear Station Nuclear Physics Methodology for Reload Design."
: 14. DPC-NF-2010A, "Duke Power Company McGuire Nuclear Station Catawba Nuclear Station Nuclear Physics Methodology for Reload Design."
Revision 2 SER Date: June 24, 2003
Revision 2 SER Date: June 24, 2003
Line 107: Line 139:
Revision 0 SER Date: August 20, 2004
Revision 0 SER Date: August 20, 2004


MCEI-0400-198 Page 9 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.0 Operating Limits The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using the NRC approved methodologies specified in Section 1.1.
MCEI-0400-198 Page 9 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.0 Operating Limits The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using the NRC approved methodologies specified in Section 1.1.
2.1   Requirements for Operational Mode 6 The following condition is required for operational mode 6.
2.1 Requirements for Operational Mode 6 The following condition is required for operational mode 6.
2.1.1 The Reactivity Condition requirement for operational mode 6 is that kff must be less than, or equal to 0.95.
2.1.1 The Reactivity Condition requirement for operational mode 6 is that kff must be less than, or equal to 0.95.
2.2   Reactor Core Safety Limits (TS 2.1.1) 2.2.1   The Reactor Core Safety Limits are shown inFigure 1.
2.2 Reactor Core Safety Limits (TS 2.1.1) 2.2.1 The Reactor Core Safety Limits are shown inFigure 1.
2.3 Shutdown Margin - SDM (TS 3.1.1, TS 3.1.4, TS 3.1.5, TS 3.1.6 and TS 3.1.8) 2.3.1 ForTS 3.1.1, SDM shall be> 1.3% AK/K in mode 2 with k-eff < 1.0 and in modes 3 and 4.
2.3 Shutdown Margin - SDM (TS 3.1.1, TS 3.1.4, TS 3.1.5, TS 3.1.6 and TS 3.1.8) 2.3.1 ForTS 3.1.1, SDM shall be> 1.3% AK/K in mode 2 with k-eff < 1.0 and in modes 3 and 4.
2.3.2   ForTS 3.1.1, SDM shall be> 1.0% AK/K in mode 5.
2.3.2 ForTS 3.1.1, SDM shall be> 1.0% AK/K in mode 5.
2.3.3   ForTS 3.1.4, SDM shall be> 1.3% AK/K in modes 1 and 2.            ,.
2.3.3 ForTS 3.1.4, SDM shall be> 1.3% AK/K in modes 1 and 2.
2.3.4   For TS 3.1.5, SDM shall be > 1.3% AK/K in mode 1 and mode 2 with any control bank not fully inserted.
2.3.4 For TS 3.1.5, SDM shall be > 1.3% AK/K in mode 1 and mode 2 with any control bank not fully inserted.
2.3.5   ForTS 3.1.6, SDM shall be > 1.3% AK/K in mode 1 and mode 2 with K-eff> 1.0.
2.3.5 ForTS 3.1.6, SDM shall be > 1.3% AK/K in mode 1 and mode 2 with K-eff> 1.0.
2.3.6   For TS 3.1.8, SDM shall be > 1.3% AK/K in mode 2 during Physics Testing.
2.3.6 For TS 3.1.8, SDM shall be > 1.3% AK/K in mode 2 during Physics Testing.


MCEI-0400-198 Page 10 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Figure 1 Reactor Core Safety Limits Four Loops in Operation 670 DO NOT OPERATE IN THIS AREA 660 650 640 630 610                           _    2400 PSa ACCEPTABLE 5808 0.0   0.2         0.4         0.6           0.8       1.0         1.2 Fraction of Rated Thermal Power
MCEI-0400-198 Page 10 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Figure 1 Reactor Core Safety Limits Four Loops in Operation 670 DO NOT OPERATE IN THIS AREA 660 650 640 610 2400 PSa 630 ACCEPTABLE 5808 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Fraction of Rated Thermal Power


MCEI-0400-198 Page 11 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.4 Moderator Temperature Coefficient - MTC (TS 3.1.3) 2.4.1   The Moderator Temperature Coefficient (MTC) Limits are:
MCEI-0400-198 Page 11 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.4 Moderator Temperature Coefficient - MTC (TS 3.1.3) 2.4.1 The Moderator Temperature Coefficient (MTC) Limits are:
The MTC shall be less positive than the upper limits shown in Figure 2. The BOC, ARO, H1ZP MTC shall be less positive than 0.7E-04 AK/K/&deg;F.
The MTC shall be less positive than the upper limits shown in Figure 2. The BOC, ARO, H1ZP MTC shall be less positive than 0.7E-04 AK/K/&deg;F.
The EOC, ARO, RTP MTC shall be less negative than the -4.3E-04 AKIK/VF lower MTC limit.
The EOC, ARO, RTP MTC shall be less negative than the -4.3E-04 AKIK/VF lower MTC limit.
2.4.2 The 300 ppm MTC Surveillance Limit is:
2.4.2 The 300 ppm MTC Surveillance Limit is:
The measured 300 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to -3.65E-04 AK/K/ 0 F.
The measured 300 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to -3.65E-04 AK/K/0F.
2.4.3 The 60 PPM MTC Surveillance Limit is:
2.4.3 The 60 PPM MTC Surveillance Limit is:
The 60 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to
The 60 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to
            -4.125E-04 AK/K/ 0 F.
-4.125E-04 AK/K/0F.
Where, BOC = Beginning of Cycle (Bumup corresponding to the most positive MTC)
: Where, BOC = Beginning of Cycle (Bumup corresponding to the most positive MTC)
EOC = End of Cycle ARO = All Rods Out HZP = Hot Zero Power RTP = Rated Thermal Power PPM = Parts per million (Boron) 2.5 Shutdown Bank Insertion Limit (TS 3.1.5) 2.5.1 Each shutdown bank shall be withdrawn to at least 222 steps. Shutdown banks are withdrawn in sequence and with no overlap.
EOC = End of Cycle ARO = All Rods Out HZP = Hot Zero Power RTP = Rated Thermal Power PPM = Parts per million (Boron) 2.5 Shutdown Bank Insertion Limit (TS 3.1.5) 2.5.1 Each shutdown bank shall be withdrawn to at least 222 steps. Shutdown banks are withdrawn in sequence and with no overlap.
2.6 Control Bank Insertion Limits (TS 3.1.6) 2.6.1 Control banks shall be within the insertion, sequence, and overlap limits shown in Figure 3. Specific control bank withdrawal and overlap limits as a function of the fully withdrawn position are shown in Table 1.
2.6 Control Bank Insertion Limits (TS 3.1.6) 2.6.1 Control banks shall be within the insertion, sequence, and overlap limits shown in Figure 3. Specific control bank withdrawal and overlap limits as a function of the fully withdrawn position are shown in Table 1.


MCEI-0400-198 Page 12 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Figure 2 Moderator Temperature Coefficient Upper Limit Versus Power Level 1.0 0.9 0.8 Z
MCEI-0400-198 Page 12 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Figure 2 Moderator Temperature Coefficient Upper Limit Versus Power Level 1.0 Z
a-i      0.7 BCu      0.6 0.5 0
B a-i Cu a-i0 0
a-i      0.4 0
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0
0.3 0.2 0.1 0.0 0   10   20   30     40   50     60     70 80     90   100 Percent of Rated Thermal Power NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits.
10 20 30 40 50 60 70 80 90 100 Percent of Rated Thermal Power NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits.
Refer to OP/2/A/6100/22 Unit 2 Data Book for details.
Refer to OP/2/A/6100/22 Unit 2 Data Book for details.


MCEI-0400-198 Page 13 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Figure 3 Control Bank Insertion Limits Versus Percent Rated Thermal Power Fully Withdrawn 231 220 200
MCEI-0400-198 Page 13 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Figure 3 Control Bank Insertion Limits Versus Percent Rated Thermal Power Fully Withdrawn 231 220 200
*: 180 160 140 C
*: 180 160 140 120 C
120 100 80 60 PC 40 20 0
100 80 60 PC 40 20 0
0       10       20     30     40       50     60     70 80     90     100 Percent of Rated Thermal Power The Rod Insertion Limits (RIL) for Control Bank D (CD), Control Bank C (CC), and Control Bank B (CB) can be calculated by:
0 10 20 30 40 50 60 70 80 90 100 Percent of Rated Thermal Power The Rod Insertion Limits (RIL) for Control Bank D (CD), Control Bank C (CC), and Control Bank B (CB) can be calculated by:
Bank CD RIL = 2.3(P) - 69 {30*_< P*_< 100}
Bank CD RIL = 2.3(P) - 69 {30*_< P*_< 100}
Bank CC RIL = 2.3(P) + 47 {0*< P5   _80}
Bank CC RIL = 2.3(P) + 47 {0*< P5
_80}
Bank CB RIL = 2.3(P) + 163 {0<* P < 29.6}
Bank CB RIL = 2.3(P) + 163 {0<* P < 29.6}
where P = %Rated Thermal Power NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits.
where P = %Rated Thermal Power NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits.
Refer to OP/2/A/6100/22 Unit 2 Data Book for details.
Refer to OP/2/A/6100/22 Unit 2 Data Book for details.


MCEI-0400-1498 Page 14 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Table 1 RCCA Withdrawal Steps and Sequence Fully WVithdrawn at 222 Steps                         Fully Withdrawn at 223 Steps Control Control Control Control                       Control       Control     Control  Control Bank A Bank B Bank C Bank D                          Bank A       Bank B     Bank C   Bank D 0 Start         0           0         0              0 Start          0          0        0 116       0 Start         0         0                116        0Start          0        0 222 Stop         106         0         0            223 Stop          107          0        0 222         116     0 Start       0                223          116      0 Start        0 222     222 Stop         106       0                223      223 Stop        107        0 222         222         116    0 Start              223          223        116     0 Start 222         222   .222 Stop     106               223          223    223 Stop      107 Fully Withdrawn at 224 Steps                           Fully Withdrawn at 225 Steps Control Control Control Control                     Control       Control     Control    Control BankA BankB . BankC BankD                           Bank A         Bank B     Bank C     Bank D 0 Start         0           0       0             0 Start           0           0         0.
MCEI-0400-1498 Page 14 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Table 1 RCCA Withdrawal Steps and Sequence Fully WVithdrawn at 222 Steps Control Control Control Control Bank A Bank B Bank C Bank D 0 Start 0
116       0 Start         0       0                 116       0 Start         0         0 2 24 Stop       108           0       0           225 Stop           109          0         0 224         116      0 Start     0             . 225            116     0 Start       0 224      224 Stop        108        0               225        225 Stop       109         0 224        224          116   0 Start             225           225         116     0 Start 224        224      224 Stop    108                225           225     225 Stop     109 Fully Withdrawn at 226 Steps                           Fully Withdrawn at 227 Steps Control ' Control Control Control                    Control        Control    Control    Control Bank A Bank.B Bank C Bank D                         BankA          BankB      BankC      BankD 0 Start         0           0         0              0 Start          0          0        0 116       0 Start         0         0                116        0 Start        0        0 226 Stop       110           0       0            227Stop            111          0        0 226         116       0 Start     0                227          116      0 Start      0 226 - 226 Stop           110       0                227      227Stop        111        0 226         226         116    0 Start            227            227        116     0 Start 226         226     226 Stop     110               227            227    227Stop        111 Fully Withdrawn at 228 Steps                           Fully Withdrawn at 229 Steps Control Control Control Control                     Control       Control    Control    Control Bank A Bank B Bank C Bank D                         Bank A         BankB . Bank C       Bank D 0 Start         0           0       0             0 Start           0           0         0.
0 0
116       0 Start         0         0               116         0 Start       0         0 228 Stop        112          0         0           229 Stop          113          0         0 228          116     0 Start       0               229          116     0 Start       0 228      228 Stop        112        0               229       229Stop        113       0 228        228          116   0 Start             229           229         116     0 Start 228        228    228 Stop      112                229           229     229 Stop     113 Fully Withdrawn at 230 Steps                          Fully Withdrawn at 231 Steps Control Control Control Control                     Control      Control    Control    Control Bank A Bank B Bank C Bank D                          Bank A       Bank B     Bank C     Bank D oStart          0          0        0              0 Start           0           0         0 116       0 Start        0        0                116        0Start         0         0 230 Stop        114          0        0            231 Stop           115         0         0 230          116      0 Start      0                231           116     0 Start       0 230      230"Stop      114        0                231       231 Stop       115         0 230          230        116    0 Start            231           231         116     0 Start 230          230    230 Stop      114              231           231     231 Stop*     115
116 0 Start 0
0 222 Stop 106 0
0 222 116 0 Start 0
222 222 Stop 106 0
222 222 116 0 Start 222 222  
.222 Stop 106 Fully Withdrawn at 224 Steps Control Control Control Control BankA BankB. BankC BankD Fully Withdrawn at 223 Steps Control Control Control Control Bank A Bank B Bank C Bank D 0 Start 0
0 0
116 0Start 0
0 223 Stop 107 0
0 223 116 0 Start 0
223 223 Stop 107 0
223 223 116 0 Start 223 223 223 Stop 107 0 Start 0
0 0
116 0 Start 0
0 2 24 Stop 108 0
0 224 116 0 Start 0
224 224 Stop 108 0
224 224 116 0 Start 224 224 224 Stop 108 Fully Withdrawn at 225 Steps Control Control Control Control Bank A Bank B Bank C Bank D 0 Start 0
0 0.
116 0 Start 0
0 225 Stop 109 0
0
. 225 116 0 Start 0
225 225 Stop 109 0
225 225 116 0 Start 225 225 225 Stop 109 Fully Withdrawn at 227 Steps Control Control Control Control BankA BankB BankC BankD Fully Withdrawn at 226 Steps Control ' Control Control Control Bank A Bank.B Bank C Bank D 0 Start 0
0 0
116 0 Start 0
0 226 Stop 110 0
0 226 116 0 Start 0
226 -
226 Stop 110 0
226 226 116 0 Start 226 226 226 Stop 110 Fully Withdrawn at 228 Steps Control Control Control Control Bank A Bank B Bank C Bank D 0 Start 0
0 0
116 0 Start 0
0 228 Stop 112 0
0 228 116 0 Start 0
228 228 Stop 112 0
228 228 116 0 Start 228 228 228 Stop 112 Fully Withdrawn at 230 Steps Control Control Control Control Bank A Bank B Bank C Bank D oStart 0
0 0
116 0 Start 0
0 230 Stop 114 0
0 230 116 0 Start 0
230 230"Stop 114 0
230 230 116 0 Start 230 230 230 Stop 114 0 Start 0
0 116 0 Start 0
0 0
227Stop 111 0
0 227 116 0 Start 0
227 227Stop 111 0
227 227 116 0 Start 227 227 227Stop 111 Fully Withdrawn at 229 Steps Control Control Control Control Bank A BankB. Bank C Bank D 0 Start 0
0 0.
116 0 Start 0
0 229 Stop 113 0
0 229 116 0 Start 0
229 229Stop 113 0
229 229 116 0 Start 229 229 229 Stop 113 Fully Withdrawn at 231 Steps Control Control Control Control Bank A Bank B Bank C Bank D 0 Start 0
0 0
116 0Start 0
0 231 Stop 115 0
0 231 116 0 Start 0
231 231 Stop 115 0
231 231 116 0 Start 231 231 231 Stop*
115


MCEI-0400-198 Page 15 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.7 Heat Flux Hot Channel Factor - FQ(X,Y,Z) (TS 3.2.1) 2.7.1   FQ(X,Y,Z) steady-state limits are defined by the following relationships:
MCEI-0400-198 Page 15 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.7 Heat Flux Hot Channel Factor - FQ(X,Y,Z) (TS 3.2.1) 2.7.1 FQ(X,Y,Z) steady-state limits are defined by the following relationships:
F RTP *K(Z)/P         for P > 0.5 F~Rr *K(Z)/0.5         for P < 0.5 where, P = (Thermal Power)/(Rated Power)
F RTP *K(Z)/P for P > 0.5 F~Rr *K(Z)/0.5 for P < 0.5
: where, P = (Thermal Power)/(Rated Power)
Note: The measured FQ(X,Y,Z) shall be increased by 3% to account for manufacturing tolerances and 5% to account for measurement uncertainty when comparing against the LCO limits. The manufacturing tolerance and measurement uncertainty are implicitly included in the FQ surveillance limits as defined in COLR Sections 2.7.5 and 2.7.6.
Note: The measured FQ(X,Y,Z) shall be increased by 3% to account for manufacturing tolerances and 5% to account for measurement uncertainty when comparing against the LCO limits. The manufacturing tolerance and measurement uncertainty are implicitly included in the FQ surveillance limits as defined in COLR Sections 2.7.5 and 2.7.6.
2.7.2   F" =2.60 x K(BU) 2.7.3   K(Z) is the normalized FQ(X,YZ) as a function of core height. The K(Z) function for Westinghouse RFA fuel is provided in Figure 4.
2.7.2 F" =2.60 x K(BU) 2.7.3 K(Z) is the normalized FQ(X,YZ) as a function of core height. The K(Z) function for Westinghouse RFA fuel is provided in Figure 4.
2.7.4   K(BU) is the normalized FQ(X,YZ) as a function of burnup. K(BU) for Westinghouse RFA fuel is 1.0 for all burnups.
2.7.4 K(BU) is the normalized FQ(X,YZ) as a function of burnup. K(BU) for Westinghouse RFA fuel is 1.0 for all burnups.
The following parameters are required for core monitoring per the Surveillance Requirements of Technical Specification 3.2.1:
The following parameters are required for core monitoring per the Surveillance Requirements of Technical Specification 3.2.1:
FQ(X,YZ)
FQ(X,YZ)
* MQ(X,YZ)
* MQ(X,YZ)
    .2.7.5 F(XYZ)-           UMT
.2.7.5 F(XYZ)-
UMT
* MT
* MT
* TILT where:
* TILT where:
FL (X,Y,Z)OP=     Cycle dependent maximum allowable design peaking factor that ensures the FQ(X,Y,Z) LOCA limit will be preserved for operation within the LCO limits. F* (X,Y,Z)OP includes allowances for calculation and measurement uncertainties.
FL (X,Y,Z)OP=
F, (X,Y,Z) =     Design power distribution for FQ. Fo' (X,Y,Z) is provided in Appendix Table A-1 for normal operating conditions, and in
Cycle dependent maximum allowable design peaking factor that ensures the FQ(X,Y,Z) LOCA limit will be preserved for operation within the LCO limits. F* (X,Y,Z)OP includes allowances for calculation and measurement uncertainties.
F, (X,Y,Z) =
Design power distribution for FQ. Fo' (X,Y,Z) is provided in Appendix Table A-1 for normal operating conditions, and in


MCEI-0400-198 Page 16 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Appendix Table A-4 for power escalation testing during initial startup operation.
MCEI-0400-198 Page 16 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Appendix Table A-4 for power escalation testing during initial startup operation.
MQ(XYZ) =       Margin remaining in core location X,Y,Z to the LOCA limit in the transient power distribution. MQ(X,Y,Z) is provided in Appendix Table A-1 for normal operating conditions, and in Appendix Table A-4 for power escalation testing during initial startup operation.
MQ(XYZ)  
=
Margin remaining in core location X,Y,Z to the LOCA limit in the transient power distribution. MQ(X,Y,Z) is provided in Appendix Table A-1 for normal operating conditions, and in Appendix Table A-4 for power escalation testing during initial startup operation.
UMT = Total Peak Measurement Uncertainty. (UMT = 1.05)
UMT = Total Peak Measurement Uncertainty. (UMT = 1.05)
MT = Engineering Hot Channel Factor. (MT = 1.03)
MT = Engineering Hot Channel Factor. (MT = 1.03)
TILT = Peaking penalty that accounts for the peaking increase from an allowable quadrant power tilt ratio of 1.02. (TILT = 1.035)
TILT = Peaking penalty that accounts for the peaking increase from an allowable quadrant power tilt ratio of 1.02. (TILT = 1.035) 2.7.6 FQ(X,Y,Z)RPS =
FQ(X,Y,Z)
FQ(X,Y,Z)
* Mc(X,Y,Z) 2.7.6 FQ(X,Y,Z)RPS =
* Mc(X,Y,Z)
UMT
UMT
* MT
* MT
* TILT where:
* TILT where:
Fb(X,Y,Z)"s =   Cycle dependent maximum allowable design peaking factor that ensures the FQ(X,YZ) Centerline Fuel Melt (CFM) limit will be preserved for operation within the LCO limits.
Fb(X,Y,Z)"s =
F*Q(X,YZ) =
Mc(X,Y,Z) =
Cycle dependent maximum allowable design peaking factor that ensures the FQ(X,YZ) Centerline Fuel Melt (CFM) limit will be preserved for operation within the LCO limits.
FQ(X,Y,Z)RPs includes allowances for calculation and measurement uncertainties.
FQ(X,Y,Z)RPs includes allowances for calculation and measurement uncertainties.
F*Q(X,YZ)  =  Design power distributions for FQ. FQ(X,YZ) is provided in Appendix Table A-1 for normal operating conditions, and in Appendix Table A-4 for power escalation testing during initial startup operation.
Design power distributions for FQ. FQ(X,YZ) is provided in Appendix Table A-1 for normal operating conditions, and in Appendix Table A-4 for power escalation testing during initial startup operation.
Mc(X,Y,Z) = Margin remaining to the CFM limit in core location X,Y,Z in the transient power distribution. Mc(X,Y,Z) is provided in Appendix Table A-2 for normal operating conditions, and in Appendix Table A-5 for power escalation testing during initial startup operation.
Margin remaining to the CFM limit in core location X,Y,Z in the transient power distribution. Mc(X,Y,Z) is provided in Appendix Table A-2 for normal operating conditions, and in Appendix Table A-5 for power escalation testing during initial startup operation.


MCEI-:0400-198 Page 17 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report UMT = Total Peak Measurement Uncertainty (UMT = 1.05)
MCEI-:0400-198 Page 17 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report UMT = Total Peak Measurement Uncertainty (UMT = 1.05)
MT = Engineering Hot Channel Factor (MT = 1.03)
MT = Engineering Hot Channel Factor (MT = 1.03)
TILT = Peaking penalty that accounts for the peaking increase from an allowable quadrant power tilt ratio of 1.02. (TILT = 1.035) 2.7.7 KSLOPE = 0.0725 where:
TILT = Peaking penalty that accounts for the peaking increase from an allowable quadrant power tilt ratio of 1.02. (TILT = 1.035) 2.7.7 KSLOPE = 0.0725 where:
KSLOPEis the adjustment to the K1 value from the OTAT trip setpoint required to compensate for each 1% that F m(X,YZ) exceeds FL (X,Y,Z)RPs.
KSLOPEis the adjustment to the K1 value from the OTAT trip setpoint required to compensate for each 1% that F m (X,YZ) exceeds FL (X,Y,Z)RPs.
2.7.8 FQ(X,Y,Z) penalty factors for Technical Specification Surveillance's 3.2.1.2 and 3.2.1.3 are provided in Table 2.
2.7.8 FQ(X,Y,Z) penalty factors for Technical Specification Surveillance's 3.2.1.2 and 3.2.1.3 are provided in Table 2.


MCEI-0400-198 Page 18 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Figure 4 K(Z), Normalized FQ(XY,Z) as a Function of Core Height for Westinghouse RFA Fuel 1.200 (0.0, 1.00)         (4.0, 1.00) 1.6000 (4.0,09615)(12.0,         0..9615) 0.800-0.600 0.400           Core Height (ft)       K(Z) 0.0         1.000
MCEI-0400-198 Page 18 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Figure 4 K(Z), Normalized FQ(XY,Z) as a Function of Core Height for Westinghouse RFA Fuel 1.200 (0.0, 1.00)
                      <4         1.000 0.200                 >4         0.9615 12.0       0.9615 0.000 -                                 I         I             I 0.00             2.00           4.00       6.00           8.00 10.00         12.00 Core Height (ft)
(4.0, 1.00) 1.6000 (4.0,09615)(12.0, 0..9615) 0.800-0.600 0.400 Core Height (ft)
K(Z) 0.0 1.000
<4 1.000 0.200  
>4 0.9615 12.0 0.9615 0.000 -
I I
I 0.00 2.00 4.00 6.00 8.00 10.00 12.00 Core Height (ft)


MCEI-0400-198 Page 19 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Table 2 FQ(X,Y,Z) and FAH(XY) Penalty Factors For Technical Specification Surveillance's 3.2.1.2,3.2.1.3 and 3.2.2.2 Burnup                   FQ(X,YZ)                  FAH(X,Y,Z)
MCEI-0400-198 Page 19 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Table 2 FQ(X,Y,Z) and FAH(XY) Penalty Factors For Technical Specification Surveillance's 3.2.1.2,3.2.1.3 and 3.2.2.2 Burnup (EFPD) 0 4
(EFPD)              Penalty Factor (%)          Penalty Factor (%)
12 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 445 470 488 498 513 FQ(X,YZ)
0                        2.00                     2.00 4                        2.00                     2.00 12                        2.00                     2.00 25                        2.00                     2.00 50                        2.00                     2.00 75                        2.00                       2.00 100                        2.00                       2.00 125                        2.00                       2.00 150                        2.00                       2.00 175                        2.00                       2.00 200                        2.00                       2.00 225                        2.00                     2.00 250                        2.00                     2.00 275                        2.00                     2.00 300                        2.00                     2.00 325                        2.00                     2.00 350                        2.00                     2.00 375                        2.00                     2.00 400                        2.00                     2.00 425                        2.00                     2.00 445                        2.00                     2.00 470                        2.00                     2.00 488                        2.00                     2.00 498                        2.00                     2.00 513                        2.00                     2.00 Note: Linear interpolation is adequate for intermediate cycle bumups. All cycle burnups outside of the range of the table shall use a 2% penalty factor for both FQ(X,Y,Z) and FAH(X,Y) for compliance with the Technical Specification Surveillances 3.2.1.2, 3.2.1.3 and 3.2.2.2.
Penalty Factor (%)
2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 FAH(X,Y,Z)
Penalty Factor (%)
2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Note: Linear interpolation is adequate for intermediate cycle bumups. All cycle burnups outside of the range of the table shall use a 2% penalty factor for both FQ(X,Y,Z) and FAH(X,Y) for compliance with the Technical Specification Surveillances 3.2.1.2, 3.2.1.3 and 3.2.2.2.


MCEI-0400-198 Page 20 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.8 Nuclear Enthalpy Rise Hot Channel Factor - FAH(X,Y) (TS 3.2.2)
MCEI-0400-198 Page 20 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.8 Nuclear Enthalpy Rise Hot Channel Factor - FAH(X,Y) (TS 3.2.2)
The FAH steady-state limits referred to in Technical Specification 3.2.2 is defined by the following relationship.
The FAH steady-state limits referred to in Technical Specification 3.2.2 is defined by the following relationship.
2.8.1   FL(xY) co                 (XY)     .0 +         (1MARP
2.8.1 FL(xY) co (1MARP (XY)  
                                                                .0- P)]
.0 +  
.0- P)]
r where:
r where:
FL   ( Y)LCO is defined as the steady-state, maximum allowed radial peak.
FL ( Y) LCO is defined as the steady-state, maximum allowed radial peak.
FL (X, Y)"Lo includes allowances for calculation/measurement uncertainty.
FL (X, Y)"Lo includes allowances for calculation/measurement uncertainty.
MARP(X,Y) =         Cycle-specific operating limit Maximum Allowable Radial Peaks. MARP(X,Y) radial peaking limits are provided in Table 3.
MARP(X,Y) =
Thermal Power Rated Thermal Power RRH =Thermal Power reduction required to compensate for each 1% that the measured radial peak, F* (X,Y), exceeds its limit. RRH also is used to scale the MARP limits as a function of power per the [FL (X,Y)]Lco equation. (RRH = 3.34 (0.0 < P < 1.0))
Cycle-specific operating limit Maximum Allowable Radial Peaks. MARP(X,Y) radial peaking limits are provided in Table 3.
Thermal Power Rated Thermal Power RRH =Thermal Power reduction required to compensate for each 1% that the measured radial peak, F* (X,Y), exceeds its limit. RRH also is used to scale the MARP limits as a function of power per the [FL (X, Y)]Lco equation. (RRH = 3.34 (0.0 < P < 1.0))
The following parameters are required for core monitoring per the Surveillance requirements of Technical Specification 3.2.2.
The following parameters are required for core monitoring per the Surveillance requirements of Technical Specification 3.2.2.
FL (X, Y) x M* (X, Y) 2.8.2  FL (X,Y)s' UMR xTILT where:
2.8.2 FL (X,Y)s' FL (X, Y) x M* (X, Y)
FkLH 1 (X,Y) SURV =     Cycle dependent maximum allowable design peaking factor that ensures the FAH(X,Y) limit will be preserved for operation'within the LCO limits. FL (X,Y)         includes allowances for calculation/measurement uncertainty.
UMR xTILT where:
LH SURV Fk1 (X,Y)
=
Cycle dependent maximum allowable design peaking factor that ensures the FAH(X,Y) limit will be preserved for operation'within the LCO limits. FL (X,Y) includes allowances for calculation/measurement uncertainty.


MCEI-0400-198 Page 21 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Lnimts Report 1' (X,Y) = Design radial power distribution for Fan. FD (X,Y) is provided in Appendix Table A-3 for normal operation, and in Appendix Table A-6 for power escalation testing during initial startup operation.
MCEI-0400-198 Page 21 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Lnimts Report 1'
MAH(X,Y)     = The   margin remaining in core location X,Y relative to the Operational DNB limits in the transient power distribution.
(X,Y) = Design radial power distribution for Fan. FD (X,Y) is provided in Appendix Table A-3 for normal operation, and in Appendix Table A-6 for power escalation testing during initial startup operation.
MAH(X,Y)
= The margin remaining in core location X,Y relative to the Operational DNB limits in the transient power distribution.
MMH(X,Y) is provided in Appendix Table A-3 for normal operation, and in Appendix Table A-6 for power escalation testing during initial startup operation.
MMH(X,Y) is provided in Appendix Table A-3 for normal operation, and in Appendix Table A-6 for power escalation testing during initial startup operation.
UMR = Uncertainty value for measured radial peaks. UMR is set to 1.0 since a factor of 1.04 is implicitly included in the variable MAi(X,Y).
UMR = Uncertainty value for measured radial peaks. UMR is set to 1.0 since a factor of 1.04 is implicitly included in the variable MAi(X,Y).
TILT = Peaking penalty that accounts for the peaking increase for an allowable quadrant power tilt ratio of 1.02 (TILT = 1.035).
TILT = Peaking penalty that accounts for the peaking increase for an allowable quadrant power tilt ratio of 1.02 (TILT = 1.035).
2.8.3 RRH =3.34 where:
2.8.3 RRH =3.34 where:
RRH = Thermal power reduction required to compensate for each 1% that the measured radial peak, Fmn (X,Y) exceeds its limit. (0 < P < 1.0) 2.8.4 TRH = 0.04 where:
RRH = Thermal power reduction required to compensate for each 1% that the measured radial peak, Fmn (X,Y) exceeds its limit. (0 < P < 1.0) 2.8.4 TRH = 0.04 where:
TRH = Reduction in the OTAT K1 setpoint required to compensate for each 1%
TRH = Reduction in the OTAT K1 setpoint required to compensate for each 1%
that the measured radial peak, F, (X,Y) exceeds its limit.
that the measured radial peak, F, (X,Y) exceeds its limit.
2.8.5 FAH (X,Y) penalty factors for Technical Specification Surveillance 3.2.2.2 are provided in Table 2.
2.8.5 FAH (X,Y) penalty factors for Technical Specification Surveillance 3.2.2.2 are provided in Table 2.
2.9 Axial Flux Difference - AFD (TS 3.2.3) 2.9.1 The Axial Flux Difference (AFD) Limits are provided in Figure 5.
2.9 Axial Flux Difference - AFD (TS 3.2.3) 2.9.1 The Axial Flux Difference (AFD) Limits are provided in Figure 5.


MCEI-0400-198 Page 22 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Table 3 Maximum Allowable Radial Peaks (MARPS)
MCEI-0400-198 Page 22 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Table 3 Maximum Allowable Radial Peaks (MARPS)
RFA MARPS Core                                   Axial Peak Ht (ft) 1.05   1.1   1.2   1.3   1.4     1.5     1.6   1.7 1.8   1.9   2.1. 3.0     3.25 0.12   1.809 1.855 1.949 1.995 1.974   2.107   2.050 2.009 1.933 1.863 1.778 1.315   1.246 1.2   1.810 1.854 1.940 1.995 1.974   2.107   2.019 1.978 1.901 1.831 1.785   1.301   1.224 2.4   1.809 1.853 1.931 1.978 1.974   2.074   1.995 1.952 1.876 1.805 1.732 1.463   1.462 3.6   1.810 1.851 1.920 1.964 1.974   2.050   1.966 1.926 1.852 1.786 1.700   1.468   1.387 4.8   1.810 1.851 1.906 1.945 1.974   2.006   1.944 1.923 1.854 1.784 1.671 1.299   1.258 6.0   1.810 1.851 1.892 1.921 1.946   1.934   1.880 1.863 1.802 1.747 1.671   1.329   1.260 7.2   1.807 1.844 1.872 1.893 1.887   1.872   1.809 1.787 1.733 1.681 1.598 1.287   1.220 8.4   1.807 1.832 1.845 1.857 1.816   1.795   1.736 1.709 1.654. 1.601 1.513   1.218   1.158 9.6   1.807 1.810 1.809 1.791 1.738   1.718   1.657 1.635 1.581 1.530 1.444 1.143   1.091.
RFA MARPS Core Axial Peak Ht (ft) 1.05 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.1.
10.8   1.798 1.787 1.761 1.716 1.654   1.632   1.574 1.557 1.509 1.462 1.383   1.101   1.047 11.4   1.789. 1.765 1.725 1.665 1.606   1.583   1.529 1.510 1.464 1.422 1.346 1.067   1.014
3.0 3.25 0.12 1.809 1.855 1.949 1.995 1.974 2.107 2.050 2.009 1.933 1.863 1.778 1.315 1.246 1.2 1.810 1.854 1.940 1.995 1.974 2.107 2.019 1.978 1.901 1.831 1.785 1.301 1.224 2.4 1.809 1.853 1.931 1.978 1.974 2.074 1.995 1.952 1.876 1.805 1.732 1.463 1.462 3.6 1.810 1.851 1.920 1.964 1.974 2.050 1.966 1.926 1.852 1.786 1.700 1.468 1.387 4.8 1.810 1.851 1.906 1.945 1.974 2.006 1.944 1.923 1.854 1.784 1.671 1.299 1.258 6.0 1.810 1.851 1.892 1.921 1.946 1.934 1.880 1.863 1.802 1.747 1.671 1.329 1.260 7.2 1.807 1.844 1.872 1.893 1.887 1.872 1.809 1.787 1.733 1.681 1.598 1.287 1.220 8.4 1.807 1.832 1.845 1.857 1.816 1.795 1.736 1.709 1.654.
1.601 1.513 1.218 1.158 9.6 1.807 1.810 1.809 1.791 1.738 1.718 1.657 1.635 1.581 1.530 1.444 1.143 1.091.
10.8 1.798 1.787 1.761 1.716 1.654 1.632 1.574 1.557 1.509 1.462 1.383 1.101 1.047 11.4 1.789.
1.765 1.725 1.665 1.606 1.583 1.529 1.510 1.464 1.422 1.346 1.067 1.014


MCEI-0400-198 Page 23 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Figure 5 Percent of Rated Thermal Power Versus Percent Axial Flux Difference Limits
MCEI-0400-198 Page 23 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Figure 5 Percent of Rated Thermal Power Versus Percent Axial Flux Difference Limits
(-18, 100)                       (+10, 100)
(-18, 100)
Unacceptable Operation                         90 Unacceptable Operation 80 Acceptable Operation C
(+10, 100)
70 60 50
C
(-36, 50)                                                     (+21,50)
..t Unacceptable Operation 90 80 Acceptable Operation 70 60 50
..t 40+
(-36, 50)
Unacceptable Operation
(+21,50) 40+
30+
30+
20-10+
20-10+
i           i -l                 i       a i                           i-
i i -l i
    -50     -40         -30       -20        -10          0        10       20       30       40       50 Axial Flux Difference (% Delta I)
a i
i -
-20
-10 0
-50  
-40  
-30 10 20 30 40 50 Axial Flux Difference (% Delta I)
NOTE: Compliance with Technical Specification 3.2.1 may require more restrictive AFD limits. Refer to OP/2/A/6100/22 Unit 2.Data Book for more details.
NOTE: Compliance with Technical Specification 3.2.1 may require more restrictive AFD limits. Refer to OP/2/A/6100/22 Unit 2.Data Book for more details.


MCEI-0400-198 Page 24 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.10     Reactor Trip System Instrumentation Setpoints (TS 3.3.1) Table 3.3.1-1 2.10.1 Overtemperature AT Setpoint Parameter Values Parameter                                     Value Nominal Tavg at RTP                                             T < 585.1 0 F Nominal RCS Operating Pressure                                 P"= 2235 psig Overtemperature AT reactor trip setpoint                       K1 < 1.1978 Overtemperature AT reactor trip heatup setpoint               K2 = 0.0334/&deg;F penalty coefficient Overtemperature AT reactor trip depressurization               K3 = 0.001601/psi setpoint penalty coefficient Time constants utilized in the lead-lag compensator           x1 > 8 sec.
MCEI-0400-198 Page 24 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.10 Reactor Trip System Instrumentation Setpoints (TS 3.3.1) Table 3.3.1-1 2.10.1 Overtemperature AT Setpoint Parameter Values Parameter Value Nominal Tavg at RTP Nominal RCS Operating Pressure Overtemperature AT reactor trip setpoint Overtemperature AT reactor trip heatup setpoint penalty coefficient Overtemperature AT reactor trip depressurization setpoint penalty coefficient Time constants utilized in the lead-lag compensator for AT Time constant utilized in the lag compensator for AT Time constants utilized in the lead-lag compensator for Tayg Time constant utilized in the measured Tavg lag compensator fl (AD) "positive" breakpoint fl (Al) "negative" breakpoint f1(Al) "positive" slope fl(AI) "negative" slope T < 585.10F P"= 2235 psig K1 < 1.1978 K2 = 0.0334/&deg;F K3 = 0.001601/psi x1 > 8 sec.
for AT                                                         r2 <3 sec.
r2 <3 sec.
Time constant utilized in the lag compensator for AT           T3 < 2 sec.
T3 < 2 sec.
Time constants utilized in the lead-lag compensator             T4_> 28 sec.
T4_> 28 sec.
for Tayg                                                       T5 < 4 sec.
T5 < 4 sec.
Time constant utilized in the measured Tavg lag                 r6<2 sec.
r6<2 sec.
compensator fl (AD) "positive" breakpoint                                 = 19.0. %Al fl (Al) "negative" breakpoint                                 = N/A*
= 19.0. %Al
f 1 (Al) "positive" slope                                     = 1.769 %AT 0 / %AI fl(AI) "negative" slope                                        = N/A*
= N/A*
The fl(Al) "negative" breakpoints and the fl(AI) "negative" slope are less restrictive than the OPAT f 2 (AI) negative breakpoint and slope. Therefore, during a transient which challenges the negative imbalance limits, the OPAT f 2 (AI) limits will result in a reactor trip before the OTAT fl(A1) limits are reached. This makes implementation of the OTAT fl(Al) negative breakpoint and slope unnecessary.
= 1.769 %AT 0/ %AI
= N/A*
The fl(Al) "negative" breakpoints and the fl(AI) "negative" slope are less restrictive than the OPAT f2 (AI) negative breakpoint and slope. Therefore, during a transient which challenges the negative imbalance limits, the OPAT f2(AI) limits will result in a reactor trip before the OTAT fl(A1) limits are reached. This makes implementation of the OTAT fl(Al) negative breakpoint and slope unnecessary.


MCEI-0400-198 Page 25 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.10.2 Overpower AT Setpoint Parameter Values Parameter                                   Value Nominal Tavg at RTP                       T" < 585.1&deg;F Overpower AT reactor trip setpoint        K4 < 1.0864 Overpower AT reactor trip Penalty          K5= 0.02/&deg;F for increasing Tavg K5 =0.0 for decreasing Tavg Overpower AT reactor trip heatup            K6= 0.001179/&deg;F for T > T" setpoint penalty coefficient                K6 ,= 0.0 for T < T" Time constants utilized in the lead-lag    T, > 8 sec.
MCEI-0400-198 Page 25 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.10.2 Overpower AT Setpoint Parameter Values Parameter Nominal Tavg at RTP Overpower AT reactor trip setpoint Overpower AT reactor trip Penalty Overpower AT reactor trip heatup setpoint penalty coefficient Time constants utilized in the lead-lag compensator for AT Time constant utilized in the lag compensator for AT Time constant utilized in the measured Tavg lag compensator Time constant utilized in the rate-lag controller for Tavg f2(AI) "positive" breakpoint f2(AI) "negative" breakpoint f2(AJ) "positive" slope f2(Al) "negative" slope Value T" < 585.1&deg;F K4 < 1.0864 K5= 0.02/&deg;F for increasing Tavg K5 =0.0 for decreasing Tavg K6= 0.001179/&deg;F for T > T" K6,= 0.0 for T < T" T, > 8 sec.
compensator for AT                        "2:2 3 sec.
"2:2 3 sec.
Time constant utilized in the lag          ,r:5   2 sec.
,r:5 2 sec.
compensator for AT Time constant utilized in the              "T6 _< 2 sec..
"T6 _< 2 sec..
measured Tavg lag compensator Time constant utilized in the rate-lag    T7&#x17d;5 sec.
T7&#x17d;5 sec.
controller for Tavg f2 (AI) "positive" breakpoint              =35.0 %AIl f2(AI) "negative" breakpoint              =-35.0 %AI f2(AJ) "positive" slope                    = 7.0 %AToI%AI f2 (Al) "negative" slope                  = 7.0 %AT/ %AI
=35.0 %AIl
=-35.0 %AI
= 7.0 %AToI%AI
= 7.0 %AT/ %AI


MCEI-0400-198 Page 26 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.11 RCS Pressure, Temperature and Flow Limits for DNB (TS 3.4.1) 2.11.1 The RCS pressure, temperature and flow limits for DNB are shown in Table 4.
MCEI-0400-198 Page 26 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.11 RCS Pressure, Temperature and Flow Limits for DNB (TS 3.4.1) 2.11.1 The RCS pressure, temperature and flow limits for DNB are shown in Table 4.
2.12 Accumulators (TS 3.5.1) 2.12.1 Boron concentration limits during modes 1 and 2, and mode 3 with RCS pressure
2.12 Accumulators (TS 3.5.1) 2.12.1 Boron concentration limits during modes 1 and 2, and mode 3 with RCS pressure
            >1000 psi:
>1000 psi:
Parameter                                 Limit Cold Leg Accumulator minimum boron concentration.             2,475 ppm Cold Leg Accumulator maximum boron concentration.             2,875 ppm 2.13 Refueling Water Storage Tank - RWST (TS 3.5.4) 2.13.1 Boron concentration limits during modes 1, 2, 3, and 4:
Parameter Cold Leg Accumulator minimum boron concentration.
Parameter                                 Limit Refueling Water Storage Tank minimum boron                     2,675 ppm concentration.
Cold Leg Accumulator maximum boron concentration.
Refueling Water Storage Tank maximum boron                     2,875 ppm concentration.
Limit 2,475 ppm 2,875 ppm 2.13 Refueling Water Storage Tank - RWST (TS 3.5.4) 2.13.1 Boron concentration limits during modes 1, 2, 3, and 4:
Parameter Refueling Water Storage Tank minimum boron concentration.
Refueling Water Storage Tank maximum boron concentration.
Limit 2,675 ppm 2,875 ppm


MCEI-0400-198 Page 27 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Table 4 Reactor Coolant System DNB Parameters No. Operable Parameter                   Indication   Channels         Limits
MCEI-0400-198 Page 27 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Table 4 Reactor Coolant System DNB Parameters No. Operable Parameter Indication Channels Limits
: 1. Indicated RCS Average Temperature       meter               4     < 587.2 TF meter               3     < 586.9 1F computer           4       < 587.7 OF computer             3     < 587.5 &#xb6;F
: 1. Indicated RCS Average Temperature meter 4  
: 2. Indicated Pressurizer Pressure         meter               4       > 2219.8 psig meter               3       > 2222.1 psig computer           4       > 2215.8 psig computer.           3       > 2217.5 psig
< 587.2 TF meter 3  
: 3. RCS Total Flow Rate                                                 > 388,000 gpm
< 586.9 1F computer 4  
< 587.7 OF computer 3  
< 587.5 &#xb6;F
: 2. Indicated Pressurizer Pressure meter 4  
> 2219.8 psig meter 3  
> 2222.1 psig computer 4  
> 2215.8 psig computer.
3  
> 2217.5 psig
: 3. RCS Total Flow Rate  
> 388,000 gpm


MCEI-0400-198 Page 28 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.14 Spent Fuel Pool Boron Concentration (TS13.7.14) 2.14.1 Minimum boron concentration limit for the spent fuel pool. Applicable when fuel assemblies are stored in the spent fuel pool.
MCEI-0400-198 Page 28 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.14 Spent Fuel Pool Boron Concentration (TS13.7.14) 2.14.1 Minimum boron concentration limit for the spent fuel pool. Applicable when fuel assemblies are stored in the spent fuel pool.
Parameter                                   Limit Spent fuel pool minimum boron concentration.                       2,675 ppm 2.15 Refueling Operations - Boron Concentration (TS 3.9.1) 2.15.1 Minimum boron concentration limit for the filled portions of the Reactor Coolant System, refueling canal, and refueling cavity for mode 6 conditions. The minimum boron concentration limit and plant refueling procedures ensure that the Keff of the core will remain within the mode 6 reactivity requirement of Keff <
Parameter Limit Spent fuel pool minimum boron concentration.
2,675 ppm 2.15 Refueling Operations - Boron Concentration (TS 3.9.1) 2.15.1 Minimum boron concentration limit for the filled portions of the Reactor Coolant System, refueling canal, and refueling cavity for mode 6 conditions. The minimum boron concentration limit and plant refueling procedures ensure that the Keff of the core will remain within the mode 6 reactivity requirement of Keff <
0.95.
0.95.
Parameter                                   Limit Minimum Boron concentration of the Reactor Coolant                 2,675 ppm System, the refueling canal, and the refueling cavity.
Parameter Limit Minimum Boron concentration of the Reactor Coolant System, the refueling canal, and the refueling cavity.
2,675 ppm


MCEI-0400-198 Page 29 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.16 Borated Water Source - Shutdown       (SLC 16.9.14) 2.16.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during mode 4 with any RCS cold leg temperature < 300 'F and modes 5 and 6.
MCEI-0400-198 Page 29 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.16 Borated Water Source - Shutdown (SLC 16.9.14) 2.16.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during mode 4 with any RCS cold leg temperature < 300 'F and modes 5 and 6.
Parameter                             Limit Boric Acid Tank minimum contained borated           10,599 gallons water volume                                        13.6% Level Note: When cycle burnup is > 460 EFPD, Figure 6 may be used toI determine the required BAT minimum level.
Parameter Limit Boric Acid Tank minimum contained borated water volume 10,599 gallons 13.6% Level Note: When cycle burnup is > 460 EFPD, Figure determine the required BAT minimum level.
Boric Acid Tank minimum boron concentration           7,000 ppm Boric Acid Tank minimum water volume                 2,300 gallons required to maintain SDM at 7,000 ppm Refueling Water Storage Tank minimum               47,700 gallons contained borated water volume                         41 inches Refueling Water Storage Tank minimum boron           2,675 ppm concentration Refueling Water Storage Tank minimum water           8,200 gallons volume required to maintain SDM at 2,675 ppm
6 may be used toI Boric Acid Tank minimum boron concentration Boric Acid Tank minimum water volume required to maintain SDM at 7,000 ppm Refueling Water Storage Tank minimum contained borated water volume Refueling Water Storage Tank minimum boron concentration Refueling Water Storage Tank minimum water volume required to maintain SDM at 2,675 ppm 7,000 ppm 2,300 gallons 47,700 gallons 41 inches 2,675 ppm 8,200 gallons


MCEI-0400-198 Page 30 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.17 Borated Water Source - Operating       (SLC 16.9.11) 2.17.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during modes 1, 2, 3, and mode 4 with all RCS cold leg temperature > 300 'F.
MCEI-0400-198 Page 30 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.17 Borated Water Source - Operating (SLC 16.9.11) 2.17.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during modes 1, 2, 3, and mode 4 with all RCS cold leg temperature > 300 'F.
Parameter                           Limit Boric Acid Tank minimum contained borated           22,049 gallons water volume                                          38.0% Level Note: When cycle bumup is > 460 EFPD, Figure 6 may be used to determine the required BAT minimum level.                         I Boric Acid Tank minimum boron concentration           7,000 ppm Boric Acid Tank minimum water volume                 13,750 gallons required to maintain SDM at 7,000 ppm Refueling Water Storage Tank minimum                 96,607 gallons contained borated water volume                         103.6 inches Refueling Water Storage Tank minimum boron             2,675 ppm concentration Refueling Water Storage Tank maximum boron             2;875 ppm concentration (TS 3.5.4)
Parameter Limit Boric Acid Tank minimum contained borated water volume 22,049 gallons 38.0% Level Note: When cycle bumup is > 460 EFPD, Figure 6 may be used to determine the required BAT minimum level.
Refueling Water Storage Tank minimum water           57,107 gallons volume required to maintain SDM at 2,675 ppm
I Boric Acid Tank minimum boron concentration Boric Acid Tank minimum water volume required to maintain SDM at 7,000 ppm Refueling Water Storage Tank minimum contained borated water volume Refueling Water Storage Tank minimum boron concentration Refueling Water Storage Tank maximum boron concentration (TS 3.5.4)
Refueling Water Storage Tank minimum water volume required to maintain SDM at 2,675 ppm 7,000 ppm 13,750 gallons 96,607 gallons 103.6 inches 2,675 ppm 2;875 ppm 57,107 gallons


MCEI-0400-198 Page 31 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Figure 6 Boric Acid Storage Tank Indicated Level Versus RCS Boron Concentration (Valid When Cycle Burnup is > 460 EFPD)
MCEI-0400-198 Page 31 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Figure 6 Boric Acid Storage Tank Indicated Level Versus RCS Boron Concentration (Valid When Cycle Burnup is > 460 EFPD)
This figure includes additional volumes listed in SLC 16.9.14 and 16.9.11 40.0             - _    -              .    .    .    .    ..-      -
This figure includes additional volumes listed in SLC 16.9.14 and 16.9.11 40.0 RCS Boron Concentration BAT Level (ppm)
RCS Boron Concentration BAT Level (ppm)     (%level) 0< 300       37.0 300 <500       33.0 500 < 700     28.0 700< 1000       23.0 1000 < 1300     13.6 25.0                                                                      > 1300       8.7
(%level) 0< 300 37.0 300 <500 33.0 500 < 700 28.0 700< 1000 23.0 1000 < 1300 13.6
___U                                                        ____
> 1300 8.7 25.0 15.0-10.0-5.0-
Acceptable Operation 15.0-10.0-Ua               l. O                                               "    L      i Una*       'the         m*o                   U       -      -
___U Acceptable Operation Ua
5.0-UU 0   200   400     600   800     1000 1200 1400 1600 1800     2000   2200 2400   2600     2800 RCS Boron Concentration (ppmb)
: l. O Una*  
'the m*o U
L i
UU 0
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 RCS Boron Concentration (ppmb)


MCEI-0400-198 Page 32 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report NOTE: Appendix A contains power distribution monitoring factors used in Technical Specification Surveillance. This data was generated in the McGuire 2 Cycle 19 Maneuvering Analysis calculation file, MCC-1553.05-00-0472. Due to the size of the monitoring factor data, Appendix A is controlled electronically within Duke and is not included in the Duke internal copies of the COLR. The Plant Nuclear Engineering Section will control this information via computer file(s) and should be contacted if there is a need to access this information.
MCEI-0400-198 Page 32 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report NOTE: Appendix A contains power distribution monitoring factors used in Technical Specification Surveillance.
This data was generated in the McGuire 2 Cycle 19 Maneuvering Analysis calculation file, MCC-1553.05-00-0472. Due to the size of the monitoring factor data, Appendix A is controlled electronically within Duke and is not included in the Duke internal copies of the COLR. The Plant Nuclear Engineering Section will control this information via computer file(s) and should be contacted if there is a need to access this information.
Appendix A is included in the COLR copy transmitted to the NRC.}}
Appendix A is included in the COLR copy transmitted to the NRC.}}

Latest revision as of 17:46, 14 January 2025

Cycle 19, Revision 0 Core Operating Limits Report
ML080710432
Person / Time
Site: Mcguire
Issue date: 03/04/2008
From: Brandi Hamilton
Duke Energy Carolinas, Duke Energy Corp, Duke Power Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
MCC-1553.05-00-0478 (Rev. 0), MCEI-0400-198
Download: ML080710432 (34)


Text

.e"I Duke BRUCE H HAMILTON Vice President Energyo McGuire Nuclear Station Duke Energy Corporation MG01 VP / 12700 Hagers Ferry Road Huntersville, NC 28078 704-875-5333 704-875-4809 fax bhhamilton@duke-energy. com March 4, 2008 U. S. Nuclear Regulatory Commission Document Control Desk Washington, D.C. 20555

Subject:

Duke Power Company LLC d/b/a Duke Energy Carolinas, LLC (Duke)

McGuire Nuclear Station Docket Nos. 50-370 Unit 2, Cycle 19, Revision 0 Core Operating Limits Report Pursuant to McGuire Technical Specification (TS) 5.6.5.d, please find enclosed Revision 0 of the McGuire Unit 2 Cycle 19 Core Operating Limits Report (COLR).

This revision will become effective prior to entering Mode 6 which begins Cycle 19.

Questions regarding this submittal should be directed to Kay Crane, McGuire Regulatory Compliance at (704) 875-4306.

Bruce H. Hamilton Attachment www. duke-energy. corn

U. S. Nuclear Regulatory Commission March 4, 2008 Page 2 cc:

Mr. John Stang, Project Manager U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation Washington, D.C. 20555 Mr. Victor McCree, Acting Regional Administrator U. S. Nuclear Regulatory Commission, Region II Atlanta Federal Center 61 Forsyth St., SW, Suite 23T85 Atlanta, GA 30323 Mr. Joe Brady Senior Resident Inspector McGuire Nuclear Station

4 MCEI-0400-198 Page 1 of 32 Revision 0 McGuire Unit 2 Cycle.19 Core Operating Limits Report Revision 0 February 2008 Calculation Number: MCC-1553.05-00-0478 (Rev. 0)

Duke Energy Date Prepared By:

Checked By:

Checked By:

Approved By:

(S o2.

and2.10 -2.17)

.12.21ky Ij

-0 hz& 4 5 9 ý-ZA 7-ý 9 1121- / Ild J>

QA Condition 1 The information presented in this report has been prepared and issued in accordance with McGuire Technical Specification 5.6.5.

MCEI-0400-198 Page 2 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report INSPECTION OF ENGINEERING INSTRUCTIONS ARC Inspection Waived By:

Date: 2-1-1Ia (Sponsor)

CTW CATAWBA MCE (Mechanical & Civil)

RES (Electrical Only)

RES (Reactor)

MOD Other (

Inspection Waived El

.[ '-

El El El Inspected By/Date:

Inspected By/Date:

Inspected By/Date:

Inspected-By/Date:

Inspected By/Date:

OCONEE MCE (Mechanical & Civil)

RES (Electrical Only)

RES (Reactor)

MOD Other(

)

Inspection Waived El El El El El Inspected By/Date:.

Inspected By/Date:

Inspected.By/Date:

Inspected By/Date:

Inspected By/Date:

MCGUIRE MCE (Mechanical & Civil)

RES (Electrical Only)

RES (Reactor)

MOD Other (

)

Inspection Waived El Inspected By/Date:

Inspected By/Date:

Inspected By/Date:

Inspected By/Date:

Inspected By/Date:

MCEI-0400-198 Page 3 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Implementation Instructions For Revision 0 Revision Description and PIP Tracking Revision 0 of the McGuire Unit 2 COLR contains limits specific to the McGuire 2 Cycle 19 reload core. There is no PIP associated with this revision.

Implementation Schedule Revision 0 may become effective any time during No Mode between Cycles 18 and 19 but must become effective prior to entering Mode 6, which starts Cycle 19.

The McGuire Unit 2 Cycle 19 COLR will cease to be effective during No MODE between Cycle 19 and 20.

Data files to be Implemented No data files are transmitted as part of this document.

MCEI-0400-198 Page 4 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report REVISION LOG Revision 0

Effective Date February 2008 Pages Affected COLR 1-32, Appendix A* M2C19 COLR, Rev. 0 Appendix A contains power distribution monitoring factors used in Technical Specification Surveillance. Appendix A is included only in the electronic COLR copy sent to the NRC.

MCEI-0400-198 Page 5 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 1.0 Core Operating Limits Report This Core Operating Limits Report (COLR) has been prepared in accordance with the

TS Number 1.1 2.1.1 3.1.1 3.1.3 3.1.4 3.1.5 3.1.5 Technical Specifications Requirements for Operational Mode 6 Reactor Core Safety Limits Shutdown Margin Moderator Temperature Coefficient Rod Group Alignment Limits Shutdown Bank Insertion Limits Shutdown Bank Insertion Limits 3.1.6 Control Bank Insertion Limits 3.1.6 Control Bank Insertion Limits 3.1.8 Physics Tests Exceptions 3.2.1 Heat Flux Hot Channel Factor 3.2.2 Nuclear Enthalpy Rise Hot Channel Factor 3.2.3 Axial Flux Difference 3.3.1 Reactor Trip System Instrumentation 3.4.1 RCS Pressure, Temperature, and Flow DNB limits 3.5.1 Accumulators 3.5.4 Refueling Water Storage Tank 3.7.14 Spent Fuel Pool Boron Concentration 3.9.1 Refueling Operations - Boron Concentration 5.6.5 Core Operating Limits Report (COLR)

COLR Parameter Mode 6 Definition RCS Temperature and Pressure Safety Limits Shutdown Margin MTC Shutdown Margin Shutdown Margin Shutdown Bank Insertion Limit Shutdown Margin Control Bank Insertion Limit Shutdown Margin Fq, AFD, OTAT and Penalty Factors FAH, AFD and Penalty Factors AFD OTAT and OPAT Constants RCS Pressure, Temperature and Flow Max and Min Boron Conc.

Max and Min Boron Cone.

Min Boron Concentration Min Boron Concentration Analytical Methods COLR Section 2.1 2.2 2.3 2.4 2.3 2.3 2.5 2.3 2.6 2.3 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 1.1 El Page 9

9 9

11 9

9 11 9

11 9

15 20 21 24 26 26 26 28 28 6

The Selected Licensee Commitments that reference this report are listed below:

SLC Number Selected Licensing Commitment COLR Parameter COLR Section 2.16 El Page 29, 16.9.14 16.9.11 Borated Water Source - Shutdown Borated Water Volume and I

Conc. for BAT/RWST Borated Water Source - Operating Borated Water Volume and Conc. for BAT/RWST 2.17 30

MCEI-0400-198 Page 6 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 1.1 Analytical Methods The analytical methods used to determine core operating limits for parameters identified in Technical Specifications and previously reviewed and approved by the NRC, as specified in Technical Specification 5.6.5, are as follows.

1. WCAP-9272-P-A, "'Westinghouse Reload Safety Evaluation Methodology," &V Proprietary).

Revision 0 Report Date: July 1985 Not Used for M2C19

2. WCAP-10054-P-A, "Westinghouse Small Break ECCS Evaluation Model using the NOTRUMP Code, "1 Proprietary).

Revision 0 Report Date: August 1985

3. WCAP-10266-P-A, 'The 1981 Version Of Westinghouse Evaluation Model Using BASH Code",

& Proprietary).

Revision 2 Report Date: March 1987 Not Used for M2C19

4. WCAP-12945-P-A, Volume 1 and Volumes 2-5, "Code Qualification Document for Best-Estimate Loss of Coolant Analysis," & Proprietary).

Revision: Volume 1 (Revision 2) and Volumes 2-5 (Revision 1)

Report Date: March 1998

5. BAW-10168P-A, "B&W Loss-of-Coolant Accident Evaluation Model for Recirculating Steam Generator Plants," (B&W Proprietary).

Revision 1 SER Date: January 22, 1991 Revision 2 SER.Dates: August 22, 1996 and November 26, 1996.

Revision 3 SER Date: June 15, 1994.

Not Used for M2C19

6. DPC-NE-3000PA, "Thermal-Hydraulic Transient Analysis Methodology," (DPC Proprietary).

Revision 3 SER Date: September 24, 2003

MCEI-0400-198 Page 7 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 1.1 Analytical Methods (continued)

7. DPC-NE-3001PA, "Multidimensional Reactor Transients and Safety Analysis Physics Parameter Methodology," (DPC Proprietary).

Revision 0 Report Date: November 15, 1991 (Republished December 2000)

8. DPC-NE-3002A, "FSAR Chapter 15 System Transient Analysis Methodology".

Revision 4 SER Date: April 6, 2001

9. DPC-NE-2004P-A, "Duke Power Company McGuire and Catawba Nuclear Stations Core Thermal-Hydraulic Methodology using VIPRE-01," (DPC Proprietary).

Revision 1 SER Date: February 20, 1997

10. DPC-NE-2005P-A, "Thermal Hydraulic Statistical Core Design Methodology," (DPC Proprietary).

Revision 3 SER Date: September 16, 2002

11. DPC-NE-2008P-A, "Fuel Mechanical Reload Analysis Methodology Using TACO3," (DPC Proprietary).

Revision 0 SER Date: April 3, 1995 Not Used for M2C19

12. DPC-NE-2009-P-A, "Westinghouse Fuel Transition Report," (DPC Proprietary).

Revision 2 SER Date: December 18, 2002

13. DPC-NE-1004A, "Nuclear Design Methodology Using CASMO-3/SIMULATE-3P."

Revision 1 SER Date: April 26, 1996 Not Used for M2C19

MCEI-0400-198 Page 8 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 1.1 Analytical Methods (continued)

14. DPC-NF-2010A, "Duke Power Company McGuire Nuclear Station Catawba Nuclear Station Nuclear Physics Methodology for Reload Design."

Revision 2 SER Date: June 24, 2003

15. DPC-NE-201 IPA, "Duke Power Company Nuclear Design Methodology for Core Operating Limits of Westinghouse Reactors," (DPC Proprietary).

Revision 1 SER Date: October 1, 2002

16. DPC-NE-1005-P-A, "Nuclear Design Methodology Using CASMO-4 SIMULATE-3 MOX,"

(DPC Proprietary).

Revision 0 SER Date: August 20, 2004

MCEI-0400-198 Page 9 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.0 Operating Limits The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using the NRC approved methodologies specified in Section 1.1.

2.1 Requirements for Operational Mode 6 The following condition is required for operational mode 6.

2.1.1 The Reactivity Condition requirement for operational mode 6 is that kff must be less than, or equal to 0.95.

2.2 Reactor Core Safety Limits (TS 2.1.1) 2.2.1 The Reactor Core Safety Limits are shown inFigure 1.

2.3 Shutdown Margin - SDM (TS 3.1.1, TS 3.1.4, TS 3.1.5, TS 3.1.6 and TS 3.1.8) 2.3.1 ForTS 3.1.1, SDM shall be> 1.3% AK/K in mode 2 with k-eff < 1.0 and in modes 3 and 4.

2.3.2 ForTS 3.1.1, SDM shall be> 1.0% AK/K in mode 5.

2.3.3 ForTS 3.1.4, SDM shall be> 1.3% AK/K in modes 1 and 2.

2.3.4 For TS 3.1.5, SDM shall be > 1.3% AK/K in mode 1 and mode 2 with any control bank not fully inserted.

2.3.5 ForTS 3.1.6, SDM shall be > 1.3% AK/K in mode 1 and mode 2 with K-eff> 1.0.

2.3.6 For TS 3.1.8, SDM shall be > 1.3% AK/K in mode 2 during Physics Testing.

MCEI-0400-198 Page 10 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Figure 1 Reactor Core Safety Limits Four Loops in Operation 670 DO NOT OPERATE IN THIS AREA 660 650 640 610 2400 PSa 630 ACCEPTABLE 5808 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Fraction of Rated Thermal Power

MCEI-0400-198 Page 11 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.4 Moderator Temperature Coefficient - MTC (TS 3.1.3) 2.4.1 The Moderator Temperature Coefficient (MTC) Limits are:

The MTC shall be less positive than the upper limits shown in Figure 2. The BOC, ARO, H1ZP MTC shall be less positive than 0.7E-04 AK/K/°F.

The EOC, ARO, RTP MTC shall be less negative than the -4.3E-04 AKIK/VF lower MTC limit.

2.4.2 The 300 ppm MTC Surveillance Limit is:

The measured 300 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to -3.65E-04 AK/K/0F.

2.4.3 The 60 PPM MTC Surveillance Limit is:

The 60 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to

-4.125E-04 AK/K/0F.

Where, BOC = Beginning of Cycle (Bumup corresponding to the most positive MTC)

EOC = End of Cycle ARO = All Rods Out HZP = Hot Zero Power RTP = Rated Thermal Power PPM = Parts per million (Boron) 2.5 Shutdown Bank Insertion Limit (TS 3.1.5) 2.5.1 Each shutdown bank shall be withdrawn to at least 222 steps. Shutdown banks are withdrawn in sequence and with no overlap.

2.6 Control Bank Insertion Limits (TS 3.1.6) 2.6.1 Control banks shall be within the insertion, sequence, and overlap limits shown in Figure 3. Specific control bank withdrawal and overlap limits as a function of the fully withdrawn position are shown in Table 1.

MCEI-0400-198 Page 12 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Figure 2 Moderator Temperature Coefficient Upper Limit Versus Power Level 1.0 Z

B a-i Cu a-i0 0

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0

10 20 30 40 50 60 70 80 90 100 Percent of Rated Thermal Power NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits.

Refer to OP/2/A/6100/22 Unit 2 Data Book for details.

MCEI-0400-198 Page 13 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Figure 3 Control Bank Insertion Limits Versus Percent Rated Thermal Power Fully Withdrawn 231 220 200

  • 180 160 140 120 C

100 80 60 PC 40 20 0

0 10 20 30 40 50 60 70 80 90 100 Percent of Rated Thermal Power The Rod Insertion Limits (RIL) for Control Bank D (CD), Control Bank C (CC), and Control Bank B (CB) can be calculated by:

Bank CD RIL = 2.3(P) - 69 {30*_< P*_< 100}

Bank CC RIL = 2.3(P) + 47 {0*< P5

_80}

Bank CB RIL = 2.3(P) + 163 {0<* P < 29.6}

where P = %Rated Thermal Power NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits.

Refer to OP/2/A/6100/22 Unit 2 Data Book for details.

MCEI-0400-1498 Page 14 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Table 1 RCCA Withdrawal Steps and Sequence Fully WVithdrawn at 222 Steps Control Control Control Control Bank A Bank B Bank C Bank D 0 Start 0

0 0

116 0 Start 0

0 222 Stop 106 0

0 222 116 0 Start 0

222 222 Stop 106 0

222 222 116 0 Start 222 222

.222 Stop 106 Fully Withdrawn at 224 Steps Control Control Control Control BankA BankB. BankC BankD Fully Withdrawn at 223 Steps Control Control Control Control Bank A Bank B Bank C Bank D 0 Start 0

0 0

116 0Start 0

0 223 Stop 107 0

0 223 116 0 Start 0

223 223 Stop 107 0

223 223 116 0 Start 223 223 223 Stop 107 0 Start 0

0 0

116 0 Start 0

0 2 24 Stop 108 0

0 224 116 0 Start 0

224 224 Stop 108 0

224 224 116 0 Start 224 224 224 Stop 108 Fully Withdrawn at 225 Steps Control Control Control Control Bank A Bank B Bank C Bank D 0 Start 0

0 0.

116 0 Start 0

0 225 Stop 109 0

0

. 225 116 0 Start 0

225 225 Stop 109 0

225 225 116 0 Start 225 225 225 Stop 109 Fully Withdrawn at 227 Steps Control Control Control Control BankA BankB BankC BankD Fully Withdrawn at 226 Steps Control ' Control Control Control Bank A Bank.B Bank C Bank D 0 Start 0

0 0

116 0 Start 0

0 226 Stop 110 0

0 226 116 0 Start 0

226 -

226 Stop 110 0

226 226 116 0 Start 226 226 226 Stop 110 Fully Withdrawn at 228 Steps Control Control Control Control Bank A Bank B Bank C Bank D 0 Start 0

0 0

116 0 Start 0

0 228 Stop 112 0

0 228 116 0 Start 0

228 228 Stop 112 0

228 228 116 0 Start 228 228 228 Stop 112 Fully Withdrawn at 230 Steps Control Control Control Control Bank A Bank B Bank C Bank D oStart 0

0 0

116 0 Start 0

0 230 Stop 114 0

0 230 116 0 Start 0

230 230"Stop 114 0

230 230 116 0 Start 230 230 230 Stop 114 0 Start 0

0 116 0 Start 0

0 0

227Stop 111 0

0 227 116 0 Start 0

227 227Stop 111 0

227 227 116 0 Start 227 227 227Stop 111 Fully Withdrawn at 229 Steps Control Control Control Control Bank A BankB. Bank C Bank D 0 Start 0

0 0.

116 0 Start 0

0 229 Stop 113 0

0 229 116 0 Start 0

229 229Stop 113 0

229 229 116 0 Start 229 229 229 Stop 113 Fully Withdrawn at 231 Steps Control Control Control Control Bank A Bank B Bank C Bank D 0 Start 0

0 0

116 0Start 0

0 231 Stop 115 0

0 231 116 0 Start 0

231 231 Stop 115 0

231 231 116 0 Start 231 231 231 Stop*

115

MCEI-0400-198 Page 15 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.7 Heat Flux Hot Channel Factor - FQ(X,Y,Z) (TS 3.2.1) 2.7.1 FQ(X,Y,Z) steady-state limits are defined by the following relationships:

F RTP *K(Z)/P for P > 0.5 F~Rr *K(Z)/0.5 for P < 0.5

where, P = (Thermal Power)/(Rated Power)

Note: The measured FQ(X,Y,Z) shall be increased by 3% to account for manufacturing tolerances and 5% to account for measurement uncertainty when comparing against the LCO limits. The manufacturing tolerance and measurement uncertainty are implicitly included in the FQ surveillance limits as defined in COLR Sections 2.7.5 and 2.7.6.

2.7.2 F" =2.60 x K(BU) 2.7.3 K(Z) is the normalized FQ(X,YZ) as a function of core height. The K(Z) function for Westinghouse RFA fuel is provided in Figure 4.

2.7.4 K(BU) is the normalized FQ(X,YZ) as a function of burnup. K(BU) for Westinghouse RFA fuel is 1.0 for all burnups.

The following parameters are required for core monitoring per the Surveillance Requirements of Technical Specification 3.2.1:

FQ(X,YZ)

  • MQ(X,YZ)

.2.7.5 F(XYZ)-

UMT

  • TILT where:

FL (X,Y,Z)OP=

Cycle dependent maximum allowable design peaking factor that ensures the FQ(X,Y,Z) LOCA limit will be preserved for operation within the LCO limits. F* (X,Y,Z)OP includes allowances for calculation and measurement uncertainties.

F, (X,Y,Z) =

Design power distribution for FQ. Fo' (X,Y,Z) is provided in Appendix Table A-1 for normal operating conditions, and in

MCEI-0400-198 Page 16 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Appendix Table A-4 for power escalation testing during initial startup operation.

MQ(XYZ)

=

Margin remaining in core location X,Y,Z to the LOCA limit in the transient power distribution. MQ(X,Y,Z) is provided in Appendix Table A-1 for normal operating conditions, and in Appendix Table A-4 for power escalation testing during initial startup operation.

UMT = Total Peak Measurement Uncertainty. (UMT = 1.05)

MT = Engineering Hot Channel Factor. (MT = 1.03)

TILT = Peaking penalty that accounts for the peaking increase from an allowable quadrant power tilt ratio of 1.02. (TILT = 1.035) 2.7.6 FQ(X,Y,Z)RPS =

FQ(X,Y,Z)

  • Mc(X,Y,Z)

UMT

  • TILT where:

Fb(X,Y,Z)"s =

F*Q(X,YZ) =

Mc(X,Y,Z) =

Cycle dependent maximum allowable design peaking factor that ensures the FQ(X,YZ) Centerline Fuel Melt (CFM) limit will be preserved for operation within the LCO limits.

FQ(X,Y,Z)RPs includes allowances for calculation and measurement uncertainties.

Design power distributions for FQ. FQ(X,YZ) is provided in Appendix Table A-1 for normal operating conditions, and in Appendix Table A-4 for power escalation testing during initial startup operation.

Margin remaining to the CFM limit in core location X,Y,Z in the transient power distribution. Mc(X,Y,Z) is provided in Appendix Table A-2 for normal operating conditions, and in Appendix Table A-5 for power escalation testing during initial startup operation.

MCEI-:0400-198 Page 17 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report UMT = Total Peak Measurement Uncertainty (UMT = 1.05)

MT = Engineering Hot Channel Factor (MT = 1.03)

TILT = Peaking penalty that accounts for the peaking increase from an allowable quadrant power tilt ratio of 1.02. (TILT = 1.035) 2.7.7 KSLOPE = 0.0725 where:

KSLOPEis the adjustment to the K1 value from the OTAT trip setpoint required to compensate for each 1% that F m (X,YZ) exceeds FL (X,Y,Z)RPs.

2.7.8 FQ(X,Y,Z) penalty factors for Technical Specification Surveillance's 3.2.1.2 and 3.2.1.3 are provided in Table 2.

MCEI-0400-198 Page 18 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Figure 4 K(Z), Normalized FQ(XY,Z) as a Function of Core Height for Westinghouse RFA Fuel 1.200 (0.0, 1.00)

(4.0, 1.00) 1.6000 (4.0,09615)(12.0, 0..9615) 0.800-0.600 0.400 Core Height (ft)

K(Z) 0.0 1.000

<4 1.000 0.200

>4 0.9615 12.0 0.9615 0.000 -

I I

I 0.00 2.00 4.00 6.00 8.00 10.00 12.00 Core Height (ft)

MCEI-0400-198 Page 19 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Table 2 FQ(X,Y,Z) and FAH(XY) Penalty Factors For Technical Specification Surveillance's 3.2.1.2,3.2.1.3 and 3.2.2.2 Burnup (EFPD) 0 4

12 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 445 470 488 498 513 FQ(X,YZ)

Penalty Factor (%)

2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 FAH(X,Y,Z)

Penalty Factor (%)

2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Note: Linear interpolation is adequate for intermediate cycle bumups. All cycle burnups outside of the range of the table shall use a 2% penalty factor for both FQ(X,Y,Z) and FAH(X,Y) for compliance with the Technical Specification Surveillances 3.2.1.2, 3.2.1.3 and 3.2.2.2.

MCEI-0400-198 Page 20 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.8 Nuclear Enthalpy Rise Hot Channel Factor - FAH(X,Y) (TS 3.2.2)

The FAH steady-state limits referred to in Technical Specification 3.2.2 is defined by the following relationship.

2.8.1 FL(xY) co (1MARP (XY)

.0 +

.0- P)]

r where:

FL ( Y) LCO is defined as the steady-state, maximum allowed radial peak.

FL (X, Y)"Lo includes allowances for calculation/measurement uncertainty.

MARP(X,Y) =

Cycle-specific operating limit Maximum Allowable Radial Peaks. MARP(X,Y) radial peaking limits are provided in Table 3.

Thermal Power Rated Thermal Power RRH =Thermal Power reduction required to compensate for each 1% that the measured radial peak, F* (X,Y), exceeds its limit. RRH also is used to scale the MARP limits as a function of power per the [FL (X, Y)]Lco equation. (RRH = 3.34 (0.0 < P < 1.0))

The following parameters are required for core monitoring per the Surveillance requirements of Technical Specification 3.2.2.

2.8.2 FL (X,Y)s' FL (X, Y) x M* (X, Y)

UMR xTILT where:

LH SURV Fk1 (X,Y)

=

Cycle dependent maximum allowable design peaking factor that ensures the FAH(X,Y) limit will be preserved for operation'within the LCO limits. FL (X,Y) includes allowances for calculation/measurement uncertainty.

MCEI-0400-198 Page 21 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Lnimts Report 1'

(X,Y) = Design radial power distribution for Fan. FD (X,Y) is provided in Appendix Table A-3 for normal operation, and in Appendix Table A-6 for power escalation testing during initial startup operation.

MAH(X,Y)

= The margin remaining in core location X,Y relative to the Operational DNB limits in the transient power distribution.

MMH(X,Y) is provided in Appendix Table A-3 for normal operation, and in Appendix Table A-6 for power escalation testing during initial startup operation.

UMR = Uncertainty value for measured radial peaks. UMR is set to 1.0 since a factor of 1.04 is implicitly included in the variable MAi(X,Y).

TILT = Peaking penalty that accounts for the peaking increase for an allowable quadrant power tilt ratio of 1.02 (TILT = 1.035).

2.8.3 RRH =3.34 where:

RRH = Thermal power reduction required to compensate for each 1% that the measured radial peak, Fmn (X,Y) exceeds its limit. (0 < P < 1.0) 2.8.4 TRH = 0.04 where:

TRH = Reduction in the OTAT K1 setpoint required to compensate for each 1%

that the measured radial peak, F, (X,Y) exceeds its limit.

2.8.5 FAH (X,Y) penalty factors for Technical Specification Surveillance 3.2.2.2 are provided in Table 2.

2.9 Axial Flux Difference - AFD (TS 3.2.3) 2.9.1 The Axial Flux Difference (AFD) Limits are provided in Figure 5.

MCEI-0400-198 Page 22 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Table 3 Maximum Allowable Radial Peaks (MARPS)

RFA MARPS Core Axial Peak Ht (ft) 1.05 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.1.

3.0 3.25 0.12 1.809 1.855 1.949 1.995 1.974 2.107 2.050 2.009 1.933 1.863 1.778 1.315 1.246 1.2 1.810 1.854 1.940 1.995 1.974 2.107 2.019 1.978 1.901 1.831 1.785 1.301 1.224 2.4 1.809 1.853 1.931 1.978 1.974 2.074 1.995 1.952 1.876 1.805 1.732 1.463 1.462 3.6 1.810 1.851 1.920 1.964 1.974 2.050 1.966 1.926 1.852 1.786 1.700 1.468 1.387 4.8 1.810 1.851 1.906 1.945 1.974 2.006 1.944 1.923 1.854 1.784 1.671 1.299 1.258 6.0 1.810 1.851 1.892 1.921 1.946 1.934 1.880 1.863 1.802 1.747 1.671 1.329 1.260 7.2 1.807 1.844 1.872 1.893 1.887 1.872 1.809 1.787 1.733 1.681 1.598 1.287 1.220 8.4 1.807 1.832 1.845 1.857 1.816 1.795 1.736 1.709 1.654.

1.601 1.513 1.218 1.158 9.6 1.807 1.810 1.809 1.791 1.738 1.718 1.657 1.635 1.581 1.530 1.444 1.143 1.091.

10.8 1.798 1.787 1.761 1.716 1.654 1.632 1.574 1.557 1.509 1.462 1.383 1.101 1.047 11.4 1.789.

1.765 1.725 1.665 1.606 1.583 1.529 1.510 1.464 1.422 1.346 1.067 1.014

MCEI-0400-198 Page 23 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Figure 5 Percent of Rated Thermal Power Versus Percent Axial Flux Difference Limits

(-18, 100)

(+10, 100)

C

..t Unacceptable Operation 90 80 Acceptable Operation 70 60 50

(-36, 50)

Unacceptable Operation

(+21,50) 40+

30+

20-10+

i i -l i

a i

i -

-20

-10 0

-50

-40

-30 10 20 30 40 50 Axial Flux Difference (% Delta I)

NOTE: Compliance with Technical Specification 3.2.1 may require more restrictive AFD limits. Refer to OP/2/A/6100/22 Unit 2.Data Book for more details.

MCEI-0400-198 Page 24 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.10 Reactor Trip System Instrumentation Setpoints (TS 3.3.1) Table 3.3.1-1 2.10.1 Overtemperature AT Setpoint Parameter Values Parameter Value Nominal Tavg at RTP Nominal RCS Operating Pressure Overtemperature AT reactor trip setpoint Overtemperature AT reactor trip heatup setpoint penalty coefficient Overtemperature AT reactor trip depressurization setpoint penalty coefficient Time constants utilized in the lead-lag compensator for AT Time constant utilized in the lag compensator for AT Time constants utilized in the lead-lag compensator for Tayg Time constant utilized in the measured Tavg lag compensator fl (AD) "positive" breakpoint fl (Al) "negative" breakpoint f1(Al) "positive" slope fl(AI) "negative" slope T < 585.10F P"= 2235 psig K1 < 1.1978 K2 = 0.0334/°F K3 = 0.001601/psi x1 > 8 sec.

r2 <3 sec.

T3 < 2 sec.

T4_> 28 sec.

T5 < 4 sec.

r6<2 sec.

= 19.0. %Al

= N/A*

= 1.769 %AT 0/ %AI

= N/A*

The fl(Al) "negative" breakpoints and the fl(AI) "negative" slope are less restrictive than the OPAT f2 (AI) negative breakpoint and slope. Therefore, during a transient which challenges the negative imbalance limits, the OPAT f2(AI) limits will result in a reactor trip before the OTAT fl(A1) limits are reached. This makes implementation of the OTAT fl(Al) negative breakpoint and slope unnecessary.

MCEI-0400-198 Page 25 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.10.2 Overpower AT Setpoint Parameter Values Parameter Nominal Tavg at RTP Overpower AT reactor trip setpoint Overpower AT reactor trip Penalty Overpower AT reactor trip heatup setpoint penalty coefficient Time constants utilized in the lead-lag compensator for AT Time constant utilized in the lag compensator for AT Time constant utilized in the measured Tavg lag compensator Time constant utilized in the rate-lag controller for Tavg f2(AI) "positive" breakpoint f2(AI) "negative" breakpoint f2(AJ) "positive" slope f2(Al) "negative" slope Value T" < 585.1°F K4 < 1.0864 K5= 0.02/°F for increasing Tavg K5 =0.0 for decreasing Tavg K6= 0.001179/°F for T > T" K6,= 0.0 for T < T" T, > 8 sec.

"2:2 3 sec.

,r:5 2 sec.

"T6 _< 2 sec..

T7Ž5 sec.

=35.0 %AIl

=-35.0 %AI

= 7.0 %AToI%AI

= 7.0 %AT/ %AI

MCEI-0400-198 Page 26 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.11 RCS Pressure, Temperature and Flow Limits for DNB (TS 3.4.1) 2.11.1 The RCS pressure, temperature and flow limits for DNB are shown in Table 4.

2.12 Accumulators (TS 3.5.1) 2.12.1 Boron concentration limits during modes 1 and 2, and mode 3 with RCS pressure

>1000 psi:

Parameter Cold Leg Accumulator minimum boron concentration.

Cold Leg Accumulator maximum boron concentration.

Limit 2,475 ppm 2,875 ppm 2.13 Refueling Water Storage Tank - RWST (TS 3.5.4) 2.13.1 Boron concentration limits during modes 1, 2, 3, and 4:

Parameter Refueling Water Storage Tank minimum boron concentration.

Refueling Water Storage Tank maximum boron concentration.

Limit 2,675 ppm 2,875 ppm

MCEI-0400-198 Page 27 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Table 4 Reactor Coolant System DNB Parameters No. Operable Parameter Indication Channels Limits

1. Indicated RCS Average Temperature meter 4

< 587.2 TF meter 3

< 586.9 1F computer 4

< 587.7 OF computer 3

< 587.5 ¶F

2. Indicated Pressurizer Pressure meter 4

> 2219.8 psig meter 3

> 2222.1 psig computer 4

> 2215.8 psig computer.

3

> 2217.5 psig

3. RCS Total Flow Rate

> 388,000 gpm

MCEI-0400-198 Page 28 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.14 Spent Fuel Pool Boron Concentration (TS13.7.14) 2.14.1 Minimum boron concentration limit for the spent fuel pool. Applicable when fuel assemblies are stored in the spent fuel pool.

Parameter Limit Spent fuel pool minimum boron concentration.

2,675 ppm 2.15 Refueling Operations - Boron Concentration (TS 3.9.1) 2.15.1 Minimum boron concentration limit for the filled portions of the Reactor Coolant System, refueling canal, and refueling cavity for mode 6 conditions. The minimum boron concentration limit and plant refueling procedures ensure that the Keff of the core will remain within the mode 6 reactivity requirement of Keff <

0.95.

Parameter Limit Minimum Boron concentration of the Reactor Coolant System, the refueling canal, and the refueling cavity.

2,675 ppm

MCEI-0400-198 Page 29 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.16 Borated Water Source - Shutdown (SLC 16.9.14) 2.16.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during mode 4 with any RCS cold leg temperature < 300 'F and modes 5 and 6.

Parameter Limit Boric Acid Tank minimum contained borated water volume 10,599 gallons 13.6% Level Note: When cycle burnup is > 460 EFPD, Figure determine the required BAT minimum level.

6 may be used toI Boric Acid Tank minimum boron concentration Boric Acid Tank minimum water volume required to maintain SDM at 7,000 ppm Refueling Water Storage Tank minimum contained borated water volume Refueling Water Storage Tank minimum boron concentration Refueling Water Storage Tank minimum water volume required to maintain SDM at 2,675 ppm 7,000 ppm 2,300 gallons 47,700 gallons 41 inches 2,675 ppm 8,200 gallons

MCEI-0400-198 Page 30 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report 2.17 Borated Water Source - Operating (SLC 16.9.11) 2.17.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during modes 1, 2, 3, and mode 4 with all RCS cold leg temperature > 300 'F.

Parameter Limit Boric Acid Tank minimum contained borated water volume 22,049 gallons 38.0% Level Note: When cycle bumup is > 460 EFPD, Figure 6 may be used to determine the required BAT minimum level.

I Boric Acid Tank minimum boron concentration Boric Acid Tank minimum water volume required to maintain SDM at 7,000 ppm Refueling Water Storage Tank minimum contained borated water volume Refueling Water Storage Tank minimum boron concentration Refueling Water Storage Tank maximum boron concentration (TS 3.5.4)

Refueling Water Storage Tank minimum water volume required to maintain SDM at 2,675 ppm 7,000 ppm 13,750 gallons 96,607 gallons 103.6 inches 2,675 ppm 2;875 ppm 57,107 gallons

MCEI-0400-198 Page 31 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report Figure 6 Boric Acid Storage Tank Indicated Level Versus RCS Boron Concentration (Valid When Cycle Burnup is > 460 EFPD)

This figure includes additional volumes listed in SLC 16.9.14 and 16.9.11 40.0 RCS Boron Concentration BAT Level (ppm)

(%level) 0< 300 37.0 300 <500 33.0 500 < 700 28.0 700< 1000 23.0 1000 < 1300 13.6

> 1300 8.7 25.0 15.0-10.0-5.0-

___U Acceptable Operation Ua

l. O Una*

'the m*o U

L i

UU 0

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 RCS Boron Concentration (ppmb)

MCEI-0400-198 Page 32 of 32 Revision 0 McGuire 2 Cycle 19 Core Operating Limits Report NOTE: Appendix A contains power distribution monitoring factors used in Technical Specification Surveillance.

This data was generated in the McGuire 2 Cycle 19 Maneuvering Analysis calculation file, MCC-1553.05-00-0472. Due to the size of the monitoring factor data, Appendix A is controlled electronically within Duke and is not included in the Duke internal copies of the COLR. The Plant Nuclear Engineering Section will control this information via computer file(s) and should be contacted if there is a need to access this information.

Appendix A is included in the COLR copy transmitted to the NRC.