Regulatory Guide 1.59: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot change)
(StriderTol Bot change)
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Adams
{{Adams
| number = ML13038A102
| number = ML003740388
| issue date = 04/30/1976
| issue date = 08/31/1977
| title = Design Basis Floods for Nuclear Power Plants
| title = Design Basis Floods for Nuclear Power Plants
| author name =  
| author name =  
| author affiliation = NRC/RES, NRC/OSD
| author affiliation = NRC/RES
| addressee name =  
| addressee name =  
| addressee affiliation =  
| addressee affiliation =  
Line 10: Line 10:
| license number =  
| license number =  
| contact person =  
| contact person =  
| document report number = RG-1.059, Rev. 1
| case reference number = -nr, FOIA/PA-2015-0456, FOIA/PA-2015-0458
| document report number = RG-1.59, Rev 2
| document type = Regulatory Guide
| document type = Regulatory Guide
| page count = 80
| page count = 64
}}
}}
{{#Wiki_filter:Revision 1 U.S. NUCLEAR REGULATORY COMMISSION                                                                                                                   April 1976 REGULATORY GUIDE
{{#Wiki_filter:Revision 2
OFFICE OF STANDARDS DEVELOPMENT
-
                                                            DESIGN
U.S. NUCLEAR REGULATORY COMMISSION  
                                                        NUCLEAR                                 PLANTS
August 1077 C,
                                      iA~
REGULATORYGUIDE
                                      5,,.
OFFICE OF STANDARDS DEVELOPMENT  
                    .1 USNRC REGULATORY GUIDES                                         Comments should be sent to the Secretary of the Commission. U S. Nuclear Regulatory Guides are issued to describe and make available to the public             Regulatory Commission. Washington. D C 2055o. Attention Docketing and methods acceptable to the NRC staff of implementing specific parts of the Commission's regulations, to delineate techniques used by the staff in evalu          The guides are issued in the following ten broad divisions"
REGULATORY GUIDE 1.59 DESIGN BASIS FLOODS
ating specific problems or postulated accidents, or to provide guidance to appli cants. Regulatory Guides are not substitutes for regulations, and compliance           t  Power Reactors                      6. Products with them is not required Methods and solutions different from those set out in       2. Research and Test Reactors          7. Transportation the guides wdi be acceptable if they provide a basis for the findings requisite to     3  Fuels and Materials Facilities      8  Occupational Health the issuance or continuance u Ia permit or license by the Commission                   4  Environmental and Siting            9. Antitrust Review Comments and suggestions for improvenments in these guides are encouraged              5  Materials and Plant Protection      10  General at all times, and guides will lbe revised. as appropriate, to accommodate coa ments and to reflect new intormatn or eyperience However. comments on                  Copies of published guides may be obtained by written request indicating the this guide. if received within about Iwo months after its issuance, will be par        divisions desired to the U S Nuclear Regulatory Commission. Washington. D.C
FOR
  -culariyuseful in evaluating the need for an early revision                          20655. Attention: Director. Office of Standards Development r'11 cx)--,7'-0" C."
NUCLEAR POWER PLANTS
                                                                                              66F(I
USNRC REGULATORY GUIDES  
                                                                                    I
Regulatory Guides or* ihsed to describe and make available to the public methods acceptable to the NRC staff of Implementing specific parts of the Commission's regulations, to delineate techniques used by the staff in evaluating specific problems at postulated accidents. or to provide guidance to applicants. Regulatory Guides are not sub*titute& for regulations, and compliance with them ia not required.
 
Methods and solutions different from those mt out in the guides will be accept able if they provide a basis for the findings requisite to the issuance or continuance of a permit or license by the Commission.
 
Comments and suggestions for Improvements In these guides erai ncounrged at ll timnes. end guides will be revised, as appropriale. to accommnodate comments and to reflect new information or experience.
 
This guide was revised as a result of substantive comments received from the public and additional staff review.
 
Comments Ohould be sent to the Secretary of the Commission, US. Nuclear Regu latory Commision. Washington, D.C. 2055, Attention: Docketing and Service Branch.
 
The gluides e issued in the following ten broad divisions:
 
===1. Power Reactors ===
 
===6. Products ===
2. Research and Test Reactors
 
===7. Transportation ===
3. Fuels end Materials Facilities S. Occupational Health
4. Environmental end Siting
9. Antitrust Review S. Materials nd Plant Protection
10. General Requests for single copies of issued guides (which may be reproduced) or for place ment on an automatic distribution list for single copies of future guides in specific divisions should be made in writing to the US. Nuclear Regulatory Commision.
 
Washington. D.C.
 
20555. Attention:  
Director. Division of Document Control.
 
I
 
UNITED STATES
NUCLEAR REGULATORY COMMISSION
WASHINGTON, D. C. 20555 July 30, 1980
ERRATA
Regulatory Guide 1.59, Revision 2, August 1977
"Design Basis Floods for Nuclear Power Plants"
New information that affects the Probable Maximum the Upper Ohio River for drainage areas of 10,000
has been identified.
 
The changes to the isolines in the Upper Ohio River Basin and do not have any the Design Basis Flood for existing plants.
 
Flood (PMF) isolines for and 20,000 square miles affect only a small area significant impact on As a result of the new information, revised Figures B.6 and B.7 transmitted herewith should be used in future PMF discharge determinations when the simplified methods presented in Appendix B to the Regulatory Guide are being used.
 
In addition, appropriate changes have been made to the PMF data on pages 28 and 30 of Table B.1, which are also transmitted herewith.


TABLE OF CONTENTS
TABLE OF CONTENTS
                                                                                                                            Page A . IN TRO DUCTIO N            . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                       .59-5  
Page  
 
==A. INTRODUCTION==
...  
........................................
1.59-5  


==B. DISCUSSION==
==B. DISCUSSION==
..........................                             .........................                                595
..  
.............................................  
1.59-5


==C. REGULATORY POSITION==
==C. REGULATORY POSITION==
.......................                     .................................                      59-7  
....................................  
1.59-7  


==D. IMPLEMENTATION==
==D. IMPLEMENTATION==
.........................                   ....................................                      .59-8 APPENDIX A - Probable Maximum and Seismically Induced Floods on Streams .....                            .............    .59-9 APPENDIX B - Alternative Methods of Estimating Probable Maximum Floods .......                               .............    .59-23 *
........................................  
APPENDIX C - Simplified Methods of Estimating Probable Maximum Surges .......                             ..............      .59-53
1.59-8 APPENDIX A-Probable Maximum and Seismically Induced Floods on Streams and Coastal Areas 1.59-9 APPENDIX B-Alternative Methods of Estimating Probable Maximum Floods ...........  
'LTines indicate substantive changes from previous issue.
1.59-11 APPENDIX C-Simplified Methods of Estimating Probable Maximum Surges ............  
1.59-41
*Lines indicate substantive changes from previous issue.


1.59-3
1.59-3


==A. INTRODUCTION==
==A. INTRODUCTION==
General Design Criterion 2, "Design Bases for Protection Against Natural Phenomena," of Appen dix A, "General Design Criteria for Nuclear Power Plants," to 10 CFR Part 50, "Licensing of Produc tion and Utilization Facilities," requires, in part, that structures, systems, and components important to safety be designed to withstand the effects of natural phenomena such as floods, tsunami, and seiches without loss of capability to perform their safety functions. Criterion 2 also requires that design bases for these structures, systems, and components reflect (I) appropriate consideration of the most severe of the natural phenomena that have been historically reported for the site and surrounding region, with sufficient margin for the limited accuracy and quan tity of the historical data and the period of time in which the data have been accumulated, (2) ap propriate combinations of the effects of normal and accident conditions with the effects of the natural phenomena, and (3) the importance of the safety functions to be performed.
Paragraph 100.10(c) of 10 CFR Part 100, "Reactor Site Criteria," requires that physical characteristics of the site, including seismology, meteorology, geology, and hydrology, be taken into account in determining the acceptability of a site for a nuclear power reactor.
Section IV(c) of Appendix A, "Seismic and Geologic Siting Criteria for Nuclear Power Plants,"
to 10 CFR Part 100 suggests investigations for a detailed study of seismically induced floods and water waves. The appendix also suggests [Section IV(cXiii)] that the determination of design bases for seismically induced floods and water waves be based on the results of the required geologic and seismic in vestigations and that these design bases be taken into account in the design of the nuclear power plant.
This guide discusses the design basis floods that nuclear power plants should be designed to withstand without loss of capability for cold shutdown and maintenance thereof. The design requirements for flood protection are the subject of Regulatory Guide
1.102, "Flood Protection for Nuclear Power Plants."
The material previously contained in Appendix A,
"Probable Maximum and Seismically Induced Floods on Streams," has been replaced by American National Standards Institute (ANSI) Standard N170
1976, "Standards for Determining Design Basis Flooding at Power Reactor Sites,", which has been endorsed as acceptable by the NRC staff with the ex ception noted in Appendix A. In addition to informa tion on stream flooding, ANSI N170-1976 contains methodology for estimating probable maximum sur
'Copies of ANSI Standard N 170-1976 may be purchased from the American Nuclear Society. 555 North Kensington Avenue. La Grange Park, IL 60525.
ges and seiches at estuaries and coastal areas on oceans and large lakes. Appendix B gives timesaving alternative methods of estimating the probable max imum flood along streams, and Appendix C gives a simplified method of estimating probable maximum surges on the Atlantic and Gulf coasts. The Advisory Committee on Reactor Safeguards has been con sulted concerning this guide and has concurred in the regulatory position.


==B. DISCUSSION==
==B. DISCUSSION==
General Design Criterion 2, "Design Bases for Pro-                Nuclear power plants should be designed to prevent tection Against Natural Phenomena," of Appendix A to            the loss of capability for cold shutdown and mainten-
Nuclear power plants should be designed to pre vent the loss of capability for cold shutdown and maintenance thereof resulting from the most severe flood conditions that can reasonably be predicted to occur at a site as a result of severe hydro meteorological conditions, seismic activity, or both.
  10 CFR Part 50, "General Design Criteria for Nuclear            ance thereof resulting from the most severe flood Power Plants," requires, in part, that structures, systems,    conditions that can reasonably be predicted to occur at a and components important to safety be designed to              site as a result of severe hydrometeorological conditions, withstand the effects of natural phenomena such as              seismic activity, or both.


floods, tsunami, and seiches without loss of capability to The Corps of Engineers for many years has studied perform their safety functions. Criterion 2 also requires that design bases for these structures, systems, and            conditions and circumstances relating to floods and components reflect (1) appropriate consideration of the        flood control. As a result of these studies, it has developed a definition for a Probable Maximum Flood most severe of the natural phenomena that have been (PMF)' and attendant analytical techniques for esti- historically reported for the site and surrounding region, mating, with an acceptable degree of conservatism, flood with sufficient margin for the limited accuracy and levels on streams resulting from hydrometeorological quantity of the historical data and the period of time in conditions. For estimating seismically induced flood which the data have been accumulated, (2) appropriate levels, an acceptable degree of conservatism for evalua- combinations of the effects of normal and accident ting the effects of the initiating event is provided by conditions with the effects of the natural phenomena, Appendix A to 10 CFR Part 100.
The Corps of Engineers for many years has studied conditions and circumstances relating to floods and flood control. As a result of these studies, it has developed a definition for a Probable Maximum Flood (PMFY and attendant analytical techniques for estimating, with an acceptable degree of conser vatism, flood levels on streams resulting from hydrometeorological conditions. For estimating seismically induced flood levels, an acceptable degree of conservatism for evaluating the effects of the in itiating event is provided by Appendix A to 10 CFR  
Part 100.


and (3) the importance of the safety functions to be performed.                                                          The conditions resulting from the worst site-related flood probable at the nuclear power plant (e.g., PMF,
The conditions resulting from the worst site-related flood probable at the nuclear power plant (e.g., PMF,  
      Paragraph 100.10(c) of 10 CFR Part 100, "Reactor            seismically induced flood, seiche, surge, severe local Site Criteria," requires that physical characteristics of      precipitation) with attendant wind-generated wave activ- the site, including seismology, meteorology, geology,          ity constitute the design basis flood conditions that and hydrology, be taken into account in determining the        safety-related structures, systems, and components iden- acceptability of a site for a nuclear power reactor.            tified in Regulatory Guide 1.292 should be designed to withstand and retain capability for cold shutdown and Section IV(c) of Appendix A, "Seismic and Geologic          maintenance thereof.
seismically induced flood, seiche, surge, severe local precipitation) with attendant wind-generated wave activity constitute the design basis flood conditions that safety-related structures, systems, and compo nents identified in Regulatory Guide 1.291 should be  
'Corps of Engineers' Probable Maximum Flood definition appears in many publications of that agency such as Engineering Circular EC 1110-2-27, Change 1, "Engineering and Design-Policies and Procedures Pertaining to Determination of Spillway Capacities and Freeboard Allowances for Dams," dated 19 Feb. 1968. The Probable Maximum Flood is also directly analogous to the Corps of Engineers' "Spillway Design Flood" as used for dams whose failures would result in a significant loss of life and property.


'* Siting Criteria for Nuclear Power Plants," to 10 CFR
'Reguiatory Guide
  Part 100 suggests investigations for a detailed study of            For sites along streams, the PMF generally provides seismically induced floods and water waves. The ap-            the design basis flood. For sites along lakes or seashores, pendix also suggests [Section IV(c)(iii)] that the deter-      a flood condition of comparable severity could be mination of design bases for seismically induced floods          'Corps of Engineers' Probable Maximum Flood definition ap- and water waves be based on the results of the required            pears in many publications of that agency such as Engineering geologic and seismic investigations and that these design          Circular EC 1110-2-27, Change 1, "Engineering and Design- bases be taken into account in the design of the nuclear           Policies and Procedures Pertaining to Determination of Spill- power plant.                                                       way Capacities and Freeboard Allowances for Dams," dated 19 Feb. 1968. The Probable Maximum Flood is also directly analogous to the Corps of Engineers' "Spillway Design Flood"
1.29,
                                                                    as used for dams whose failures would result in a significant This guide discusses the design basis floods that              loss of life and property.
"Seismic Design Classification,"  
identifies structures, systems, and components of light-water cooled nuclear power plants that shouild be designed to withstand the effects of the Safe Shutdown Earthquake and remain func tional. These structures, systems, and components are those neces sary to ensure (1) the integrity of the reactor coolant pressure boundary, (2) the capability to shut down the reactor and maintain it in a safe shutdown condition, or (3) the capability to prevent or mitfgiate the consequences of accidents that could result in poten tial offsite exposures comparable to the guideline exposures of 10
CFR Part 100. These same structures, systems, and components should also be designed to withstand conditions resulting from the design basis flood and retain capability for cold shutdown and maintenance thereof of other types of nuclear power plants. It is expected that safety-related structures, systems, and components of other types of nuclear power plants will be identified in future regulatory guides. In the interim, Regulatory Guide 1.29 should be used as guidance when identifying safety-related structures, systems, and components of other types of nuclear power plants.


nuclear power plants should be. designed to withstand          2Regulatory Guide 1.29, "Seismic Design Classification,"
1.59-5 I
    without loss of capability for cold shutdown and                  identifies structures, systems, and components of light-water- maintenance thereof. The design requirements for flood            cooled nuclear power plants that should be designed to protection are the subject of Regulatory Guide 1.102              withstand the effects of the Safe Shutdown Earthquake and
I
    "Flood Protection for Nuclear Power Plants."                      remain functional. These structures, systems, and components are those necessary to ensure (1) the integrity of the reactor coolant pressure boundary, (2) the capability to shut down the reactor and maintain it in a safe shutdown condition, or (3) the Appendix A outlines the nature and scope of detailed          capability to prevent or mitigate the consequences of accidents hydrologic engineering activities involved in determining        which could result in potential offsite exposures comparable to estimates for the probable maximum flood and for                  the guideline exposures of 10 CFR Part 100. These same seismically induced floods resulting from dam failures            structures, systems, and components should also be designed to withstand conditions resulting from the design basis flood and and describes the situations for which less extensive            retain capability for cold shutdown and maintenance thereof of analyses are acceptable. Two new appendices have been            other types of nuclear power plants. It is expected that added to this revision of the guide. Appendix B gives            safety-related structures, systems, and components of other timesaving alternative methods of estimating the prob-            types of nuclear power plants will be identified in future regulatory guides. In the interim, Regulatory Guide 1.29 should able maximum flood along streams and Appendix C                  'be used as guidance when identifying safety-related structures, gives a simplified method of estimating probable maxi-            systems, and components of other types of nuclear power mum surges on the Atlantic and Gulf coasts.                      plants.


1.59-5
designed to withstand and retain capability for cold shutdown and maintenance therof.


produced by the most severe combination of hydro-                      waves that may be caused by multiple dam failures in a meteorological parameters reasonably possible, such as3                region where dams may be located close enough together may be produced by a Probable Maximum Hurricane,                       that a single seismic event can cause multiple failures.
For sites along streams, the PMF generally provides the design basis flood. For sites along lakes or seashores, a flood condition of comparable severity could be produced by the most severe com-. 
bination of hydrometeorological parameters reasonably possible, such as may be produced by a Probable Maximum Hurricane4 or by a Probable Maximum Seiche. On estuaries, a Probable Max imum River Flood, a Probable Maximum Surge, a Probable Maximum Seiche, or a reasonable com bination of less severe phenomenologically caused flooding events should be considered in arriving at design basis flood conditions comparable in fre quency of occurrenfe with a PMF on streams.


or by a Probable Maximum Seiche. On estuaries, a Probable Maximum River Flood, a Probable Maximum                            Each of the severe flood types discussed above should Surge, a Probable Maximum Seiche, or a reasonable                      represent the upper limit of all potential phenomeno- combination of less severe phenomenologically caused                  logically caused flood combinations considered reason- flooding events should be considered in arriving at design            ably possible. Analytical techniques are available and basis flood conditions comparable in frequency of                      should generally be used for prediction at individual occurrence with a PMF on streams.                                      sites. Those techniques applicable to PMF and seismi- cally induced flood estimates on streams are presented in In addition to floods produced by severe hydro-                    Appendices A and B to this guide. Similar appendices for meteorological conditions, the most severe seismically                 coastal, estuary, and Great Lakes sites, reflecting com- induced floods reasonably possible should be considered               parable levels of risk, will be issued as they become for each site. Along streams and estuaries, seismically               available. Appendix C contains an acceptable method of induced floods may be produced by dam failures or                     estimating hurricane-induced surge levels on the open landslides. Along lakeshores, coastlines, and estuaries,               coasts of the Gulf of Mexico and the Atlantic Ocean.
In addition to floods produced by severe hydrometeorological conditions, the most severe seismically induced floods reasonably possible should be considered for each site. Along streams and es tuaries, seismically induced floods may be produced by dam failures or landslides. Along lakeshores, coastlines, and estuaries, seismically induced or tsunami-type flooding should be considered. Con sideration of seismically induced floods should in clude the same range of seismic events as is postulated for the design of the nuclear plant. For in stance, the analysis of floods caused by dam failures, landslides, or tsunami requires consideration of seismic events of the severity of the Safe Shutdown Earthquake occurring at the location that would produce the worst such flood at the nuclear power plant site. In the case of seismically induced floods along rivers, lakes, and estuaries that may be produced by events less severe than a Safe Shutdown Earthquake, consideration should be given to the coincident occurrence of floods due to severe hydrometeorological conditions, but only where the effects on the plant are worse than and the probability of such combined events may be greater than an individual occurrence of the most severe event of either type. Appendix A contains acceptable combinations of such events. For the specific case of seismically induced floods due to dam failures, an evaluation should be made of flood waves that may be caused by domino-type dam failures triggered by a seismically induced failure of a critically located dam and of flood -waves that may be caused by multiple dam failures in a region where dams may be located close enough together that a single seismic event can cause multiple failures.


seismically induced or tsunami-type flooding shoUld be considered. Consideration of seismically induced floods                    Analyses of only the most severe flood conditions should include the same range of seismic events as is                  may not indicate potential threats to safety-related postulated for the design of the nuclear plant. For                    systems that might result from combinations of flood instance, the analysis of floods caused by dam failures,              conditions thought to be less severe. Therefore, reason- landslides, or tsunami requires consideration of seismic              able combinations of less-severe flood conditions should events of the severity of the Safe Shutdown Earthquake                also be considered to the extent needed for a consistent occurring at the location that would produce the worst                level of conservatism. Such combinations should be such flood at the nuclear power plant site. In the case of            evaluated in cases where the probability of their existing seismically induced floods along rivers, lakes, and es-                at the same time and having significant consequences is tuaries which may be produced by events less severe                    at least comparable to. that associated with the most than a Safe Shutdown Earthquake, consideration should                  severe hydrometeorological or seismically induced flood.
Each of the severe flood types discussed above should represent the upper limit of all potential phenomenologically caused flood combinations con sidered reasonably possible. Analytical techniques are available and should generally be used for predic
"See References 2 and 5, Appendix C.


be given to the coincident occurrence of floods due to                For example, a failure of relatively high levees adjacent          (
tion at individual sites. Those techniques applicable to PMF and seismically induced flood estimates on streams are presented in Appendices A and B of this guide. For sites on coasts, estuaries, and large lakes, techniques are presented in Appendices A and C of this guide.
severe hydrometeorological conditions, but only where                  to a plant could occur during floods less severe than the the effects on the plant are worse than and the                        worst site-related flood, but would produce conditions probability of such combined events may be greater than                more severe than would result during a greater flood an individual occurrence of the most severe event of                  (where a levee failure elsewhere would produce less either type. For example, a seismically induced flood                 severe conditions at the plant site).
produced by an Operating Basis Earthquake (as defined in Appendix A to 10 CFR Part 100) coincident with a                        Wind-generated wave activity may produce severe runoff-type flood of Standard Project Flood4 severity                  flood-induced static and dynamic conditions either may be considered to have approximately the same                      independent of or coincident with severe hydrometeoro- severity as the seismically induced flood from an                      logical or seismic flood-producing mechanisms. For earthquake of Safe Shutdown severity coincident with                  example, along a lake, reservoir, river, or seashore, about a 25-year flood. For the specific case of seismi-                reasonably severe wave action should be considered cally induced floods due to dam failures, an evaluation              coincident with the probable maximum water level should be made of flood waves that may be caused by                    conditions.5 The coincidence of wave activity with domino-type dam failures triggered by a seismically                    probable maximum water level conditions should take induced failure of a critically located dam and of flood              into account the fact that sufficient time can elapse between the occurrence of the assumed meteorological mechanism and the maximum water level to allow See References 2 and 4, Appendix C.


4 The Standard Project Flood (SPF) is the flood resulting from         'Probable Maximum Water Level is defined by the Corps of the most severe flood-producing rainfall depth-area-duration          Engineers as "the maximum still water level (i.e., exclusive of relationship and isohyetal pattern of any storm that is                local coincident wave runup) which can be produced by the considered reasonably characteristic of the region in which the        most severe combination of hydrometeorological and/or watershed is located. If snowmelt may be substantial, appropri-        seismic parameters reasonably possible for a particular location.
Analyses of only the most severe flood conditions may not indicate potential threats to safety-related systems that might result from combinations of flood conditions thought to be less severe. Therefore, reasonable combinations of less-severe flood condi tions should also be considered to the extent needed for a consistent level of conservatism. Such combina tions should be evaluated in cases where the probability of their existing at the same time and hav ing significant consequences is at least comparable to that associated with the most severe hydro meteorological or seismically induced flood. For ex ample, a failure of relatively high levees adjacent to a plant could occur during floods less severe than the worst site-related flood, but would produce condi tions more severe than would result during a greater flood (where a levee failure elsewhere would produce less severe conditions at the plant site). 
Wind-generated wave activity may produce severe flood-induced static and dynamic conditions either independent of or coincident with severe hydrometeorological or seismic flood-producing mechanisms. For example, along a lake, reservoir, river, or seashore, reasonably severe wave action should be considered coincident with the probable maximum water level conditions.' The coincidence of wave activity with probable maximum water level conditions should take into account the fact that suf ficient time can elapse between the occurrence of the assumed meteorological mechanism and the max imum water level to allow subsequent meteorological activity to produce substantial wind-generated waves coincident with the high water level. In addition, the most severe wave activity at the site that can be generated by distant hydrometeorological activity should be considered' For instance, coastal locations may be subjected to severe wave action caused by a distant storm that, although not as severe as a local storm (e.g., a Probable Maximum Hurricane), may produce more severe wave action because of a very long wave-generating fetch. The most severe wave ac tivity at the site that may be generated by conditions at a distance from the site should be considered in such cases. In addition, assurance should be provided
'Probable Maximum Water Level is defined by the Corps of Engineers as "the maximum still water level (i.e., exclusive of local coincident wave runup) which can be produced by the most severe combination of hydrometeorological and/or seismic parameters reasonably possible for a particular location. Such phenomena are hurricanes, moving squall lines, other cyclonic meteorological events, tsunami, etc., which, when combined with the physical response of a body of water and severe ambient hydrological con ditions, would produce a still water level that has virtually no risk of being exceeded."
1.59-6 K
S
I
I
 
that safety systems necessary for cold shutdown and maintenance thereof are designed to withstand the static and dynamic effects resulting from frequent flood levels (i.e., the maximum operating level in reservoirs and the 10-year flood level in streams)
coincident with the waves that would be produced by the Probable Maximum Gradient Wind' for the site (based on a study of historical regional meteorology). 
 
==C. REGULATORY POSITION==
1. The conditions resulting from the worst site related flood probable at a nuclear power plant (e.g.,
PMF, seismically induced flood, hurricane, seiche, surge, heavy local precipitation) with attendant wind generated wave activity constitute the design basis flood conditions that safety-related structures, systems, and components identified in Regulatory Guide 1.29 (see footnote 3) must be designed to withstand and retain capability for cold shutdown and maintenance thereof.
 
a. The PMF on streams, as defined in Appendix A and based on the analytical techniques summarized in Appendices A and B of this guide, provides an ac ceptable level of conservatism for estimating flood levels caused by severe hydrometeorological con ditions.
 
b. Along lakeshores, coastlines, and estuaries, estimates of flood levels resulting from severe surges, seiches, and wave action caused by hydrometeorological activity should be based on criteria comparable in conservatism to those used for Probable Maximum Floods. Criteria and analytical techniques providing this level of conservatism for the analysis of these events are summarized in Ap pendix A of this guide. Appendix C of this guide pre sents an acceptable method for estimating the still water level of the Probable Maximum Surge from hurricanes at open-coast sites on the Atlantic Ocean and Gulf of Mexico.
 
c. Flood conditions that could be caused by dam failures from earthquakes should also be considered in establishing the design basis flood. Analytical techniques for evaluating the hydrologic effects of seismically induced dam failures discussed herein are presented in Appendix A of this guide. Techniques for evaluating the effects of tsunami will be presented in a future appendix.


ate amounts are included with the Standard Project Storm              Such phenomena are hurricanes, moving squall lines, other rainfall. Where floods are predominantly caused by snowmelt,           cyclonic meteorological events, tsunami, etc., which, when the SPF is based on critical combinations of snow, temperature,        combined with the physical response of a body of water and and water losses. See "Standard Project Flood Determina-               severe ambient hydrological conditions, would produce a still tions," EM 1110-2-1411, Corps of Engineers, Departrlhent of            water level that has virtually no risk of being exceeded." (See the Army (revised March 1965).                                        Appendix A to this guide.)
d. Where upstream dams or other features that provide flood protection are present, in addition to the analyses of the most severe floods that may be in duced by either hydrometeorological or seismic mechanisms, reasonable combinations of less-severe flood conditions and seismic events should also be
                                                                  1.59-6
6Probable Maximum Gradient Wind is defined as a gradient wind of a designated duration, which there is virtually no risk of ex ceeding.


subsequent meteorological activity to produce sub-                  establishing the design basis flood. A simplified analyti- stantial wind-generated waves coincident with the high              cal technique for evaluating the hydrologic effects of water level. In addition, the most severe wave activity at         seismically induced dam failures discussed herein is the site that can be generated by distant hydrometeoro-            presented in Appendix A of this guide. Techniques for logical activity should be considered. For instance,                evaluating the effects of tsunami will also be presented coastal locations may be subjected to severe wave action            in a future appendix.
considered to the extent needed for a consistent level of conservatism. The effect of such combinations on the flood conditions at the plant site should be evaluated in cases where the probability of such com binations occurring at the same time and having significant consequences is at least comparable to the probability associated with the most severe hydrometeorological or seismically induced flood.


caused by a distant storm that, although not as severe as a local storm (e.g., a Probable Maximum Hurricane),                         d. Where upstream dams or other features which may produce more severe wave action because of a very              provide flood protection are present, in addition to the long wave-generating fetch. The most severe wave                    analyses of the most severe floods that may be induced activity at the site that may be generated by conditions           by either hydrometeorological or seismic mechanisms, at a distance from the site should be considered in such            reasonable combinations of less-severe flood conditions cases. In addition, assurance should be provided that              and seismic events should also be considered to the safety systems necessary for cold shutdown and main-                extent needed for a consistent level of conservatism. The tenance thereof are designed to withstand the static and            effect of such combinations on the flood conditions at dynamic effects resulting from frequent flood levels (i.e.,         the plant site should be evaluated in cases where the the maximum operating level in reservoirs and the                  probability of such combinations occurring at the same
For relatively large streams, examples of acceptable combinations of runoff floods and seismic events that could affect the flood conditions at the plant arc con tained in Appendix A. Less-severe flood conditions, associated with the above seismic events, may be ac ceptable for small streams, that exhibit relatively short periods of flooding.
10-year flood level in streams) coincident with the waves          time and having significant consequences is at least that would be produced by the Probable Maximum                      comparable to the probability associated with the most Gradient Wind 6 for the site (based on a study of                   severe hydrometeorological or seismically induced flood.


historical regional meteorology).                                   On relatively large streams, examples of acceptable combinations of runoff floods and seismic events that
e. The effects of coincident wind-generated wave activity to the water levels associated with the worst site-related flood possible (as determined from paragraphs a, b, c, or d above) should be added to generally define the upper limit of flood potential.


==C. REGULATORY POSITION==
Acceptable procedures are contained in Appendix A
could affect the flood conditions at the plant include the Safe Shutdown Earthquake with the 25-year flood and
of this guide.
    1. The conditions resulting from the worst site-re-            the Operating Basis Earthquake with the Standard lated flood probable at a nuclear power plant (e.g., PMF,            Project Flood. Less severe flood conditions, associated seismically induced flood, hurricane,. seiche, surge, heavy          with the above seismic events, may be acceptable for local precipitation.) with attendant wind-generated wave            small streams which exhibit relatively short periods of activity constitute the design basis flood conditions that          flooding. The above combinations of independent events safety-related structures, systems, and components iden-            are specified here only with respect to the determination            fI
tified in Regulatory Guide 1.29 (see footnote 2) must be            of the design basis flood level.


designed to withstand and retain capability for cold shutdown and maintenance thereof.                                            e. The effects of coincident wind-generated wave activity to the water levels associated with the worst a. On streams the PMF, as defined by the Corps of            site-related flood possible (as determined from para- Engineers and based on the analytical techniques sum-              graphs a, b, c, or d above) should be added to generally marized in Appendices A and B of this guide, provides                define the upper limit of flood . potential. An an acceptable level of conservatism for estimating flood            acceptable analytical basis for wind-generated wave levels caused by severe hydrometeorological conditions.              activity coincident with probable maximum water levels is the assumption of a 40-mph overland wind from the b. Along lakeshores, coastlines, and estuaries.              most critical wind-wave-producing direction. However, if estimates of flood levels resulting from severe surges,            historical windstorm data substantiate that the 40-mph seiches, and wave action caused by hydrometeorological              event, including wind direction and speed, is more activity should be based on criteria comparable in                  extreme than has occurred regionally, historical data conservatism to those used for Probable -Maximum                    may be used. If the mechanism producing the maximum Floods. Criteria and analytical techniques providing this          water level, such as a hurricane, would itself produce level of conservatism for the analysis of these events will        higher waves, these higher waves should be used as the be summarized in subsequent appendices to this guide.               design basis.
2. As an alternative to designing hardened proteo ton' for all safety-related structures, systems, And components as specified in Regulatory Position 1 above, it is permissible not to provide hardened protection for some of these features if:
a. S ufficientt'warning time is shown to be available to shut the plant down and implement ade quate emergency procedures;
b. All safety-related structures, systems, and components identified in Regulatory Guide 1.29 (see footnote 3) arc designed to withstand the flood condi tions resulting from a Standard Project events with attendant wind-generated wave activity that may be produced by the worst winds of record and remain functional;
c. In addition to the analyses in paragraph 2.b  
-above, reasonable combinations of less-severe flood conditions are also considered to the extent needed for a consistent level of conservatism; and
'Hardened protction means structural provisions Incorporated in the plant design that will protect safety-related structures, systems, and components from the static and dynamic effects of floods. In addition, each component of the protection must be passive and In place, as it is to be used for flood protection, during normal plant operation. Examples of the types of flood protection. to be provided for nuclear power plants are contained in Regulatory Guide 1.102.


Appendix C of this guide presents an acceptable method for estimating the stillwater level of the Probable                    2. As an alternative to designing hardened protec- Maximum Surge from hurricanes at open-coast sites on                tion 7 for all safety-related structures, systems, and the Atlantic Ocean and Gulf of Mexico.                             components as specified in Regulatory Position 1 above, c. Flood conditions that could be caused by dam              "Hardened protection means structural provisions incorporated in the plant design that will protect safety-related structures, failures from earthquakes should also be considered in                systems, and components from the static and dynamic effects of floods. In addition, each component of the protection must
sFor sites along streams, this event is characterized by the Corps of Engineers' definition of a Standard Project Flood. Such floods have been found to produce flow rates generally 40 to 60 percent of the PMF. For sites along seashores, this event may be characterized by the Corps of Engineers' definition of a Standard Project Hurricane. For other sites, a comparable level, of risk should be assumed.
6                                                                    be passive and in place, as it is to be used for flood protection, Probable Maximum Gradient Wind is defined as a gradient wind        during normal plant operation. Examples of the types of flood of a designated duration, which there is virtually no risk of      protection to be provided for nuclear power plants are exceeding.                                                          contained in Regulatory Guide 1.102.


1.59-7
1.59-7


it is permissible not to provide hardened protection for                effects of the increased flood. The following should be some of these features if:                                              reported: 9 a. The type of investigation undertaken to a. Sufficient warning time is shown to be available            identify changed or changing conditions in the site to shut the plant down and implement adequate                          environs.
d. In addition to paragraph 2.b above, at least those structures, systems, and components necessary fbr cold shutdown and molntenance thereof are designed with hardened protective features to remain functional while withstanding the entire range of flood conditions up to and including the worst site related flood probable (e.g., PMF, seismically in.
 
emergency procedures;
                                                                                  b. The changed or changing conditions noted during the investigation.


b. All safety-related structures, systems, and com-                     c. The hydrologic engineering bases for estimating ponents identified in Regulatory Guide 1..29 (see foot- the effects of the changed conditions on the design basis note 2) are designed to withstand the flood conditions
duced flood, hurricane, surge, seiche, heavy local precipitation) with coincident wind-generated wave action as discussed in Regulatory Position I above.
                                                  8                      flood.


I resulting from a Standard Project event with attendant wind-generated      wave  activity  that  may  be produced by d. Safety-related structures, systems, or com- the worst winds of record and remain functional;
3. During the economic life of a nuclear power plant, unanticipated changes to the site environs which may adversely affect the flood-producing characteristics of the environs are possible. Examples include construction of a dam upstream or downstream of the plant or, comparably, construc tion of a highway or railroad bridge and embank ment that obstructs the flood flow of a river and con struction of a harbor or deepening of an existing har bor near a coastal or lake site plant.
                                                                          ponents (identified in paragraph 2.b above) affected by the changed conditions in the design basis flood should be identified along with modifications to the plant c. In addition to the analyses in paragraph 2.b                facility necessary to afford protection during the in- above, reasonable combinations of less-severe flood                    creased flood conditions. If emergency operating pro- conditions are also considered to the extent needed for a             cedures must be used to mitigate the effects of these consistent level of conservatism; and                                  new flood conditions, the emergency procedures devel- oped or modifications to existing procedures should be provided.


d. In addition to paragraph 2.b above, at least those structures, systems, and components necessary for                    4. Proper utilization of the data and procedures in cold shutdown and maintenance thereof are designed                      Appendices B and C will result in PMF peak discharges with hardened protective features to remain functional                  and PMS peak stillwater levels which will in many cases while withstanding the entire range of flood conditions                be approved by the NRC staff with no further verifica- up to and including the worst site-related flood probable              tion. The staff will continue to accept for review (e.g., PMF, seismically induced flood, hurricane, surge.                detailed PMF and PMS analyses that result in less conservative estimates than those obtained by use of
Significantly adverse changes in the runoff or other flood-producing characteristics of the site environs, as they affect the design basis flood, should be iden tified and used as the basis to develop or modify emergency operating procedures, if necessary, to mitigate the effects of the increased flood.
                                                                                                                                            ( _4 seiche, heavy local precipitation) with coincident wind- generated wave action as discussed in Regulatory Posi-                Appendices B and C. In addition, previously reviewed tion I above.                                                          and approved detailed PMF and PMS analyses will continue to be acceptable even though the data and procedures in Appendices B and C result in more
      3. During the economic life of a nuclear power plant,              conservative estimates.


unanticipated changes to the site environs which may
4. Proper utilization of the data and procedures in Appendices B and C will result in PMF peak dis charges and PMS peak stiliwater levels which will in many cases be approved by the NRC staff with no further verification. The staff will continue to accept for review detailed PMF and PMS analyses that result in less conservative estimates than those ob tained by use of Appendices B and C. In addition, previously reviewed and approved detailed PMF and PMS analyses will continue to be acceptable even though the data and procedures in Appendices B and C result in more conservative estimates.


==D. IMPLEMENTATION==
==D. IMPLEMENTATION==
affect the flood-producing characteristics of the environs are possible. Examples include construction of a dam                      The purpose of this section is to provide information upstream or downstream of the plant, or comparably,                    to license applicants and licensees regardirng the NRC
The purpose of this section is to provide informa tion to license applicants and licensees regarding the NRC staff's plans for using this regulatory guide.
  construction of a highway or railroad bridge and                      staff's plans for using this regulatory guide.


embankment that obstructs the flood flow of a river, and construction of a harbor or deepening of an existing                  This guide reflects current NRC practice. Therefore, harbor near a coastal or lake site plant.                              except in those cases in which the applicant or licensee proposes an acceptable alternative method for comply- ing with specified portions of the Commission's regula- Significant changes in the runoff or other flood-                  tions, the method described herein is being and will producing characteristics of the site environs, as they                continue to be used in the evaluation of submittals for affect the design basis flood, should be identified and                construction permit applications until this guide is used as the basis to develop or modify emergency                      revised as a result of suggestiQns from the public or operating procedures, if necessary, to mitigate the                    additional staff review.
This guide reflects current NRC practice.


8 For sites along streams, this event is characterized by the Corps    9 of Engineers' definition of a Standard Project Flood. (Also, see      Reporting should be by special report to the appropriate NRC
Therefore, except in those cases in which the appli cant or licensee proposes an acceptable alternative method for complying with specified portions of the Commission's regulations, the methods described herein are being. and will continue to be used in the evaluation of submittals for construction permit ap plications until this guide. is revised as a result of sug gestions from the public or additional'staff review.
    footnote 4.) Such floods have been found to produce flow rates        Regional Office and to the Director of the Office of Inspection generally 40 to 60 percent of the PMF. For sites along                and Enforcement. Requirement for such reports should be seashores, this event may be characterized by the Corps of            included in theTechnical Specifications (Appendix A) unless it Engineers' definition of a Standard Project Hurricane. For            can be demonstrated that such reports will not be necessary other sites, a comparable level of risk should be assumed.            during the life of the plant.


1.59-8
1.59-8


APPENDIX A
APPENDIX A  
                            PROBABLE MAXIMUM AND SEISMICALLY INDUCED
PROBABLE MAXIMUM AND SEISMICALLY INDUCED  
                                                    FLOODS ON STREAMS
FLOODS ON STREAMS AND COASTAL AREAS
                                                        TABLE OF CONTENTS
The material preiiously contained in Appendix A
                                                                                                                                  Page A. 1 Introduction .........           ......................                                                                     1.59-11 A. 2  Probable Maximum Flood        ................                                                                               1.59-11 A. 3  Hydrologic Characteristics    . . . . . . . . . . . . . . . .                                                               1.59-12 A. 4  Flood Hydrograph Analyses          ...............                                                                           1.59-13 A. 5 Precipitation Losses and Base Flow            ............                                                                 1.59-13 A. 6 Runoff M odel      . . . . . . . . . . . . .. . .. . . . .                                                                 1.59-14 A. 7 Probable Maximum Precipitation Estimates .........                                                                           1.59-15 A. 8  Channel and Reservoir Routing ..............                                                                                 1.59-17 A. 9 Probable Maximum Flood Hydrograph Estimates ..........                                                                       1.59-17 A.1O  Seismically Induced Floods .....               .................                           . . . . . . . . . . . . . . . . 1.59-18 A.] I Water Level Determinations        .....               . ....           ....           . . . . . . . . . . . . . . . . . 1.59-18 A.12  Coincident Wind-Wave Activity ..............                                               . . . . . . . . . . . . . . . . 1.59-19 REFERENCES ...................                           .....................................                               ...1.59-20
has been replaced by American National Standards Institute (ANSI) Standard.N170-1976, "Standards for Determining Design Basis Flooding at Power Reactor Sites," with the following exception:
                                                                        1.59-9
Sections 5.5.4.2.3 and 5.5.5 of ANSI N170-1976 contain references to methods for evaluating the cro- sion failure of earthfill or roekfrdl dams and determin ing the resulting outflow hydrographs. The staff has found that some of these methods may not be conser vative because they predict slower rates of erosion than have historically occurred. Modifications to the models may be made to increase their conservatism.
 
Such modifications will be reviewed by the NRC staff on a case-by-case basis.
 
1.59-9
 
APPENDIX B
ALTERNATIVE METHODS OF
ESTIMATING PROBABLE MAXIMUM FLOODS
TABLE OF CONTENTS
B.
 
==I. INTRODUCTION==
.....................   
B.2 SCOPE
...........................
B.3 PROBABLE MAXIMUM FLOOD PEAK DISCHARGE
B.3.1 Use of PMF Discharge Determinations
........ 
B.3.2 Enveloping Isolines of PMF Peak Discharge.....  
B.3.2.1 Preparation of Maps ................
B.3.2.2 Use of Maps .............  
B.3.3 Probable Maximum Water Level ............
B.3.4 Wind-Wave Effects ...................   
B.4 LIMITATIONS .......................   
REFERENCES ...........................   
FIGURES ..............................   
TABLE
.............................
FIGURES
Page
.......1.59-12
1.59-12
1.59-12
1.59-12
1.59-12
1.59-12
1.59-13
1.59-13
1.59-13
1.59-13
1.59-14
1.59-15
1.59-23
1.59-15
1.59-16
1.59-17
1.59-18  
1.59-19
1.59-20
1.59-21
1.59-22 Figure B. I-Water Resources Regions
.....................
B.2-Probable Maximum Flood (Enveloping Isolines)-100 Sq. Mi.
 
B.3-Probable Maximum Flood (Enveloping Isolines)-500 Sq. Mi.
 
B.4-Probable Maximum Flood (Enveloping Isolines)-1,000 Sq. Mi.
 
B.5-Probable Maximum Flood (Enveloping Isolines)-5,000 Sq. Mi.
 
B.6-Probable Maximum Flood (Enveloping Isolines)-10,000 Sq. Mi.
 
.B.7--Probable Maximum Flood (Enveloping Isolines)-20,000 Sq. Mi.
 
B.8-Example of Use of Enveloping Isolines ................
TABLE
Table B.I--Probable Maximum Flood Data
..
1.59-23
1.59-11
.
.
. .
.
.
.
I
g I
D
D
I
 
0.1 INTRODUCTION
This appendix presents timesaving alternative methods of estimating the probable maximum flood (PMF) peak discharge for nuclear facilities on non tidal streams in the contiguous United States. Use of the methods herein will reduce both the time neces sary for applicants to prepare license applications and the NRC staff's review effort.
 
The procedures are based on PMF values deter mined by the U.S. Army Corps of Engineers, by ap plicants for licenses that have been reviewed and ab cepted by the NRC staff, and by the staff and its con.
 
sultants. The information in this appendix was developed from a study made by Nunn, Snyder, and Associates, through a contract with NRC (Ref. 1).
PMF peak discharge determinations for the entire contiguous United States are presented in Table B. I.
 
Under some conditions, these may be used directly to evaluate the PMF at specific sites. In addition, maps showing enveloping isolines of PMF discharge for several index drainage areas are presented in Figures B.2 through B.7 for the contiguous United States east of the 103rd meridian, including instructions for and an example of their use (see Figure B.8). Because of the enveloping procedures used in preparing the maps, results from their use are highly conservative.
 
Limitations on the use of these generalized methods of estimating PMFs aretidgntified in Section B.4. These limitations should be considered in detail in assessing the applicability of the methods at specific sites.
 
Applicants for licenses for nuclear facilities at sites on nontidal streams in the contiguous United States have the option of using these methods in lieu of the more precise but laborious methods of Appendix A.
 
The results of application of the methods in this ap pendix will in many cases be accepted by the NRC
staff with no further verification.
 
0.2 SCOPE
The data and procedures in this appendix apply only to nontidal streams in the contiguous United States. Two procedures are included for nontidal streams east of the 103rd meridian.
 
Future studies are planned to determine the ap plicability of similar generalized methods and to develop such methods, if feasible, for other areas.
 
These studies, to be included in similar appendices, are anticipated for the main stems of large rivers and the United States west of the 103rd meridian, in cluding Hawaii and Alaska.
 
B.3 PROBABLE MAXIMUM FLOOD
PEAK DISCHARGE
The data presented in this section are as follows:
1. A tabulation of PMF peak discharge determina.
 
tions at specific locations throughout the contiguous United States. These data are subdivided into water resources regions, delineated on Figure B.1, and are tabulated in Table B.1.
 
2. A set of six maps, Figures B.2 through B.7, covering index drainage areas of 100, 500, 1,000,
5,000, 10,000, and 20,000 square miles, containing isolines of equal PMF peak discharge for drainage areas of those sizes east of the 103rd meridian.
 
B.3.1 Use of PMF Discharge Determinations The PMF peak discharge determinations listed in Table B.I are those computed by the Corps of Engineers, by the NRC staff and their consultants, or computed by applicants and accepted by the staff.
 
For a nuclear facility located near or adjacent to one of the streams listed in the table and reasonably close to the location of the PMF determination, that PMF may be transposed, with proper adjustment, or routed to the nuclear facility site. Methods of trans.
 
position, adjustment, and routing are given in stan dard hydrology texts and are not repeated here.
 
B.3.2 Enveloping Isollnes of PMF Peak Discharge B.3.2.1 Preparation of Maps For each of the water resources regions, each PMF
determination in Table B.A was plotted on logarithmic paper (cubic feet per second per square mile versus drainage area). It was found that there were insufficient data and too much scatter west of about the 103rd meridian, caused by variations in precipitation from orographic effects or by melting snowpack. Accordingly, the rest of the study was confined to the United States east of the 103rd meri dian. For sites west of the 103rd meridian, the methods of the preceding, section may be used.
 
Envelope curves were drawn for each region east of the 103rd meridian. It was found that the envelope curves generally paralleled the Creager curve (Ref. 2),
defined as Qi,46.0 CA (0.894A -0.048) -1 where Q is the discharge in cubic feet per second (cfs)
C is a. constant, taken as 100 for this study A is the drainage area in square miles.


(I
1.59-12 K
                  A.1 INTRODUCTION                                  Three exceptions to use of the above-described analyses are considered acceptable as follows:
      This appendix has been prepared to provide guidance for flood analyses required in support of applications for          a. No flood analysis is required for nuclear facility licenses for nuclear facilities to be located on streams.      sites where it is obvious that a PMF or seismically Because of the depth and diversity of presently available      induced flood has no bearing. Examples of such sites are techniques, this appendix summarizes acceptable                coastal locations (where it is obvious that surges, wave methods for estimating Probable Maximum Precipitation          action, or tsunami would produce controlling water (PMP), for developing rainfall-runoff models, for analyz-      levels and flood conditions) and hilltop or "dry" sites.


ing seismically induced dam failures, and for estimating the resulting water levels.                                        b. Where PMF or seismically induced flood estimates of a quality comparable to that indicated herein exist for The Probable Maximum Flood (PMF) may be                    locations near the site of the nuclear facility, the estimates may be extrapolated directly to the site if such thought of as one generated by precipitation and a extrapolations do not introduce potential errors of more seismically induced flood as one caused by dam failure.
Each PMF discharge determination of 50 square miles or more was adjusted to one or more of the six selected index drainage areas in accordance with the slope of the Creager curve. Such adjustments were made as follows:
PMF Within Drainage Area Range, sq. mi.


than about a foot in design basis water level estimates.
50 to 500
100 to 1,000
500 to 5,000
1,000 to 10,000
5,000 to 50,000
10,000 or greater Adjusted to Index Drainage Area, sq. mil.


For many sites, however, these two types do not (See Appendix B.)
100
  constitute the worst potential flood danger to the safety of the nuclear facilities. Subsequent appendices will present acceptable methods of analyzing other flood                c. It is recognized that an in-depth PMF estimate types, such as tsunami, seiches, and surges (in addition      may not be warranted because of the inherent capability to the surge method in Appendix C).                            of the design of some nuclear facilities to function safely with little or no special provisions or because the time and costs of making such an estimate are not com- The PMF on streams is compared with the upper limit        mensurate with the cost of providing protection. In such of flood potential that may be caused by other                  cases, other means of estimating design basis floods are phenomena to develop a basis for the design of acceptable if it can be demonstrated that the technique safety-related structures and systems. This appendix            utilized or the estimate itself is conservative. Similarly, outlines the nature and scope of detail.ed hydrologic          conservative estimates of seismically induced flood engineering activities involved in determining estimates        potential may provide adequate demonstration of for the PMF and for seismically induced floods resulting      nuclear facility safety.
500
1,000
5,000
10,000
20,000
. The PMF values so adjusted were plotted on maps of the United States east of the 103rd meridian, one map for each of the six index drainage areas. It was found that there were areas on each map with insuf ficient points to define isolines. To fill in such gaps, conservative computations of approximate PMF
peak discharge were made for each two-degree latitude-longitude intersection on each map. This was done by using enveloped relations between drainage area and PMF peak discharge (in cfs per inch of runoff), and applying appropriate probable max imum precipitation (PMP) at each two-degree latitude-longitude intersection. PMP values, obtained from References 3 and 4, were assumed to be for a 48 hour storm to which losses of 0.05 inch per hour were applied. These approximate PMF values were also plotted on the maps for each index drainage area and the enveloping isolines were drawn as shown on Figures B.2 through B.7.


-- rom dam failures and describes the situations fdr which less extensive analyses are acceptable.                                   A.2 PROBABLE MAXIMUM FLOOD
B.3.2.2 Use of Maps The maps may be used to determine PMF peak dis charge at a given site with a known drainage area as follows:
      Estimation of the PMF requires the determination of            Probable Maximum Flood studies should be com- the hydrologic response (losses, base flow, routing, and        patible with the specific definitions and criteria sum- runoff model) of watersheds to intense rainfall, verifica-    marized as follows:
1. Locate the site on the 100-square-mile map, Figure B.2.
  tion based on historical storm and runoff data (flood hydrograph analysis), the most severe precipitation                a. The Corps of Engineers defines the PMF as "the reasonably possible (PMP), minimum losses, maximum            hypothetical flood characteristics (peak discharge, base flow, channel and reservoir routing, the adequacy        volume, and hydrograph shape) that are considered to be of existing and proposed river control structures to          the most severe reasonably possible at a particular safely pass a PMF, water level determinations, and the        location, based on relatively comprehensive hydro- superposition of potential wind-generated wave activity.      meteorological analysis of critical runoff-producing pre- Seismically induced floods, such as may be produced by        cipitation (and snowmelt, if pertinent) and hydrologic dam failures or landslides, may be analytically evaluated      factors favorable for maximum flood runoff." Detailed using many PMF estimating components (e.g., routing            PMF determinations are usually prepared by estimating techniques, water level determinations) after conserva-        the areal distribution of PMP (defined below) over the tive assumptions of flood wave initiation (such as dam        subject drainage basin in critical periods of time and failures) have been made. Each potential flood com-           computing the residual runoff hydrograph likely to ponent requires an in-depth analysis. The basic data and      result with critical coincident conditions of ground results should be evaluated to ensure that the PMF            wetness and related factors. PMF estimates are usually estimate is conservative. In addition, the flood potential    based on the observed and deduced characteristics of from seismically induced causes should be compared            historical flood-producing stormsý Associated hydrologic with the PMF to ensure selection of the appropriate            factors are modified on the basis of hydrometeorological design basis flood. The seismically induced flood poten-      analyses to represent the most severe runoff conditions tial may be evaluated by simplified methods when              considered to be "reasonably possible" in the particular conservatively determined results provide acceptable          drainage basin under study. The PMF should be deter- iesign bases.                                                  mined for adjacent large streams. In addition, a local
                                                          1.59-11


PMF should be estimated for each local drainage course          records to "pre-project(s)"    and "with project(s)" con- that can influence safety-related facilities, including        ditions as follows:
2. Read and record the 100-square-mile PMF peak discharge by straight-line interpolation between the isolines.
drainage from the roofs of buildings, to assure that local intense precipitation cannot constitute a threat to the                (1) The term "pre-project(s) conditions" refers to safety of the nuclear facility.                                all characteristics of watershed features and develop- ments that affect runoff characteristics. Existing con- b. Probable Maximum Precipitation is defined by the        ditions are assumed to exist in the future if projects are Corps of Engineers and the National Oceanic and                to be operated in a similar manner during the life of the Atmospheric Administration (NOAA) as "the theoreti-            proposed nuclear facility and watershed runoff char- cally greatest depth of precipitation for a given duration    acteristics are not expected to change due to develop- that is meteorologically possible over the applicable          ment.


drainage area that would produce flood flows of which there is virtually no risk of being exceeded. These                    (2) The term "with project(s)" refers to the estimates usually involve detailed analyses of historical      future effects of projects being analyzed, assuming they flood-producing storms in the general region of the            will exist in the future and operate as specified. If drainage 'basin under study, and certain modifications        existing projects were not operational during historical and extrapolations of historical data and reflect more          floods and may be expected to be effective during the severe rainfall-runoff relations than actually recorded,       lifetime of the nuclear facility, their effects on historical insofar as these are deemed reasonably possible of            floods should be determined as part of the analyses occurrence on the basis of hydrometeorological reason-        outlined in Sections A.5, A.6, and A.8.
3. Repeat Steps 1 and 2 for 500, 1,000, 5,000,  
10,000, and 20,000 square miles from Figures B.3 through B.7.


ing." The PMP should represent the depth, time, and spade distribution of precipitation that approaches the            c. Surface and subsurface characteristics that affect upper limit of what the atmosphere and regional                runoff and streamflow to a major degree (e.g., large topography can produce. The critical PMP meteorologi-          swamp areas, noncontributing drainage areas, ground- cal conditions are based on an analysis of air-mass            water flow, and other watershed features of an unusual properties (e.g., effective precipitable water, depth of      nature which cause unusual characteristics of stream- inflow layer, temperatures, winds), synoptic situations        flow).
4. Plot the six PMF peak discharges so obtained on logarithmic paper against drainage area, as shown on Figure B.8.
prevailing during recorded storms in the region, topo- graphical features, season of occurrence, and location of d. Topographic features of the watershed and histor- the geographic areas involved. The values thus derived ical flood profiles or high water marks, particularly in are designated as the PMP, since they are determined the vicinity of the nuclear facility. For some sites one or within the limitations of current meteorological theory more gaging stations may be required at or very near the and available data and are based on the most effective combination of critical controlling factors.


facility site as soon as a site is selected to establish    (.
5. Draw a smooth curve through the points.
                                                                hydrologic parameters. (A regulatory guide is being prepared to provide guidance on hydrologic data collec- A.3 HYDROLOGIC CHARACTERISTICS                          tion.)
    Hydrologic characteristics of the watershed and e. Stream channel distances between river control stream channels relative to the facility site should be structures, major tributaries, and the facility site.


determined from the following:
Reasonable extrapolations above and below the defined curve may be made.
    a. A topographic map of the drainage basin showing            f. Data on major storms and resulting floods-of- watershed boundaries. for the entire basin and principal      record in the drainage basin. Primary attention should be tributaries and other subbasins that are pertinent. The        given to those events having a major bearing on map should include the location of principal stream            hydrologic computations. It is usually necessary to gaging stations and other hydrologically related record        analyze a few major floods-of-record in order to develop collection stations (e.g., streamflow, precipitation) and      unit hydrograph relations, infiltration indices, base flow the locations of existing and proposed reservoirs.            relationships, information on flood routing relationships, and flood profiles. Except in unusual cases, climatol- b. The drainage areas in each of the pertinent            ogical data available from the Department of Commerce, watersheds or subbasins above gaging stations, reservoirs,    the U.S. Army Corps of Engineers, National Oceanic and any river control structures, and any unusual terrain          Atmospheric Administration, and other public sources features that could affect flood runoff. All .major            are adequate to meet the data requirements for storm reservoirs and channel improvements that will have a          precipitation histories. The data should include:
major influence on streamflow should be considered. In addition, the age of existing structures and. information              (1) Hydrographs of major historical floods for concerning proposed projects affecting runoff character-      pertinent locations in the basin from the U.S. Geological istics or streamflow are needed to adjust streamflow          Survey or other sources, where available.


1.59-12
6. Read the PMF peak discharge at the site from the curve at the appropriate drainage area.


(2) Storm precipitation records, depth-area-                A.5 PRECIPITATION LOSSES AND BASE FLOW
B.3.3 Probable Maximum Water Level When the PMF peak discharge has been obtained as outlined in the foregoing sections, the" PMF still water level should be determined. The methods given in Appendix A are acceptable for this purpose.
    duration data, and any available isohyetal maps for the most severe local historical storms or floods that will be          Determination of the absorption capability of the used to estimate basin hydrological characteristics.            basin should consider antecedent and initial conditions and infiltration during each storm investigated. Antece- A.4 FLOOD HYDROGRAPH ANALYSES                            dent precipitation conditions affect precipitation losses and base flow. The assumed values should be verified by studies in the region or by detailed storm-runoff studies.


Flood hydrograph analyses and related computations The fundamental hydrologic factors would be derived by should be used to derive and verify the fundamental analyzing observed hydrographs of streamflow and hydrologic factors of precipitation losses (see Section related storms. A thorough study is essential to deter- A.5) and the runoff model (see Section A.6). The                mine basin characteristics and meteorological influences analyses of observed flood hydrographs' of streamflow affecting runoff from a specific basin. Additional discus- and related storm precipitation (Ref. 1) use basic data sion and procedures for analyses are contained in various and information referred to in Section A.3 above. The publications such as Reference 2. The following discus- sizes and topographic features of the subbasin drainage          sion briefly describes the considerations for determining areas upstream of the location of interest should be used the minimum losses applicable to the PMF.
B.3.4 Wind-Wave Effects Wind-wave effects should be superimposed on the PMF stillwater level. Criteria and acceptable methods are given in Appendihx A.


to estimate runoff response for each individual hydro- logically similar subbasin utilized in the total basin runoff model. Subbasin runoff response characteristics              a. Experience indicates that the capacity of a given are estimated from historical storm precipitation and            soil and its cover to absorb rainfall applied continuously streamflow records where such are available, and by              at high rate may rapidly decrease until a fairly definite synthetic means where no streamflow records are avail-          minimum rate of infiltration is reached, usually within a able. Reference 2 and the following provide guidance for        period of a few hours. Infiltration loss may include the analysis of flood hydrographs.                              initial conditions or may require separate determinations of initial losses. The order of decrease in infiltration a. The intensity, depth, and areal distribution of          capacity and the minimum rate attained are primarily precipitation causing runoff for each historical storm          dependent upon the type of ground cover, the size of (and rate of snowmelt, where this is significant) should        soil pores within the zone of aeration, and the condi- be analyzed. Time distributions of storm precipitation          tions affecting the rate of removal of capillary water
BA LIMITATIONS
- k are generally based on recording rainfall gages. Total          from the zone of aeration. Infiltration theory, with precipitation measurements (including data from non-            certain approximations, offers a practical means of recording gages) are usually distributed, in time, using        estimating the volume of surface runoff from intense precipitation recorders. Areal distributions of precipita-      rainfall. However, in applying the theory to natural tion, for each time increment, are generally based on a          drainage basins, several factors must be considered.
1. The NRC staff will continue to accept for review detailed PMF analyses that result in less con servative estimates. In addition, previously reviewed and approved detailed PMF analyses at specific sites will continue to be acceptable even though the data and procedures in this appendix result in more con servative estimates.


weighting procedure. The incremental precipitation over a particular drainage area is the sum of the precipitation
2 .The PMF estimates obtained as outlined in Sec tions B.3.1 and B.3.2 are peak discharges that should be converted to water level to which appropriate wind-wave effects should be added.
                                                                            (1) The infiltration capacity of a given soil at the for each precipitation gage weighted by the percentage beginning of a storm is related to antecedent field of the drainage area considered to be represented by the        moisture and the physical condition of the soil. There- rain gage.                                                       fore, the infiltration capacity for the same soil may vary appreciably from storm to storm.


b. Base flow is the time-distribution of the difference between gross runoff and net direct runoff.                            (2) The infiltration capacity of a soil is normally highest at the beginning of rainfall. Rainfall frequently c. Initial and infiltration losses are the time distrib-    begins at relatively moderate rates, and a substantial uted differences between precipitation and net direct            period of time may elapse before the rainfall intensity runoff.                                                          exceeds the prevailing infiltration capacity. It is gen- erally accepted that, a fairly substantial quantity of d. The combined effect of drainage area, channel            infiltration is required to satisfy initial soil moisture characteristics, and reservoirs on the runoff character-        deficiencies before runoff will occur, the amount of istics, herein referred to as the "runoff model," should        initial loss depending upon antecedent conditions.
3. If there are one or more reservoirs in the drainage area upstream of the site, seismic and hydrologic dam failure' flood analyses should be made to determine whether such a flood will produce the design basis water level. Criteria and acceptable methods are included in Appendix A.


be established. (Channel and reservoir effects are dis- cussed separately in Section A.8.)                                      (3) Rainfall does not normally cover the entire drainage basin during all periods of precipitation with Streamflow hydrographs (of major floods) are available in      intensities exceeding infiltration capacities. Further- publications by the U.S. Geologic Survey, National Weather      more, soils and infiltration capacities vary throughout a Service, State agencies, and other public sources.             drainage basin. Therefore rational application of any
4. Because of the enveloping procedures used, PMF peak discharges estimated as outlined in Sec tion B.3.2 have a high degree of conservatism. If the PMF so estimated casts doubt on the-suitability of a site, or if protection from a flood of that magnitude would not be physically or economically feasible, consideration should be given to performing a detailed PMF analysis, as outlined in Appendix A. It is likely that such an analysis will result in ap preciably lower PMF levels.
                                                              1.59-13


loss-rate technique must consider the varying nature of            Basin runoff models for a PMF determination should rainfall intensities over the basin in order to determine      provide a conservative estimate of the runoff that could the area covered by runoff-producing rainfall.                  be expected during the life of the nuclear facility. The basic analyses used in deriving the runoff model are not b. Initial loss is defined as the maximum amount of        rigorous but may be conservatively undertaken by precipitation that can occur without producing runoff.          considering the rate of runoff from unit rainfall (and Values of initial loss may range from a minimum of a           snowmelt, if pertinent) of some unit duration and few tenths of an inch during relatively wet seasons to          specific time-areal distribution (called a unit hydro- several inches during dry summer and fall months. Initial      graph). The applicability of a unit hydrograph or other losses prevalent during major floods usually range from        technique for use in computing the runoff from the about 0.2 to 0.5 inch and are relatively small in              Probable Maximum Precipitation over a basin may be comparison with the flood runoff volume. Conse-                partially verified by reproducing observed major flood quently, in estimating loss rates from data for major          hydrographs. An estimated unit hydrograph is first floods, allowances for initial losses may be approximated      applied to estimated historical rainfall-excess values to without introducing important errors into the results.          obtain a hypothetical runoff hydrograph for comparison with the observed runoff hydrograph exclusive of base c. Base flow is defined herein as that portion of a        flow (i.e., net runoff). The loss rate, the unit hydro- flood hydrograph which represents runoff from antece-          graph, or both, are subsequently adjusted to provide dent storms and bank flow. Bank flow is storm                  accurate verification.
'In this contest, "hydrologic dam failure" muama failure caused by a flood from the drainage area upstream of the dam.


precipitation which infiltrates the ground surface and flows, possibly as groundwater, into stream channels.              A study of the runoff response of a large number of Many techniques exist for estimating base flow. It is          basins for several historical floods in which a variety of generally assumed that base flow which could exist              valley storage characteristics, basin configurations, topo- during a PMF is high, the rationale being that a storm        graphical features, and meteorological conditions are producing relatively high runoff could meteorologically        represented provides the basis for estimating the relative occur over most watersheds about a week earlier than          effects of predominating influences for use in PMF
1.59-13
that capable of producing a PMF. An acceptable method          analyses. In detailed hydrological studies, each of the is to assume that a flood about half as severe as a PMF        following procedures may be used to advantage:
occurred 3 to 5 days earlier for frontal-type storms and about 24 hours for thunderstorms. The recession of this            a. Analysis  of  rainfall-runoff records  for  major t- flood is the base flow for the PMF.                            storms;
                  A.6 RUNOFF MODEL                                b. Computation of synthetic runoff response models by (1) direct analogy with basins of similar character- The hydrologic response characteristics of the water-      istics and/or (2) indirect analogy with a large number of shed to precipitation (i.e., runoff model) should be          other basins through the application of empirical rela- determined and verified from historical flood records.        tionships. In basins for which historical streamflow The model should include consideration of nonlinear            and/or storm data are unavailable, synthetic techniques runoff response due to high rainfall intensities or            are the only known means for estimating hydrologic unexplainable factors. In conjunction with data and            response characteristics. However, care must be taken to analyses discussed above, a runoff model should be            assure that a synthetic model conservatively reflects the developed, where data are available, by analytically          runoff response expected from precipitation as severe as
"reconstituting" historical floods to substantiate its use    the PMP.


for estimating a PMF. The rainfall-runoff-time-areal distribution of historical floods should be used to verify        Detailed flood hydrograph analysis techniques and that the reconstituted hydrographs correspond reason-          studies for specific basins are available from many ably well with flood hydrographs actually recorded at          agencies. Published studies such as those by the Corps of selected gaging stations (Ref. 2). In most cases, reconsti-    Engineers, Bureau of Reclamation, and Soil Conserva- tution studies should be made with respect to two or          tion Service may be utilized directly where it can be more floods and possibly at two or more key locations,         demonstrated that they are of a level of quality and particularly where possible errors in the determinations      conservatism comparable with that indicated herein. In could have a serious impact on decisions required in the      particular, the Corps of Engineers has developed analysis use of the runoff model for the PMF. In some cases the        techniques (Refs. 2, 3) and has accomplished a large lack of stream gage records, the lack of sufficient time      number of studies in connection with their water and areal precipitation definition, or unexplained causes      resources development activities.
REFERENCES
1. Nunn, Snyder, and Associates, "Probable Max imum Flood and Hurricane Surge Estimates," un published report to NRC, June 13, 1975 (available in the public document room). 
2. W.P. Creager, J.D. Justin, and J. Hinds,
"Engineering for Dams," J. Wiley and Sons, Inc.,
New York, 1945.


may prevent development of reliable predictive runoff models. In such cases a conservative PMF estimate                  Computerized runoff models (Ref. 3) offer an ex- should be ensured by other means such as conservatively        tremely efficient tool for estimating PMF runoff rates developed synthetic unit hydrographs.                         and for evaluating the sensitivity of PMF estimates to
3. U.S. Weather Bureau (now U.S. Weather Service, NOAA), "Seasonal Variation of the Probable Max imum Precipitation East of the 105th Meridian,"
                                                          1.59-14
Hydrometeorological Report No. 33, 1956.'
4. U.S. Department of Commerce, NOAA, "All Season Probable Maximum Precipitation-United States East of the 105th Meridian, for Areas from
1,000 to 20,000 Square Miles and Durations from 6 to 72 Hours," draft report, July 1972.2
'Note References 3 and 4 are being updated and combined into a single report by NOAA. This report is expected to be published in the near future as Hydrometeorological Report No. 51 with the ti tle "Probable Maximum Precipitation Estimates, United States East or the 105th Meridian."
1.59-14 K


possible variations in parameters. Such techniques have        mated by maximizing observed intense storm parameters been used successfully in making detailed flood esti-          and transposing them to basins of interest. The param- mates.                                                        eters include storm duration, intensity, and the depth- area relation. The maximum storm should represent the Snowmelt may be a substantial runoff component for        most critical rainfall depth-area-duration relation fo- *he both historical floods and the PMF. In cases where it is      particular drainage area during various seasons oi -he necessary to provide for snowmelt in the runoff model,        year (Refs. 7-10). In practice, the storm parameters additional hydrometeorological parameters must be in-          considered are (1) the representative storm dewpoint corporated. The primary parameters are the depth of            adjusted to inflow moisture producing the maximum assumed existing snowpack, the areal distribution of          dewpoint (precipitable water), (2) seasonal variations in assumed existing snowpack, the snowpack temperature            parameters, (3) the temperature contrast, (4) the geo- and moisture content, the type of soil or rock surface        graphical relocation, and (5) the depth-area relation.
y FIGURE I.1 WATER RESOURCES REGIONS
K
'0
iS


underlying the snowpack and the type and amount of            Examples of these analyses are explained and utilized in forest cover of the snowpack and variation thereof, and        a number of published reports (Refs. 7-10).
-ISOLINE
the time and elevation distribution of air temperatures and heat input during the storm and subsequent runoff                This procedure, supported with an appropriate period. Techniques that have been developed to reconsti-       analysis, is usually satisfactory where a sufficient num- tute historical snowmelt floods may be used in both            ber of historical intense storms have been maximized historical flood hydrograph analysis and PMF determina-       and transposed to the basin and where at least one of tions (Ref. 4).                                                them contains a convergent wind "mechanism" very near the maximum that nature can be expected to A.7 PROBABLE MAXIMUM
REPRESENTING PEAK-FLOW OF f--4  
              PRECIPITATION ESTIMATES                          produce in the region (which is generally the case in the United States east of the Rocky Mountains). A general principle for PMP estimates is: The number and severity Probable Maximum Precipitation (PMP) estimates are of maximization steps must balance the adequacy of the the time and areal precipitation distributions compatible      storm sample; additional maximization steps are re- with the definition of Section A.2 and are based on            quired in regions of more limited storm samples.
,
PUF iN 1,000CFS.


detailed comprehensive meteorological analyses of severe storms of record. The analysis uses precipitation data and synoptic situations of major storms of record to              b. PMP determinations in regions of orographic determine characteristic combinations of meteorological        influences generally are for the high mountain regions.
I
I
NOTE: PMF ISO UNIS ON TIS CHART REPRESENT ENVELOPED
V~LESOF PEAK RUNOFF FROM 10"SUARE MILE DRAINAGE
AREA UNDER NATURAL RIVER CONDITIONS. ACCORDINGLY.


conditions in a region surrounding the basin under            Additional maximization steps from paragraph A.7.a study. Estimates are made of the increase in rainfall          above are required in the use of the orographic model quantities that would have resulted if conditions during      (Refs. 5, 6). The orographic model is used where severe the actual storm had been as critical as those considered      precipitation is expected to be caused largely by the probable of occurrence in the region. Consideration is        lifting imparted to the air by mountains. This orographic given to the modifications in meteorological conditions        influence gives a basis for a wind model with maximized that would have been required for each of the record          inflow. Laminar flow of air is assumed over any storms to have occurred over the drainage basin under          particular mountain cross section. The "life" of the air, study, considering topographical features and location of      the levels at which raindrops and snowflakes are formed, the region involved.                                            and their drift with the air before they strike the ground may then be calculated.
PMIF VALUES OBTAINED DO NOT INCLUDE POSSIBLE CONTRISU
TIONS TO PEAK FLOW THAT WOULD RESULT FROM
UPSTREAM DAM FAILURES OR OTHER UNNATURAL EVENTS.


The physical limitations in meteorological mecha- nisms for the maximum depth, time, and space distribu-                Models are verified by reproducing the precipita- tion of precipitation over a basin are (1) humidity          tion in observed storms and are then used for estimating (precipitable water) in the airflow over the watershed,      PMP by introducing maximum values of moisture and
11G
(2) the rate at which wind may carry the humid air into      wind as inflow at the foot of the mountains. Maximum the basin, and (3) the fraction of the inflowing atmos-      moisture is evaluated just as in nonorographic regions. In pheric water vapor that can be precipitated. Each of          mountainous regions where storms cannot readily be these limitations is treated differently to estimate the      transposed (paragraph A.7.a above) because of their PMP over a basin. The estimate is modified further for        intimate relation to the immediate underlying topo- regions where topography causes marked orographic            graphy, historical stor~ns are resolved into their convec- control on precipitation (designated as the orographic        tive and orographic components and maximized. Maxi- model as opposed to the general model which embodies          mum mroisture, maximum winds, and maximum values little topographic effect). Further details on the models    of the orographic component and convective component and acceptable procedures are contained in References 5      (convective as in nonorographic areas) of precipitation and6.                                                        are considered to occur simultaneously. Some of the published reports that illustrate the combination of a. The PMP in regions of limited topographicinflu-        orographic and convective components, including ence (mostly convergence precipitation) may be esti-          seasonal variation, are References 11-13.
1170
1159
113°
1110
100
1076
106 FIGURE 8.2 PROBABLE MAXIMUM FLOOD (ENVELOPING PMF ISOLINES) FOR 100 SQUARE MILES
(
LA
'0
0%
r


1.59-15
83o f
1
79*
770
750
730
710 ms
670
O6r IS- 101dM REPRESENOIN
PEAK FLOW OF
S
PMf IN 1.00
15  
!m: P
IJOUNIs OW TWS CHART REPRESENT ENVELOPED
VALUES O PEAK RUIN
FRM
F
00SCOUAREMLE DRAINAGE0A
AREA UNME NATURAL RIVER CONID"IMRS. ACCORDINGLY.


In some watersheds, major floods are often the result          The position of the PMP, identified by "isohyetal of melting snowpack or of snowmelt combined with                patterns" (lines of equal rainfall depth), may have a very rain. Accordingly, the PMP (rainfall) and maximum              great effect on the regimen of runoff from a given associated runoff-producing snowpacks are both esti-            volume of rainfall excess, particularly in large drainage mated on a seasonal and elevation basis. The probable            basins in which a wide range of basin hydrologic runoff maximum seasonal snowpack water equivalent should be            characteristics exist. Several trials may be necessary to determined by study of accumulations on local water-            determine the critical position of the hypothetical PMP
j PU, VALUES OBTAINED 0o NOT INCLUDE POMSSBLE CONTRIMU.
sheds from historical records of the region.                    storm pattern (Refs. 8, 17) or the selected record storm pattern (Refs. .9, 16) to determine the critical isohyetal Several methods of estimating the upper limit of            pattern that produces the maximum rate of runoff at the ultimate snowpack and melting are summarized in                  designated site. This may be accomplished by super- References 4 and 5. The methods have been applied in            imposing the total-storm PMP isohyetal contour map on the Columbia River basin, the Yukon basin in Alaska,            an outline of the drainage basin (above the site) in such a the upper Missouri River basin, and the upper Mississippi      manner as to place the largest rainfall quantities in a in Minnesota and are described in a number of reports          position that would result in the maximum flood runoff by the Corps of Engineers. In many intermediate-                (see Section A.8 on Probable Maximum Flood runoff).
latitude basins, the greatest flood will likely result from    The isohyetal pattern should be consistent with the a combination of critical snowpack (water equivalent)          assumptions regarding the meteorological causes of the and PMP. The seasonal variation in both optimum snow            storm.


depth (i.e., the greatest water equivalent in the snow- pack) and the associated PMP combination should be                  A considerable range in assumptions regarding rainfall meteorologically compatible. Temperature and winds              patterns (Ref. II) and intensity variations can be made associated with PMP are two important snowmelt factors          in developing PMP storm criteria for relatively small amenable to generalization for snowmelt computations            basins without being inconsistent with meteorological (Ref. 14). The meteorological (e.g., wind, temperature,        causes. For drainage basins less than a few thousand dewpoints) sequences prior to, during, and after the            square miles in area (particularly if only one unit postulated PMP-producing storm should be compatible            hydrograph is available), the rainfall may be expressed as  (
TrONS TO PEAK FLOW THAT WOULD RESULT FROM UPSTREAM
with the sequential occurrence of the PMP. The user            average depth over the drainage area. However, in should place the PMP over the basin and adjust the              determining the PMP pattern for large drainage basins sequence of other parameters to give the most critical          (with varying basin hydrologic characteristics, including runoff for the season considered.                              reservoir effects), runoff estimates are required for different storm pattern locations and orientations to The meteorological parameters for snowmelt compu-          obtain the final PMF. Where historical rainfall patterns tations associated with PMP are discussed in more detail        are not used for PMP, two other methods are generally in References 11, 12, and 14.                                  employed.
DAM FAILURES OR OTHER UNNATURAL EV*
ETOS.


Other items that need to be considered in deter- mining basin melt are optimum depth, areal extent and              a. The average depth over the entire basin is based on type of snowpack, and other snowmelt factors (see              the maximized areal distribution of the PMP.
I
I
I*
I
I
IZ3-*
LI
m o 190
1170
11
. 113ie
* 1110
me
0
1070
105°
103
101°
99W
w7°
95o
3
9
89w
070
or
0
3or FIGURE 8.3 PROBABLE MAXIMUM FLOOD (ENVELOPING PMF ISOLINES) FOR 500 SQUARE MILES
K
k
-J
470
4v.


Section A.8), all of which must be compatible with the most critical arrangement of the PMP and associated                b. A hypothetical isohyetal pattern is assumed.
43.


meteorological parameters.                                      Studies of areal rainfall distribution from intense storms indicate that elliptical patterns may be assumed as Critical probable maximum storm estimates for very          representative of such events. Examples are the typical large drainage areas are determined as above but may            patterns presented in References 8, 14, 17, and 18.
41*
390
370
3s.


differ somewhat in flood-producing storm rainfall from those encountered in preparing similar estimates for              To compute a flood hydrograph from the probable small basins. As a general rule, the critical PMP in a small    maximum storm, it is necessary to specify the time basin results primarily from extremely intense small-area      sequence of precipitation in a feasible and critical storms, whereas in large basins the PMP usually results        meteorological time sequence. Two meteorological from a series of less intense, large-area storms. In large      factors must be considered in devising the time se- river basins (about 100,000 square miles or larger) such        quences: (1) the time sequence in observed storms and.
33.


as the Ohio and Mississippi River basins, it may be            (2) the manner of deriving the PMP estimates. The first necessary to develop hypothetical PMP storm sequences          imposes few limitations; the hyetographs (rainfall time (one storm period followed by another) and storm                sequences) for observed storms are quite varied. There is tracks with an appropriate time interval between storms.        some tendency for the two or three time increments The type of meteorological analyses required and typical        with. the highest rainfall in a storm to bunch together, as examples thereof are contained in References 9, 15, and        some time is required for the influence of a severe
310
16.                                                            precipitation-producing weather situation to pass a given
29*
                                                          1.59-16
2r0
2SO


region. The second consideration uses meteorological            Care should be taken to ensure that the characteristics parameters developed from PMP estimates.                        determined represent historical conditions (which may be verified by reconstituting historical floods) and also An example of 6-hour increments for obtaining a            conservatively represent conditions to be expected dur- critical 24-hour PMP sequence would be that the most            ing a PMF.
47r
470
[
450
4V.


severe 6-hour increments should be adjacent to each other in time (Ref. 17). In this arrangement the second              Channel and reservoir routing methods of many types highest increment should precede the highest, the third        have been developed to model the progressive down- highest should be immediately after this 12-hour se-            stream translation of flood waves. The same theoretical quence, and the fourth highest should be before the            relationships hold for both channel and reservoir rout-
41
18-hour sequence. This procedure may also be used in            ing. However, in the case of flood wave translation the distribution of the lesser, second (24-48 hours) and        through reservoirs, simplified procedures have been third (48-72 hours), 24-hour periods. These arrange-            developed that are generally not used for channel ments are permissible because separate bursts of precipi-      routing because of the inability of such simplified tation could have 'occurred within each 24-hour period          methods to model frictional effects. The simplified (Ref. 7). The three 24-hour precipitation periods are          channel routing procedures that have been developed interchangeable. Other arrangements that fulfill the            have been found useful in modeling historical floods, but sequential requirements would be equally reasonable.            care should be exercised in using such models for severe The hyetograph selected should be the most severe                hypothetical floods such as the PMF. The coefficients reasonably possible that would produce critical runoff at        developed from analysis of historical floods may not the project location based on the general appraisal of the      conservatively reflect flood wave translation for more hydrometeorologic conditions in the project basin.              severe events.
360
37.


Examples of PMP time sequences fulfilling the sequential requirements are illustrated in References 11, 12, and                Most of the older procedures were basically attempts
33.
17. For small areas maximized local records should be          to model unsteady-flow phenomena using simplifying considered to ensure that the selected PMP time                  approximations. The digital computer has allowed sequence is as severe as has occurred.                          development of analysis techniques that permit direct solution of basic unsteady flow equations utilizing The Corps of Engineers and the Hydrometeorological          numerical analysis techniques (Ref. 19). Most of the Branch of NOAA (under a cooperative -arrangement                older techniques have also been adapted for computer since 1939) have made comprehensive meteorological              use (Ref. 3).
studies of extreme flood-producing storms (Ref. 1) and have developed a number of estimates of PMP. The PMP                  For all routing techniques, care should be exercised estimates are presented in various unpublished memo-            to ensure that parameters selected for model verification randa and published reports. The series of published            are based on several historical floods (whenever possible)
reports is listed on the fly sheet of referenced Hydro-          and that their application to the PMF will result in meteorological Reports such as Reference 18. The                conservative estimates of flow rates, water levels, veloci- unpublished memoranda reports may be obtained from              ties, and impact forces. Theoretical discussions of the the Corps of Engineers or Hydrometeorological Branch,            many methods available for such analyses are contained NOAA. These reports and memoranda present general                in References2 and 19-22.


techniques and several contain generalized estimates of PMP for different river basins. The generalized studies (Refs. 7-13, 18, 29) are based on coordinated studies of                    A.9 PROBABLE MAXIMUM FLOOD
310
all available data, supplemented by thorough meteoro-                          HYDROGRAPH ESTIMATES
290
logical analyses and usually assure reliable and consistent estimates for various locations in the region for which              Probable Maximum Flood (PMF) net runoff hydro- they have been developed. In some cases, however,                graph estimates are made by sequentially applying additional detailed analyses are needed for specific river      critically located and distributed PMP estimates using basins (Refs. 7, 8) to take into account unusually large        the runoff model, conservatively low estimates of areas, storm series, topography, or orientation of drain-      precipitation losses, and conservatively high estimates of age basins not fully reflected in the generalized esti-        base flow and antecedent reservoir levels.
27r
2fie
121'
11g°
117
115°
113.


mates. In many river basins, available studies may be utilized to obtain the PMP without the in-depth analysis            In PMF determinations it is generally assumed that discussed herein.                                              short-term reservoir flood control storage would be depleted by antecedent floods. An exception would be when it can be demonstrated that a reasonably severe A.8 CHANNEL AND RESERVOIR ROUTING                          flood (e.g., about one-half of a PMF) less than a week (usually a minrimm of 3 to 5 days; 24 hours if the PMP
I!I°  
    Channel and reservoir routing of floods is generally an      is a thunderstorm) prior to a PMF can be evacuated from integral part of the runoff model for subdivided basins.          the reservoir before the arrival of a PMF. However, it is
108'
                                                          1.59-17
1070
10°
103.


unusual to use an antecedent storage level of less than          flood are assumed coincident with the Safe Shutdown one-half the available flood control storage.                    Earthquake. (An acceptable method of determining the
101°
                                                                25-year flood is contained in Reference 30.) Also, The application of PMP in basins whose hydrologic          consideration should be given to the occurrence of a features vary from location to location requires the            Standard Project Flood with full flood control reservoirs determination that the estimated PMF hydrograph repre-          coincident with the Operating Basis Earthquake to sent the most critical centering of the PMP storm with          maintain a consistent level of analysis with other respect to the site. Care must be taken in basins with          combinations of such events. As with failures due to substantial headwater flood control storage to ensure            inadequate flood- control capacity, domino and essen- that a more highly concentrated PMP over a smaller area          tially simultaneous multiple failures may also require downstream of the reservoirs would not produce a                consideration. If the arbitrarily assumed total instan- greater PMF than a total basin storm that is partially          taneous failure of the most critically located (from a controlled. In such cases more than one PMP runoff              hydrologic standpoint) structures indicates flood risks at analysis would be required. Usually, only a few trials of        the nuclear facility site more severe than a PMF, a a total basin PMP are required to determine the most            progressively more detailed analysis of the seismic critical centering.                                            capability of the dam is warranted. In lieu of detailed geologic and seismic investigations at the site of the river Antecedent snowpack is included when it ýs deter-          control structure, the flood potential at the nuclear mined that snowmelt significantly contributes to the            facility may be evaluated assuming the most probable PMF (see Section A.7).                                          mechanistic-type failure of the questioned structures. If the flood effects of this assumed failure cannot be safely Runoff hydrographs should be prepared at key                accommodated at the nuclear facility site in an accept- hydrologic locations (e.g., streamgages and dams) as well        able manner, the seismic potential at the site of each as at the site of nuclear facilities. For all reservoirs        questioned structure is then evaluated in detail. The involved, inflow, outflow, and pool elevation hydro-            structural capability is evaluated in the same depth as for graphs should be prepared.                                      the nuclear facility. If the capability is not sufficient to ensure survival of the structure, its failure is assumed, Many existing and proposed dams and other river              and the resulting seismically induced flood is routed to control structures may not be capable of safely passing          the site of the nuclear power plant. This last detailed floods as severe as a PMF. The capability of river control      analysis is not generally required since intermediate structures to safely pass a PMF and local coincident            investigations usually provide sufficient conservative wind-generated wave activity must be determined as part          information to allow determination of an adequate of the PMF analysis. Where it is possible that such              design basis flood.
9'
970
9i°  
93w
91o
8w o
870
85.


structures may not safely survive floods as severe as a PMF, the worst such condition with respect to down-                    A.11 WATER LEVEL DETERMINATIONS
83w FIGURE BA PROBABLE MAXIMUM FLOOD (ENVELOPING PMF ISOLIIES) FOR 1,000 SQUARE MILES
stream nuclear facilities is assumed (but should be substantiated by analysis of upstream PMF potential) to              The preceding discussion has been concerned pri- be their failure during a PMF, and the PMF determina-            marily with determinations of flow rates. The flow rate tion should include the resultant effects. This analysis        or discharge must be converted to water surface eleva- also requires that the consequences of upstream dam              tion for use in design. This may involve determination of failures on downstream dams (domino effects) be                  elevation-discharge relations for natural stream valleys or considered.                                                      reservoir conditions. The, reservoir elevation estimates involve the spillway discharge capacity and peak reser- A.10 SEISMICALLY INDUCED FLOODS                        voir level likely to be attained during the PMF as governed by the inflow hydrograph, the reservoir level at Seismically induced floods on streams and rivers may        the beginning of the PMF, and the reservoir regulation be caused by landslides or dam failures. Where river            plan with respect to total releases while the reservoir is control structures are widely spaced, their arbitrarily          rising to peak stage. Most river water level determina:
-C
assumed individual, total, instantaneous failure and            tions involve the assumption of steady, or nonvarying, conservative flood wave routing may be sufficient to            flow for which standard methods are used to estimate show that no threat exists to nuclear facilities. However,      flood levels.
45.


where the relative size, location, or proximity of dams to potential seismic generators indicates a threat to nuclear          Where little floodplain geometry definition exists, a facilities, the capability of such structures (either singly    technique called "slope-area" may be employed wherein or in combination) to resist severe earthquakes (critically      the assumptions are made that (1) the water surface is located) should be considered. In river basins where the        parallel to the average -bed slope, (2) any available flood runoff season may constitute a significant portion        floodplain geometry information is typical of the river of the year (such as the Mississippi, Columbia, or Ohio          reach under study, and (3) no upstream or downstream River basins), full flood control reservoirs with a 25-year      hydraulic controls affect the river reach fronting the site
43.
                                                          1.59-48


ander study. Where such computations can be shown to                The 'selection of windspeeds and critical wind indicate conservatively high flood levels, they may be          directions assumed coincident with maximum PMF or used. However, the usual method of estimating water              seismically induced water levels should provide assurance surface profiles for flood conditions that may be                of virtually no risk to safety-related equipment. The characterized as involving essentially steady flow is            Corps of Engineers suggests (Refs. 26, 27) that average called the "standard-step method." This method utilizes          maximum windspeeds of approximately 40 to 60 mph the integrated differential equation of steady fluid            have occurred in major windstorms in most regions of motion commonly referred to as the Bernoulli equation            the United States. For application to the safety analysis (Refs. 22-25). Water levels in the direction of flow            of nuclear facilities, the worst regional winds of record computation are determined by the trial and error                should be assumed coincident with the PMF. However, balance of upstream and downstream energy. Frictional            the postulated winds should be meteorologically com- and other types of head losses are usually estimated in        patible with the conditions that induced the PMF (or detail using characteristic loss equations whose coeffi-        with the flood conditions assumed coincident with cients have been estimated from computational reconsti-        seismically induced dam failures). The cqnditions in- tution of historical floods and from detailed floodplain        clude the season of the year, the time required for the geometry information. Where no data exist to reconsti-          PMP storm to move out of the area and be replaced by tute water levels from historical floods, conservative          meteorological conditions that could produce the postu- values of the various loss coefficients should be used.        lated winds, and the restrictions on windspeed and Application of the standard-step method has been                direction produced by topography. As an alternative to a developed into very sophisticated computerized models          detailed study of historical regional winds, a sustained such as the one described in Reference 23. Theoretical          40-mph overland windspeed from any critical direction discussions of the techniques involved are presented in        is an acceptable postulation.
410*
30.


References 22, 24, and 25.
370
35p
33.


Unsteady-flow models may also be used to estimate              Wind-generated setup (or windtide) and wave action water levels since steady flow may be considered a class        (runup and impact forces) may be estimated using the of unsteady flow. Computerized unsteady-flow models            techniques described in References 26 and 28. The require generally the same floodplain geometry defini-          method for estimating wave action is based on statistical tion as steady-flow models, and their use may allow            analyses of a wave spectrum. For nuclear facilities, more accurate water surface level estimates for cases          protection against the one-percent wave, defined in where steady-flow approximations are made. One such            Reference 28 as the average of the upper one percent of unsteady-flow computer model is discussed in Reference          the waves in the anticipated wave spectrum, should be
310
  19.                                                            assumed. Where depths of water in front of safety- related structures are sufficient (usually about seven- All reasonably accurate water level estimation models      tenths of the wave height), the wave-induced forces will require detailed floodplain definition, especially of areas    be equal to the hydrostatic forces estimated from the that can materially affect water levels. The models            maximum runup level. Where the waves can be should be calibrated by mathematical reconstitution of          "tripped" and caused to break, both before reaching and historical floods (or the selection of calibration coeffici-    on safety-related structures, dynamic forces may be ents based on the conservative transfer of information          estimated from Reference 28. Where waves may induce derived from similar studies. of other river reaches).          surging in intake structures, the pressures on walls and Particular care should be exercised to ensure that              the underside of exposed floors should be considered, controlling flood level estimates are always conserva-          particularly where such structures are not vented and air tively high.                                                   compression can greatly increase dynamic forces.
2B°
270
2r r
-
ISOLINE REPRESENTING PEAK FLOW OF
PMF IN 1.000 CFS.


A.12 COINCIDENT WIND-WAVE ACTIVITY
NOTS: PiF ISOLWINS ON THIS CHART REPRESENT ENVELOPED
                                                                    In addition, assurance should be provided that safety The superposition of wind-wave activity on PMF or          systems are designed to withstand the static and seismically induced water level determinations is re-          dynamic effects resulting from frequent (10-year) flood quired to ensure that, in the event either condition did      levels coincident with the waves that would be produced occur, ambient meteorological activity would not cause        by the Probable Maximum Gradient Wind for the site a loss of any safety-related functions due to wave action.     (based on a study of historical regional meteorology).
VAL WEE OF PEAK RUNOFF FROM 1.Q0.04UARE MILE DRAINAGE
                                                          1.59-19
LAiREA UNDER NATURAL RIVER CONDITIONS. ACCORDINGLY.


APPENDIX A
IMF VALUES OBTAINED DO NOT INCLUDE POSSIBLE CONTRIBU
                                                  REFERENCES
TIONS TO PEAK FLOW THAT WOULD RESULT FROM UPSTREAM
1. Precipitation station data and unpublished records            Square Miles and Durations from 6 to 72 Hours,"
DAM FAILURES OR OTHER UNNATURAL EVENTS.
  of Federal, State, municipal, and other agencies may          draft report, National Weather Service, ESSA (now be obtained from the National Weather Service                U.S. Weather Service, NOAA), 1972.


(formerly called the U.S. Weather Bureau). In addition, studies of some large storms are available      8. "Probable Maximum Precipitation, Susquehanna in the "Storm Rainfall in the United States,                  River Drainage Above Harrisburg, Pa.," Hydro- Depth-Area-Duration Data," summaries published              meteorological Report No. 40, U.S. Weather Bureau by Corps of Engineers, U.S. Army. A list of                  (now U.S. Weather Service, NOAA), 1965.
I
f I
I
I
I
A
!
--
t
(
.,p ImO
GO


references is contained in Section 2.4 of
-
  "Regulatory-Standard Review Plan," U.S. Nuclear          9. "Meteorology of Flood Producing Storms in the Regulatory Commission, October 1974.                          Ohio River Basin," Hydrometeorological Report No. 38, U.S. Weather Bureau (now NOAA), 1961.
ISOLINE REPRESENTING PEAK FLOW OF
PMF IN 1,000 CFS.


2. Corps of Engineers publications, such as EM
-----
    1110-2-1405, August 31, 1959, "Engineering and          10. "Probable Maximum      and TVA Precipitation Over Design-Flood Hydrograph Analyses and Computa-                 the Tennessee River    Basin Above Chattanooga,"
N
  tions," provide excellent criteria for the necessary          Hydrometeorological  Report No. 43, U.S. Weather flood hydrograph analyses. (Copies are for sale by            Bureau (now NOAA),    1965.
'
al
*
a a
a a
a a
I
NOTE: PMF ISOUNES ON THIS CHART REPRESENT ENVELOPED
VALUES OF PEAK RUNOFF FROM 5,000.SQUARE MILE DRAINAGE
AREA UNDER NATURAL RIVER CONDITIONS. ACCORDINGLY,  
PMF VALUES OBTAINED DO NOT INCLUDE POSSIBLE CONTRIBU
TIONS TO PEAK FLOW THAT WOULD RESULT FROM UPSTREAM D)  
FAILURE Off OTHER UNNATURAL EVENTS.


Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.) Isohyetal      11. "Interim Report-Probable Maximum Precipitation patterns and related precipitation data. are in the          in California," Hydrometeorological Report No. 36, files of the Chief of Engineers, Corps of Engineers.
a a
a a
a a
a I
--
-
1110
IO9
1070 100
103
1010
9 g7o
959 93
91m
90g or
0
8w
81°
790
770
75 FIGURE B.5 PROBABLE MAXIMUM FLOOD (ENVELOPING PMF ISOLINES) FOR 5.000 SQUARE MILES
Q
K
"Ip Ga


3. A publicly available model is "Flood Hydrograph U.S. Weather Bureau (now NOAA), 1961; revised
-"ISOLINE
                                                                196
REPRESENTING PEAK FLOWOF
PMF IN 11000 CFS.


===9.     I===
NOTE: PMF ISOLINES ON THIS CHART REPRESENT ENVELOPED
  Package, HEC-l Generalized Computer Program,"            12. "Probable      Maximum Precipitation, Northwest available from the Corps of Engineers Hydrologic              States," Hydrometeorological Report No. 43, U.S.
VALUES OF PEAK RUNOFF FROM 10.OOO4OUARE MILE DRAINAGE
AREA UNDER NATURAL RIVER CONDITIONS. ACCORDINGLY.


Engineering Center, Davis, California, October              Weather Bureau (now NOAA), 1966.
PUF VALUES OBTAINED DO NOT INCLUDE POSSIBLE CONTRIBU.


1970.                                                                                        1
TIONS TO PEAK FLOW THAT WOULD RESULT FROM UPSTREAM DAM
                                                            13. "Probable Maximum Precipitation in the Hawaiian
FAILURES OR OTHER UNNATURAL EVENTS.
4. One technique for the analysis of snowmelt is                Islands," Hydrometeorological Report No. 39, U.S.


contained in Corps of Engineers EM 1100-2-406,               Weather Bureau (now NOAA), 1963.
..
.
121
1190
117,1 115o
1130
1110
19o
107
1050
1030
1010
990
970
B5e
930
910
o n
870
850
830
FIGURE 8.6 PROBABLE MAXIMUM FLOOD (ENVELOPING PMF ISOLINES) FOR 10.000 SQUARE MILES
...
(
r


"Engineering and Design-Runoff From Snowmelt,"
Q
  January 5, 1960. Included in this reference is also      14. "Meteorological Conditions for the Probable Maxi- an explanation of the derivation of probable maxi-          mum Flood on the Yukon River Above Rampart, mum and standard project snowmelt floods.                    Alaska," Hydrometeorological Report No. 42, U.S.
I M I N 1, 0 IF
; 0 0 Z 6f i
ý
ROETE: PMF rJOt.NES ON THIS CHART REPRESENT ENVELOPED
1400,  
100
VALUES OF PEAK RUNOFF FROM 20.000-SUARE MILE DRAINAGE
"Pm VALUE*S OBTAINED 00 NOT INCLUDE POSSIBLE CONTRIt-
*%
1IONS T'O PEAK FLOW THAT WOULD RESULT FROM UPSTREAM DAM
P2 DAM FALRSOR OTHER UNNATUAL EVENTS.


Weather Bureau (now NOAA), 1966.
ii°
119e
1*7
115°
113°
11 i09°
"
os i0o0°13°
, i01°
99p°
g
95P
g°93°
91°
89
87°
5
3 FIGURE B.7 PROBABLE MAXIMUM FLOOD (ENVELOPING PMF ISOLINES) FOR 20,000 SQUARE MILES
y
'a


5. "Technical Note No. 98-Estimation of Maximum'
I
  Floods," WMO-No. 233.TP.126, World Meteorologi-          15. "Meteorology of Flood-Producing Storms in the cal Organization, United Nations, 1969, and                  Mississippi River Basin," Hydrometeorological
I
  "Manual for Depth-Area-Duration Analysis of                  Report No. 34, U.S. Weather Bureau (now NOAA),
I
  Storm Precipitation," WMO-No. 237.TP. 129, World              1965.
I
I
I I I
1 I
-EXAMPLE:
FOR DRAINAGE AREA OF
.2,300 S. MI.AT LAT. 43@,  
LONG. 950, DETERMINE PMF
PEAK DISCHAR.GE.


Meteorological Organization, United Nations, 1969.
I I II I
*
I
i'-
:
.
.
I-
-I
.4
;tI ; ;
i , - 4 -4
4 I * *
I I-
I
Si Wil I
I
ii
-%SLUTIUN:
FOR DRAINAGE AREA OF
2,300 SO. MI., PMF PEAK
4,00CF&.
"
I
I I,
,______....
__
I
I I
11 I...11L..!.
100
1000
10,000
DRAINAGE AREA, SQUARE MILES
FIGURE B.8 EXAMPLE OF USE OF ENVELOPING ISOLINES
S-C
I
jul11 g
*iWW
IULm
<
co a
0. u:
,c<
0
00
L1A
.j m
0
i
.
m.


16. "Meteorology of Hypothetical Flood Sequences in
Im,,,
6. "Meteorological Estimation of Extreme Precipita-            the Mississippi River Basin," Hydrometeorological tion for Spillway Design Floods," Tech. Memo                Report No. 35, U.S. Weather Bureau (now NOAA),
10
  WBTM HYDRO-5, U.S. Weather Bureau (now                      1959.
100,000
/'If]"POINTS FROM
I
..  
."
FIGURES
B;.2-B.7 d
X
X
I
I
I
I
I I I I
I
I
I
air J!*d*
I
ilia


NOAA) Office of Hydrology, 1967.
y TABLE B.1 PROBABLE MAXIMUM FLOOD DATA ( )
K
"Drainage Basin Average PM? Peak Project State River Basin Stream Area (n inches)
Discharge North Atlantic Region (Northeast Atlantic Sub-reion)
Ball Mountain Barre Falls Beaver Brook Birch Hill Black Rock Blackwater Buffumville Colebrook Conant Brook East Barre East Branch East Brimfield Edward McDowell Everett Franklin FClas Hal Meadow Hancock Hodges Village Hop Brook Hopkinton Knight**lle Littleville Mad River Mansfield Hollow Nookagee Northfield North Hartland North Springfield Otter Brook Phillips Sucker Brook S
yMountain Thomaston Vt.


17. "Engineering and Design-Standard Project Flood
Mass.
7. "Seasonal Variation of the Probable Maximum                  Determinations,"        Corps of Engineers EM
  Precipitation East of the 105th Meridian for Areas          1110-2-1411, March 1965, originally published as from 10 to 1,000 Square Miles and Durations of 6,            Civil Engineer Bulletin No. 52-8, 26 March 1952.


12, 24, and 48 hours." Hydrometeorological Report No. 33, U.S. Weather Bureau (now U.S. Weather            18. "Probable Maximum Precipitation Over South Service, NOAA), 1956; and "All-Season Probable              Platte River, Colorado, and Minnesota River, Minne- Maximum Precipitation-United States East of the              sota," Hydrometeorological Report No. 44, U.S.
N. He Mass.


105th Meridian, for Areas from 1,000 to 20,000              Weather Bureau (now NOAA), 1969.
Conn.


1.59-20
N. H.


19. "Unsteady Flow Simulation in Rivers and Reser-            26. "Coxlnutation of Freeboard Allowances for Waves voirs," by J.M. Garrison, J.P. Granju, and J.T. Price,        in Reservoirs," Engineer Technical Letter ETL
Mass.
    pp. 1559-1576, Vol. 95, No. HY5, (September                    1110-2-9, U.S. Army Corps of Engineers, August 1,
    1969), Journal of the Hydraulics Division, ASCE,                1966.


(paper 6771).
Conn.
20. "Handbook of Applied Hydrology," edited by Ven            27. "Policies and Procedures Pertaining to Deter- Te Chow, McGraw-Hill, 1964, Chapter 25.                        mination of Spillway Capacities and Freeboard Allowances for Dams," Engineer Circular EC
21. "Routing of Floods Through River Channels," EM                  1110-2-27, U.S. Army Corps of Engineers, August
    1110-2-1408, U.S. Army Corps of Engineers, March              1, 1966.


1, 1960.
Mass*
Vt.


22. "Engineering Hydraulics," edited by Hunter Rouse,          28. "Shore Protection Manual," U.S. Army Coastal John Wiley & Sons, Inc., 1950.                                  Engineering Research Center. 1973.
Conne Mass.


23. "Water Surface Profiles, HEC-2 Generalized Com- puter Program," available from the Corps of Engi-        29. "Probable Maximum and TVA Precipitation for neers Hydrologic Engineering Center, Davis, Calif.            Tennessee River Basins up to 3,000 Square Miles in Area and Durations to 72 Hours," Hydrometeoro- logical Report No. 45, U.S. Weather Bureau (now
N. H.
24. "Open Channel Hydraulics"        by Ven Te Chow,              NOAA), 1969.


McGraw-Hill, 1959.
N. He N.H.


25. "Backwater    Curves in River Channels," EM              30. "Floods in the United States, Magnitude and Fre-
Conne Como.
    1110-2-1409, U.S. Army Corps of Engineers,                    quency, (Basin)," series of Water-Supply Papers.


December 7, 1959.                                              U.S. Geological Survey, various dates.
Mass.


1.59-21
cozme No H.


ft -i-i APPENDIX B
MaSs.
                                                  ALTERNATIVE METHODS OF
                                ESTIMATING PROBABLE MAXIMUM FLOODS
                                                          TABLE OF CONTENTS
                                                                                                                            Page B.1 INTRODUCTION          ...............                                                                                  1.59-25 B.2 SCOPE ........            ....................                                                                          1.59-25 B.3 PROBABLE MAXIMUM FLOOD PEAK DISCHARGE .........                                            .....................        1.59-25 B.3.1 Use of PMF Discharge Determinations                        ....        . . . . . . . . . . . . . . . . . . . . 1.5 9 -2 5 B.3.2 Enveloping isolines of PMF Peak Discharge . . . . . . . . . . . . . . . . . . . . . . . 1.5 9 -2 5 B.3.2.1 Preparation of Maps                ...        ..      ..  . . . . . . . . . . . . . . . . . . . . . 1.59 -2 5 B.3.2.2 Use of Maps            . . . . . . . . . . . . ......                  . . . . . . . . . . . I.      . 1.59-26 B.3.3 Probable Maximum Water Level                    .......                . . . . . . . . . . . . . . . . . . . . 1.5 9 -2 6 B.3.4 Wind-Wave Effects          . . ..      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 9 -26 B.4 LIMITATIONS        . . . . . . . . . ..                  . . . . . .                                                  1.59-26 REFERENCES            . . . . . . . . . . . . . . . . . . . . . . . .                                              *. . . 1.59-27 FIG UR ES          . . . . . . . . . . . . . . . . . . . .. . . . . .                                                      1.59-28 TABLE                                                                                                                      1.59-36 FIGURES
Figure B.I -  Water Resources Regions.              ................                                                      1.59-28 B.2 -  Probable Maximum Flood (Enveloping Isolines) - 100 Sq. Mi. .                                                  1.59-29 B.3 -  Probable. Maximum Flood (Enveloping Isolines) - 500 Sq. Mi..                                                  1.59-30
        B.4 - Probable Maximum Flood (Enveloping Isolines) - 1,000 Sq. Mi.                                                  1.59-31 B.5 - Probable Maximum Flood (Enveloping Isolines) - 5,000 Sq. Mi.                                                  1.59-32 B.6 - Probable Maximum Flood (Enveloping Isolines) - 10,000 Sq. Mi.                                                1.59-33 B.7 - Probable Maximum Flood (Enveloping Isolines) - 20,000 Sq. Mi.                                                1 .59-34 B.8 - Example of Use of Enveloping Isolines ....                      ...........                                  1.59-35 TABLE
Table B. I - Probable Maximum Flood Data                                                                                    1.59-36
                                                                        1.59-23


r B.1 INTRODUCTION *                                          B.3 PROBABLE MAXIMUM FLOOD
Mass.
                                                                                        PEAK DISCHARGE
    This appendix presents timesaving alternative methods of estimating the probable maximum flood                        The data presented in this section are as follows:
(PMF) peak discharge for nuclear facilities on nontidal streams in the contiguous United States. Use of the                      1. A tabulation of PMF peak discharge determina- methods herein will reduce both the time necessary for              tions at specific locations throughout the contiguous applicants to prepare license applications and the NRC              United States. These data are subdivided into water staff's review effort.                                              resources regions, delineated on Figure B.1, and are tabulated in Table B.1.


The procedures are based on PMF values determined by the U.S. Army Corps of Engineers, by applicants for                  2. A set of six maps, Figures B.2 through B.7, licenses that have been reviewed and accepted by the                covering index drainage areas of 100, 500, 1,000, 5,000,
Conn*
NRC staff, and by the staff and its consultants. The                10,000, and 20.000 square miles, containing isolines of information in this appendix was developed from a                  equal PMF peak discharge for drainage areas of those study made by Nunn, Snyder, and Associates, through a                sizes east of the 103rd meridian.
Mass.


contract with NRC (Ref. 1).
come Vt.
                                                                    B.3.1 Use of PMF Discharge Determinations PMF peak discharge determinations for the entire contiguous United States are presented in Table B.1.                    The PMF peak discharge determinations listed in Under some conditions, these may be used directly to                Table B.1 are those computed by the Corps of Engi- evaluate the PMF at specific sites. In addition, maps                neers, by the NRC staff and their consultants, or showing enveloping isolines of PMF discharge for several            computed by applicants and accepted by the staff.


index drainage areas are presented in Figures B.2 through B.7 for the contiguous United States east of the                For a nuclear facility located near or adjacent to one
Vt.
103rd meridian, including instructions for and an                  of the streams listed in the table and reasonably close to example of their use (see Figure B.8). Because of the              the location of the PMF determination, that PMF may enveloping procedures used in preparing the maps,                  be transposed, with proper adjustment, or routed to the results from their use are highly conservative.                    nuclear facility site. Methods of transposition, adjust- ment, and routing are given in standard hydrology texts Limitations on the use of these generalized methods            and are not repeated here. Limits for acceptable trans- of estimating PMFs are identified in Section B.4. These            positions are contained in Appendix A, Section A.I .b.


limitations should be considered in detail in assessing the applicability of the methods at specific sites.                    B.3.2 Enveloping lsolines of PMF Peak Discharge Applicants for licenses for nuclear facilities at sites on      B.3.2.1 Preparation of Maps nontidal streams in the contiguous United States have the option of using these methods in lieu of the more                  For each of the water resources regions, each PMF
Maass Come.
precise but laborious methods of Appendix A. The                    determination in Table B.1 was plotted on logarithmic results of application of the methods in this appendix              paper (cubic feet per second per square mile versus will in many cases be accepted by the NRC staff with no            drainage area). It was found that there were insufficient further verification.                                              data and too much scatter west of about the 103rd meridian, caused by variations in precipitation from B.2 SCOPE                                  orographic effects or by melting snowpack. Accordingly, the rest of the study was confined to the United States The data and procedures in this appendix apply only            east of the 103rd meridian. For sites west of the 103rd to nontidal streams in the contiguous United States.              meridian, the methods of the preceding section may be Two procedures are included for nontidal streams east of            used.


the 103rd meridian.
N. H.


Envelope curves were drawn for each region east of Future studies are planned to determine the applica-            the 103rd meridian. It was found that the envelope bility of similar generalized methods and to develop such          curves generally paralleled the Creager curve (Ref. 2),
Conn.
methods, if feasible, for other areas. These studies, to be        defined as included in similar appendices, are anticipated for the main steins of large rivers and the United States west of                                                0 4 8 )-l the 103rd meridian, including Hawaii and Alaska.                                  Q = 46.0 CA(0.894A-O'
                                                              1.59-25


where                                                              4. Plot the six PMF peak discharges so obtained on logarithmic paper against drainage area, as shown on Q is the discharge in cubic feet per second (cfs)          Figure B.8.
Connecticut Connecticut Connecticut Connecticut Housatonic Merrimack Thames Connecticut Connecticut Winooski Housatonic Thames Merrimack Merrimack Merrimack Connecticut Housatonic Thames Housatonic Merrimack Connecticut Connecticut Connecticut Thames Merrimack Housatonic Connecticut Connecticut Connecticut Merrimack Connecticut Connecticut Housatonic West River Ware River Beaver Brook Millers River Branch Brook Blackwater River Little River Farmington River Conant Brook Jail Branch Naugatuck River Quineaaug River Nubanusit River Piseataquog River Pemigewasset River Hall Meadow Brook Hancock Brook French River Hop Brook Contoocook River Westfield River Westfield River Mad River Natchaug River Phillips Brook Northfield Brook Ottauquechee River Black River Otter Brook Phillips Brook Sucker Brook Ashuelot River Naugatuck River
'0
172
55
6.0
175
20
128
26
118
7.8
39
9s2
68
.44
64
1,000
17
12
31
16
426
162
52
18
159
11
5.7
220
158
47
5.0
100
97
20.6
20.1
21*3
18*3
22.2
18.3
26.6
22.?
24.4  
21.5
24.0
24.2
19.5
20,7
15.8  
24.0
24.0
26.2
25.0
17.4
18.8
25.1.


C is a constant, taken as 100 for this study A is the drainage area in square miles.                       5. Draw a smooth curve through the points. Reason- able extrapolations above and below the defined curve Each PMF discharge determination of 50 square miles        may be made.
24.0
19.8
21.8
24.4
19.3
20.0
19.1
24.2
22.4
22.2
24.5
18.1
18.9
19.7
17.1
20.6
16,4
25.3
21.1
23.2
18.6
22.8
22.9
18.3
18,,2
13.3
22.8
22.8
22.3
23.8
14.7
17.6
22.4
22.8
18.5  
20.2
23.2
17.2
18.3
17.9
23.0
21.4
19.6
22.4
190,000
61,000
10,.00
88.500
35,000
95,000
36,500
165,000
11,900
52,500
15,500
73,900
43,000
68,000
300,000
26,600
20,700
35,600
26,400
135,000
160,000
98000
30,000
125,000
17,750
.9000
199,000
157,000
45,000
7,700
6,500
63,000
158,000
a


or more was adjusted to one or more of the six selected            6. Read the PMF peak discharge at the site from the index drainage areas in accordance with the slope of the        curve at the appropriate drainage area.
TABLE 0.1 ( )
River Basin Stream Drainage Area ta m4 I
Basin Average (in inches)
Townshend Trumbull, Tully Union Village Vermont-Yankee Waterbury West Hill West Thompson Westville Whitemanville Wrightsville Vt.


Creager *curve. Such adjustments were made as follows:
Conn.
                                                                B.3.3 Probable Maximum Water Level PMF Within Drainage                    Adjusted to Index            When the PMF peak discharge has been obtained as Area Range, sq. mi.                Drainage Area, sq. mi.    outlined in the foregoing sections, the PMF stillwater level should be determine


====d. The methods given in====
Mass.
          50 to 500                            100            Appendix A, Section A.11, are acceptable for this
        100  to 1,000                          500            purpose.


500  to 5,000                        1,000
Vt.
      1,000  to 10,000                        5,000
                                                                B.3.4 Wind-Wave Effects
      5,000  to 50,000                      10,000
      10,000  or greater                      20,000                Wind-wave effects should be superimposed on the PMF stillwater level. Criteria and acceptable methods are The PMF values so adjusted were plotted on maps of        given in Appendix A, Section A.12.


the United States east of the 103rd meridian, one map for each of the six index drainage areas. It was found                              B.4 LIMITATIONS
Vt.
that there were areas on each map with insufficient points to define isolines. To fill in such gaps, conserva-          1. The NRC staff will continue to accept for review tive computations of approximate PMF peak discharge            detailed PMF analyses that result in less conservative were made for each two-degree latitude-longitude inter-        estimates. In addition, previously reviewed and appruved section on each map. This was done by using enveloped          detailed PMF analyses at specific sites will continue to relations between drainage area and PMF peak discharge        be acceptable even though the data and procedures in            I
(in cfs per inch of runoff), and applying appropriate          this appendix result in more conservative estimates.


probable maximum precipitation (PMP) at each two- degree latitude-longitude intersection. PMP values, ob-            2. The PMF estimates obtained as outlined in Sec- tained from References 3 and 4, were assumed to be for        tions B.3.1 and 13.3.2 are peak discharges that should be a 48-hour storm to which losses of 0.05 inch per hour          converted to water level to which appropriate wind-wave were applied. These approximate PMF values were also          effects should be added.
Vt.


plotted on the maps for each index drainage area and the enveloping isolines were drawn as shown on Figures B.2            3. If there are one or more reservoirs in the drainage through B.7.                                                  area upstream of the site, seismic and hydrologic dam failure' flood analyses should be made to determine B.3.2.2 Use of Maps                                            whether such a flood will produce the design basis water level. Criteria and acceptable methods are included in The maps may be used to determine PMF peak                Appendix A, Section A.10.
Mass.


discharge at a given site with a known drainage area as follows:                                                          4. Because of the enveloping procedures used, PMF
Coeme Mass.
                                                                peak discharges estimated as outlined in Section B.3.2
    1. Locate    the    site on the  100-square-mile  map,    have a high degree of conservatism. If the PMF so Figure B.2.                                                    estimated casts doubt on the suitability of a site, or if protection from a flood of that magnitude would not be
    2. Read and record the 100-square-mile PMF peak            physically or economically feasible, consideration should discharge by straight-line interpolation between the          be given to performing a detailed PMF analysis, as isolines.                                                      outlined in Appendix A. It is likely that such an analysis will result in appreciably lower PMF.levels.


3. Repeat Steps 1 and 2 for 500, 1,000, 5,000,
Mass.
  10.000, and 20,000 square miles from Figures B.3                In this context, "hydrologic dam failure" means a failure through B.7.                                                    caused by a flood from the drainage area upstream of the dam.


1.59-26
Vt.


APPENDIX B
Connecticut Pequonnook Connecticut Connecticut Connecticut Winooski Blackstone Thames Thames Merrimack Winooski West River Pequonnook River Tully River Ompompanoosuc River Connecticut River Waterbury River West River Quinebaug River Quinebaug River Whitman River North Branch North Atlantic Region (Mid-Atlantic Sub-region)
                                                  REFERENCES
Almond Alvin R. Bush Aquashicola Arkport Aylesworth Baird Beltzville Bloomington Blue Marsh Burketown Cabins Chambersburg Christiana Cootes Store Coiaaesque Curwensavile Dawsonville Douglas Point East Sidney Edes Fort Fairview Foster Joseph Sayers Francis e. Walter N. Y.
1. Nunn, Snyder, and Associates, "Probable Maximum              Maximum Precipitation East of the 105th Meridian,"
  Flood and Hurricane Surge Estimates," unpublished            Hydrometeorological Report No. 33, 1956.


report to NRC, June 13, 1975 (available in the public document room).
Pa.
2. W.P. Creager, J.D. Justin, and J. Hinds, "Engineering      4. U.S. Department of Commerce, N.OAA, "All-Season For Dams," J. Wiley and Sons, Inc., New York, 1945.          Probable Maximum Precipitation-United States East of the 105th Meridian, for Areas from 1,000 to
3. U.S. Weather Bureau (now U.S. Weather Service,                20,000 Square Miles and Durations From 6 to 72 NOAA), "Seasonal Variation of the Probable                    Hours," draft report, July 1972.


1.59-27
Pa.


450'
N. Y,
          410
Pa.
'l0            CALIFORNIA-
    t'.)00SOUTH        PACIFIC
                                                                                                133'
                                        ROGRANDEmis
          290                                            TEXAS-GULF                          I 290
                                                                                                1250
                    1170      1130 1090    1050      1010        970    930      890 850 810
                                                FIGURE B.1 WATER RESOURCES REGIONS
                                                                      F


t    ISOLINE REPRESENTING PEAK FLOW OF
w. Va.
      PMF IN 1,000 CFS.


NOTE: PMF ISOLINES ON THIS CHART REPRESENT ENVELOPED
Pa.
  VALUES OF PEAK RUNOFF FROM 100-SQUARE MILE DRAINAGE          160
  AREA UNDER NATURAL RIVER CONDITIONS. ACCORDINGLY,
I PMF VALUES OBTAINED DO NOT INCLUDE POSSIBLE CONTRIBU-
  TIONS TO PEAK FLOW THAT WOULD RESULT FROM                        140
  UPSTREAM DAM FAILURES OR OTHER UNNATURAL EVENTS.                    1
    1190    1170  1150  113'  111&deg;  1090  1070  1050 1030 101'    990
                              FIGURE B.2 PROBABLE MAXIMUM FLOOD (ENVELOPING PMF ISOLINES) FOR 100 SOUARE MILES


470
Md.
                                                                                                                450
 
                                                                                                                430
Pa.
                                                                                                                410
 
                                                                                                                390
Va.
                                                                                                                370
 
                                                                                                                350
We Va*
'.
Md.
                                                                                                                330
 
                                                                                                                310
Del.
                                                                                                                290
 
      ,-ISOLINE REPRESENTING PEAK FLOW OF
Va.
        PMF IN 1,000 CFS.
 
Pa.
 
Pa.
 
Md.
 
N. YO
we Va*
Md.
 
Pao Pas Susquehanna Susquehanna Delaware Susquehanna Susquehanna Potomac Delaware Potomac Delaware Potomac Potomac Potomaa Delaware Potomac Susquehanna Susquehanna Pot *r*-c Potomac Susquehanna Potomac Potomac Susquehanna Delaware Canacadea Creek Kettle Creek Aquashicola Creek Canister River Aylesworth Creek Buffalo Creek Pohopoco Creek North branch Tulpehockan Creek North River South Branch Conococheague River Christiana River North Fork River Cowanesque River Susquehanna River Seneca Creek Poto mac River Oulelot River Cacapon River Conococleaque Creek Bald Eagle Creek Lehigh River
4r Project State PIF Peak Discharge
--
-
-;%
wg*Ru"W
.
1 R&O I
278
14
50
126
6,266
109
28
74
32
18
68
21.3
23.0
20.0
17.0
18.9
28.0
20.4
25.4
21.4
20.2
22.0
24.0
28.0
22.5
23.8
34.0
27.1
22.2
24.0
24.3
20.8
28.9
32.1
22.5
21.9
22.0
13.4
24.0
21.2
22.9
21.8
22.4
17.2
21.8
16.6
15.8
16.0
25.6
17'.5
22.8
19.8
17.3
18.8
21.1
24.2
17.7
22.0
30.2
25.6
17.6
21.3
21.2
16.8
26.0
28.3
19.1
18.5
18.9
27.1
10.2
22.1
17.3
18.8
19.0
19.8
228,000
26,700
47,000
110,0000
480,000
128.000
26,ooo
85,000
38,400
25,000
74,000
59.000
154,000
42.500
33.400
13,700
14,600
68,000
196,000
11o,600
272,200
l955,900
81,400
39,200
140,200
285,000
205. 000
161,900
1,490,000  
99,900
410,800
150,100
251,000
1700000
56
226
66"
31
6.2
10
97
263
175
375
314
141
41
215
298
365s
0l1
13,317
202
679
494
339
288 C
t T"
*o
 
Q
K1 Drainage Basin Average PMF Peak Project State River Basin Stream Area (in inches)
Discharge
(2.so.m
_ Pec. Ruoff (cfs)
Franklin Frederick Front Royal Fulton (Harrisbrg)
Gathright Geun. Edgar Jadwin Great Cacapon Harriston Hawk Mountain Headsvifle John H. Kerr Karo Keyser Kitsmiller Leesburg Leidstown Licking Creek Little- Cacapon Maiden Creek Martinsburg Mikville Moorefield Moorefield Newark North Anna North Mountain Peach Bottom Perryman Petersburg Philpott Prompton Raystown Royal Glen Salem Church Savage River Seneca Sharpeburg V. Va.. 
Md.
 
Va, Pa.
 
Va, Pa.
 
We Va.
 
Va*
Pa.
 
W. Va.
 
Va.


270
V. Va.
  NOTE: PMF ISOLINES ON THIS CHART REPRESENT ENVELOPED
  VALUES OF PEAK RUNOFF FROM 500-SQUARE MILE DRAINAGE
  AREA UNDER NATURAL RIVER CONDITIONS. ACCORDINGLY,
  PMF VALUES OBTAINED DO NOT INCLUDE POSSIBLE CONTRIBU-                                                        250
  TIONS TO PEAK FLOW THAT WOULD RESULT FROM UPSTREAM
  DAM FAILURES OR OTHER UNNATURAL EVENTS.


I    I      1    I    I      I      T    -
V,. Va.
                              FIGURE B.3 PROBABLE MAXIMUM FLOOD (ENVELOPING PMF ISOLINES) FOR 500 SQUARE MILES


470
Md.
470
450                                                                                                                14                              45'
430                                                                                                                  200                      250  43'
                                    4300
410                                                                                                1                      2                        410
                  3 9 0
                                                                                                                            0            4  04    3 9.0
                                                                                                                                                      0
370                                                                                                                                                370
                                                                                                  4.5                                  350
330                                                                                                                                                330
31040                                                                                                                            5                310
290                                                                                                                                                290.


270          PMF IN 1 000 CFS.                                 503020270
Va.
        NOTE: PMF ISOLINES ON THIS CHART REPRESENT ENVELOPED
        VALUES OF PEAK RUNOFF FROM 1,000-SQUARE MILE DRAINAGE                500        350
        AREA UNDER NATURAL RIVER CONDITIONS. ACCORDINGLY,          ___I
25      PMF VALUES OBTAINED DO NOT INCLUDE POSSIBLE CONTRIBU-                                                                                    250
                        I *,;^,*                        ....
        TIONS TO PEAK FLOW THAT WOULD RESULT FROM UPSTREAM45              I      045ol1      I
        DAM FAILURES OR OTHER UNNATURAL EVENTS.0
    1210    1190  1170  1150  113"  111'  1090  1070    105"  103"    101l          97'  95" 93" 91" 89" 87'    850    83'  81, FIGURE B.4  PROBABLE MAXIMUM FLOOD (ENVELOPING PMF ISOLINES) FOR 1.000 SQUARE MILES


470
Mde W. Va@
450
W. Va.
410
390
350
                                                                          700                        6000,.
330                        29&deg;I800
                          2900
3106
              27~  IN 1,000 CFS.000
                            _1PMF
25&deg;    PMF VALUES OBTAINED DO NOT INCLUDE POSSIBLE CONTRIBU9 TIONS TO PEAK FLOW. THAT WOULD RESULT FROM UPSTREAM DAM
      FAILURE OR OTHERUNARLEVTS
    121&deg;  1190  1170  1150    T13&deg;  1110 1090  1070  1Q05 1030 j01&deg;  gg0  970  950  930  910  890    870  850
                                                                                                                        830
                                      FIGURE B.5  PROBABLE MAXIMUM  FLOOD (ENVELOPING PMF ISOLINES) FOR 5,000 SQUAR
                                                                                                                      E MILES


470
Pa.
                                                                                                                                450
                                                                                                                                430
                                                                                                                                410
                                                                                                                                390
                                                                                                                                370
.J1                                                                                                                              350
                                                                                                                                330
                                                                                                                                310
                                                                                                                                290
              ISOLINE REPRESENTING PEAK FLOW OF
              PMF IN 1,000 CFS.


"..#    ,.                        I                                                                                  270
V, Va.
        NOTE: PMF ISOLINES ON THIS CHART REPRESENT ENVELOPED
      / VALUES OF PEAK RUNOFF FROM 10,000-SOUARE MILE DRAINAGE
        AREA UNDER NATURAL RIVER CONDITIONS. ACCORDINGLY,
        PMF VALUES OBTAINED DO NOT INCLUDE POSSIBLE CONTRIBU.                                                                  250
        TIONS TO PEAK FLOW THAT WOULD RESULT FROM UPSTREAM DAM
        FAILURES OR OTHER UNNATURAL EVENTS.


1210    1190    1170 1150  1130    1110 1090  1070 1050  1030 1010 990  970  950 930    910  890  870  850  830  810
V, Va, Del*
                                      FIGURE B.6  PROBABLE MAXIMUM FLOOD (ENVELOPING PMF ISOLINES) FOR 10,000 SQUARE MILES
Va.


~100
we Va.
350
                        4&#xfd;                                          100                                                400 1600 1800
330&deg;50
311
                                      2900
      TIN T      ISOLINE REPRESENTING PEAK FLOW OF                  DAM            1200
                                                      C O DN L          1300                                        16
250    AR AU D RN T R LRV R O DTO S
                  PMDF IN 1,000 C FSO
                                                                                                                                                                2?
      NOTE: PMF    ISOLINES ON THIS CHART    REPRESENTMILE
                                        20,000-SQUARE    ENVELOPED
                                                              DRAINAGE .    1400MI              1100
      VALUES OF PEAK RUNOFF FROM
                                                                        .  . 1310
250    AREA UNDER NATURAL RIVER CONDITIONS. ACCORDINGLY.


1 3      0 0              0    0
Pa.
                                                                                                        0g 9    9 0    8 0  8 0  8 0  3      9        7
  1270PMF110 VALUES 17OBTAINED    NOT INCLUDE
                            15 DO 13    11 0      9    0 0CONTRIBU-
                                                1POSSIBLE    . 00                      g 0 9              300
                                                                                                                                                                25 T'IONS TO PEAK FLOW THAT WOULD RESULT FROM UPSTREAM DAM                      10
      DAM FAILURES OR OTHER UNNATURAL EVENTS.                  .
  121&deg;    119&deg;  1170    1150  113&deg;    Ili,    109&deg;  107'  "1050  103&deg;    101'    99&deg;  97o    95'    93&deg;  91&deg;    89'  B7'  85&deg; 83o 810 79&deg;      77'
                                                                                                                                                            75' 73'
                                    FIGURE B.7      PROBABL E MAXIMUM FLOOD (ENVELOPING PMF ISOLINES) FOR 20,000 SQUARE MILES


I
Md, V. Va, Va.
            r*V
                              I      I I  I  III
                                                          I                          I  I        SI  I I    lfl &#xfd; I  I I  I  I I I
  LLf                                                                                            I I I      T    I I I  I I I I
                        -EXAMPLE:                                                                                        .1 Li L
                          -FOR DRAINAGE AREA OF
                        -2,300 SQ. MI. AT LAT. 95",
                          LONG. 430, DETERMINE PMF -1-4.                                      -SOLUTION:
                          PEAK
                              I
                                DISCHARGE.


II I    I III!        I  I
Pat Pa.
                                                                  I I I  I I
                                                                                  -                FOR DRAINAGE AREA OF
                                                                                                -2,300 SQ. MI., PMF PEAK =
      Lci il-HI                        -
                                                                                                    400,000 CFS.


;  [ i I
Md.
                                                                            POINTS FROM
  0                                                                        FIGURES B.2-B. J
  0
'C            11flai IL
                                                                                          ~flh1IEl3~
              .  _W=I
      0                i    i  I I I I I1'r          Z  i  i I
  0
  Cc
                  1 01                                .
                    .10
                                                  100                  1000                      10,000                      100,000
                                                        DRAINAGE AREA, SQUARE MILES
                                    FIGURE B.8 EXAMPLE OF USE OF ENVELOPING ISOLINES


TABLE B.1 PROBABLE MAXIMUM FLOOD DATA ( )
Va.,  
                                                                            Drainage  Basin Average PMF Peak Project      State    River Basin            Stream              Area      (in inches)  Discharge (sq.mi.)  Prec. Runoff    (cfs)
Md.
                              North.Atlantic Region (Northeast Atlantic Sub-region)
    Ball Mountain    Vt,      Connecticut      West River                      172  20.6    18.1      190,000
    Barre Falls      Mass.    Connecticut        Ware River                      55  20.1    18.9      61,000
    Beaver Brook      N. H.    Connecticut      Beaver Brook                      6.0 21.3    19.7      10,400
    Birch Hill        Mass.   Connecticut      Millers River                  175  18.3    17.1      88.500
    Black Rock        Conn.    Housatonic        Branch Brook                    20  22.2    20.6      35,000
    Blackwater        N. H.    Merrimack        Blackwater River                128  18.3    16.4      95,000
    Buffumville      Mass.    Thames            Little River                    26  26.6    25.3      36,500
    Colebrook        Conn.    Connecticut      Farmington River                118  22.7    21.1      165,000
    Conant Brook      Mass.    Connecticut        Conant Brook                    7.8 24.4    23.2      11,900
    East Barre        Vt.      Winooski          Jail Branch                      39  21.5    18.6      52,500
    East Branch      Conn.    Housatonic        Naugatuck River                  9.2 24.0    22.8      15,500
    East Brimfield    Mass.    Thames            Quinebaug River                  68  24.2    22.9      73,900
W*
0\
CYN Edward McDowell  N. H.    Merrimack        Nubanusit River                  44  19.5    18.3      43,000
    Everett          N. H.    Merrimack        Piscataquog River                64  20.7    18.2      68,000
    Franklin Falls    N.H.    Merrimack        Pemigewasset River          1,000    15.8    13.3      300,000
    Hall Meadow      Conn.    Connecticut      Hall Meadow Brook                17  24.o    22.8      26,600
    Hancock          Corn.    Housatonic        Hancock Brook                  12  24.0    22.8      20,700
    Hodges Village    Mass.    Thames            French River                    31  26.2    22.3      35,600
    Hop Brook        Conn.    Housatonic        Hop Brook                      16  25.0    23.8      26,400
    Hopkinton        N. H.    Merrimack          Contoocook River              426  17.4    14.7      135,000
    Knightville      Mass.    Connecticut        Westfield River                162  18.8    17. 6    160,000
    Littleville      Mass.    Connecticut        Westfield River                52  25.1    22.4      98,000
    Mad River        Conn.    Connecticut      Mad River                        18  24.0    22.8      30,000
    Mansfield Hollow  Conn.    Thames            Natchaug River                  159  19.8    18.5      125,000
    Nookagee          Mass.    Merrimack        Phillips Brook                  11  21.8    20.2      17,750
    Northfield        Conn.    Housatonic        Northfield Brook                  5.7 24.4    23.2        9,000
    North Hartland    Vt.      Connecticut      Ottauquechee River              220  19.3    17,2      199,000
    North Springfield Vt.      Connecticut      Black River                    158  20.0    18.3      157,000
    Otter Brook      N. H.    Connecticut      Otter Brook                      47  19.1    17.9      45,000
    Phillips          Mass.    Merrimack        Phillips Brook                    5.0 24.2    23.0        7,700
    Sucker Brook      Conn.    Connecticut      Sucker Brook                      3.4 22.4    21.4        6,500
    Surry Mountain    N. H.    Connecticut      Ashuelot River                  100  22.2    19.6      63,000
    Thomaston        Conn.    Housatonic        Naugatuck River                  97  24.5    22.4      158,000


TABLE B.1 (Page  2 of 17)
Md.
                                                                              Drainage    Basin Average  PMF Peak Project          State    River Basin                Stream            Area        (in inches)  Discharge Prec.., Runoff  (cfs)
                                                                              (sa  mi                      L    .
Townshend              Vt.      Connecticut          West River                    278    21.3    17.2      228,000
Trumbull              Conn.    Pequonnook          Pequonnook River                14    23.0    21.8        26,700
Tully                  Mass.    Connecticut          Tully River                      50  20.0    16.6      47,000
Union Village          Vt.      Connecticut          Ompompanoosuc River            126    1760    15.8      110,000
Vermont-Yankee        Vt.      Connecticut          Connecticut River            6,266                      48O,O00
Waterbury              Vt.      Winooski            Waterbury River                109    18.9    16.0      128,000
West Hill              Mass.    Blackstone          West River                      28    28.0    25.6        26,000
West Thompson          Conn.    Thames              Quinebaug River                74    2064    17.5      85,000
Westville              Mass.    Thames              Quinebaug River                32    25,4    22.8        38,400
                                Merrimack            Whitman River                  18    21.4    19.8        25,000
Whitemanville          Mass.


Wrightsville          Vt.      Winooski            North Branch                    68    2092    17.3      74,000
Mde Potomac Potomac Potomac Susquehanna James Delaware Potomac Potomac Delaware Potomac Roanoke Potomac Potomac Potomac Potomac Potomac Potomac Potomac Delaware Potomac Potomac Potomac Potomac Delaware Pamunkey(York)  
                                      North Atlantic Region (Mid-Atlantic Sub-region)
Potomac Susquehanna Chesapeake Bay Potomac Roanoke Delaware Susqiehanna Potomac Rappahannock Potomac Potomac Potomac South Branch Monocacy River SoFk.Shenandoah River Susquehanna River Jackson River Dyberry Creek Cacapon River South River E.Br. Delaware River Patterson Creek Roanoke River South Branch North Branch North Branch Goose Creek Fishing Creek Licking Creek Little Cacapon River Maiden Creek Opequon Creek Shenandoah River South Branch Soo Pl.
Almond                N. Y.    Susquehanna         Canacadea Creek                  56  22.0    18.8        59,000
Alvin R. Bush          Pa.      Susquehanna          Kettle Creek                  226    24.0    21.1      154,000
Aquashicola            Pa.      Delaware             Aquashicola Creek              66    28.0    24.2      42,500
Arkport                N. Y.    Susquehanna          Canister River                  31    22.5    17.7      33,400
Aylesworth            Pa.      Susquehanna          Aylesworth Creek                  6.2 23.8    22.0      13,700
Baird                  W. Va.  Potomac             Buffalo Creek                  10    34.0    30.2      14,600
Beltzville            Pa.      Delaware            Pohopoco Creek                  97    27.1    25.6      68,000
Bloomington            Md.      Potomac             North Branch                  263    22.2    17.6      196,000
Blue Marsh            Pa.      Delaware            Tulpehockan Creek              175    24.0    21.3      110,600
Burketown              Va.      Potomac             North River                    375    24.3    21.2      272,200
Cabins                W. Va.  Potomac             South Branch                   314    20.8    16.8      195,900
Chambersburg          Md.      Potomac              Conococheague River           141    28.9    26.0      81,400
Christiana            Del.    Delaware            Christiana River               41    32.1    28.3      39,200
Cootes Store          Va.      Potomac              North Fork River              215    22.5    19.1      140,200
Cowanesque            Pa.      Susquehanna         Cowanesque River               298    21.9    18.5      285,000
Curwensville          Pa.      Susquehanna          Susquehanna River             36,;  22.0    18.9      205,000
Dawsonville            Md.      Pot ciMac            Seneca Creek                         206.I    2?.1      i61,900
Douglas Point          Md.      Potomac              Potomac River                         13.4    10.2    1,490,000
East Sidney            N. Y.    Susquehanna          Oulelot River                 102    24.0    22.1      99, 900
Edes Fort              W. Va.  Potomac              Cacapon River                 679    21.2    17.3      410,800
Fairview              Md.      Potomac              Conococleaque Creek           494    22..9    18.8      150,100
Foster Joseph Say( ers Pa.      Susquehanna          Bald Eagle Creek               339    21,8    19.0      251,000
Francis E. Walter      Pa.      Delaware            Lehigh River                   288    2264    19.8      170,000
                                                                  .4


South Branch White Clay River North Anna River Back Creek Susquehanna River Bush River South Branch Smith River Lackawaxen River Juniata River (Br.)
South Branch Rappahannock River Savage River Potomac River Antietem Creek'
T
TABLE B.1 ( )
TABLE B.1 ( )
                                                                    Drainage  Basin Average P1* Peak Project        State    River Basin            Stream          Area      (in inches)  Discharge (sn.mi.)  Prec.  Runoff    (cfsR
%0
Franklin            W. Va.  Potomac          South Branch              182   24.2    20.6      174,000
urn
Frederick          Md.      Potomac          Monocacy River            817   23.2    20.9      363,400
182  
Front Royal        Va.      Potomac          S.Fk.Shenandoah River  1,638   18.0    14.3      419,000
817  
Fulton (Harrisburg) Pa.      Susquehanna      Susquehanna River      24,100   12.7     8.2    1,750,000
1,638  
Gathright          Va.      James            Jackson River              344  24.4    21.3      246,0OO
24,100  
Gen. Edgar Jadwin  Pa.     Delaware          Dyberry Creek              65  24.8   24.0      119,700
65
Great Cacapon      W. Va.  Potomac          Cacapon River              677  21*2    17.3      373,400
677
Harriston          Va.      Potomac          South River                222  29.6   26.5      153,700
222
Hawk Mountain      Pa.      Delaware          E.Br. Delaware River      812    16.5   12.7      202,000
812
Headsville          W. Va.  Potomac          Patterson Creek            219  23.4   19.0      176,000
219
John H. Kerr        Va.      Roanoke          Roanoke River          7,800    16.8   12,9    1,000,000
7,800
                    W. Va.                    South Branch            1,577    18.9   14.9      430,000
1,577
Karo                        Potomac Keyser              W. Va.  Potomac          North Branch              495    21.5   16.3      279,200
"495
Kitzmiller          Md.     Potomac          North Branch              225  22,3   17,1      120,200
225
Leesburg            Va.      Potomac          Goose Creek                338  26.5   24.2      340,900
338
Lewistown          Md.      Potomac          Fishing Creek                7.1 34.8   32.7        12,200
7.1  
Licking Creek      W. Va.  Potomac          Licking Creek              158  29.0   26.1      125,800
158
Little Cacapon      W. Va.  Potomac          Little Cacapon River      101  29.7   27o4      122,700
101
Maiden Creek        Pa.      Delaware          Maiden Creek              161  27.3   23.5      118,000
161
Martinsburg        W. Va.  Potomac          Opequon Creek              272  27.2   24.1      174,600
272
Mikville            W, Va.  Potomac          Shenandoah River        3,040    16.2   11.7        592,000
3),o01
Moorefield          W. Va.  Potomac          South Branch            1,173    18.0   14.0      389,700
1,173
Moorefield          W. Va.  Potomac          So. Fk. South Branch      283  21,1    17.1       173,800
283
Newark              Del.    Delaware          White Clay River            66  29.8   26.0       103,000
66
North Anna          Va.     Pamunkey(York)    North Anna River          343  25.0   21.3       220,000
3143
North Mountain      W. Va.   Potomac          Back Creek                231  27.9    24.8      256,000
231
Peach Bottom        Pa.     Susquehanna      Susquehanna River      27,000    12.7    8.2     1,750,000
27,000  
Perryman            Md.     Chesapeake Bay    Bush River                118                        87,400
118
Petersburg          W. Va.   Potomac          South Branch              642  19,3    15.3      208,700
642
Philpott            Va.     Roanoke          Smith River                212  27.5    24.3      160,000
212
Prompton            Pa,      Delaware          Lackawaxen River            60  25.0    24.2         87,190
60
Raystown            Pa.     Susquehanna      Juniata River (Br.)        960  21-4   17.5       353,400
960
Royal Glen          Md.     Potomac          South Branch              640  19.3    15.3      208,700
640
Salem Church        Va.     Rappahannock      Rappahannock River      1,598    23.6    19.6      552,000
1,598
Savage River        Md.     Potomac          Savage River              105  26.3    22.2       107,400
105
Seneca              Md.      Potomac          Potomac River          11,400    13.5    10.3     1,393,000
11,400
Sharpsburg          Md.      Potomac          Antietem Creek            281  26.6    23.5      154,900
281
24,2
23.2
18.0
12.7
&#xfd;24.11
24.8  
21o2
29.6  
.16.5  
23.4  
16.8  
18.9  
21.5  
22.3  
26.5  
34.8  
29.0  
29.7  
27.3  
27.2  
16.2  
18.0  
21.1  
29.8  
25.0  
27.9
12.7
1903
27.5
25.0  
21.4
19.3  
23.6
26.3
13.5
26.6
20o.6
20.9
114.3
8.2  
21.3
17.3
26.5
12.7
19.0
12.9
14.9
16.o
17.1
2*4.2  
32.7
26.1
27.4  
23.5  
24.1
11.7
1*4.0
17.1  
26.0
21.3
24.8
8.2  
15.3  
24*3.


24.2
17.5
15.3
19.6
22.2
10.3
23.5
174,000.
* .363,00
419,000
1,750,000
246,000
119,700
373,100
153,700
.202,000
176,000
1,000,000
*430,000
2799200
120,200
340,900
12,200
125,800
122,700
118,000
17?4.600
592,000
389,700
173,800
103,000
220,000
256,000
1,750,000
87,400
208,700
160,000
87,190
353,*400
208,700
552,000
107,400
1,393,000
154,900
TABLE B.1 ( )
Drainage Basin Average PMF Peak Project State River Basin Stream Area (in inches)
Discha ge (sq.mi.)
Prec.
Runoff (cfre)
Sherrill Drive Six Bridge Springfield Staunton Stillwater Summit Surry Tioga-Hammond Tocks Island Tonoloway Town Creek Trenton Trexler Tri-Towns Verplanck Washington, D, C,
Wayneaboro West Branch Whitney Point Winchester York Indian Rock Allatoona Alvin W. Vogtle Bridgewater Buford Carters Catawba Cherokee Claiborne Clark Hill Coffeeville Cowans Ford Demopolis Falls Lake Md.
Md.
WO Va.
Va.
Pa.
N. J,
Va.
Pa.
N. Jo Md.
Md.
N. J.
Pa.
We Va.
N. Y.
Mid.
Va.
W. Va.
No Y.
Va.
Pa.
Potomac Potomac Potomac Potomac Susquehanna Delaware James Susquehanna Delaware Potomac Potomac Delaware Delaware Potomac Hudson Potomac Potomac Potomac Susquehanna Potomac Susqueha~nna Rock Creek Monocacy River South Branch South Branch Shen.
Lacawanna River Delaware River James River Tioga River Delaware River Tonoloway Creek Town Creek Delaware River Jordon Creek North Branch Hudson River Potomac River South River Conococheague River Otselie River Opeqnon Creek Codorus Creek South Atlantic-Gulf Region Ca.
Ga, N. C.
Ga.
Ga.
N. C.
N. C,
Ala.
Ga.
Ala.
N. C.
Ala, N. C.
Albaba-Coosa Savannah Santee Apalachicola Alabama-Coosa Santee Congaree-Santee Alabama-Coosa Savannah Toabigbee Santee Tombigbee Neuse Etowah River Savannah River Catawba River Chattahoochee River Coosawattee River Catawba River Broad River Alabama River Savannah River Black Warrior River Catawba River Tombigbee River Neuse River
62
308
1,471
325
37
11, 100
9,517
"402
3,827
112
144
6,780
52
478
12,65o
11,5460
136
78
255
120
94
1,110
6,144
380
1,040
376
3,020
1,550
21,520
.6,144
18,600
1,790
15,300
76o
30.6
27.1
17.5
25.0
27.3
23.5
13.3
29.9
27.5
25.2
21.6
14.0
13.4
29.6
30.7
20.7
28.9
22.1
28.3
24.0
15.5
21.3
24.1
19.2
10.5
26.8
25.2
22.6
16.4
9.7
10.2
26.5
27.0
19.1
25o8
1707
22.2
19.8
21.8
14.5
21.7
19.7
26.6
22.3
16.6
14.9
21.8
13.6
16.7
23.2
12.3
14,5
11.2
14.3
21.2 C
0%
111,900
225o,00
405, 000
226:000
39,600
1,000,000
1,000,000
318,000
576,300
117,600
102,900
830,000
5500
268,000
1,100,000
1,280,000
116,000
78,700
102,000
142,l00
74,300
44O,000
1,001,000
187,000
428,900
203,100
674,000
560,000
682,500
1,140,000
743,400
636,000
1,068,000
323,000
C
1"
Q
TABLE B.1 ( )
TABLE B.1 ( )
                                                                    Drainage Basin Average PMF Peak Project     State     River Basin             Stream         Area     (in inches) Discharge (sq.mi.) Prec. Runoff     (cfs)   -w Sherrill Drive    Md.     Potomac            Rock Creek                   62  30.6    28,3       111,900
Drainage Basin Average PM? Peak Project State River Basin Stream Area (in inches)  
Six Bridge        Md.     Potomac            Monocacy River              308  27.1     24.0      225,000
Discharge (soemi.)  
Springfield      W. Va. Potomac            South Branch              1,471  17.5     15,5       405,000
Prec, Runoff  
Staunton          Va.     Potomac            South Branch Shen.           325  25.0     21.3       226,000
(4f8)
Stillwater        Pa.     Susquehanna        Lacawanna River              37  27.3    24.1       39,600
k'
Summit            N. J.   Delaware          Delaware River          11,100                    1,000,000
Gainsville Hartwell Holt Howards Mill Jim Woodruff John H. Bankhead Jones Bluff Laser Creek Lookout Shoals Lower Auchumpkee MeGuire Millers Ferry Mountain Island New Hope Oconee Oconee Okatibbee Oxford Perkins Randleman Reddies Rhodhiss Shearon Harris Sprewell Bluff Trotters Shoals Walter F. George Warrior West Point V. Kerr Scott Bedford Bristol Fall Creek Ithaca Jamesville Linden Ala.
Surry            Va.     James              James River              9,517                    1,000,000
 
Tioga-Hammond    Pa.    Susquehanna        Tioga River                  402  23.5    19.2      318,000
Ga.
Tocks Island      N. J.   Delaware           Delaware River            3,827  13.3    10.5      576,300
 
Tonoloway        Md.     Potomac            Tonoloway Creek              112  29.9    26.8      117,600
Ala.
Town Creek        Md.     Potomac            Town Creek                  144  27.5    25.2      102,900
 
Trenton          N. J.   Delaware          Delaware River            6,780                      830,000
N. C.
Trexler          Pa.     Delaware          Jordon Creek                  52 25.2    22.6        55,500
 
Tri-Towns        W. Va. Potomac            North Branch                478  21.6    16.4      268,000
Fla.
Verplanck        N. Y,  Hudson            Hudson River           12,650    14.0      9.7    1,100,000
 
Washington, D. C. Md.     Potomac            Potomac River          11,560    13.4     10.2    1,280,000
Ala.
Waynesboro        Va.     Potomac            South River                136  29.6     26 .5     116,000
 
West Branch      W. Va. Potomac            Conococheague River          78  30.7    27.0        78,700
Ala.
Whitney Point    N. Y.   Susquehanna        Otselie River              255  20.7    19.1       102,000
 
Winchester        Va.     Potomac            Opeqnon Creek              120  28.9     25.8       142,100
Ga.
York Indian Rock  Pa.     Susquehanna        Codorus Creek                94  22,1    17.7       74,300
 
                                          South Atlantic-Gulf Region Allatoona        Ga.     Alabama-Coosa      Etowah River            1,110    22.2     19.8     440,000
N. Co Ga.
Alvin W. Vogtle  Ga.     Savannah          Savannah River          6,144    21.8    14.5    1,001,000
 
Bridgewater      N. C.   Santee            Catawba River              380                      187,000
N. C.
Buford            Ga.     Apalachicola      Chattahoochee River      1,040    21.7    19.7     428,900
 
Carters          Ga.     Alabama-Coosa      Coosawattee River          376  26.6    22.3       203,100
Ala.
Catawba          N. C.   Santee            Catawba River            3,020            16.6     674,000
 
Cherokee          N. C.  Congaree-Santee    Broad River              1, 550                      560,000
N. C.
Claiborne        Ala.    Alabama-Coosa    Alabama River            21,520    14.9    12.3      682,500
 
Clark Hill        Ga.    Savannah          Savannah River          6,144   21.8    14.5    1,140,000
N. C.
Coffeeville      Ala.    Tombigbee          Black Warrior River    18,600    13.6    11.2      743,400
 
Cowans Ford      N. C.  Santee            Catawba River            1,790                      636,000
S. C.
Demopolis        Ala.    Tombigbee          Tombigbee River        15,300    16.7    14.3    1,068,000
 
Falls Lake        N. C.  Neuse              Neuse River                760  23.2    21.2      323,000
S. C.
 
Miss.
 
N. Co N. Co N. C.
 
N. C.
 
N. C.
 
N. C.
 
Ga.
 
Ga.
 
Ga.
 
Ala.
 
Ga.
 
N. Co Ohio N. Yo N. Y.
 
N. Y.
 
Tombigbee Savannah Warrior Cape Fear Apalachicola Tombigbee Alabama Apalachicola Santee Apalachicola Santee Alabama Santee Cape Fear Savannah Savannah Pascagoula Santee Pee Dee Cape Fear Pee Dee Santee Cape Fear Apalachicola Savannah Apalachicola Tombigbee Apalachioola Pee Dee Cuyahoga Oswego Oswego Oswego Oswego Niagara Tombigbee River Savannah River Warrior River Deep River Apalachicola River Black Warrior River Alabama River Laser Creek Catawba River Flint River Catawba River Alabama River Catawba River New Hope River Keowee River Little River Okatibb"e Creek Catawba River Yadkin River Deep River Red1dies River Catawba River White Oak Creek Flint River Savannah River Chattahoochee River Black Warrior River Chattahoochee River Yadkin River Great Lakes Region Tinkers Creek Mud Creek Fall Creek Six Mile Creek Butternut Creek Little Tonawanda Creek
7,142
2,088
49232
626
17,150
3,900  
16,300
1, Ll0
1,450
1,970
1,770
20,700
1,860
1,690
439
148
154
1,310
2,t473
169
94
1I
090
. 79
1,210
2,900
7,460
5,828
3,440
348
91
29
123
43
37
22
19.6
16.8
24.8
18.8
22.1  
19.2
26.8
24.2
17.6
12.3
22.3
19.4
14o.2
11.6
24.6
20.7
23.7
19.8
14.7
12.1  
22.0
19.4
26.5  
23.5  
26.6
.33.0
28.4
28.6-
26.0
28.0
24.8
25.8
24.0  
16.6
19.5
21.9
25.6
28.6
29.9
17.1
26.9
26.0
30.8
.21.3  
19.1
15.2
16.6
17.4
21.5
25.9
28.1
16.1
25.1
24.1  
29,0
-J
702,400
875,000
650,000
305.000
1,133,800
670,300
664,000  
303,600
492,000  
355,600
750.000
844,000
362,000
511,000
450,000
245,000
87,"00
479,000
440,600
126,000
174, 200
379,000
163,500
318,000
800,000
843,000  
5549000
440,000  
318,000
79,000
64,900
63,400
77,900
35,200
64,400
 
TABLE 8.1 ( )
Pr ject Mount Morris Onondago Oran Portageville Quanicassee Quanicassee Qouanicassee Standard Corners Alum Creek Barkley Barren Beaver Valley Beech Fork Big Blue Big Darby Big Pine Big Walnut Birch Bluestone Booneville Brookville Buckhorn Burnsvlfle Cae.ar Creek Cagles Mill Carr Fork Cave Run Center Hill Clarence J. Brown Claytor Clifty Creek Dale Hollow Deer Creek Delaware Dewey State N. Y.
 
N. Y.
 
N. Y.
 
N. Y.
 
Mich.
 
Mich.
 
Mich.
 
N. Y.
 
Ohio Ky.
 
Ky.
 
Pa.
 
W. Va.
 
Ind.
 
Ohio Ind.
 
Ind, we Va.
 
W. Va.
 
Ky.
 
Ind.
 
Ky.
 
W. Va.
 
Ohio Ind.
 
Ky.
 
Ky.
 
Temn.
 
Ohio Va.
 
Tmd.
 
Tenn.
 
Ohio Ohio Ky.
 
River Basin Genesee River Lake Ontario Oswego Genesee Saginaw Bay Saginaw Bay Saginaw Bay Genesee Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio SStream Genesee River Onondigo Greek Limestone Creek Genesee River Saginaw River Tittabawassee River Quanicassee River Genesee River Ohio Region Alum Creek Cumberland River Barren River Ohio River Twelve Pole Creek Big Blue River Big Darby Creek Big Pine Creek Big Walnut Creek Birch River Nea River So. Fk. Kentucky River White.ater River M. Fk.Kentucky River Little Kanawha River Caesar Creek Mill Creek No; Fk. Kentucky River Licking River Caney Fork Buck Creek New River Clifty Creek Obey River Deer Creek Olentangy River Big Sandy River Ara ae Area.
 
1,077
68
47
983
6,260
2,o40
70
265
123
8,700
940
23,000  
78
269
326
197
142
4,565
665
379
408
165
237
295
58
826
2,174
82
2,382
145
935
278
381
207 Basin Average
(,ininches)
7Prec.
 
Runoff Prec Ruoff (cfsm
17.0
14.6
24.2
23.3
25.1
23.4  
17.8
15.8
22.3
20.3
24.6
22.6
17.6  
26.4
23.5  
24.1
22.4
24-0
28.:4
23.2
24.2
23.8
24.8
24.1  
24.6
27.4
22.8
22.-3
29.0
22.3
24.9  
23.8  
22.9
22.7  
25.0
21.8
21.5
16.9
23.5
21.2
21.3
20.4
22.0
25.2  
13.8  
21.0
22.1
21.5
22.3
21.9
22.7
25.0
20.6
21.8
26.7  
18.0
23.0
23.3  
20.1
20.4
22.6 r
Go PJ? Peak Discharge
385,000
61,800
80,790
359,000
440,000  
270,000
46,000
189,900
3.10,000
1,000,000  
531,000
1,500,000
84,000
161,000
294,000
174,000
144,ooo
102,000
410,000
425,000
272,000
239,000  
138,800
230,200
159,000
132,500
510,000  
696,0oo0
121,000
1,1091000
112,900
435to00
160,000  
296,000  
75,500
(
r TABLE B.1 ( )


Q
TABLE B.1 ( )
TABLE B.1 ( )
                                                                    Drainage Basin Average PMF Peak Project    State    River Basin            Stream          Area    (in inches) Discharge (sq.mi.)  Prec. Runoff    (cfs)
River Basin Drainage stream Area f-
  Gainsville      Ala.   Tombigbee          Tombigbee River          7,142  19.6    16.8    702,400
'-
  Hartwell        Ga.     Savannah          Savannah River          2,088  24.8    18.8    875,000
Basin Average (in inches)
  Holt            Ala.   Warrior            Warrior River            4,232  22.1    19.2    650,000
Dillon Dyes Eagle Creek N. Br. Clarion East Fork East Lynn Pishtrap Grayson Green River Helm John W. Flannagan J. Percy Priest Kehoe Kinzua Lafayette Laurel Leading Creek Lincoln Logan Louisville Mansfield Martins Fork Meigs Meigs Mill Creek Mississinena Michael J. Kirwin Monroe Nuddy Creek Nolin N. Br. Kokosing N. Fk. Pound River Paint Creek Paintsville Panthers Creek Patoka R. D. Bailey Rough River Ohio Ohio Ky.
  Howards Mill    N. C.   Cape Fear          Deep River                . 626 26.8    24.2    305,000
 
  Jim Woodruff    Fla.   Apalachicola      Apalachicola River      17,150  17,6    12.3  1,133,800
Pa.
  John H. Bankhead Ala.   Tombigbee          Black Warrior River      3,900  22.3    19.4    670,300
 
  Jones Bluff      Ala.   Alabama            Alabama River          16,300  14.2    11.6    664,000
Ohio w. Va.
  Lazer Creek      Ca.     Apalachicola      Lazer Creek              i,41O  24.6    20.7    303,600
 
  Lookout Shoals  N. C,  Santee            Catawba River           1,450                    492,000
Ky.
  Lower Auchumpkee Ga.     Apalachicola      Flint River             1,970  23.7    19.8    355,600
 
  McGuire          N. C,  Santee            Catawba River           1,770                    750,000
Ky.
  Millers Ferry    Ala.   Alabama            Alabama River           20,700  14.7    12.1    844,000
 
  Mountain Island  N. C.   Santee            Catawba River           i, 860                  362,000
Ky.
  New Hope        N. C.   Cape Fear          New Hope River          1,69o  22.0    19.4     511,000
 
  Oconee          S. C.   Savannah          Keowee River                439 26.5   23.5    450,000
Ill.
0 Oconee          S. C.   Savannah          Little River                            26.6     245,000
 
  Okatibbee        Miss.   Pascagoula        9katibbee Creek              154 33.0   28.4      8?, 700
Va.
  Oxford          N. C.   Santee            Catawba River            1,31.0                  479,000
 
  Perkins          N. C.   Pee Dee            Yadkin River            2,4?3                    440,600
Tenn.
  Randleman        N, C.  Cape Fear          Deep River                  169 28.6   26.0     126,000
 
  Reddies          N. C.   Pee Dee            Reddies River                94 28.0    24.8     174,200
Ky.
  Rhodhiss        N. C,  Santee            Catawba River            1,090                    379,000
 
  Shearon Harris  N. C.   Cape Fear          White Oak Creek              79                  163, 500
Pa.
  Sprewell Bluff  Ca.     Apalachicola      Flint River              1,210  25.8    21.3     318,000
 
  Trotters Shoals  Ga.     Savannah          Savannah River          2,900  24.0    19.1     800,000
Ind.
  Walter F. George Ga.     Apalachicola      Chattahoochee River      7,4460  16.6    15.2     843,000
 
  Warrior          Ala.   Tombigbee          Black Warrior River      5,828  19.5    16.6     554,000
Ky.
  West Point      Ga.     Apalachicola      Chattahoochee River      3,44o  21.9    17.4     440,000
 
  W. Kerr Scott    N. C.   Pee Dee            Yadkin River                348 25.6    21.5    318,000
W. Va.
                                              Great Lakes Region Bedford          Ohio    Cuyahoga          Tinkers Creek                91 28.6    25.9     79,000
 
  Bristol          N. Y.   Oswego            Mud Creek                    29 29.9    28.1     64,900
Ill'
                  N. Y.                                                               16. 1    63,400
Ohio Ill.
  Fall Creek              Oswego            Fall Creek                  123 17.1 Ithaca          N. Y.   Oswego            Six Mile Creek                43 26.9   25.1     77,900
 
  Jamesville      N. Y.  Oswego            Butternut Creek              37 26.0    24.1      35,200
Ind.
  Linden          N. Y.  Niagara            Little Tonawanda Creek        22 30.8    29.0      64,400
 
Ky.
 
Ohio Ohio Ohio Ind.
 
Ohio Ind.
 
Pa.
 
Ky.
 
Ohio Va.
 
Ohio Ky.
 
V. Va.
 
Ind.
 
W. Va.
 
Ky.
 
Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Licking River Dyes Fork Eagle Creek E. Br. Clarion River E. Fk. Little Miami River Twelve Pole Creek Levisa Fk. Sandy River Little Sandy River Green River Skillet Fk. Wabash River Pound River Stones River Tygarts Creek Allegheny River Wildcat Creek Laurel River Leading Creek Eabarras River Clear Creek Little Wabash River Raccoon Creek Cumberland River Meigs Creek Meige Creek Mill Creek Mississinewa River Mahoning River Salt Creek Muddy Creek Nolin River N. Br. Kokosing River N. Fk. Pound River Paint Creek Paint Creek, Panther Creek Patoka River Guyandotte River Rough River y
Project State K
PNF Peak PMF Peak Discharge (vcfa
%0
t0
748
44
292
?2
342
133
395
196
682
210
222
892
127
2,180
791
282
146
915
84
661
216
56
72
27
181
809
80
441
61
703
44
18
573
92
24
168
540
454
19.8
30.?
24.?
22.7
23.8
29.4  
26.1
27.5
26.5  
24.8
27.6
25.9
26.0
16.4
20.6  
25.9
25.0  
21.2
29.5
22.1  
25.9
27.9
29.5
32.2  
24.0
20,6  
26.0  
25.9
22.8
14.2
25.4
35.3
21.8  
26.3
36.7
.25.6
23.1  
27.6
16.3  
27.8
22.1  
18.9
21.2
26.5
23.2  
24.7
231.9
22.6  
24.9
18.8
23.4  
12.8
18.5
20.7
22.5
19.0
27.0
19.9  
23.0
22.7
26.6
29.3
21.4
18.4
20.1  
25.4
19.6
13.2
22.6
32.2
18.8
23.8
33.9  
23.5
20.3
25.1 thinnff k
L
246,000
49,500
172,800
41,500
313,200
72,000
320,000
83,300
"109,000
152,800
235,800
430,000
105,900  
115,000
182,000
120,000
131,000
502,000
78,000
310,000
175,800
61,800
72,100
45,500
92,000
196,000
51,800
366,000
59,300
158,000
50,000
51,200  
305,000
?7,500
59,800
292,000
349,000
358,000


TABLE B.1 ( )
TABLE B.1 ( )
                                                                  Drainage  Basin Average PMF Peak Pr,,ject    State    River Basin           Stream          Area   _Lin inches)  Discharge (sq.mi.)  Prec.  Runoff  (cfs)
River Basin Stroaa Drainage Area  
Mount Morris      N. Y.    Genesee River    Genesee River            1,077  17.0    14.6    385,000
.~n4 Basin Average t(in inches)
Onondago          N. Y.   Lake Ontario    Onondago Creek               68  24.2    23.3      61,800
=1 I e a
Oran              N. Y.    Oswego          Limestone Creek             47  25.1    23.4      80,790
0  
Portageville      N. Y.   Genesee          Genesee River              983  17.8    15.8    359,000
aw t&*E
Quanicassee      Mich.   Saginaw Bay      Saginaw River            6,260                    440,000
Rowlesbsrg Salamonia Stonewall Jackson Sumersville Sutton Taylorville Tom Jenkins Union City Utica West Fork West Fk. Mill Ck.
Quanicassee      Mich.   Saginaw Bay      Tittabawassee River      2,400                    270,000
 
Quanicassee      Mich.    Saginaw Bay      Quanicassee River            70                    46,000
Whiteoak Wolf Creek Woodcock Yatesville Youghiogheny Zimmer, Vm. H.
Standard Corners  N. Y.   Genesee          Genesee River              265  22.3    20.3    189,900
 
                                              Ohio Region Alum Creek        Ohio    Ohio            Alum Creek                123  24.6    21.8    110,000
Bellefonte Browns Ferry Sequoyah Ames Byron Bear Creek Blue Earth Blue Earth Carlyle Clarence Cannon Clinton Coralville Duane Arnold Faradale Fondulac Friends Creek w. Va.
Barkley          Ky.     Ohio            Cumberland River        8,700  22.6    21.5  1,000,000
 
Barren            Ky.     Ohio            Barren River              940  17.6    16.9    531,000
Ind.
Beaver Valley    Pa.     Ohio            Ohio River              23,000                  1,500,000
 
Beech Fork        W. Va.  Ohio             Twelve Pole Creek            78  26.4    23.5      84,000
W. Va.
Big Blue          Ind.     Ohio            Big Blue River              269  23.5    21.2    161,000
 
Big Darby        Ohio    Ohio            Big Darby Creek            441  24.1    21.3    294,000
V. Va.
Big Pine          Ind.     Ohio            Big Pine Creek            326  22.4    20.4    174,000
 
Big Walnut        Ind.     Ohio             Big Walnut Creek          19?  24.0    22.0    144,000
W. Va.
Birch            W. Va.   Ohio            Birch River                142  28.4    25.2    102,000
 
Bluestone        W. Va.   Ohio            New River                4,565          13.8    410,000
Ky.
Booneville        Ky.     Ohio            So. Fk. Kentucky River    665  23.2    21.0    425,000
 
Brookville        Ind.    Ohio            Whitewater River           379  24.2    22.1    272,000
Ohio Pa.
Buckhorn          Ky.      Ohio            M. Fk.Kentucky River       408  23.8    21.5    239,000
 
Burnsville        W. Va.   Ohio            Little Kanawha River       165  24.8    22.3    138,800
Ohio W. Va.
Caesar Creek     Ohio     Ohio            Caesar Creek               237  24.1    21.9    230,200
 
Cagles Mill      Ind.    Ohio            Mill Creek                  295  24.6    22.7    159,000
Ohio Uhio Ky.
Carr Fork        Ky.      Ohio            No. Fk. Kentucky River      58  27.4    25.0    132,500
 
Cave Run          Ky.      Ohio            Licking River              826  22.8    20.6    510,000
Pa.
Center Hill      Tenn.    Ohio            Caney Fork              2,174  22.3    21.8    696,000
 
Clarence J. Brown Ohio    Ohio            Buck Creek                  82  29.0    26.7    121,000
Ky.
Claytor          Va.      Ohio            New River                2,382  22.3    18.0  1,109,000
 
Clifty Creek      Ind.    Ohio            Clifty Creek              145  24.9    23.0    112,900
Pa.
Dale Hollow      Tenn.    Ohio            Obey River                935  23.8    2303    435,000
 
Deer Creek        Ohio    Ohio            Deer Creek                278  22.9    20,1    160,000
Ohio Ala.
Delaware          Ohio    Ohio            Olentangy River            381  22.7    20.4    296,000
 
Dewey            Ky.      Ohio            Big Sandy River            207  25.0    22.6      75,500
Tenn.
                                                        1;
 
Tenn.
 
Iowa Ill.
 
Mo.
 
Minn.
 
Hinn.
 
Ill, Mo.
 
I Li.
 
Iowa Iowa Ill.
 
Ill.
 
Il1.
 
Ohio Ohio Ohio Ohlo Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Upper Upper Upper Upper Upper Upper Upper Upper Upper Upper Upper Upper Upper Miss.
 
Miss.
 
Miss.
 
Miss.
 
Miss.
 
Miss.
 
Miss.
 
Miss.
 
Miss.
 
Miss.
 
Miss.
 
Miss.
 
Miss.
 
Cheat River Salamonla River West Fork River Gauley River Elk River Salt River Hocking River French Creek N. Fk. Licking River W. Fk. Little Kanawha Mill Creek Whiteoak Creek Cumberland River Woodcock Creek Blaine Creek Youghiogheny River Ohio River Tennessee Region Tennessee River Tennessee River Tennessee River Upper Mississippi Region Skunk River Rock River Bear Creek Minnesota River Blue Earth River Kaskaskia River Salt River Salt Creek Iowa River Cedar River Farm Creek Fondulac Creek Friends Creek
936
553
102
803
537
353
33
222
112  
238
30
214
5789
46
208
"434.


70,800
23.340
27,130
20,650
314
8,000
28
11,250
3,550
2,680
2,318
296
3,084
6,250
26
5,4
133
21.2
21.3
24, N
23.8
20.4
24.8
26.?
20.*3
24.7
24.4
31.9
24.5
20.6
23.5
25.2
18.4
.19.0
22.2
21.1
20.4
22.2
25.8
17.8
22.1
21.8
30.0
21.6
20.0
20.9
22.6
25.4
21.3
18.4
29.0
26.2
14.2
10.9
18.4
14.8
19.2
15.8
21.8
15.7
20.8
14.4
24.0
21.4
27.8
22.1
19.9
21.6 C
Project State PMF Peak Discharge Ut
%0
331.000
201,000
85,500
"412,000
222,400
"426,000
"43000
87,500
73,700
156,4oo
81,600
134,000
9969000
37,700
l8, 000
151,000
2,150,000
1,160,000
1,200,000
1,205,000
87,200
308,000
38o000
283,&00
206,000
246,000
4?76,200
99,500
326,000
316,000
67,300
21,200
83,160
C
C
Q
TABLE B.1 ( )
TABLE B.1 ( )
                                                                          Drainage Basin Average PMF Peak Project        State    River Basin           Stream           Area   (in inches)  Discharge (sa.mi.) Prec. Runoff   (cfs)
River Basin Stream .
    Dillon            Ohio      Ohio            Licking River                748  19.8    16.3    246,000
Drainage Area (sa.mi. )
    Dyes              Ohio      Ohio            Dyes Fork                      44  30.7    27.8      49,500
Basin Average (in inches)
    Eagle Creek        Ky.       Ohio            Eagle Creek                  292  24.?    22.1    172,800
Prec.
    E. Br. Clarion    Pa.       Ohio            E. Br. Clarion River          72  22.7    18.9      41,500
 
    East Fork          Ohio      Ohio            E. Fk. Little Miami River    342  23.8    21.2    313,200
Runoff Jefferson Lapa'ge Mankato Meramec Park Montevideo Monticello New Ulm New Ulm Oakley Prairie Island Red Rock Rend Saylorville Shelbyville Arkabutla Enid Grenada Sardis Union Vappapello Burlington Fox Hole Homoe Kindred Lake Ashtabula Orwell Bear Creek Big Bend Blue Springs Blue Stem Bowman-Haley Branched Oak Iowa Wisc.
    East Lynn          W. Va.   Ohio            Twelve Pole Creek            133  29.4    26.5      72,000
 
    Fishtrap          Ky.       Ohio            Levisa Fk. Sandy River        395  26.1    23.2    320,000
Minna Mo.
    Grayson            Ky.       Ohio            Little Sandy River            196 27.5    24.7      83,300
 
    Green River        Ky.       Ohio            Green River                  682  26.5    23.9    409,000
Minn.
    Helm              Ill.     Ohio            Skillet Fk. Wabash River      2LO  24.8    22.6    152,800
 
    John W. Flannagan  Va.       Ohio            Pound River                  222  27.6    24.9    235,800
Minn.
    J. Percy Priest    Tenn.     Ohio            Stones River                 892  25.9    18.8    430,000
 
    Kehoe              Ky.       Ohio            Tygarts Creek                 127  26.0    23.4    105,900
Minn.
    Kinzua            Pa.      Ohio            Allegheny River            2,180 16.4    12.8    115,000
 
    Lafayette          Ind.      Ohio            Wildcat Creek                791  20.6   18.5     182,000
Minn.
'.0
 
    Laurel            Ky.       Ohio            Laurel River                  282  25.9   20.7    120,000
Ill.
    Leading Creek      W. Va.    Ohio            Leading Creek                146  25.0    22.5    131,000
 
    Lincoln            Ill.     Ohio            Embarras River                915  21.2   19.0    502,000
Minn.
    Logan              Ohio      Ohio            Clear Creek                    84  29.5   27.0      78,000
 
    Louisville        Ill.      Ohio            Little Wabash River          661  22.1   19.9    310,000
Iowa Ill.
    Mansfield          Ind.      Ohio            Raccoon Creek                216  25.9    23.0     175,800
 
    Martins Fork      Ky.       Ohio            Cumberland River                56 27.9    22.7      61,800
Iowa Ill, Miss.
    Meigs              Ohio      Ohio            Meigs Creek                    72  29.5    26.6      72,100
 
    Meigs              Ohio      Ohio            Meigs Creek                    27 32.2   29.3      45,500
Miss.
    Mill Creek        Ohio      Ohio            Mill Creek                    181  24.0    2i.4     92,000
 
    Mississinewa      Ind.     Ohio            Mississinewa River            809  20.6    18.4     196,000
Miss.
    Michael J. Kirwin  Ohio      Ohio            Mahoning River                80  26.0   20.1     51,800
 
    Monroe            Ind.     Ohio            Salt Creek                    441  25.9   25.4    366,000
Miss.
                      Pa.       Ohio            Muddy Creek                    61  22.8    19.6     59,300
 
    Muddy Creek Nolin              Ky.      Ohio            Nolin River                  703  14.2   13.2    158,000
Mo.
                      Ohio      Ohio            N. Br. Kokosing River          44  25.4    22.6      50,000
 
    N. Br. Kokosing Va.       Ohio            N. Fk. Pound River            18  35.3   32.2      51,200
Mot N. D.
    N. Fk. Pound River Ohio      Ohio            Paint Creek                  573  21.8    18.8     305,000
 
    Paint Creek Ky.       Ohio            Paint Creek                    92  26.3    23.8     77,500
N. D.
    Paintsville Panthers Creek    W. Va.    Ohio            Panther Creek                  24 36.7    3309      59,800
 
    Patoka            Ind.     Ohio            Patoka River                  168  25.6    23.5    292,000
N. D.
    R. D. Bailey      W. Va.    Ohio            Guyandotte River              540  23.1    20.3    349,000
 
    Rough River        Ky.      Ohio            Rough River                  454  27.6    25.1    358,000
N. D.o N. D.
                                                                1
 
Minn.
 
Colo.
 
S. D.
 
Mo.
 
Nebr.
 
N. D.
 
Nebr.
 
Upper Miss.
 
Upper Miss.
 
Upper Miss..   
Upper Miss.
 
Upper Miss.
 
Upper Miss.
 
Upper Miss.
 
Upper Miss.
 
Upper Miss.
 
Upper Miss.
 
Upper Miss.
 
Upper Miss.
 
Upper Miss.
 
Upper Miss.
 
Lower Lower Lower Lower Lower Lower Souris Souris Red of Red of Red of Red of Miss.
 
Miss.
 
Miss.
 
Miss.
 
Miss.
 
Miss.
 
North North North North Missouri Missouri Missouri Missouri Missouri Missouri Raccoon River Kickapoo River Minnesota River Meramec River Minnesota River Mississippi River Minnesota River Cottonwood River Sangamon River Mississippi River Des Moines River Big Muddy River
.Des Moines River Kaskaskia River Lower Mississippi Region Coldwater River Yacona River Yalobusha River Tallahatchia River Bourbeuse River St. Francis River Souris-Red-Rainy Region Souris River Des Lacs. River Park River Sheyenne River Sheyenne River dtter Taln River Missouri Region Bear Creek Missouri River Blue Springs Creek Olive Br. Salt Creek Grand River Oak Creek Project State K
PMF Peak Discharge (of s)
"Ih
1,532
266
14,900  
1,407
6,180  
13,900
9,500
1,280
808
44,755
12,323
"488
5o823
1,030
1,000  
560
1,320
'1, 545
771
1,310
9,490
939
229
3,020
983
1,820
2,6  
5,840
33
17
446
89
21.7
22.8
13.9  
22.9
15.2
14o4
21.2  
23.5
12,1
2?.5  
13.8
22.1  
22.5
25.4
24.0  
32.5
25.0
13.0
13.2
19.9
15.2  
13.4
12.4  
17.1
24.4  
26.5
25.0  
15.5
20.1
19.0
18.9  
10.6
17.5
11.6
11.1
]1.6  
17.2  
7.5
21.5
10.3
19.1
21o2
24.?
23P1
26.0
19.9
11.7
5.7
12.4
12.3  
8,6
9.5
14.7
6.7
9.0
23.8  
2J.7
12.7
16.8
267,300
128,000
329,000
552,000
263,0oo
365,000
263,000
128,000
178,000
910,000
613o000
308,200
277,800
142,000
430,000
204,900
310,800  
2Q0,400
264,000
344,000
89,100
52,700
35,000
68.700
86,500
25,500
225,000  
725,000  
42,400
69,200
110,000  
93,600


TABLE B.1 ( )
TABLE B.1 ( )
                                                                          Drainage  Basin Average  PMF Peak Project      State    River Basin             Stream         Area       (in inches)  Discharge Prec    Runoff  (cfs)
River Basin Stream Drinage Area  
    Rowlesburg        W. Va.    Ohio              Cheat River                  936  21.2    18.4      331,000
*
    Salamonia        Ind.      Ohio              Salamonia River              553  2143    19.0      201,000
1A
    Stonewall Jackson W. Va.    Ohio              West Fork River              10?            22.2      85, 500
Basin Average (in inches)
    Summersville      W. Va.    Ohio              Gauley River                80,  23.8    21.1    412,000
-'
    Sutton            W. Va.    Ohio              Elk River                    53?  20.4    20.4      222,400
=-
    Taylorville      Ky.      Ohio              Salt River                  353  24.8    22.2    426, 000
&
    Tom Jenkins      Ohio      Ohio              Hocking River                33  26. 7    25.8      43,000
**
    Union City        Pa.      Ohio              French Creek                222  20.3    17.8      87, 500
,m-A.I
    Utica            Ohio      Ohio              N. Fk. Licking River        112  24.7    22.1      73,700
B*raymar MO.
    West Fork        W. Va.    Ohio              W. Fk. Little Kanawha        238  24.4    21.8    156,400
 
    West Fk. Mill Ck. Ohio      Ohio              Mill Creek                    30  31.9    30.0      81,600
Brookfield mo.
    Whiteoak          Ohio      Ohio              Whiteoak Creek              214  24.5    21.6    134,000
 
    Wolf Creek        Ky.      Ohio              Cumberland River          5,789    20.6    20.0    996,000
Bull Hook Mont.
    Woodcock          Pa.      Ohio              Woodcock Creek                46  23.5    20.9      37,700
 
    Yatesville        Ky.      Ohio              Blaine Creek                208  25.2    22.6    118,000
Chatfield Colo.
    Youghiogheny      Pa.      Ohio              Youghiogheny River          434            25.4    151,000
 
-J~. Zimmer, Wm. H.    Ohio      Ohio              Ohio River              70,800                    2,150,000
Cherry Creek Colo.
                                                Tennessee Region Bellefonte        Ala.     Ohio              Tennessee River          23,340                    1,160,000
    Browns Ferry      Tenn.    Ohio              Tennessee River          29,130                    1,200,000
    Sequoyah          Tenn.     Ohio              Tennessee River          20,650                    1,205,000
                                                Upper Mississippi Region Ames              Iowa      Upper Miss.      Skunk River                  314  21.3    18.4      87,200
    Bryon            Ill.      Upper Miss.       Rock River                8,000                      308,000
    Bear Creek        Mo.      Upper Miss.      Bear Creek                    28  29.0    26.2      38,000
    Blue Earth        Minn.    Upper Miss.      Minnesota River        11,250    14.2    10.9    283,000
    Blue Earth        Minn.    Upper Miss.      Blue Earth River          3,550    18.4    14.8    206,000
    Carlyle          Ill.      Upper Miss.      Kaskaskia River          2,680    19.2    15.8    246,000
    Clarence Cannon  Mo.      Upper Miss.      Salt River                2,318    21.8    15.7    476,200
    Clinton          Ill.      Upper Miss.      Salt Creek                  296                      99,500
    Coralville        Iowa      Upper Miss.      Iowa River                3,084    20.8    14.4    326,000
    Duane Arnold      Iowa      Upper Miss.      Cedar River              6,250                      316,000
    Farmdal e        Ill.      Upper Miss.      Farm Creek                    26  24.0    22.1      67,300
    Fondulac          Ill.      Upper Miss.      Fondulac Creek                 5.4 21.4    19.9      21,200
    Friends Creek    Ill.      Upper Miss.      Friends Creek              133    27.8    21.6      83,160


TABLE Bi1 ( )
Clinton Kans.
                                                                        17)
                                                              B.I 9 of (Page TABLE                Drainage Basin Ave-age  PMF Peak Project        State    River Basin              Stream                Area    (in inches)  Discharge (sq.mi.) Prec.. Runoff    (cfs)
Jefferson          Iowa      Upper  Miss.      Raccoon River                  1,532  21.7    19.0    267,300
LaFarge            Wisc.      Upper  Miss.      Kickapoo River                    266 22.8    18.9    128,000
Mankato            Minn.      Upper  Miss.      Minnesota River                14,900  13.9    10.6    329,000
Meramec Park      Mo.        Upper  Miss.      Meramec River                  1,497  22.9    17.5    552,000
Montevideo        Minn.      Upper  Miss.      Minnesota River                6,180  15.2    11.6    263,000
Monticello        Minn.      Upper  Miss.      Mississippi River              13,900                    365,000
New Ulm            Minn.      Upper  Miss.      Minnesota River                9,500  14.4    11.1    263,000
New Ulm            Minn.      Upper  Miss.      Cottonwood River                1,280  21.2    17.6    128,000
Oakley            Ill.      Upper  Miss.      Sangamon River                    808 23.5    17.2    178,000
Prairie Island    Minn.      Upper  Miss.      Mississinpi River              44,755                    910,000
Red Rock          Iowa      Upper  Miss.      Des Moines River              12,323  12,1      7.5    613,000
Rend              Ill.      Upper  Miss.      Big Muddy River                    488 27.5    21.5    308,200
Saylorville        Iowa      Upper  Miss.      Des Moines River                5,823  13.8    10.3    277,800
Shelbyville        Ill.      Upper  Miss.      Kaskaskia River                1,030  22.1    .19.1    142,000
                                              Lower Mississippi Regaon Arkabutla          Miss.      Lower Miss.        Coldwater River                1, 000 22.5    21.2    430, 000
Enid              Miss.      Lower Miss.        Yacona River                      560 25.4    24.7    204,900
Grenada            Miss.      Lower Miss.        Yalobusha River                1,320  24.0    23.1    390,800
Sardis            Miss.      Lower Miss.        Tallahatchia River              1, 545 32.5    26.0    290,400
Union              Mo.        Lower Miss.        Bourbeuse River                    771 25.0    19.9    264,000
Wappapello        Mo.        Lower Miss.        St. Francis River              1,310  13.0    11.7    344,000
                                              Souris-Red-Rainy    Region Burlington        N. D.      Souris            Souris River                    9,490  13.2      5.7    89,100
Fox Hole          N. D.      Souris            Des Lacs River                    939 19.9    12.4      52,700
Homme              N. D.      Red  of North      Park River                        229 15.2    12.3      35,000
Kindred            N. D.      Red  of  North    Sheyenne River                  3,020  13.4      8.6      68,700
Lake Ashtabula    N. D.      Red  of North      Sheyenne River                    983 12.4      9.5      86,500
Orwell            Minn.      hid  of  North    Otter Tail River                1,820  17.1    14.7      25,500
                                                Missouri Region Bear Creek        Colo.      Missouri          Bear Creek                        236 24.4      6.7    225,000
Big Bend          S. D.      Missouri          Missouri River                  5,840            9.0    725,000
Blue Springs      Mo.        Missouri          Blue Springs Creek                  33 26.5    23.8      42,4OO
Blue Stem          Nebr.      Missouri          Olive Br. Salt Creek                17 25.0    21.7      69,200
Bowman-Haley      N. D.      Missouri          Grand River                        446 15.5    12.7    113,000
Branched Oak      Nebr.      Missouri          Oak Creek                            89 20.1    16.8      93,600
                .~                                        ~      F        I


TABLE 8.1 ( )
Cold Brook S. Do Conestoga Nebr.
                                                                          Drainage    Basin Average  PMF Peak Project        State    River basin            Stream            Area        (in inches)  Discharge (an    ml.)  Pre.~  RInnff  (eflf (s    mi    Prec    Runoff  (cfs)
 
    Braymer            Mo.       Missouri        Shoal Creek                   390    24.7    22.2      173,800
Cottonwood Springs S. D.
    Brookfield        Mo.       Missouri       West Yellow Creek             140    24.5    22.0        64, 500
 
    Bull Hook         Mont.    Missouri       Bull Hook Creek                 54            10.8        26,200
Dry Fork Ko.
    Chatfield          Colo.     Missouri       South Platte River         3,018     13.2       2.0     584, 500
 
    Cherry Creek      Colo.     Missouri        Cherry Creek                  385    23.9      9.5     350,000
East Fork Mo.
    Clinton            Kans.    Missouri        Wakarusa River                367    23.6     22.4     153,500
 
    Cold Brook        S. D.    Missouri        Cold Brook                      70              6.4       95,700
Fort Scott Kans.
    Conestoga          Nebr.    Missouri        Holmes Creek                    15  25.2     21.9       52,000
 
    Cottonwood Springs S. D.    Missouri        Cheyenne River                  26  18.7     11.1       74,700
Fort Peck Mont.
    Dry Fork          Mo.      Missouri        Fishing River                    3.2 26.1     22.5       19,460
 
    East Fork          Mo.      Missouri        Fishing River                  19    25.7     24.1        62,700
Fort Randall S. D.
    Fort Scott        Kans.    Missouri        Marmaton River                279    23.8     22.7     198,000
 
    Fort Peck          Mont.    Missouri        Missouri River            57,725              3.2     360,000
Fort St. Vrain Colo.
    Port Randall      S. D.    Missouri        Missouri River            14,150                3.7     849,000
 
    Fort St. Vrain    Colo.    Missouri        South Platte River          4,700                        500,000
Garrison No D,
(J* Garrison          N. D.    Missouri        Missouri River          123,215                2.7   1,026,000
Gavins Point Nebr.
(I' Gavins Point      Nebr.    Missouri        Missouri River            16,000                3.3     642,000
 
    Grove              Kans.    Missouri        Soldier Creek                  259    23.8     22.?        79,800
Grove Kans.
    Harlan County      Nebr.    Missouri        Republican River            7, 142    7.6     2.8     485,000
 
    Harry S. Truman    Mo.      Missouri        Osage River                7,856              13.1   1,060,000
Harlan County Nebr.
    Hillsdale          Kans.    Missouri        Big Bull Creek                144    25.4     24.3     190,500
 
    Holmes            Nebr.    Missouri        Antelope Creek                    5.4 27.1     23.8       41,600
Ha=y S. Truman Mo.
    Kanopolis          Kans.    Missouri        Smoky Hill River            2,560      6.9     3.6     456,300
 
    Linneus            Mo.      Missouri        Locust River                  5446  23.7    21.2     242,300
Hillsdale Kane.
    Long Branch        Mo.      Missouri        E. Fk. Little Chariton        109    24.5     21.9       66,500
 
    Longview          Mo.      Missouri        Blue River                      50    26.2     23.4       74,800
Holmes Nebr.
    Melvern            Kans.    Missouri        Marias des Cygnes River        349    23.1     22.1     182,000
 
    Mercer            Mo.      Missouri        Weldon River                  427    21.0     17.8     274,000
Kanopolls Kane.
    Milford            Kans.    Missouri        Republican River            3,620      8.8     5.0     757,400
 
    Mill Lake          Mo.      Missouri        Mill Creek                        9.5 27.7     26.4       13,000
LUnneus Mo.
    Oahe              S. D.    Missouri        Missouri River            62,550                6.5     946,000
 
    Olive Creek        Nebr.    Missouri        Olive Br. Salt Creek              8.2 26.0     22.7        36,650
Long Branch Mo.
    Onag              Kans.    Missouri        Vermillion Creek              301    23.5     22.2     251,000
 
    Pattonsburg        Mo.      Missouri        Grand River                2,232    18.8     16.3     40o0,100
Longview Mo.
    Pawnee            Nebr.    Missouri        Pawnee Br. Salt Creek          36    23.5     20.2        59,000
 
    Perry              Kans.    Missouri        Delaware River              1,117    21.5     18.4     387,400
Melvern Kans.
    Pioneer            Colo.    Missouri        Republican River              918    15.0     8.3     390,000
 
    Pomme de Terre    Mo.      Missouri        Pomme de Terre River          611    23.9     21.6     362,000
Mercer Mo.
 
Milford Kanso Mill Lake Mo.
 
Oahe So Do Olive Creek Nebr.
 
Onag Kans.
 
Pattonsburg Mo.
 
Pawnee Nebr.
 
Perry Kano, Pioneer Colo.
 
Pause do Terre Mo.
 
Missouri Missouri Missouri Missouri Missouri Missouri Missouri Hissouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Shoal Creek West Yellow Creek Bull Hook Creek South Platte River Cherry Creek Wakarusa River Cold Brook Holmes Creek Cheyenne River Fishing River Fishing River Marmaton River Missouri River Missouri River South Platte River Missouri River Missouri River Soldier Creek Republican River Osage River Big Bull Creek Antelope Creek smoky Hill River.
 
Locust River So Fk. Little Chariton Blue River Marias des Cygnes River Weldon River Republican River Mill Creek Missouri River Olive Br. Salt Creek Vermillion Creek Grand River Pawnee Br. Salt Creek Delawre River Republican River Poaue do Terre River
390
140
54
3,018  
.385
367
15
26
30.2  
19
279
57,725
14:150
4,700
123,215
16,000
259
7,141
7,856
144
5,4
2,560
546
109
50
349
"427
3,620
9.5
62,550
8.2
301
2,232
36
1,U17
918
611
24.7
22.2
24.5
22.0  
10.8
13.2
2.0
2309
9.5  
23.6  
22.4  
6.4  
25.2  
21.9  
18.7  
11.1  
26.1  
22.5  
25.7  
24ol
23.8  
22.7  
3.2  
3.7,  
2.7  
3.3  
23.8  
22.7
7.6  
2.8  
13.1  
25.4  
24.3  
27.1  
23.8  
6.9  
3.6  
2397
21.2  
*4.5  
21.9  
26.2  
23.4  
23.1  
22.1  
21.0  
17.8  
8.8  
5.0  
27.7  
26.4  
6.5  
26.0  
22o7
23.5  
22.2  
18.8  
16.3  
23.5  
2O02
21.5  
18.4  
15.0  
8.3  
23.9  
21.6
.
Project State PM? Peak Discharge U'
173,800
64,5S00
26,2oo
.584,500
350,000
153,500
95,700
52,000
74,700
19,460,
62,700
198.000
360,000
80,000
500,000
1,026,000
642,000
79,800
"485, 000
1,060,000
190,500
41,600
456,300
242,300
66,500
74,800
182,000
274,000
757,400
13,000
946,000
36,650
251,000
400,100
59,000
387,400
390,000
362,000
C
r


Q
TABLE B.1 ( )
TABLE B.1 ( )
                                                                      Drainage   Basin Average   PFY Peak Project      State      River Basin            Stre:an        Aren      ' ir. 4nchesq_  Discharge (sa.'ni.)  Prec.     Runcff  (cf s)
River Basin Stroam Drainage Area t.
Pomona          Kans.     Missouri            110 Mile Creek              322    26.2      25.2    186,000
 
Rathbun          Iowa      Missouri          Chariton River                      23.7      21.1    188,000
m.
Smithville      Mo.       Missouri           Little Platte River         213    23.9      20.2    185,000
 
Stagecoach      Nebr.     Missouri          Hickman Br. Salt Creek         9.7 26.0      22.7     50,500
,4 Basin Average fin Inches)...
Stockton        Mo.       Missouri          Sac River                1,160    19.7       18.9     470,000
Pomona Rathbun Smithville Stagecoach Stockton Thomas Hill Tomahawk Trenton Tuttle Creek Twin Lakes Wagon Train Wilson Wolf-Coffee Yankee Hill Arcadia Bayou Bodcau Beaver Bell Foley Big Hill Big Pine Birch Blakely Mountain Blue Mountain Boswell Broken Bow Bull Shoals Candy Canton Cedar Point Clayton Cleariater Conchas Cooper Copan Council Grove County Line Kans.
Thomas Hill      Mo.       Missouri          Little Chariton River        1a47  25.0       23.0      79,000
 
Tomahawk        Kans.     Missouri          Tomahawk Creek                24   26.4       24.8     26,800
Iowa Mo.
Trenton          Mo.       Missouri          Thompson River            1,079    22.6      20.1    342,400
 
Tuttle Creek    Kans.     Missouri          Big Blue River            9,556    14.5        8.1   798,000
Nebr.
Twin Lakes      Nebr.     Missouri          S. Br. Middle Creek          11    25.9       22.6     56,000
 
Wagon Train      Nebr.     Missouri          Hickman Br. Salt Creek        16    25.2       21.9      53,500
Mo.
Wilson          Kans.     Missouri          Saline River             1, q1?    20.2      10.8    252,000
 
Wolf-Coffee      Kans.     Missouri          Blue River                    45    26.1      24.5      58,000
Mo.
Yankee Hill      Nebr.     Missouri          Cardwell Br. Salt Creek        8.4 26.0      22.?      58,400
 
                                          Arkansas-White-Red Region Arcadia          Okla.     Arkansas           Deep Fork River             105    28.5      24.9     1i44,000
Kane.
Bayou Bodcau    La.      lied              Bayou Bodcau                656    35.3       33.6    168,?00
 
Beaver          Ark.      White              White River              1,186    24.3       22.4     480,000
Mo.
Bell Foley      Ark.     Arkansas          Strawberry River              78    26.4      23.5     57,000
 
Big Hifl        Kans.     Arkansas          Big Hill Creek                3?  25.4       23.6     47, 500
Kans*
Big Pine        Tex.     Red                Big Pine Creek                      31.3       29.3     86,ooo Okla.     Arkansas          Birch Creek
Nebr.
                                                                            66    29.0       26.0      91,000
 
Birch Blakely Mountain Ark.     Red                Ouachita River            1,105    21.5       19.6    418,000
Nebr.
Blue Mountain    Ark.     Arkansas          Petit Jean River            500    21.8       18.2     258,000
 
Boswell          Okla.     Red                Boggy Creek              2,273    27.6       20.8     405,000
Kans.
Broken Bow      Okla.     Red                Mountain Fork                754    32.5      29.4     569,000
 
Bull Shoals      Ark.     White              White River              6,036    15.2      1&#xfd;.0    765, 000
Kans.
Candy            Okla.     Arkansas          Candy Creek                  43    29.-3      27 5      67, 500
 
Canton          Okla.     Arkansas          North Canadian River      7,600    12.4        4.1   371,000
Nebr.
Cedar Point      Kans.     Arkansas          Cedar Creek                  119    25.4      22.6    208,000
 
Clayton          Okla.     Red                Jackfort Creek              275    31.3      29.3    24O0,oo Clearwater      Mo.       White              Black River                  898    16.0      13.8    432,000
Okla.
Conchas          N. Mex.   Arkansas           South Canadian River     7,409      4.8        3.0   582,000
 
Cooper          Tex.     Red                South Sulphur River          476    30.9       29.2     194,40o Copan            Okla.     Arkansas          Little Caney River          505    26.2       21.1     169,000
La.
Council Grove    Kans.     Arkansas          Grand River                  246    25.5       22.7    250,000
 
County Line      Mo.       White              James River                  153    27.2       25.3    133,000
Ark.
 
Ark.
 
Kans.
 
Tex.
 
Okla.
 
Ark.
 
Ark.
 
Okla, Okla.
 
Ark.
 
Okla, Okla.
 
Kans.
 
Okla.
 
Mo.
 
N. Mex.
 
Tex.
 
Okla, Kan.s Moo Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Arkansas Red White Arkansas Arkansas Red Arkansas Red Arkansas Red Red White.
 
Arkansas Arkansas Arkansas Red White
.Arkansas Red Arkansas Arkansas.
 
White
110 Mile Creek Chariton River Little Platte River Hickman Br. Salt Creek Sac River Little Chariton River Tomahawk Creek Thompson River Big Blue River S. Br. Middle Creek Hickman Br. Salt Creek Saline River Blue River Cardwell Br. Salt Creek Arkansas-White-Red Region Deev Fork River Bayou Bodcau White River Strawberry River Big Hill Creek Big Pine Creek Birch Creek Ouachita River Petit Jean River Boggy Creek Mountain Fork White River Candy Creek North Canadian River Cedar Creek Jackfort Creek Black River South Canadian River South Sulphur River Little Caney River Grand River James River Project State K
Discharge refs)~
Ut
322
549
213
9e7
1,160
147
24
1,079
9,556
11
16
1,917
45
8.,4
105
656
1,186
78
37
95
66
1,105
500
2,273
7.54
6,036
43
7,600
119
275.
 
898
7.409
476
505
246
153
26.2
23.7  
23.9
26.o
19.7  
25.0
26.4
22.6
14.5
25.9  
25.2
20.2
26.1
26.0  
28.5
35.3
24.3
26.4  
25.4
31.3
29.0
21.5
21.8
27.6
32.5
15.2
29.3
12.4
25.4
31.3
16.0
4,8  
30.9
26.2
25.5
27.2
25.2
21.1  
20.2
22.7
18.9
23.,0
24.8
20.1
8.1  
22.6.
 
21.9
10.8
24.5
22.7
24.9  
33.6
22.4
23.5
23.6
29.3
26.0
19.6  
18.2
29,4
1.0
27.5
4.1
22.6
29.3
13.8
3.0
29.2  
21.1
22U7
25.3
186,000
188.000
185,000
50,500
4?0,000
?79000
26,800
342,400
798,000
56,000
53,500  
252,000
58,000
58,400
144,000
168,?00
480,000
57,000
47,500
86,000
91,000
418,000
258'000
405,000
569,000
?65,000
67,500
371,000
208,000
240,000
432,000
582,000
194,400
169,000
250,000
133,000
A
e It
0
Pvr Rnf
 
TABLE B.1 ( )
Drainage Basin Average PM? Peak Project State River Basin Stream Area (in inches)
Discharge (S,.Ml.
 
Prec, Lng.of (cfs)_
DeGray Denison DeQueen Dierks Douglas El Dorado Elk City Efaula Fall River Ferrells Bridge Fort Gibson Fort Supply Gillhaa Great Salt Plains Greers Ferry Heyburn Hugo Hulah John Martin John Redmond Kaw Keystone Lake Kemp Lukfata Marion Milluood Narrows Neodesha Nimrod Norfolk Oologah Optima Pat Mayse Pine Creek Robert S. Kerr Sand Shidler Skiatook Lable Rock Ark.
 
Okla.
 
Ark.
 
Ark.
 
Kans.
 
Kans.
 
Kans.
 
Okla.
 
Kans.
 
Tex.
 
Okla.
 
Okla.
 
Ark.
 
Okla.
 
Ark.
 
Okla.
 
Okla.
 
Okla.
 
Colo.
 
Kans.
 
Okla.
 
Okla.
 
Tex.
 
Okla.
 
Kans.
 
Ark.
 
Ark.
 
Kans.
 
Ark.
 
Ark.
 
Okla, Okla.
 
Tex.
 
Okla.
 
Okla, Okla.
 
Okla.
 
Okla.
 
Mo.
 
Red Rod Red Red Arkansas Arkansas Arkansas Arkansas Arkansas Red Arkansas Arkansas Red Arkansas Red Arkansas Red Arkansas Arkansas Arkansas Arkansas Arkansas Red Red Arkansas Red Red Arkansas Arkansas White Arkansas Arkansas Red Red Arkansas Arkansas Arkansas Arkansas White Caddo River Red River Rolling Fork Saline River Little Walnut Creek Walnut River Elk River Canadian River Fall River Cypress Creek Grand River Wolf Greek Cossatot River Salt Fk. Arkansas River Little Red River Polecat Creek Kianichi River Caney River Arkansas River Grand River Arkansas River Arkansas River Wichita River Glover Creek Cottonwood River Little River Little Missouri River Verdigris River Fourche La Fave River North Fork White River Verdigris River North Canadian River Sanders Creek Little River Arkansas River Sand Creek Salt Creek Hominy Creek White River C
U,
453
33,783
169
113
238
234
634
8,405
556
880
9,477
271
3,200
1,146
123
1,709
732
18,130
3,015
7,250
22,351
2,086
291
200
4,144
239
1,160
68o
1,#765
4,339
2,341
175
635
64.386
137
99
354
4,020
28.4
12.9
35.5
36.2
26.7
26.8
23.0
15.9
27.1
31.1
16.2
20.5  
34.,6
16.?
17.9
26-3 Z7.1
16.5
7.4  
18.2
14.5
12.9
23.7
34.6  
24.8
28.4
25.0
18.?
20.2
15.7
17.8
13.8
31.8
32.8
10.0
31.3  
27.3  
27..8
18.3
26.0  
6.5
32.5
33.2
22.9
22.8
20.3
10.9
23.0  
28.1  
12.6
15.7
31.5  
9.3
17.5
24.2
25.8  
13.5
2.0
15.6
9.9
6.7
19.2  
31.5
21.9
25.3
23.0
16.6  
17.2
12.8  
13.9
9.0
29.4  
29.8
5.8
28.3
24.0
23.8
15.4
397,000
1,830,000
254,000
202,000
156,000
196, ooo
.196,000
319,000
700,000  
"442.000
367,000
865,000
54?7000
355,000
412,000
630,000
151,000
339,000
239,000
630.00O
638,000
774.000
1,035,000
566,000
349,000
160,000
"442,000
194,000
287.000
228,000
372,000
451,000
386,000
150,000
523,000
1,884,000
154,000
104,100
147,800
657,000
C
r
 
Q
Project Tenkiller Ferry Texarkana Toronto Towanda Trinidad Tuskahoma Wallace Lake Vaurika Webbers Falls Vister Addicks Aquilla Aubrey Bardwell Barker Belton Benbrook Big Sandy Blieders Creek Droimwood
.Canyon Lake Carl L. Estes Coleman Comanche Peak Ferguson Gonzales Grapevine Horde Creek Lake Fork Lakeview Laneport Lavon Lewisville Millioan Navarro Minle Navasota State Okla.
 
Tex.
 
Kans.
 
Kans.
 
Colo.
 
Okla.
 
La.
 
Okla.
 
Okla.
 
Okla.
 
Tex.
 
Tex*
Tex.
 
Tex..
Tex.
 
Tex, Tex.
 
Tex.
 
Tex.
 
Tex.
 
Tex.
 
Tex.
 
Tex.
 
Tex.
 
Tex.
 
Tex.
 
Tex.
 
Tex.
 
Teax Tax, Tex.
 
Tex.
 
Tex.
 
Teax Tex*
Tex.
 
River Basin Arkansas Red Arkansas Arkansas Arkansas Red Red Red Arkansas Arkansas
.San Jacinto Brazos Trinity Trinity San Jacinto Bre*zos Trinity Sabine Guadalupe Colorado Guadalupe Sabine Colorado Brazos Brazos Guadalupe Trinity Colorado Sabine Trinity Brazos Trinity Trinity Brazos Trinity Brazos Stream Drainage Area Illinois River Sulphur River Verdigris River Whitewater River Purgatorie River Kiamichi River Cypress Bayou Beaver Creek Arkansas River Poteau River Texas-Gulf Region South Mayde Creek Aquilla Creek Elm Fork Trinity River Waxahachie Creek Buffalo Bayou Leon River Clear Fork Trinity River Big Sandy Creek Blieders Creek Pecan Bayou Guadalupe River Sabine River Colorado River Squaw Creek Navasota River San Marcos River Denton Creek Horde Creek Lake Fork Creek Mountain Creek San Gatriel Pivor Eset Fork, Trinity River Elm Fork, Trinity River Navasota River Riohland Creek Navasota River
1,
610
3,400
730
422
671
347
260
562
"W8,127
99.3  
129
2914
692
178
150
3,560
429
196
15
1,544
1,432
1,146
287
64
1,782
1,344
695
48
507
232
/09
770
3,660
2,120
320
1,241 Basin Average In Rnofhes)
Pre
 
====e. Runnff====
20.e4
26.6
23.9
24.3
10*0  
16.5
38.4
26.5
10.7
25.9  
29.7
31.2  
28.5
31.1
29.4
29.4
28.2
36.2
43.8
27.8
24o5
34.5
30.9
39.1
26.0
24.9
26.5
28.9
33.8
31.6
28.9
26,2
23.2
25.5
33.6
27.2
17.6
20.1
21.1
20.5
4.5
14.6
35.6
22.2
6.1
23.2
27.9
28.6
26.0
28.3
27.9
20.6
21.1
32.2  
34.6
21.0
16.9
30.4
24*. 1
34.1  
22.4
15.4
21.5
23.4
29.7
28.8
23.7
23.o4
20.5  
22.4
30.5
24.2 TABLE B.1 ( )
K
Ut PMF Peak Discharge
406,000
451,000
"400,000
198,000
296,000
188,g400
197,000
354,000
1,518,000
339,000
68,670
283,800
445,300
163,500
55,900
608,400
290,100
125,200
70,300
676,200
687,000
277,000
267,800
149,000
355,800
633,900
319,400
.92,400
247,600
335,000
521,000  
430,?00
632,200
393,v40o
280,500
327,400


TABLE B.1 ( )
TABLE B.1 ( )
                                                                        Drainage  Basin Average  PMF Peak Project     State    River Bas in            Stream          Area    (in  inches)  Discharge (sq.mi.)  Prec.  Runoff  _(cfs)  _
-Project  
    DeGray            Ark.    Red              Caddo River                  453  28.4    26.0    397,000
* North Fork Pecan Bayou Proctor Roanoke
    Denison          Okla.  Red              Red River                33,783  12.9      6.5  1,830,000
-Rockland Sam Raybrn San Angelo Somerville South Fork Stillhouse Hollow Tennessee Colony Town Bluff Waco Lake Whitney Abiquiu Alamogordo Cochita Jemez Canyon Los Esteroa Two Rivers Alamo Mcoicken Whitlow Ranch Painted Rock Little Dell Mathews Canyon Pine Canyon Applegate Blue River State River Basin'
    DeQueen          Ark.    Red              Rolling Fork                 169  35. 5    32. 5    254,000
Tex.
    Dierks            Ark.    Red              Saline River                  113  36.2    33.2    202,000
 
    Douglas          Kans.  Arkansas          Little Walnut Creek          238  26.7    22.9    156,000
Tex.
    El Dorado        Kans.  Arkansas          Walnut River                 234          22.8    196,000
 
    Elk City          Kans.  Arkansas          Elk River                     634  23.0    20.3    319,000
Te,:.
    Eufaula          Okla.  Arkansas          Canadian River            8,405  15.9    10.9    700,000
Tex.
    Fall River        Kans.  Arkansas          Fall River                    556  27.1    23.0    442,000
 
    Ferrells Bridge  Tex.   Red              Cypress Creek                880  31.1    28.1    367,000
Tex.
    Fort Gibson      Okla.  Arkansas          Grand River                9,477  15.2    12.6    865,000
 
    Fort Supply      Okla.   Arkansas          Wolf Creek                1,494  20. 5    15.7    547,000
Tex.
    Gillham          Ark.    Red              Cossatot River                271  34.6    31.5    355,000
 
    Great Salt Plains Okla.  Arkansas          Salt Fk. Arkansas River    3,200  i6&#xfd;?      9.3    412,000
Tex.
    Greers Ferry      Ark.    Red              Little Red River          1, !i46 17.9    17.5    630,000
 
    Heyburn          Okla.   Arkansas          Polecat Creek                123  26.3    24.2    151,000
Tex.
                                                                          1,709  27.1    25.8    339,000
Lu  Hugo              Okla.  Red              Kiamichi River Hulah            Okla.  Arkansas          Caney River                  732  16. 5    13.5    239,000
--1 Arkansas          Arkansas River            18,130    7.4      2.0    630,000
    John Martin      Colo.


John Redmond      Kans.  Arkansas          Grand River                3,015  16.2      ;56    038,000
Tex.
    Kaw              Okla.  Arkansas          Arkansas River            7,250  14.5      9.9    774,000
    Keystone          Okla.  Arkansas          Arkansas River            22,351  12.9      6.7  1,035,000
    Lake Kemp        Tex.    Red              Wichita River              2,056  23.7    19.2    566,000
    Lukfata          Okla.  Red              Glover Greek                  291  34.6    31.5    349,0o0
    Marion            Kans.  Arkansas          Cottonwood River              200  24.8    2J..9    160,000
    Millwood          Ark.    Red              Little River              4,104            25.3    442,o00
    Narrows          Ark.    Red              Little Missouri River        23?  25.0    23.0    194,000
    Neodesha          Kans,  Arkansas          Verdigris River            1,100  18.7    16.6    287,000
    Nimrod            Ark.    Arkansas          Fourche La Fave River        68o  20.2    17.2    228,000
    Norfolk          Ark.    White            North Fork White River    1,765  15.7    12.8    372,000
    Oologah          Okla.  Arkansas          Verdigris River            4,339  17.8    13.9    451,000
    Optima                    Arkansas          North Canadian hiver      2,341  13.8      9.0    386,000
                      Okla.


Pat Mayse        Tex.   Red              Sanders Creek                 175  31.8     29.4     150,000
Tex, Tea.
    Pine Creek        Okla.   Red              Little River                  635  32.8     29.8     523,000
 
                      Okla.   Arkansas          Arkansas River            64,386  10.0     5.1,884,000
Tex, Tex.
    Robert S. Kerr Sand              Okla.   Arkansas          Sand Creek                   137  31.3    28.3    154,000
 
    Shidler          Okla.   Arkansas          Salt Creek                     99  27.3     24.0     104,100
Tex.
    Skiatook          Okla.   Arkansas          Hominy Creek                  354          23.8     147,800
 
    rable Rock        No.     White            White River                4,020  18.3     15.4     657,000
No N.
 
N.
 
N.
 
N.
 
N.
 
Brazos Colorado Brazoa Trinity Neches Neches
-Colorado Brazos Brazos Brazos Trinity Neches Brazoa Brazos Rio Grande Rio Grande Rio Graude Rio Grande Rio Grande Rio Grande me H.
 
MI
H.
 
H.
 
H.
 
Ariz.
 
Ariz.
 
Ariz.
 
Ariz.
 
Utah N.y.
 
No.
 
Colorado Colorado Colorado Colorado Jordon (Great)
Great Basin Great Basin Oreg.
 
Rogue Ore&.
Columbia Stream Drainage Area f,.4 N. F
 
====k. San Gabriel River ====
.Pecan Bayou Leon River Denton Creek Neches River Angelina River North Concho River.
 
Yogua Creek S. Fk. San Gabriel River Lam pasas River Trinity River Neches River B*sque River Brazos River Rio Grande. Region Rio Grande Pecos River Rio Grande Jemez Canycn Peccs River Rio Hondo Lower Colorado Region Bill Williams River Aqua Fria River Queen Creek Gila River Great Basin Region Dell Creek Mathews Canyon Pine Canyon Columbia-North Pacific Region Applegate River S. Fk. McKenzie River Basin Average (in inches)
D~n D..n
246
316
1,265
604
39557
3,449
1,511
1,006
1 123
1,318
12,687
7,v73
1,670
17,656
3,159
3,917
4,065
1,034
2,434
1,027
4,770
247
143
50,800
16
34
45
223
88
31.7
30.7
27.0
28.9
21.0
23.7
21.2
22.0
32.6
27.?
25.1
18.9
25.7
15.7
4.6
9.2
12.2
26.6
23.8  
21.4
17.2
20.6
13.1
13.6
27.4
22.5
20.4,  
15.7
20.6
7.7
8.2
1.9
1.9
3.7
4.7
12.0
3.5
3.3
11.5
9.7
7.7
2.8  
8.1
6.0
6.6
7.4
8.2
6.6
28.9
22.7
(
P1F Peak Discharge
/'-..'_
'0
Ch
265,800
236,200
459,200
313.600
150,400
395,600
614,5c0
4 15,700
145,300
686s400
575o600
326,000
*622,900
700,000
130,000  
277,000
320,000
.220.000
352,000
281,400
5B0,000
52,000
230,000
620,000
23,000
"35,000
38.000
C
99, 500
.39.500
tC
0  
L&W&#xfd;*
LIVA&
LCIRI
 
Q
TABLE B.1 ( )
sin Stream Lrainaee Area
1 4 K
Basin Average P1* Peak
( in inches)
Discharge Prec,_ -noff (efa)
Bonneville Caseadia Chief Joseph Cottage Grove Cougar Detroit Dorena Dworshak Elk Creek Fall Creek Fern Ridge Poster Green Peter Gate Creek Hills Creek Holley
'Howard A. Hanson lee Harbor John Day Libby Little Goose Lookout Point Lost Fork Lower Granite Lower Monumental Lucky Peak MPeNary Mud Mountain Ririe The Dallee Wynoochee Zintel Bear Big Dry Creek Black Butte Brea Oreg.
 
Oreg.
 
Wash.
 
Oreg.
 
Oreg.
 
Oreg.
 
Oreg.
 
Ida.
 
Oreg.
 
Oreg.
 
Oreg.
 
Oreg.
 
Oreg.
 
Oreg.
 
Oreg.
 
Oreg.
 
Wash.
 
Wash.
 
Ore.
 
Mont.
 
Wash.
 
Oreg.
 
Oreg.
 
Wash.
 
Wash, Ida, Oreg.
 
Wash, Ida.
 
Oreg.
 
Wash.
 
Wash.
 
Cal.
 
Cal.
 
Cal.
 
Cal.
 
Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Rogue Columbia Columbia Columbia Columbia Columbia Columbia Columbia Green Columbia Columbia Columbia Columbia Columbia Rogue Columbia Columbia Columbia Columbia Puyallup Columbia Columbia Chechalis Columbia San Joaquin San Joaquin Sacranento Santa Ana Columbia River
240,000
South Santian River
179 Columbia River
7.5,000  
Coast F
 
====k. Willamette River ====
104 S. F
 
====k. McKenzie River ====
208 North Santiam River
438 Row River
26.
 
N. F
 
====k. Clearwater River ====
2,440
Elk Creek  
132 Willamette River
184 Long Tom River
252 South Santiam River
4144 Middle Santiam River
27?
Gate C
 
====k. McKenzie River ====
50
Middle F
 
====k. Willamette River ====
38q Calapooia River
105 Green River
221&#xfd;
Snake River
109,000
Columbia River
226,00O
Kootenai River
9,070
Snake River
10i4900
Middle F
 
====k. Vilaette Aiver ====
991 Lost P
 
====k. Rogue River ====
6,7'
Snake River
101,,4O0
Snake River
108,500
Boise River
2,650.
 
Columbia River
214,000  
White River
'400
Willow C
 
====k. Snake River ====
620
Columbia River
237,000
Wynoochee River
41 Zintel Canyon Snake River IQ
California Region Bear Creek Big Dry Creek Stony Creek Brea Creek
72
]3.b
91
19.0
741
19.?
23
10.6 K
Project State River Bas
22.1
42.2
29.0
29.7
34.2
36.0
34.6
70.5
32.6
33.8
20.3
40.8
41.3  
146..3
31.0  
35.8
26.8
13.9
2191
3' 5
14,6
10.8
22.7
14*?
1400
32.5
23.0
31.9
21,14
21.1
69.9
7.8  
13.6
13.8
12.3  
6.6
2,720,000
1159,000
1,550,000
45,000
98,000
203,000
131,600
280,000
63,500
100,000
148,600
260,000
160,000
37,000
197,000
59,000
164,000
95,%000
2,650,000
282,000
850,0C0
360,000
169,0Cc
850.000
850,000
123,000
2,610,000
!86,000
4?,000
2,660,000  
52,500
"4O, 500
30,0400
17,000
1 54,000
37000
=
a
9


TABLE B.1 ( )
TABLE B.1 ( )
                                                                      Drainage  Basin Average PMF Peak Project    State    River Basin           Stream             Area   (in inches)  Discharge (s .mi.) Prec. Runoff    (cfs)
River Basin Stream Drainage Area (sq.mi.)
    Tenkiller Ferry Okla.   Arkansas        Illinois River              1,61o  20.4    17.6    406,ooo Texarkana      Tex.     Red            Sulphur River                3,400  26.6    20.1    451,000
Basin Average (in inches)  
    Toronto        Kans.   Arkansas        Verdigris River                730  23.9    21.1    400,000
Prec.
    Towanda        Kans.   Arkansas        Whitewater River              422  24.3    20.5    198,000
 
    Trinidad        Colo.   Arkansas        Purgatorie River              671  10.0    4.5    296,000
Runoff Buchanan Burns Butler Valley Carbon Canyon Cherry Valley Comanche Coyote Valley Dry Creek Farmington Folsom Fullerton Hansen Hidden Lake Isabella Knights Valley Lakeport Lopes Mariposa Kartis Creek Marysville Mojave River N*ew Dullards Bar New Exchequer New Hogm New Melones Oroville Owens Pine Flat Prado San Antonio Santa Fe Sepulveda Cal.
    Tuskahoma      Okla.   Red            Kiamichi River                347  16.5    14.6    188,400
 
    Wallace Lake    La.     Red            Cypress Bayou                  260  38.4    35.6    197,000
Cal.
    Waurika        Okla.   Red            Beaver Creek                    562 26.5    22.2    354,ooo Webbers Falls  Okla.   Arkansas        Arkansas River              48,127  10.7    6.1  1,518,000
 
    Wister          Okla.   Arkansas        Poteau River                  993  25.9    23.2    339,000
Cal.
                                              Texas-Gulf Region Addicks        Tex.     San Jacinto    South Mayde Creek              129  2q.7    27.9      68,670
 
    Aquilla        Tex.    Brazos          Aquilla Creek                 294  31.2    28.6    283,800
Cal.
    Aubrey          Tex.    Trinity        Elm Fork Trinity Hiver        692  28.5    26.0    445,300
 
L1A                                                                        178          28. 3    163,500
Cal.
    Bardwell        Tex.    Trinity        Waxahachie Creek                   31.1
 
00  Barker          Tex.     San Jacinto    Buffalo Bayou                  150  29.4    29.9      55,900
Cal.
    Belton          Tex.    Brazos          Leon River                  3,560  29.4    20.6    608,400
 
    Benbrook        Tex.    Trinity        Clear Fork Trinity River      429  28.2   21.1     290,100
Cal.
    Big Sandy      Tex.    Sabine          Big Sandy Creek                196  36.2    32.2     125,200
 
    Blieders Creek  Tex.     Guadalupe      Blieders Creek                  15 431.8  34.6     70,300
Cal.
    Brownwood      Tex.     Colorado        Pecan Bayou                  1,544  27.8    21.0    676,200
 
    Canyon Lake    Tex.     Guadalupe      Guadalupe River              1,432  24.5    16.9    687,000
Cal.
    Carl L. Estes  Tex.     Sabine          Sabine River                1,146  34.5    30.4    277,000
 
    Coleman        Tex.     Colorado        Colorado River                287  30.9   24.1    267,800
Cal.
    Comanche Peak  Tex.     Brazos          Squaw Creek                      64 39.1    34.1    149,000
 
    Ferguson        Tex.     Brazos          Navasota River              1,782  26.0    22.4     355,800
Cal.
    Gonzales        Tex.     Guadalupe        San Marcos River            1,344  24.9    15.4    633,900
 
    Grapevine      Tex.     Trinity        Denton Creek                  695  26.5    21.5    319,400
Cal.
    Hords Creek    Tex.    Colorado        Hords Creek                      4b 28.9   23.4      92,400
 
    Lake Fork      Tex.     Sabine          Lake Fork Creek                507 33.8   29.7    247,600
Cal.
    Lakeview        Tex.     Trinity        Mountain Creek                232  31.b    28.8    335,0o0
 
                    Tex.     Brazos          San Gatriel Piv-r              eC9  28 .9  23?7    52i,'00
Cal.
    Laneport Lavon          Tex.     Trinity        East Fork, Trinity River      770  26.2    23.4    430,300
 
    Lewisville      Tex.     Trinity        Elm Fork, Trinity River      i,66o  23.2    20.5    632,200
Cal.
    Millican        Tex.     Brazos          Navasota River              2,120  25.5    22.4    393,400
 
    Navarro Mills  Tex.     Trinity        Richland Creek                320  33.6    30.5    280,500
Cal.
    Navasota        Tex.     Brazos          Navasota River              1,341  27.2    24.2    327,400
 
Cal.
 
Cal.
 
Cal.
 
Cal.
 
Cal.
 
Cal.
 
Cal.
 
Cal.
 
Cal.
 
Cal.
 
Cal.
 
Cal.
 
Cal.
 
Cal.
 
Cal.
 
Cal.
 
San Joaquin San Joaquin had Santa Ana San Joaquin San Joaquin Russian Russian San Joaquin Sacramento Santa Ana Los Angeles San Joaquin San Joaquin Russian Sacramento Los Angeles San Joaquin Truckee Sacramento Mojave Sacramento San Joaquin San Joaquin San Joaquin Sacramento San Joaquin San Joaquin Santa Ana Santa Ana San Gabriel Los Angeles Chowchilla River Burns Creek Mad River Santa Am River Cherry Creek Mokeluane River Fast Fk. Russian River Dry Creek Little John Creek American River Fullerton Creek Tujunga Wash Fresno River Kern River Franz-Maacama Creek Scotts Creek Pacoima Creek Mariposa Creek Martis Creek Yuba River Mojave River North Yuba River Merced River Calaveras River Stanislaus River Feather River Owens Creek Kings River Santa Ama River San Antonio Creek San Gabriel River Los Angeles River
235
74
352
19
117
618'
105
82
212
1,875
5.0
147
234
2,073
59
52
34
108
39
1,324
215 L489
1,031
362
897
2,600
26
1,542
2,233
27
236
152
26.0
20.1
17.*4
10.6  
35.2
10.4
10.3
24.3
23.1
25.0
19.9
22.9
21.3
15.6
11.3
10.9  
21.2
17.5
9.0
6.8
9.8
29.9
18.4  
27.1  
6.5
31.6
28.9  
30.9
24.0
20.8  
18.6
13.0
26.5
12.7
38.9
27.0
40.4
30.4
38.9
25.7
27.1
15.9
18.3
25.8
16.3
23.3
22.8
14.4
9.2
28.5
14.4
26.3
13.0
13.0
35.*5
15.0
r Project State PM? Peak Discharge (ofe)
I.A
00
127,000
26,800
137,000
56.000
60,000
261,000
57,000
"45,000
56,000
615,000
16,000
130,000
114,000
235,000
"44,300
36,100
32,000
"43,000
12,400  
460,00oc
186,000
226,ooo
396,000
132,000
355,000
720,000
11.400
437,000
700,000
60,000
194,000
220,000
C
r
 
Q
River Basin Stream Drain..te Area (sa.mi.)
Basin Average (in Inches)
Pree.
 
Runoff Success Terminus Tuolumne Whittier Narrows Cale Cal$
cal.
 
Cal.
 
San Joaquin San Joaquin San Joaquin San Gabriel Tule River Kaweah River Tuolumne River San Gabriel River TABLE B.1 ( )
K
Pro.iect
'0
'0
State F
Peak Discharve (ofa)
383
560
it 5133
"40.1
25.1
1.*,
i2.6
2468
20. ?
13.7
200,000
290,000
602,000
305,000
 
APPENDIX C
SIMPLIFIED METHODS OF
ESTIMATING PROBABLE MAXIMUM SURGES
TABLE OF CONTENTS
Page C.
 
==A. INTRODUCTION==
......
....................................
1.59-42 C.2 SCOPE .
.............................................
1.59-42 C.3 PROBABLE MAXIMUM SURGELEVELS FROM HURRICANES ...............
1.59-42 C.3.1 Methods Used
.............
........................
1.59-42 C.3'2 Use of Data in Estimating PMS ............
1.59-42 C.3.3 Wind-Wave Effects ......................................
1.59-43 C.4 LIMITATIONS .
..........................................
1.59-43 REFERENCES .
.............................................
1.59-43 FIG URES .. ..............................................
1.59-44 TABLES .
...............................................
1.59.46 FIGURES
Figure C.1-Probable Maximum Surge Estimates, Gulf Coast
....................
1.59-44 C.2-Probable Maximum Surge Estimates, Atlantic Coast ..................
1.59-45 TABLES
Table C. I-Probable Maximum Surge Data ..............................
1.59-46 C. 2-Probable Maximum Hurricane, Surge, and Water Level-Port Isabel ..........
1.59.47 C. 3-Probable Maximum Hurricane, Surge, and Water Level-Freeport ............
1.59.48 C. 4-Probable Maximum Hurricane, Surge, and Water Level-Eugene Island ........
1.59.49 C. 5-Probable Maximum Hurricane, Surge, and Water Level-Isle Dernieres .........
1.59-50
C. 6-Probable Maximum Hurricane, Surge, and Water Level-Biloxi ....
...........
1.59-51 C. 7-Probable Maximum Hurricane, Surge, and Water Level-Santa Rosa Island .....
.1.59-52 C. 8-Probable Maximum Hurricane, Surge, and Water Level-Pitts Creek ...........
1.59-53 C. 9-Probable Maximum Hurricane, Surge, and Water Level-Naples ....
.........
1.59-54 C.-10-Probable Maximum Hurricane, Surge, and Water Level-Miami ..............
1.59-55 C.A I-Probable Maximum Hurricane, Surge, and Water Level-Jacksonville
...........
1.59-56 C. 12-Probable Maximum Hurricane, Surge, and Water Level-Jeckyll Island ........
1.59-57 C.13-Probable Maximum Hurricane, Surge, and Water Level-Folly Island ...........
1.59-58 C.14-Probable Maximum Hurricane, Surge, and Water Level-Raleigh Bay ..........
1.59-59 C.15-Probable Maximum Hurricane, Surge, and Water Level-Ocean City ...........
1.59-60
C.16-Probable Maximum Hurricane, Surge, and Water Level-Atlantic City ..........
1.59-61 C.17-Probable Maximum Hurricane, Surge, and Water Level-Long Island ...........
1.59-62 C.18-Probable Maximum Hurricane, Surge, and Water Level-Watch Hill Point .......
1.59-63 C.19-Probable Maximum Hurricane, Surge, and Water Level-Hampton Beach ......
..
1.59-64 C.20-Probable Maximum Hurricane, Surge, and Water Level-Great Spruce Island .
.
. .
1.59-65 C.21-Ocean-Bed Profiles
...........
. ....
............................
1.59-66
1.59-41
 
C.1 INTRODUCTION
This appendix presents timesaving methods of es timating the maximum stiilwater level of the probable maximum surge (PMS) from hurricanes at open coast sites on the Atlantic Ocean and Gulf of Mexico.
 
Use of the methods herein will reduce both the time necessary for applicants to prepare license applica tions and the NRC staff's review effort.
 
The procedures are based on PMS values deter mined by the NRC staff and its consultants and by applicants for licenses that have been reviewed and accepted by the staff. The information in this appen dix was developed from a study made by Nunn, Snyder, and Associates, through a contract with NRC (Ref. 1). 
The PMS data are shown in Tables C.I through C.21 and on maps of the Atlantic and Gulf Coasts (Figures C.I and C.2). Suggestions for interpolating between these values are included.
 
Limitations on the use of these generalized methods of estimating PMS are identified in Section C.4. These limitations should be considered in detail in assessing the applicability of the methods at specific sites.
 
Applicants for licenses for nuclear facilities at sites on the open coast of the Atlantic Ocean or the Gulf of Mexico have the option of-using these methods in lieu of more precise but laborious methods contained in Appendix A. The results of application of the methods in this appendix will in many cases be ac cepted by the NRC staff with no further verification.
 
C.2 SCOPE
The data and procedures in this appendix apply only to open-coast areas of the Gulf of Mexico and the Atlantic Ocean.
 
Future studies are planned to determine the ap plicability of similar generalized methods and to develop such methods, if feasible, for other areas.
 
These studies, to be included in similar appendices, are anticipated for the Great Lakes and the Pacific Coast, including Hawaii and Alaska.
 
C.3 PROBABLE MAXIMUM SURGE LEVELS
FROM HURRICANES
The data presented in this appendix consist of all determinations of hurricane-induced PMS peak levels at open-coast locations computed by the NRC
staff or their consultants, or by applicants and ac cepted by the staff. The data are shown in Tables C. 1 through C.21 and on Figures C.I and C.2. All repre sent stillwater levels for open-coast conditions.
 
SAll PMS determinations in Table C.1 were made by NRC consultants for this study (Ref. 1) or for earlier studies except Pass Christian, Brunswick, Chesapeake. Bay Entrance, Forked River-Oyster
.Creek, Millstone, Pilgrim, and Hampton Beach.
 
The computations by the consultants were made using the NRC surge computer program, which is adapted from References 2, 3, and 4. Probable max imum hurricane data were taken from Reference 5.
 
Ocean bottom topography for the computations was obtained from the most detailed available Nautical Charts published by the National Ocean Survey, NOAA. The traverse line used for the probable max imum hurricane surge estimate was drawn from the selected coastal point to the edge of the continental shelf or to an ocean depth of 600 feet. MLW and was one hurricane radius to the right of the storm track.
 
The radius to maximum winds was oriented at an angle of 1150 from the storm track. The traverse was oriented perpendicular to the ocean-bed contours near shore. The ocean-bed profile along the traverse line was determined by roughly averaging the topography of cross sections perpendicular to the traverse line and extending a maximum of 5 nautical miles to either side. The 10-mile-wide cross sections were narrowed uniformly to zero at the selected site starting 10 nautical miles from shore. It was assumed that the peak of the PMS coincided with the 10% ex ceedance high spring tide' plus initial rise.' Slightly different procedures were used for postulating the traverse lines and profiles for the Crystal River and St. Lucie determinations.
 
In each case the maximum water level resulted from use of the high translation speed for the hur ricane in combination with the large radius to max imum wind as defined in Reference 5. Detailed data for the computed PMS values are shown in Tables C.1 through C.20. Ocean-bed profile data for Pass Christian, Crystal River, St. Lucie, Chesapeake Bay Mouth, and Hampton Beach are shown in Table C.21.
 
The water levels resulting from these computations are open-coast stillwater levels upon which waves and wave runup should be superimposed.
 
C.3.2 Use of Data In Estimating PMS
Estimates of the PMS stillwater level at open-coast sites other than those shown in Tables C.1 through C.21 and on Figures C.1 and C.2 may be obtained as follows:
'The 10% exceedance high spring tide is the predicted maximum monthly astronomical tide exceeded by 10%.of the predicted max imum monthly astronomical tides over a 21-year period.
 
'Initial rise (also called forerunner or sea level anomaly) is an anomalous departure of the tide level from the predicted axtronomical tide.
 
1.59-42 C.3.1 Methods Used I
I
 
I. Using topographic maps or maps showing soundings, such as the Nautical Charts, determine an ocean bed profile to a depth of 600 ft MLW, using the methods outlined above. Compare this profile with the profiles of the locations shown in Tables C.2 through C.21. With particular emphasis on shallow water depths, select the location or locations in the general area with the most similar profiles. An es timate of the wind setup may be interpolated from the wind setup data for these locations.
 
2. Pressure setup may be interpolated between locations on either side of the site.
 
3. Initial rise, as shown in Table C.1, may be inter polated between locations on either side of the site.
 
4. The 10% exceedance high spring tide may be computed from predicted tide levels in Reference 6; it may be obtained from the Coastal Engineering Research Center, U.S. Army Corps of Engineers, Ft.
 
Belvoir, Va.; it may be interpolated, using the tide relations in Reference 6; or it may be obtained from Appendix A.
 
5. An estimate of the PMS open-coast stillwater level at the desired site will be the sum of the values from Steps I through 4, above.
 
C.3.3 Wind-Wave Effects Coincident wave heights and wave runup should be computed and superimposed on the PMS stillwater level obtained by the foregoing procedures. Accep table methods are given in Reference 2 and in Appen dix A.
 
CA LIMITATIONS
I. The NRC staff will continue to accept for review detailed PMS analyses that result in less con servative estimates. In addition, previously reviewed and approved detailed PMS analyses at specific sites will continue to be acceptable even though the data and procedures in this appendix result in more con servative estimates.
 
2. The PMS estimates obtained as outlined in Sec tion C.3.2 arc maximum stillwater levels. Coincident wind-wave effects should be added.
 
3. The PMS estimates obtained from the methods in Section C.3.2 are valid only for open-coast sites, i.e., at the point at which the surge mikes initial land fall. If the site of interest has appreciably different off-shore bathymetry, or if the coastal geometry dif fers or is complex, such as for sites on an estuary, ad jacent to an inlet, inshore of barrier islands, etc.,
detailed studies of the effect of such local conditions should be made. Reference 2 provides guidance on such studies.
 
REFERENCES
I. Nunn, Snyder, and Associates, "Probable Max imum Flood and Hurricane Surge Estimates," un published report to NRC, June 13, 1975 (available in the public document room). 
2. U. S. Army Coastal Engineering Research Center,
"Shore Protection Manual," Second Edition, 1975.
 
3. B. R. Bodine, "Storm Surge on the Open Coast:
Fundamental and Simplified Prediction," Technical Memorandum No. 35, U.S. Army Coastal Engineer ing Research Center, 1971.
 
4. George Pararas-Caryannis, "Verification Study of a Bathystrophic Storm Surge Model," Technical Memorandum No. 50, U.S. Army Coastal Engineer ing Research Center, May 1975.
 
5. U. S. Weather Bureau (now U.S. Weather Service, NOAA), "Meteorological Characteristics of the Probable Maximum Hurricane, Atlantic and Gulf Coasts of the United States," Hurricane Research Interim Report, HUR 7-97 and HUR 7-97A, 1968.
 
6. U. S. Department of Commerce, NOAA, "Tide Tables," annual publications.
 
1.59-43
 
96&deg;
960
940
329
310
200
27r
260
250
240
93?
92r
910
90p
89W
88e
870
860
860
840
8r3
820
810
FIGURE Ci PROBABLE MAXIMUM SURGE ESTIMATES - GULF COAST
C
34&deg;
340
C
f(
 
830
820 810 800
790
780 770
760
750
8o
85o-
840
830 820
81
800 70r
780
0
770
760
750
740
730
720
71'
FIGURE C.2 PROBABLE MAXIMUM SURGE ESTIMATES - ATLANTIC COAST
1.59-45
 
TABLE C. 1 PROBABLE MPAXfl04 SURGE DATA
(W)CATIONS INDICATED ON FIGURES C.1 and C.2)
DISTANCE FR0OM
SHORELINE, NAUTICAL MILES,
FOR SELECTED WATER DEPTHS, FEET HIM
OPEN-COAST LOCATION
AND TRAVESE
PORT ISABEL
FREEPORT
EUGENE ISLAND
ISLE DERNIERE
PASS CHRISTIAN (a)
BILOXI
SANTA ROSA ISLAND
PITTS CREEK
CRYSTAL RIVER (a)
NAPLES
MIAMI
ST. LUCIEW()
JACKSONVILLE
JEKYLL ISLAND
FOLLY ISLAND
BRUNSWICK
RALEIGH
CHESAPEAKE BAY
ENTRANCE (a)
OCEAN CITY
ATLANTIC CITY
FORKED RIVER
OYSTER CREEK
LONG ISLAND
MILLSTONE
WATCH HILL POINT
PILGRIM
HAMPTON
EAM (a)
GREAT SPRUCE ISLAND
I
N
TRAVERSE
AZIMUTH
DEG.
 
-
HIN.
 
DEPTH, FEET, ALONG TRAVERSE FROM OPEN COAST SHORE LINE
10
20
50
100
200
600
DISTANCE,
NAUTICAL MILES, TO DEPTH INDICATED
1
1 ii
86
152
192
165
160
183
205
248
100
90
108
150
135
30
00
30
00
00
00
00
00
00
00
00
00
00
110
00
146
00
166
166
115
148
00
00
00
no
0.23
0.49
1.94
11.10
33.10
44.0
0.20
0.55
5.50
24.0
55.5
70.9
2.00
20.00
30.00
44.1
60.0
90.0
0.62
1.75
11.90
30.4
45.3
58.5
77.0
3.40
11.20
30.00
50.1
69.2
78.0
0.09
0.18
0.48
11.9
20.9
45.0
8.84
9.23
24.30
69.4
107.0
132.0
2.31
31.40
127.0
0.17
0.79
15.70
45.6
85.8
145.0
0.17
0.94
2.01
2.2
2.7
3.9
0.10
18.7
0.10
0.20
2.58
30.0
55.0
62.5
2.60
4.00
15.60
39.6
64.3
72.6
0.19
2.17
12.00
32.8
47.0
57.6
0.12
0.30
1.75
12.0
25.4
35.2
62.0
0.12
0.26
3.67
17.8
45.0
59.0
0.20
0.85
5.00
23.1
58.4
70.0
0.09
0.07
0.22
0.04
0.18
1.35
0.14
0.64
0.31
0.71
0.08
0.20
4.8
1.6
2.0
1.1
27.2
34.3
7.2
6.1
68.4
"84.0
40.0
1 7R .0
1.
 
6
1 PROBABLE MAXIMUM SURGE AT OPEN COAST SHORE LINB
WIND
SETUP,
FT.
 
PRESSURE
SETUP,
FT.
 
10.07
15.99
29.74
18.61
28.87
27.77
.9.12
24.67
26.55
18.47
2.51
8.25
16.46
20.63
17.15
12.94
8.84
17.30(b)
14.30
15.32
18.08(b)
8.73
12.41
10.01
4.25
9.73
3.57
2.89
3.29
3.29
2.88
2.98
3.25
2.31
2.65
2.90
3.90
3.80
3.23
3.34
3.23
2.20
3.09 (b)
2.83
2.57 (b)
2.46
2.20
2.42
2.23
1.82 INITIAL 102 EXC.
 
HIGH
TOTAL
RISE,
TIDE,
SURGE,
FT.
 
FT. ML
(C) PT. mL (C)
2.50
2.40
2.00
2.00
0.80
1.50
1.50
1.20
0.60
1.00
0.90
0.98
1.30
1.20
1.00
1.00
1.00
1.10
1.14
1.10
1.00
0.97
1.00
0.96
0.83
0.56
1.70
2.20
2.30
2.40
2.30
2.50
2.10
4.10
4.30
3,50
3.60
3.70
6.90
8.70
6.80
5.80
4.70
3.80
5.00
5.70
4.70
3.10
3.80
4.00
11.90
10.50
16. OC
17.84
23.48
37.34
26.30
34.85
34.76
15.97
32.28
34.10
25.87
10.91
16.73
27.90
33.87
28.18
21.94
17,63
22.20
23.27
24.70
23.78
15.26
19.41
17.39
19.60
17.81
28.11 a.
 
See Table C.21 for ocean-bed profile.
 
b.
 
Combined wind and pressure setup.
 
c.
 
Host values in these columns have been C
updated by the U.S. Army Coastal Engineering Research Center and differ from those in the orilinal documents.
 
(
(
'0
0%
I
I
9.73
 
Q
Note:
maximm wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.
 
-!/Initial distance is distance along traverse from shoreline to maximum wind when leading
20 mph isovel intersects shoreline.
 
Stdrm diameter between 20 mph isovels is approxi mately double the initial distance.
 
OCEAN BED PROFILE
WATER
BELOW
MWM
0
9.0o
20.5
35.0
43.0.
 
51.0.
 
58.5.
 
69.0
95.5
116
138
171
266
6oo
19,850o TRAVERSE
DISTANCE
FROM
SHORE
(NAUT.MI.)
0
0.2
-
0.5
1.0
-
1.5
,
2.0
_
5.0
1O
.15
20
30
40
_4
50
DEGREE AT TRAVERSE
MID-POINr FROM SHORE
T6 600-FOO DanT
K
TABLE C.2 SUMMARY-PERTINT PROBABLE MAXIMIh hURRICANE (*MH), STOR.M SURGE COMPUTATIONAL DATA AND RESULTANT WATER LE
LOCATION PORT ISABEL
T. 26004.3'
LONG. 97 09.41: TRAVERSE-AIMUTH86 0-30
GREEI LENTH 4.2.1 NAUTIICAL MILES
"""&mla K
-J
PROBABLE
MAXIMUM HURRICANE IN
PARCThISTICS
ZONE
C
AT LOCATION
260
04 EREE NOM
PARAMETER DESIGNATIONS
SLW
MODERATF
HIGH
GEMMEAL PRESSURE IDEX
P0 INCHE
26.412
26.412
26.112
2
-
PERIPHERAL PRESSURE
INCHES
31.30
31.30
31.30
RADIUS TO MAXIMUM WIND
LARGERADIUS RnAU.
 
MIe.
 
20
20
20
TRANLATION SPEED
V (FORWARD
)KNOTS
I
...
28
,'!xIMUM WIND SPEED)
V
M.P.H.
 
147
151
161 ATALMRZ D1SrANE-WINDU .NI.
 
M2OMP20 IND
398
374,
318
*' O
TO MlAX.
 
IN
PMH cCMnPUATIONAL ComD71CrT
AD WATE LEVEL (SURGE) ESTIMATES
CO EFFI CI MNTS
B0TIO
FMICTION FACTOR 0.0030
WIND STRESS CORRECTION FACTOR 1.10
WATER
L.EVEL
DATA
(AT OPEN CanB
SHORELINE)
pM
SpEISD OF TPANMSIATIOVq OOMP0NERTS
H
WIND SETUP
10007 PRESSURE SETUP
35 INITIAL WATER LEV.
 
.*
ASTRONOMICAL
1.70
TIDETLESM*
TOTAL-SURGE
STILL WATER
Lhs'J.
 
17.84 PET
LW-
-
-
 
TABLE C.3 SuMMARY-PEITINE*rT PRUMBLE MAXIMUI. HURRICANE (FMH).
STORKM S;GIO
COMPUIATIONAL ITA. AND RESULTANT WATER LEVEL
LOCATION FREEPOR'.
LUT. 280
56' LONG. 95'
TEXAS
Note: Nax-- wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.
 
--/nitial distance is distance along traverse from shoreline to maximum wind when leading
20 mph isovel intersects shoreline.
 
Storm diameter between 20 mph isovels is approxi mately double the initial distance.
 
C ) . . . ..
.......
..... .. .
. . .
22' : TRAVERSE-AZIMUTH 152 PROBABLE MAXIMUM HUiRICANE INDEX CHARACTI*$ISTICS
ZONE
C
AT LOCATION
280
561 MHZE NORTH
1 SPEED OF UNSITION
PARAMETER DESIGNATIONS
SLOW
HODERATF
HIGH
*.."
*(sT)
NOm'
(Hr,)
CflI!VAL PRESSURE INDEX
Po INCHES
26.69
26.69
26.69 PERIPHERAL P
0SRE
P n INCHES
31.25
31.25
31.25 ADIUS 70 KMAXDIUM WIND
LiRGE SAhMS iUT.
 
I.
 
26.0
26.0
26.0
TRUN*LATION SPEED
V (voawRD SPEED) I
S
139 U
8.
 
KiXD= WIND SPEED
Yx M.P.H.
 
139
143
153 INITIAL DISTAN(CE--&U.I ,* l9 MPH WIND
491
458
390
AT SHORE TO MAX.
 
WIND
DiXRE, o LENGTH 70.9 NAUTICAL MILES
PMH COUPUTATIONAL C0EWICIENT
AND WATER LEVU (SUGE) ESTIMATES
CooFFIOIENT&sect;
BOT'iM FkICTION FACTOR 0.0030
WIND STRE
CORRCION FACTOR 1.10
WATEH
LVEL
DATA
(AT OPEN COAST SHOP.LIIE)
.
U'
OCEAN BED PROFILE
TRAVERSE
WATE
DISTANCE
DEPTH
FROM
BELOW
SORE
MI
(
TmI.
 
(FEw-)
0
0
"
.1.0
30
_
2.0
32
_
3.0
37
4.0
40
-
5.0
47
10.0
66
_
15.0
78
_
20.0
90
_
30.0
114
-
40.0
132
50.0
168
-
60.0
240
_
70.0
570
70.9
600
IATITUDE
* 280 26'
DEGREE AT TRAVERSE
KID-POINT FROM SHOR9
1'O 600-FOOT DEPTH
PMH SPEED OF TRANSLATION
COMPONENTS
ST I
HTr H T
F
E
E
T
WIND SEiTUP
15.99 PRLSSURE SETUP
2.89 INITIAL WATIR LEV.
 
2.40
&STRONOMICAL
2.20
TIDE LEVEL.
 
TOTAL-SURGE
STILL WAT1E Lhl,.
23.48 FELT MLW
-
.....
tC
 
Q
LOCTION EUGENE
LAT. 29o 20'
LONG. 91'
ISLAND, LOUISIANA
Note:
Maximm wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.
 
- Initial distance is distance along traverse from shoreline to maximum wind when leading
20 mph isovel intersects shoreline.
 
Storm diameter between 20 mph isovels Is approxi mately double the initial distance.
 
21 . T-RAVmRSE-AZImuTH19230'DE2REEs LENGTH
90
NAUTICAL MILES
OC]AN BED PROFILE
TRAVEiSk WATER
DISTANCE
DEPTH
FROM
BELOW
SHORE
MKU
NAUT
*
FEET)
-
0.0
0
-
1.0
5
-
2.0
10
-
3.0
12
-
5.0
15
-
10.0
15
-
15.0
18
-
20.0
20
-
30.0
50
-
40
60
-
50
140
-
60
200
-
70
260
-
80
320
-
90
600.


TABLE B.1 ( )
L&TrTUDE
                                                                      Drainage  Basin Average  PMF Peak Project      State    River Basin            Stream            Area    (in inches)   Discharge (so.mi.)   Prec. Runoff      (cfs)
%2o
North Fork        Tex.     Brazos            N. Fk. San Gabriel River      246  31.7    26.6      265,800
4d DEGREE AT TRAVERSE
Pecan Bayou      Tex.     Colorado          Pecan Bayou                    316  30.7    23.8      236,200
MID-POINT FROM SHORE
Proctor          Tex.     Brazos            Leon River                  1,265  27.*0  21.4       459,200
600:=
                                            Denton Creek                  604  28.9    ;>',. I   313,600
TABLE C.4 SUMMARY-PERTINENT PROBULE MAXIMLI. HURRICANE (PMH),
Roanoke          Tex.     Trinity Rockland          Tex.     Neches            Neches River                3,557  21.0               150, 00
STORM SURGE COMPUTATIONAL rATA AND RESULTANT WATER LEVEL
                                                                                23.7 Sam Rayburn      Tex.     Neches            Angelina River              3,449          20.6       395,600
K
San Angelo        Tex.     Colorado          North Concho River          1,511  21.2   13.1       (14,-00
.ub PROBABLE 1AXIMUM HURRICANE INE
Somerville        Tex.     Brazos            Yogua Creek                1,006  22.0   13.6      415,700
CHARACThWISTICS
                                                                                32.6    27.*4 South Fork        Tex.     Brazos            S. Fk. San Gabriel River      123                    145,300
ZONE
                                            Lampasas River              1,318  27 *7             686,400
B
Stillhouse Hollow Tex.     Brazos                                                        22.5 Tennessee Colony  Tex.     Trinity          Trinity River            12,687            20.4       575,600
AT LOCATION
                                                                                2?. 7
29P
                                                                                18.9 Town Bluff        Tex.     Necnes            Neches River                7, 573  25.7    15.7      326,000
20' DGREE NORTH
Waco Lake        Tex.     Braazos          Bosque River                i, 670  25. 20.6      622,900
PARAMETER DESIGNATIONS
Whitney          Tex.     Brazos            Brazos River              17,656              7.7      700,000
SLOW
                                            Rio Grande Region Abiquiu          N. Me    Rio  Grande      Rio Grande                  3,159            8.2     130,000
TODERATF
                                                                        3,917 Alamogordo        N. M.   Rio  Grande      Pecos River                                  1.9     277,000
HIGH
Cochita          NM.   Rio Grande      Rio Grande                  4,065    4.6      1.9     320,000
CENTRAL PRESSURE I*NDE
Jemez Canyon      N. M.   Rio  Grande      Jemez Canyon                1,034    9.2     3.7      220,000
P0 INCHES
Los Esteros      N. M.   Rio  Grande      Peccs River                2,434  12.2      4.7      352,000
26.87
Two Rivers        N. M.   Rio  Grande      Rio Hondo                  1,027                      282,400
26.87
                                          Lower Colorado RegLon Alamo            Ariz.   Colorado          Bill Williams River        4,770  12.0     3.5     580,000
26.87 PDtIPHEAL PRESSURE
McMicken          Ariz.   Colorado          Aqua Fria River                247            3,3       52,000
INCHES
Whitlow Ranch    Ariz.   Colorado          Queen Creek                    143  11 .5     9.7     230,000
31.24
Painted Rock      Ariz.   Colorado          Gila River                50,600    7.7      2.8      620,000
31.24
                                            Great Basin Region Little Dell      Utah    Jordon (Great)   Dell Creek                      36  6.1     6.0      23,000
31.24 IUS TO MAXIMUM WIND
Mathews Canyon    Nev.     Great Basin      Mathews Canyon                  34 8.6     7.4       35,000
J.-ARE RADIUS NUT*. MI.
Pine Canyon      Nev.     Great Basin      Pine Canyon                    4&#xfd;5 8.2     6.6      38,000
 
                                      Columbia-North Pacific Region Applegate        Oreg.   Rogue            Applegate River                223          28.9        99,500
29.0
Blue River        Oreg.   Columbia          S. Fk. McKenzie River          88          22.7        39,500
29.0
29.0
T SLATION SPEED
, (FORWARD SPED) KNOTS
I
4
1
28.0
AIMUM WIND SPED
Vx M.P.H.
 
141
144
153 INITIAL DISTArCE-NMAT.M.I.-/
FROM 20 MPH WIND
534
184
412 AT SHORE To MAX.
 
WID-1)
PMH OCHPUTATIONAL COEFFICIENT
AND WATER LEVM (SURGE) ESTINATES
ICTJIM 'iFICTION
FACTOR 0.0030
WIND STRESS CORRECTION FACTOR 1.10
WAT E
Lh VEL
DATA
(AT OPEN OCAST SHORELINE)  
PMH SPEED OF TRANSLATION
COMPONENTS
ST
M
ST
HiT
F
E, T
WIND SETIUP
-29.74 PRESSURE SETUP
3.29 INITIAL WLATER LEV.
 
2.00
ATRONOMICAL
2.30
hIDE LEVEL
SUAL-RGE
STILL
L
kA .
37.34 SET =L
:
 
TABLE C.5 SUMMY-PERTINENT PROALE MAXI M1,. HU*RIlCANE (PMH) ' STORM SMGE 00MFUTTIONAL WA AND RESULTANT WATER LEVEL
LOIATION ISLE
L&T. 29002.91 LONG. 90"42.5'; "TAVERSE-AzIMUTH 165 DiEEaLe LG
58.5 NAuTICAL muILs DERNIERES, IOUISIAM
Note:
Maximum wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maxlmum wind.
 
-!/Initial distance is distance along traverse from shoreline to maximum wind when leading
20 mph isovel intersects shoreline.
 
Storm diameter between 20 mph isovels is approxi mately double the initial distance.
 
C
(
0o PROBLE MAXIDUH HURRICANE INDEX CHARAMTUISTICS
ZONE B
AT LOC&TION
290
3 D0G'EENOTNO
SPEED*OF TMNSL&sect;T:0I.
 
PARAMETER DESIGNATIONS
SLOW
14OD91ATF
HIGH
MH
PRESSURE INDEM
P0 INCHES
26.88
26.88
26.88 PERIPHERAL PRESSURE
P
INCHES
31.25
31.25
31.25 RADIUS TO MAXIMUM WIND
IARGZ RADIUS NALT. HI.
 
29
29
29 MANSIATION SPEED
? (FORWARD SPME)
KNOTS
4 I
11
\\2 IAXIMUM WIND SPEED
!V
M.P.H.
 
140
144
153 INITIAL D
=h-N
.MI.1/
PROM 20 MPH WIND
528
48?
394 KT SHORE TO MAX. WIND
I  
I
PMW OCKWPUATION&L COiUVICIERT
AND
AMAE
LEVEL (SUlGE)
ESTIMATES,  
COEFFICI-ENTS
"BMiOT
FRICTION FACTOR 0.0030
WIND SRESS, C0HHEION FACTOR 1.10
WATER
LEVEL
DATA
(AT OPEN CCAST sFMlEJNS)
P1W SPEED OF TRANSLI'TIO
COMPONENTS
ST I
-14
!
9 F
E
E" T
WIND SETUP
8b RESSURE SETUP
3 INITIAL
MATES LEW.
 
2.00  
ATRNOMICAL
2.40
TIDE LEME
TOTAL-SURGE
SILL jATa7 LEV.
 
26.30
=
MHW
 
K
TABLE C.6 SURY-PFERTINENT PR"OBBLE MAX IMU. hURRICANE (Pml'.
STORM SURGE COMPUTATIONAL DATA AND RESULTANT WATER LEVEL
LOTION BIIOXI
LAT. 30023.6'
LONG. 88"53.6't TRAVMsSE-AZIMUTH
160
DECREEs LEVGTH 77 NAUTICAL MILES
MISSISSIPPI
Note:
Maximum wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.
 
1-Initial distance is distance along traverse from shoreline to maximum wind when leading
20 mph isovel intersects shoreline.
 
Storm diameter between 20 mph isovels is approxi mately double the initial distance.
 
PROBABLE MAXIMUM HURRICANE IN=*
CHARACMISTICS
ZONE
B AT LOCATION
300
24 DECREE NORTH
K
r Lft
'0
OCEAN BED PROFILE
TRAVERSE
WATER
DISTANCE
DET
FROM
BELOW
SHORE
MLW
0
0
-
0.2
3.0
0.5
2.0
1.0
6.5
1.5
9.0
_
2.0
9.0
_
3.0
9.5.
 
5.0
12.0
_
9.0
9.5 _
_
9.5 U-.0
_
10.0
14.0
-
10.5
18.5
-
11.0
17.5
_
11.5
23.0
-
12.0
29.0
1  
13
34.5
-
15
41.5
20
45.0
25
47.0  
30
50.0
40
65.0
50
99.0
60
164
"
70
203
78
6oo
80
7*  
LATITUDE
?
290 508 DEGREE AT TRAVERSE
MID-POINT FROM SHORE
TO k00--1 RMP'
ISPEED
OF TRANSATION_
PARAMETER DESIGNATIONS
SLW
MODERATF
HIGH
METRAL PRESSURE INDEI
o INC=
26.9
26.9
26.9 PERIPHERAL PRESSURE
P
INCHES
31.23
31.23
31.23 RADIUS TO MAXIMUM WIND
laRGE RADIUS NAUT. MI.
 
30
30
30
rRANSLATION SPEED
!
(FORWARD SPEED) KEATS
4  
11
28 MAXIMUM WIND SPEED
vx M*.P.H.
 
139
143
153 INITIAL DiSr~C-niuT.MI.X
FROM 20 MPH WIND
525
498
396 IT SHORE 32 MAX. WIND
-
-
I
P10
OCCUATIONAL COEFFICIENT
AND WATER LEVEL. (SURGE)
SrIMATES
COEFFICIENTS
WM'OK FRICTION FACTOR 0.0030
WIND STRESS CORRECTION FACTOR 1.10
(ATER L
.VCST
DATA
(AT OPEN OCs sMREiNZ)
 
TABLE C.7 SUMMARY-YERUNENT ?RUMABLE MAX IMU h1JRRIC&NE (FMH)
* STORM SUItGh. OOIPULAT1ONAL IATA AND RESULTANT WATER LEVEL
LOCATION SANTA ROSA
LIT. 30 023.769 LONG. 86"37.7': TR"AVERSE-AZIMUTH
183
=BflE&# LQWGTH 4e4.7 NAUTICAL MILES
ISLAND,  
AUEAZAM
l.A
Note: Maximum wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.
 
-
Initial distance is.-distance along tra .verse from shoreline to maximum wind when leading
20 mph isovel intersects shoreline. Storm diameter between 20 mph isovels is approxi mately double the initial distance.
 
PROBABLE MAXIMUM HURRICANE INDEX CHARACMh~ISTICS
ZONE
B
AT LOCATION
300
24' DNEGR N0ORTH
PARMLERDESIGNATION$
SLOWV
I40DM1TFI
HIGH
, (sr)
(N)
(T
CENTRAL PRESSURE INDEX
P0 INCHES
.26.88
26.88
26.88 PEtWIPERAL.PRESSURE
in IziCi~s
31.20  
310
3.2 RADIUS TO MAXIMUM WIND
IARGE RADIUS HAUT. MI.
 
29
29
29 fAnWSIATION SPEED
? (FMonAiiD SPEED) KNOTS
4  
11
28 MIAXIMUM WIND. SPEED
V XMeP9*H
140
144
153, INITIAL DIST&NCE-NAUT.H
2  
'8
9 PRtOM 20 MPH WIND
47
'9 KT SHORE TO MAX. WIND
1___ -
PMH OMPUTATI0NAL GOiFFICILUT
AND WATER LLY&i (SURiGE)
ESTIMATES
C 0 E F.
 
F I C I E N T S
10rj'0M FRIICTION FACTORB 0.0030
WIND MSTRSS COURiCYIO
FACTOR 1.10
WATEft LEVEL
DATA
(AT OPENI COAST SI RELINE)
PKH SPEED OF TRANSLATIOIb COMPONENTS
ST I
T
H
___ __E
F
ET
WIND SETUJP
9.12 PRESSURE SETUP
3.25 INITIAL WATER LEV*
1.50
LSTROHORIC&L
2.10
riDE LEVEL
lOTAL-SURCE
STILL WATER LEV.
 
15.97
&#xfd;=7I MLW
___
C
OCEAN BED PROFILE
.TRAVERSE
WATER
DISrANCE
DEPTH
FROM
BELOW
swagR
HMW
Nt
.AUT.H.
 
LF2TL
0
0
S 0.2
22 S 0.5
5
: 1.0
66
1.5
66
290
66
-
3.0
73
5.0
76.
 
10
88
-
15  
120
20
182
30377
40
510
-
45
600.
 
-
0
756 LATITUDE
3601-36 DEG~REE AT TRAVERSE
MID-POINT FROM SHORE
ro600-F
DEPTH
 
K
Q
LOCATIONPITTs CREEK
LAT. 30001.1' LONG. 83""
FLORIDA
Note:
Maxima wind speed Is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.
 
-/Initial distance is distance along traverse from shoreline to maximum wind when leading
.20 mph isovel intersects shoreline.
 
Storm
,diameter between 20 mph isovels is approxi mately double the initial distance.
 
53': -TRAVERSE-AZIMUTH
205 DE*EEs LENGITH 110
NAUTICAL MILES
PROBABLE MA*INUM HURRICANE INIM CHARACTERISTICS
ZON.
 
A
AT WC&TION
300
01o DEGR
NORTH
SLSPEED OF TNSA
TION
PARAMEI
DEINAIN
SLOW
HOIERATF
HIGH
RADIUS
PRESXUME INDEX
Po0 INCHES
26-79
26.79
26.79 PERIPHItA
PRESSURE
SPn INCHES
30.ZZ
30.22
30.22 RADIU&#xfd;S TO MAIMU
WIND
JAUME RADIUS NAUT.
 
MI.
 
26
26
26 rRANSIATION SPEED
rV (1OiM I)D SPEED) KNOTs
1 4
11
21 AXIMUM WIND SPEED
v_
M.P.H.
 
138
142
146 naTIAT, DIST-ANCE-NUT.MIX
FROM 20 MPH~ WIN
3514
322
278.
 
AT MOMK To MAX. WIND-
-
-
TABLE C.8 SUMART-PERTINENT PROBABLE MAXIMU1. hfJRRIC&NE (PMH),
STORM SURGE COMPUTATIONAL LATA AND RESULTANT WATER LEVEL
A
'a I,'
 
====t. h OCEAN BED PROFILE ====
TRAVERSE
WATER
DISTANCE
DEPTH
FROM
BELOW
SHORE
MLW
NAUT.MI.
 
IFEET)
0
0
_
0.2.
 
1.0
_
0.5
2.0
_
1.0
3.0
_
1.5
4.o0
_
2.0
5.0.
 
.
3.0
6.5.
 
_
5.0
9.0.
 
_
10
22. 0.
 
_
15
31.o0
-
20
41.0
_
30
62.0
_
40
78.0
_
50
81.0o
-
60
84.0 .   
70
101.0..   
-
80
117.0.
 
_
90
144.0._
_ 100
180.0
_ 110
210.0_
120
280.0
.
130
543.o L.
 
132
600.0.
 
140
846 TITUDE
* 29&deg; 03'
DEREE AT TRAVEMSE,
ID-POINT FROM SHORE
&sect;2L60-=0T
=
PMH OCUTATIONAL COEFFICIENT
AND WATE
UWEL (SURGL)
ESTIMATES
COEFF ICI
ENTS
B
uM FIIcrTION FACTOR 0.0030
WIND STRESS COHREMTION FACTOR 1,10
WA T Eh Lh9VEL
DAT.T
(AT OPEN
CAST SHORELINE)
PIMH SPEED OF TRANSIATION
COMPOONETS
ST
I
MT
I
T
F
E E T
WIND SETUP
24.67 RESSURN SETUJP23 INITIAL WATER LE.
 
1.20
ASRNOMICAL
4.10
TIDE LEVEL
TOTAL-SURGE
322 STILL VATIr LIU".
32.28 LW
-
-
 
TABLE C.9 SUMMARY-PERTINENT PRUbABLE MAX IMt:? HURRICANE (PNJO, STORM SUC
COMPULATIONAL rATA AND RESULTANT WATER LEVEL
LOCATION
NAPLES
FLORIDA
LkT. 26001.41 IONG. 81'46.2'; TRAVERSE-AZINUTH
248 DIUREEa LENGTH 14e NAUTI-CL MILES
1P
Note:
Maximum wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.
 
-!/Initial distance is distance along traverse from shoreline to maximum wind when leading
20 mph isovel intersects shoreline.
 
Storm diameter between 20 mph isovels is approxi mately double the initial distance.
 
PMH ONPUTATIONAL COXFICIeNT
AND WATER LEVEL (SUiRGE) ESTIMATES
PROBABLE MAXIMUM HURRICANE IN=X CHARACeTUISTICS
ZONE
A AT LOCATION
260
01' DEGRE NORTH
SPEED OF
NSLATION
PARAMETER DESIGNATIONS
. SLOW
MODERATF
HIGH
~(ST)
"T
(0
Sa~RYlAL PRESSURE INDEX
P0 INCHES
26.24'
26.24
26.24 PERIPHERAL PRESSURE
% INCHES
31.30
31.30
31.30
ADniS TO MAXIMUM WIND
LRGE RAIUS wNAU.
 
MI.
 
15
15
 
===1. i LIANSLATION SPEED ===
rv (FOAD SPEED) KOTS
4 -
'17
4AXIMUM WIND SPEED
Vx M.P.H*
19)
3ejL
158 ENITIAL DISTAN.-NWUT.MIND
FROKM 20 MPH WIND
2952
270
256 kT SHORE TO MAX.
 
WIND
-
-C
COJFFI CIENTS
BOIO
FRICTION FACTR 0-0030
WIND STRESS CORETIN FACTOR 1,10
.WATEh LE~VEL
DATA
(AT OPEN OCAST SHORELINE)
PHH SPLWD OF TRANSLATION
COMPONETS
SIT I
mT
HT
F
S E
T
WIND SETUP
13.49
15.87
18.47 PRESSURE SETUP
3.29
2.87
2.90
7NITIAL WATER LEV.
 
l.0)0
1.00
1.00
ASTRON0MICAL
3.60
3.60
3.50
TIDE LEVEL
&#xfd;VAL-SURGX
TILL WATia L"V.
 
21.3:8
23.35
25.87 MEE .LW
,
E,,I
(
 
K
TABLE C.10
SJMMARY-PERTINENT PROBABLE MAXIMUP. hURRICANE (PMH) , STORM SURGE COMPUTATIONAL DATA AND RESULTANT WATER LEVEL
LOCATION
MIAMI
LAT. 25%?.2'
LONG. 80'07.8'; TRAVErSE-AZIMUTH
100
DEREEs LENGTH
3-.9 NAUTICAL MILES
FLORIrA
Note:
Maximum wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.
 
-1/Initial distance is distance along traverse from shoreline to maximum wind when leading
20 mph isovel intersects shoreline.
 
Storm diameter between 20 mph isovels is approxi mately double the initial distance.
 
.P
Ius PROBABLE MAXIMUM HURRICANE I
.DEX gCKRACTISTICS
ZONE
1 AT IOCATION
250 47.2 DEGREE NORTH
PARAM
~
~
SPEE OFIG~TIN IO
1*
PARAMETER DESIGNATIONS
S
IlW HODERATF
HIGH
... (ST)
(MT)
CHT)
CENTAL PRESSURE INDEX
P INCS
26.09
26.09
26.0
PERIPHEAL PRESSURE
Pn INCHES
31.30
31.30
31.0,  
RADIUS TO MAXIMUM WIND
LARGE RADIUS NAUT.MI.
 
1
14
14 TNSLATION SPEED
F (FORWARD SPEED)
OTS
1 4  
13
17 WMUM WIND SPEED
v M.P.H.
 
152
156
160
INITIAL DISTANCE-NAUT.MI.YJ
ROM 20 MPH MWIND
274
258
243 AT SHORE TO MAX, WND
-
PMH CCMPUTATIONAL COEFTICIENT
AND WATER LEE (SURGE) ESTIMATES
CON?
I CI ENTS
WFIVM1X
FRICTION FACTOR 0.0025 WIND STRESS CORRECTION FACTOR 1.10
WATER
LEVEL
DATA
(AT OPEN OCAST SMFRNLINN)
PMH SPEED OF TRANSIATION
COMPONENTS
ST 1I '
HT
S.. [
F
E
E
T
WIND SETUP
2.06
2.37.
 
2.51 PRESSURE SETUP
3.97
3.82
3.90
INITIAL WATR LEV.
 
0.90
0.90
0.90
ASTRONOM.ICAL
3.6o
3.60
3.60
ITDE LEEL
ff UAL-SURGE
STILL WATER IJS.
 
10.53
10.68
10.91
=V
-
-
-
 
TABLE C.11 SUM
*Y-P~iRTINr PROBABLE M&XIMVP. WIRICANS (PMH),  
STORM SUNG*r, COMPUI*ATIOMAL rATA AND RESULTANT WATER LEVEL.
 
LOC&TIONJACKSONVILLELAT.
 
300
21' LONG. 81"
FLORIDA
PRORARL/ MAXIMUM HURRICANE IND12 CHARACTIhISTICS
ZONE
2 AT LOCATION
300
21' nwRHU NOMTH
AN EG N OF
Q
ITR
ATION
P
ETER
ESIGNATIONS
LOW
HODEATF
HIGH
C01TH&L *PRESSUR
INDEX
P0 INCHES
26.67
26.67
26.6?
PENIPHHEAL PRESSURE
-P
INCHES
31.21
31.21
31.21 ADIUS 1* MAXIMUM WIND
LAE RAMDUS NAUT. MI.
 
38
38
38 TIOU SPEED
v(FORWARD SPEED) KNOTS
1 4  
11
22 MAXIMUM WIND SPEED
vX
M.P.H.
 
138
142
149 INITIAL DIMtNCE-NAJT*.HIJI
PROM 20 MPH WIND
407
372
334 kT SHORE TO MAX. WIND
Note: Maximum wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.
 
1Y/Initial distance is distance along traveree froe shoreline to maximum wind when leading
20 mph isovel intersects shoreline.
 
Storm diameter between 20 mph isovels is approxi mately double the initial distance.
 
24*..
rmvEasE-AzimuTH
9o OCEAN BED PhOFILE
TRAVERSE
WATER
DISTANCE
DIETH
FROM
BELOW
SHORE
MIM.
 
(NAUT.MI. )
FEET
0
0
0.2
20
0.5
25
1.0
32
1.5
37
2.0
43
3.0
55
5.0
59
10.0
66
"12.0  
66
14.0
72
15.0
73
20.0
8o
30.0
100
40.0
117
50.0
131
-
o.o noi r" 60.0
270
62.5
6oo
70.0
9W8 LATITUDE % 300 21'
DE*REE AT TRAVERSE
IMID-POINT FROM SHORE
P600-FOOT Dwri Domes LENGTH 62.5 xL'UiIC&L MILEm PMH (IHUTATIONAL COXYTICIENT
-AN
WATER LEVEL (stihz) ESLTIMTE
COEFFICIENT_4 LOTIVI1 FRICTION FACTOR 0.0025 WIND SRES CORRECTION FAC!TOR 1.10
WATEh LSVNL
DATA
(AT OPEN OCAST SHORELINE)
PMH SPEED OF TRANSLATION
COoMP0MERS
sT
MT
HT
__
_E
E
T
WIND SETUP
16.46 PRESSURE SEUP
3.23 INITIAL
kAT/R LEV.
 
1.30
NORICAL
6.90
rIDE LEVEL
-
,
-,
tAL-SURGE
ILL WAT12 LLY.
 
27.90
EET MLW
0'i r
-_
-
j
 
K
Q
LOCATION JEKYLL
IAT. 310
05' LONG.
 
81"24.5': TRAVESE-AZImuTH 108 DIXRE',
LENGTH 72.6 NA*TICAL MILES
ISLAND, GEORGIA
PROBBLE MAXIMUM HURICANE INDEX CHARACT10ISTICS
ZONE
2 AT LOCATION
310
56 *DREZ
NORTH
Note:
Maxim=m wind speed is assumed to be on
"the traverse that is to right of storm track a
"distance equal to the radius-to maximum wind.
 
-!/initial dist ance is distance along traverse from shoreline to maximum wind when leading
20 mph isovel intersects shoreline., Storm diameter between 20 mph isovels is approxi mately double the initial distance.
 
OCEAN BED PROFILE
TRAVERSE
WATER
DISTANCE
DEPTH
FROM
BELOW
SHORE
MLW
(NAuT.mi.
 
(*
c
0
0
0.2
3.0
0.5
4.o0
1.0
6.o
1.5
6.5
2,0
7.0
3.0
12.0
4.0
20.0
5.0
2365_
6.0
29.5_
7.0
35.5.
 
8.0
35.0.
 
10.0
39.5
15.0
49.0.
 
20.0
57.0.
 
25.0
65.0
_
30.0
73.0
4.0.0
101.0
50.0
115.0o
60.0
131.0o
"700.
 
291.0
72.6
600.0
80.0
1,030.0
LATITUD'
300 53'
DRGREE AT TRAVERSE
MID-POINT FROM SHORE
S600-FOOT DEPrT
TABLE C.12 SUMMARY-PERTINENT PROBABLE MAXIMvI. h'URRICAE (PMH).
STORM SURGE COMPUTATIONAL LATA AND RESULTANT WATER LEVEL
A"
'0
SPEE
OF TANS ATIONn PARAMETER DESIGNATIONS
[LOW
HODERATF
HIGH
_ _
_
_)
(n (HT)
C RAL PRESSURE N X
P0 INCHES
26.72
26.72
26.72 PERIPH1RKL PRESSURE
Pn INCHES
31.19
31.19
31.19 RDUSe TO MAXIMUM WIND
IARGE RADIUS NAM. MI.
 
10
40
40
TRIATrON SPEED
IMUR WIND SPED
yxM.P.H.
 
135
1541
147 INITIAL DISTAxacT-mW.mI
S20 MPH WIND
400
380
336 TSH
TO
-AX,
pMH O
*HPUTATIONAL COODTICIE3T
AND WATER LEVEL (SURGE)  
ESTIMATES
CO0 E FF I C I E NTS3 TIMTON
FHICTION FACTOR 0.0025 WIND STRESS CORRECTION FACTOR 1.10
WAT
B
.LEVEL
DATA
(AT OPEN OCAS
SORELINE)
PMH SPEED OF TRANSLATION
COMPONErTS
ST
HT
WT
S~F
E. E _T
WIND SETUP
20.63 PREESUR,  
SETUP
3.34 INITIAL WATES LEW.
 
1.20
ASTRONOMICAL
8.70
IDE LEVEL
AL-SURGE
STILL VTSuv33.87 TILL WATER Lh`V.
 
EEIT MLW
 
TABLE C.13 su5mHAY-PjmTINENT PROBaBLE MAXmIMp. hUICIANE (PmIl),
STORM SURGE (OmPUTATIOMAL
rATA AND RESULTANT WATER LEVEL
LOCATION FOLLY ISIANIL&T. 32e 39' LONG. 79"56.6': TRAVIMSE-AZIMUTH 150
SOUTH CAROLINA
-Note:
Maxi'm- wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.
 
!/Initial distance Is distance along traverse from shoreline to maximum wind when leading
20 mph isovel intersects shoreline.
 
Storm diameter between 20 mph isovels is approxi mately double the initial distance.
 
PROEABLE MAXIMUM HIURRICANE INDEX CHABAC'M"ISTICS
ZONE
2 AT LOCATION
320
39' DOtEES NORTH
J
SPEED OF TASLTION
PARANMET
DESIGNATIONS
SLOW
MODERATF
HIGH
S(ST)
NO'
NO?
MAL PRESSURE INDEX
P 0INCHES
26.81
26.81
26.81 PERIPHE*AL PRESSURE
'n INCHES
31.13
31.13
31.13 RADIU8 TO MAXIMUM WIND
R09 RADIUJS NAUT.
 
MI.
 
40
40
40
&RANSIATION SPEED
?v (FAD SPEED) KNOTS
1 4  
13
4AXDOJM WIND SPEED
Vx M.P.H.
 
134
139
148
[NITIAL DISTANIE-NAUT.MI.1
'PROM
20 MPH WIND
400
364
311 kT SHORE TO MAX.
 
WIND
II
DEGREE$ LENGTH 57.6 NAUTICAL MILES
PMH OCHPUTATIONAL CO
ZICIENT
AND WATER LEVEL (SURGcE)
ESTIMATES
OCEAN BED P"OFIL
TRAVERSE
WATER
DISTANCE
DEPTH
FROM
BELDW
SHORE
HIM
(NAUT.HI.)
(FEET)
0
0
0 0.2
10.5
_
0.5
12.0.
 
_
1.0
14.0
_
1.5  
16.5
_
2.0
18.0.
 
_
3.0
29.5
,
5.0
39.0
-
10.0
460.
 
_
15.0
56.o
-
20.0
65.o L30.0
85.0.
 
_
40.0
138.o0
_
50.0
227.0o
-
57.6  
6o0.0
_
60.0
1,800.0
LATIT UME
320 25'
DEGREE AT TRAVERSE
MID-POINT FROM SHORE
ro600-= DE
BOT1I0M FRICTION FACTOR 0.0025 WIND STRESS COM=ION FACTOR 1.10
WATEEB
LE~VEL
DATA
(AT OPEN OGAST SHOELINE)
PMHl SPEED OF TRANISLATION
COMPONENTS
ST I
M
__....____
F.E j T
WIND SETUP
17.15 PRESSURE SETUlP
3-*23 INITIAL WATER LEV.
 
1.00
ST1'ONOOICAL
6.80
rFiD
LEVEL
TOT1AL-SURGE
STILL WATER LW.


TABLE B.1 ( )
28.18 Pwr MLW
                                                                          Drainage  Basin Average  PMF Peak Project    State      River Basin            Stream              Area      (in inches)  Discharge (sa.mi.)  Prec.  Runoff  (cfs)
_C
  Bonneville      Oreg.  Columbia          Columbia River              240,000            22,1  2,720,000
(
  Cascadia        Oreg.  Columbia          South Santiam River              179          42,2      115,000
0,
  Chief Joseph    Wash.  Columbia          Columbia River              75,000            29.0  1,550,000
  Cottage Grove    Oreg.  Columbia          Coast Fk. Willamette River        104          29.7      45,000
  Cougar          Oreg.  Columbia          S. Fk. McKenzie River            208          34.2      98,000
  Detroit          Oreg.  Columbia          North Santiam River              438          36.0      203,000
  Dorena          Oreg.  Columbia          Row River                        2hc          34.6    131,600
  Dworshak        Ida.    Columbia          N. Fk. Clearwater River        2,440O          70.5      280,000
  Elk Creek        Oreg.  Rogue            Elk Creek                        132          32.6      63,500
  Fall Creek      Oreg.  Columbia          Willamette River                  184          33.8    100,000
  Fern Ridge      Oreg.  Columbia          Long Tom River                    252          20.3      4,8,600
  Foster          Oreg.  Columbia          South Santiam River              4c!4          40 .8    260,000
  Green Peter      Oreg.  Columbia          Middle Santiam River              277          41.1    160,0oo Gate Creek      Oreg.  Columbia          Gate Ck. McKenzie River            50          4*.3      37,000
  Hills Creek      Oreg.  (2olum bia        Middle Fk. Willamette River      38q          33.0    197,000
  Holley          Oreg.  Columbia          Gala.pooia River                  105          35.8      59,000
  Howard A. Hanson Wash.  Green            Green River                      22*          26. 8    164,000
  Ice Harbor      Wash.  Columbia          Snake River                109,000            13.a    954,000
C)
  JOhn Day        Oreg.  Columbia          Columbia River              226,000            21.1  2,650,000
                                                                                              3r:.5 Libby            Mont.  Columbia          Kootenai River                9,070                      282,000
  Little Goose    Wash.  Columbia          Snake River                3.03.900            14.6    850,000
  Lookout Point    Oreg.  Columbia          MiddJe Fk. Wilamette ?iver      9ga            -40.8    360,000
  Lost Fork        Oreg.  Rogue            Lost Fk. Howie River            6L            22.7    169,OOC
  Lower Granite    Wash.  Columbia          Snake River                10*,400            14.7    850,000
  Lower Monumental Wash.  Columbia          Snake River                1.08,500            14.0    850,000
  Lucky Peak      Ida,    Columbia          Boise River                    2,650            32. 5    123,000
  McNary          Oreg.  Columbia          Columbia River              21.4,000            23.0  2,610,000
  Mud Mountain    Wash.  Puyallup          White River                      '400          33.9    386,000
  Ririe            Ida.    Columbia          Willow Ck. Snake River          620              *,4      4?, 000
  The Dalles      Oreg.  Columbia          Columbia River              237,000            2i.1  2,660,000
  Wynoochee        Wash.  Chechalis        Wynoochee River                    4i          69.9      52, 500
  Zintel          Wash.  Columbia          Zintel Canyon Snake River          1Q            7.8      40, '500
                                              California Region Bear            Cal.    San Joaquin      Bear Creek                        72  I 3.b    13.6      30,400
  Big Dry Creek    Cal.    San Joaquin      Big Dry Creek                      91. 19.0     13.8      17,000
  Black Butte      Cal.    Sacramento        Stony Creek                      741  19.7    12,3    254,000
  Brea            Cal.    Santa Ana        Brea Creek                        23  10. LL    6.6      37,000
                                                                        K-


TABLE B.1 ( )
K.
                                                                          Drainage      Basin Average PMF Peak Project    State    River Basin            Stream              Area        (in inches)  Discharge (sq.mi.)      Prec.  Runoff  (cfs)
    Buchanan        Cal.    San Joaquin      Chowchilla River                  235      26.0    20.1    127,000
    Burns            Cal.    San Joaquin      Burns Creek                        74    17.4    10.6      26,800
    -Butler Valley  Cal.    Mad              Mad River                        352              35.2    137,000
    Carbon Canyon    Cal.    Santa Ana        Santa Ana River                    19    10.4    10.3      56,000
    Cherry Valley    Cal.    San Joaquin      Cherry Creek                      117      24.3    23.1      60,000
    Comanche        Cal.    San Joaquin      Mokelumne River                  618      25.0    19.9    261,000
    Coyote Valley    Cal.    Russian          East Fk. Russian River            105              22.9      57,000
    Dry Creek        Cal.    Russian          Dry Creek                          82    21.3    15.6      4-5,000
    Farmington      Cal.    San Joaquin      Little John Creek                212      11.3    10.9      56, 000
    Folsom          Cal.    Sacramento        American River                1,875      21.2    17.5    615,000
    Fullerton        Cal.    Santa Ana        Fullerton .Creek                      5.0  9.0    6.8      16,000
tJ*
    Hansen          Cal.    Los Angeles      Tujunga Wash                      147              9.8    130,000
    Hidden Lake      Cal.    San Joaquin      Fresno River                      234      29.9    18.4    114,000
    Isabella        Cal.    San Joaquin      Kern River                    2,073      27.1    6-5    235,000
    Knights Valley  Cal.    Russian          Franz-Maacama Creek                59    31.6    28.9      44,300
    Lakeport        Cal.    Sacramento        Scotts Creek                        52    30.9    24.0      36,100
    Lopez            Cal.    Los Angeles      Pacoima Creek                      34            20.8      32,000
    Mariposa        Cal.    San Joaquin      Mariposa Creek                    108      18.6    13.0      43,000
    Martis Creek    Cal.    Truckee          Martis Creek                        39    26.5    12.7      12,400
    Marysville      Cal.    Sacramento        Yuba River                    1,324      38.9    27.0    460,000
    Mojave River    Cal.    Mojave            Mojave River                      215      40.4    30.4    186,000
    New Bullards Bar Cal.    Sacramento        North Yuba River                  489      38.9    25.7    226,000
    New Exchequer    Cal.    San Joaquin      Merced River                  1,031      27.1    15.9    396,000
    New Hogan        Cal.    San Joaquin      Calaveras River                  362              18.3    132,000
    New Melones      Cal.    San Joaquin      Stanislaus River                  897      25.8    16.3    355,000
    Oroville        Cal.    Sacramento        Feather River                  2,600      23.3    22.8    720,000
    Owens            Cal.    San Joaquin      Owens Creek                        26    14.4    9.2      11,400
    Pine Flat        Cal.    San Joaquin      Kings River                    1,542      28.5    14.4    437,000
    Prado            Cal.    Santa Ana        Santa Ana River                2,233      26.3    13.0    700,000
    San Antonio      Cal.    Santa Ana        San Antonio Creek                  27            13.0      60,000
    Santa Fe        Cal.    San.Gabriel      San Gabriel River                236              35.5    194,000
    Sepulveda        Cal.    Los Angeles      Los Angeles River                152              15.0    220,000
                                                                      I --  - -  - -


TABLE B.] ( )
TABLE C.14 SUMMARy-PETINENT pROBABLE MAXIMUM. hVRRICAMM (PMH),  
                                                                      Drain&#xa3;*e  Basin Average PMF Peak Project    State    River Basin          Stream            Area    (in inches)  Discharge (sq.mi.)  Prec. Runoff    (cfs)
MWTOM SJRGE COMPUTATIONAL DATA AND RESULTANT WATER LEVEL
Lf1 Success          Cal.    San Joaquin    Tule River                  38-  32.5    12.6    200,000
LOCATION RALEIGH BAY,IAT.
    Terminus        Cal,    San Joaquin    Kaweah River                  560  40.1    24.8    290,000
    Tuolumne        Cal.    San Joaquin    Tuolumne River            1,533  25.1    20.?    602,000
    Whittier Narrows Cal.    San Gabriel    San Gabriel River            551+ 17.4    13.7    305,000


APPENDIX C
340
                                                  SIMPLIFIED METHODS OF
54' LONG. 76 15.3': TRAVIMSE-AZIMIUTH
                                      ESTIMATING PROBABLE MAXIMUM SURGES
135 WOWPH OAROLINA
                                                            TABLE OF CONTENTS
Note:
                                                                                                                                                        Page C.1 INTRODUCTION .................                                  ....................................                                          ..  1.59-55 C.2 SCOPE    . ............                                    ...                          ..................                                        1.59-55 C.3 PROBABLE MAXIMUM SURGE LEVELS FROM HURRICANES .....................                                                                              .1.59-55 C.3.1 Methods Used .........................................                                                                                        1.59-55 C.3.2 Use of Data in Estimating PMS .....                        .....      .......              ............................                      1.59-55 C.3.3 Wind-Wave Effects .......                .....        .....            ..................................                                    1.59-56 C.4 LIMITATIONS              . . . . . . . . . . . . . . . . . . . . .                                                                        . . . . 1.59-56 REFERENCES .......                .....    .....      ........................................                                                    .. 1.59-56 FIGURES ......          ...    .....    .......        ...........................................                                                    1.59-57 TABL E S    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :                                                                   1.59-59 FIGURES
Maximum wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.
Figure C.1 - Probable Maximum Surge Estimates, Gulf Coast ....                                      .............                    . . . . . . . . 1.59-57 C.2 - Probable Maximum Surge Estimates, Atlantic Coast                                      ..........                          . . . . . . . . 1.59-58 TABLES
Table C. 1 -  Probable Maximum              Surge Data ......                    ....................                                                  1.59-59 C. 2 -  Probable Maximum              Hurricane, Surge,          and Water Level - Port Isabel                              . .                    1.59-60
      C. 3 -  Probable Maximum             Hurricane, Surge,          and Water Level - Freeport . . . .                                                1.59-61 C. 4 -  Probable Maximum              Hurricane, Surge,          and Water Level - Eugene Island .                                                  1.59-62 C. 5 -  Probable Maximum              Hurricane, Surge,          and Water Level.- Isle Dernieres                                                  1 .59-63 C. 6 -  Probable Maximum              Hurricane, Surge,          and Water Level - Biloxi                                                          1.59-64 C. 7 -  Probable Maximum              Hurricane, Surge,          and Water Level - Santarosa Island .                                              1.59-65 C. 8 -  Probable Maximum              Hurricane, Surge,          and Water Level - Pitts Creek                            . . .                    1.59-66 C. 9 -  Probable Maximum              Hurricane, Surge,          and Water Level - Naples .......                                                  1.59-67 C.10 -  Probable Maximum              Hurricane, Surge,          and Water Level - Miami                          .....                            1.59-68 C.1l-  Probable Maximum              Hurricane, Surge,          and Water Level - Jacksonville . . .                                              1.59-69 C.12 -  Probable Maximum              Hurricane, Surge,          and Water Level - JeckyUl Island...                                                1.59-70
      C.1 3 - Probable Maximum              Hurricane, Surge,          and Water Level - Folly Island . . .                                              1.59-71 C.14 -  Probable Maximum              Hurricane, Surge,          and Water Level - Raleigh Bay . . .                                                1.59-72 C.I 5 - Probable Maximum              Hurricane, Surge,          and Water Level - Ocean City . . .                                                1.59-73 C.1 6 - Probable Maximum              Hurricane, Surge,          and Water Level - Atlantic City                            . .                    1.59-74 C.17 -  Probable Maximum              Hurricane, Surge,          and Water Level - Long Island . . .                                                1.59-75 C. 18 - Probable Maximum              Hurricane, Surge,          and Water Level - Watch Hill Point                                                1.59-76 C.19 -  Probable Maximum              Hurricane, Surge,          and Water Level -- Hampton Beach                                                  1.59-77 C.20 - Probable Maximum              Hurricane, Surge,          and Water Level - Great Spruce Island                                              1.59-78 C.21 - Ocean Bed Profiles              . . . . . . .            . . . . . . . . . . . . . . . . .                                                  1.59-79
                                                                            1.59-53


C.1 INTRODUCTION                                C.3.1 Methods Used This appendix presents timesaving methods of esti-                  All PMS determinations in Table C.A were made by mating the maximum stillwater level of the probable                NRC consultants for this study (Ref. 1), except Pass maximum surge (PMS) from hurricanes at open-coast                  Christian, Crystal River, St. Lucie, Brunswick, Chesa- sites on the Atlantic Ocean and Gulf of Mexico. Use of              peake Bay Entrance, Forked River-Oyster Creek, Mill- the methods herein will reduce both the time necessary              stone, Pilgrim, and Seabrook.
!/lnitial distance is distance along traverse from shoreline to maximum wind whe


for applicants to prepare license applications and the NRC staff's review effort.                                              The computations by the consultants were made using the NRC surge computer program, which is The procedures are based on PMS values determined              adopted from References 2 and 3. Probable maximum by applicants for licenses that have been reviewed and              hurricane data were taken from Reference 4. Ocean accepted by the NRC staff and by the staff and its                  bottom topography for the computations was obtained consultants. The information in this appendix was                  from the most detailed available Nautical Charts pub- developed from a study made by Nunn, Snyder, and                    lished by the National Ocean Survey, NOAA. The Associates, through a contract with NRC (Ref. 1).                  traverse line used for the probable maximum hurricane surge estimate was drawn from the selected coastal point The PMS data are shown in Tables C.A through C.21              to the edge of the continental shelf or to an ocean depth and on maps of the Atlantic and Gulf Coasts (Figures                of 600 feet MLW, and was one hurricane radius to the C.A and C.2). Suggestions for interpolating between                right of the storm track. It was oriented perpendicular to these values are included.                                          the ocean bed contours near shore. The ocean bed profile along the traverse line was determined by Limitations on the use of these generalized methods            roughly averaging the topography of cross sections of estimating PMS are identified in Section C.4. These              perpendicular to the traverse line and extending a limitations should be considered in detail in assessing the        maximum of 5 nautical miles to either side. The 10-mile applicability of the methods at specific sites.                    wide cross sections were narrowed uniformly to zero at the selected site starting 10 nautical miles from shore. It Applicants for licenses for nuclear facilities at sites on      was assumed that the peak of the PMS coincided with the 10% exceedance high spring tide1 plus initial rise. 2 the open coast of the Atlantic Ocean or the Gulf of Mexico have the option of using these methods in lieu of more precise but laborious methods. The results of                      In each case the maximum water level resulted from application of the methods in this appendix will in many            use of the high translation speed for the hurricane in cases be accepted by the NRC staff with no further                  combination with the large radius to maximum wind, as verification.                                                      defined in Reference 4. Detailed data for the computed PMS values are shown in Tables C.1 through C.20. Ocean bed profile data for Pass Christian, Crystal River, St.
====n. leading ====
20 mph isovel intersects shoreline.


C.2 SCOPE                                  Lucie, Chesapeake Bay Mouth, and Seabrook are shown in Table C.21.
Storm diameter between 20 mph isovels is approxi mately double the initial distance.


The data and procedures in this appendix apply only to open-coast areas of the Gulf of Mexico and the                      The water levels resulting from these computations Atlantic Ocean.                                                     are open-coast stillwater levels upon which waves and wave runup should be superimposed.
PROBABLE MAXIMUM HURRICANE INDEX CHARACTMISTICS
IZONE
3 AT LOCATION
34&deg;0
54' DEREE VNOTH
DEREE, LENGTH 35.2 NAUTICAL MILES
K
'0
'C
NORTH CAROLINA
0E
OFTAN-5 ION
PARAMETER DESIGNATIONS
!SLW
OMODERATF
HIGH
IfNtR PRESSURE INDEX
P, INCHES
26.89
26.89
26.89 LERIPHEAL PRESSURE
Pn INCHES
31.00
31.00
31.00
RtADI1US TO MAXIMUM WIND
LARGE RADIUS NlUT. MI.


Future studies are planned to determine the applica- bility of similar generalized methods and to develop such          C.3.2 Use of Data in Estimating PMS
35
methods, if feasible, for other areas. These studies, to be included in similar appendices, are anticipated for the                Estimates of the PMS stillwater level at open coast Great Lakes and the Pacific Coast, including Hawaii and            sites other than those shown in Tables C.1 through C.21 Alaska.                                                            and on Figures CA and C.2 may be obtained as follows:
35
      C.3 PROBABLE MAXIMUM SURGE LEVELS                                  1. Using topographic maps or maps showing sound- FROM HURRICANES                                  ings, such as the Nautical Charts, determine an ocean bed profile to a depth of 600 ft MLW, using the methods The data presented in this appendix consist of all determinations of hurricane-induced PMS peak levels at              'The 10% exceedance high spring tide is the predicted maximum open-coast locations computed by the NRC staff or their              monthly astronomical tide exceeded by 10% of the predicted consultants, or by applicants and accepted by the staff.             maximum monthly astronomical tides over a 21-year period.
35 IRANS*ATION SPEED
Fv (FOWVARD
SPEED) KNOTS
5
17
38 MAXIMUM WIND SPEED
Vx M.P.H.


The data are shown in Tables C.A through C.21 and on                2Initial rise talso called forerunner or sea level anomaly) is an Figures C.A and C.2. All represent stillwater levels for              anomalous departure of the tide level from the predicted open-coast conditions.                                               astronomical tide.
130
137
119 INfiTAL DISTANCE-NAUT.I.i
-"
FROM 2O MP
IND
385
346
280
#T SHORE TO
MAX WIND
i._.1..1 P111 aCHPUTATIONAL OOE"ICrIIr AnD WATER MMYE (SURGE) ESTIMATES
COEjFFICXXNT-S
BT
FR)ICTION FACTOR 0.0025 WIND STRESS CORRECTION FACTOR 1.10
WATER
LSVEL
DATA
(AT OPEN OCAST S)ORELINE)
OCEAN BED PROFILE
TRAVERSE
WATER
DISTANCE
DEPTH
FROM
BELOW
SHORE
MWI
I.


1.59-55
0
0
-
0.2
16
0.5
28
1.0
1.0
1.5
4.6
2.0
514
3.0
614
5.0
72
10.0
92 S15.0
U2
20.0
124
30-0
264
35.2
600
40.0
900
LATITUDE % 3,4o4,fl DEGREE AT TRAVIMSE
MID-POINT FO1 SHORE


outlined above. Compare this profile with the profiles of      obtained by the foregoing procedures.           Acceptable the locations shown in Tables C.2 through C.21. With          methods are given in Reference 2.
TABLE C.15 SUHIAMY-PERTINENT PROBABLE MAXIMUt! hURRICANE (FMH),
STORM SURGE COMPUTATIONAL DATA AND RESULTANT WATER LLVEL
LOCATION OCEAN CITY, LkT. 38e
20' LONG. 75 04.9'; TRAVERSE-AZIMUTH 110
I=REEM LENGTH 59 NAUTICAL MILES
MARYLAND
PROBABLE MAXIMUM HURRICANE INDEX CHARACTUISTICS
ZONE 4 AT LOCATION
380
20' DWEE NORITH
"SPEE OF TRANSLATION
PARAMETER DESIGNATIONS
SLOW
,ODERATF
HIGH
CENTRAL PRESSURE INDEX
P0 INCHES
27.05
27.05
27.05 PERIPHERAL PRESSURE
P
INCHES
30.?7
30.77
30.77 RADIUS TO MAXIMUM WIND
LRGE 1ADIUS
IAUT.


particular emphasis on shallow water depths, select the location or locations in the general area with the most similar profiles. An estimate of the wind setup may be                            C.4 LIMITATIONS
MI.
interpolated from the wind setup data for these loca- tions.


1. The NRC staff will continue to accept for review
38
  2. Pressure setup may be interpolated between loca-        detailed PMS analyses that result in less conservative tions on either side of the site.                              estimates. In addition, previously reviewed and approved detailed PMS analyses at specific sites will continue to be
38
    3. Initial rise, as shown in Table C1, may be              acceptable even though the data and procedures in this interpolated between locations on either side of the site.     appendix result in more conservative estimates.
38
1IWSIATION SPEED
? (y o AMUD
SPEE)
[NOTS
1 10
26
48 IXIElUM WIND SPEED
vS
m.P.H.


4. The 10% exceedance high spring tide may be computed from predicted tide levels in Reference 5; it            2. The PMS estimates obtained as outlined in Section may be obtained from the Coastal Engineering Research          C.3.2 are maximum stillwater levels. Coincident wind- Center, U.S. Army Corps of Engineers, Ft. Belvoir, Va.;        wave effects should be added.
124
1133
1146 INITIAL DISTAKCE--NUT.MI.*Y
RM 20 MPH WIND
350
293
251 kT SHORE TO MAX.


or it may be interpolated, using the tide relations in Reference 5.
WIND
I_
I
Note:
Maximum wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.


3. The PMS estimates obtained from the methods in
1 Initial distance is distance along traverse from shoreline to maximum wind when leading
    5. An estimate of the PMS open-coast stillwater level      Section C.3.2 are valid only for open-coast sites, i.e., at at the desired site will be the sum of the values from        the point at which the surge makes initial landfall. If the Steps 1 through 4, above.                                      site of interest has appreciably different offshore bathy- metry, or if the coastal geometry differs or is complex, C.3.3 Wind-Wave Effects                                        such as for sites on an estuary, adjacent to an inlet, inshore of barrier islands, etc., detailed studies of the Coincident wave heights and wave runup should be            effect of such local conditions should be made. Refer- computed and superimposed on the PMS stillwater level          ence 2 provides guidance on such studies.
20 mph isovel intersects shoreline.


APPENDIX C                                                            .
Storm diameter between 20 mph isovels is approxi matelv double the Initial distance.
                                                    REFERENCES
1. Nunn, Snyder, and Associates, "Probable Maximum                Memorandum No. 35, U.S. Army Coastal Engineering Flood and Hurricane Surge Estimates," unpublished              Research Center, 1971.


report to NRC, June 13, 1975 (available in the public document room).                                             4. U.S. Weather Bureau (now U.S. Weather Service, NOAA), "Meteorological Characteristics of the Probable Maximum Hurricane, Atlantic and Gulf
TRAVERSE
2. U.S. Army Coastal Engineering Research Center,
WATER
  "Shore Protection Manual," 1973.                               Coasts of the United States," Hurricane Research Interim Report, HUR 7-97 and HUR 7-97A, 1968.
DISTANCE
DEPTH
FROM
BELOW
SHORX
MLW
NA& T.MI
(FEET
0.2
17
0.5
32
.
1.0
29
-
1.5
35
2. 0
4c
-
3.0
38 2
4.0
56
"  
-
5.0
61 2
6
71 2
?
56
8
60
9
58
-
10
59
-
11,  
65
-
12
64
-
13
70
14
62
214!
II 1i 7 LATITUDE
0 3)8014.~
DEGREE AT TRAVLVS&
MID-POINT FROM SHORE
IR600-FOO
az
--"-K
Ip PMH (THPUTATIONAL CODUICIIVT
AND WATER LEVEL (SURGE) ESTIMATES
C 0 EFF i C
E H NTS
IOT'iM ,,FRICTION
FACTOR 0.0025 WIND SrTRESS CORMION FACTOR 1.10
W AT E
L SVBL
D ATA
(AT OPEN MAST SHORELINE)
PKH SPEED OF TRANSLATION
COMPONENTS
S
I
NT
H T
_________
F
9E
T1 WIND SETUP
14.30
RESSURE SETUP-
2.83 INITIAL WATER LEV.


3. B.R. Bodine, "Storm Surge on the Open Coast:                5. U.S. Department of Commerce,            NOAA,    "Tide Fundamental and Simplified Prediction," Technical              Tables," annual publications.
1.14 ATNOMICAL
5.00
TIDE LEVEL.


1.59-56
TU-&-SURG,
SILL WATER LEV.


840  830  820    810    800  790    780
23.27 Vw~ MLK
    360
-
    350
-
                                                                                                                                330
(
    340
                                                                                                                                320
    330
                                                                                                                                310
    310
                                    LOUISIANA
                                                                        -4 Z290
U300
                                                                                  0                      FLORIDA
                                                                            >          l                                      280
              29                            Wry z*                                                  270
    280  Z*
                                                                                                                                260
    270            _
                                                                                                    43                          250
    260
    250                                                                                                                        240
                                                                32.7 MAXIMUM STILLWATER LEVEL AT OPEN COAST, FT., MLW          230
        970    960  950 940    930    920    910  90&deg;  890    880    870  860    850  840      830    820    810
                              FIGURE C.1  PROBABLE MAXIMUM SURGE ESTIMATES - GULF COAST


830  820  810 800  790  780  770    760  750  740    730  720  710  700  690  680 670 660  650  640  630 620
Q.
                                                                                                                    (
                                    ___        " 32.7 MAXIMUM STILLWATER LEVEL AT OPEN COAST, FT., ML
  860    850  840    830    820      810  800    790    780    770    760  750  740  730    720  710  700
                    FIGURE C.2 PROBABLE MAXIMUM SURGE ESTIMATES - ATLANTIC COAST
                                                              1.59-58


TABLE C.1 PROBABLE MAXIMUM SURGE DATA
LOCATION ATLANTIC
                                                                    (LOCATIONS INDICATED ON FIGURES C.] and C.2)
LAT. 39&deg;
              DISTANCE FROM SHORELINE,    NAUTICAL MILES,    FOR SELECTED WATER DEPTHS,  FEET mLW            PROBABLE MAXIMUM  SURGE AT OPEN COAST SHORE LINE
21'
    OPEN COAST LOCATION           TRAVERSE    J DEPTH, FEET, ALONG TRAVERSE FROM OPEN COAST SHORE LINE      WIND      PRESSURE    INITIAL 10% EXC. HIGH  TOTAL
LONG. 74"
      AND TRAVERSE                AZIMUTH          10        20        50    100        200        600  SETUP,      SETUP,      RISE,      TIDE,      SURGE,
CITY, NEW JERSEY
                                DEG. - MIN.            DISTANCE, NAUTICAL MILES, TO DEPTH INDICATED          FT.        FT.        FT.      FT. MLW    FT. MLW
Note:
      PORT ISABEL                86      30      0.23      0.49      1.94    11.10      33.10      44.0  10.07        3.57        2.50      1.80        17.94 FREEPORT                152      00      0.20      0.55      5.50    24.0      55.5        70.9  15.99        2.89        2.40      2.90        24.18 EUGENE ISLAND            192      30      2.00      20.00    30.00    44.1      60.0        90.0  29.74        3.29        2.00      2.40        37.44 ISLE DERNIERES          165      00      0.62      1.75    11.90    30.4      45.3        58.5  18.61        3.29        2. 00      1.90        25.80
Maximum wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.
      PASS CHRISTIAN (a)                                                                            77.0  28.87        2.88        0.80      1.20        33.75 BILOXI                  160      00      3.40      11.20    30.00    50.1      69.2        78.0  27.77        2.98        1. 50      2.50        34.76 SANTAROSA ISLAND        183      00      0.09      0.18      0.48    11.9      20.9        45.0    9.12        3.25        1.50      1.80        15.67 PITTS CREEK              205      00      8.84      9.23    24.30    69.4      107.0      132.0    24.67        2.31        1.20      4.20        32.38 CRYSTAL RIVER (a)                          2.31                31.40                        127.0    26.55        2.65        0.60      4.30        34.10
      NAPLES                  248      00      0.17      0.79    15.70    45.6      85.8      145.0    18.47        2.90        1. 00      3.60        25.97 C-,.
      MIAMI                    100      00      0.17      0.94      2.01    2.2        2.7        3.9    2.51        3.90        0.90      3.60        10.91 STr. LUCIE(a)                              0.10                                                18.7    8.25        3.80        0.98      3.70        16.73 JACKSONVILLE              90      00      0.10      0.20      2.58    30.0      55.0        62.5  16.46        3.23        1.30      6.20        27.20
      JEKYLL ISLAND            108      00      2.60      4.00    15.60    39.6      64.3        72.6  20.63        3.34        1.20      7.50        32.67 FOLLY ISLAND            150      00      0.19      2.17    12.00    32.8      47.0        57.6  17.15 BRUNSWICK
                                                                                                                          3.23        I. 00      6.80        28.18
                                                                                                            12.94        2.20        1. 00      5.80        21.94 RALEIGH                  135      00      0.12      0.30      1.75    12.0      25.4        35.2    8.84        3.09        1 -00      5.20        18.13 CHESAPEAKE BAY
          ENTRANCE (a)                                                                              62.0    17.30(b)      (b)        1.10      3.50        21.90
      OCEAN CITY               110      00      0.12      0.26      3.67    17.8      45.0      59.0    14.30        2.83        1.14      5.10        23. 17 ATLANTIC CITY            146      00      0.20      0.85      5.00    23.1      58.4      70.0    15.32        2.57        1.10      5.80        24.80
      FORKED RIVER -
          OYSTER CREEK
                                                                                                            18.08(b)      (b)      1.00      2.70        21.78 LONG ISLAND              166      00      0.09      0.18      1.35    4.8      27.2      68.4    8.73        2.46        0.97      8.00        20.16 MILLSTONE
                                                                                                            12.41        2.20        1.00      3.56        19.17 WATCH HILL POINT        166      00      0.07      0.14      0.64    1.6      34.3      84.0    10.01        2.42        0.96      8.80        22.19 PILGRIM
      HAMPTON BEACH                                                                                                                                        19.6
                                115      00      0.22      0.31      0.71    2.0        7.2      40.0    4.25        2.23        0.83      11.70        19.01 SEABROOK(a)
                                                                                                    44.0    4.79        2.28        0.86      11.60        19.53.


GREAT SPRUCE ISLAND      148      00      0.04      0.08      0.20     1.1        6.3    178.0      9.73        1.82        0.56      18.40        30.51 ocean bedsetup.
1/Initial distance is distance along traverse from shoreline to maximum wind when leading
20 mph isovel intersects shoreline.


for pressure C.H and profile.
Storm diameter between 20 mph isovels is approxi mately double the initial distance.


a.   See Table wind b.
25': TRAVERSE-AZIMUTH
146 DE*.EEm LENGTH
70
NAUTICAL MILES
PROBABLE MAXIMUM HURRICANE INDEX CHARACTER2ISTICS
ZONE
4 AT LOCATION
39P
21' DEGREE NORTH
TABLE C.16 SUMMARY-PERTINENT PROBABLE MAXIMU,. HURRICANE (PMH),
STORM SUHGE COMPUTATIONAL DkTA AND RESULTANT WATER LEVEL
K
LA
'0
0
OCEAN BED PROFILE
TRAVERSE
WATER
DISTANCE
DEPTH
FROM
BEUOW
SHORE
wLx
-
0
0
_
0.2
10.0
D
0.5
15.0.


a.   Combined See Table C.21 for ocean bed profile.
_
1.0
22.0
-
2.0
38.0
-
5.0
50.o0
1 10.0
72.0.


b.   Combined wind and pressure setup.
-
20.0
90.10
-
30.0
120.0.


TABLE C.2 SUMMARY-PERTINENT PROBABLE MAXIMUt.      hURRICANE (FMH),      STORM SURGE COMPUTATIONAL DATA AND RESULTANT WATER LEVEL
_
                LOCATION PORT ISABEL [AT.     260o4.3'  LONG.    97 09.4': TRAVERSE-AZIMUTH86&deg;-30'DECREEi    LENGTH 42.1 NAUTICAL MILES
4o.o
                          TEXAS
138.0
            PROBABLE MAXIMUM HURRICANE INDEX CHARACTERISTICS                    OCEAN BED PROFILE            PMH (CNPUTATIONAL COEFFICIENT
_
            ZONE C AT LOCATION        260    04' DEGREE NORTH
50.0  
                                                                              TRAVERSE    WATER            AND WATER LEVEL (SURGE)  ESTIMATES
162.0o
                                          SPEED OF TRANSLATION                DISTANCE    DEPTH
_  
        PARAMETER DESIGNATIONS            SLOW    MODERATF      HIGH            FROM      BELOW
60.0  
                                      _(ST)        (MT)        (.)_            SHORE      MLW
210.0
                                                                            (NAUT.MI.)    (FEET)                C 0 E F F I CI E N T S
_  
  3ENTRAL PRESSURE INDEX
65.0  
                        P0 INCHES        26.42      26.42    26.42&#xfd;              0         0              BOTfIOF FhICTION FACTOR 0.0030
258.0.
  PER IPHERAL PRESSURE                                                            0.2        9.0
                        Pn INCAES        31.30      31.30    31.30        _     0.5      20.5          WIND STRESS CORRECTION FACTOR 1.10
                                                                                    1.0       35.0
  RADIUS TO MAXIMUM WIND                                                    _     1.5      43.0
        LARGE RADIUS NAUT. MI.            20        20        20                  2.0      51.0
  rRANSIATION SPEED                                                          _    3.0      58.5            WATER        LEVEL        DATA
                                                                            -      5.0      69.0
  Fv (FORWARD SPEED) KNOTS            1  4        11        28
0                                                                                10          95.5              (AT OPEN CCAST SHORELINE)
    WIAXMUM WIND SPEED                                                          15        116 V M.P.H.        147        151        161                  20        138 INITIAL DISTANCE-NAUT. MI, i/                                              _  30        171                            PMH SPEED OF TPANSLATION
  FROM 20 MPH WIND                    398        374        318                40        266          COMPONENTS          ST      MT        nIT
  6T SHORE TO MAX.        WIND                                                  44        600                                  F  E  E    T
                                                                                  50    1,850
    14ULe      Maximum wind  speed is  assumed  Lto  be on the traverse that is to right of storm track a                                                      WIND SETUP                              10.07 distance equal to the radius to maximum wind.


PRESSURE SETUP                          3.57
_
  -/Initial        distance is distance along traverse from shoreline to maximum wind when leading                                                  INITIAL WATER LEV.                       2.50
70.0
        20 mph isovel intersects shoreline.           Storm diameter between 20 mph-isovels is approxi-                                                  kSTRONONICAL                            1.80
600.0.
      mately double the initial distanc


====e. FIDE LEVEL====
-.
                                                                                                      rOTAL-SURGE
0
                                                                                                      STILL WATER LEV.                        17.9.4 FEET NLW
IATITDE P3
                                                                            LATITUDE
5 DEGREE AT TVERS
* 26&deg; 05'
MID-POINT FROM SHORE  
                                                                            DEGREE AT TRAVERSE
600-OO
                                                                            MID-POINT FROM SHORE
VE
                                                                            TO 600-FOOT DEPTH
SPEED OF, T_ SLATION
                                                                                  7]
PARAMETER DESIGNATIONS
SIOW
HODERATF
HIGH
,(sT)
(n)
H)
ENTRAL PRESSURE INDEX
P0 INCHS
27.12 R'IPImUA
PRESSURE
P* INCHES
30.70
RADIUS TO MAXIMUM WIND
LARCE RADIUS NAUT. MI.


TABLE C.3 SUMMARY-PERTINENT PROBABLE MAXIMU.      hURRICANE (FMH),    STORM SURGE COMPUTATIONAL LATA AND RESULTANT WATER LEVEL
40
                LOCATION FREEPORT,      LAT.  280    56' LONG. 95"  22' : 'PRAVERSE-AZIMUTH  152  DEGREEt LENGTH 70.9 NAUTICAL MILES
r1RASIATION SPEED  
                            TEXAS
r! (F*ORWARD
          PROBABLE MAXIMUM HURRICANE INDEX CHARACTERISTICS                OCEAN BED PROFILE              PMH OCPIPUTATIONAL COEFFICIENT
spra)KNOTS
            ZONE C    AT LOCATION    280    56' DEGHEE NORI'H
i
                                                                          TRAVERSE    WATER          AND WATER LEVEL (SURGE)    ESTIMATES
49 D(IUM WIND SPEED  
        PARAMETER DESIGNATIONS
V.
                                      I SLOW
                                          SPEED OF TRANSLATION
                                                  MODERATF    HIGH
                                                                          DISTANCE
                                                                            FROM
                                                                                        DErTH
                                                                                        BELOW
                                      S(ST)        (?Tr)      (*)T I        SHORE      MLW
                                                                        (NAUT.MI.)     (FEET)                C 0 E F F I C I E N T S
    MENTRAL PRESSURE INDEX                                    26.69 P 0 INCHES      26.69      26.69    26.69            0          0              BO'nUfM FRICTION FACTOR 0.0030
    PERIPHERAL PRESSURE                                                        1.0      30
                        P INCHES        31.25      31.25    31.25            2.0      32            WIND STRESS CORRECTION FACTOR 1.10
                                                                        _      3.0      37 RADIUS TO MAXIMUM WIND                                                      4.0      40
        LARGE RADIUS NAUT. MI.          26.0      26.0      26.0      _      5.0      47
                                                                              10.0        66              WA T E h    L EV E L      D A T A
    rRANS1ATION SPEED
U)
    F (FORWARD SPEED) KNOTS          I  4        11        28.0            15.0
                                                                              1          78
&                                                                            20.0        9o                  (AT OPEN CCAST SHORELINE)
      AIMUM WIND SPEED                                                       30.0      114 Vx M.P.H.      139        143      153        _    40&deg;.0      132 INITIAL DISTANCE-NAUT.MI.Y                                          _    50.0      168                              PMH SPEED OF TRANSLATION
    FROM 20 MPH WIND                    491                                  6o.o0      240          COMPONENTS
                                                  458      390                                                              ST I    MT  I HT
    AT SHORE TO MAX. WIND                                  I                  70.0      570                                    F  E    E  T
                                                                              70.9      600
  Note:        Maximum wind speed is assumed to be on the traverse that is to right of storm track a                                                WIND SETUP                              15.99 distance equal to the radius to maximum wind.


PRESSURE SETUP                            2.89
K.P.H.
  -/Initial        distance is distance along traverse from shoreline to maximum wind when leading                                                INITIAL WATER LEV.                       2.40
        20 mph isovel intersects shoreline.          Storm diameter between 20 mph isovels is approxi-                                                kSTRONOMICAL                              2.90
        mately double the initial      distanc


====e. rIDE LEVEL====
142 INIrIAL DISTAMCE-11A
                                                                                                  TOTAL-SURGE
.MI.A
                                                                                                  STILL WATER LEV.                         24.18 FEET MLW
ROM 20 MPH WIND
                                                                        LATITUDE
A~T MSHORE
* 28' 26'
TO
                                                                        DEGREE AT TRAVERSE
. yMAX*WN
                                                                        MID-POINT FROM SHORE
PMH OCMPUTATIONAL COOEFICIENT
                                                                        TO 600-FOOT DEPTH
AND WATER LEVEL (SURGE)
ESTIMATES
"C
0 E F F I C I E N T 5 BOTTOM FRICTION FACTOR 0.0025 WIND STRESS CORRECTION FACTOR 1.10
WATER  
Lh VEL
DATA
(AT OPEN CCAST SHORELINE)
PMH SPEED OF TRANSLATION
ODMPONENTS
ST
i MT
Hr F
3 E
T.T
WIND SETUP
15.32 PRESSURE SETUP
2.5?
INITIAL WATER LEV*  
1.10
1AUMNOMICAL
5.70
r I IDL L-V
"AL-SURGE
2 STILL WATER L.


TABLE C4 SUMMARY-PERTINENT PROBABLE MAXIMUE hUHRICANE (FMH),                STORM SURGE COMPUTATIONAL DATA AND RESULTANT WATER LEVEL
ET MLW.
                                                                    1 :0                          2
                                                              21          'rTRAVERSE-AZIMUJTHl9    30 t DEG~REE, LENGTH  90  NAUTICAL MILES
          LOCATION EUGENE      LAT. 290    20'  LONG. 91 ISLAND, LOUISIANA
    PROBABLE MAXIMUM HURRICANE INDEX CHARACTEIISTICS                  OCEAN BED PROFILE                      PMH CCNPUTATIONAL COEFFICIENT
      ZONE    B  AT LOCATION    290    20' DEGREE NORTH                                                    AND WATER* LEVEL (SURGE) ESTIMATES
                                                                      TRAVERSE          WATER
                                    SPEED OF TRANSLATION              DISTANCE          DEPTH
  PARAMETER DESIGNATIONS        SLOW    MODERATF      HIGH                FROM        BEL40W
                              2  (ST)      (nT)      (HT)                SHORE        MLW
  MENMAL PRESSURE INDEX                                            (NAUT.MI.)          (FErT)
                  P INCHES      26.87      26.87    26.87              -    0.0          0  -              BOIOM FilICTION FACTOR 0.0030
PERIPHERAL PRESSURE                                                -          1.0
                                                                                2.0          105 -
                                                                                                -
                  P INCHES      31.24      31.24    31.24                                                WIND STRESS CORRECTION FACTOR 1.10
                                                                                3.0          12  -
RADIUS TO MAXIMUM WIND
  LARGE RADIUS NAUT. MI.        29.0        29.0    29.0      -            5.0          15  -
                                                                  -            10.0          15  -
rRANSLATION SPEED                                                -            15.0          18  -              WATER        LEVEL        DATA
Fv (FORWARD SPEED) KNOTS          4        11      28.0      -            20.0          20  -
                                                                  -            30.0          50  -                (AT OPEN CCAST SHORELINE)
MAXIMUM WIND SPEED                                              -            40            60  -
                  V M.P.H.      141        144      153        -            50          140  -
INITIAL DfSTANCE-NAUT. MI.i_                                      -          6o          200  -                            PMH SPEED OF TRANSLATION
FROM 20 MPH WIND                534        484      412          -          70          260  -          COMPONENTS            ST      M
                                                                                                                                          MT      HTI
4T SHORE TO MAX. WIND                                      .                80          320  -                                  F  E  E'  T
Note: Maximum wind speed is assumed to be on                      -          90          600  -
                                                                                                      WIND SETUP                                29.74 the traverse that is to right of storm track a distance equal to the radius to maximum wind.


PRESSURE SETUP                            3.29
TABLE C.17 SUI4AM
- Initial distance is distance along traverse from shoreline to maximum wind when leading                                                        INITIAL WATER LEV.                         2.00
Y-PERTINENT PROBABLE HAXIMUJ. hWHRICANE (PMH),
  20 mph isovel intersects shoreline.         Storm diameter between 20 mph isovels is approxi-                                                       ASTRONOMICAL                              2.40
STORM M:RGE COMPUTATIONAL DATA AND RESULTANT WATER LEVEL
  mately double the initial    distanc
LOCATION LONG ISLAND.LAT. 410 00' LONG. 7i201.8%' TRAVEiSE-AZIMUTH 166 CONNECTICUT
DECREEa LENGTH 68.4 NAUTICAL MILES
r'
Note:
Maximum wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.


====e. TIDE LEVEL====
1/Initial distance is distance along traverse from shoreline to maximum wind when leading
                                                                                                      TAL-SURGE
20 mph isovel intersects shoreline.
                                                                                                      STILL WATER LEV.                          37.44 FEET MLW                                        I
                                                                  IATITUDE          28  04 DEGREE AT TRAVERSE
                                                                  MID-POINT FROM SHORE
                                                                      (ro 600-FOOT DEPTH
                                                                                          -~-r..-


TABLE CA5 SUMMARY-PERTINENT PROBABLE MAXIMUE HU!RICANE (FMH),            STORM SURGE COMPUTATIONAL LATA AND RESULTANT WATE            LEVEL
Storm diameter between 20 mph isovels is approxi mately double the initial distance.
          LOCATION ISLE          LAT. 29'02.9' LONG.      90'42.5': TRAVERSE-AZIMUTH        165    DEGREE,  LENGIH 58.5 NAUTICAL MILES
                    DERNIERES, LOUISIANA
    PROBABLE MAXIMUM HURRICANE INDEX CHARACTEIISTICS                  OCEAN BED PROFILE                  PMH OCXPUTATIONAL COBYFICIENT
      ZONE B    AT LOCATION    290    03' DEGREE NORTH
                                                                      TRAVERSE    WATER                AND WATER LEVEL (SURGE)      ESTIMATES
                                                                      DISTANCE    DEPTH
  PARAMETER DESIGNATIONS          SPEED OF
                                  SLOW        TRANSLATION
                                          I4ODERATF    HIGH          FROM      BELOW
                              _(ST)          (rT)          )          SHORE      MLW
                                                                    (NAUT.MI.)    (FEET)                      C 0 E F F I C I E N T S
JENTRAL PRESSURE INDEX
                P INCHES        26.88      26.88    26.88              0          0                    B(yJ']fj .FhICTION FACTOR 0.0030
                                                                    -      0.2        6.0
PER IPHERAL PRESSURE
                                                                            0.5        9.0
                P INCHES        31.25      31.25    31.25                                          WIND STRESS CORRECT*iON FACTOR 1.10
                  n            _        a            _                    1.0      13.0
RADIUS TO MAXIMUM WIND                                                      1.5      17.5 LARGE RADIUS NAUT. MI.          29          29        29                  2.0      22.5
                                                                            3.0      26.e rRANSLATION SPEED                                                                                        WATER          LEVEL        DATA
                                                                            5.0      32.0
F (FORWARD SPEED) KNOTS            4          11        28
                                                                            7.0      34.0
                                                                                                              (AT OPEN CCAST SHORELINE)
MAXIMUM WIND SPEED                                                          7.5      28.0
                V    M.P.H.    140          144      153        -        8.0      25.5
                                                                  -        8.5      25.0
INITIAL DISTANCE-NAUT.MI.1!                                                                                                PMH SPEED OF TANSIATIOI
FROM 20 MPH WIND                528          487      394                  9.0      28.5 COMPONENTS              ST      MT I    HT
                                                                          .9.5      34.0
&#xfd;T SHORE TO MAX. WIND                    I_                                                                                      F  E    E  T
                                                                          10.0
                                                                          1          42.5 Note: Maximum wind speed is assumed to be on                        -    15.0      62.0        WIND SETUP                                  18.61 the traverse that is to right of storm track a                      -    20.0        56.0
distance equal to the radius to maximum wind.                            30.0      97.9        PRESSURE SETUP                              3.29 y Initial  distance is distance along traverse                    -    40.0      152.0
  from shoreline to maximum wind when leading                            50.0      243          INITIAL WATER LEV.                          2.00
  20 mph isovel intersects shoreline.          Storm             -      58.5      600
  diameter between 20 mph isovels is approxi-                    -      60.o      688          kSTRONONICAL                                1.90
  mately double the initial     distanc


====e. rIDE LEVEL====
OCEAN BED PROFILE
                                                                                                  TOTAL-SURGE
TRAVERSE
                                                                                                  STILL WATER LEV.                           25.aO
WATER
                                                                                                  FEET  MLW
DISTANCE
                                                                  LATITUDE 0 28&deg; 3 4.4 DEGREE AT TRAVERSE
DEPTH
                                                                  MID-POINT FROM SHORE
FROM
                                                                  rO 600-FOOT DEPTH
BELOW
                                                                                          I-..-.
SHORE
HMU
(HAUT. mi.)
JFEgrE
0
0
_ 0.2
22
0.5
38
_
1.0
43
_
1.5
53
2.0
67
-
3.0
82
-
5.0
102
_
10.0
132
_
15.0
145
_
20.0
170
30.0
212
40.0
240
50.0
260
-
60.0  
302
68.4  
6O0
70.0
870
1ATITUDE
.
400 27'
DEGREE AT TRAVERSE  
ID-POINT FHOM SHORE  
60o-Foz DFTr'
PMH (XMPUTATIONAL COEWFICIENT
AND WATER LEVEL (SURGE)
ESTIMATES
COEFFIC-1ENTS
BO1`nf FRICTION FACTOR 0.0025 WIND sbfRESS CORREMION FACTOR 1.10
WATER
LEV EL
DATA
(AT OPEN MAS SWORELINS)
PMH SPEED OF TRANSLATION
COMPONENTS
ST I  
MT
u S
_ _E
E
T
WIND SETUP
8.73 PRESSURE SETUP
2.46 INITIAL WATIR LEV.


TABLE C.6 SUMMARY-PERTINENT PROBABLE MAXIMUV. HURRICANE (PMH),            STORM SURGE COMPUTATIONAL DATA AND 'RESULTANT WATER LEVEL
0.97
                LOCATION    BILOXI        LAT. 30023.6'  LONG.  88"53.6': TRAVERSE-AZIMUTH      160  DEGREE,    LENGTH  77  NAUTICAL MILES
&STONONICAL
                            MISSISSIPPI
3.10  
        PROBABLE MAXIMUM HURRICANE INDEX CHARACTERISTICS                    OCEAN BED PROFILE                PMH OCCPUTATIONAL COEFFICIENT
TIDE LEVEL  
          ZONE    B AT LOCATION      300      24' DEGREE NORTH                                                                        ESTIMATES
WTAL-SURGE  
                                                                            TRAVERSE    WATER              AND WATER LEVEL (SURGE)
STILL WATER LWV.
                                          SPEED OF THRANS  TION          DISTANCE    DEPTH
      PARAMETER DESIGNATIONS              SLOW    MODERATF      HIGH          FROM      BELOW
                                        l  ST)'n    (n)        (HT)          SHORE      MLW
CENTRAL PRESSURE INDEX                                                    (NALT.MI.)    (FEET)                    C0 E F F I CI 9 N T S
                        P 0 INCHES        26.9      26.9    26.9                o          0                    BOT'1OYM FHICTION FACTOR 0.0030
PER IPHERAL PRESSURE                                                            0.2        3.0  -
                        P INCHES          31.23    31.23    31.23        _    0.5        2.0              WIND STRESS CORRECTION FACTOR 1.10
                          n__                                            _      1.0        6.5 RADIUS TO MAXIMUM WIND                                                    _      1.5        9.0"
      LARGE RADIUS NAUT. MI.              30        30      30                  2.0        9.0  -
TRANSLATION SPEED                                                        _      3.0        9.5 -              WATER          LEVEL       DATA
Fv (FORWARD SPEED) KNOTS                  4        11      28          _      5.0      12.0
                                                                          _      9.0        9.5                    (AT OPEN CCAST SHORELINE)
MAXIMUM WIND SPEED                                                        _    9.5      11.0
                      V M.P.H.        139        143      153                10.0        14.0
                        x INITIAL DISTANCE-NAUT.MI.i/                                            -    10.5        18.5                                PMH SPOED OF TRANSLATION
  FROM 20 MPH WIND                      525        498      396          _    11.0        17.5 -          COMPONENTS            ST I    MT    IHT
&T SHORE TO MAX, WIND                                                      _  11.5        23.0 j                                    F  E  E    T
                                                                              12.0        29.0
Note: Maximum wind speed is assumed to be on                              _    13        34.5_      WIND SETUP                                27.77 the traverse that is to right of storm track a                            _    15        41.5 distance equal to the radius to maximum wind.                                  20.        45.0        RESSURE SETUP                              2.98
-/Initial        distance is distance along traverse                    -    25        47.0
      from shoreline to maximum wind when leading                        _    30          50.0        INITIAL WATER LEV.                          1.50
      20 mph isovel intersects shoreline. Storm                                40          65.0
      diameter between 20 mph isovels is approxi-                        L      50        99.0              TNOMICAL                              2.50
      mately double the initial distance.                                      60        164    -
                                                                            S70          203
                                                                                          600o            rAL-SURGE
                                                                        L    '78 STILL WATER LU.                           34.76 BET  MLW
                                                                        LATITUDE
* 290 5'*
                                                                        DEfGREE AT TRAVERSE
                                                                        MID-POINT FROM SHORE
                                                                          rO 600-FOOT DEPTH


TABLE C.7 SUMMARY-PERTINENT PROBABLE MAXIMUV:        h1JRICANE (FMH),    STORM SURGE COMPUTATIONAL  DATA AND RESULTANT WATER LEVEL
15.26 E1EET MLW
                  LOCATION SANTA ROSA LAT.        30023.7'    LONG.    86 37.7': TRAVERSE-AZIMUTH  183  DEGXREEs LENGTH 44.7      NAUTICAL MILES
(
                              ISLAND, ALABAMA
PROBABLE MAXIMUM HUHRICkNE INDEX CHARAC'IMtISTICS
            PROBABLE MAXIMUM HURRICANE INDEX CHARACTERISTICS                    OCEAN BED PROFILE              PMH    CNhPUTATIONAL COEFFICIENT
ZONE  
              ZONE B    AT LOCATION     300    24' DEGREE NORTH
4 AT LOCATION  
                                                                              TRAVERSE    WATER            AND WATER LEVEL (SURGE)      ESTIMATES
410
                                            SPEED OF TRANSLATION             DISTANCE    DERPH
00' DXMEE NORTH  
        PARAMETER DESIGNATIONS             SLOW     ,ODERATF      HIGH          FROM      BELOW
SPEED OF TRANSLATION  
                                        _  (ST)      (MT)        (HT)        SHORE      MLW
PARAMTER DESIGNATIONS  
                                                                              (NAUT.MI.)    (FEET)                  C 0 E F F I C I E N T S
SLOW  
    CTL          PRESSURE INDEX
HODEATF
                          P 0 INCHES       26.88      26.88      26.88            0          0                BO'i''0JM FilICTION FACTOR 0.0030
HIGH
  PERIPHERAL PRESSURE                                                             0.2        22 P INCHES         31.20      31.20      31.20            0.5        52            WIND STRESS CORRECTiON FACTOR 1.10
M2?I1AL PRESSURE INDEX  
                            n                                                      1.0        66 RADIUS TO MAXIMUM WIND                                                           1.5        66 LARGE RADIUS NAUT. MI.              29        29        29                "2.0      66 TRANSLATION SPEED                                                                3.0      73                WATEh          LEVEL        DATA
P0 INCHES  
                                            4        ii        28                5.0        76 vi F (FORWARD SPEED) KNOTS
27.26  
  MAXIMUM WIND SPEED"                                                            10        88                    (AT OPEN CCAST SHORELINE)
27.26  
                                                                                  15        120
27.26 PERIPHERAL PRESSURE  
                        V    M.P.H.    140        144        153              20        182 INITIAL DISTANCE-NAUT.MI.I.i                                                  30        377                                PMH SPEED OF TRANSLATION
P  
  FROM 20 MPH WIND                      528        487        394              40        510
INCHES  
                                                                                                            COMPO1ENTS              ST I    MT  I I-l'
30.56
  IT      SHORE TO MAX.    WIND                I          I
30.56
                                                                                  45
30.56 RADIUS TO MAXIMUM WIND  
                                                                                  50
LARERADIS NAUT. MI.
                                                                                            600
                                                                                            756 F  E    E  T
    Note: Maximum wind speed is assumed to be on WIND SETUP                                  9.12 the traverse that is to right of storm track a distance equal to the radius to maximumwind.


PRESSURE SETUP                              3.25
.8
    -Initial        distance is distance along traverse from shoreline to maximum wind when leading                                                  INITIAL WATER LEV.                           1.50
48
          20 mph isovel intersects shoreline.           Storm diameter between 20 mph isovels is approxi-                                                ASTRONOMICAL                                  1.80
48 mRANSLATION SPEED
          mately double the initial        distanc
?,v (FORWARD SPEED) KNOTS
115
34
51
1AXlMUM WIND SPEED
vx M.P.H.


====e. TIDE LEVEL====
115
                                                                                                      TOTAL-SURGE
126
                                                                                                        STILL WATER LEV.                            15.67 FEET MLW
136 INITIAL DISTANCE-NAWTeMIJ/
                                                                            LATITUDE;    30&deg;1.3'
FROM 20 MPH WIND
                                                                            DEGREE AT TRAVERSE
346
                                                                            AID-POINT FROM SHORE
293
                                                                            iv 600-FOOT DEPTH
259 kT SHORE TO MAX.


TABLE C.8 SUMMARY-PERTINENT PROBABLE MAXIMU.    hUhRRICANE (FMH),  STORM SURGE COMPUTATIONAL DATA AND RESULTANT WATER LEVEL
WIND
                  LOCATIONPITTS CREEK LAT.    30&deg;01.1'  LONG.  83'  53' : TRAVERSE-AZIMUTH  205  DEGREEi LENGTH 110      NAUTICAL MILES
r
                            FLORIDA
            PROBABLE MAXIMUM HURRICANE INDEX CHARACTEIISTICS              OCEAN BED PROFILE              PMH    CDNPUTATIONAL COEFFICIENT
              ZONE A    AT LOCATION    300    01' DEGREE NORTH
                                                                          TRAVERSE    WATER            AND WATER LEVEL (SURGE)    ESTIMATES
        PARAMETER DESIGNATIONS      t  SPEED OF
                                        SLOW
                                        (ST)
                                                    TRANSLATION
                                                IODERATF      HIGH
                                                                          DISTANCE
                                                                            FROM
                                                                                      DEPTH
                                                                                      BELOW
                                                  (MT)      .HT            SHORE      MLW
                                                                        (NAUT.MI.)    (FEET)                  C0 E F F I C I E NT S
      ENTRAL PRESSURE INDEX
                          P INCHES      26.79      26.79    26.79            0          0                BOT'ION FlICTION FACTOR 0.0030
      ERIPHERAL      PRESSURE                                                  0.2        1.0
                          P  INCHES    30.22      30.22    30.22            0.5        2.0            WIND STRESS CORRECTION FACTOR 1.10
                                                                              1.0        3.0
  &#xfd;EDUS TO MAXIMUM WIND                                                      1.5        4.0
        LARGE RADIUS NAUT. MI.        26        26        26                2.0        5.0
/1  FRANSIATION SPEED                                                        3.0        6.5              WA T ER      LEVEL        DATA
  &#xfd;_ (FORWARD SPEED) KNOTS          1 4          11        21                5.0        9.0
                                                                            10          22.0                  (AT OPE12 CCAST SHOFELINE)
    MAXIMUM WIND SPEED                                                      15          31.0
                        V    M.P.H.  138        142      146
                                                                            20          41.0
    INITIAL DISTANCE-NRUT.MI.li                                              30          62.0                              PMH SPEED OF TPANSLATION
    FROM 20 MPH WIND                  354      322        278              40          78.0          COMPONENTS            ST I    MT        HTi'
            SHORE  TT_O
                      MAX.  WIND                                            50          81.0                                    F  E  E    T
    Note: Maximum wind speed is.assumed to be on                            6o          84.0
    the traverse that is to right of storm track a                          70        101.0      WIND SETUP                              24.67 distance equal to.the radius to maximum wind.                            80        117.0
                                                                            9o        144.0      PRESSURE SETUP                            2.31
    -/Initial      distance is distance along traverse
                                                                            100        180.0
          from shoreline to maximum wind when leading                      110        210.0      INITIAL WATER LEV.                        1.20
          20 mph isovel intersects shoreline.        Storm diameter between 20 mph isovels is approxi-                        120        280.0
        mately double the initial distance.                                130        543.0      ASTRONOMICAL                              4.20
                                                                            132        6oo.0      TIDE  LEVEL
                                                                            140        846        TOTAL-SURGE
                                                                                                  STILL WATER LEV.                        32.38 FEET MLW____
                                                                        LATITUDE $ 290 03'
                                                                        DEGREE AT TRAVESE
                                                                        MID-POINT FROM SHORE
                                                                        TO 600-FOOT DEPTH


TABLE C.9 SUMMARY-PERTINENT PROBABLE MAXIMUE hUJRRCANE (PMH),           STORM SURGE COMPUTATIONAL DATA AND RESULTANT WATER LEVEL
Q
              LOCATION  NAPLES      LAT.  26001.4' LONG.    81"46.2': TRAVERSE-AZIMUTH      2413    DELREE,      LENGTH 145      NAUTICAL MILES
SUMMARY-PERTINENT PRtJBA.LE MAXIMUI,. hhIRICANE
                          FLORIDA
LOCATION WATCH HILL
      PROBABLE MAXIMUM HURRICANE INDEX CHARACTERISTICS                  OCEAN BED PROFILE                    PMH CCNPUTATIONAL COEFFICIENT
LAT.
        ZONE    A AT LOCATION     260    01' DEGREE NORTH
                                                                        TRAVERSE      WATER                AND WATER LEVEL (SURGE)          ESTIMATES
                                        SPEED OF TRANSLATION          DISTANCE      DEPTH
      PARAMETER    DESIGNATIONS      SLOW    IMODERATF    HIGH          FROM      BELOW
                                  _(ST)          (ni)      (HT)          SHORE      MLW
                                                                      (NAUT.MI.)    (FEET)                        C 0 E F F I C I E N T S
  CENTRAL PRESSURE INDEX
                                      26.24      26.24    26.24                0
                      P INCHES                                                                                BO'ITUr  FHICTION FACTOR 0.r1030
  PER IPHERAL PRESSURE                                                    -    0,.5    +/-8.0-
                      P INCHES      31.30      31.30    31.30                                          WIND STRESS CORRECTION FACTOR 1.10
                        n
                                                                                1.0
                                                                                -!.55 RADIUS TO MAXIMUM WIND
      LARGE RADIUS NAUT. MI.          15          1          I
                                                                                3.0      27.0
  TRANSLATION SPEED                                                                                          WATEh          LEVEL          DATA
                                                                                5.0
  F (FORWARD SPEED) KNOTS              4                17
                                                                              150        41.0
                                                                              151                                  (AT OPEN CCAST SHORELINE)
-I MAXIMUM WIND SPEED                                                                    48.


V  M.P.H.    150        1LL      158                20
43?18.9w LONG.
  INITIAL DISTANCE-NAUT. MI.i/                                                                                                  PMH SPEED OF TRANSLATION
                                                                              4)        90.0            COMPONENTS                ST I
  FROM 20 MPH WIND                  292        270      256                                                                                  MT  I    HT
                                                                              50      108 AT SHORE TO MAX. WIND                                                                                                                F    E    E    T
                                                                    -        60        144 Note: Maximum wind speed is assumed to be on                              70        165        WIND SETUP                    13.49      15.87    18.47 the traverse that is to right of storm track a                            80        186 distance equal to the radius to maximum wind.                            90        210        PRESSURE SETUP                3.29      2.87      2.90
    -  Initial  distance is distance along traverse                        100        228
                                                                            110        249        INITIAL WATER LEV.            1.00      1.00      1.00
      from shoreline to maximum wind when leading
      20 mph isovel intersects shoreline.          Storm                    120        252 diameter between 20 mph isovels is approxi-                          130        432        ASTRONOMICAL                  3.60      3.60      3.60
      matelv double the initial    distance.                              140        452        TIDE LEVEL
                                                                    -      145        600            AOTKL-SURGE
                                                                            150      1,200        STILL WATER LEV.              21.38      23.35    25.97 FEE MLW                .. I          II              _I
                                                                      LATITUDE 0 250 35'
                                                                    DEGREE AT TRAVERSE
                                                                    MID-POINT FROM SHORE
                                                                    TO 600-FOOT DEPTH


TABLE C.10
71 POINT, RHODE ISLAND
          SU MMARY-PERTINENT PROBABLE MAXIMU.  hiUaRICANE (PMH),   STORM SURGE COMPUTATIONAL DATA AND RESULTANT WATER LEVEL
PROBABLE MAX IMUM HURRlCANE INDEX CHARACTISTICS
          LOCATION  MIAMI      LAT. 25047.2'  LONG. 80"07.8' ; TRAVERSE-AZIMUTH    100    DBYGREEj LEN.GTH    3.9 NAUTICAL MILES
ZONE  
                    FLORIDA
4 AT LOCATION  
  PROBABLE MA.XIMUM HURRICANE INDEX CHARACTEISTICS              OCEAN BED PROFILE                PMH OCMPUTATIONAL COEFFICIENT
*41
    ZONE     1 AT LOCATION   250 47.2' DEXGREE NORTH
19'  
                                                              TRAVERSE    WATER              AND WATER LEVEL (SURGE)      ESTIMATES
REE NORTH
                                                              DISTANCE    DEPTH
Note:  
                                                                  FROM      BELOW
Maximum wind speed is assumed to be on the--raverse that is to right of storm track a distance equal to the radius to maximum wind.
                                                                  SHORE      MLW
                                                              (NAUT.MI.)    (FEET)                    C0 E F F I C I E NT S
                                                                    0          0                    BOi7IFO FiRICTION FACIOR 0.0025
                                                                    0.2      12
                                                                    0.5      16              WIND STRESS CORRECTION FACTOR 1.10
                                                                    1.5      25
                                                                    2.0      47
                                                                  _3.0      266
                                                                    3.9      600                  WATER        LEVEL        DATA
                                                                    5.0      822 (AT OPEN CCAST SHORnELINE)
                                                                                                                  PMH SPEED OF TRANSLATION
                                                                                              COMPONENTS              ST    T MT    i    HI'
                                                                                                                        F  E    E    T
Note: Maximum wind speed is assumed to be on                                                                       2.06      2.37      2.51 WIND SETUP
the traverse that is to right of storm track a distance equal to the radius to maximum wind.


PRESSURE SETUP              3.97      3.82      3.90
1/Initial distance is distance along traverse from shoreline to maximum wind when leading  
- Initial   distance is distance along traverse from shoreline to maximum wind when leading                                           INITIAL WATER LE*.          0.90      0.90      0.90
20 mph isovel intersects shoreline.
  20 mph isovel intersects shoreline.     Storm diameter between 20 mph isovels is approxi-                                          ASTRONOMICAL                3.60      3.60      3.60
  mately double the initial    distance.                                                FIDE I*LEE________                          ____
                                                                                            AOTAL-SURGE
                                                                                        STILL WATER LER .          10.53    10.68    10.91 FEET MLW                          I
                                                            LATITUDE    0 25I46-.
                                                            DEGREE AT TRAVERSE
                                                            MID-POINT FROM SHORE
                                                            To 600-FOOT DEPTH


TABLE C.11 SUMN*ARRY-PERTINENT PROBAWLE NAXIMUI    h.HURRICANE (FMH),    STORM SURGE COMPUTATIONAL FATA AND RESULTANT WATER LEVEL
Storm
            LOCATION JACKSONVILLELAT.    300  21'  LONG. 81    24.3: TRAVERSE-AZIMUTH    90    DECREEt LENGTH 62.5 NAUTICAL MILES
-diameter between 20 mph iaovels is approxi mately double the initial distance.
                      FLORIDA
      PROBABLE MAXIMUM HURRICANE INDEX CHARACTERISTICS                  OCEAN BED PROFILE              PMH CCXNPUTATIONAL COEFFICIENT
      ZONE 2      AT LOCATION    300    21' DEGREE NORTH
                                                                      TRAVERSE    WATER            AND WATER LEVEL (SURGE)    ESTIMATES
                                    SPEED OF TRANSLATION              DISTANCE    DEPTH
    PARAMETER DESIGNATIONS          SLOW    MODERATF      HIGH          FROM      BELOW
                                  _(ST)        (T          HT          SHORE      MLW
                                                                      (NAUT.MI.)    (FEET)                C 0 E F F I C.1 E N T S
CENTRAL PRESSURE INDEX
                    P INCHES        26.67      26.67    26.67              0          0              BO)'Ir0N FkICTION FACTOR 0.0025 PERIPHERAL PRESSURE                                                        0.2      20
                    Pn INCHES      31.21      31.21    31.21              0.5      25            WIND STRESS CORRECTION FACTOR      1.10
                                                                            1.0      32 RADIUS TO MAXIMUM WIND                                                      1.5      37 LARGE RADIUS NAUT. MI.          38        38        38                2.0      43 TRANSIATION SPEED                I                                          3.0      55              WATER        LEVEL        DATA
F (FORWARD SPEED) KNOTS          1, 4          11        22                5.0      59
                                                                          10.0        66 (AT OPEN CCAST SHORELINE)
MIMUM WIND SPEED                                                          12.0        66 V M.P.H.      138        142      149              14.0        72 INITIAL DISTANCE-NAUT.MI.]_                                              15.0        73                              PMH SPEED OF TRANSLATION
FROM 20 MPH WIND                  407        372      334              20.0        80
                                                                                                    COMPONENTS            ST I    MT        M.HT
NT SHORE TO MAX.


30.0       100
K
                      WIND                I                                                                                F  E    E    T
TABLE C.18 (nMH),
                                                                          40.0       117 Note: Maximum wind speed is assumed to be on                              50.0       131      WIND SETUP                                16.46 the traverse that is to right of storm track a                    -     6o.o      270
STORM SUHGE COMPUTATIONAL DATA AND RESULTANT MATER LEVEL
distance equal to the radius to maximum wind.                     -    62.5      6oo      PRESSURE SETUP                              3.23 l/ Initial    distance is distance along traverse                        70.0       948 from shoreline to maximum wind when leading                                              INITIAL WATER LEV.                         1.30
50 : T1RAVERSE-AZIMUTH 166 DE*REE: LENGTH
    20 mph isovel intersects shoreline.         Storm diameter between 20 mph isovels is approxi-                                               ASTRONONICAL                                6.20
84 NAUlICAL MILES
    mately double the initial    distanc
OCEAN BED PROFILE;
TRAVERSE
WATER
DISTANCE
DEPTH
FROM
BELOW
SHORE
MWI
NAUT
MI
(FELT)
0
0  
0.2
28
_
0.5
40  
1.0
77
_
1.5
98
2.0
119
_
3.0  
117  
4.0
114
_
5.0  
128
6.0
114
-
7.0
113
8.0
117
9.0
118
10.0
93
11.0
70  
12.0
65 S
3.0  
51 L4.o
56
15.0
77?
20.0
131
-0
1
0
2~
gO
0
245 LATITUiE
0 400 38'
DEIREE AT TRAVERSE
MID-POINT FROM SHORE
IT 600-2
=
DEFA
K
'r
6,
""SPEED
F *A
STION
PARAMETER I(SIPNATIOE.OS
5
35
1IGH
, ,, (sT_
)
" N '0
( r)
10 INCHES
27.29
27.29
27.29 P a INCHES
30.54
30.54
30.54 UaDIS TO
MAXIMUM WIND
IARG RADIUS NAUT. MI.


====e. TIDE LEVEL====
49
                                                                                              tOTAL-SURGE
49
                                                                                              STILL WATER LEV.                           27.20
4 XIMUM MIND SPEED
                                                                                              FEET MLW
VA
                                                                    LATITUDE
M.P.H.
* 30' 21 DEGREE AT TRAVERSE
                                                                    MID-POINT FROM SHORE
                                                                    TO 600-FOOT DEPTH
                                                                                II


TABLE C.12 SUMMARY-PERTINENT PROBABLE MAXIMUk hURRICANE (FMH),            STORM SURGE COMPUTATIONAL rATA AND RESULTANT WATER LEVEL
113
              LOCATION JEKYLL        LAT.  310    05' LONG.    81" 24.5': TRAVERSE-AZIMUTH 108    DEGREE, LENGTH 72.6 NAUTICAL MILES
126
                        ISLAND, GEORGIA
134 INITIAL DISTANCE-NAUT.MI .1 FROM 20 MPH WIND  
        PROBABLE MAXIMUM HURRICANE INDEX CHARACTENISTICS                                                  PMH CCD]PUTATIONAL COEFFICIENT
348
        ZONE .2      AT LOCATION    310      05' DEGREE NORTH
284.
                                                                                                        AND WATER LEVEL (SURGE)  ESTIMATES
                                  !    SPEED OF TRANSLATION
      PARAMETER DESIGNATIONS          SLOW    IIODERATF      HIGH
                                      (ST)        (NT)        (21L
                                                                                                              C 0 E F F I C I E N T S
  JENTRAL PRESSURE INDEX
                      P  INCHES        26.72      26.72    26.72 BOIU'ON FilICTION FACTOR G.C025 PER IPHERAL PRESSURE
                      Pn INCHES        31.19      31.19    31.].9                                    WIND STRESS CORRECTION FACTOR 1.10
  RADIUS TO MAXIMUM WIND
      LARGE RADIUS NAUT.      MI.      40          40        40
  rRANSLATION SPEED                                                                                      WA T Ei      LEVEL        DATA
0n F    (FORWARD
              VJ SPEED)    KNOTS  I    4          11      23 (AT OPEN CCAST SHORELINE)
  MAXIMUM WIND SPEED
                      V  M.P.H.      135        141      147 INITIAL DISTANCE-NAUT.MI.i/                                                                                          PMH SPEED OF TRANSLATION
  FROM 20 MPH WIND                 400          380      336                                        COMPONENTS          ST I    MT  I    H,
  &T SHORE TO MAX. WIND                                                                                                      F  E    E    T'
  Note:      Maximum wind speed is assumed to be on WIND SE'7UP                              20.63 the traverse that is to right of storm track a distance equal to the radius to maximum wind.


PRESSURE SETUP                            3.34
255 AT S HO VE IQ MA*X
    - Initial    distance is distance along traverse from shoreline to maximum wind when leading                                                INITIAL WATER LEV.                         1.20
, WI
      20 mph isovel intersects shoreline.           Storm diameter between 20 mph isovels is approxi-                                               ASTRONOMICAL                              7.50
-
      mately double the initial      distanc
PMH OC?1PUTATIONAL COOVFICIMN
AND WATER LEVEL (SURGE) ESTIMATES
C O
F F I
E ENT S
IX*OT*IV
YICTION FACTOR 0.0025 WIND STRESS CORRECTION FACTOR 1.10
WATER
LEVE.L
DATA
(AT OPEN OCAST SHORELINE)
PIH SPEED OF TRANSIATION
COMPONENTS
STI
MT
-IH
F
E
E"
T _.


====e. TIDE LEVEL====
WIND SETUP
                                                                                                  TOTAL-SURGE
10.01 PRESSURE SETUP
                                                                                                  STILL WATER LEV.                         32.6.7 FEET MLW
2.42 INITIAL WATER LEV.


TABLE C.13 SUMmARY-PERTINENT PROBAI.BLE NAXIML+k hURRICANE (FMH),          STORM SURGE COMPUTATIONAL LATA AND RESULTANT WATER LEVEL
0.96
          LOCATION FOLLY ISIANDLAT.      320    39'  LONG.  79 56.6'. TRAVERSE-AZIMUTH 150        DEGREEt LENGTH 57.6 NAUTICAL MILES
.STRON0MIC.L
                      SOUTH CAROLINA
4.00
    PROBABLE MAXIMUM HURRICANE INDEX CHARACTE1ISTICS                    OCEAN BED PROFILE                  PMH OCHPUTATIONAL COEFICIENT
POTAhL-SURGE
      ZONE  2  AT LOCATION      320    39' DEGREE NORTH
STILL WATER LLk.
                                                                        TRAVERSE    WATER              AND WATER LEVEL (SURGE)    ESTIMATES
                                      SPEED OF THANSLATION          I DISTANCE      DEPTH      I
  PARAMETER DESIGNATIONS          SLOW    HODERATF      HIGH          FROM      BFELOW
                                    (ST)      (MT)        (HT)          SHORE        MLW
                                                                      (NAUT.MI.)    (FEET)                    C 0 E F F I C I E N T S
CENTRAL PRESSURE INDEX
                  P 0 INCHES      26.81      26.81    26.81              0          0                  BO1FI)FM FRICTION FACTOR 0.0025 PERIPHERAL PRESSURE                                                          0.2        10.5 P n INCHES      31.13      31.13    31.13      _      0.5        12.0  -          WIND STRESS CORRECTION FACTOR 1.10
                                                                            1.0        14.0  _
RADIUS TO MAXIMUM WIND                                                _      1.5        16.5 LARGE RADIUS NAUT. MI.          40        40        40                  2.0        18.0  _
TRANSLATION SPEED                                                    _      3.0        29.5                WA TER        LEVEL        DATA
F, (FORWARD SPEED) KNOTS              4       13        29          _      5.0        39.0
                                                                          10.0        46.0                  (AT OPEN CCAST SHORELINE)
MAXIMUM WIND SPEEDV M.P.H.        1134        139      14                  S1;. 0      56.0o X                                                _    20.0        65.0
INITIAL DISTANCE-NAUT.MI      .,/                                    _    30.0        85.0                              PMH SPEED OF TRANSLATIO]
FROM 20 MPH WIND                  400                              _    40.0        138.0  _        COMPONENTS            ST I      MT        H'
                                              364      311 fT  SHORE TO MAX.    WIND                                            _    50.0      227.0  _                                  F    E    E    T
                                                                    _      57.6      600.0
Note: Maximum wind speed is assumed to be on
                                                                      _    60.0    1,800.0      WIND SETUP                                  17.15 the traverse that is to right of storm track a distance equal to the radius to maximum wind.


PRESSURE SETUP                                3.23
17.39 T*-r-LW
-- Initial distance is distance along traverse from shoreline to maximum wind when leading                                                  INITIAL WATER LEV.                            1.00
    20 mph isovel intersects shoreline.          Storm diameter between 20 mph isovels is approxi-                                                  ASTRONOMICAL                                  6.80
    mately double the initial distanc


====e. TIDE  LEVEL====
TABLE C.19 SUPARY-PERTINENT PROBABLE MAXIMUk HURRICANE (PFH),
                                                                                                  TOTAL-SURGE
STORM SUGIO
                                                                                                  STILL WATER LEV.                             28.18 FEET  MLW                      I        I
COMPUIATIONAL LATA AND RESULTANT WATER)LEVEL
                                                                    LATITUDE;      320 25'
LOCATION HAMPTON
                                                                    DEGREE AT TRAVERSE
LT. 420
                                                                    MID-POINT FROM SHORE
57' 1ONG. 70"47.l' 'i TRAVQtSE-AZIML
                                                                    TO 600-FOOT DEPTH
115 cH
NEW H&HPSHIRE
Note:
Maximum wind speed is assumed to be on the traverse that is to right of storm track a distance equal to. the radius to maximum wind.


TABLE C.14 SUMMARY-PERTINENT PROBABLE MAXIMUE hUHRICA.NE (FMH),    STORM SURGE COMPUTATIONAL LATA AND RESULTANT WATER LEVEL
F-Initial distance is distance along traverse from shoreline to maximum wind when leading
                  LOCATION RALEIGH BAY,LAT.    34  54' LONG. 7615.3;: TRAVERSE-AZIMUTH    135  DECXREi    LENG'i'H 35.2 NAUTICAL MILES
20 mph isovel intersects shoreline.
                            NORTH CAROLINA
            PROBABLE MAXIMUM HURRICANE INDEX CHARACTrEISTICS
                                                                    r  OCEAN BED PROFILE
                                                                                          1 PMH OCXPUTATIONAL COEFFICIENT
                                                                    I                    I
              ZONE 3    AT LOCATION    340    54' DEGREE NORTH
                                                                      TRAVERSE    WATER            AND WATER LEVEL (SbRGE)    ESTIMATES
                                          SPEED OF TRANSLATION        DISTANCE    DEPTH
        PARAMETER DESIGNATIONS          SLOW    MODERATF    HIGH      FROM      BELOW
                                      ,(ST)      (wT)      (HT)
                                                                        SHORE      MLW
                                                                    (NAUT.lI.)    (FEET)                  C0 E F F I C I E N T S
          "ENTRALPRESSURE INDEX
                          P INCHES      26.89    26.89    26.89          0          0                  BOT'XOM FhIlCTION FACTOR 0.0025
                                                                          0.2      16 PERIPHERAL PRESSURE
                                                                          0.5      28              WIND STRESS CORRECTION FACTOR 1.10
                          P INCHES      31.00    31.00    31.00
                                                                          1.0      40
    RADIUS TO MAXIMUM WIND                                                1.5      46 LARGE RADIUS NAUT. MI.          35        35      35            2.0      54
                                                                          3.0      64                WATEh          LEV E'L    DATA
    tRANSlATION SPEED
tJn                                                                        5.0      72 v (FORWARD SPEED) KNOTS            5      17      38 r'J                                                                      10.0      92                    (AT OPEN CLAST SHOR**LINE)
    FLAXfl4JM WIND SPEED                                                  15.0      112 V M.P.H.      130        137      149            20.0      124
                                                                          30.0      264 INITIAL DISTANCE-NAUT.MI.1/                                                                                        PMH SPEED OF TRANSLATION
    FROM 20 MPH WIND                  385                                35.2      6oo            COMPONENTS            ST      HI  I    HT
                                                  346      280
                                                                          40.0      900                                      F  E  E    T
    6T SHORE TO MAX. WIND
    Note: Maximum wind speed is assumed to be on                                              WIND SETUP                                  8.84 the traverse that is to right of storm track a distance equal to the radius to maximum wind.


PRESSURE SETUP                              3.09
Storm diameter between 20 mph isovels is approxi mately double the initial distance.
    -/Initial      distance is distance along traverse from shoreline to maximum wind when leading                                          INITIAL WATER LEV.                          1.00
          20 mph isovel intersects shoreline.        Storm diameter between 20 mph isovels is approxi-                                          ASTRONONICAL                                5.20
        mately double the initial     distanc


====e. TIDE LEVEL====
C
                                                                                              TOTAL-SURGE
PROR&BI
                                                                                              STILL WATER LEV.                           18.13 FEET  MLW                                        I
MAXIMUM HURRICANE INDEX CHARAC.!tISTICS
                                                                    LATITUDE # 34'41.A
ZONE 4 AT LOCATION
                                                                    DEGREE AT TRAVERSE
420
                                                                    MID-POINT FROM SHORE
57' DEGRE NORTh S'
                                                                    TO 600-FOOT DEPTH
... lSPEE OF THMANS AION
PARAMETER IESIGNATIONS
SIOW
HODESATF
HIGH
.
:
*-(sT)
(,.,r)
,
CElAL PRESSURE INDEX
.-  
P 0INCHES
27.44
27.44
27.44 PERIPHERAL PRESSURE
Pn INCHES
30.42
30.42
30.42 RADIUS T0 NAXIMUM WIND
LARG
RADIUJS FAUT. KI.


TABLE C.15 SUMMARY-PEYTINENT PROBABLE MAXIMUI.     hJURRICANE (FMH),       STORM SUHGE COMPUTATIONAL DATA AND RESULTANT WATER LEVEL
57
          LOCATION OCEAN CITY, LAT.   380    20' LONG.   75'04.9' : TRAVERSE-AZIMUTH 110      DEREEt LENGTH      59  NAUTICAL MILES
57
                    MARYLAND
57 TANSLATIGN SPEED
    PROBABLE MAXIMUM HURRICANE INDEX CHARACTERISTICS                    OCEAN BED PROFILE             PMH CCINPUTATIONAL COEFFICIEN'
iy (FOWARD SPEED) KNOTS
      ZONE 4    AT LOCATION    380    20' DEGREE NORTH
1 1?
                                                                      TRAVERSE      WATER         AND WATER LEVEL (SURGE)    ESTIMATES
37
                                  SPEED OF TRANSLATION                DISTANCE     DEPTH
52 MAXINUM WIND SPEED,
  PARAMETER DESIGNATIONS        SLOW      MODERATF      HIGH            FROM       BELOW
Pvx
                              __(ST)        (NT)        (.Tf            SHORE       MLW
.. ,.
                                                                    (NAUT.MI.j      (FEET)               C 0 E F F I C I E N T S
107o
CENTRAL PRESSURE INDEX
118 n
                  P  INCHES      27.05      27.05    27.05                0           0             BQ'I1ON FRICTION FACTOR 0.0025 PERIPHERAL PRESSURE                                                          0.2       17 P INCHES        30.77      30.77    30.77                0.5       32            WIND STRESS COiRRECTION FACTOR 1.10
1 INITIAL DiAmcE.-RWT.mI.ND
                                                                            1.0       29 RADIUS TO MAXIMUM WIND                                              _      1.5       35 LARGE RADIUS NAUT. MI.         38        38        38                    2.0       45 TRANSLATION SPEED                                                              30      38              WA TER        LEVEL        DATA
F!ROM 20MPH WIND ,-
F    (FORWARD  SPEED) KNOTS    1 10         26        48                  _ 0       56
353
                                                                    _      5.0       61                (AT OPEN CCAST SHORELINE)
290
MAXIMUM WIND SPEED                                                          6        71 V  M.P.H.     124        133      146                    7        56 INITIAL DISTANCE-NAUT. MI,.&#xfd;J                                                8        6o                              PMH SPEED CF TRANSLATION
262
FROM 20 MPH WIND                350        293      251                    9        58          COMPONENTS             ST I     MI      HT
4T SHORE TO WA. WIND
6T SHORE TO MAX. WIND                    I                                 10          59                                    F   E   E   T
1........
                                                                          11          65 Note: Maximum wind speed is assumed to be on                              12          64      WIND SETUP                               14.30
DWRE{E
the traverse that is to right of storm track a                            13          70
LENG'H
distance equal to the radius to maximum wind.                             14          62      PRESSURE SETUP                            2.83
40
1/Initial    distance is distance along traverse from shoreline to maximum wind when leading                        - 18                  INITIAL WATER LEV.                        1.14
NAUTICAL MILS
                                                                          20        103
C
                                                                                      90
r Uf, OCEAN BED PROFILE  
    20 mph isovel intersects shoreline.        Storm                    -
TRAVERSE
  diameter between 20 mph isovels is approxi-                    -      2      ~  114      ASTRONOMICAL                              5.10
WATER  
  mately double the initial    distanc
DISTANCE  
DEPTH  
FROM  
BIOW
SHORE  
MLN
(k,.TMi.){
(FFE*)  
-
0  
0  
-
0.2  
8
-
0.5  
40
-
1.0  
64
-
1.5  
82
,
2.0
100
-
3.0
105
-
5.0  
156
-
10.0  
258
-
15.0  
336
-
20.0
266
-
25.0
210
-
30.0
322
-
35.0
433
40,0
6OO
IATITUDI
0 42 0 48'
DEIREE AT TRAVERSE
MID-POINT FHOM SHORE
TM 60o-=OOT DEPTm
*M OCIPUTTIONAL COiFICIENT
AND WATER LEVEL (StkGE) ESrIMATES
COEFF
I C I ENTS
kOnO' FRICTION FA&#xa5; 02 0.0025 WIND STRESS CGURLCTION FACTOR 1.10
WATER
L-VEL
DATA
(AT OPEN GCAST SHORELINE)
PMH SPEED CF TRANSLATION  
COMPONENTS  
ST  
I  
ITT
I  
hi F  
E  
E"
T  
WIND SETUP  
4.25 PRESSURE S'IMP
2.23 INITIAL WAT1.


====e. TIDE LEVEL====
LEV.
                                                                  -                  146      TOTAL-SURGE
                                                                                              STILL WATER LEV.                        23.37
                                                                                      840      IEET NLW
                                                                    LATITUDE;      38o14, DEGREE AT TRAVERSE
                                                                    MID-POINT FROM SHORE
                                                                  To 600-FOOT DEPTH
                                                                                            I.


TABLE C.16 SUMNARY-PERTINENT  PRUbAPLE MAXIMUk hiJiRICANE (FMH),        STORM SURGE COMPUTATIONAL LATA AND RESULTANT WATER LEVEL
0.83 M NORICAL
        LOCATION ATLANTIC        LAT. 39'  21' LONG.    74  25 : TRAVERSE-AZIMUTH        146  DEGREEt  LENGTH  70  NAUTICAL MILES
10.50
                    CITY, NEW JERSEY
VIDE LEVEL
    PROBABLE MAXIMUM HURRICANE INDEX CHARACTERISTICS                OCEAN BED PROFILU                PMH CCMPUTATIONAL COEFFICIENT
TAL-SURGE
    ZONE 4    AT LOCATION    390    21' DEGREE NORTH
*TILL WATER L67,.  
                                                                  TRAVERSE      WATER              AND WATER LEVEL (SURGE)      ESTIMATES
17.81 EETr MLW
                                    S    OF TRANSLATION            DISTANCE    DEPTH
I
  PARAMETER DESIGNATIONS      5 SLOW    IHODERATF    HIGH          FROM      BELOW
                              _, (ST)      (MT)      (HT)          SHORE        MLW
                                                                (NAUT.MI.)      (FEET)                    C0 EF F I C I E N T S
CENTRAL PRESSURE INDEX
                P INCHES                            27.12      K        0          0                  B*0'1ION FhICTION FACTOR 0.002r5 PERIPHERAL PRESSURE                                                      0.2        10.0
                P    INCHES                        30.70                          15.0 _          WIND STRESS CORRECTION FACTOR 1.10
                  n            _____              ____0.70__            10,
                                                                                    22.0 _
RADIUS TO MAXIMUM WIND                                            _      2.0        38.0 _
  LARGE RADIUS NAUT. MI.                            40        -       5.0        50.0 _
                                                                  _    10.0        72.0 _            WATER         Lh V EL      DATA
TRANSLATION SPEED
Fv (FORWARD SPEED)    KNOTS                        4*9              20.0        90.0 -
                                                                -      30.0      120.0 _                  (AT OPEN CCAST SHOPELINE)
MAXIMUM WIND SPEED                                                _    40.0      138.0 _
                V    M.P.H.                      142 xX                                            -      50.0      162.0
INITIAL DISTANCE-NAUT. MI.Ii                                          6o.o        210.0 -                            PMH SPEED OF TRANSLATION
FROM420 MPH WIND                                                _    65.0      258.0 _          COMPONENTS            ST F I   mlE      MT
                                                                    _ 70.0      600.0
AT SHORE TO MAX.    WIND                                                                                                    I__ E    E    T
Note: Maximum wind speed is assumed to be on                                                  WIND SETUP                                15.32 the traverse that is to right of storm track a distance equal to the radius to maximum wind.


PRESSURE SETUP                              2.57 Initial distance is distance along traverse from shoreline to maximum wind when leading                                                  INITIAL WATER LEV.                          1.10
K
  20 mph isovel intersects shoreline.       Storm diameter between 20 mph isovels is approxi-                                                  ASTRONOMICAL                                5.80
LOCATION GREAT
  mately double the initial    distanc
LAT.


====e. TIDE LEVEL====
W$O3304'
                                                                                              TOTAL-SURGE
LONG.
                                                                                              STILL WATER LEV.                          24.80
                                                                                                EET MLW
                                                                LATITUDE      # 38' 53'
                                                                DEGREE AT TRAVERSE
                                                                MID-POINT FROM SHORE
                                                                  o 600-FOOT DEPTH


TABLE C.17 SULMPLAY-PERTINENT PROBAFLE MAXIMUE. hUR(RICANE (FMH),        STORM SURGE COMPU'ATIONAL LATA AND RESULTANT WATER LEVEL
67'  
                  LOCATION LONG ISLAND,LAT.     410    00' LONG.  72 01.8': TRAVERSE-AZIMUTH      166      DEBREEE      LENGqH 68.4 NAUTICAL MILES
SPRUCE ISLAND. MAINE
                            CONNECTICUT
otej:  
            PROBABLE MAXIMUM HUHRICANE INDEX CHARACTEISTICS                  OCEAN BED PROFILE                        PMH ccNPUTATIONAL COEFFICIENT
Maximum wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius-to maximum wind.
              ZONE 4    AT LOCATION    4.1    00' DEGREE NOBTH
                                                                              TRAVERSE    WATER                  AND WATER LEVEL (SURGE)        ESTIMATES
                                        - SPEED OF TRANSIATION              DISTANCE    DEPTH
          PARAMETER DESIGNATIONS          SLOW    HODERATF      HIGH          FROM      BELOW
                                        _ (ST)        (MT)      (HT()          SHORE      MLW
                                                                            (NAUT.MI.)    (FEET)                          C 0 E F F I C I E N T S
    CENTRAL PRESSURE INDEX
                          P INCHES        27.26      27.26    27.26              0          0
                          0            _                                                                              BO1J3'ON FriICTION FACTOR 0.0029 PERIPHERAL PRESSURE                                                            0.2      22 P INCHES        30.56      30.56    30.56      _      0.5      38                    WIND STRESS CORRECTiON FACTOH 1.10
                                                                          -        1.0      43 R          US TO MAXIMUM WIND                                          _      1.5        53 LARGE RADIUS NAUT.    MI.      48        48        48          _      2.0      67 TRANSLATION SPEED                                                    -        3.0      82                        WAT Eh        LE V E L    DATA
LA
            (FORWARD SPEED) KNOTS        15        34        51        -        5.0      102 LI'
            IMUM WIND SPEED                                            -        10.0      132                            (AT OPEN CCAST SHORELINE)
                        V    M.P.H.    115        126      136      -        15.0      145
                                                                            _    20.0      170
    INITIAL DISTANCE-NAUT.NI.i/                                          -      30.0      212                                        PMH SPEED OF TRANSLATION
    FROM 20 MPH WIND                    346          293      259                40.0      240                COMPONENTS                ST      MIT    I HT
    AT SHORE TO MAX.        WIND                  I          I                    50.0      260                                              F    E    E  T
                                                                                60.0      302 Note:        Maximum wind speed is assumed to be on                         68.4      6o0          WIND SETUP                                        8.73 the traverse that is to right of storm track a                             70.0
                                                                                7          870
    distance equal to the radius to maximum wind.                                                      PRESSURE SETUP                                    2.46
    -/Initial      distance is distance along traverse from shoreline to maximum wind when leading                                                  INITIAL WATER LEV.                                0.97
          20 mph isovel intersects shoreline.          Storm diameter between 20 mph isovels is approxi-                                                  ASTRONOMICAL                                      8.00
          mately double the initial      distanc


====e. TIDE LEVEL====
y/Initial distance is distance along traverse from shoreline to maximum
                                                                                                          OTAL-SURGE
*
                                                                                                        STILL WATER LEV.                                20.16 VEE MLW                        _      I                I
ind when leading i 20 mph isovel intersects shoreline.
                                                                          LATITUDE 0 400 27 DEGREE AT TRAVERSE
                                                                        MID-POINT FROM SHORE
                                                                        To 600-FOOT DEPTH
                                                                                      .4 I __I "  .1 . - . .---


TABLE C.18 SU1I4AY-PERTINENT PROBABLE MAXIMUL. h1UJRICANE (FMH),      STORM SURGE COMPUTATIONAL DATA AND RESULTANT WATER LEVEL
Storm diameter between 20 mph Isovels is approxi mately double the initial distance.
              LOCATION WATCH HILL    LAT.  410i18.9' LONG.  71 50 ; TRAVERSE-AZIMUTH        166    DECREEs LENGTH    84  NAUTICAL MILES
                        POINT,  RHODE ISLAND
        PROBABLE MAXIMUM HURRICANE INDEX CHARACTrISTICS                OCEAN BED PROFILE                  PMH CCNPUTATIONAL COEFFICIENT
          ZONE 4    AT LOCATION    410    19' DEGREE NORTH
                                                                      TRAVERSE      WATER              AND WATER LEVEL (SURGE)    ESTIMATES
                                      SPEED OF TRANSLATION            DISTANCE      DEPTH
      PARAMETER DESIGNATIONS        SLOW    MODERATF    HIGH          FROM        BELOW
                                  _ (ST)      (MT)      (HT)          SHORE        MLW
                                                                    (NAUT.MI.)      (FEET)                    C 0 E F F I C I E N T S
    CENTRAL PRESSURE INDEX
                      P  INCHES      27.29      27.29  27.29            o            0                  BO'T&#xb6;ON FRICTION FACTOR 0.0025 PERIPHERAL PRESSURE                                                    0.2        28 Pn INCHES      30.54      30.54    30.54            0.5        40              WIND STRESS CORRECTION FACTOR 1.10
                                                                          1.0        77 RADIUS TO MAXIMUM WIND                                          _      1.5        98 LARGE RADIUS NAUT. MI.        49        49      49                2.0        119 TRANSLATION SPEED                                              -      3.0        117                WATE h        LEVEL        DATA
    F (FORWARD SPEED) KNOTS          15        35      51                4.0        114
                                                                  -        5.0        128                      (AT OPEN CCAST SHORELINE)
0~' MAXIMUM WIND SPEED                                                    6.0        114 V  M.P.H.    113        126      134                7.0        113 INITIAL DISTANCE-NAUT.MI.i /                                          8.0        117                                PMH SPEED OF THANSLATION
    FROM 20 MPH WIND                                              -        9.0        118              COMP014ENTS          ST J    MT  i HT
                                    348        284      255 AT SHORE TO MAX. WIND                                                10.0          93                                      F  E    E  T
                                                                        11.0          70
    Note:    Maximum wind speed is assumed to be on
                                                                        12.0          65        WIND SETUP                                10.01 the traverse that is to right of storm track a
                                                                    _    13.0          51 distance equal to the radius to maximum wind.


14.0          56        PRESSURE SETUP                            2.42
30': TRAvERS
      / Initial distance is distance along traverse                      15.0          77?
OCEAN BE
        from shoreline to maximum wind when leading
TRAVERSE
        20 mph isovel intersects shoreline.      Storm diameter between 20 mph isovels is approxi-
DISTANCE
                                                                  -
FROM
                                                                        20.0
SHORE
                                                                          0.   00    g
(NuT.MI.
                                                                                      131
                                                                                      222 INITIAL WATER LEV.


kSTRONOMICAL,
0
                                                                                                                                            0.96
_
                                                                                                                                            8.80
0.2
                                                                            .0       240  -
-
        mately double the initial distanc
0.5
-
1.0
_
1.5
-
2.0
_
3.0
-
4.0
_
5.0
1 0.0
_
15.0
20.0
-
30.0
10.0
50.0
-
60.0
70.0
-
120.0
130.0
1'Ii0
180.0
IATITUDE
DFRFZ AT
MID-POiNT
,E-AZIMUTH
148 ED PROFILE
PROBABLE MAXIMUM HURRICANE INDEX CHARACTrERISTICS
I ZO.E
4 AT LOCATION
440
31 DEGREE
NOW'TH
INO 600-FOOT DEPT'
Dif-REEs LFNGTH 178.6 NAUTICAL MILES
K
TABLE C.20
SUMMARY-PERTINENT PROBABLE MAXIMUI. hUWRICANE (PMH).  
STOIRM SURGE COMPUTATIONAL DATA AND RESULTANT WATER L*VEL'
K
WATER
DEMT
BELOW
MLW
FEET
0  
50
96
"95
125
125
165
247
188
233
438
570
271
511 NIL
4
1,620
4 o17df TRAVERSE
FROM SHORE
SPEE OF TRANSLTION
PARAMETER DESIGNATIONS
SLOW
HODERATF
HIGH
.EMLPRESSURE
INDEX
-
P0 INCHES
27.61
27.61
27.61 PERIPHERAL PRESSURE
Pn INCHES
30.25
30.25
30.25
&#xfd;RDU TO MXMWIND
IARGE RADIUS NAUT.


====e. r IDE LEVEL====
MI.
                                                                  -      70                      rOTAL-SURGE
                                                                                      28g        STILL WATER LEV.                          22.1.9
                                                                        90.0      1.488          F'EET MLW                                        I__________
                                                                  LATITUDE 4 40&deg; 38 DE)REE AT TRAVERSE
                                                                  MID-POINT FROM SHORE
                                                                  TO 600-FOOT DEPTH


TABLE C.19 SUMMARY-PERTINENT PROBA-PLE MAXIMUm. HURRICANE (FMH),        STORM SURGE COMPUTATIONAL DATA AND RESULTANT WATER LEVEL
*64
          LOCATION HAMPTON      LAT. 420    57' LONG.    70' 47.1'; TRAVERSE-AZIMUTH 115      D@CREE,  LENGTH  40  NAUTICAL MILES
64
                    BEACH, NEW HAMPSHIRE
64 TRASIATION SPEED  
    PROBABLE MAXIMUM HURRICANE INDEX CHARACTERISTICS                OCEAN BED PROFILE              PMH OCNPUTATIONAL COEFFICIENT
V (FORWARD SPEED) KNOTS  
      ZONE  4  AT LOCATION    420    57'  DEGREE NORTH
I 19
                                                                    TRAVERSE    WATER            AND WATER LEVEL (SURGE)    ESTIMATES
39
                                  SPEED OF TRANSLATION              DISTANCE    DEPTH
53
  PARAMETER DESIGNATIONS        SLOW    1-ODERATF    HIGH            FROM      BELOW
"Vx M.P.H.
                              _(ST)        (NT)      (HT)            SHORE
                                                                  INAUT.M1.)
                                                                                    MLW
                                                                                  (FFM)                C 0 E F F I C I E N T S
METRAL PRESSURE INDEX
                  P INCHES      27.44      27.44    27.44        -      0          0                BO7'OI- FRICTION FACTOR 0.0025 PERIPHERAL PRESSURE                                                      0.2        8 P INCHES      30.42      30.42  30.42        -      0.5        40            WIND STRESS CORRECTION FACTOR 1.10
                                                                  -.      1.0        64 RADIUS TO MAXIMUM WIND                                          -      1.5        82 LARGE RADIUS NAUT.    MI.    57        57      57          '-      2.0      100
[RANSIATION SPEED                                                -      3.0      105              WATE h        LE V EL      DATA
F (FORWARD SPEED) KNOTS         17        37      52          -      5.0      156
                                                                  -      10.0      258                  (Ar OPEN CCAST SHORELINE)
  WAXIMUM WIND SPEED                                              -      15.0      336 V  M.P.H.    107        118    127            -      20.0      266 INITIAL DISTAoCE-HAUT.MI.1/                                      -      25.0      210                              PMH SPEED OF TRANSIATION
FROM 20 MPH WIND              353        290    262            -    30.0        322          COMPONENTS            ST  I  MT        HI,
kT SHORE TO MAX.  WIND                                          -      35.0      433                                    F  E  E    T
Note: Maximum wind speed is assumed to be on                      -    40.o        6o0
                                                                                            WIND SETUP                                4.25 the traverse that is to right of storm track a distance equal to the radius to maximum wind.


PRESSURE SETUP                            2.23
102
-  Initial  distance is distance along traverse from shoreline to maximum wind when leading                                              INITIAL WATER LEV.                       0.83
114
  20 mph isovel intersects shoreline.       Storm diameter between 20 mph isovels is approxi-                                              ASTRONOMICAL                            11.70
122 TINITIAL DISTANCE-NAUT.MID
  mately double the initial    distanc
"
1P
%A
PMH 001PUTATIONAL COEFFICIE2IT
AND WATER LEVEL (SURGE)
ESTIMATES
C 0 E F F . C I E N T S
BTJOh F'HzICT'ON FACTOR 0.0025 WIND STRESS CORHEHTION FACTOR 1.10
w.Tz*,
L,'v1L
DATA
(AT OPEN CCAST SHORELINE)
'PMH SPEED OF TRANSIATION
COMPONENTS
ST
I
MT
HT
F
E
E
T
WIND SETUP
9.73 PRESSURE SLTJP
1.82 INITIAL WATEW LEV.


====e. TIDE LEVEL====
0.56 ASTRONOMICAL
                                                                                            TOTAL-SURGE
16.00
                                                                                            STILL WATER LEV.                         19.01 FEET MLW
TIDE LEVEL-
                                                                  LATITUDE   
-
* 420 48'
tOTAL-SURGE  
                                                                  DEGREE AT TRAVERSE
28.1 STILL WAT*R LLV.
                                                                  MID-POINT FROM SHORE
                                                                      600-FOOT DEPTH


TABLE C.20
EETL"
                SUMMARY-PERTINENT PRUhABLE MAXIMUE hUJiRICANE (FMH),            STORM SURGE COMPU'IATlONAL    [ATA AND RESULTANT WATER LEVEL
MLW
                LOCATION GREAT        LAT.    44&deg;33.4' LONG.    67 30'; TRAVERSE-AZIMUTH          148  DEGREEs LFNGTH 178.6 NAUTICAL MILES
                          SPRUCE ISLAND,    MAINE
        PROBABLE MAXIMUM HUHRICANE INDEX CHARACTERISTICS                  OCEAN BED PROFILE                    PMH CCMPUTATIONAL COEFFICIENT
          ZONE    4 AT LOCATION    440      3' DEGREE NORTH                                              ANL WATER LEVEL (SURGE)  ESTIMATES
                                                                        TRAVERSE          WATER
                                            SPEED
                                                OF TRANSLATION          DISTANCE        DEPTH
    PARAMETER DESIGNATIONS            SLOW      HODERATF    HIGH            FROM        BFLOW
                                        (ST)        (nT)      (HT)            SHORE        MLW
                                                                      (NAUT.MI.)          (FFET)                  C 0 E F F - C I E N T S
CENTRAL PRESSURE INDEX
                        P INCHES      27.61        27.61    27.61                0            0                BOTIOM 1i FICTION FACTOR 0.0025 PERIPHERAL PRESSURE                                                              0.2        50
                        P INCHES      30.25        30.25    30.25                0.5        96              WIND STRESS CORRECTION FACTOR 1.10
                                                                                  1.0        95 RADIUS TO MAXIMUM WIND                                                            1.5        125 LARGE RADIUS NAUT. MI.            64          64      64                  2.0        125 TRANSLATION SPEED                                                                3.0        165                W A T ER    L E V E L  DA T A
F (FORWARD SPEED) KNOTS                19          39      53                  4.o        247
                                                                      -          5.0        188                  (Ar OPEN CCAST SHORELINE)
MAXIMUM WIND SPEED                                                              10.0        233 V  M.P.H.    102          114      122        _        15.0        438 INITIAL DISTANCE-NAUT. *MI._ /                                                  20.0        570                              PMH SPEED OF TRANSLATION
FROM 20 MPH WIND                      352          288      262                  30.0        271            COMPONENTS          ST I    MT        HT
AT SHORE TO MAX. WIND                I                                          40.0        511                                    F  E  E    T
Note:        Maximum wind speed is assumed to be on
                                                                      -          50.0        443 the traverse that is to right of storm track a
                                                                            _    6o.0        374        WIND SETUP                              9.73 distance equal to the radius to maximum wind.                                  1100.0 0~
1/                                                                                                    PRESSURE SETUP                          1.82
                                                                              100.0        25
-/Initial        distance is distance along traverse from shoreline to maximum wind when leading                                                      INITIAL WATER LEV.                      0.56
                                                                      -
                                                                          - 120.0
                                                                              110.01        34O  -
      20 mph isovel intersects shoreline.            Storm diameter between 20 mph isovels is approxi-                                                        STRONONICAL                          18.40
      mately double the initial        distance.                              I                        IDE LEVEL
                                                                                                        TOT*L-SURGE
                                                                                                        STILL WATER LEV.                      30.51
                                                                      -        180.0      1,620
                                                                                                        EET MLW
                                                                      LATITUDE $43 17.8- DEGREE AT TRAVERSE
                                                                      MID-POINT FROM SHORE
                                                                        o 600-FOOT DEPTH


TABLE C.21 OCEAN BED PROFILES
TABLE C.21 OCEAN BED PROFILES
              PASS                   CRYSTAL                                             CHESAPEAKE
PASS  
          CHRISTIAN                  RIVER                       ST. LUCIE             BAY MOUTH                   SEABROOK
CRYSTAL  
    Nautical               Nautical                       Nautical                 Nautical                   Nautical Miles from       Depth, Miles from         Depth,    Miles from         Depth, Miles from         Depth,   Miles from       Depth, Shore       ft, MLW    Shore         ft, RLW        Shore       ft,  HLW    Shore         ft,  ffLW    Shore       ft, MLW
CHESAPEAKE  
        1             3        0.55           3          0.1              10        5              44      0.5              20
CI*RISTI"
        2            9        2.31           10          10                90      10                56      4              120
RIVER  
-4                                              14                            390        30              102      10              250
ST. LUCIE  
        5            12        6.25                       16
BAY MOUTH  
      10            13        8.33           9         18.7             600       50               178     25              250
HAMPTON BEACH*
        15            35        31.4           50                                      55              240    44               600
Nautical Nautical Nautical Nautical Nautical Miles from Depth, Miles from Depth.
        20           36      100            180                                      62              600
 
        30            40      113            300
Miles from Depth, Miles from Depth, Miles from Depth, Shore ft.
        40            52      127            600
 
        50            90
I4LW
        60          160
Shore ft.
        70          335
 
        77          600
HLW
Shore f
 
====t.  MLW ====
Shore  
- ftj MLW
Shore ft, MLW
1  
2
5
10
15
20
30
40
50
60
70
77
0.55  
2.31  
6.25  
8.33  
31.4
100
113
127
3
9  
12
13
35
36
40
52
90
160
335
600
0.1
10
16
18.7
3
10
14
9
50
180
300
600
10
90
390
600
5
10
30
50  
55
62
44
56
102
178  
240
600
0.5
4  
10
25
44
20  
120
250
250
600
* As developed for Seabrook r
70
0%
G%
C
t
 
UNITED STATES
NUCLEAR REGULATORY COMMISSION
WASHINGTON, D.C. 20555 OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, *W0
FIRST CLASS MAIL.


UNITED STATES
NUCLEAR REGULATORY COMMISSION
POSTAGE 6 FEES PAID  
    WASHINGTON, D. C. 20555      POSTAGE AND FEES PAID
USNRC
                                U.S. NUCLEAR REGULATORY
PERMIT N&. 0-67}}
      OFFICIAL BUSINESS                COMMISSION
  PENALTY FOR PRIVATE USE, $300}}


{{RG-Nav}}
{{RG-Nav}}

Latest revision as of 02:05, 17 January 2025

Design Basis Floods for Nuclear Power Plants
ML003740388
Person / Time
Issue date: 08/31/1977
From:
Office of Nuclear Regulatory Research
To:
References
-nr, FOIA/PA-2015-0456, FOIA/PA-2015-0458 RG-1.59, Rev 2
Download: ML003740388 (64)


Revision 2

-

U.S. NUCLEAR REGULATORY COMMISSION

August 1077 C,

REGULATORYGUIDE

OFFICE OF STANDARDS DEVELOPMENT

REGULATORY GUIDE 1.59 DESIGN BASIS FLOODS

FOR

NUCLEAR POWER PLANTS

USNRC REGULATORY GUIDES

Regulatory Guides or* ihsed to describe and make available to the public methods acceptable to the NRC staff of Implementing specific parts of the Commission's regulations, to delineate techniques used by the staff in evaluating specific problems at postulated accidents. or to provide guidance to applicants. Regulatory Guides are not sub*titute& for regulations, and compliance with them ia not required.

Methods and solutions different from those mt out in the guides will be accept able if they provide a basis for the findings requisite to the issuance or continuance of a permit or license by the Commission.

Comments and suggestions for Improvements In these guides erai ncounrged at ll timnes. end guides will be revised, as appropriale. to accommnodate comments and to reflect new information or experience.

This guide was revised as a result of substantive comments received from the public and additional staff review.

Comments Ohould be sent to the Secretary of the Commission, US. Nuclear Regu latory Commision. Washington, D.C. 2055, Attention: Docketing and Service Branch.

The gluides e issued in the following ten broad divisions:

1. Power Reactors

6. Products

2. Research and Test Reactors

7. Transportation

3. Fuels end Materials Facilities S. Occupational Health

4. Environmental end Siting

9. Antitrust Review S. Materials nd Plant Protection

10. General Requests for single copies of issued guides (which may be reproduced) or for place ment on an automatic distribution list for single copies of future guides in specific divisions should be made in writing to the US. Nuclear Regulatory Commision.

Washington. D.C.

20555. Attention:

Director. Division of Document Control.

I

UNITED STATES

NUCLEAR REGULATORY COMMISSION

WASHINGTON, D. C. 20555 July 30, 1980

ERRATA

Regulatory Guide 1.59, Revision 2, August 1977

"Design Basis Floods for Nuclear Power Plants"

New information that affects the Probable Maximum the Upper Ohio River for drainage areas of 10,000

has been identified.

The changes to the isolines in the Upper Ohio River Basin and do not have any the Design Basis Flood for existing plants.

Flood (PMF) isolines for and 20,000 square miles affect only a small area significant impact on As a result of the new information, revised Figures B.6 and B.7 transmitted herewith should be used in future PMF discharge determinations when the simplified methods presented in Appendix B to the Regulatory Guide are being used.

In addition, appropriate changes have been made to the PMF data on pages 28 and 30 of Table B.1, which are also transmitted herewith.

TABLE OF CONTENTS

Page

A. INTRODUCTION

...

........................................

1.59-5

B. DISCUSSION

..

.............................................

1.59-5

C. REGULATORY POSITION

....................................

1.59-7

D. IMPLEMENTATION

........................................

1.59-8 APPENDIX A-Probable Maximum and Seismically Induced Floods on Streams and Coastal Areas 1.59-9 APPENDIX B-Alternative Methods of Estimating Probable Maximum Floods ...........

1.59-11 APPENDIX C-Simplified Methods of Estimating Probable Maximum Surges ............

1.59-41

  • Lines indicate substantive changes from previous issue.

1.59-3

A. INTRODUCTION

General Design Criterion 2, "Design Bases for Protection Against Natural Phenomena," of Appen dix A, "General Design Criteria for Nuclear Power Plants," to 10 CFR Part 50, "Licensing of Produc tion and Utilization Facilities," requires, in part, that structures, systems, and components important to safety be designed to withstand the effects of natural phenomena such as floods, tsunami, and seiches without loss of capability to perform their safety functions. Criterion 2 also requires that design bases for these structures, systems, and components reflect (I) appropriate consideration of the most severe of the natural phenomena that have been historically reported for the site and surrounding region, with sufficient margin for the limited accuracy and quan tity of the historical data and the period of time in which the data have been accumulated, (2) ap propriate combinations of the effects of normal and accident conditions with the effects of the natural phenomena, and (3) the importance of the safety functions to be performed.

Paragraph 100.10(c) of 10 CFR Part 100, "Reactor Site Criteria," requires that physical characteristics of the site, including seismology, meteorology, geology, and hydrology, be taken into account in determining the acceptability of a site for a nuclear power reactor.

Section IV(c) of Appendix A, "Seismic and Geologic Siting Criteria for Nuclear Power Plants,"

to 10 CFR Part 100 suggests investigations for a detailed study of seismically induced floods and water waves. The appendix also suggests [Section IV(cXiii)] that the determination of design bases for seismically induced floods and water waves be based on the results of the required geologic and seismic in vestigations and that these design bases be taken into account in the design of the nuclear power plant.

This guide discusses the design basis floods that nuclear power plants should be designed to withstand without loss of capability for cold shutdown and maintenance thereof. The design requirements for flood protection are the subject of Regulatory Guide

1.102, "Flood Protection for Nuclear Power Plants."

The material previously contained in Appendix A,

"Probable Maximum and Seismically Induced Floods on Streams," has been replaced by American National Standards Institute (ANSI) Standard N170

1976, "Standards for Determining Design Basis Flooding at Power Reactor Sites,", which has been endorsed as acceptable by the NRC staff with the ex ception noted in Appendix A. In addition to informa tion on stream flooding, ANSI N170-1976 contains methodology for estimating probable maximum sur

'Copies of ANSI Standard N 170-1976 may be purchased from the American Nuclear Society. 555 North Kensington Avenue. La Grange Park, IL 60525.

ges and seiches at estuaries and coastal areas on oceans and large lakes. Appendix B gives timesaving alternative methods of estimating the probable max imum flood along streams, and Appendix C gives a simplified method of estimating probable maximum surges on the Atlantic and Gulf coasts. The Advisory Committee on Reactor Safeguards has been con sulted concerning this guide and has concurred in the regulatory position.

B. DISCUSSION

Nuclear power plants should be designed to pre vent the loss of capability for cold shutdown and maintenance thereof resulting from the most severe flood conditions that can reasonably be predicted to occur at a site as a result of severe hydro meteorological conditions, seismic activity, or both.

The Corps of Engineers for many years has studied conditions and circumstances relating to floods and flood control. As a result of these studies, it has developed a definition for a Probable Maximum Flood (PMFY and attendant analytical techniques for estimating, with an acceptable degree of conser vatism, flood levels on streams resulting from hydrometeorological conditions. For estimating seismically induced flood levels, an acceptable degree of conservatism for evaluating the effects of the in itiating event is provided by Appendix A to 10 CFR

Part 100.

The conditions resulting from the worst site-related flood probable at the nuclear power plant (e.g., PMF,

seismically induced flood, seiche, surge, severe local precipitation) with attendant wind-generated wave activity constitute the design basis flood conditions that safety-related structures, systems, and compo nents identified in Regulatory Guide 1.291 should be

'Corps of Engineers' Probable Maximum Flood definition appears in many publications of that agency such as Engineering Circular EC 1110-2-27, Change 1, "Engineering and Design-Policies and Procedures Pertaining to Determination of Spillway Capacities and Freeboard Allowances for Dams," dated 19 Feb. 1968. The Probable Maximum Flood is also directly analogous to the Corps of Engineers' "Spillway Design Flood" as used for dams whose failures would result in a significant loss of life and property.

'Reguiatory Guide

1.29,

"Seismic Design Classification,"

identifies structures, systems, and components of light-water cooled nuclear power plants that shouild be designed to withstand the effects of the Safe Shutdown Earthquake and remain func tional. These structures, systems, and components are those neces sary to ensure (1) the integrity of the reactor coolant pressure boundary, (2) the capability to shut down the reactor and maintain it in a safe shutdown condition, or (3) the capability to prevent or mitfgiate the consequences of accidents that could result in poten tial offsite exposures comparable to the guideline exposures of 10

CFR Part 100. These same structures, systems, and components should also be designed to withstand conditions resulting from the design basis flood and retain capability for cold shutdown and maintenance thereof of other types of nuclear power plants. It is expected that safety-related structures, systems, and components of other types of nuclear power plants will be identified in future regulatory guides. In the interim, Regulatory Guide 1.29 should be used as guidance when identifying safety-related structures, systems, and components of other types of nuclear power plants.

1.59-5 I

I

designed to withstand and retain capability for cold shutdown and maintenance therof.

For sites along streams, the PMF generally provides the design basis flood. For sites along lakes or seashores, a flood condition of comparable severity could be produced by the most severe com-.

bination of hydrometeorological parameters reasonably possible, such as may be produced by a Probable Maximum Hurricane4 or by a Probable Maximum Seiche. On estuaries, a Probable Max imum River Flood, a Probable Maximum Surge, a Probable Maximum Seiche, or a reasonable com bination of less severe phenomenologically caused flooding events should be considered in arriving at design basis flood conditions comparable in fre quency of occurrenfe with a PMF on streams.

In addition to floods produced by severe hydrometeorological conditions, the most severe seismically induced floods reasonably possible should be considered for each site. Along streams and es tuaries, seismically induced floods may be produced by dam failures or landslides. Along lakeshores, coastlines, and estuaries, seismically induced or tsunami-type flooding should be considered. Con sideration of seismically induced floods should in clude the same range of seismic events as is postulated for the design of the nuclear plant. For in stance, the analysis of floods caused by dam failures, landslides, or tsunami requires consideration of seismic events of the severity of the Safe Shutdown Earthquake occurring at the location that would produce the worst such flood at the nuclear power plant site. In the case of seismically induced floods along rivers, lakes, and estuaries that may be produced by events less severe than a Safe Shutdown Earthquake, consideration should be given to the coincident occurrence of floods due to severe hydrometeorological conditions, but only where the effects on the plant are worse than and the probability of such combined events may be greater than an individual occurrence of the most severe event of either type. Appendix A contains acceptable combinations of such events. For the specific case of seismically induced floods due to dam failures, an evaluation should be made of flood waves that may be caused by domino-type dam failures triggered by a seismically induced failure of a critically located dam and of flood -waves that may be caused by multiple dam failures in a region where dams may be located close enough together that a single seismic event can cause multiple failures.

Each of the severe flood types discussed above should represent the upper limit of all potential phenomenologically caused flood combinations con sidered reasonably possible. Analytical techniques are available and should generally be used for predic

"See References 2 and 5, Appendix C.

tion at individual sites. Those techniques applicable to PMF and seismically induced flood estimates on streams are presented in Appendices A and B of this guide. For sites on coasts, estuaries, and large lakes, techniques are presented in Appendices A and C of this guide.

Analyses of only the most severe flood conditions may not indicate potential threats to safety-related systems that might result from combinations of flood conditions thought to be less severe. Therefore, reasonable combinations of less-severe flood condi tions should also be considered to the extent needed for a consistent level of conservatism. Such combina tions should be evaluated in cases where the probability of their existing at the same time and hav ing significant consequences is at least comparable to that associated with the most severe hydro meteorological or seismically induced flood. For ex ample, a failure of relatively high levees adjacent to a plant could occur during floods less severe than the worst site-related flood, but would produce condi tions more severe than would result during a greater flood (where a levee failure elsewhere would produce less severe conditions at the plant site).

Wind-generated wave activity may produce severe flood-induced static and dynamic conditions either independent of or coincident with severe hydrometeorological or seismic flood-producing mechanisms. For example, along a lake, reservoir, river, or seashore, reasonably severe wave action should be considered coincident with the probable maximum water level conditions.' The coincidence of wave activity with probable maximum water level conditions should take into account the fact that suf ficient time can elapse between the occurrence of the assumed meteorological mechanism and the max imum water level to allow subsequent meteorological activity to produce substantial wind-generated waves coincident with the high water level. In addition, the most severe wave activity at the site that can be generated by distant hydrometeorological activity should be considered' For instance, coastal locations may be subjected to severe wave action caused by a distant storm that, although not as severe as a local storm (e.g., a Probable Maximum Hurricane), may produce more severe wave action because of a very long wave-generating fetch. The most severe wave ac tivity at the site that may be generated by conditions at a distance from the site should be considered in such cases. In addition, assurance should be provided

'Probable Maximum Water Level is defined by the Corps of Engineers as "the maximum still water level (i.e., exclusive of local coincident wave runup) which can be produced by the most severe combination of hydrometeorological and/or seismic parameters reasonably possible for a particular location. Such phenomena are hurricanes, moving squall lines, other cyclonic meteorological events, tsunami, etc., which, when combined with the physical response of a body of water and severe ambient hydrological con ditions, would produce a still water level that has virtually no risk of being exceeded."

1.59-6 K

S

I

I

that safety systems necessary for cold shutdown and maintenance thereof are designed to withstand the static and dynamic effects resulting from frequent flood levels (i.e., the maximum operating level in reservoirs and the 10-year flood level in streams)

coincident with the waves that would be produced by the Probable Maximum Gradient Wind' for the site (based on a study of historical regional meteorology).

C. REGULATORY POSITION

1. The conditions resulting from the worst site related flood probable at a nuclear power plant (e.g.,

PMF, seismically induced flood, hurricane, seiche, surge, heavy local precipitation) with attendant wind generated wave activity constitute the design basis flood conditions that safety-related structures, systems, and components identified in Regulatory Guide 1.29 (see footnote 3) must be designed to withstand and retain capability for cold shutdown and maintenance thereof.

a. The PMF on streams, as defined in Appendix A and based on the analytical techniques summarized in Appendices A and B of this guide, provides an ac ceptable level of conservatism for estimating flood levels caused by severe hydrometeorological con ditions.

b. Along lakeshores, coastlines, and estuaries, estimates of flood levels resulting from severe surges, seiches, and wave action caused by hydrometeorological activity should be based on criteria comparable in conservatism to those used for Probable Maximum Floods. Criteria and analytical techniques providing this level of conservatism for the analysis of these events are summarized in Ap pendix A of this guide. Appendix C of this guide pre sents an acceptable method for estimating the still water level of the Probable Maximum Surge from hurricanes at open-coast sites on the Atlantic Ocean and Gulf of Mexico.

c. Flood conditions that could be caused by dam failures from earthquakes should also be considered in establishing the design basis flood. Analytical techniques for evaluating the hydrologic effects of seismically induced dam failures discussed herein are presented in Appendix A of this guide. Techniques for evaluating the effects of tsunami will be presented in a future appendix.

d. Where upstream dams or other features that provide flood protection are present, in addition to the analyses of the most severe floods that may be in duced by either hydrometeorological or seismic mechanisms, reasonable combinations of less-severe flood conditions and seismic events should also be

6Probable Maximum Gradient Wind is defined as a gradient wind of a designated duration, which there is virtually no risk of ex ceeding.

considered to the extent needed for a consistent level of conservatism. The effect of such combinations on the flood conditions at the plant site should be evaluated in cases where the probability of such com binations occurring at the same time and having significant consequences is at least comparable to the probability associated with the most severe hydrometeorological or seismically induced flood.

For relatively large streams, examples of acceptable combinations of runoff floods and seismic events that could affect the flood conditions at the plant arc con tained in Appendix A. Less-severe flood conditions, associated with the above seismic events, may be ac ceptable for small streams, that exhibit relatively short periods of flooding.

e. The effects of coincident wind-generated wave activity to the water levels associated with the worst site-related flood possible (as determined from paragraphs a, b, c, or d above) should be added to generally define the upper limit of flood potential.

Acceptable procedures are contained in Appendix A

of this guide.

2. As an alternative to designing hardened proteo ton' for all safety-related structures, systems, And components as specified in Regulatory Position 1 above, it is permissible not to provide hardened protection for some of these features if:

a. S ufficientt'warning time is shown to be available to shut the plant down and implement ade quate emergency procedures;

b. All safety-related structures, systems, and components identified in Regulatory Guide 1.29 (see footnote 3) arc designed to withstand the flood condi tions resulting from a Standard Project events with attendant wind-generated wave activity that may be produced by the worst winds of record and remain functional;

c. In addition to the analyses in paragraph 2.b

-above, reasonable combinations of less-severe flood conditions are also considered to the extent needed for a consistent level of conservatism; and

'Hardened protction means structural provisions Incorporated in the plant design that will protect safety-related structures, systems, and components from the static and dynamic effects of floods. In addition, each component of the protection must be passive and In place, as it is to be used for flood protection, during normal plant operation. Examples of the types of flood protection. to be provided for nuclear power plants are contained in Regulatory Guide 1.102.

sFor sites along streams, this event is characterized by the Corps of Engineers' definition of a Standard Project Flood. Such floods have been found to produce flow rates generally 40 to 60 percent of the PMF. For sites along seashores, this event may be characterized by the Corps of Engineers' definition of a Standard Project Hurricane. For other sites, a comparable level, of risk should be assumed.

1.59-7

d. In addition to paragraph 2.b above, at least those structures, systems, and components necessary fbr cold shutdown and molntenance thereof are designed with hardened protective features to remain functional while withstanding the entire range of flood conditions up to and including the worst site related flood probable (e.g., PMF, seismically in.

duced flood, hurricane, surge, seiche, heavy local precipitation) with coincident wind-generated wave action as discussed in Regulatory Position I above.

3. During the economic life of a nuclear power plant, unanticipated changes to the site environs which may adversely affect the flood-producing characteristics of the environs are possible. Examples include construction of a dam upstream or downstream of the plant or, comparably, construc tion of a highway or railroad bridge and embank ment that obstructs the flood flow of a river and con struction of a harbor or deepening of an existing har bor near a coastal or lake site plant.

Significantly adverse changes in the runoff or other flood-producing characteristics of the site environs, as they affect the design basis flood, should be iden tified and used as the basis to develop or modify emergency operating procedures, if necessary, to mitigate the effects of the increased flood.

4. Proper utilization of the data and procedures in Appendices B and C will result in PMF peak dis charges and PMS peak stiliwater levels which will in many cases be approved by the NRC staff with no further verification. The staff will continue to accept for review detailed PMF and PMS analyses that result in less conservative estimates than those ob tained by use of Appendices B and C. In addition, previously reviewed and approved detailed PMF and PMS analyses will continue to be acceptable even though the data and procedures in Appendices B and C result in more conservative estimates.

D. IMPLEMENTATION

The purpose of this section is to provide informa tion to license applicants and licensees regarding the NRC staff's plans for using this regulatory guide.

This guide reflects current NRC practice.

Therefore, except in those cases in which the appli cant or licensee proposes an acceptable alternative method for complying with specified portions of the Commission's regulations, the methods described herein are being. and will continue to be used in the evaluation of submittals for construction permit ap plications until this guide. is revised as a result of sug gestions from the public or additional'staff review.

1.59-8

APPENDIX A

PROBABLE MAXIMUM AND SEISMICALLY INDUCED

FLOODS ON STREAMS AND COASTAL AREAS

The material preiiously contained in Appendix A

has been replaced by American National Standards Institute (ANSI) Standard.N170-1976, "Standards for Determining Design Basis Flooding at Power Reactor Sites," with the following exception:

Sections 5.5.4.2.3 and 5.5.5 of ANSI N170-1976 contain references to methods for evaluating the cro- sion failure of earthfill or roekfrdl dams and determin ing the resulting outflow hydrographs. The staff has found that some of these methods may not be conser vative because they predict slower rates of erosion than have historically occurred. Modifications to the models may be made to increase their conservatism.

Such modifications will be reviewed by the NRC staff on a case-by-case basis.

1.59-9

APPENDIX B

ALTERNATIVE METHODS OF

ESTIMATING PROBABLE MAXIMUM FLOODS

TABLE OF CONTENTS

B.

I. INTRODUCTION

.....................

B.2 SCOPE

...........................

B.3 PROBABLE MAXIMUM FLOOD PEAK DISCHARGE

B.3.1 Use of PMF Discharge Determinations

........

B.3.2 Enveloping Isolines of PMF Peak Discharge.....

B.3.2.1 Preparation of Maps ................

B.3.2.2 Use of Maps .............

B.3.3 Probable Maximum Water Level ............

B.3.4 Wind-Wave Effects ...................

B.4 LIMITATIONS .......................

REFERENCES ...........................

FIGURES ..............................

TABLE

.............................

FIGURES

Page

.......1.59-12

1.59-12

1.59-12

1.59-12

1.59-12

1.59-12

1.59-13

1.59-13

1.59-13

1.59-13

1.59-14

1.59-15

1.59-23

1.59-15

1.59-16

1.59-17

1.59-18

1.59-19

1.59-20

1.59-21

1.59-22 Figure B. I-Water Resources Regions

.....................

B.2-Probable Maximum Flood (Enveloping Isolines)-100 Sq. Mi.

B.3-Probable Maximum Flood (Enveloping Isolines)-500 Sq. Mi.

B.4-Probable Maximum Flood (Enveloping Isolines)-1,000 Sq. Mi.

B.5-Probable Maximum Flood (Enveloping Isolines)-5,000 Sq. Mi.

B.6-Probable Maximum Flood (Enveloping Isolines)-10,000 Sq. Mi.

.B.7--Probable Maximum Flood (Enveloping Isolines)-20,000 Sq. Mi.

B.8-Example of Use of Enveloping Isolines ................

TABLE

Table B.I--Probable Maximum Flood Data

..

1.59-23

1.59-11

.

.

. .

.

.

.

I

g I

D

D

I

0.1 INTRODUCTION

This appendix presents timesaving alternative methods of estimating the probable maximum flood (PMF) peak discharge for nuclear facilities on non tidal streams in the contiguous United States. Use of the methods herein will reduce both the time neces sary for applicants to prepare license applications and the NRC staff's review effort.

The procedures are based on PMF values deter mined by the U.S. Army Corps of Engineers, by ap plicants for licenses that have been reviewed and ab cepted by the NRC staff, and by the staff and its con.

sultants. The information in this appendix was developed from a study made by Nunn, Snyder, and Associates, through a contract with NRC (Ref. 1).

PMF peak discharge determinations for the entire contiguous United States are presented in Table B. I.

Under some conditions, these may be used directly to evaluate the PMF at specific sites. In addition, maps showing enveloping isolines of PMF discharge for several index drainage areas are presented in Figures B.2 through B.7 for the contiguous United States east of the 103rd meridian, including instructions for and an example of their use (see Figure B.8). Because of the enveloping procedures used in preparing the maps, results from their use are highly conservative.

Limitations on the use of these generalized methods of estimating PMFs aretidgntified in Section B.4. These limitations should be considered in detail in assessing the applicability of the methods at specific sites.

Applicants for licenses for nuclear facilities at sites on nontidal streams in the contiguous United States have the option of using these methods in lieu of the more precise but laborious methods of Appendix A.

The results of application of the methods in this ap pendix will in many cases be accepted by the NRC

staff with no further verification.

0.2 SCOPE

The data and procedures in this appendix apply only to nontidal streams in the contiguous United States. Two procedures are included for nontidal streams east of the 103rd meridian.

Future studies are planned to determine the ap plicability of similar generalized methods and to develop such methods, if feasible, for other areas.

These studies, to be included in similar appendices, are anticipated for the main stems of large rivers and the United States west of the 103rd meridian, in cluding Hawaii and Alaska.

B.3 PROBABLE MAXIMUM FLOOD

PEAK DISCHARGE

The data presented in this section are as follows:

1. A tabulation of PMF peak discharge determina.

tions at specific locations throughout the contiguous United States. These data are subdivided into water resources regions, delineated on Figure B.1, and are tabulated in Table B.1.

2. A set of six maps, Figures B.2 through B.7, covering index drainage areas of 100, 500, 1,000,

5,000, 10,000, and 20,000 square miles, containing isolines of equal PMF peak discharge for drainage areas of those sizes east of the 103rd meridian.

B.3.1 Use of PMF Discharge Determinations The PMF peak discharge determinations listed in Table B.I are those computed by the Corps of Engineers, by the NRC staff and their consultants, or computed by applicants and accepted by the staff.

For a nuclear facility located near or adjacent to one of the streams listed in the table and reasonably close to the location of the PMF determination, that PMF may be transposed, with proper adjustment, or routed to the nuclear facility site. Methods of trans.

position, adjustment, and routing are given in stan dard hydrology texts and are not repeated here.

B.3.2 Enveloping Isollnes of PMF Peak Discharge B.3.2.1 Preparation of Maps For each of the water resources regions, each PMF

determination in Table B.A was plotted on logarithmic paper (cubic feet per second per square mile versus drainage area). It was found that there were insufficient data and too much scatter west of about the 103rd meridian, caused by variations in precipitation from orographic effects or by melting snowpack. Accordingly, the rest of the study was confined to the United States east of the 103rd meri dian. For sites west of the 103rd meridian, the methods of the preceding, section may be used.

Envelope curves were drawn for each region east of the 103rd meridian. It was found that the envelope curves generally paralleled the Creager curve (Ref. 2),

defined as Qi,46.0 CA (0.894A -0.048) -1 where Q is the discharge in cubic feet per second (cfs)

C is a. constant, taken as 100 for this study A is the drainage area in square miles.

1.59-12 K

Each PMF discharge determination of 50 square miles or more was adjusted to one or more of the six selected index drainage areas in accordance with the slope of the Creager curve. Such adjustments were made as follows:

PMF Within Drainage Area Range, sq. mi.

50 to 500

100 to 1,000

500 to 5,000

1,000 to 10,000

5,000 to 50,000

10,000 or greater Adjusted to Index Drainage Area, sq. mil.

100

500

1,000

5,000

10,000

20,000

. The PMF values so adjusted were plotted on maps of the United States east of the 103rd meridian, one map for each of the six index drainage areas. It was found that there were areas on each map with insuf ficient points to define isolines. To fill in such gaps, conservative computations of approximate PMF

peak discharge were made for each two-degree latitude-longitude intersection on each map. This was done by using enveloped relations between drainage area and PMF peak discharge (in cfs per inch of runoff), and applying appropriate probable max imum precipitation (PMP) at each two-degree latitude-longitude intersection. PMP values, obtained from References 3 and 4, were assumed to be for a 48 hour5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> storm to which losses of 0.05 inch per hour were applied. These approximate PMF values were also plotted on the maps for each index drainage area and the enveloping isolines were drawn as shown on Figures B.2 through B.7.

B.3.2.2 Use of Maps The maps may be used to determine PMF peak dis charge at a given site with a known drainage area as follows:

1. Locate the site on the 100-square-mile map, Figure B.2.

2. Read and record the 100-square-mile PMF peak discharge by straight-line interpolation between the isolines.

3. Repeat Steps 1 and 2 for 500, 1,000, 5,000,

10,000, and 20,000 square miles from Figures B.3 through B.7.

4. Plot the six PMF peak discharges so obtained on logarithmic paper against drainage area, as shown on Figure B.8.

5. Draw a smooth curve through the points.

Reasonable extrapolations above and below the defined curve may be made.

6. Read the PMF peak discharge at the site from the curve at the appropriate drainage area.

B.3.3 Probable Maximum Water Level When the PMF peak discharge has been obtained as outlined in the foregoing sections, the" PMF still water level should be determined. The methods given in Appendix A are acceptable for this purpose.

B.3.4 Wind-Wave Effects Wind-wave effects should be superimposed on the PMF stillwater level. Criteria and acceptable methods are given in Appendihx A.

BA LIMITATIONS

1. The NRC staff will continue to accept for review detailed PMF analyses that result in less con servative estimates. In addition, previously reviewed and approved detailed PMF analyses at specific sites will continue to be acceptable even though the data and procedures in this appendix result in more con servative estimates.

2 .The PMF estimates obtained as outlined in Sec tions B.3.1 and B.3.2 are peak discharges that should be converted to water level to which appropriate wind-wave effects should be added.

3. If there are one or more reservoirs in the drainage area upstream of the site, seismic and hydrologic dam failure' flood analyses should be made to determine whether such a flood will produce the design basis water level. Criteria and acceptable methods are included in Appendix A.

4. Because of the enveloping procedures used, PMF peak discharges estimated as outlined in Sec tion B.3.2 have a high degree of conservatism. If the PMF so estimated casts doubt on the-suitability of a site, or if protection from a flood of that magnitude would not be physically or economically feasible, consideration should be given to performing a detailed PMF analysis, as outlined in Appendix A. It is likely that such an analysis will result in ap preciably lower PMF levels.

'In this contest, "hydrologic dam failure" muama failure caused by a flood from the drainage area upstream of the dam.

1.59-13

REFERENCES

1. Nunn, Snyder, and Associates, "Probable Max imum Flood and Hurricane Surge Estimates," un published report to NRC, June 13, 1975 (available in the public document room).

2. W.P. Creager, J.D. Justin, and J. Hinds,

"Engineering for Dams," J. Wiley and Sons, Inc.,

New York, 1945.

3. U.S. Weather Bureau (now U.S. Weather Service, NOAA), "Seasonal Variation of the Probable Max imum Precipitation East of the 105th Meridian,"

Hydrometeorological Report No. 33, 1956.'

4. U.S. Department of Commerce, NOAA, "All Season Probable Maximum Precipitation-United States East of the 105th Meridian, for Areas from

1,000 to 20,000 Square Miles and Durations from 6 to 72 Hours," draft report, July 1972.2

'Note References 3 and 4 are being updated and combined into a single report by NOAA. This report is expected to be published in the near future as Hydrometeorological Report No. 51 with the ti tle "Probable Maximum Precipitation Estimates, United States East or the 105th Meridian."

1.59-14 K

y FIGURE I.1 WATER RESOURCES REGIONS

K

'0

iS

-ISOLINE

REPRESENTING PEAK-FLOW OF f--4

,

PUF iN 1,000CFS.

I

I

NOTE: PMF ISO UNIS ON TIS CHART REPRESENT ENVELOPED

V~LESOF PEAK RUNOFF FROM 10"SUARE MILE DRAINAGE

AREA UNDER NATURAL RIVER CONDITIONS. ACCORDINGLY.

PMIF VALUES OBTAINED DO NOT INCLUDE POSSIBLE CONTRISU

TIONS TO PEAK FLOW THAT WOULD RESULT FROM

UPSTREAM DAM FAILURES OR OTHER UNNATURAL EVENTS.

11G

1170

1159

113°

1110

100

1076

106 FIGURE 8.2 PROBABLE MAXIMUM FLOOD (ENVELOPING PMF ISOLINES) FOR 100 SQUARE MILES

(

LA

'0

0%

r

83o f

1

79*

770

750

730

710 ms

670

O6r IS- 101dM REPRESENOIN

PEAK FLOW OF

S

PMf IN 1.00

15

!m: P

IJOUNIs OW TWS CHART REPRESENT ENVELOPED

VALUES O PEAK RUIN

FRM

F

00SCOUAREMLE DRAINAGE0A

AREA UNME NATURAL RIVER CONID"IMRS. ACCORDINGLY.

j PU, VALUES OBTAINED 0o NOT INCLUDE POMSSBLE CONTRIMU.

TrONS TO PEAK FLOW THAT WOULD RESULT FROM UPSTREAM

DAM FAILURES OR OTHER UNNATURAL EV*

ETOS.

I

I

I*

I

I

IZ3-*

LI

m o 190

1170

11

. 113ie

  • 1110

me

0

1070

105°

103

101°

99W

w7°

95o

3

9

89w

070

or

0

3or FIGURE 8.3 PROBABLE MAXIMUM FLOOD (ENVELOPING PMF ISOLINES) FOR 500 SQUARE MILES

K

k

-J

470

4v.

43.

41*

390

370

3s.

33.

310

29*

2r0

2SO

47r

470

[

450

4V.

41

360

37.

33.

310

290

27r

2fie

121'

11g°

117

115°

113.

I!I°

108'

1070

10°

103.

101°

9'

970

9i°

93w

91o

8w o

870

85.

83w FIGURE BA PROBABLE MAXIMUM FLOOD (ENVELOPING PMF ISOLIIES) FOR 1,000 SQUARE MILES

-C

45.

43.

410*

30.

370

35p

33.

310

2B°

270

2r r

-

ISOLINE REPRESENTING PEAK FLOW OF

PMF IN 1.000 CFS.

NOTS: PiF ISOLWINS ON THIS CHART REPRESENT ENVELOPED

VAL WEE OF PEAK RUNOFF FROM 1.Q0.04UARE MILE DRAINAGE

LAiREA UNDER NATURAL RIVER CONDITIONS. ACCORDINGLY.

IMF VALUES OBTAINED DO NOT INCLUDE POSSIBLE CONTRIBU

TIONS TO PEAK FLOW THAT WOULD RESULT FROM UPSTREAM

DAM FAILURES OR OTHER UNNATURAL EVENTS.

I

f I

I

I

I

A

!

--

t

(

.,p ImO

GO

-

ISOLINE REPRESENTING PEAK FLOW OF

PMF IN 1,000 CFS.


N

'

al

a a

a a

a a

I

NOTE: PMF ISOUNES ON THIS CHART REPRESENT ENVELOPED

VALUES OF PEAK RUNOFF FROM 5,000.SQUARE MILE DRAINAGE

AREA UNDER NATURAL RIVER CONDITIONS. ACCORDINGLY,

PMF VALUES OBTAINED DO NOT INCLUDE POSSIBLE CONTRIBU

TIONS TO PEAK FLOW THAT WOULD RESULT FROM UPSTREAM D)

FAILURE Off OTHER UNNATURAL EVENTS.

a a

a a

a a

a I

--

-

1110

IO9

1070 100

103

1010

9 g7o

959 93

91m

90g or

0

8w

81°

790

770

75 FIGURE B.5 PROBABLE MAXIMUM FLOOD (ENVELOPING PMF ISOLINES) FOR 5.000 SQUARE MILES

Q

K

"Ip Ga

-"ISOLINE

REPRESENTING PEAK FLOWOF

PMF IN 11000 CFS.

NOTE: PMF ISOLINES ON THIS CHART REPRESENT ENVELOPED

VALUES OF PEAK RUNOFF FROM 10.OOO4OUARE MILE DRAINAGE

AREA UNDER NATURAL RIVER CONDITIONS. ACCORDINGLY.

PUF VALUES OBTAINED DO NOT INCLUDE POSSIBLE CONTRIBU.

TIONS TO PEAK FLOW THAT WOULD RESULT FROM UPSTREAM DAM

FAILURES OR OTHER UNNATURAL EVENTS.

..

.

121

1190

117,1 115o

1130

1110

19o

107

1050

1030

1010

990

970

B5e

930

910

o n

870

850

830

FIGURE 8.6 PROBABLE MAXIMUM FLOOD (ENVELOPING PMF ISOLINES) FOR 10.000 SQUARE MILES

...

(

r

Q

I M I N 1, 0 IF

0 0 Z 6f i

ý

ROETE: PMF rJOt.NES ON THIS CHART REPRESENT ENVELOPED

1400,

100

VALUES OF PEAK RUNOFF FROM 20.000-SUARE MILE DRAINAGE

"Pm VALUE*S OBTAINED 00 NOT INCLUDE POSSIBLE CONTRIt-

  • %

1IONS T'O PEAK FLOW THAT WOULD RESULT FROM UPSTREAM DAM

P2 DAM FALRSOR OTHER UNNATUAL EVENTS.

ii°

119e

1*7

115°

113°

11 i09°

"

os i0o0°13°

, i01°

99p°

g

95P

g°93°

91°

89

87°

5

3 FIGURE B.7 PROBABLE MAXIMUM FLOOD (ENVELOPING PMF ISOLINES) FOR 20,000 SQUARE MILES

y

'a

I

I

I

I

I

I I I

1 I

-EXAMPLE:

FOR DRAINAGE AREA OF

.2,300 S. MI.AT LAT. 43@,

LONG. 950, DETERMINE PMF

PEAK DISCHAR.GE.

I I II I

I

i'-

.

.

I-

-I

.4

tI ; ;

i , - 4 -4

4 I * *

I I-

I

Si Wil I

I

ii

-%SLUTIUN:

FOR DRAINAGE AREA OF

2,300 SO. MI., PMF PEAK

4,00CF&.

"

I

I I,

,______....

__

I

I I

11 I...11L..!.

100

1000

10,000

DRAINAGE AREA, SQUARE MILES

FIGURE B.8 EXAMPLE OF USE OF ENVELOPING ISOLINES

S-C

I

jul11 g

  • iWW

IULm

<

co a

0. u:

,c<

0

00

L1A

.j m

0

i

.

m.

Im,,,

10

100,000

/'If]"POINTS FROM

I

..

."

FIGURES

B;.2-B.7 d

X

X

I

I

I

I

I I I I

I

I

I

air J!*d*

I

ilia

y TABLE B.1 PROBABLE MAXIMUM FLOOD DATA ( )

K

"Drainage Basin Average PM? Peak Project State River Basin Stream Area (n inches)

Discharge North Atlantic Region (Northeast Atlantic Sub-reion)

Ball Mountain Barre Falls Beaver Brook Birch Hill Black Rock Blackwater Buffumville Colebrook Conant Brook East Barre East Branch East Brimfield Edward McDowell Everett Franklin FClas Hal Meadow Hancock Hodges Village Hop Brook Hopkinton Knight**lle Littleville Mad River Mansfield Hollow Nookagee Northfield North Hartland North Springfield Otter Brook Phillips Sucker Brook S

yMountain Thomaston Vt.

Mass.

N. He Mass.

Conn.

N. H.

Mass.

Conn.

Mass*

Vt.

Conne Mass.

N. H.

N. He N.H.

Conne Como.

Mass.

cozme No H.

MaSs.

Mass.

Conn*

Mass.

come Vt.

Vt.

Maass Come.

N. H.

Conn.

Connecticut Connecticut Connecticut Connecticut Housatonic Merrimack Thames Connecticut Connecticut Winooski Housatonic Thames Merrimack Merrimack Merrimack Connecticut Housatonic Thames Housatonic Merrimack Connecticut Connecticut Connecticut Thames Merrimack Housatonic Connecticut Connecticut Connecticut Merrimack Connecticut Connecticut Housatonic West River Ware River Beaver Brook Millers River Branch Brook Blackwater River Little River Farmington River Conant Brook Jail Branch Naugatuck River Quineaaug River Nubanusit River Piseataquog River Pemigewasset River Hall Meadow Brook Hancock Brook French River Hop Brook Contoocook River Westfield River Westfield River Mad River Natchaug River Phillips Brook Northfield Brook Ottauquechee River Black River Otter Brook Phillips Brook Sucker Brook Ashuelot River Naugatuck River

'0

172

55

6.0

175

20

128

26

118

7.8

39

9s2

68

.44

64

1,000

17

12

31

16

426

162

52

18

159

11

5.7

220

158

47

5.0

100

97

20.6

20.1

21*3

18*3

22.2

18.3

26.6

22.?

24.4

21.5

24.0

24.2

19.5

20,7

15.8

24.0

24.0

26.2

25.0

17.4

18.8

25.1.

24.0

19.8

21.8

24.4

19.3

20.0

19.1

24.2

22.4

22.2

24.5

18.1

18.9

19.7

17.1

20.6

16,4

25.3

21.1

23.2

18.6

22.8

22.9

18.3

18,,2

13.3

22.8

22.8

22.3

23.8

14.7

17.6

22.4

22.8

18.5

20.2

23.2

17.2

18.3

17.9

23.0

21.4

19.6

22.4

190,000

61,000

10,.00

88.500

35,000

95,000

36,500

165,000

11,900

52,500

15,500

73,900

43,000

68,000

300,000

26,600

20,700

35,600

26,400

135,000

160,000

98000

30,000

125,000

17,750

.9000

199,000

157,000

45,000

7,700

6,500

63,000

158,000

a

TABLE 0.1 ( )

River Basin Stream Drainage Area ta m4 I

Basin Average (in inches)

Townshend Trumbull, Tully Union Village Vermont-Yankee Waterbury West Hill West Thompson Westville Whitemanville Wrightsville Vt.

Conn.

Mass.

Vt.

Vt.

Vt.

Mass.

Coeme Mass.

Mass.

Vt.

Connecticut Pequonnook Connecticut Connecticut Connecticut Winooski Blackstone Thames Thames Merrimack Winooski West River Pequonnook River Tully River Ompompanoosuc River Connecticut River Waterbury River West River Quinebaug River Quinebaug River Whitman River North Branch North Atlantic Region (Mid-Atlantic Sub-region)

Almond Alvin R. Bush Aquashicola Arkport Aylesworth Baird Beltzville Bloomington Blue Marsh Burketown Cabins Chambersburg Christiana Cootes Store Coiaaesque Curwensavile Dawsonville Douglas Point East Sidney Edes Fort Fairview Foster Joseph Sayers Francis e. Walter N. Y.

Pa.

Pa.

N. Y,

Pa.

w. Va.

Pa.

Md.

Pa.

Va.

We Va*

Md.

Del.

Va.

Pa.

Pa.

Md.

N. YO

we Va*

Md.

Pao Pas Susquehanna Susquehanna Delaware Susquehanna Susquehanna Potomac Delaware Potomac Delaware Potomac Potomac Potomaa Delaware Potomac Susquehanna Susquehanna Pot *r*-c Potomac Susquehanna Potomac Potomac Susquehanna Delaware Canacadea Creek Kettle Creek Aquashicola Creek Canister River Aylesworth Creek Buffalo Creek Pohopoco Creek North branch Tulpehockan Creek North River South Branch Conococheague River Christiana River North Fork River Cowanesque River Susquehanna River Seneca Creek Poto mac River Oulelot River Cacapon River Conococleaque Creek Bald Eagle Creek Lehigh River

4r Project State PIF Peak Discharge

--

-

-;%

wg*Ru"W

.

1 R&O I

278

14

50

126

6,266

109

28

74

32

18

68

21.3

23.0

20.0

17.0

18.9

28.0

20.4

25.4

21.4

20.2

22.0

24.0

28.0

22.5

23.8

34.0

27.1

22.2

24.0

24.3

20.8

28.9

32.1

22.5

21.9

22.0

13.4

24.0

21.2

22.9

21.8

22.4

17.2

21.8

16.6

15.8

16.0

25.6

17'.5

22.8

19.8

17.3

18.8

21.1

24.2

17.7

22.0

30.2

25.6

17.6

21.3

21.2

16.8

26.0

28.3

19.1

18.5

18.9

27.1

10.2

22.1

17.3

18.8

19.0

19.8

228,000

26,700

47,000

110,0000

480,000

128.000

26,ooo

85,000

38,400

25,000

74,000

59.000

154,000

42.500

33.400

13,700

14,600

68,000

196,000

11o,600

272,200

l955,900

81,400

39,200

140,200

285,000

205. 000

161,900

1,490,000

99,900

410,800

150,100

251,000

1700000

56

226

66"

31

6.2

10

97

263

175

375

314

141

41

215

298

365s

0l1

13,317

202

679

494

339

288 C

t T"

  • o

Q

K1 Drainage Basin Average PMF Peak Project State River Basin Stream Area (in inches)

Discharge

(2.so.m

_ Pec. Ruoff (cfs)

Franklin Frederick Front Royal Fulton (Harrisbrg)

Gathright Geun. Edgar Jadwin Great Cacapon Harriston Hawk Mountain Headsvifle John H. Kerr Karo Keyser Kitsmiller Leesburg Leidstown Licking Creek Little- Cacapon Maiden Creek Martinsburg Mikville Moorefield Moorefield Newark North Anna North Mountain Peach Bottom Perryman Petersburg Philpott Prompton Raystown Royal Glen Salem Church Savage River Seneca Sharpeburg V. Va..

Md.

Va, Pa.

Va, Pa.

We Va.

Va*

Pa.

W. Va.

Va.

V. Va.

V,. Va.

Md.

Va.

Mde W. Va@

W. Va.

Pa.

V, Va.

V, Va, Del*

Va.

we Va.

Pa.

Md, V. Va, Va.

Pat Pa.

Md.

Va.,

Md.

Md.

Mde Potomac Potomac Potomac Susquehanna James Delaware Potomac Potomac Delaware Potomac Roanoke Potomac Potomac Potomac Potomac Potomac Potomac Potomac Delaware Potomac Potomac Potomac Potomac Delaware Pamunkey(York)

Potomac Susquehanna Chesapeake Bay Potomac Roanoke Delaware Susqiehanna Potomac Rappahannock Potomac Potomac Potomac South Branch Monocacy River SoFk.Shenandoah River Susquehanna River Jackson River Dyberry Creek Cacapon River South River E.Br. Delaware River Patterson Creek Roanoke River South Branch North Branch North Branch Goose Creek Fishing Creek Licking Creek Little Cacapon River Maiden Creek Opequon Creek Shenandoah River South Branch Soo Pl.

South Branch White Clay River North Anna River Back Creek Susquehanna River Bush River South Branch Smith River Lackawaxen River Juniata River (Br.)

South Branch Rappahannock River Savage River Potomac River Antietem Creek'

T

TABLE B.1 ( )

%0

urn

182

817

1,638

24,100

65

677

222

812

219

7,800

1,577

"495

225

338

7.1

158

101

161

272

3),o01

1,173

283

66

3143

231

27,000

118

642

212

60

960

640

1,598

105

11,400

281

24,2

23.2

18.0

12.7

ý24.11

24.8

21o2

29.6

.16.5

23.4

16.8

18.9

21.5

22.3

26.5

34.8

29.0

29.7

27.3

27.2

16.2

18.0

21.1

29.8

25.0

27.9

12.7

1903

27.5

25.0

21.4

19.3

23.6

26.3

13.5

26.6

20o.6

20.9

114.3

8.2

21.3

17.3

26.5

12.7

19.0

12.9

14.9

16.o

17.1

2*4.2

32.7

26.1

27.4

23.5

24.1

11.7

1*4.0

17.1

26.0

21.3

24.8

8.2

15.3

24*3.

24.2

17.5

15.3

19.6

22.2

10.3

23.5

174,000.

  • .363,00

419,000

1,750,000

246,000

119,700

373,100

153,700

.202,000

176,000

1,000,000

  • 430,000

2799200

120,200

340,900

12,200

125,800

122,700

118,000

17?4.600

592,000

389,700

173,800

103,000

220,000

256,000

1,750,000

87,400

208,700

160,000

87,190

353,*400

208,700

552,000

107,400

1,393,000

154,900

TABLE B.1 ( )

Drainage Basin Average PMF Peak Project State River Basin Stream Area (in inches)

Discha ge (sq.mi.)

Prec.

Runoff (cfre)

Sherrill Drive Six Bridge Springfield Staunton Stillwater Summit Surry Tioga-Hammond Tocks Island Tonoloway Town Creek Trenton Trexler Tri-Towns Verplanck Washington, D, C,

Wayneaboro West Branch Whitney Point Winchester York Indian Rock Allatoona Alvin W. Vogtle Bridgewater Buford Carters Catawba Cherokee Claiborne Clark Hill Coffeeville Cowans Ford Demopolis Falls Lake Md.

Md.

WO Va.

Va.

Pa.

N. J,

Va.

Pa.

N. Jo Md.

Md.

N. J.

Pa.

We Va.

N. Y.

Mid.

Va.

W. Va.

No Y.

Va.

Pa.

Potomac Potomac Potomac Potomac Susquehanna Delaware James Susquehanna Delaware Potomac Potomac Delaware Delaware Potomac Hudson Potomac Potomac Potomac Susquehanna Potomac Susqueha~nna Rock Creek Monocacy River South Branch South Branch Shen.

Lacawanna River Delaware River James River Tioga River Delaware River Tonoloway Creek Town Creek Delaware River Jordon Creek North Branch Hudson River Potomac River South River Conococheague River Otselie River Opeqnon Creek Codorus Creek South Atlantic-Gulf Region Ca.

Ga, N. C.

Ga.

Ga.

N. C.

N. C,

Ala.

Ga.

Ala.

N. C.

Ala, N. C.

Albaba-Coosa Savannah Santee Apalachicola Alabama-Coosa Santee Congaree-Santee Alabama-Coosa Savannah Toabigbee Santee Tombigbee Neuse Etowah River Savannah River Catawba River Chattahoochee River Coosawattee River Catawba River Broad River Alabama River Savannah River Black Warrior River Catawba River Tombigbee River Neuse River

62

308

1,471

325

37

11, 100

9,517

"402

3,827

112

144

6,780

52

478

12,65o

11,5460

136

78

255

120

94

1,110

6,144

380

1,040

376

3,020

1,550

21,520

.6,144

18,600

1,790

15,300

76o

30.6

27.1

17.5

25.0

27.3

23.5

13.3

29.9

27.5

25.2

21.6

14.0

13.4

29.6

30.7

20.7

28.9

22.1

28.3

24.0

15.5

21.3

24.1

19.2

10.5

26.8

25.2

22.6

16.4

9.7

10.2

26.5

27.0

19.1

25o8

1707

22.2

19.8

21.8

14.5

21.7

19.7

26.6

22.3

16.6

14.9

21.8

13.6

16.7

23.2

12.3

14,5

11.2

14.3

21.2 C

0%

111,900

225o,00

405, 000

226:000

39,600

1,000,000

1,000,000

318,000

576,300

117,600

102,900

830,000

5500

268,000

1,100,000

1,280,000

116,000

78,700

102,000

142,l00

74,300

44O,000

1,001,000

187,000

428,900

203,100

674,000

560,000

682,500

1,140,000

743,400

636,000

1,068,000

323,000

C

1"

Q

TABLE B.1 ( )

Drainage Basin Average PM? Peak Project State River Basin Stream Area (in inches)

Discharge (soemi.)

Prec, Runoff

(4f8)

k'

Gainsville Hartwell Holt Howards Mill Jim Woodruff John H. Bankhead Jones Bluff Laser Creek Lookout Shoals Lower Auchumpkee MeGuire Millers Ferry Mountain Island New Hope Oconee Oconee Okatibbee Oxford Perkins Randleman Reddies Rhodhiss Shearon Harris Sprewell Bluff Trotters Shoals Walter F. George Warrior West Point V. Kerr Scott Bedford Bristol Fall Creek Ithaca Jamesville Linden Ala.

Ga.

Ala.

N. C.

Fla.

Ala.

Ala.

Ga.

N. Co Ga.

N. C.

Ala.

N. C.

N. C.

S. C.

S. C.

Miss.

N. Co N. Co N. C.

N. C.

N. C.

N. C.

Ga.

Ga.

Ga.

Ala.

Ga.

N. Co Ohio N. Yo N. Y.

N. Y.

Tombigbee Savannah Warrior Cape Fear Apalachicola Tombigbee Alabama Apalachicola Santee Apalachicola Santee Alabama Santee Cape Fear Savannah Savannah Pascagoula Santee Pee Dee Cape Fear Pee Dee Santee Cape Fear Apalachicola Savannah Apalachicola Tombigbee Apalachioola Pee Dee Cuyahoga Oswego Oswego Oswego Oswego Niagara Tombigbee River Savannah River Warrior River Deep River Apalachicola River Black Warrior River Alabama River Laser Creek Catawba River Flint River Catawba River Alabama River Catawba River New Hope River Keowee River Little River Okatibb"e Creek Catawba River Yadkin River Deep River Red1dies River Catawba River White Oak Creek Flint River Savannah River Chattahoochee River Black Warrior River Chattahoochee River Yadkin River Great Lakes Region Tinkers Creek Mud Creek Fall Creek Six Mile Creek Butternut Creek Little Tonawanda Creek

7,142

2,088

49232

626

17,150

3,900

16,300

1, Ll0

1,450

1,970

1,770

20,700

1,860

1,690

439

148

154

1,310

2,t473

169

94

1I

090

. 79

1,210

2,900

7,460

5,828

3,440

348

91

29

123

43

37

22

19.6

16.8

24.8

18.8

22.1

19.2

26.8

24.2

17.6

12.3

22.3

19.4

14o.2

11.6

24.6

20.7

23.7

19.8

14.7

12.1

22.0

19.4

26.5

23.5

26.6

.33.0

28.4

28.6-

26.0

28.0

24.8

25.8

24.0

16.6

19.5

21.9

25.6

28.6

29.9

17.1

26.9

26.0

30.8

.21.3

19.1

15.2

16.6

17.4

21.5

25.9

28.1

16.1

25.1

24.1

29,0

-J

702,400

875,000

650,000

305.000

1,133,800

670,300

664,000

303,600

492,000

355,600

750.000

844,000

362,000

511,000

450,000

245,000

87,"00

479,000

440,600

126,000

174, 200

379,000

163,500

318,000

800,000

843,000

5549000

440,000

318,000

79,000

64,900

63,400

77,900

35,200

64,400

TABLE 8.1 ( )

Pr ject Mount Morris Onondago Oran Portageville Quanicassee Quanicassee Qouanicassee Standard Corners Alum Creek Barkley Barren Beaver Valley Beech Fork Big Blue Big Darby Big Pine Big Walnut Birch Bluestone Booneville Brookville Buckhorn Burnsvlfle Cae.ar Creek Cagles Mill Carr Fork Cave Run Center Hill Clarence J. Brown Claytor Clifty Creek Dale Hollow Deer Creek Delaware Dewey State N. Y.

N. Y.

N. Y.

N. Y.

Mich.

Mich.

Mich.

N. Y.

Ohio Ky.

Ky.

Pa.

W. Va.

Ind.

Ohio Ind.

Ind, we Va.

W. Va.

Ky.

Ind.

Ky.

W. Va.

Ohio Ind.

Ky.

Ky.

Temn.

Ohio Va.

Tmd.

Tenn.

Ohio Ohio Ky.

River Basin Genesee River Lake Ontario Oswego Genesee Saginaw Bay Saginaw Bay Saginaw Bay Genesee Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio SStream Genesee River Onondigo Greek Limestone Creek Genesee River Saginaw River Tittabawassee River Quanicassee River Genesee River Ohio Region Alum Creek Cumberland River Barren River Ohio River Twelve Pole Creek Big Blue River Big Darby Creek Big Pine Creek Big Walnut Creek Birch River Nea River So. Fk. Kentucky River White.ater River M. Fk.Kentucky River Little Kanawha River Caesar Creek Mill Creek No; Fk. Kentucky River Licking River Caney Fork Buck Creek New River Clifty Creek Obey River Deer Creek Olentangy River Big Sandy River Ara ae Area.

1,077

68

47

983

6,260

2,o40

70

265

123

8,700

940

23,000

78

269

326

197

142

4,565

665

379

408

165

237

295

58

826

2,174

82

2,382

145

935

278

381

207 Basin Average

(,ininches)

7Prec.

Runoff Prec Ruoff (cfsm

17.0

14.6

24.2

23.3

25.1

23.4

17.8

15.8

22.3

20.3

24.6

22.6

17.6

26.4

23.5

24.1

22.4

24-0

28.:4

23.2

24.2

23.8

24.8

24.1

24.6

27.4

22.8

22.-3

29.0

22.3

24.9

23.8

22.9

22.7

25.0

21.8

21.5

16.9

23.5

21.2

21.3

20.4

22.0

25.2

13.8

21.0

22.1

21.5

22.3

21.9

22.7

25.0

20.6

21.8

26.7

18.0

23.0

23.3

20.1

20.4

22.6 r

Go PJ? Peak Discharge

385,000

61,800

80,790

359,000

440,000

270,000

46,000

189,900

3.10,000

1,000,000

531,000

1,500,000

84,000

161,000

294,000

174,000

144,ooo

102,000

410,000

425,000

272,000

239,000

138,800

230,200

159,000

132,500

510,000

696,0oo0

121,000

1,1091000

112,900

435to00

160,000

296,000

75,500

(

r TABLE B.1 ( )

Q

TABLE B.1 ( )

River Basin Drainage stream Area f-

'-

Basin Average (in inches)

Dillon Dyes Eagle Creek N. Br. Clarion East Fork East Lynn Pishtrap Grayson Green River Helm John W. Flannagan J. Percy Priest Kehoe Kinzua Lafayette Laurel Leading Creek Lincoln Logan Louisville Mansfield Martins Fork Meigs Meigs Mill Creek Mississinena Michael J. Kirwin Monroe Nuddy Creek Nolin N. Br. Kokosing N. Fk. Pound River Paint Creek Paintsville Panthers Creek Patoka R. D. Bailey Rough River Ohio Ohio Ky.

Pa.

Ohio w. Va.

Ky.

Ky.

Ky.

Ill.

Va.

Tenn.

Ky.

Pa.

Ind.

Ky.

W. Va.

Ill'

Ohio Ill.

Ind.

Ky.

Ohio Ohio Ohio Ind.

Ohio Ind.

Pa.

Ky.

Ohio Va.

Ohio Ky.

V. Va.

Ind.

W. Va.

Ky.

Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Licking River Dyes Fork Eagle Creek E. Br. Clarion River E. Fk. Little Miami River Twelve Pole Creek Levisa Fk. Sandy River Little Sandy River Green River Skillet Fk. Wabash River Pound River Stones River Tygarts Creek Allegheny River Wildcat Creek Laurel River Leading Creek Eabarras River Clear Creek Little Wabash River Raccoon Creek Cumberland River Meigs Creek Meige Creek Mill Creek Mississinewa River Mahoning River Salt Creek Muddy Creek Nolin River N. Br. Kokosing River N. Fk. Pound River Paint Creek Paint Creek, Panther Creek Patoka River Guyandotte River Rough River y

Project State K

PNF Peak PMF Peak Discharge (vcfa

%0

t0

748

44

292

?2

342

133

395

196

682

210

222

892

127

2,180

791

282

146

915

84

661

216

56

72

27

181

809

80

441

61

703

44

18

573

92

24

168

540

454

19.8

30.?

24.?

22.7

23.8

29.4

26.1

27.5

26.5

24.8

27.6

25.9

26.0

16.4

20.6

25.9

25.0

21.2

29.5

22.1

25.9

27.9

29.5

32.2

24.0

20,6

26.0

25.9

22.8

14.2

25.4

35.3

21.8

26.3

36.7

.25.6

23.1

27.6

16.3

27.8

22.1

18.9

21.2

26.5

23.2

24.7

231.9

22.6

24.9

18.8

23.4

12.8

18.5

20.7

22.5

19.0

27.0

19.9

23.0

22.7

26.6

29.3

21.4

18.4

20.1

25.4

19.6

13.2

22.6

32.2

18.8

23.8

33.9

23.5

20.3

25.1 thinnff k

L

246,000

49,500

172,800

41,500

313,200

72,000

320,000

83,300

"109,000

152,800

235,800

430,000

105,900

115,000

182,000

120,000

131,000

502,000

78,000

310,000

175,800

61,800

72,100

45,500

92,000

196,000

51,800

366,000

59,300

158,000

50,000

51,200

305,000

?7,500

59,800

292,000

349,000

358,000

TABLE B.1 ( )

River Basin Stroaa Drainage Area

.~n4 Basin Average t(in inches)

=1 I e a

0

aw t&*E

Rowlesbsrg Salamonia Stonewall Jackson Sumersville Sutton Taylorville Tom Jenkins Union City Utica West Fork West Fk. Mill Ck.

Whiteoak Wolf Creek Woodcock Yatesville Youghiogheny Zimmer, Vm. H.

Bellefonte Browns Ferry Sequoyah Ames Byron Bear Creek Blue Earth Blue Earth Carlyle Clarence Cannon Clinton Coralville Duane Arnold Faradale Fondulac Friends Creek w. Va.

Ind.

W. Va.

V. Va.

W. Va.

Ky.

Ohio Pa.

Ohio W. Va.

Ohio Uhio Ky.

Pa.

Ky.

Pa.

Ohio Ala.

Tenn.

Tenn.

Iowa Ill.

Mo.

Minn.

Hinn.

Ill, Mo.

I Li.

Iowa Iowa Ill.

Ill.

Il1.

Ohio Ohio Ohio Ohlo Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Upper Upper Upper Upper Upper Upper Upper Upper Upper Upper Upper Upper Upper Miss.

Miss.

Miss.

Miss.

Miss.

Miss.

Miss.

Miss.

Miss.

Miss.

Miss.

Miss.

Miss.

Cheat River Salamonla River West Fork River Gauley River Elk River Salt River Hocking River French Creek N. Fk. Licking River W. Fk. Little Kanawha Mill Creek Whiteoak Creek Cumberland River Woodcock Creek Blaine Creek Youghiogheny River Ohio River Tennessee Region Tennessee River Tennessee River Tennessee River Upper Mississippi Region Skunk River Rock River Bear Creek Minnesota River Blue Earth River Kaskaskia River Salt River Salt Creek Iowa River Cedar River Farm Creek Fondulac Creek Friends Creek

936

553

102

803

537

353

33

222

112

238

30

214

5789

46

208

"434.

70,800

23.340

27,130

20,650

314

8,000

28

11,250

3,550

2,680

2,318

296

3,084

6,250

26

5,4

133

21.2

21.3

24, N

23.8

20.4

24.8

26.?

20.*3

24.7

24.4

31.9

24.5

20.6

23.5

25.2

18.4

.19.0

22.2

21.1

20.4

22.2

25.8

17.8

22.1

21.8

30.0

21.6

20.0

20.9

22.6

25.4

21.3

18.4

29.0

26.2

14.2

10.9

18.4

14.8

19.2

15.8

21.8

15.7

20.8

14.4

24.0

21.4

27.8

22.1

19.9

21.6 C

Project State PMF Peak Discharge Ut

%0

331.000

201,000

85,500

"412,000

222,400

"426,000

"43000

87,500

73,700

156,4oo

81,600

134,000

9969000

37,700

l8, 000

151,000

2,150,000

1,160,000

1,200,000

1,205,000

87,200

308,000

38o000

283,&00

206,000

246,000

4?76,200

99,500

326,000

316,000

67,300

21,200

83,160

C

C

Q

TABLE B.1 ( )

River Basin Stream .

Drainage Area (sa.mi. )

Basin Average (in inches)

Prec.

Runoff Jefferson Lapa'ge Mankato Meramec Park Montevideo Monticello New Ulm New Ulm Oakley Prairie Island Red Rock Rend Saylorville Shelbyville Arkabutla Enid Grenada Sardis Union Vappapello Burlington Fox Hole Homoe Kindred Lake Ashtabula Orwell Bear Creek Big Bend Blue Springs Blue Stem Bowman-Haley Branched Oak Iowa Wisc.

Minna Mo.

Minn.

Minn.

Minn.

Minn.

Ill.

Minn.

Iowa Ill.

Iowa Ill, Miss.

Miss.

Miss.

Miss.

Mo.

Mot N. D.

N. D.

N. D.

N. D.o N. D.

Minn.

Colo.

S. D.

Mo.

Nebr.

N. D.

Nebr.

Upper Miss.

Upper Miss.

Upper Miss..

Upper Miss.

Upper Miss.

Upper Miss.

Upper Miss.

Upper Miss.

Upper Miss.

Upper Miss.

Upper Miss.

Upper Miss.

Upper Miss.

Upper Miss.

Lower Lower Lower Lower Lower Lower Souris Souris Red of Red of Red of Red of Miss.

Miss.

Miss.

Miss.

Miss.

Miss.

North North North North Missouri Missouri Missouri Missouri Missouri Missouri Raccoon River Kickapoo River Minnesota River Meramec River Minnesota River Mississippi River Minnesota River Cottonwood River Sangamon River Mississippi River Des Moines River Big Muddy River

.Des Moines River Kaskaskia River Lower Mississippi Region Coldwater River Yacona River Yalobusha River Tallahatchia River Bourbeuse River St. Francis River Souris-Red-Rainy Region Souris River Des Lacs. River Park River Sheyenne River Sheyenne River dtter Taln River Missouri Region Bear Creek Missouri River Blue Springs Creek Olive Br. Salt Creek Grand River Oak Creek Project State K

PMF Peak Discharge (of s)

"Ih

1,532

266

14,900

1,407

6,180

13,900

9,500

1,280

808

44,755

12,323

"488

5o823

1,030

1,000

560

1,320

'1, 545

771

1,310

9,490

939

229

3,020

983

1,820

2,6

5,840

33

17

446

89

21.7

22.8

13.9

22.9

15.2

14o4

21.2

23.5

12,1

2?.5

13.8

22.1

22.5

25.4

24.0

32.5

25.0

13.0

13.2

19.9

15.2

13.4

12.4

17.1

24.4

26.5

25.0

15.5

20.1

19.0

18.9

10.6

17.5

11.6

11.1

]1.6

17.2

7.5

21.5

10.3

19.1

21o2

24.?

23P1

26.0

19.9

11.7

5.7

12.4

12.3

8,6

9.5

14.7

6.7

9.0

23.8

2J.7

12.7

16.8

267,300

128,000

329,000

552,000

263,0oo

365,000

263,000

128,000

178,000

910,000

613o000

308,200

277,800

142,000

430,000

204,900

310,800

2Q0,400

264,000

344,000

89,100

52,700

35,000

68.700

86,500

25,500

225,000

725,000

42,400

69,200

110,000

93,600

TABLE B.1 ( )

River Basin Stream Drinage Area

1A

Basin Average (in inches)

-'

=-

&

,m-A.I

B*raymar MO.

Brookfield mo.

Bull Hook Mont.

Chatfield Colo.

Cherry Creek Colo.

Clinton Kans.

Cold Brook S. Do Conestoga Nebr.

Cottonwood Springs S. D.

Dry Fork Ko.

East Fork Mo.

Fort Scott Kans.

Fort Peck Mont.

Fort Randall S. D.

Fort St. Vrain Colo.

Garrison No D,

Gavins Point Nebr.

Grove Kans.

Harlan County Nebr.

Ha=y S. Truman Mo.

Hillsdale Kane.

Holmes Nebr.

Kanopolls Kane.

LUnneus Mo.

Long Branch Mo.

Longview Mo.

Melvern Kans.

Mercer Mo.

Milford Kanso Mill Lake Mo.

Oahe So Do Olive Creek Nebr.

Onag Kans.

Pattonsburg Mo.

Pawnee Nebr.

Perry Kano, Pioneer Colo.

Pause do Terre Mo.

Missouri Missouri Missouri Missouri Missouri Missouri Missouri Hissouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Shoal Creek West Yellow Creek Bull Hook Creek South Platte River Cherry Creek Wakarusa River Cold Brook Holmes Creek Cheyenne River Fishing River Fishing River Marmaton River Missouri River Missouri River South Platte River Missouri River Missouri River Soldier Creek Republican River Osage River Big Bull Creek Antelope Creek smoky Hill River.

Locust River So Fk. Little Chariton Blue River Marias des Cygnes River Weldon River Republican River Mill Creek Missouri River Olive Br. Salt Creek Vermillion Creek Grand River Pawnee Br. Salt Creek Delawre River Republican River Poaue do Terre River

390

140

54

3,018

.385

367

15

26

30.2

19

279

57,725

14:150

4,700

123,215

16,000

259

7,141

7,856

144

5,4

2,560

546

109

50

349

"427

3,620

9.5

62,550

8.2

301

2,232

36

1,U17

918

611

24.7

22.2

24.5

22.0

10.8

13.2

2.0

2309

9.5

23.6

22.4

6.4

25.2

21.9

18.7

11.1

26.1

22.5

25.7

24ol

23.8

22.7

3.2

3.7,

2.7

3.3

23.8

22.7

7.6

2.8

13.1

25.4

24.3

27.1

23.8

6.9

3.6

2397

21.2

  • 4.5

21.9

26.2

23.4

23.1

22.1

21.0

17.8

8.8

5.0

27.7

26.4

6.5

26.0

22o7

23.5

22.2

18.8

16.3

23.5

2O02

21.5

18.4

15.0

8.3

23.9

21.6

.

Project State PM? Peak Discharge U'

173,800

64,5S00

26,2oo

.584,500

350,000

153,500

95,700

52,000

74,700

19,460,

62,700

198.000

360,000

80,000

500,000

1,026,000

642,000

79,800

"485, 000

1,060,000

190,500

41,600

456,300

242,300

66,500

74,800

182,000

274,000

757,400

13,000

946,000

36,650

251,000

400,100

59,000

387,400

390,000

362,000

C

r

Q

TABLE B.1 ( )

River Basin Stroam Drainage Area t.

m.

,4 Basin Average fin Inches)...

Pomona Rathbun Smithville Stagecoach Stockton Thomas Hill Tomahawk Trenton Tuttle Creek Twin Lakes Wagon Train Wilson Wolf-Coffee Yankee Hill Arcadia Bayou Bodcau Beaver Bell Foley Big Hill Big Pine Birch Blakely Mountain Blue Mountain Boswell Broken Bow Bull Shoals Candy Canton Cedar Point Clayton Cleariater Conchas Cooper Copan Council Grove County Line Kans.

Iowa Mo.

Nebr.

Mo.

Mo.

Kane.

Mo.

Kans*

Nebr.

Nebr.

Kans.

Kans.

Nebr.

Okla.

La.

Ark.

Ark.

Kans.

Tex.

Okla.

Ark.

Ark.

Okla, Okla.

Ark.

Okla, Okla.

Kans.

Okla.

Mo.

N. Mex.

Tex.

Okla, Kan.s Moo Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Missouri Arkansas Red White Arkansas Arkansas Red Arkansas Red Arkansas Red Red White.

Arkansas Arkansas Arkansas Red White

.Arkansas Red Arkansas Arkansas.

White

110 Mile Creek Chariton River Little Platte River Hickman Br. Salt Creek Sac River Little Chariton River Tomahawk Creek Thompson River Big Blue River S. Br. Middle Creek Hickman Br. Salt Creek Saline River Blue River Cardwell Br. Salt Creek Arkansas-White-Red Region Deev Fork River Bayou Bodcau White River Strawberry River Big Hill Creek Big Pine Creek Birch Creek Ouachita River Petit Jean River Boggy Creek Mountain Fork White River Candy Creek North Canadian River Cedar Creek Jackfort Creek Black River South Canadian River South Sulphur River Little Caney River Grand River James River Project State K

Discharge refs)~

Ut

322

549

213

9e7

1,160

147

24

1,079

9,556

11

16

1,917

45

8.,4

105

656

1,186

78

37

95

66

1,105

500

2,273

7.54

6,036

43

7,600

119

275.

898

7.409

476

505

246

153

26.2

23.7

23.9

26.o

19.7

25.0

26.4

22.6

14.5

25.9

25.2

20.2

26.1

26.0

28.5

35.3

24.3

26.4

25.4

31.3

29.0

21.5

21.8

27.6

32.5

15.2

29.3

12.4

25.4

31.3

16.0

4,8

30.9

26.2

25.5

27.2

25.2

21.1

20.2

22.7

18.9

23.,0

24.8

20.1

8.1

22.6.

21.9

10.8

24.5

22.7

24.9

33.6

22.4

23.5

23.6

29.3

26.0

19.6

18.2

29,4

1.0

27.5

4.1

22.6

29.3

13.8

3.0

29.2

21.1

22U7

25.3

186,000

188.000

185,000

50,500

4?0,000

?79000

26,800

342,400

798,000

56,000

53,500

252,000

58,000

58,400

144,000

168,?00

480,000

57,000

47,500

86,000

91,000

418,000

258'000

405,000

569,000

?65,000

67,500

371,000

208,000

240,000

432,000

582,000

194,400

169,000

250,000

133,000

A

e It

0

Pvr Rnf

TABLE B.1 ( )

Drainage Basin Average PM? Peak Project State River Basin Stream Area (in inches)

Discharge (S,.Ml.

Prec, Lng.of (cfs)_

DeGray Denison DeQueen Dierks Douglas El Dorado Elk City Efaula Fall River Ferrells Bridge Fort Gibson Fort Supply Gillhaa Great Salt Plains Greers Ferry Heyburn Hugo Hulah John Martin John Redmond Kaw Keystone Lake Kemp Lukfata Marion Milluood Narrows Neodesha Nimrod Norfolk Oologah Optima Pat Mayse Pine Creek Robert S. Kerr Sand Shidler Skiatook Lable Rock Ark.

Okla.

Ark.

Ark.

Kans.

Kans.

Kans.

Okla.

Kans.

Tex.

Okla.

Okla.

Ark.

Okla.

Ark.

Okla.

Okla.

Okla.

Colo.

Kans.

Okla.

Okla.

Tex.

Okla.

Kans.

Ark.

Ark.

Kans.

Ark.

Ark.

Okla, Okla.

Tex.

Okla.

Okla, Okla.

Okla.

Okla.

Mo.

Red Rod Red Red Arkansas Arkansas Arkansas Arkansas Arkansas Red Arkansas Arkansas Red Arkansas Red Arkansas Red Arkansas Arkansas Arkansas Arkansas Arkansas Red Red Arkansas Red Red Arkansas Arkansas White Arkansas Arkansas Red Red Arkansas Arkansas Arkansas Arkansas White Caddo River Red River Rolling Fork Saline River Little Walnut Creek Walnut River Elk River Canadian River Fall River Cypress Creek Grand River Wolf Greek Cossatot River Salt Fk. Arkansas River Little Red River Polecat Creek Kianichi River Caney River Arkansas River Grand River Arkansas River Arkansas River Wichita River Glover Creek Cottonwood River Little River Little Missouri River Verdigris River Fourche La Fave River North Fork White River Verdigris River North Canadian River Sanders Creek Little River Arkansas River Sand Creek Salt Creek Hominy Creek White River C

U,

453

33,783

169

113

238

234

634

8,405

556

880

9,477

271

3,200

1,146

123

1,709

732

18,130

3,015

7,250

22,351

2,086

291

200

4,144

239

1,160

68o

1,#765

4,339

2,341

175

635

64.386

137

99

354

4,020

28.4

12.9

35.5

36.2

26.7

26.8

23.0

15.9

27.1

31.1

16.2

20.5

34.,6

16.?

17.9

26-3 Z7.1

16.5

7.4

18.2

14.5

12.9

23.7

34.6

24.8

28.4

25.0

18.?

20.2

15.7

17.8

13.8

31.8

32.8

10.0

31.3

27.3

27..8

18.3

26.0

6.5

32.5

33.2

22.9

22.8

20.3

10.9

23.0

28.1

12.6

15.7

31.5

9.3

17.5

24.2

25.8

13.5

2.0

15.6

9.9

6.7

19.2

31.5

21.9

25.3

23.0

16.6

17.2

12.8

13.9

9.0

29.4

29.8

5.8

28.3

24.0

23.8

15.4

397,000

1,830,000

254,000

202,000

156,000

196, ooo

.196,000

319,000

700,000

"442.000

367,000

865,000

54?7000

355,000

412,000

630,000

151,000

339,000

239,000

630.00O

638,000

774.000

1,035,000

566,000

349,000

160,000

"442,000

194,000

287.000

228,000

372,000

451,000

386,000

150,000

523,000

1,884,000

154,000

104,100

147,800

657,000

C

r

Q

Project Tenkiller Ferry Texarkana Toronto Towanda Trinidad Tuskahoma Wallace Lake Vaurika Webbers Falls Vister Addicks Aquilla Aubrey Bardwell Barker Belton Benbrook Big Sandy Blieders Creek Droimwood

.Canyon Lake Carl L. Estes Coleman Comanche Peak Ferguson Gonzales Grapevine Horde Creek Lake Fork Lakeview Laneport Lavon Lewisville Millioan Navarro Minle Navasota State Okla.

Tex.

Kans.

Kans.

Colo.

Okla.

La.

Okla.

Okla.

Okla.

Tex.

Tex*

Tex.

Tex..

Tex.

Tex, Tex.

Tex.

Tex.

Tex.

Tex.

Tex.

Tex.

Tex.

Tex.

Tex.

Tex.

Tex.

Teax Tax, Tex.

Tex.

Tex.

Teax Tex*

Tex.

River Basin Arkansas Red Arkansas Arkansas Arkansas Red Red Red Arkansas Arkansas

.San Jacinto Brazos Trinity Trinity San Jacinto Bre*zos Trinity Sabine Guadalupe Colorado Guadalupe Sabine Colorado Brazos Brazos Guadalupe Trinity Colorado Sabine Trinity Brazos Trinity Trinity Brazos Trinity Brazos Stream Drainage Area Illinois River Sulphur River Verdigris River Whitewater River Purgatorie River Kiamichi River Cypress Bayou Beaver Creek Arkansas River Poteau River Texas-Gulf Region South Mayde Creek Aquilla Creek Elm Fork Trinity River Waxahachie Creek Buffalo Bayou Leon River Clear Fork Trinity River Big Sandy Creek Blieders Creek Pecan Bayou Guadalupe River Sabine River Colorado River Squaw Creek Navasota River San Marcos River Denton Creek Horde Creek Lake Fork Creek Mountain Creek San Gatriel Pivor Eset Fork, Trinity River Elm Fork, Trinity River Navasota River Riohland Creek Navasota River

1,

610

3,400

730

422

671

347

260

562

"W8,127

99.3

129

2914

692

178

150

3,560

429

196

15

1,544

1,432

1,146

287

64

1,782

1,344

695

48

507

232

/09

770

3,660

2,120

320

1,241 Basin Average In Rnofhes)

Pre

e. Runnff

20.e4

26.6

23.9

24.3

10*0

16.5

38.4

26.5

10.7

25.9

29.7

31.2

28.5

31.1

29.4

29.4

28.2

36.2

43.8

27.8

24o5

34.5

30.9

39.1

26.0

24.9

26.5

28.9

33.8

31.6

28.9

26,2

23.2

25.5

33.6

27.2

17.6

20.1

21.1

20.5

4.5

14.6

35.6

22.2

6.1

23.2

27.9

28.6

26.0

28.3

27.9

20.6

21.1

32.2

34.6

21.0

16.9

30.4

24*. 1

34.1

22.4

15.4

21.5

23.4

29.7

28.8

23.7

23.o4

20.5

22.4

30.5

24.2 TABLE B.1 ( )

K

Ut PMF Peak Discharge

406,000

451,000

"400,000

198,000

296,000

188,g400

197,000

354,000

1,518,000

339,000

68,670

283,800

445,300

163,500

55,900

608,400

290,100

125,200

70,300

676,200

687,000

277,000

267,800

149,000

355,800

633,900

319,400

.92,400

247,600

335,000

521,000

430,?00

632,200

393,v40o

280,500

327,400

TABLE B.1 ( )

-Project

  • North Fork Pecan Bayou Proctor Roanoke

-Rockland Sam Raybrn San Angelo Somerville South Fork Stillhouse Hollow Tennessee Colony Town Bluff Waco Lake Whitney Abiquiu Alamogordo Cochita Jemez Canyon Los Esteroa Two Rivers Alamo Mcoicken Whitlow Ranch Painted Rock Little Dell Mathews Canyon Pine Canyon Applegate Blue River State River Basin'

Tex.

Tex.

Te,:.

Tex.

Tex.

Tex.

Tex.

Tex.

Tex.

Tex, Tea.

Tex, Tex.

Tex.

No N.

N.

N.

N.

N.

Brazos Colorado Brazoa Trinity Neches Neches

-Colorado Brazos Brazos Brazos Trinity Neches Brazoa Brazos Rio Grande Rio Grande Rio Graude Rio Grande Rio Grande Rio Grande me H.

MI

H.

H.

H.

Ariz.

Ariz.

Ariz.

Ariz.

Utah N.y.

No.

Colorado Colorado Colorado Colorado Jordon (Great)

Great Basin Great Basin Oreg.

Rogue Ore&.

Columbia Stream Drainage Area f,.4 N. F

k. San Gabriel River

.Pecan Bayou Leon River Denton Creek Neches River Angelina River North Concho River.

Yogua Creek S. Fk. San Gabriel River Lam pasas River Trinity River Neches River B*sque River Brazos River Rio Grande. Region Rio Grande Pecos River Rio Grande Jemez Canycn Peccs River Rio Hondo Lower Colorado Region Bill Williams River Aqua Fria River Queen Creek Gila River Great Basin Region Dell Creek Mathews Canyon Pine Canyon Columbia-North Pacific Region Applegate River S. Fk. McKenzie River Basin Average (in inches)

D~n D..n

246

316

1,265

604

39557

3,449

1,511

1,006

1 123

1,318

12,687

7,v73

1,670

17,656

3,159

3,917

4,065

1,034

2,434

1,027

4,770

247

143

50,800

16

34

45

223

88

31.7

30.7

27.0

28.9

21.0

23.7

21.2

22.0

32.6

27.?

25.1

18.9

25.7

15.7

4.6

9.2

12.2

26.6

23.8

21.4

17.2

20.6

13.1

13.6

27.4

22.5

20.4,

15.7

20.6

7.7

8.2

1.9

1.9

3.7

4.7

12.0

3.5

3.3

11.5

9.7

7.7

2.8

8.1

6.0

6.6

7.4

8.2

6.6

28.9

22.7

(

P1F Peak Discharge

/'-..'_

'0

Ch

265,800

236,200

459,200

313.600

150,400

395,600

614,5c0

4 15,700

145,300

686s400

575o600

326,000

  • 622,900

700,000

130,000

277,000

320,000

.220.000

352,000

281,400

5B0,000

52,000

230,000

620,000

23,000

"35,000

38.000

C

99, 500

.39.500

tC

0

L&Wý*

LIVA&

LCIRI

Q

TABLE B.1 ( )

sin Stream Lrainaee Area

1 4 K

Basin Average P1* Peak

( in inches)

Discharge Prec,_ -noff (efa)

Bonneville Caseadia Chief Joseph Cottage Grove Cougar Detroit Dorena Dworshak Elk Creek Fall Creek Fern Ridge Poster Green Peter Gate Creek Hills Creek Holley

'Howard A. Hanson lee Harbor John Day Libby Little Goose Lookout Point Lost Fork Lower Granite Lower Monumental Lucky Peak MPeNary Mud Mountain Ririe The Dallee Wynoochee Zintel Bear Big Dry Creek Black Butte Brea Oreg.

Oreg.

Wash.

Oreg.

Oreg.

Oreg.

Oreg.

Ida.

Oreg.

Oreg.

Oreg.

Oreg.

Oreg.

Oreg.

Oreg.

Oreg.

Wash.

Wash.

Ore.

Mont.

Wash.

Oreg.

Oreg.

Wash.

Wash, Ida, Oreg.

Wash, Ida.

Oreg.

Wash.

Wash.

Cal.

Cal.

Cal.

Cal.

Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Rogue Columbia Columbia Columbia Columbia Columbia Columbia Columbia Green Columbia Columbia Columbia Columbia Columbia Rogue Columbia Columbia Columbia Columbia Puyallup Columbia Columbia Chechalis Columbia San Joaquin San Joaquin Sacranento Santa Ana Columbia River

240,000

South Santian River

179 Columbia River

7.5,000

Coast F

k. Willamette River

104 S. F

k. McKenzie River

208 North Santiam River

438 Row River

26.

N. F

k. Clearwater River

2,440

Elk Creek

132 Willamette River

184 Long Tom River

252 South Santiam River

4144 Middle Santiam River

27?

Gate C

k. McKenzie River

50

Middle F

k. Willamette River

38q Calapooia River

105 Green River

221ý

Snake River

109,000

Columbia River

226,00O

Kootenai River

9,070

Snake River

10i4900

Middle F

k. Vilaette Aiver

991 Lost P

k. Rogue River

6,7'

Snake River

101,,4O0

Snake River

108,500

Boise River

2,650.

Columbia River

214,000

White River

'400

Willow C

k. Snake River

620

Columbia River

237,000

Wynoochee River

41 Zintel Canyon Snake River IQ

California Region Bear Creek Big Dry Creek Stony Creek Brea Creek

72

]3.b

91

19.0

741

19.?

23

10.6 K

Project State River Bas

22.1

42.2

29.0

29.7

34.2

36.0

34.6

70.5

32.6

33.8

20.3

40.8

41.3

146..3

31.0

35.8

26.8

13.9

2191

3' 5

14,6

10.8

22.7

14*?

1400

32.5

23.0

31.9

21,14

21.1

69.9

7.8

13.6

13.8

12.3

6.6

2,720,000

1159,000

1,550,000

45,000

98,000

203,000

131,600

280,000

63,500

100,000

148,600

260,000

160,000

37,000

197,000

59,000

164,000

95,%000

2,650,000

282,000

850,0C0

360,000

169,0Cc

850.000

850,000

123,000

2,610,000

!86,000

4?,000

2,660,000

52,500

"4O, 500

30,0400

17,000

1 54,000

37000

=

a

9

TABLE B.1 ( )

River Basin Stream Drainage Area (sq.mi.)

Basin Average (in inches)

Prec.

Runoff Buchanan Burns Butler Valley Carbon Canyon Cherry Valley Comanche Coyote Valley Dry Creek Farmington Folsom Fullerton Hansen Hidden Lake Isabella Knights Valley Lakeport Lopes Mariposa Kartis Creek Marysville Mojave River N*ew Dullards Bar New Exchequer New Hogm New Melones Oroville Owens Pine Flat Prado San Antonio Santa Fe Sepulveda Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

Cal.

San Joaquin San Joaquin had Santa Ana San Joaquin San Joaquin Russian Russian San Joaquin Sacramento Santa Ana Los Angeles San Joaquin San Joaquin Russian Sacramento Los Angeles San Joaquin Truckee Sacramento Mojave Sacramento San Joaquin San Joaquin San Joaquin Sacramento San Joaquin San Joaquin Santa Ana Santa Ana San Gabriel Los Angeles Chowchilla River Burns Creek Mad River Santa Am River Cherry Creek Mokeluane River Fast Fk. Russian River Dry Creek Little John Creek American River Fullerton Creek Tujunga Wash Fresno River Kern River Franz-Maacama Creek Scotts Creek Pacoima Creek Mariposa Creek Martis Creek Yuba River Mojave River North Yuba River Merced River Calaveras River Stanislaus River Feather River Owens Creek Kings River Santa Ama River San Antonio Creek San Gabriel River Los Angeles River

235

74

352

19

117

618'

105

82

212

1,875

5.0

147

234

2,073

59

52

34

108

39

1,324

215 L489

1,031

362

897

2,600

26

1,542

2,233

27

236

152

26.0

20.1

17.*4

10.6

35.2

10.4

10.3

24.3

23.1

25.0

19.9

22.9

21.3

15.6

11.3

10.9

21.2

17.5

9.0

6.8

9.8

29.9

18.4

27.1

6.5

31.6

28.9

30.9

24.0

20.8

18.6

13.0

26.5

12.7

38.9

27.0

40.4

30.4

38.9

25.7

27.1

15.9

18.3

25.8

16.3

23.3

22.8

14.4

9.2

28.5

14.4

26.3

13.0

13.0

35.*5

15.0

r Project State PM? Peak Discharge (ofe)

I.A

00

127,000

26,800

137,000

56.000

60,000

261,000

57,000

"45,000

56,000

615,000

16,000

130,000

114,000

235,000

"44,300

36,100

32,000

"43,000

12,400

460,00oc

186,000

226,ooo

396,000

132,000

355,000

720,000

11.400

437,000

700,000

60,000

194,000

220,000

C

r

Q

River Basin Stream Drain..te Area (sa.mi.)

Basin Average (in Inches)

Pree.

Runoff Success Terminus Tuolumne Whittier Narrows Cale Cal$

cal.

Cal.

San Joaquin San Joaquin San Joaquin San Gabriel Tule River Kaweah River Tuolumne River San Gabriel River TABLE B.1 ( )

K

Pro.iect

'0

'0

State F

Peak Discharve (ofa)

383

560

it 5133

"40.1

25.1

1.*,

i2.6

2468

20. ?

13.7

200,000

290,000

602,000

305,000

APPENDIX C

SIMPLIFIED METHODS OF

ESTIMATING PROBABLE MAXIMUM SURGES

TABLE OF CONTENTS

Page C.

A. INTRODUCTION

......

....................................

1.59-42 C.2 SCOPE .

.............................................

1.59-42 C.3 PROBABLE MAXIMUM SURGELEVELS FROM HURRICANES ...............

1.59-42 C.3.1 Methods Used

.............

........................

1.59-42 C.3'2 Use of Data in Estimating PMS ............

1.59-42 C.3.3 Wind-Wave Effects ......................................

1.59-43 C.4 LIMITATIONS .

..........................................

1.59-43 REFERENCES .

.............................................

1.59-43 FIG URES .. ..............................................

1.59-44 TABLES .

...............................................

1.59.46 FIGURES

Figure C.1-Probable Maximum Surge Estimates, Gulf Coast

....................

1.59-44 C.2-Probable Maximum Surge Estimates, Atlantic Coast ..................

1.59-45 TABLES

Table C. I-Probable Maximum Surge Data ..............................

1.59-46 C. 2-Probable Maximum Hurricane, Surge, and Water Level-Port Isabel ..........

1.59.47 C. 3-Probable Maximum Hurricane, Surge, and Water Level-Freeport ............

1.59.48 C. 4-Probable Maximum Hurricane, Surge, and Water Level-Eugene Island ........

1.59.49 C. 5-Probable Maximum Hurricane, Surge, and Water Level-Isle Dernieres .........

1.59-50

C. 6-Probable Maximum Hurricane, Surge, and Water Level-Biloxi ....

...........

1.59-51 C. 7-Probable Maximum Hurricane, Surge, and Water Level-Santa Rosa Island .....

.1.59-52 C. 8-Probable Maximum Hurricane, Surge, and Water Level-Pitts Creek ...........

1.59-53 C. 9-Probable Maximum Hurricane, Surge, and Water Level-Naples ....

.........

1.59-54 C.-10-Probable Maximum Hurricane, Surge, and Water Level-Miami ..............

1.59-55 C.A I-Probable Maximum Hurricane, Surge, and Water Level-Jacksonville

...........

1.59-56 C. 12-Probable Maximum Hurricane, Surge, and Water Level-Jeckyll Island ........

1.59-57 C.13-Probable Maximum Hurricane, Surge, and Water Level-Folly Island ...........

1.59-58 C.14-Probable Maximum Hurricane, Surge, and Water Level-Raleigh Bay ..........

1.59-59 C.15-Probable Maximum Hurricane, Surge, and Water Level-Ocean City ...........

1.59-60

C.16-Probable Maximum Hurricane, Surge, and Water Level-Atlantic City ..........

1.59-61 C.17-Probable Maximum Hurricane, Surge, and Water Level-Long Island ...........

1.59-62 C.18-Probable Maximum Hurricane, Surge, and Water Level-Watch Hill Point .......

1.59-63 C.19-Probable Maximum Hurricane, Surge, and Water Level-Hampton Beach ......

..

1.59-64 C.20-Probable Maximum Hurricane, Surge, and Water Level-Great Spruce Island .

.

. .

1.59-65 C.21-Ocean-Bed Profiles

...........

. ....

............................

1.59-66

1.59-41

C.1 INTRODUCTION

This appendix presents timesaving methods of es timating the maximum stiilwater level of the probable maximum surge (PMS) from hurricanes at open coast sites on the Atlantic Ocean and Gulf of Mexico.

Use of the methods herein will reduce both the time necessary for applicants to prepare license applica tions and the NRC staff's review effort.

The procedures are based on PMS values deter mined by the NRC staff and its consultants and by applicants for licenses that have been reviewed and accepted by the staff. The information in this appen dix was developed from a study made by Nunn, Snyder, and Associates, through a contract with NRC (Ref. 1).

The PMS data are shown in Tables C.I through C.21 and on maps of the Atlantic and Gulf Coasts (Figures C.I and C.2). Suggestions for interpolating between these values are included.

Limitations on the use of these generalized methods of estimating PMS are identified in Section C.4. These limitations should be considered in detail in assessing the applicability of the methods at specific sites.

Applicants for licenses for nuclear facilities at sites on the open coast of the Atlantic Ocean or the Gulf of Mexico have the option of-using these methods in lieu of more precise but laborious methods contained in Appendix A. The results of application of the methods in this appendix will in many cases be ac cepted by the NRC staff with no further verification.

C.2 SCOPE

The data and procedures in this appendix apply only to open-coast areas of the Gulf of Mexico and the Atlantic Ocean.

Future studies are planned to determine the ap plicability of similar generalized methods and to develop such methods, if feasible, for other areas.

These studies, to be included in similar appendices, are anticipated for the Great Lakes and the Pacific Coast, including Hawaii and Alaska.

C.3 PROBABLE MAXIMUM SURGE LEVELS

FROM HURRICANES

The data presented in this appendix consist of all determinations of hurricane-induced PMS peak levels at open-coast locations computed by the NRC

staff or their consultants, or by applicants and ac cepted by the staff. The data are shown in Tables C. 1 through C.21 and on Figures C.I and C.2. All repre sent stillwater levels for open-coast conditions.

SAll PMS determinations in Table C.1 were made by NRC consultants for this study (Ref. 1) or for earlier studies except Pass Christian, Brunswick, Chesapeake. Bay Entrance, Forked River-Oyster

.Creek, Millstone, Pilgrim, and Hampton Beach.

The computations by the consultants were made using the NRC surge computer program, which is adapted from References 2, 3, and 4. Probable max imum hurricane data were taken from Reference 5.

Ocean bottom topography for the computations was obtained from the most detailed available Nautical Charts published by the National Ocean Survey, NOAA. The traverse line used for the probable max imum hurricane surge estimate was drawn from the selected coastal point to the edge of the continental shelf or to an ocean depth of 600 feet. MLW and was one hurricane radius to the right of the storm track.

The radius to maximum winds was oriented at an angle of 1150 from the storm track. The traverse was oriented perpendicular to the ocean-bed contours near shore. The ocean-bed profile along the traverse line was determined by roughly averaging the topography of cross sections perpendicular to the traverse line and extending a maximum of 5 nautical miles to either side. The 10-mile-wide cross sections were narrowed uniformly to zero at the selected site starting 10 nautical miles from shore. It was assumed that the peak of the PMS coincided with the 10% ex ceedance high spring tide' plus initial rise.' Slightly different procedures were used for postulating the traverse lines and profiles for the Crystal River and St. Lucie determinations.

In each case the maximum water level resulted from use of the high translation speed for the hur ricane in combination with the large radius to max imum wind as defined in Reference 5. Detailed data for the computed PMS values are shown in Tables C.1 through C.20. Ocean-bed profile data for Pass Christian, Crystal River, St. Lucie, Chesapeake Bay Mouth, and Hampton Beach are shown in Table C.21.

The water levels resulting from these computations are open-coast stillwater levels upon which waves and wave runup should be superimposed.

C.3.2 Use of Data In Estimating PMS

Estimates of the PMS stillwater level at open-coast sites other than those shown in Tables C.1 through C.21 and on Figures C.1 and C.2 may be obtained as follows:

'The 10% exceedance high spring tide is the predicted maximum monthly astronomical tide exceeded by 10%.of the predicted max imum monthly astronomical tides over a 21-year period.

'Initial rise (also called forerunner or sea level anomaly) is an anomalous departure of the tide level from the predicted axtronomical tide.

1.59-42 C.3.1 Methods Used I

I

I. Using topographic maps or maps showing soundings, such as the Nautical Charts, determine an ocean bed profile to a depth of 600 ft MLW, using the methods outlined above. Compare this profile with the profiles of the locations shown in Tables C.2 through C.21. With particular emphasis on shallow water depths, select the location or locations in the general area with the most similar profiles. An es timate of the wind setup may be interpolated from the wind setup data for these locations.

2. Pressure setup may be interpolated between locations on either side of the site.

3. Initial rise, as shown in Table C.1, may be inter polated between locations on either side of the site.

4. The 10% exceedance high spring tide may be computed from predicted tide levels in Reference 6; it may be obtained from the Coastal Engineering Research Center, U.S. Army Corps of Engineers, Ft.

Belvoir, Va.; it may be interpolated, using the tide relations in Reference 6; or it may be obtained from Appendix A.

5. An estimate of the PMS open-coast stillwater level at the desired site will be the sum of the values from Steps I through 4, above.

C.3.3 Wind-Wave Effects Coincident wave heights and wave runup should be computed and superimposed on the PMS stillwater level obtained by the foregoing procedures. Accep table methods are given in Reference 2 and in Appen dix A.

CA LIMITATIONS

I. The NRC staff will continue to accept for review detailed PMS analyses that result in less con servative estimates. In addition, previously reviewed and approved detailed PMS analyses at specific sites will continue to be acceptable even though the data and procedures in this appendix result in more con servative estimates.

2. The PMS estimates obtained as outlined in Sec tion C.3.2 arc maximum stillwater levels. Coincident wind-wave effects should be added.

3. The PMS estimates obtained from the methods in Section C.3.2 are valid only for open-coast sites, i.e., at the point at which the surge mikes initial land fall. If the site of interest has appreciably different off-shore bathymetry, or if the coastal geometry dif fers or is complex, such as for sites on an estuary, ad jacent to an inlet, inshore of barrier islands, etc.,

detailed studies of the effect of such local conditions should be made. Reference 2 provides guidance on such studies.

REFERENCES

I. Nunn, Snyder, and Associates, "Probable Max imum Flood and Hurricane Surge Estimates," un published report to NRC, June 13, 1975 (available in the public document room).

2. U. S. Army Coastal Engineering Research Center,

"Shore Protection Manual," Second Edition, 1975.

3. B. R. Bodine, "Storm Surge on the Open Coast:

Fundamental and Simplified Prediction," Technical Memorandum No. 35, U.S. Army Coastal Engineer ing Research Center, 1971.

4. George Pararas-Caryannis, "Verification Study of a Bathystrophic Storm Surge Model," Technical Memorandum No. 50, U.S. Army Coastal Engineer ing Research Center, May 1975.

5. U. S. Weather Bureau (now U.S. Weather Service, NOAA), "Meteorological Characteristics of the Probable Maximum Hurricane, Atlantic and Gulf Coasts of the United States," Hurricane Research Interim Report, HUR 7-97 and HUR 7-97A, 1968.

6. U. S. Department of Commerce, NOAA, "Tide Tables," annual publications.

1.59-43

96°

960

940

329

310

200

27r

260

250

240

93?

92r

910

90p

89W

88e

870

860

860

840

8r3

820

810

FIGURE Ci PROBABLE MAXIMUM SURGE ESTIMATES - GULF COAST

C

34°

340

C

f(

830

820 810 800

790

780 770

760

750

8o

85o-

840

830 820

81

800 70r

780

0

770

760

750

740

730

720

71'

FIGURE C.2 PROBABLE MAXIMUM SURGE ESTIMATES - ATLANTIC COAST

1.59-45

TABLE C. 1 PROBABLE MPAXfl04 SURGE DATA

(W)CATIONS INDICATED ON FIGURES C.1 and C.2)

DISTANCE FR0OM

SHORELINE, NAUTICAL MILES,

FOR SELECTED WATER DEPTHS, FEET HIM

OPEN-COAST LOCATION

AND TRAVESE

PORT ISABEL

FREEPORT

EUGENE ISLAND

ISLE DERNIERE

PASS CHRISTIAN (a)

BILOXI

SANTA ROSA ISLAND

PITTS CREEK

CRYSTAL RIVER (a)

NAPLES

MIAMI

ST. LUCIEW()

JACKSONVILLE

JEKYLL ISLAND

FOLLY ISLAND

BRUNSWICK

RALEIGH

CHESAPEAKE BAY

ENTRANCE (a)

OCEAN CITY

ATLANTIC CITY

FORKED RIVER

OYSTER CREEK

LONG ISLAND

MILLSTONE

WATCH HILL POINT

PILGRIM

HAMPTON

EAM (a)

GREAT SPRUCE ISLAND

I

N

TRAVERSE

AZIMUTH

DEG.

-

HIN.

DEPTH, FEET, ALONG TRAVERSE FROM OPEN COAST SHORE LINE

10

20

50

100

200

600

DISTANCE,

NAUTICAL MILES, TO DEPTH INDICATED

1

1 ii

86

152

192

165

160

183

205

248

100

90

108

150

135

30

00

30

00

00

00

00

00

00

00

00

00

00

110

00

146

00

166

166

115

148

00

00

00

no

0.23

0.49

1.94

11.10

33.10

44.0

0.20

0.55

5.50

24.0

55.5

70.9

2.00

20.00

30.00

44.1

60.0

90.0

0.62

1.75

11.90

30.4

45.3

58.5

77.0

3.40

11.20

30.00

50.1

69.2

78.0

0.09

0.18

0.48

11.9

20.9

45.0

8.84

9.23

24.30

69.4

107.0

132.0

2.31

31.40

127.0

0.17

0.79

15.70

45.6

85.8

145.0

0.17

0.94

2.01

2.2

2.7

3.9

0.10

18.7

0.10

0.20

2.58

30.0

55.0

62.5

2.60

4.00

15.60

39.6

64.3

72.6

0.19

2.17

12.00

32.8

47.0

57.6

0.12

0.30

1.75

12.0

25.4

35.2

62.0

0.12

0.26

3.67

17.8

45.0

59.0

0.20

0.85

5.00

23.1

58.4

70.0

0.09

0.07

0.22

0.04

0.18

1.35

0.14

0.64

0.31

0.71

0.08

0.20

4.8

1.6

2.0

1.1

27.2

34.3

7.2

6.1

68.4

"84.0

40.0

1 7R .0

1.

6

1 PROBABLE MAXIMUM SURGE AT OPEN COAST SHORE LINB

WIND

SETUP,

FT.

PRESSURE

SETUP,

FT.

10.07

15.99

29.74

18.61

28.87

27.77

.9.12

24.67

26.55

18.47

2.51

8.25

16.46

20.63

17.15

12.94

8.84

17.30(b)

14.30

15.32

18.08(b)

8.73

12.41

10.01

4.25

9.73

3.57

2.89

3.29

3.29

2.88

2.98

3.25

2.31

2.65

2.90

3.90

3.80

3.23

3.34

3.23

2.20

3.09 (b)

2.83

2.57 (b)

2.46

2.20

2.42

2.23

1.82 INITIAL 102 EXC.

HIGH

TOTAL

RISE,

TIDE,

SURGE,

FT.

FT. ML

(C) PT. mL (C)

2.50

2.40

2.00

2.00

0.80

1.50

1.50

1.20

0.60

1.00

0.90

0.98

1.30

1.20

1.00

1.00

1.00

1.10

1.14

1.10

1.00

0.97

1.00

0.96

0.83

0.56

1.70

2.20

2.30

2.40

2.30

2.50

2.10

4.10

4.30

3,50

3.60

3.70

6.90

8.70

6.80

5.80

4.70

3.80

5.00

5.70

4.70

3.10

3.80

4.00

11.90

10.50

16. OC

17.84

23.48

37.34

26.30

34.85

34.76

15.97

32.28

34.10

25.87

10.91

16.73

27.90

33.87

28.18

21.94

17,63

22.20

23.27

24.70

23.78

15.26

19.41

17.39

19.60

17.81

28.11 a.

See Table C.21 for ocean-bed profile.

b.

Combined wind and pressure setup.

c.

Host values in these columns have been C

updated by the U.S. Army Coastal Engineering Research Center and differ from those in the orilinal documents.

(

(

'0

0%

I

I

9.73

Q

Note:

maximm wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.

-!/Initial distance is distance along traverse from shoreline to maximum wind when leading

20 mph isovel intersects shoreline.

Stdrm diameter between 20 mph isovels is approxi mately double the initial distance.

OCEAN BED PROFILE

WATER

BELOW

MWM

0

9.0o

20.5

35.0

43.0.

51.0.

58.5.

69.0

95.5

116

138

171

266

6oo

19,850o TRAVERSE

DISTANCE

FROM

SHORE

(NAUT.MI.)

0

0.2

-

0.5

1.0

-

1.5

,

2.0

_

5.0

1O

.15

20

30

40

_4

50

DEGREE AT TRAVERSE

MID-POINr FROM SHORE

T6 600-FOO DanT

K

TABLE C.2 SUMMARY-PERTINT PROBABLE MAXIMIh hURRICANE (*MH), STOR.M SURGE COMPUTATIONAL DATA AND RESULTANT WATER LE

LOCATION PORT ISABEL

T. 26004.3'

LONG. 97 09.41: TRAVERSE-AIMUTH86 0-30

GREEI LENTH 4.2.1 NAUTIICAL MILES

"""&mla K

-J

PROBABLE

MAXIMUM HURRICANE IN

PARCThISTICS

ZONE

C

AT LOCATION

260

04 EREE NOM

PARAMETER DESIGNATIONS

SLW

MODERATF

HIGH

GEMMEAL PRESSURE IDEX

P0 INCHE

26.412

26.412

26.112

2

-

PERIPHERAL PRESSURE

INCHES

31.30

31.30

31.30

RADIUS TO MAXIMUM WIND

LARGERADIUS RnAU.

MIe.

20

20

20

TRANLATION SPEED

V (FORWARD

)KNOTS

I

...

28

,'!xIMUM WIND SPEED)

V

M.P.H.

147

151

161 ATALMRZ D1SrANE-WINDU .NI.

M2OMP20 IND

398

374,

318

  • ' O

TO MlAX.

IN

PMH cCMnPUATIONAL ComD71CrT

AD WATE LEVEL (SURGE) ESTIMATES

CO EFFI CI MNTS

B0TIO

FMICTION FACTOR 0.0030

WIND STRESS CORRECTION FACTOR 1.10

WATER

L.EVEL

DATA

(AT OPEN CanB

SHORELINE)

pM

SpEISD OF TPANMSIATIOVq OOMP0NERTS

H

WIND SETUP

10007 PRESSURE SETUP

35 INITIAL WATER LEV.

.*

ASTRONOMICAL

1.70

TIDETLESM*

TOTAL-SURGE

STILL WATER

Lhs'J.

17.84 PET

LW-

-

-

TABLE C.3 SuMMARY-PEITINE*rT PRUMBLE MAXIMUI. HURRICANE (FMH).

STORKM S;GIO

COMPUIATIONAL ITA. AND RESULTANT WATER LEVEL

LOCATION FREEPOR'.

LUT. 280

56' LONG. 95'

TEXAS

Note: Nax-- wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.

--/nitial distance is distance along traverse from shoreline to maximum wind when leading

20 mph isovel intersects shoreline.

Storm diameter between 20 mph isovels is approxi mately double the initial distance.

C ) . . . ..

.......

..... .. .

. . .

22' : TRAVERSE-AZIMUTH 152 PROBABLE MAXIMUM HUiRICANE INDEX CHARACTI*$ISTICS

ZONE

C

AT LOCATION

280

561 MHZE NORTH

1 SPEED OF UNSITION

PARAMETER DESIGNATIONS

SLOW

HODERATF

HIGH

  • .."
  • (sT)

NOm'

(Hr,)

CflI!VAL PRESSURE INDEX

Po INCHES

26.69

26.69

26.69 PERIPHERAL P

0SRE

P n INCHES

31.25

31.25

31.25 ADIUS 70 KMAXDIUM WIND

LiRGE SAhMS iUT.

I.

26.0

26.0

26.0

TRUN*LATION SPEED

V (voawRD SPEED) I

S

139 U

8.

KiXD= WIND SPEED

Yx M.P.H.

139

143

153 INITIAL DISTAN(CE--&U.I ,* l9 MPH WIND

491

458

390

AT SHORE TO MAX.

WIND

DiXRE, o LENGTH 70.9 NAUTICAL MILES

PMH COUPUTATIONAL C0EWICIENT

AND WATER LEVU (SUGE) ESTIMATES

CooFFIOIENT§

BOT'iM FkICTION FACTOR 0.0030

WIND STRE

CORRCION FACTOR 1.10

WATEH

LVEL

DATA

(AT OPEN COAST SHOP.LIIE)

.

U'

OCEAN BED PROFILE

TRAVERSE

WATE

DISTANCE

DEPTH

FROM

BELOW

SORE

MI

(

TmI.

(FEw-)

0

0

"

.1.0

30

_

2.0

32

_

3.0

37

4.0

40

-

5.0

47

10.0

66

_

15.0

78

_

20.0

90

.

_

30.0

114

-

40.0

132

50.0

168

-

60.0

240

_

70.0

570

70.9

600

IATITUDE

  • 280 26'

DEGREE AT TRAVERSE

KID-POINT FROM SHOR9

1'O 600-FOOT DEPTH

PMH SPEED OF TRANSLATION

COMPONENTS

ST I

HTr H T

F

E

E

T

WIND SEiTUP

15.99 PRLSSURE SETUP

2.89 INITIAL WATIR LEV.

2.40

&STRONOMICAL

2.20

TIDE LEVEL.

TOTAL-SURGE

STILL WAT1E Lhl,.

23.48 FELT MLW

-

.....

tC

Q

LOCTION EUGENE

LAT. 29o 20'

LONG. 91'

ISLAND, LOUISIANA

Note:

Maximm wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.

- Initial distance is distance along traverse from shoreline to maximum wind when leading

20 mph isovel intersects shoreline.

Storm diameter between 20 mph isovels Is approxi mately double the initial distance.

21 . T-RAVmRSE-AZImuTH19230'DE2REEs LENGTH

90

NAUTICAL MILES

OC]AN BED PROFILE

TRAVEiSk WATER

DISTANCE

DEPTH

FROM

BELOW

SHORE

MKU

NAUT

FEET)

-

0.0

0

-

1.0

5

-

2.0

10

-

3.0

12

-

5.0

15

-

10.0

15

-

15.0

18

-

20.0

20

-

30.0

50

-

40

60

-

50

140

-

60

200

-

70

260

-

80

320

-

90

600.

L&TrTUDE

%2o

4d DEGREE AT TRAVERSE

MID-POINT FROM SHORE

600:=

TABLE C.4 SUMMARY-PERTINENT PROBULE MAXIMLI. HURRICANE (PMH),

STORM SURGE COMPUTATIONAL rATA AND RESULTANT WATER LEVEL

K

.ub PROBABLE 1AXIMUM HURRICANE INE

CHARACThWISTICS

ZONE

B

AT LOCATION

29P

20' DGREE NORTH

PARAMETER DESIGNATIONS

SLOW

TODERATF

HIGH

CENTRAL PRESSURE I*NDE

P0 INCHES

26.87

26.87

26.87 PDtIPHEAL PRESSURE

INCHES

31.24

31.24

31.24 IUS TO MAXIMUM WIND

J.-ARE RADIUS NUT*. MI.

29.0

29.0

29.0

T SLATION SPEED

, (FORWARD SPED) KNOTS

I

4

1

28.0

AIMUM WIND SPED

Vx M.P.H.

141

144

153 INITIAL DISTArCE-NMAT.M.I.-/

FROM 20 MPH WIND

534

184

412 AT SHORE To MAX.

WID-1)

PMH OCHPUTATIONAL COEFFICIENT

AND WATER LEVM (SURGE) ESTINATES

ICTJIM 'iFICTION

FACTOR 0.0030

WIND STRESS CORRECTION FACTOR 1.10

WAT E

Lh VEL

DATA

(AT OPEN OCAST SHORELINE)

PMH SPEED OF TRANSLATION

COMPONENTS

ST

M

ST

HiT

F

E, T

WIND SETIUP

-29.74 PRESSURE SETUP

3.29 INITIAL WLATER LEV.

2.00

ATRONOMICAL

2.30

hIDE LEVEL

SUAL-RGE

STILL

L

kA .

37.34 SET =L

TABLE C.5 SUMMY-PERTINENT PROALE MAXI M1,. HU*RIlCANE (PMH) ' STORM SMGE 00MFUTTIONAL WA AND RESULTANT WATER LEVEL

LOIATION ISLE

L&T. 29002.91 LONG. 90"42.5'; "TAVERSE-AzIMUTH 165 DiEEaLe LG

58.5 NAuTICAL muILs DERNIERES, IOUISIAM

Note:

Maximum wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maxlmum wind.

-!/Initial distance is distance along traverse from shoreline to maximum wind when leading

20 mph isovel intersects shoreline.

Storm diameter between 20 mph isovels is approxi mately double the initial distance.

C

(

0o PROBLE MAXIDUH HURRICANE INDEX CHARAMTUISTICS

ZONE B

AT LOC&TION

290

3 D0G'EENOTNO

SPEED*OF TMNSL§T:0I.

PARAMETER DESIGNATIONS

SLOW

14OD91ATF

HIGH

MH

PRESSURE INDEM

P0 INCHES

26.88

26.88

26.88 PERIPHERAL PRESSURE

P

INCHES

31.25

31.25

31.25 RADIUS TO MAXIMUM WIND

IARGZ RADIUS NALT. HI.

29

29

29 MANSIATION SPEED

? (FORWARD SPME)

KNOTS

4 I

11

\\2 IAXIMUM WIND SPEED

!V

M.P.H.

140

144

153 INITIAL D

=h-N

.MI.1/

PROM 20 MPH WIND

528

48?

394 KT SHORE TO MAX. WIND

I

I

PMW OCKWPUATION&L COiUVICIERT

AND

AMAE

LEVEL (SUlGE)

ESTIMATES,

COEFFICI-ENTS

"BMiOT

FRICTION FACTOR 0.0030

WIND SRESS, C0HHEION FACTOR 1.10

WATER

LEVEL

DATA

(AT OPEN CCAST sFMlEJNS)

P1W SPEED OF TRANSLI'TIO

COMPONENTS

ST I

-14

!

9 F

E

E" T

WIND SETUP

8b RESSURE SETUP

3 INITIAL

MATES LEW.

2.00

ATRNOMICAL

2.40

TIDE LEME

TOTAL-SURGE

SILL jATa7 LEV.

26.30

=

MHW

K

TABLE C.6 SURY-PFERTINENT PR"OBBLE MAX IMU. hURRICANE (Pml'.

STORM SURGE COMPUTATIONAL DATA AND RESULTANT WATER LEVEL

LOTION BIIOXI

LAT. 30023.6'

LONG. 88"53.6't TRAVMsSE-AZIMUTH

160

DECREEs LEVGTH 77 NAUTICAL MILES

MISSISSIPPI

Note:

Maximum wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.

1-Initial distance is distance along traverse from shoreline to maximum wind when leading

20 mph isovel intersects shoreline.

Storm diameter between 20 mph isovels is approxi mately double the initial distance.

PROBABLE MAXIMUM HURRICANE IN=*

CHARACMISTICS

ZONE

B AT LOCATION

300

24 DECREE NORTH

K

r Lft

'0

OCEAN BED PROFILE

TRAVERSE

WATER

DISTANCE

DET

FROM

BELOW

SHORE

MLW

0

0

-

0.2

3.0

0.5

2.0

1.0

6.5

1.5

9.0

_

2.0

9.0

_

3.0

9.5.

5.0

12.0

_

9.0

9.5 _

_

9.5 U-.0

_

10.0

14.0

-

10.5

18.5

-

11.0

17.5

_

11.5

23.0

-

12.0

29.0

1

13

34.5

-

15

41.5

20

45.0

25

47.0

30

50.0

40

65.0

50

99.0

60

164

"

70

203

78

6oo

80

7*

LATITUDE

?

290 508 DEGREE AT TRAVERSE

MID-POINT FROM SHORE

TO k00--1 RMP'

ISPEED

OF TRANSATION_

PARAMETER DESIGNATIONS

SLW

MODERATF

HIGH

METRAL PRESSURE INDEI

o INC=

26.9

26.9

26.9 PERIPHERAL PRESSURE

P

INCHES

31.23

31.23

31.23 RADIUS TO MAXIMUM WIND

laRGE RADIUS NAUT. MI.

30

30

30

rRANSLATION SPEED

!

(FORWARD SPEED) KEATS

4

11

28 MAXIMUM WIND SPEED

vx M*.P.H.

139

143

153 INITIAL DiSr~C-niuT.MI.X

FROM 20 MPH WIND

525

498

396 IT SHORE 32 MAX. WIND

-

-

I

P10

OCCUATIONAL COEFFICIENT

AND WATER LEVEL. (SURGE)

SrIMATES

COEFFICIENTS

WM'OK FRICTION FACTOR 0.0030

WIND STRESS CORRECTION FACTOR 1.10

(ATER L

.VCST

DATA

(AT OPEN OCs sMREiNZ)

TABLE C.7 SUMMARY-YERUNENT ?RUMABLE MAX IMU h1JRRIC&NE (FMH)

  • STORM SUItGh. OOIPULAT1ONAL IATA AND RESULTANT WATER LEVEL

LOCATION SANTA ROSA

LIT. 30 023.769 LONG. 86"37.7': TR"AVERSE-AZIMUTH

183

=BflE&# LQWGTH 4e4.7 NAUTICAL MILES

ISLAND,

AUEAZAM

l.A

Note: Maximum wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.

-

Initial distance is.-distance along tra .verse from shoreline to maximum wind when leading

20 mph isovel intersects shoreline. Storm diameter between 20 mph isovels is approxi mately double the initial distance.

PROBABLE MAXIMUM HURRICANE INDEX CHARACMh~ISTICS

ZONE

B

AT LOCATION

300

24' DNEGR N0ORTH

PARMLERDESIGNATION$

SLOWV

I40DM1TFI

HIGH

, (sr)

(N)

(T

CENTRAL PRESSURE INDEX

P0 INCHES

.26.88

26.88

26.88 PEtWIPERAL.PRESSURE

in IziCi~s

31.20

310

3.2 RADIUS TO MAXIMUM WIND

IARGE RADIUS HAUT. MI.

29

29

29 fAnWSIATION SPEED

? (FMonAiiD SPEED) KNOTS

4

11

28 MIAXIMUM WIND. SPEED

V XMeP9*H

140

144

153, INITIAL DIST&NCE-NAUT.H

2

'8

9 PRtOM 20 MPH WIND

47

'9 KT SHORE TO MAX. WIND

1___ -

PMH OMPUTATI0NAL GOiFFICILUT

AND WATER LLY&i (SURiGE)

ESTIMATES

C 0 E F.

F I C I E N T S

10rj'0M FRIICTION FACTORB 0.0030

WIND MSTRSS COURiCYIO

FACTOR 1.10

WATEft LEVEL

DATA

(AT OPENI COAST SI RELINE)

PKH SPEED OF TRANSLATIOIb COMPONENTS

ST I

T

H

___ __E

F

ET

WIND SETUJP

9.12 PRESSURE SETUP

3.25 INITIAL WATER LEV*

1.50

LSTROHORIC&L

2.10

riDE LEVEL

lOTAL-SURCE

STILL WATER LEV.

15.97

ý=7I MLW

___

C

OCEAN BED PROFILE

.TRAVERSE

WATER

DISrANCE

DEPTH

FROM

BELOW

swagR

HMW

Nt

.AUT.H.

LF2TL

0

0

S 0.2

22 S 0.5

5

1.0

66

1.5

66

290

66

-

3.0

73

5.0

76.

10

88

-

15

120

20

182

30377

40

510

-

45

600.

-

0

756 LATITUDE

3601-36 DEG~REE AT TRAVERSE

MID-POINT FROM SHORE

ro600-F

DEPTH

K

Q

LOCATIONPITTs CREEK

LAT. 30001.1' LONG. 83""

FLORIDA

Note:

Maxima wind speed Is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.

-/Initial distance is distance along traverse from shoreline to maximum wind when leading

.20 mph isovel intersects shoreline.

Storm

,diameter between 20 mph isovels is approxi mately double the initial distance.

53': -TRAVERSE-AZIMUTH

205 DE*EEs LENGITH 110

NAUTICAL MILES

PROBABLE MA*INUM HURRICANE INIM CHARACTERISTICS

ZON.

A

AT WC&TION

300

01o DEGR

NORTH

SLSPEED OF TNSA

TION

PARAMEI

DEINAIN

SLOW

HOIERATF

HIGH

RADIUS

PRESXUME INDEX

Po0 INCHES

26-79

26.79

26.79 PERIPHItA

PRESSURE

SPn INCHES

30.ZZ

30.22

30.22 RADIUýS TO MAIMU

WIND

JAUME RADIUS NAUT.

MI.

26

26

26 rRANSIATION SPEED

rV (1OiM I)D SPEED) KNOTs

1 4

11

21 AXIMUM WIND SPEED

v_

M.P.H.

138

142

146 naTIAT, DIST-ANCE-NUT.MIX

FROM 20 MPH~ WIN

3514

322

278.

AT MOMK To MAX. WIND-

-

-

TABLE C.8 SUMART-PERTINENT PROBABLE MAXIMU1. hfJRRIC&NE (PMH),

STORM SURGE COMPUTATIONAL LATA AND RESULTANT WATER LEVEL

A

'a I,'

t. h OCEAN BED PROFILE

TRAVERSE

WATER

DISTANCE

DEPTH

FROM

BELOW

SHORE

MLW

NAUT.MI.

IFEET)

0

0

_

0.2.

1.0

_

0.5

2.0

_

1.0

3.0

_

1.5

4.o0

_

2.0

5.0.

.

3.0

6.5.

_

5.0

9.0.

_

10

22. 0.

_

15

31.o0

-

20

41.0

_

30

62.0

_

40

78.0

_

50

81.0o

-

60

84.0 .

70

101.0..

-

80

117.0.

_

90

144.0._

_ 100

180.0

_ 110

210.0_

120

280.0

.

130

543.o L.

132

600.0.

140

846 TITUDE

  • 29° 03'

DEREE AT TRAVEMSE,

ID-POINT FROM SHORE

§2L60-=0T

=

PMH OCUTATIONAL COEFFICIENT

AND WATE

UWEL (SURGL)

ESTIMATES

COEFF ICI

ENTS

B

uM FIIcrTION FACTOR 0.0030

WIND STRESS COHREMTION FACTOR 1,10

WA T Eh Lh9VEL

DAT.T

(AT OPEN

CAST SHORELINE)

PIMH SPEED OF TRANSIATION

COMPOONETS

ST

I

MT

I

T

F

E E T

WIND SETUP

24.67 RESSURN SETUJP23 INITIAL WATER LE.

1.20

ASRNOMICAL

4.10

TIDE LEVEL

TOTAL-SURGE

322 STILL VATIr LIU".

32.28 LW

-

-

TABLE C.9 SUMMARY-PERTINENT PRUbABLE MAX IMt:? HURRICANE (PNJO, STORM SUC

COMPULATIONAL rATA AND RESULTANT WATER LEVEL

LOCATION

NAPLES

FLORIDA

LkT. 26001.41 IONG. 81'46.2'; TRAVERSE-AZINUTH

248 DIUREEa LENGTH 14e NAUTI-CL MILES

1P

Note:

Maximum wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.

-!/Initial distance is distance along traverse from shoreline to maximum wind when leading

20 mph isovel intersects shoreline.

Storm diameter between 20 mph isovels is approxi mately double the initial distance.

PMH ONPUTATIONAL COXFICIeNT

AND WATER LEVEL (SUiRGE) ESTIMATES

PROBABLE MAXIMUM HURRICANE IN=X CHARACeTUISTICS

ZONE

A AT LOCATION

260

01' DEGRE NORTH

SPEED OF

NSLATION

PARAMETER DESIGNATIONS

. SLOW

MODERATF

HIGH

~(ST)

"T

(0

Sa~RYlAL PRESSURE INDEX

P0 INCHES

26.24'

26.24

26.24 PERIPHERAL PRESSURE

% INCHES

31.30

31.30

31.30

ADniS TO MAXIMUM WIND

LRGE RAIUS wNAU.

MI.

15

15

1. i LIANSLATION SPEED

rv (FOAD SPEED) KOTS

4 -

'17

4AXIMUM WIND SPEED

Vx M.P.H*

19)

3ejL

158 ENITIAL DISTAN.-NWUT.MIND

FROKM 20 MPH WIND

2952

270

256 kT SHORE TO MAX.

WIND

-

-C

COJFFI CIENTS

BOIO

FRICTION FACTR 0-0030

WIND STRESS CORETIN FACTOR 1,10

.WATEh LE~VEL

DATA

(AT OPEN OCAST SHORELINE)

PHH SPLWD OF TRANSLATION

COMPONETS

SIT I

mT

HT

F

S E

T

WIND SETUP

13.49

15.87

18.47 PRESSURE SETUP

3.29

2.87

2.90

7NITIAL WATER LEV.

l.0)0

1.00

1.00

ASTRON0MICAL

3.60

3.60

3.50

TIDE LEVEL

ýVAL-SURGX

TILL WATia L"V.

21.3:8

23.35

25.87 MEE .LW

,

E,,I

(

K

TABLE C.10

SJMMARY-PERTINENT PROBABLE MAXIMUP. hURRICANE (PMH) , STORM SURGE COMPUTATIONAL DATA AND RESULTANT WATER LEVEL

LOCATION

MIAMI

LAT. 25%?.2'

LONG. 80'07.8'; TRAVErSE-AZIMUTH

100

DEREEs LENGTH

3-.9 NAUTICAL MILES

FLORIrA

Note:

Maximum wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.

-1/Initial distance is distance along traverse from shoreline to maximum wind when leading

20 mph isovel intersects shoreline.

Storm diameter between 20 mph isovels is approxi mately double the initial distance.

.P

Ius PROBABLE MAXIMUM HURRICANE I

.DEX gCKRACTISTICS

ZONE

1 AT IOCATION

250 47.2 DEGREE NORTH

PARAM

~

~

SPEE OFIG~TIN IO

1*

PARAMETER DESIGNATIONS

S

IlW HODERATF

HIGH

... (ST)

(MT)

CHT)

CENTAL PRESSURE INDEX

P INCS

26.09

26.09

26.0

PERIPHEAL PRESSURE

Pn INCHES

31.30

31.30

31.0,

RADIUS TO MAXIMUM WIND

LARGE RADIUS NAUT.MI.

1

14

14 TNSLATION SPEED

F (FORWARD SPEED)

OTS

1 4

13

17 WMUM WIND SPEED

v M.P.H.

152

156

160

INITIAL DISTANCE-NAUT.MI.YJ

ROM 20 MPH MWIND

274

258

243 AT SHORE TO MAX, WND

-

PMH CCMPUTATIONAL COEFTICIENT

AND WATER LEE (SURGE) ESTIMATES

CON?

I CI ENTS

WFIVM1X

FRICTION FACTOR 0.0025 WIND STRESS CORRECTION FACTOR 1.10

WATER

LEVEL

DATA

(AT OPEN OCAST SMFRNLINN)

PMH SPEED OF TRANSIATION

COMPONENTS

ST 1I '

HT

S.. [

F

E

E

T

WIND SETUP

2.06

2.37.

2.51 PRESSURE SETUP

3.97

3.82

3.90

INITIAL WATR LEV.

0.90

0.90

0.90

ASTRONOM.ICAL

3.6o

3.60

3.60

ITDE LEEL

ff UAL-SURGE

STILL WATER IJS.

10.53

10.68

10.91

=V

-

-

-

TABLE C.11 SUM

  • Y-P~iRTINr PROBABLE M&XIMVP. WIRICANS (PMH),

STORM SUNG*r, COMPUI*ATIOMAL rATA AND RESULTANT WATER LEVEL.

LOC&TIONJACKSONVILLELAT.

300

21' LONG. 81"

FLORIDA

PRORARL/ MAXIMUM HURRICANE IND12 CHARACTIhISTICS

ZONE

2 AT LOCATION

300

21' nwRHU NOMTH

AN EG N OF

Q

ITR

ATION

P

ETER

ESIGNATIONS

LOW

HODEATF

HIGH

C01TH&L *PRESSUR

INDEX

P0 INCHES

26.67

26.67

26.6?

PENIPHHEAL PRESSURE

-P

INCHES

31.21

31.21

31.21 ADIUS 1* MAXIMUM WIND

LAE RAMDUS NAUT. MI.

38

38

38 TIOU SPEED

v(FORWARD SPEED) KNOTS

1 4

11

22 MAXIMUM WIND SPEED

vX

M.P.H.

138

142

149 INITIAL DIMtNCE-NAJT*.HIJI

PROM 20 MPH WIND

407

372

334 kT SHORE TO MAX. WIND

Note: Maximum wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.

1Y/Initial distance is distance along traveree froe shoreline to maximum wind when leading

20 mph isovel intersects shoreline.

Storm diameter between 20 mph isovels is approxi mately double the initial distance.

24*..

rmvEasE-AzimuTH

9o OCEAN BED PhOFILE

TRAVERSE

WATER

DISTANCE

DIETH

FROM

BELOW

SHORE

MIM.

(NAUT.MI. )

FEET

0

0

0.2

20

0.5

25

1.0

32

1.5

37

2.0

43

3.0

55

5.0

59

10.0

66

"12.0

66

14.0

72

15.0

73

20.0

8o

30.0

100

40.0

117

50.0

131

-

o.o noi r" 60.0

270

62.5

6oo

70.0

9W8 LATITUDE % 300 21'

DE*REE AT TRAVERSE

IMID-POINT FROM SHORE

P600-FOOT Dwri Domes LENGTH 62.5 xL'UiIC&L MILEm PMH (IHUTATIONAL COXYTICIENT

-AN

WATER LEVEL (stihz) ESLTIMTE

COEFFICIENT_4 LOTIVI1 FRICTION FACTOR 0.0025 WIND SRES CORRECTION FAC!TOR 1.10

WATEh LSVNL

DATA

(AT OPEN OCAST SHORELINE)

PMH SPEED OF TRANSLATION

COoMP0MERS

sT

MT

HT

__

_E

E

T

WIND SETUP

16.46 PRESSURE SEUP

3.23 INITIAL

kAT/R LEV.

1.30

NORICAL

6.90

rIDE LEVEL

-

,

-,

tAL-SURGE

ILL WAT12 LLY.

27.90

EET MLW

0'i r

-_

-

j

K

Q

LOCATION JEKYLL

IAT. 310

05' LONG.

81"24.5': TRAVESE-AZImuTH 108 DIXRE',

LENGTH 72.6 NA*TICAL MILES

ISLAND, GEORGIA

PROBBLE MAXIMUM HURICANE INDEX CHARACT10ISTICS

ZONE

2 AT LOCATION

310

56 *DREZ

NORTH

Note:

Maxim=m wind speed is assumed to be on

"the traverse that is to right of storm track a

"distance equal to the radius-to maximum wind.

-!/initial dist ance is distance along traverse from shoreline to maximum wind when leading

20 mph isovel intersects shoreline., Storm diameter between 20 mph isovels is approxi mately double the initial distance.

OCEAN BED PROFILE

TRAVERSE

WATER

DISTANCE

DEPTH

FROM

BELOW

SHORE

MLW

(NAuT.mi.

(*

c

0

0

0.2

3.0

0.5

4.o0

1.0

6.o

1.5

6.5

2,0

7.0

3.0

12.0

4.0

20.0

5.0

2365_

6.0

29.5_

7.0

35.5.

8.0

35.0.

10.0

39.5

15.0

49.0.

20.0

57.0.

25.0

65.0

_

30.0

73.0

4.0.0

101.0

50.0

115.0o

60.0

131.0o

"700.

291.0

72.6

600.0

80.0

1,030.0

LATITUD'

300 53'

DRGREE AT TRAVERSE

MID-POINT FROM SHORE

S600-FOOT DEPrT

TABLE C.12 SUMMARY-PERTINENT PROBABLE MAXIMvI. h'URRICAE (PMH).

STORM SURGE COMPUTATIONAL LATA AND RESULTANT WATER LEVEL

A"

'0

SPEE

OF TANS ATIONn PARAMETER DESIGNATIONS

[LOW

HODERATF

HIGH

_ _

_

_)

(n (HT)

C RAL PRESSURE N X

P0 INCHES

26.72

26.72

26.72 PERIPH1RKL PRESSURE

Pn INCHES

31.19

31.19

31.19 RDUSe TO MAXIMUM WIND

IARGE RADIUS NAM. MI.

10

40

40

TRIATrON SPEED

IMUR WIND SPED

yxM.P.H.

135

1541

147 INITIAL DISTAxacT-mW.mI

S20 MPH WIND

400

380

336 TSH

TO

-AX,

pMH O

  • HPUTATIONAL COODTICIE3T

AND WATER LEVEL (SURGE)

ESTIMATES

CO0 E FF I C I E NTS3 TIMTON

FHICTION FACTOR 0.0025 WIND STRESS CORRECTION FACTOR 1.10

WAT

B

.LEVEL

DATA

(AT OPEN OCAS

SORELINE)

PMH SPEED OF TRANSLATION

COMPONErTS

ST

HT

WT

S~F

E. E _T

WIND SETUP

20.63 PREESUR,

SETUP

3.34 INITIAL WATES LEW.

1.20

ASTRONOMICAL

8.70

IDE LEVEL

AL-SURGE

STILL VTSuv33.87 TILL WATER Lh`V.

EEIT MLW

TABLE C.13 su5mHAY-PjmTINENT PROBaBLE MAXmIMp. hUICIANE (PmIl),

STORM SURGE (OmPUTATIOMAL

rATA AND RESULTANT WATER LEVEL

LOCATION FOLLY ISIANIL&T. 32e 39' LONG. 79"56.6': TRAVIMSE-AZIMUTH 150

SOUTH CAROLINA

-Note:

Maxi'm- wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.

!/Initial distance Is distance along traverse from shoreline to maximum wind when leading

20 mph isovel intersects shoreline.

Storm diameter between 20 mph isovels is approxi mately double the initial distance.

PROEABLE MAXIMUM HIURRICANE INDEX CHABAC'M"ISTICS

ZONE

2 AT LOCATION

320

39' DOtEES NORTH

J

SPEED OF TASLTION

PARANMET

DESIGNATIONS

SLOW

MODERATF

HIGH

S(ST)

NO'

NO?

MAL PRESSURE INDEX

P 0INCHES

26.81

26.81

26.81 PERIPHE*AL PRESSURE

'n INCHES

31.13

31.13

31.13 RADIU8 TO MAXIMUM WIND

R09 RADIUJS NAUT.

MI.

40

40

40

&RANSIATION SPEED

?v (FAD SPEED) KNOTS

1 4

13

4AXDOJM WIND SPEED

Vx M.P.H.

134

139

148

[NITIAL DISTANIE-NAUT.MI.1

'PROM

20 MPH WIND

400

364

311 kT SHORE TO MAX.

WIND

II

DEGREE$ LENGTH 57.6 NAUTICAL MILES

PMH OCHPUTATIONAL CO

ZICIENT

AND WATER LEVEL (SURGcE)

ESTIMATES

OCEAN BED P"OFIL

TRAVERSE

WATER

DISTANCE

DEPTH

FROM

BELDW

SHORE

HIM

(NAUT.HI.)

(FEET)

0

0

0 0.2

10.5

_

0.5

12.0.

_

1.0

14.0

_

1.5

16.5

_

2.0

18.0.

_

3.0

29.5

,

5.0

39.0

-

10.0

460.

_

15.0

56.o

-

20.0

65.o L30.0

85.0.

_

40.0

138.o0

_

50.0

227.0o

-

57.6

6o0.0

_

60.0

1,800.0

LATIT UME

320 25'

DEGREE AT TRAVERSE

MID-POINT FROM SHORE

ro600-= DE

BOT1I0M FRICTION FACTOR 0.0025 WIND STRESS COM=ION FACTOR 1.10

WATEEB

LE~VEL

DATA

(AT OPEN OGAST SHOELINE)

PMHl SPEED OF TRANISLATION

COMPONENTS

ST I

M

__....____

F.E j T

WIND SETUP

17.15 PRESSURE SETUlP

3-*23 INITIAL WATER LEV.

1.00

ST1'ONOOICAL

6.80

rFiD

LEVEL

TOT1AL-SURGE

STILL WATER LW.

28.18 Pwr MLW

_C

(

0,

K.

TABLE C.14 SUMMARy-PETINENT pROBABLE MAXIMUM. hVRRICAMM (PMH),

MWTOM SJRGE COMPUTATIONAL DATA AND RESULTANT WATER LEVEL

LOCATION RALEIGH BAY,IAT.

340

54' LONG. 76 15.3': TRAVIMSE-AZIMIUTH

135 WOWPH OAROLINA

Note:

Maximum wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.

!/lnitial distance is distance along traverse from shoreline to maximum wind whe

n. leading

20 mph isovel intersects shoreline.

Storm diameter between 20 mph isovels is approxi mately double the initial distance.

PROBABLE MAXIMUM HURRICANE INDEX CHARACTMISTICS

IZONE

3 AT LOCATION

34°0

54' DEREE VNOTH

DEREE, LENGTH 35.2 NAUTICAL MILES

K

'0

'C

NORTH CAROLINA

0E

OFTAN-5 ION

PARAMETER DESIGNATIONS

!SLW

OMODERATF

HIGH

IfNtR PRESSURE INDEX

P, INCHES

26.89

26.89

26.89 LERIPHEAL PRESSURE

Pn INCHES

31.00

31.00

31.00

RtADI1US TO MAXIMUM WIND

LARGE RADIUS NlUT. MI.

35

35

35 IRANS*ATION SPEED

Fv (FOWVARD

SPEED) KNOTS

5

17

38 MAXIMUM WIND SPEED

Vx M.P.H.

130

137

119 INfiTAL DISTANCE-NAUT.I.i

-"

FROM 2O MP

IND

385

346

280

  1. T SHORE TO

MAX WIND

i._.1..1 P111 aCHPUTATIONAL OOE"ICrIIr AnD WATER MMYE (SURGE) ESTIMATES

COEjFFICXXNT-S

BT

FR)ICTION FACTOR 0.0025 WIND STRESS CORRECTION FACTOR 1.10

WATER

LSVEL

DATA

(AT OPEN OCAST S)ORELINE)

OCEAN BED PROFILE

TRAVERSE

WATER

DISTANCE

DEPTH

FROM

BELOW

SHORE

MWI

I.

0

0

-

0.2

16

0.5

28

1.0

1.0

1.5

4.6

2.0

514

3.0

614

5.0

72

10.0

92 S15.0

U2

20.0

124

30-0

264

35.2

600

40.0

900

LATITUDE % 3,4o4,fl DEGREE AT TRAVIMSE

MID-POINT FO1 SHORE

TABLE C.15 SUHIAMY-PERTINENT PROBABLE MAXIMUt! hURRICANE (FMH),

STORM SURGE COMPUTATIONAL DATA AND RESULTANT WATER LLVEL

LOCATION OCEAN CITY, LkT. 38e

20' LONG. 75 04.9'; TRAVERSE-AZIMUTH 110

I=REEM LENGTH 59 NAUTICAL MILES

MARYLAND

PROBABLE MAXIMUM HURRICANE INDEX CHARACTUISTICS

ZONE 4 AT LOCATION

380

20' DWEE NORITH

"SPEE OF TRANSLATION

PARAMETER DESIGNATIONS

SLOW

,ODERATF

HIGH

CENTRAL PRESSURE INDEX

P0 INCHES

27.05

27.05

27.05 PERIPHERAL PRESSURE

P

INCHES

30.?7

30.77

30.77 RADIUS TO MAXIMUM WIND

LRGE 1ADIUS

IAUT.

MI.

38

38

38

1IWSIATION SPEED

? (y o AMUD

SPEE)

[NOTS

1 10

26

48 IXIElUM WIND SPEED

vS

m.P.H.

124

1133

1146 INITIAL DISTAKCE--NUT.MI.*Y

RM 20 MPH WIND

350

293

251 kT SHORE TO MAX.

WIND

I_

I

Note:

Maximum wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.

1 Initial distance is distance along traverse from shoreline to maximum wind when leading

20 mph isovel intersects shoreline.

Storm diameter between 20 mph isovels is approxi matelv double the Initial distance.

TRAVERSE

WATER

DISTANCE

DEPTH

FROM

BELOW

SHORX

MLW

NA& T.MI

(FEET

0.2

17

0.5

32

.

1.0

29

-

1.5

35

2. 0

4c

-

3.0

38 2

4.0

56

"

-

5.0

61 2

6

71 2

?

56

8

60

9

58

-

10

59

-

11,

65

-

12

64

-

13

70

14

62

214!

II 1i 7 LATITUDE

0 3)8014.~

DEGREE AT TRAVLVS&

MID-POINT FROM SHORE

IR600-FOO

az

--"-K

Ip PMH (THPUTATIONAL CODUICIIVT

AND WATER LEVEL (SURGE) ESTIMATES

C 0 EFF i C

E H NTS

IOT'iM ,,FRICTION

FACTOR 0.0025 WIND SrTRESS CORMION FACTOR 1.10

W AT E

L SVBL

D ATA

(AT OPEN MAST SHORELINE)

PKH SPEED OF TRANSLATION

COMPONENTS

S

I

NT

H T

_________

F

9E

T1 WIND SETUP

14.30

RESSURE SETUP-

2.83 INITIAL WATER LEV.

1.14 ATNOMICAL

5.00

TIDE LEVEL.

TU-&-SURG,

SILL WATER LEV.

23.27 Vw~ MLK

-

-

(

Q.

LOCATION ATLANTIC

LAT. 39°

21'

LONG. 74"

CITY, NEW JERSEY

Note:

Maximum wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.

1/Initial distance is distance along traverse from shoreline to maximum wind when leading

20 mph isovel intersects shoreline.

Storm diameter between 20 mph isovels is approxi mately double the initial distance.

25': TRAVERSE-AZIMUTH

146 DE*.EEm LENGTH

70

NAUTICAL MILES

PROBABLE MAXIMUM HURRICANE INDEX CHARACTER2ISTICS

ZONE

4 AT LOCATION

39P

21' DEGREE NORTH

TABLE C.16 SUMMARY-PERTINENT PROBABLE MAXIMU,. HURRICANE (PMH),

STORM SUHGE COMPUTATIONAL DkTA AND RESULTANT WATER LEVEL

K

LA

'0

0

OCEAN BED PROFILE

TRAVERSE

WATER

DISTANCE

DEPTH

FROM

BEUOW

SHORE

wLx

-

0

0

_

0.2

10.0

D

0.5

15.0.

_

1.0

22.0

-

2.0

38.0

-

5.0

50.o0

1 10.0

72.0.

-

20.0

90.10

-

30.0

120.0.

_

4o.o

138.0

_

50.0

162.0o

_

60.0

210.0

_

65.0

258.0.

_

70.0

600.0.

-.

0

IATITDE P3

5 DEGREE AT TVERS

MID-POINT FROM SHORE

600-OO

VE

SPEED OF, T_ SLATION

PARAMETER DESIGNATIONS

SIOW

HODERATF

HIGH

,(sT)

(n)

H)

ENTRAL PRESSURE INDEX

P0 INCHS

27.12 R'IPImUA

PRESSURE

P* INCHES

30.70

RADIUS TO MAXIMUM WIND

LARCE RADIUS NAUT. MI.

40

r1RASIATION SPEED

r! (F*ORWARD

spra)KNOTS

i

49 D(IUM WIND SPEED

V.

K.P.H.

142 INIrIAL DISTAMCE-11A

.MI.A

ROM 20 MPH WIND

A~T MSHORE

TO

. yMAX*WN

PMH OCMPUTATIONAL COOEFICIENT

AND WATER LEVEL (SURGE)

ESTIMATES

"C

0 E F F I C I E N T 5 BOTTOM FRICTION FACTOR 0.0025 WIND STRESS CORRECTION FACTOR 1.10

WATER

Lh VEL

DATA

(AT OPEN CCAST SHORELINE)

PMH SPEED OF TRANSLATION

ODMPONENTS

ST

i MT

Hr F

3 E

T.T

WIND SETUP

15.32 PRESSURE SETUP

2.5?

INITIAL WATER LEV*

1.10

1AUMNOMICAL

5.70

r I IDL L-V

"AL-SURGE

2 STILL WATER L.

ET MLW.

TABLE C.17 SUI4AM

Y-PERTINENT PROBABLE HAXIMUJ. hWHRICANE (PMH),

STORM M:RGE COMPUTATIONAL DATA AND RESULTANT WATER LEVEL

LOCATION LONG ISLAND.LAT. 410 00' LONG. 7i201.8%' TRAVEiSE-AZIMUTH 166 CONNECTICUT

DECREEa LENGTH 68.4 NAUTICAL MILES

r'

Note:

Maximum wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius to maximum wind.

1/Initial distance is distance along traverse from shoreline to maximum wind when leading

20 mph isovel intersects shoreline.

Storm diameter between 20 mph isovels is approxi mately double the initial distance.

OCEAN BED PROFILE

TRAVERSE

WATER

DISTANCE

DEPTH

FROM

BELOW

SHORE

HMU

(HAUT. mi.)

JFEgrE

0

0

_ 0.2

22

0.5

38

_

1.0

43

_

1.5

53

2.0

67

-

3.0

82

-

5.0

102

_

10.0

132

_

15.0

145

_

20.0

170

30.0

212

40.0

240

50.0

260

-

60.0

302

68.4

6O0

70.0

870

1ATITUDE

.

400 27'

DEGREE AT TRAVERSE

ID-POINT FHOM SHORE

60o-Foz DFTr'

PMH (XMPUTATIONAL COEWFICIENT

AND WATER LEVEL (SURGE)

ESTIMATES

COEFFIC-1ENTS

BO1`nf FRICTION FACTOR 0.0025 WIND sbfRESS CORREMION FACTOR 1.10

WATER

LEV EL

DATA

(AT OPEN MAS SWORELINS)

PMH SPEED OF TRANSLATION

COMPONENTS

ST I

MT

u S

_ _E

E

T

WIND SETUP

8.73 PRESSURE SETUP

2.46 INITIAL WATIR LEV.

0.97

&STONONICAL

3.10

TIDE LEVEL

WTAL-SURGE

STILL WATER LWV.

15.26 E1EET MLW

(

PROBABLE MAXIMUM HUHRICkNE INDEX CHARAC'IMtISTICS

ZONE

4 AT LOCATION

410

00' DXMEE NORTH

SPEED OF TRANSLATION

PARAMTER DESIGNATIONS

SLOW

HODEATF

HIGH

M2?I1AL PRESSURE INDEX

P0 INCHES

27.26

27.26

27.26 PERIPHERAL PRESSURE

P

INCHES

30.56

30.56

30.56 RADIUS TO MAXIMUM WIND

LARERADIS NAUT. MI.

.8

48

48 mRANSLATION SPEED

?,v (FORWARD SPEED) KNOTS

115

34

51

1AXlMUM WIND SPEED

vx M.P.H.

115

126

136 INITIAL DISTANCE-NAWTeMIJ/

FROM 20 MPH WIND

346

293

259 kT SHORE TO MAX.

WIND

r

Q

SUMMARY-PERTINENT PRtJBA.LE MAXIMUI,. hhIRICANE

LOCATION WATCH HILL

LAT.

43?18.9w LONG.

71 POINT, RHODE ISLAND

PROBABLE MAX IMUM HURRlCANE INDEX CHARACTISTICS

ZONE

4 AT LOCATION

  • 41

19'

REE NORTH

Note:

Maximum wind speed is assumed to be on the--raverse that is to right of storm track a distance equal to the radius to maximum wind.

1/Initial distance is distance along traverse from shoreline to maximum wind when leading

20 mph isovel intersects shoreline.

Storm

-diameter between 20 mph iaovels is approxi mately double the initial distance.

K

TABLE C.18 (nMH),

STORM SUHGE COMPUTATIONAL DATA AND RESULTANT MATER LEVEL

50 : T1RAVERSE-AZIMUTH 166 DE*REE: LENGTH

84 NAUlICAL MILES

OCEAN BED PROFILE;

TRAVERSE

WATER

DISTANCE

DEPTH

FROM

BELOW

SHORE

MWI

NAUT

MI

(FELT)

0

0

0.2

28

_

0.5

40

1.0

77

_

1.5

98

2.0

119

_

3.0

117

4.0

114

_

5.0

128

6.0

114

-

7.0

113

8.0

117

9.0

118

10.0

93

11.0

70

12.0

65 S

3.0

51 L4.o

56

15.0

77?

20.0

131

-0

1

0

2~

gO

0

245 LATITUiE

0 400 38'

DEIREE AT TRAVERSE

MID-POINT FROM SHORE

IT 600-2

=

DEFA

K

'r

6,

""SPEED

F *A

STION

PARAMETER I(SIPNATIOE.OS

5

35

1IGH

, ,, (sT_

)

" N '0

( r)

10 INCHES

27.29

27.29

27.29 P a INCHES

30.54

30.54

30.54 UaDIS TO

MAXIMUM WIND

IARG RADIUS NAUT. MI.

49

49

4 XIMUM MIND SPEED

VA

M.P.H.

113

126

134 INITIAL DISTANCE-NAUT.MI .1 FROM 20 MPH WIND

348

284.

255 AT S HO VE IQ MA*X

, WI

-

PMH OC?1PUTATIONAL COOVFICIMN

AND WATER LEVEL (SURGE) ESTIMATES

C O

F F I

E ENT S

IX*OT*IV

YICTION FACTOR 0.0025 WIND STRESS CORRECTION FACTOR 1.10

WATER

LEVE.L

DATA

(AT OPEN OCAST SHORELINE)

PIH SPEED OF TRANSIATION

COMPONENTS

STI

MT

-IH

F

E

E"

T _.

WIND SETUP

10.01 PRESSURE SETUP

2.42 INITIAL WATER LEV.

0.96

.STRON0MIC.L

4.00

POTAhL-SURGE

STILL WATER LLk.

17.39 T*-r-LW

TABLE C.19 SUPARY-PERTINENT PROBABLE MAXIMUk HURRICANE (PFH),

STORM SUGIO

COMPUIATIONAL LATA AND RESULTANT WATER)LEVEL

LOCATION HAMPTON

LT. 420

57' 1ONG. 70"47.l' 'i TRAVQtSE-AZIML

115 cH

NEW H&HPSHIRE

Note:

Maximum wind speed is assumed to be on the traverse that is to right of storm track a distance equal to. the radius to maximum wind.

F-Initial distance is distance along traverse from shoreline to maximum wind when leading

20 mph isovel intersects shoreline.

Storm diameter between 20 mph isovels is approxi mately double the initial distance.

C

PROR&BI

MAXIMUM HURRICANE INDEX CHARAC.!tISTICS

ZONE 4 AT LOCATION

420

57' DEGRE NORTh S'

... lSPEE OF THMANS AION

PARAMETER IESIGNATIONS

SIOW

HODESATF

HIGH

.

  • -(sT)

(,.,r)

,

CElAL PRESSURE INDEX

.-

P 0INCHES

27.44

27.44

27.44 PERIPHERAL PRESSURE

Pn INCHES

30.42

30.42

30.42 RADIUS T0 NAXIMUM WIND

LARG

RADIUJS FAUT. KI.

57

57

57 TANSLATIGN SPEED

iy (FOWARD SPEED) KNOTS

1 1?

37

52 MAXINUM WIND SPEED,

Pvx

.. ,.

107o

118 n

1 INITIAL DiAmcE.-RWT.mI.ND

F!ROM 20MPH WIND ,-

353

290

262

4T SHORE TO WA. WIND

1........

DWRE{E

LENG'H

40

NAUTICAL MILS

C

r Uf, OCEAN BED PROFILE

TRAVERSE

WATER

DISTANCE

DEPTH

FROM

BIOW

SHORE

MLN

(k,.TMi.){

(FFE*)

-

0

0

-

0.2

8

-

0.5

40

-

1.0

64

-

1.5

82

,

2.0

100

-

3.0

105

-

5.0

156

-

10.0

258

-

15.0

336

-

20.0

266

-

25.0

210

-

30.0

322

-

35.0

433

40,0

6OO

IATITUDI

0 42 0 48'

DEIREE AT TRAVERSE

MID-POINT FHOM SHORE

TM 60o-=OOT DEPTm

  • M OCIPUTTIONAL COiFICIENT

AND WATER LEVEL (StkGE) ESrIMATES

COEFF

I C I ENTS

kOnO' FRICTION FA¥ 02 0.0025 WIND STRESS CGURLCTION FACTOR 1.10

WATER

L-VEL

DATA

(AT OPEN GCAST SHORELINE)

PMH SPEED CF TRANSLATION

COMPONENTS

ST

I

ITT

I

hi F

E

E"

T

WIND SETUP

4.25 PRESSURE S'IMP

2.23 INITIAL WAT1.

LEV.

0.83 M NORICAL

10.50

VIDE LEVEL

TAL-SURGE

  • TILL WATER L67,.

17.81 EETr MLW

I

K

LOCATION GREAT

LAT.

W$O3304'

LONG.

67'

SPRUCE ISLAND. MAINE

otej:

Maximum wind speed is assumed to be on the traverse that is to right of storm track a distance equal to the radius-to maximum wind.

y/Initial distance is distance along traverse from shoreline to maximum

ind when leading i 20 mph isovel intersects shoreline.

Storm diameter between 20 mph Isovels is approxi mately double the initial distance.

30': TRAvERS

OCEAN BE

TRAVERSE

DISTANCE

FROM

SHORE

(NuT.MI.

0

_

0.2

-

0.5

-

1.0

_

1.5

-

2.0

_

3.0

-

4.0

_

5.0

1 0.0

_

15.0

20.0

-

30.0

10.0

50.0

-

60.0

70.0

-

120.0

130.0

1'Ii0

180.0

IATITUDE

DFRFZ AT

MID-POiNT

,E-AZIMUTH

148 ED PROFILE

PROBABLE MAXIMUM HURRICANE INDEX CHARACTrERISTICS

I ZO.E

4 AT LOCATION

440

31 DEGREE

NOW'TH

INO 600-FOOT DEPT'

Dif-REEs LFNGTH 178.6 NAUTICAL MILES

K

TABLE C.20

SUMMARY-PERTINENT PROBABLE MAXIMUI. hUWRICANE (PMH).

STOIRM SURGE COMPUTATIONAL DATA AND RESULTANT WATER L*VEL'

K

WATER

DEMT

BELOW

MLW

FEET

0

50

96

"95

125

125

165

247

188

233

438

570

271

511 NIL

4

1,620

4 o17df TRAVERSE

FROM SHORE

SPEE OF TRANSLTION

PARAMETER DESIGNATIONS

SLOW

HODERATF

HIGH

.EMLPRESSURE

INDEX

-

P0 INCHES

27.61

27.61

27.61 PERIPHERAL PRESSURE

Pn INCHES

30.25

30.25

30.25

ýRDU TO MXMWIND

IARGE RADIUS NAUT.

MI.

  • 64

64

64 TRASIATION SPEED

V (FORWARD SPEED) KNOTS

I 19

39

53

"Vx M.P.H.

102

114

122 TINITIAL DISTANCE-NAUT.MID

"

1P

%A

PMH 001PUTATIONAL COEFFICIE2IT

AND WATER LEVEL (SURGE)

ESTIMATES

C 0 E F F . C I E N T S

BTJOh F'HzICT'ON FACTOR 0.0025 WIND STRESS CORHEHTION FACTOR 1.10

w.Tz*,

L,'v1L

DATA

(AT OPEN CCAST SHORELINE)

'PMH SPEED OF TRANSIATION

COMPONENTS

ST

I

MT

HT

F

E

E

T

WIND SETUP

9.73 PRESSURE SLTJP

1.82 INITIAL WATEW LEV.

0.56 ASTRONOMICAL

16.00

TIDE LEVEL-

-

tOTAL-SURGE

28.1 STILL WAT*R LLV.

EETL"

MLW

TABLE C.21 OCEAN BED PROFILES

PASS

CRYSTAL

CHESAPEAKE

CI*RISTI"

RIVER

ST. LUCIE

BAY MOUTH

HAMPTON BEACH*

Nautical Nautical Nautical Nautical Nautical Miles from Depth, Miles from Depth.

Miles from Depth, Miles from Depth, Miles from Depth, Shore ft.

I4LW

Shore ft.

HLW

Shore f

t. MLW

Shore

- ftj MLW

Shore ft, MLW

1

2

5

10

15

20

30

40

50

60

70

77

0.55

2.31

6.25

8.33

31.4

100

113

127

3

9

12

13

35

36

40

52

90

160

335

600

0.1

10

16

18.7

3

10

14

9

50

180

300

600

10

90

390

600

5

10

30

50

55

62

44

56

102

178

240

600

0.5

4

10

25

44

20

120

250

250

600

  • As developed for Seabrook r

70

0%

G%

C

t

UNITED STATES

NUCLEAR REGULATORY COMMISSION

WASHINGTON, D.C. 20555 OFFICIAL BUSINESS

PENALTY FOR PRIVATE USE, *W0

FIRST CLASS MAIL.

.

POSTAGE 6 FEES PAID

USNRC

PERMIT N&. 0-67