ML19309F828: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(2 intermediate revisions by the same user not shown)
Line 2: Line 2:
| number = ML19309F828
| number = ML19309F828
| issue date = 03/14/1980
| issue date = 03/14/1980
| title = Structural Design Assessment for Safe-End Break.
| title = Structural Design Assessment for Safe-End Break
| author name =  
| author name =  
| author affiliation = SARGENT & LUNDY, INC.
| author affiliation = SARGENT & LUNDY, INC.
Line 18: Line 18:
=Text=
=Text=
{{#Wiki_filter:.
{{#Wiki_filter:.
Q                                                 8005 01038I
800 01038I Q
5
[
[
{
NUCLEAR SAFETY-RELATED
NUCLEAR SAFETY-RELATED
{
~
~
STRUCTURAL DESIGN ASSESSMENT FOR SAFE - END BREAK ENRICO FERMI POWER PLANT - UNIT 2
STRUCTURAL DESIGN ASSESSMENT FOR SAFE - END BREAK ENRICO FERMI POWER PLANT - UNIT 2
[
[
REPORT PREPARED FOR
REPORT PREPARED FOR DETROIT EDISON COMPANY
-              DETROIT EDISON COMPANY
~
~
h REPORT SL-3647
h REPORT SL-3647
[
[
MAY 26,1978 MARCH 14,1980 (REV. 2)
MAY 26,1978 MARCH 14,1980 (REV. 2)
[
[
SARGENT&LUNDY i E NGIN E E 548 _
SARGENT&LUNDY i E NGIN E E 548


S ARGENT O LUNDY
S ARGENT O LUNDY
[                                                ENGINEEHC POUNDEJBY FREDERICR SARGENT 1896 55 E AST MONROE STREET CHICAGO.lLLINOIS 60603
[                                          TELEPHONE  -
312 269 2000 CABLE ADDRESS - S ARLUN-CHICAC O
[
[
JOHN M. MC LAUGHLIN PAmthgR sia - 2.. 7 7.
ENGINEEHC POUNDEJBY FREDERICR SARGENT 1896 55 E AST MONROE STREET
[
CHICAGO.lLLINOIS 60603 TELEPHONE 312 269 2000 CABLE ADDRESS - S ARLUN-CHICAC O
[
JOHN M. MC LAUGHLIN PAmthgR
{
{
sia - 2..
7 7.
March 14,1980
March 14,1980
[
[
Detroit Edison Company Enrico Fermi 2 Project
Detroit Edison Company
[          Document Control Office - 110 S.B.
[
Enrico Fermi 2 Project Document Control Office - 110 S.B.
2000 Second Avenue Detroit, Michigan 48226
2000 Second Avenue Detroit, Michigan 48226
[           Attention: Mr. M. L. Batch Room No. 318 ECT
[
Attention: Mr. M. L. Batch Room No. 318 ECT


==Dear Mr. Batch:==
==Dear Mr. Batch:==
We are enclosing herewith fifteen copies of the following revised report in response to your letter EF2-47110, dated November 13, 1979:
We are enclosing herewith fifteen copies of the following revised report in response to your letter EF2-47110, dated November 13, 1979:
(                             Report SL-3647 Structural Design Assessment for Safe-End Break Enrico Fermi Atomic Plant - Unit 2
(
{                               Revision 2, March 14,1980 This report has been revised to incorporate the revised results of the Annulus Pres-surization (AP) analysis performed by General Electric Company.
Report SL-3647 Structural Design Assessment for Safe-End Break Enrico Fermi Atomic Plant - Unit 2
If you have any questions or comments, or feel that any further points should be
{
Revision 2, March 14,1980 This report has been revised to incorporate the revised results of the Annulus Pres-surization (AP) analysis performed by General Electric Company.
{
{
reviewed, kindly advise.
If you have any questions or comments, or feel that any further points should be reviewed, kindly advise.
Yours very truly,         !
Yours very truly,
[
[
4e         ') .
4e
[                                                                        . M. McLaughd n, Manager Structural Department JMM/mgg
')
[          Enclosures
[
[
                                                @@@Y
. M. McLaughd n, Manager Structural Department JMM/mgg
[
Enclosures
[
@@@Y


SARGENT C LUNDY
SARGENT C LUNDY
[                                              xxoxxunus roVNCEO By rREDERICA $ ARGENT-9691 55 EAST MONROE STREET CHICAGO.lLLINOIS 60603
[                                        TEttawoNE -          312 269-2000 CABLE ADDRESS - S ARLUN-CMIC AGO
[      JOH N M. MC LAUGH LIN
              ,,,'.",".','.',"o,,                                        March 22,1979
[
[
Mr. W. F. Colbert, Project Engineer Detroit Edison Company
xxoxxunus roVNCEO By rREDERICA $ ARGENT-9691 55 EAST MONROE STREET
[          2000 Second Avenue, Room 333 ECT Detroit, Michigan 48226
[
CHICAGO.lLLINOIS 60603 TEttawoNE -
312 269-2000 CABLE ADDRESS - S ARLUN-CMIC AGO
[
JOH N M. MC LAUGH LIN
,,,'.",".','.',"o,,
March 22,1979
[
Mr. W. F. Colbert, Project Engineer
[
Detroit Edison Company 2000 Second Avenue, Room 333 ECT Detroit, Michigan 48226


==Dear Mr. Colbert:==
==Dear Mr. Colbert:==
We are enclosing herewith fifteen copies of the Revision 1, change-out pages for:
We are enclosing herewith fifteen copies of the Revision 1, change-out pages for:
Report sic 3647 Structural Design Assessment for Safe-End Break Enrico Fermi Atomic Power Plant - Unit 2
Report sic 3647 Structural Design Assessment for Safe-End Break
{                                  Revision 1, March 22,1979 This report has been revised to expand the description of the metho& employed to transform the data received from NUS to be compatible with our analysis tech-nique, and also to include changes in the RPV anchor bolt stresses due to vessel skirt loas received from General Electric Company.
{
The following pages have been revised or added. Please insert these pages in the
Enrico Fermi Atomic Power Plant - Unit 2 Revision 1, March 22,1979 This report has been revised to expand the description of the metho& employed to transform the data received from NUS to be compatible with our analysis tech-nique, and also to include changes in the RPV anchor bolt stresses due to vessel skirt loas received from General Electric Company.
{
{
appropriate place in the report and void the superseded pages of the previous issue:
The following pages have been revised or added. Please insert these pages in the appropriate place in the report and void the superseded pages of the previous issue:
[                                 Table of Contents page ii Text pages 6, 6 A, 7, 7A, 8, and 9 Table 15 Exhibits 8, 9, and 10.
[
Table of Contents page ii Text pages 6, 6 A, 7, 7A, 8, and 9 Table 15
{
{
If you have any questions or comments, or feel that any further points should be reviewed, kinaly advise.
Exhibits 8, 9, and 10.
If you have any questions or comments, or feel that any further points should be
{
{
Yours very truly, f             -
reviewed, kinaly advise.
Yours very truly, f
l N,
l N,
                                                                            . M. McLaug
. M. McLaug
[                                                                          Assistant Manager, Structural Department
(          JMM/ ens Enclosures
[
[
                                                  @@W
Assistant Manager, Structural Department
(
JMM/ ens Enclosures
[
@@W


L san (nowT C LUNny ENGINEEHN ROUNDED BY FREDERICA SAROENT-8891 55 EAST MONROE STREET
L san (nowT C LUNny ENGINEEHN ROUNDED BY FREDERICA SAROENT-8891 55 EAST MONROE STREET
[                                            CHICAGO.lLLINOIS 60603 TELEpwoNE -    312-269-2000 C ABLE ADDRESS - S ARLUN CHICAGO
[
[
JOHN M. MC LAUGHLIN g
CHICAGO.lLLINOIS 60603 TELEpwoNE -
      ,=...
312-269-2000 C ABLE ADDRESS - S ARLUN CHICAGO
May 26,1978
[
JOHN M. MC LAUGHLIN
, =...
g May 26,1978
[
[
Mr. W. F. Colbert, Project Engineer
Mr. W. F. Colbert, Project Engineer
[         Detroit Edison Company 2000 Second Avenue, Main Lobby Detroit, Michigan 48226
[
Detroit Edison Company 2000 Second Avenue, Main Lobby Detroit, Michigan 48226


==Dear Mr. Colbert:==
==Dear Mr. Colbert:==
 
[
[        We are enclosing herewith fifteen copies of the following report:
We are enclosing herewith fifteen copies of the following report:
Report Sle3647
[
[                            Structural Design Assessment for Safe-End Break Enrico Fermi Atomic Power Plant - Unit 2 Dated May 26,1978               ,
Report Sle3647 Structural Design Assessment for Safe-End Break Enrico Fermi Atomic Power Plant - Unit 2 Dated May 26,1978 This report presents the results of our analysis of the effect of annulus pressurization
This report presents the results of our analysis of the effect of annulus pressurization
{
{         between the reactor vessel and the sacrificial shield to assess the design adequacy of the affected structures. We have concluded that the sacrificial shield, reactor pedestal, stabilizer truss, RPV and shield anchor bolts can safely accommodate the effects of annulus pressurization resulting from a postulated safe-end break.
between the reactor vessel and the sacrificial shield to assess the design adequacy of the affected structures. We have concluded that the sacrificial shield, reactor pedestal, stabilizer truss, RPV and shield anchor bolts can safely accommodate the effects of annulus pressurization resulting from a postulated safe-end break.
[         If you have any questions or comments, or feel that any further points should be re-viewed, kindly advise.
[
If you have any questions or comments, or feel that any further points should be re-viewed, kindly advise.
E L
E L
Yours very truly, r                                                                           f l
Yours very truly, r
L                                                                           M.
f l
                                                                        . M. McLaug Assistant Manager,
L M.
[                                                                     Structural Department L         JMM/ ens Enclosures
. M. McLaug Assistant Manager,
                                                @@W
[
Structural Department L
JMM/ ens Enclosures
@@W


[
[
[                                                     1 NUCLEAR SAFETY-RELATED STRUCTURAL DESIGN ASSESSMENT FOR SAFE - END BREAK ENRICO FERMI POWER PLANT - UNIT 2
[
1 NUCLEAR SAFETY-RELATED STRUCTURAL DESIGN ASSESSMENT FOR SAFE - END BREAK ENRICO FERMI POWER PLANT - UNIT 2
[
[
[
[
Line 131: Line 157:
[
[
[
[
SARGENT&LUNDY iENO4NEERS .
SARGENT&LUNDY iENO4NEERS E
E


[                                                                                     .
[
T ABLE OF CONTENTS LIST OF EX HIBITS
T ABLE OF CONTENTS
{
{
Rev.1, 3-22-79
LIST OF EX HIBITS Rev.1, 3-22-79
[                                                                             PAGE I      
[
PAGE I


==SUMMARY==
==SUMMARY==
1 II       STRUCTURAL COMPONENTS                                             1 III     MATERIAL AND MATERIAL PROPERTIES                                 3 IV       DESIGN CRITERIA                                                   4
1 II STRUCTURAL COMPONENTS 1
[   V       ANALYSIS AND RESULTS                                             5 VI       STRUCTURAL ASSESSMENT                                             7 VII     CONCLUSION                                                       8 VIII     REFERENCES                                                       9 EXHIBITS 1 - Section Through Centerline of Drywell 2 - Annulus Pressurization Mathematical Model 3 - Sacrificial Shield 4  -
III MATERIAL AND MATERIAL PROPERTIES 3
Reactor Pedestal
IV DESIGN CRITERIA 4
[
V ANALYSIS AND RESULTS 5
VI STRUCTURAL ASSESSMENT 7
VII CONCLUSION 8
VIII REFERENCES 9
EXHIBITS 1 - Section Through Centerline of Drywell 2 - Annulus Pressurization Mathematical Model 3 - Sacrificial Shield
{
{
5 - Stabilizer Truss 6 - Anchor Bolt Layout 7 - Anchor Bolt Detail 8  -
4 Reactor Pedestal 5 - Stabilizer Truss 6 - Anchor Bolt Layout 7 - Anchor Bolt Detail Load Node Points on Sacrificial Shield 8
Load Node Points on Sacrificial Shield
* 9 - Section B-B                                                      *
{
{
10 - Section A-A
9 - Section B-B 10 - Section A-A APPENDICES Appendix A - Computer Programs
* APPENDICES Appendix A - Computer Programs
[
[             Appendix B - Definitions of Load Combination Categories ii                             SL-3647
Appendix B - Definitions of Load Combination Categories ii SL-3647


[
[
[
[
LIST     OF     T A B L ES
LIST OF T A B L ES
[                                                                                 5-26-78
[
[   1   -
5-26-78
Load Combinations for Sacrificial Shield, Stabilizer Truss and Anchor Bolts
[
{   2   -
1 Load Combinations for Sacrificial Shield, Stabilizer Truss and Anchor Bolts
Load Combinations for Reactor Pedestal l
{
3   - Allowable Stresses for Sacrificial Shield                                             l 4   -
2 Load Combinations for Reactor Pedestal l
Allowable Stresses for Reactor Pedestal                                             l 5   -
3
Allowable Stresses for Bolting Material and Shear Lugs 6  -
- Allowable Stresses for Sacrificial Shield l
Geometry of Nodal Points
4 Allowable Stresses for Reactor Pedestal l
5 Allowable Stresses for Bolting Material and Shear Lugs
{
{
7   -
6 Geometry of Nodal Points 7
Elements 11 dices 8   -
Elements 11 dices 8
Maximum Shell Membrane Forces 9   -
Maximum Shell Membrane Forces 9
Maximum Stresses in Plates 10  -
Maximum Stresses in Plates
Maximum Stresses in Welds
{
{
11 -   Maximum Stresses in Columns
10 Maximum Stresses in Welds 11 -
[   12 -
Maximum Stresses in Columns
Maximum Shear Stresses in Concrete Fill in Sacrificial Shield 13 - Summary of Maximum Stresses at Design Sections of Pedestal (Meridional Direction)
[
[  14  -
12 Maximum Shear Stresses in Concrete Fill in Sacrificial Shield 13 - Summary of Maximum Stresses at Design Sections of Pedestal (Meridional Direction)
Summary of Maximum Stresses at Design Sections of Pedestal (Hoop Diree-tion) 15  -
Summary of Maximum Forces in Anchor Bolts
[
[
i                                 SL-3647
14 Summary of Maximum Stresses at Design Sections of Pedestal (Hoop Diree-tion) 15 Summary of Maximum Forces in Anchor Bolts
[
r' i
SL-3647


[
[
SARGENT & LUNDY
SARGENT & LUNDY
[                                         E N GIN E E R5 onc^co                                 5-26-78
[
(           STRUCTURAL DESIGN ASSl'SSMENT FOR SAFE-END BREAK ENRICO FERMI ATObllC POWER PLANT - UNIT 2
E N GIN E E R5 onc^co 5-26-78
(                               DETROIT EDISON COMPANY
(
{                                       l SUMM A RY
STRUCTURAL DESIGN ASSl'SSMENT FOR SAFE-END BREAK ENRICO FERMI ATObllC POWER PLANT - UNIT 2
{ The purpose of this study is to analyze for the effect of annulus pressurization be-tween the reactor vessel and the sacrificial shield and to assess the design adequacy of the affected structural components. The study considered three independent postulated safe-end breaks: recirculation inlet, recirculation outlet, and feedwater pipe break.
(
DETROIT EDISON COMPANY
{
l SUMM A RY
{
The purpose of this study is to analyze for the effect of annulus pressurization be-tween the reactor vessel and the sacrificial shield and to assess the design adequacy of the affected structural components.
The study considered three independent postulated safe-end breaks: recirculation inlet, recirculation outlet, and feedwater pipe break.
A thin shell finite element model is used to analyze for forces and moments on the
A thin shell finite element model is used to analyze for forces and moments on the
{ structure. The structural components assessed in this report are:
: 1)  sacrificial shield,
: 2)  reactor pedestal,
: 3) stabilizer truss,
: 4)  reactor anchor bolts, and
(    5) sacrificial shield anchor bolts.
The various components are shown in Exhibit 1. The model used in the analysis is shown in Exhibit 2. The resulting forces and moments are combined with other appro-priate loads as defined in the design criteria to obtain the final design forces and b moments. The resulting stresses are found to be within the allowables.
(                            II STRUCTURAL COMPONENTS A. Sacrificial Shield
{
{
The sacrificial shield is a cylindrical shell with 14 feet-6-1/2 inches average
structure. The structural components assessed in this report are:
{       radius, 48 feet-9 inches high and 1 foot-9 inches thick. It has 3/8 inch thick steel exterior and interior plates meridionally stiffened by 12 vertical steel columns.
1) sacrificial shield, 2) reactor pedestal,
The steel plates are welded to the flanges of columns. The annular space between the plates is filled with concrete which functions as the primary                                                       l
: 3) stabilizer truss, 4) reactor anchor bolts, and
( PROJECT S285-19                                                               SL-3647
(
: 5) sacrificial shield anchor bolts.
The various components are shown in Exhibit 1.
The model used in the analysis is shown in Exhibit 2. The resulting forces and moments are combined with other appro-priate loads as defined in the design criteria to obtain the final design forces and b
moments. The resulting stresses are found to be within the allowables.
(
II STRUCTURAL COMPONENTS
{
A.
Sacrificial Shield The sacrificial shield is a cylindrical shell with 14 feet-6-1/2 inches average
{
radius, 48 feet-9 inches high and 1 foot-9 inches thick. It has 3/8 inch thick steel exterior and interior plates meridionally stiffened by 12 vertical steel columns.
The steel plates are welded to the flanges of columns.
The annular space between the plates is filled with concrete which functions as the primary l
(
PROJECT S285-19 SL-3647


SARGENT & LUN DY ENGINEER 5
SARGENT & LUN DY
[.                                           caucac                       Rev. 2, 3-14-80
[.
[     radiation shield and also transmits shear forces between the exterior and the interior plates. Buckling of the plates is prevented by studs welded to the plates and embedded in the concrete. Cross-sectional views of the sacrificial shield along the meridian and the circumference are shown in Exhibit 3.
ENGINEER 5 caucac Rev. 2, 3-14-80
[
radiation shield and also transmits shear forces between the exterior and the interior plates. Buckling of the plates is prevented by studs welded to the plates and embedded in the concrete. Cross-sectional views of the sacrificial shield along the meridian and the circumference are shown in Exhibit 3.
[
[
The bottom of the shield is rigidly attached to the reactor support pedestal; the top is free to displace in all directions, except tangential, which is restrained by a stabilizer truss system.
The bottom of the shield is rigidly attached to the reactor support pedestal; the top is free to displace in all directions, except tangential, which is restrained by a stabilizer truss system.
[   B. Reactor Pedestal The reactor pedestal provides a support for the reactor pressure vessel, the
[
[     sacrificial shield wall and the pipe break support truss system.
B.
The reactor pedestal is a reinforced concrete cylindrical shell with an average
Reactor Pedestal The reactor pedestal provides a support for the reactor pressure vessel, the
[      radius of 12 feet-6-1/2 inches and a height of approximately 26 feet as shown in Exhibit 4. The thickness of the shell varies from 4 feet at its base to 5 feet-(     6 inches at its top. The shell is reinforced on the inside and outside faces in the
[
* hoop as well as meridional directions.
sacrificial shield wall and the pipe break support truss system.
[   C. Stabilizer Truss The stabilizer truss system (Exhibit 5) is a horizontal structural steel truss con-necting the top of the sacrificial shield to the primary steel containment. The function of this system is to stabilize the RPV and the sacrificial shield under dynamic excitation. The RPV is connected to the sacrificial shield by the RPV stabilizer and the sacrificial shield, in turn, is connected to the primary steel b       containment by the stabilizer trussi. A specien " shear lug" connection attaches the truss gusset plates to the containment wall. The shear lug connection
[
{       permits radial and vertical movements but restrains tangential movement of the
The reactor pedestal is a reinforced concrete cylindrical shell with an average radius of 12 feet-6-1/2 inches and a height of approximately 26 feet as shown in Exhibit 4.
* shield.
The thickness of the shell varies from 4 feet at its base to 5 feet-(
D. RPV Anchor Bolts The function of the RPV anchor bolts is to transmit the forces from the RPV skirt to the reactor pedestal. The RPV anchoring consists of two 3-1/4 inch Q bolts every 12 degrees around the circumference of the pedestal. The anchor
6 inches at its top. The shell is reinforced on the inside and outside faces in the hoop as well as meridional directions.
* h      bolts and their locations are shown in Exhibits 6 and 7.
[
(                                                                               SL-3647 r
C.
Stabilizer Truss The stabilizer truss system (Exhibit 5) is a horizontal structural steel truss con-necting the top of the sacrificial shield to the primary steel containment. The function of this system is to stabilize the RPV and the sacrificial shield under dynamic excitation. The RPV is connected to the sacrificial shield by the RPV stabilizer and the sacrificial shield, in turn, is connected to the primary steel b
containment by the stabilizer trussi. A specien " shear lug" connection attaches the truss gusset plates to the containment wall.
The shear lug connection
{
permits radial and vertical movements but restrains tangential movement of the shield.
D.
RPV Anchor Bolts The function of the RPV anchor bolts is to transmit the forces from the RPV skirt to the reactor pedestal. The RPV anchoring consists of two 3-1/4 inch Q bolts every 12 degrees around the circumference of the pedestal. The anchor h
bolts and their locations are shown in Exhibits 6 and 7.
( SL-3647 r
1
1
;            ..            .


C SARGENT& LUN DY E N GIN E E R5 cmcsc 5-26-78 E. Sacrificial Shield Anchor Bolts
C SARGENT& LUN DY E N GIN E E R5 cmcsc 5-26-78 E.
[     The function of the sacrificial shield anchor bolts is to transmit the forces from the sacrificial shield to the reactor pedestal. The sacrificial shield anchoring consists of three sizes of bolts: 2-3/4 inch 0, 2-1/2 inch 0, and 2 inch 0 bolts
Sacrificial Shield Anchor Bolts
[
The function of the sacrificial shield anchor bolts is to transmit the forces from the sacrificial shield to the reactor pedestal. The sacrificial shield anchoring
{
{
which are spaced approximately every 6*. The anchor bolts and their locations are shown in Exhibits 6 and 7.
consists of three sizes of bolts: 2-3/4 inch 0, 2-1/2 inch 0, and 2 inch 0 bolts which are spaced approximately every 6*.
The anchor bolts and their locations are shown in Exhibits 6 and 7.
lll MATERIAL AND MATERIAL PROPERTIES
lll MATERIAL AND MATERIAL PROPERTIES
[
[
A. Sacrificial Shield Steel Plates                                     A588 Grade A Material Fy = 50 ksi Concrete Fill                                     f = 6000 psi Weld                                              E70 Electrode
A.
Sacrificial Shield Steel Plates A588 Grade A Material Fy = 50 ksi Concrete Fill f = 6000 psi
{
{
B. Reactor Pedestal
Weld E70 Electrode B.
[     Concrete                                         f = 4000 psi
Reactor Pedestal
(     Reinforcing Steel                                 A615 Grade 60 Material Fy = 60 ksi
[
(   C. Stabilizer Truss Steel Pipes                                       A53 Grade B Material Fy = 35 ksi
Concrete f = 4000 psi
(
Reinforcing Steel A615 Grade 60 Material Fy = 60 ksi
(
C.
Stabilizer Truss Steel Pipes A53 Grade B Material
{
{
Weld                                             E70 Electrode
Fy = 35 ksi Weld E70 Electrode
[
[
D. Bolting Material
D.
(     Anchor Bolts                                     A193 Grade B7 Material Fy = 105 ksi for 0 <2-1/2" f u= 125 ksi for 0 <2-1/2" Fy = 95 ksi for 2-1/2" < 0 <4" Fu= 115 ksi for 2-1/2" < 0 <4" SL-3647
Bolting Material
(
Anchor Bolts A193 Grade B7 Material Fy = 105 ksi for 0 <2-1/2" f = 125 ksi for 0 <2-1/2" u
Fy = 95 ksi for 2-1/2" < 0 <4" F = 115 ksi for 2-1/2" < 0 <4" u SL-3647


L SARGENT A LUNDY
L SARGENT A LUNDY
(                                         ENGINEERS
(
[                                           aucac 5-26-78
ENGINEERS
[
aucac 5-26-78
[
[
Nuts                                               A194 Grade 2H Material
Nuts A194 Grade 2H Material
[
[
where       Fy = specified minimum yield stress of steel.
where Fy = specified minimum yield stress of steel.
fy = specified yield strength of nonprestressed reinforcement.
fy = specified yield strength of nonprestressed reinforcement.
fh = specified compressive strength of concrete, f u= tensile strength of steel.
fh = specified compressive strength of concrete, f = tensile strength of steel.
IV DESIGN CRITERIA
u IV DESIGN CRITERIA
( A. Loads and Load Combinations This study is mainly concerned with the effect of a postulated safe-end break of the fecdwater and the recirculation lines.       The three major loads that are associated with a rafe-end break are:
(
: 1)   annulus pressurization load,
A.
: 2) jet impingement load, and
Loads and Load Combinations This study is mainly concerned with the effect of a postulated safe-end break of the fecdwater and the recirculation lines.
The three major loads that are associated with a rafe-end break are:
1) annulus pressurization load,
{
{
: 3)   pipe whip reaction load.
: 2) jet impingement load, and 3) pipe whip reaction load.
(     The first two loads are described in NUS Report NUS-3129 (Ref. 4). The pipe whip reaction loads are described in Sargent & Lundy Report SL-2880 (Ref. 3).
(
The first two loads are described in NUS Report NUS-3129 (Ref. 4). The pipe whip reaction loads are described in Sargent & Lundy Report SL-2880 (Ref. 3).
Other loads that are considered in the structural assessment are:
Other loads that are considered in the structural assessment are:
: 1)   dead load,
1) dead load, 2) thermal effect due to accident temperature = 281*F, and
: 2)   thermal effect due to accident temperature = 281*F, and
[
[
: 3) seismic effect due to OBE and SSE excitations.
: 3) seismic effect due to OBE and SSE excitations.
[     The accident transient temperature is given in EF-2-FSAR (Ref.1). The seismic forces and moments are obtained from Sargent & Lundy Report SL-2682 (Ref. 2).
[
(     Load combinations considered in this study are presented in Tables 1 and 2.
The accident transient temperature is given in EF-2-FSAR (Ref.1). The seismic forces and moments are obtained from Sargent & Lundy Report SL-2682 (Ref. 2).
Table 1 gives the load combinations for the sacrificial shield, stabilizer truss and the anchor bolts.       Table 2 gives the load combinations for the reactor SL-3647
(
Load combinations considered in this study are presented in Tables 1 and 2.
Table 1 gives the load combinations for the sacrificial shield, stabilizer truss and the anchor bolts.
Table 2 gives the load combinations for the reactor SL-3647


SARGENT & LUN DY ENGINEER 5 Rev. 2, 3-14-80
SARGENT & LUN DY ENGINEER 5 Rev. 2, 3-14-80
[
[
pedestal. The only two load combination categories that are considered in this
pedestal. The only two load combination categories that are considered in this
(       assessment are th9 Abnormal / Severe Environmental and the Abnormal / Extreme Environmental, since they are the only ones associated with a safe-end break.
(
[       The combined forces and moments derived by the General Electric Co. for the
assessment are th9 Abnormal / Severe Environmental and the Abnormal / Extreme Environmental, since they are the only ones associated with a safe-end break.
* concrete RPV pedestal, RPV anchor bolts and stabilizer truss as provided in Reference 5 are also included in this study. Thus the larger of the stresses computed from the S&L and GE analyses are presented in this report.
[
B. Allowable Stresses f         The yield limit criteria are used in defining the allowable stresses for the L
The combined forces and moments derived by the General Electric Co. for the concrete RPV pedestal, RPV anchor bolts and stabilizer truss as provided in Reference 5 are also included in this study. Thus the larger of the stresses computed from the S&L and GE analyses are presented in this report.
B.
Allowable Stresses f
The yield limit criteria are used in defining the allowable stresses for the L
sacrificial shield, stabilizer truss, anchor bolts and the reactor pedestal.
sacrificial shield, stabilizer truss, anchor bolts and the reactor pedestal.
Tables 3,4 and 5 specify the allowable stresses used in the assessment.
Tables 3,4 and 5 specify the allowable stresses used in the assessment.
Line 278: Line 354:
[
[
The structure was analyzed using a Sargent & Lundy thin shell of revolution program,
The structure was analyzed using a Sargent & Lundy thin shell of revolution program,
[ DYNAX (see Appendix A). The various components included in the model are:
[
: 1)   sacrificial shield,
DYNAX (see Appendix A). The various components included in the model are:
[     2)   reactor pedestal,
1) sacrificial shield,
: 3)   reactor pressure vessel,
[
2) reactor pedestal,
{
3) reactor pressure vessel,
: 4) stabilizer truss, and 5) refueling bellows.
{
{
: 4) stabilizer truss, and
Exhibit 2 presents the model used in the analysis, and Tables 6 and 7 give the geo-metric properties of the elements.
: 5)    refueling bellows.
(
Exhibit 2 presents the model used in the analysis, and Tables 6 and 7 give the geo-
The boundary conditions at the base of the pedestal and the points where the stabilizer truss and refueling bellows are attached to the containment wall were
metric properties of the elements.
{
(   The boundary conditions at the base of the pedestal and the points where the stabilizer truss and refueling bellows are attached to the containment wall were
considered to be fixed. Since the stabilizer truss, the refueling bellows and the RPV stabilizer can resist only tangential loads, they were modeled as thin annular steel plates accounting for the tangential stiffness only.
{   considered to be fixed. Since the stabilizer truss, the refueling bellows and the RPV stabilizer can resist only tangential loads, they were modeled as thin annular steel plates accounting for the tangential stiffness only.
1
1
[                                                                               SL-3647 F
[
' SL-3647 F
i l
i l


L SARGENT & LUNDY
L SARGENT & LUNDY
[                                                         E NGIN E E RS ciuc^c Rev.1, 3-22-79 The sacrificial shield is modeled as an orthotropic material to simulate the difference in stiffness between the meridional and the hoop direction. The reactor pedestal is modeled as an isotropic material axisymmetrical shell. Small openings are assumed                         _
[
to have little effect on the overall behavior of the structure. The reactor pressure vessel (RPV) is modeled also as an isotropic material. The masses and member prop-erties were chosen to simulate the natural frequency of the RPV. The RPV and the
E NGIN E E RS ciuc^c Rev.1, 3-22-79 The sacrificial shield is modeled as an orthotropic material to simulate the difference in stiffness between the meridional and the hoop direction. The reactor pedestal is modeled as an isotropic material axisymmetrical shell. Small openings are assumed to have little effect on the overall behavior of the structure. The reactor pressure vessel (RPV) is modeled also as an isotropic material. The masses and member prop-erties were chosen to simulate the natural frequency of the RPV. The RPV and the
( sacrificial shield are attached to the reactor pedestal through rigid horizontal members to account for the rigid connection between three components.
(
sacrificial shield are attached to the reactor pedestal through rigid horizontal members to account for the rigid connection between three components.
A finer finite element mesh is provided in the sacrificial shield and the shell of the RPV in order to more accurately model the pressure distribution that acts on these two components in the meridional direction.
A finer finite element mesh is provided in the sacrificial shield and the shell of the RPV in order to more accurately model the pressure distribution that acts on these two components in the meridional direction.
{
The annulus pressurization load is due to any of the three postulated pipe ruptures:
The annulus pressurization load is due to any of the three postulated pipe ruptures:
1) feedwater line, 2) recirculation inlet, and 3) recirculation outlet.
The pressure time histories and spatial distributions for these three pipe ruptures are
{
{
: 1)    feedwater line,
provided in NUS Report NUS-3129 (Ref. 4).
: 2)    recirculation inlet, and
The differential pressure due to a postulated feedwater pipe rupture was found to be the governing load. Therefore, all
: 3)    recirculation outlet.
The pressure time histories and spatial distributions for these three pipe ruptures are
{ provided in NUS Report NUS-3129 (Ref. 4).                             The differential pressure due to a postulated feedwater pipe rupture was found to be the governing load. Therefore, all snalyses are performed using the feedwater pressure time histories.
{
{
The annulus pressurization loads on the sacrificial shield were defined, both tem-                       *
snalyses are performed using the feedwater pressure time histories.
[ porally and spatially, with 42 individual pressure time-histories distributed over a 180*
The annulus pressurization loads on the sacrificial shield were defined, both tem-
[
porally and spatially, with 42 individual pressure time-histories distributed over a 180*
segment of the shield. Since the pressure loads are symmetric about the ruptured
segment of the shield. Since the pressure loads are symmetric about the ruptured
{ pipe, it was only necessary to define the load distributions over a semicylindrical portion of the shield. Exhibit 8 shows the arrangement of the node points on the inside surfaces of the annulus for which time-histories of differential pressures were computed. It should be noted that the azimuth locations mentioned here and in Exhibits 8,9, and 10 are relative to the postulated feedwater line rupture.
{
The node / time-history points on the inside surfaces were then divided into seven circumferential strips as shown on Exhibit 6. The strip configurations were used to
pipe, it was only necessary to define the load distributions over a semicylindrical portion of the shield. Exhibit 8 shows the arrangement of the node points on the inside surfaces of the annulus for which time-histories of differential pressures were computed. It should be noted that the azimuth locations mentioned here and in Exhibits 8,9, and 10 are relative to the postulated feedwater line rupture.
{                                                                                                              )
The node / time-history points on the inside surfaces were then divided into seven
{
circumferential strips as shown on Exhibit 6.
The strip configurations were used to
)
arrange the individual time-histories into a format that could be readily converted SL-3647
arrange the individual time-histories into a format that could be readily converted SL-3647


SARGENT A LUNDY E N GIN E E R S Rev.1, 3-22-79
SARGENT A LUNDY E N GIN E E R S Rev.1, 3-22-79
[
[
( into a set of Feurler harmotiles. Since the analysis was to be performed on an axisymmetric shell model, the loads have to be in terms of circumferential strips so as to coincide with the model elements.
(
into a set of Feurler harmotiles. Since the analysis was to be performed on an axisymmetric shell model, the loads have to be in terms of circumferential strips so
{
{
as to coincide with the model elements.
By using Sargent & Lundy's computer applications program, FORANL (see
By using Sargent & Lundy's computer applications program, FORANL (see
( Appendix A), the six pressure time-histories per strip were converted into 13 symmetric Fourier harmonics and their corresponding time-histories, cosine (0)
(
[ through cosine (12). Since the load is symmetric about the pipe break, the cine terms for the Fourier series are all zero. The time-histories produced by FORANL are, in essence, a set of Fourier coefficients that were computed for each time step of the
Appendix A), the six pressure time-histories per strip were converted into 13 symmetric Fourier harmonics and their corresponding time-histories, cosine (0)
[
through cosine (12). Since the load is symmetric about the pipe break, the cine terms for the Fourier series are all zero. The time-histories produced by FORANL are, in
{
{
loading. The Fourier harmonic time-histories were normalized to produce a single representative coefficient for each harmonic, and to show the contribution of each harmonic to the idealized load. Based upon the normalized Fourier coefficients, it could be seen that only the first four harmonics need be used. Exhibit 9 shows the
essence, a set of Fourier coefficients that were computed for each time step of the loading. The Fourier harmonic time-histories were normalized to produce a single representative coefficient for each harmonic, and to show the contribution of each harmonic to the idealized load. Based upon the normalized Fourier coefficients, it could be seen that only the first four harmonics need be used. Exhibit 9 shows the
( pressures in strip 1 as a histogram, at the time of occurrence of the peak pressure at the feedwater pipe rupture location. Superimposed onto Exhibit 9 is the pressure load
(
{ distribution as represented by the four Fourier harmonics at the same instant of time.
pressures in strip 1 as a histogram, at the time of occurrence of the peak pressure at the feedwater pipe rupture location. Superimposed onto Exhibit 9 is the pressure load
{
distribution as represented by the four Fourier harmonics at the same instant of time.
Exhibit 10 illustrates the distribution of the pressures across the seven strips between azimuths +30 at the time of occurrence of the peak pressure in strip 1.
Exhibit 10 illustrates the distribution of the pressures across the seven strips between azimuths +30 at the time of occurrence of the peak pressure in strip 1.
The pressures were applied to the RPV and sacrificial shield in the mathematical
The pressures were applied to the RPV and sacrificial shield in the mathematical
( model as nodal forces by identifying which strip coincides with each node, and then applying a factor which relates to the surface area, per foot of the circumference,
(
{ that contributes to the total nodal load. The analysis, as performed by DYNAX, consisted of solving the equations of motion for each time step of the harmonic time-history, for each harmonic individually.
model as nodal forces by identifying which strip coincides with each node, and then applying a factor which relates to the surface area, per foot of the circumference,
{
that contributes to the total nodal load. The analysis, as performed by DYNAX, consisted of solving the equations of motion for each time step of the harmonic time-
[
[
history, for each harmonic individually.
To insure that the maximum probable responses would be used in the assessment
To insure that the maximum probable responses would be used in the assessment
( herein, discrete responses were obtained with the solutions of the equations of motion for several azimuths between O' and 180", and then summing for all four of the harmonics considered. The results from the Individual azimuths were then enveloped.
(
herein, discrete responses were obtained with the solutions of the equations of motion for several azimuths between O' and 180", and then summing for all four of the
{
{
harmonics considered. The results from the Individual azimuths were then enveloped.
Presented in Table 8 is a listing of the enveloped maximum positive and negative membrane forces, moments and shears.
Presented in Table 8 is a listing of the enveloped maximum positive and negative membrane forces, moments and shears.
[                                           -6 A-                                 SL-3647 r
[
-6 A-SL-3647 r


L 5 ARGENT & LUN DY E NGINE ER5
L 5 ARGENT & LUN DY
[                                                                cmcaco               Rev. 2, 3-14-80
[
E NGINE ER5 cmcaco Rev. 2, 3-14-80
[
[
VI STRUCTURAL ASSESSMENT
VI STRUCTURAL ASSESSMENT
[
[
A.             Sacrificial Shield The assessment of the sacrificial shield is made by choosing four critical sections
A.
Sacrificial Shield
[
[
at different elevations of the shield as shown in Exhibit 3.         Each section is designed for the load combinations given in Table 1. Final stresses are obtained for the concrete fill, the steel plates, the column stiffeners and the welds. They are presented in Tables 9 through 12.
The assessment of the sacrificial shield is made by choosing four critical sections at different elevations of the shield as shown in Exhibit 3.
It is found that the Abnormal / Extreme Environmentalload combination category governs the design.
Each section is designed for the load combinations given in Table 1. Final stresses are obtained for the concrete fill, the steel plates, the column stiffeners and the welds. They are presented in Tables 9 through 12.
It is found that the Abnormal / Extreme Environmentalload combination category
{
{
B.               Reactor Pedestal
governs the design.
[                 In the assessment of the reactor pedestal, five design sections are selected as shown in Exhibit 4. Each section is designed for the load combinations given in Table 2. The final stresses in reinforcement and concrete are obtained by using the TEMCO program. The maximum stresses in reinforcing steel and concrete
B.
(                 and maximum shear forces are presented in Tables 13 and 14 for meridional and hoop sections, respectively.
Reactor Pedestal
[                 It is found that the Abnormal / Extreme Environmental load combination governs the design.
[
In the assessment of the reactor pedestal, five design sections are selected as shown in Exhibit 4.
Each section is designed for the load combinations given in Table 2.
The final stresses in reinforcement and concrete are obtained by using the TEMCO program. The maximum stresses in reinforcing steel and concrete
(
and maximum shear forces are presented in Tables 13 and 14 for meridional and hoop sections, respectively.
[
It is found that the Abnormal / Extreme Environmental load combination governs the design.
[
C.
Stabilizer Truss
(
The stabilizer truss is assessed for the governing Abnormal / Extreme Environ-mental load combination category as presented in Table 1.
Each 10-inch-
[
diameter double extra strong pipe of the stabilizer truss is designed for an axial load of 450 kips. The computed compressive stress is 13.1 ksi, which is less than I
the allowable axial compressive stress of 33.4 ksi. The high-strength bolts and l
L fillet welds at the end connections are also checked and found to be satisfactory, with a minimum margin factor of 2.01.
L D.
Anchor Bolts
[
[
C.              Stabilizer Truss
The anchor bolts are also assessed for the governing Abnormal / Extreme Environ-mental load combination category as presented in Table 1.
(                  The stabilizer truss is assessed for the governing Abnormal / Extreme Environ-mental load combination category as presented in Table 1.          Each 10-inch-
The maximum r
'                  diameter double extra strong pipe of the stabilizer truss is designed for an axial load of 450 kips. The computed compressive stress is 13.1 ksi, which is less than
' SLc3647
* I the allowable axial compressive stress of 33.4 ksi. The high-strength bolts and      l L
fillet welds at the end connections are also checked and found to be satisfactory, with a minimum margin factor of 2.01.
* L D.                Anchor Bolts
[                  The anchor bolts are also assessed for the governing Abnormal / Extreme Environ-mental load combination category as presented in Table 1.           The maximum r
SLc3647


SARGENT & LUNDY E NGIN E E R5 cmcaco                   Rev. 2, 3-14-80 stresses in the shear lugs and the maximum tensile forces in bolts are given in Table 15. The RPV anchor bolts' assessment is based on the skirt loads given in the FSAR section 3.9.1.5 (Ref. 5).
SARGENT & LUNDY E NGIN E E R5 cmcaco Rev. 2, 3-14-80 stresses in the shear lugs and the maximum tensile forces in bolts are given in Table 15. The RPV anchor bolts' assessment is based on the skirt loads given in the FSAR section 3.9.1.5 (Ref. 5).
Vil CONCLUSION The existing design of the sacrificial shield, reactor pedestal, stabilizer truss, RPV and shield anchor bolts can safely accommodate the effects of annulus pressurization resulting from a postulated safe-end break.
Vil CONCLUSION The existing design of the sacrificial shield, reactor pedestal, stabilizer truss, RPV and shield anchor bolts can safely accommodate the effects of annulus pressurization resulting from a postulated safe-end break.
SARGENT & LUNDY, Prepared by:                            -  Rev. 2, 3-14-80 F. Villalta, Senior Structural Engin/
SARGENT & LUNDY, Rev. 2, 3-14-80 Prepared by:
eering Specialist Reviewed by:       .
Senior Structural Engin/
Rev. 2, 3-14-80 II. R. Radwan, Supervising Structural Engineering Specialist Rev. 2, 3-14-80 APP' V d DY g(
F. Villalta, eering Specialist Reviewed by:
4 Of MICg                     g
Rev. 2, 3-14-80 II. R. Radwan, Supervising Structural Engineering Specialist APP' V d DY Rev. 2, 3-14-80 4 Of MICg g
        'o             ''r               Head, Structural Project GLEN A.                       Engineering
g(
* CHAUVIN ENGINEER h       22139
'o
            %0 FESS \0 SL-3647
''r Head, Structural Project GLEN A.
Engineering CHAUVIN ENGINEER h
22139
%0 FESS \\0 SL-3647


L SARGENT& LUN DY
L SARGENT& LUN DY
[                                      E NGIN E E R5 cincac Rev.1, 3-22-79 Vill REFERENCES
[
[
: 1. Enrico Fermi Atomic Power Plant Unit Final Safety Analysis Report, Vol. 2.
E NGIN E E R5 cincac Rev.1, 3-22-79 Vill REFERENCES
: 2. Seismic Analysis of the Reactor Auxiliary Building Complex, Enrico Fermi Atomic Power Plant Unit 2, Sargent & Lundy Report SL-2682, revised September 27,1974.
: 3. Pipe Whip Restraint Support System Design Criteria, Enrico Fermi Atomic Power Plant Unit 2, Sargent & Lundy Report SL-2880, January 10,1973.
[
[
: 4. Reactor Vessel- Sacrificial Shield Annulus Pressurization Analysis, Enrico Fermi Unit 2, NUS Report NUS-3129, April 1978.
1.
Enrico Fermi Atomic Power Plant Unit Final Safety Analysis Report, Vol. 2.
2.
Seismic Analysis of the Reactor Auxiliary Building Complex, Enrico Fermi Atomic Power Plant Unit 2, Sargent & Lundy Report SL-2682, revised September 27,1974.
3.
Pipe Whip Restraint Support System Design Criteria, Enrico Fermi Atomic Power Plant Unit 2, Sargent & Lundy Report SL-2880, January 10,1973.
[
4.
Reactor Vessel-Sacrificial Shield Annulus Pressurization Analysis, Enrico Fermi
{
{
: 5. Enrico Fermi Atomic Power Plant Unit 2, Final Safety Analysis Report Section
Unit 2, NUS Report NUS-3129, April 1978.
* 3.9.1.5.
5.
Enrico Fermi Atomic Power Plant Unit 2, Final Safety Analysis Report Section 3.9.1.5.
[
[
[
[
Line 387: Line 512:
[
[
[
[
[
[ SL-3647 l
SL-3647   l Final
Final
~
~


Line 395: Line 520:
[
[
[
[
L E
r L
E E
E E
E r<
E E
E E
E E
E E
u L
ru L
L r
L r


TABLE 1 LOAD COMBINATIONS FOR SACRIFICIAL SHIELD, STABILIZER TRUSS AND ANCHOR BOLTS LOAD                 LOAD COMBINATION         COMBINATION                                       D     T8    A       Y   Y   E o
TABLE 1 LOAD COMBINATIONS FOR SACRIFICIAL SHIELD, STABILIZER TRUSS AND ANCHOR BOLTS LOAD LOAD COMBINATION COMBINATION D
E s
T A
P       r   j NUMBER               CATEGORY 1             ABNORMAL / SEVERE ENVIRONMENTAL                                       1.0   1.0   1.0     1.0 1.0 1.0
Y Y
                                                                                      ~
E E
2            ABNORMAL / EXTREME                                                                                   $
8 P
w ENVIRONMENTAL                                       1.0   1.0   1.0     1.0 1.0       1.0       ,o ae*
r j
n z bmP cm r.
o s
D                             =
NUMBER CATEGORY 1
Dead load of structure plus any other permanent loads.                                                         .C 2
ABNORMAL / SEVERE ENVIRONMENTAL 1.0 1.0 1.0 1.0 1.0 1.0 2
Tg                              =
ABNORMAL / EXTREME
~
w ENVIRONMENTAL 1.0 1.0 1.0 1.0 1.0 1.0
,o ae*
n z bmP cm r.
.C D
Dead load of structure plus any other permanent loads.
=
2 T
Thermal effects which occur during a postulated accident.
Thermal effects which occur during a postulated accident.
A                               =
=
p                        Annulus breaks.
g A
Pressurization load which occurs during a postulated safe-end Y
=
r
Annulus Pressurization load which occurs during a postulated safe-end p
                                                                            =
breaks.
Y Forces Associated with a Whipping Pipe.
=
r Y
3 Jet Impingement Forces.
=
E Operating Mais earthquake (OBE) eHects.
=
n E
Safe shutdown earthquake (SSE) effects.
=
g Y$N.
~ i TW r" g$M n
 
------y ro ro r
r, o
r r
r, rm r
r r,
r r
r r
r r
r-TABLE 2 LOAD COMBINATIONS FOR REACTOR PEDESTAL s
LOAD LOAD COMBINATION COMBINATION D
T, A
Y Y
E E,
p r
j g
NUMBER CATEGORY l
ABNORMAL / SEVERE ENVIRONMENTAL 1.0 1.0 1.0 1.0 1.0 1.25 2
ABNORMAL / EXTREME ENVIRONMENTAL 1.0 1.0 1.0 1.0 1.0 1.0 g0 A : 'i Dead load of structure plus any other permanent loads.
o;5 D
=
r-Thermal effects which occur during a postulated accident.
o T
=
o A
=
Annulus Pressurization load which occurs during a postulated safe-end p
breaks.
Forces Associated with a Whipping Pipe.
Forces Associated with a Whipping Pipe.
Y                               =
Y
=
r Y)
Jet Impingement Forces.
Jet Impingement Forces.
3 E                                =
=
Operating Mais earthquake (OBE) eHects.
E, Operating basis earthquake (OBE) effects.
n Eg                              =
=
Safe shutdown earthquake (SSE) effects.
Safe shutdown earthquake (SSE) effects.
Y$N.
E O
                                                                                                                                                                                            ~ i TW r" g$M n
P (n -l "r>
 
i lW iWF w $ FI
    ------y      ro          ro    r                        r,    o      r    r  r,    rm    r  r    r,      r  r  r      r    r      r        r-TABLE 2 LOAD COMBINATIONS FOR REACTOR PEDESTAL s
** M n s.
LOAD                                      LOAD COMBINATION                                    COMBINATION          D      T,    A p
Y r
Y j
Eg      E, NUMBER                                    CATEGORY l                                    ABNORMAL / SEVERE ENVIRONMENTAL          1.0    1.0    1.0      1.0    1.0    1.25 2                                    ABNORMAL / EXTREME ENVIRONMENTAL          1.0    1.0    1.0      1.0    1.0          1.0          g0 A
: :.r-'i D        =        Dead load of structure plus any other permanent loads.
o;5*
T        =        Thermal effects which occur during a postulated accident.                                                          o o
A        =        Annulus Pressurization load which occurs during a postulated safe-end p
breaks.
Y      =          Forces Associated with a Whipping Pipe.
r
                    =          Jet Impingement Forces.
Y)
E,      =          Operating basis earthquake (OBE) effects.
E
* Safe shutdown earthquake (SSE) effects.
O Pi (n -l "r> lW iWF w $ FI
                                                                                                                                          ** M n s .            ..


    -- a rm rm     rm w                         rm   rm     rm   rm   rm   rm   rm   rm     rm   r,       rm rm     rm     r-4 TABLE 3 ALLOWABLE STRESSES FOR SACRIFICIAL SHIELD ALLOWABLE STRESSES LOAD                           STEEL                 CONCRETE                 WELD                       ,,, $
-- a rm rm rm w
COMB.                                                                                                       zm n
rm rm rm rm rm rm rm rm rm r,
NO.                                                                                                     moj Qz e ta >
rm rm rm r-4 TABLE 3 ALLOWABLE STRESSES FOR SACRIFICIAL SHIELD ALLOWABLE STRESSES LOAD STEEL CONCRETE WELD COMB.
COMPRESSION                                                   COMPRESSION                         o r= e TENSION                                                                           '
zm n
5 O
NO.
M 1.6 AISC                     1.6 AISC                     1.6 AISC       1.6 AISC ALLOWABLE                                                   ALLOWABLE       ALLOWABLE 1&2      5.95 F ALLOWABLE F
moj Qz e ta >
2}f,c       5 0 5F         g       F s
COMPRESSION COMPRESSION o r= e TENSION 5
Base Metal           of Base Metal l
O M
1.6 AISC 1.6 AISC 1.6 AISC 1.6 AISC ALLOWABLE ALLOWABLE 2}f, ALLOWABLE ALLOWABLE c
5 0 5F g
F 1&2 5.95 F s
F Base Metal of Base Metal l
l
l
                                                                                                                      ~'h Y *i TsF g m Nw
~'h Y *i TsFm g Nw


- --- a m   rm rm   rm   rm   rm   rm   rm   rm   rm   rm     rm   rm   rm rm m   rm     rm     r' TABLE 4 ALLOWABLE STRESSES FOR REACTOR PEDESTAL CONCRETE                       REINFORCING STEEL MEMBRANE PLUS                     RADIAL                                         5 TENSION AND                     :=
- --- a m
FLEXURAL COMPRESSION   TENSION       SHEAR **       COMPRESSION                   y0
rm rm rm rm rm rm rm rm rm rm rm rm rm rm m
                                                                                                $S$
rm rm r'
                                                                                                $E*
TABLE 4 ALLOWABLE STRESSES FOR REACTOR PEDESTAL CONCRETE REINFORCING STEEL 5
                    *0.85 f' c          None       ACI 318-71         0.9 f                     o;@e
MEMBRANE PLUS RADIAL TENSION AND
                                                                                                  =
:=
Chapter 11               Y                       e
FLEXURAL COMPRESSION TENSION SHEAR **
                        *Due to primary plus secondary forces.
COMPRESSION y0
                      **The meridional reinforcing steel is designed to carry the entire tangential shear.
$S$
T
$E*
                                                                                            ~ '*I a$
o;@e
Tar u
*0.85 f' None ACI 318-71 0.9 f
                                                                                            ** .m wa
=
c Chapter 11 Y
e
*Due to primary plus secondary forces.
**The meridional reinforcing steel is designed to carry the entire tangential shear.
T '*I a$
~Tar
**. m u wa


  -T M                       n     i i   n   n     n     i i   n     n   i 1 n_. n_ I i   n     n R       R     F TABLE 5 ALLOWABLE STRESSES FOR BOLTING MATERIAL AND SHEAR LUGS LOAD                                         BOLTS
-T M
* SHEAR LUGS COMB.                                                                                     CONCRETE NO.
n i
TENSION           COMBINED TENSION           SHEAR
i n
                                                                                                    ^
n n
Ft             AND SHEAR Ft'               Fu 1&2                       1.6 x 0.33 Fu       1.6 x 0.43 Fu - 1.4 f 1.6 x 0.22 Fu   ACI 318-71 Sect. 10.14             j;
i i
n n
i 1
n_.
n_
I i
n n
R R
F TABLE 5 ALLOWABLE STRESSES FOR BOLTING MATERIAL AND SHEAR LUGS LOAD BOLTS
* SHEAR LUGS COMB.
CONCRETE NO.
^
TENSION COMBINED TENSION SHEAR Ft AND SHEAR Ft' Fu 1&2 1.6 x 0.33 Fu 1.6 x 0.43 Fu - 1.4 f 1.6 x 0.22 Fu ACI 318-71 Y
Sect. 10.14 j;
:=
:=
n zO
zO n=nz
      *1978 AISC Table 1.6.3 Page 23, with 1.6 factor.                                                           =nz ggH Fu = ultimate strength of steel, ksi                                                                       8?"gg Z
*1978 AISC Table 1.6.3 Page 23, with 1.6 factor.
f y
ggH 8?"
            =              computed shear stress, ksi                                                               S
Fu = ultimate strength of steel, ksi gg Z
f computed shear stress, ksi S
=
y
:o in -1 m [~ >
:o in -1 m [~ >
f
f
                                                                                                              .~ : m l                                                                                                             Y""
.~ : m l
Y""
r
r


E' SARGENT & LUNDY
E' SARGENT & LUNDY
[                                     ENGINEERS mcAc TABLE 6 SL-3647 5- 2 6-78
[
[                                                                                       '
ENGINEERS TABLE 6 mcAc SL-3647 5-2 6-78
[
TABLE 6 GEOMETRY OF NODAL POINTS
TABLE 6 GEOMETRY OF NODAL POINTS
[
[
Nodcl Point Radius     Elevation     Nodal Point Radius         Elevation Number     R (ft)     Z (ft)         Number
Nodcl Point Radius Elevation Nodal Point Radius Elevation
{                                                      R (ft)           Z (ft) 1     12.54         .00             43     10.73             47.71 2     12.54       3.78             44     10.73             48.47 I         3     12.54       7.56             45     10.73             50.26 4     12.54       11.34             46       6.00             58.17 5     12.54       15.12             47     13.66             57.87
{
[         6     12.54                             '
Number R (ft)
18.90             48     10.73             52.04 7       12.54       22.68             49     10.73             53.82 8     12.54       26.46             50     10.73             55.61 9     13.66       26.46             51                       61.65
Z (ft)
[      10       10.73       26.46             52 6.00 13.66 11                                                                59.87 13.66       23.11             53     10.73             57.39 12       13.66       29.75             54     10.73             59.18
Number R (ft)
(       13       13.66       31.40             55       4.00             64.85 14       10.73       28.10             56     13.66             61.87 15       10.73       29.73             57     10.73 16                                                                60.96
Z (ft) 1 12.54
[               10.73       31.37             58     13.66             63.87 17       5.09       26.46             59     10.73             62.74 18       13.66       33.04             60     13.66             66.87         -
.00 43 10.73 47.71 2
19       13.66       35.62             61
12.54 3.78 44 10.73 48.47 I
[      20 10.73             64.53 13.66       37.78             62     13.66             69.90 21       13.66       39.93             63 22 10.73             66.08 10.73       33.87             64     10.73             67.64
3 12.54 7.56 45 10.73 50.26 4
(       23       10.73       35.55             65     10.73             69.19 24       10.73       37.23             66     10.73             70.75 25       10.73       38.91             67     13.66 26                                                                71.90
12.54 11.34 46 6.00 58.17 5
[                 6.00       38.91             68     13.66             73.87 27       13.66       42.08 28 69     10.73             72.30 13.66       44.08             70     10.73             73.86 29       13.66       46.08             71
12.54 15.12 47 13.66 57.87
[        30 13.66             75.41 13.66       48.29             72     19.50             75.41 31       6.00       42.07             73 32                                            10.73             75.41 10.73       41.02             74     13.66             77.44
[
(       33       10.73       42.07             75     13.66             79.22 34       10.73       43.14             76     10./3             80.09 35       10.73       44.20 36 77     10.73             88.79
6 12.54 18.90 48 10.73 52.04 7
[                 13.66       50.51             78     10.73             90.41 37       6.00       48.47             79 38                                            16.46             90.41 13.66       52.72             80     10.73             93.04 39       10.73       45.27             81       8.65             97.33
12.54 22.68 49 10.73 53.82 8
[       40       6.00       51.70             82       3.98           101.62 41       13.66       54.94             83 42 10.73             39.96 10.73 r                            46.34 L1 r
12.54 26.46 50 10.73 55.61
l l           . ..    .
[
9 13.66 26.46 51 6.00 61.65 10 10.73 26.46 52 13.66 59.87 11 13.66 23.11 53 10.73 57.39 12 13.66 29.75 54 10.73 59.18
(
13 13.66 31.40 55 4.00 64.85 14 10.73 28.10 56 13.66 61.87 15 10.73 29.73 57 10.73 60.96
[
16 10.73 31.37 58 13.66 63.87 17 5.09 26.46 59 10.73 62.74 18 13.66 33.04 60 13.66 66.87 19 13.66 35.62 61 10.73 64.53
[
20 13.66 37.78 62 13.66 69.90 21 13.66 39.93 63 10.73 66.08 22 10.73 33.87 64 10.73 67.64
(
23 10.73 35.55 65 10.73 69.19 24 10.73 37.23 66 10.73 70.75 25 10.73 38.91 67 13.66 71.90
[
26 6.00 38.91 68 13.66 73.87 27 13.66 42.08 69 10.73 72.30 28 13.66 44.08 70 10.73 73.86 29 13.66 46.08 71 13.66 75.41
[
30 13.66 48.29 72 19.50 75.41 31 6.00 42.07 73 10.73 75.41 32 10.73 41.02 74 13.66 77.44
(
33 10.73 42.07 75 13.66 79.22 34 10.73 43.14 76 10./3 80.09 35 10.73 44.20 77 10.73 88.79
[
36 13.66 50.51 78 10.73 90.41 37 6.00 48.47 79 16.46 90.41 38 13.66 52.72 80 10.73 93.04 39 10.73 45.27 81 8.65 97.33
[
40 6.00 51.70 82 3.98 101.62 41 13.66 54.94 83 10.73 39.96 42 10.73 46.34 r
L1 r
l l


E SARGENT Q LUNDY Eno:NEERS
E SARGENT Q LUNDY
[                              CHICAGO TABLE 7 SL-3647 5 78
[
[
[                      TABLE 7 ELEMENT INDICES
Eno:NEERS TABLE 7 CHICAGO SL-3647 5 78
[
[
Element Start     End           Element Start                     End
[
      , Numbers Joint   Joint         Numbers
TABLE 7 ELEMENT INDICES
      '                                        Joint                     Joint i     1       1       2             43 2
[
23                       24
Element Start End Element Start End
      ;            2       3             44     24 3                                                                25 3
, Numbers Joint Joint Numbers Joint Joint i
[     ,
1 1
      ,    4       4 4
2 43 23 24 2
5 45      25                        83
2 3
      '                                    46     83                       32 5       5       6             47 6
44 24 25
32                        33 6       7             48     33
[
[           7       7       8           49       34 34 35 8       8       9           50       35                       39 9       9     11             51     39                         42
3 3
[         10 11 11      12             52     42                       43 12       13             53     43 12                                                               44 13       18             54     44 13      18                                                        45
4 45 25 83 4
[                         19             55     45'                       48 14     19       20             56     48                       49 15     20       21             57 16                                      49                       50 21       27             58     50
4 5
[         17     27       28             59     53 53 54 18     28       29             60 19                                      54                       57 29       30             61     57 20      30                                                        59
46 83 32 5
{                         36             62     59 21     36                                                       61 38             63     61 22     38                                                       63        l 41             64     63                       64 23     41       47
5 6
[         24     47       52 65 66 64 65 65        1 25     52                                                       66 56             67     66 26     56                                                       69 58             68     69
47 32 33 6
[         27 28 58       60             69     70 70 73 60       62             70     73 29     62       67 76 71     76                       77 30     67       68             72 31                                      77                       78 68       71             73 32                                      78                       79 71       72             74     78 33     71       73                                               80 75     80                       81
6 7
-        34     71       74 i                                    76     81                       82 i     35     74       75             77 36                                      25                       26 8       10             78     26
48 33 34
[         37 38 10 14 14            79     31 31 37
[
    ,                      15             80     37 39     15                                                       40
7 7
    !                      16             81     40 40     16       17                                               46
8 49 34 35 8
{        41     16       22 82    46                        51 83     51                       55 42     22       23 I
8 9
L                     '
50 35 39 9
i E                                                                                     l 1
9 11 51 39 42
                                                      - - _ _ - . - - - -            }
[
10 11 12 52 42 43 11 12 13 53 43 44 12 13 18 54 44 45
[
13 18 19 55 45' 48 14 19 20 56 48 49 15 20 21 57 49 50 16 21 27 58 50 53
[
17 27 28 59 53 54 18 28 29 60 54 57 19 29 30 61 57 59
{
20 30 36 62 59 61 21 36 38 63 61 63 l
22 38 41 64 63 64 23 41 47 65 64 65 1
[
24 47 52 66 65 66 25 52 56 67 66 69 26 56 58 68 69 70
[
27 58 60 69 70 73 28 60 62 70 73 76 29 62 67 71 76 77 30 67 68 72 77 78 31 68 71 73 78 79 32 71 72 74 78 80 33 71 73 75 80 81 i
34 71 74 76 81 82 i
35 74 75 77 25 26 36 8
10 78 26 31
[
37 10 14 79 31 37 38 14 15 80 37 40 39 15 16 81 40 46
{
40 16 17 82 46 51 41 16 22 83 51 55 42 22 23 I
L i
E l
1
}


SARGENT & LUNDY
SARGENT & LUNDY
[                                                                           ENGINEEas CHICAGO TABLE 8 SL-3647 5 78
[
[     N PAGE 1 OF 4
ENGINEEas TABLE 8 CHICAGO SL-3647 5 78
      - 3                     e     -
[
                                                        = -
PAGE 1 OF 4 N
- 3 e
,\\
o
= -
e
e
                .A                         ,\                                                                                                                                      o
.A o
                                                                                                                                    .            o                                u k\                             \N
u
[                        \
[
                                                      \
k\\
O h
\\
O C
O C
O N
h b
\\
O
\\s
\\
b O
b O
                    \s \                                  \                              -e=          0                    .
U
o .
.be M E k
b M E C
\\
O                      U k
\\
O
-e=
                                                                                                                                                                                    .be
0 o.
                      \   "2,,                                                            e                          2 O u
C O
                                                                                                                                    .C e w A      C u        4 w
e u
                        \
.C e w u
                                      \                         \                         1                          O
                                                                                                                      ~
b 4
k f    *e a u                    k.
: t.            E              C       C              .
                          \
5
                            \
6 M
                                                                          \        e                                       .C    E". mC a. .            a.
                                                                                                                                                                .C       4 w
4
4
                                                                            \       .       j                               te           we               J                       >
\\
                                        $      N*            (f         G N *>   W                              O g 4     e4     9 C
"2,,
e4       E
2 O A
[                     +
C w
O      \U -
\\
W 1
\\
1
\\
O b k
f
*e k.
~
4 a u t.
E C
C
\\
.C 5
6
\\
.C E"
. m..
4 4
e C a a.
w
\\
M
\\
j te we J
N (f
N *>
4 e4 9
e4 E
G W
[
\\U O g e.4 e.4
.C C
W
{
{
_s i
U w U
                                                                            %/
64 E 4 4 4 C
U w 2
C he Le O
o    -
1
e.4 E 4 4 4 M
%/
                                                                                                                                          . e.4 M
2 M
C we C
M we we O
we e e u .
69
O U
+
he 64
_s i o -
                                                                                                                                                                                  .C Le 69
e e u.
    $      h        r ..         1                                       s                                         ~
r.. 1 s
                                                                                                                    . 4e.4 we  e.4 . .
e.4 e.4
                                                                                                                                          .-e   .4
.C
                                                                                                                                                          .C    .C  .    .C e.4 V     ==.       \              -/                                                                                  4     we                             +4 w    +.-              m s              >                                                              w 03   03
.C
                                                                                                                                                                    .C .b.e ,
.C e.4
o                                                                                                                ~ ~          .c - . -
~
C       .e   en   u C
.-e
x                                       ,,.                                                                      s. . u .
.4 h
V w
s
-/
\\
 
==.
4 we 4
we 03 03
.C
.b.e
+4 w
+.-
m C
.e en u
C o
.c
~ ~
x s.
. u.
u.
u.
u.
u.
O                                       O                                                                       ~ C m O =
O O
                                                                                                                                  .        C            4 4              C 0 = n = E                     O w
~ C C
: u.                                                                                                               O **
4 4 C
8 ** 5 ,
m O =
s   .n                             . .             ,      8 W                                                                                                                      w w w w o .O .
0 = n = E O w u.
o                                u.          o
O **
[  Z E U K U U U u u O
8 ** 5 8
4 e w w M
s
E U m                                                                                                                     .      .      .      .      .    .
.n u.
m                                                                                                                                                              .    .      .
[
2
W o
[  W                                                                                                                        . . 3 . t2o R2 2 2 E E E E O O O 2
o..
J J
o w w w w O
[ 1 w        ,
O e w w Z
4 g
u u 4 E U K U U U M
b        ------------O---NNNNNNN-NN-NNNNNNN-NN---
E U
00000000,00000000000000000000000000000000
<m m
                                    + + + + +++++++ ++ +++
[
  @        W                                                                                              ++ +++ + +++++++++
2W
I  \
.. 3. t2o R2 2 2 E E E E O O O 2
            #            JO C   OO
J
* OMeee-eNNObf*@f5WCtD    *O - f*O- C*.
[
                                                                        @ cOf*M9 O NN 05fN ==MN.fNO :D C (D O f*  in .*
Jw
CD O r=
------------O---NNNNNNN-NN-NNNNNNN-NN---
                                                                                                                  -MN 0Nr*OvCD O == b O- CDO O40  O@   LDen O g,3 w            M         McNov@m-OGOOWTOOe4mMON@O-m@MMMmW-M-NOW-h
b 00000000,00000000000000000000000000000000 1
[ _
4 W
    >           w
g
: b. CD. G. O.e CD. r* tD. d. W.. to. r* .m. N. ==
+ + + + +++++++ ++ +++
                                                                                =.W.
++ +++ + +++++++++
                                                                                  . . G.
J O O M e - N O f* f5 C
E9. W. W. W. W. 4. .=.= es N. N.    . N. .= .==. N. .= m. . . W. b. T.
* O O C*. O M O N fN M.fN :D C in.* O - M 0 r* v O== - O O O LD O I
[           W b
\\
U W
C O
* O O O O O O O O O O O O O O O O O .= .= == .= .= 0 - O O O O O O O O O O O O O O = ==
* O e e e N b @ W tD - f* - @ c f* 9 N 05 = = N O O f* (D CD r= N N O CD b O CD 40 @ en g,3 M
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOC
McNov@m-OGOOWTOOe4mMON@O-m@MMMmW-M-NOW-h
                          + ++++++++++++++++t                                       e e t 8 +e ++++++++++++++0                                             0 y            g        O O O O O O O Pm f9 M M tm O b b f4 M M T N N == M O f"1 f4 N e *= - N == CD == 40 40 tD 40 CD E9
[
                ,        N.N. N. N. N. N. .M. N. N. N. . N. =. e.-. e d.. @. m. W. W. e. b. e. N. N.           . . . . . N.       . . . e. . S. S.
w>
[ 4 J
: b. CD. G. O.e CD. r* tD. d. W. to. r* m. N.== W. G.
                ^
=... E9. W. W. W. W. 4. =.= es N. N. N..===. N..= m... W. b. T.
b
w
                          ===
[
                                        =--NNNNNN-NNNNNMMMNN-NNN---ON-----N                                                                                 -
O O O O O O O O O O O O O O O O O.=.===.=.= 0 - O O O O O O O O O O O O O O ===
E g        0000000000,00000o.00000000000000oO00000000
W OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOC b
                          + +               + ++           ++           + +                                 + +++++++++++++
U
N
+
            "- \         Memm-mOmN-eMecosM-N,.moonMob-mMcMe-ons-No                                                                                                            y
++++++++++++++++t e e t 8
* M - m P ' 40     O #4 6 in o CD #9 m - O 4D t'l O r= ED O @ @ m @ @ @ T m CD O N *= == .= m N T in en sob,n. . n,n.,,. n. . m. b. g3m, co      a    ,M                      -TTO
+e
[  M J
++++++++++++++0 0
W
W O O O O O O O Pm f9 M M tm O b b f4 M M T N N== M O f"1 f4 N e *= - N== CD== 40 40 tD 40 CD E9 y
            '3 n  e      . .            .  . . . .
g N.N. N. N. N. N.
                                                              . m,n e v b,,O,O,N,o,b g                O v o m - @ b b,3e. v. e. m T N N. W,W,S,
.M. N. N. N.
                                                                      .n. n. . . . . . g n. n. n. n. n.
. N. =. e -. e d. @. m. W. W. e b. e. N. N...... N.... e.
                                                                                                                                                    ,                         ,o
. S. S.
                                                                                                                                                                              .g "g
[
m        W                                                                                                                                                                  x (4
J
^
=--NNNNNN-NNNNNMMMNN-NNN---ON-----N
 
===
4 b
0000000000,00000o.00000000000000oO00000000 N
E Memm-mOmN-eMecosM-N,.moonMob-mMcMe-ons-No y
g
+ +
+ ++
++
+ +
+ +++++++++++++
"- \\
M - m P ' 40 O #4 6 in o CD #9 m - O 4D t'l O r= ED O @ @ m @ @ @ T m CD O N *===.= m N T in en
,M
: sob, 3m, n n.. n,n.,,. n.. m. b. g. m,n e v b,,O,O,N,o,b O v o m - @ b b e. v. e. m T N N. W,W,S,
-TTO
[
co a
.n. n...... g n. n. n. n. n.
,3.......
g
g
            =
,o W
u e
e M
'3
.g "g
Jm W
x (4
=
[
[
W            O 00.=0000000000000
u g
                                  .= = == 0 O O O O O O O - == ==             == - == == - O O O O O == 0 *= == .= O == *= - - - O O O 000     0000000000000000000000                                                                   $
e O.=.= === 0 O O O O O O O -====== -==== - O O O O O== 0 *===.= O== *= - - - O O O W
2
00 0000000000000 000 0000000000000000000000 2
            "    U         + i e             + +++++++e                                   i+++++                     i i+i e ie               s+++                           g
U
            "    W       O c e- - N N N N N - - .= m M N M = m m m e M O M c M m M m e m m a: m e e M N e in g       N. e. h. h. M. . *. . . . . . N. e. m. m @ @......                                                                                                    C
+ i e
_                                                                @ @ @ w n. M. N. . G. . b. v. N. N. N. . N. N. N. eNeNe -
+ +++++++e g
~                                                                                                                                                                             Q
i+++++
                                                                                                                                                                              .n M
i i+i e ie s+++
N N N - e= == .= N N N N N N N N N N N N N N N N *= N *= == N N N N N N N N N *= N N e=                                                               4
W O c e- - N N N N N - -.= m M N M = m m m e M O M c M m M m e m m a: m e e M N e in g
* b                                                                                                                                            e               g 7    g        O+ O+O +O O     + O+O +O O ++++++++++++
N. e. h. h. M.. *...... N. e. m. m @ @ @ @ @ w n. M. N.. G.
O O O O O O O O O O. O.+O++++          O. O O O O O. O. O.     ++O ++++++++
. b. v. N. N. N.. N. N. N. N N -
O O. O O O O O O O O O   N       e e m e* , .D w w - N n e. m e m o - m e r* m n N e m o c - m o m o M e w M o m >                                                                   .o 4
C
f O    M.       m N,e ,OmNNb M    mOo,CD m -P,=M P,=
~
w e@bOmO ef9 w,e=o.=#9mMmr*- 4w*=c o    wM M r* 40 w 0 M.=
e e e Q
0 ememoummekeen w        ,T              NW
.n M
                            . . . g. n. n. g. . . . . a. n. n. n. . . . . . a. n. . p. g. g. . .n...CD .r*
N N N - e===.= N N N N N N N N N N N N N N N N *= N *=== N N N N N N N N N *= N N e=
gggg                                     O. a.
4 b
v On.Oa.CD                                      #
e g
: n. ==
O O O O O O O O O O O O O O O O O O O. O. O O. O O O O O. O. O. O O O. O O O O O O O O 7
: a. W. n.==. .en 89
g
            "                                                                                                                                  g        ,g
+ + + + + + ++++++++++++
+ ++++
++ ++++++++
O N
e e m e*,.D w w - N n e. m e m o - m e r* m n N e m o c - m o m o M e w M o m >
.o 4
m e m N M m o m - M w e b m e w o.= m m - w c o w M w M.= e m e m o u m m e k e e n M.
f
,T N,O N b N W O,CD P,= P,= @ O O f9,e=
#9 M r* 4 *= M r* 40 0 0
O
..... a. n. n. n...... a. n.
p g g. n..CD.r* O v O O CD== W== en 89 w
g n. n. g gggg g
,g
: a. n. a. n. a.. n...
C
~
~
w
w e
* C e      l l
l l
                                                                                                                                                                              .4
[
[          y m
.4 m
                  .      00000000000000000000000000-00----00000--
G 00000000000000000000000000-00----00000--
00000000000000000000000000000000000o0000
y 00000000000000000000000000000000000o0000 9
                          + + + + + + ++++++++++++++++++++e++e                                                           i e i     +++++e G
+ + + + + + ++++++++++++++++++++e++e i e i
9 g        N f4 f4 9 9 9 89 M 19 f4 f4 54 N 81 N to h Po P. P= + O fi f"5 == n m v v *= r* P. v c f* E4 9 6 #9 89                                               O
+++++e N f4 f4 9 9 9 89 M 19 f4 f4 54 N 81 N to h Po P. P= + O fi f"5== n m v v *= r* P. v c f* E4 9 6 #9 89 O
: v. g.q.N. N. M. M.       . . . . . . . . . . . . . . . . M. N. N. T. T. g @ p. @                                                                     h
g
                ,                                                                                                    ... c. . N. N. N.             . O. S.                 e s
: v. g q N. N. M. M................. M. N. N. T. T. g @ p @ c.. N. N. N.
            $            -NMWeehmO-MWhm-Me@bemO-NMTchemnemhMehm-T
. O. S.
                                                    ------NNNNNNNMMnMMnMnnswwmeeeenn                                                                                                   {
h e
            .e W
-NMWeehmO-MWhm-Me@bemO-NMTchemnemhMehm-T
{
s
------NNNNNNNMMnMMnMnnswwmeeeenn
.e W


L SARGENT & LUNDY ENGINEEas                                 TABLE 8 CHICAG SL-3647 5 78
L SARGENT & LUNDY ENGINEEas TABLE 8 CHICAG SL-3647 5 78
[                                                   c PAGE 2 OF 4 4:m;,
[
PAGE 2 OF 4 c
4:m;,
a
a
[
[
TABLE 8 MAXIMUM NEGATIVE SHELL MEMBRANE FORCES (CONT.)
TABLE 8 MAXIMUM NEGATIVE SHELL MEMBRANE FORCES (CONT.)
( ntM           r:ME     MERIDIONAL       TIME CIRCUMFERENTIAL       TIME       SHEAR (SEC.)             (K/PT) (SEC.)         (K/FT)       (SEC.)   (K/PT) t   .15*00         .2329*02   .16+00         .5470*01   .89-01   .7952+01
(
[         2 3
ntM r:ME MERIDIONAL TIME CIRCUMFERENTIAL TIME SHEAR (SEC.)
              .15*00
(K/PT)
              .15+00
(SEC.)
                              .2105+02
(K/FT)
                              .1974*02
(SEC.)
                                          .16+00
(K/PT) t
                                          .96-01
.15*00
                                                        .4015 01
.2329*02
                                                        .2702*01
.16+00
                                                                    .89-01
.5470*01
                                                                    .88-01
.89-01
                                                                              .9091+0*
.7952+01
                                                                              .9530*0*
[
4   .15+00         .1655+02 ,.10*00           .2141+01 5    .15+00
2
                                                                    .87-01   .9550+01
.15*00
                              .1442+02   .10+00         .2033+01   .86-01   .9443+01 6   .15+00         .1236*02     44-01         .200a*01
.2105+02
[         7 9
.16+00
              .25*00
.4015 01
              .22+00
.89-01
                              .l162+02
.9091+0*
                              .1549+02
3
                                          .71-01
.15+00
                                        .71-01
.1974*02
                                                        .9978*01
.96-01
                                                        .3054+01
.2702*01
                                                                    .86-08
.88-01
                                                                    .87-01
.9530*0*
                                                                              .8980*01
4
                                                                              .8277+01 10  .22*00         .1300+02
.15+00
                                                                    .11+00     .2025+02
.1655+02
                                        .71-01         .4462+01   .1t+00   .2160*02 11   .22*00         .1996+02   .61-01         .4759+0s   .ft+00   .2239*02 13   .13+00         .1976*02   .41-01         .151G*02   .11+00   .235G+02
,.10*00
[-      15 17
.2141+01
              .13*00
.87-01
              .13*00
.9550+01 5
                              .1279*02
.15+00
                              .1255*02
.1442+02
                                        .40-01 4H+00
.10+00
                                                        .3772+08   .60-01   .1751+02 19
.2033+01
                                                        .3488-01   .32+00   .4250*00
.86-01
              .13*00         .120t+02   .38-01         .6751*01 28  .22+00                                                .17+00   .2898+01
.9443+01 6
                              .1192*02   .29-01         .4958+01   .17+00 23   .17+00                                                         .182Jo02
.15+00
                              .1939+02   .20-01         .8745*01   .17+00
.1236*02 44-01
[      25 26
.200a*01
              .17+00
.86-08
              .17+00
.8980*01
                              .2437+02
[
                              .2525+02
7
                                        .15-01
.25*00
                                        .15-01
.l162+02
                                                        .1576*00
.71-01
                                                        .1310*00
.9978*01
                                                                    .15+00
.87-01
                                                                              .1349*02
.8277+01 9
                                                                              .142H+02 27    .17+00                                               .15+00    .1255*02
.22+00
                              .2420+02   .14-01         .1082+00   .15+00   .4839+01 28   .17+00         .1965+02   .14-01         .1700*00 29                                                          .17+00   .5003*01
.1549+02
              .16*00         .1276+02   .80-02         .5335-01   .16+C0   .5341+01
.71-01
[      30 31
.3054+01
              .83-01
.11+00
              .51-08
.2025+02 10
                              .6746*01
.22*00
                            .4394*01
.1300+02
                                        .30-02         .2G22-01   .16+00     .5150+01 32
.71-01
                                        .30-02         .2699-01   .16+00     .4595+01
.4462+01
              .25+00         .1264*02   .25+00         .3960*01   .50-02 33   .27+00                                                         .4000-03
.1t+00
                            .1329*02   .14-01         .8089-01   .24+00   .4323*01 34   .16*00         .3406+0s   .50-01         .5270+02             .5723*01
.2160*02 11
[      35 37
.22*00
            .16+00
.1996+02
            .11400
.61-01
                            .7432*00
.4759+0s
                            .2417*02
.ft+00
                                        .59-01
.2239*02
                                        .1t+00
[-
                                                        .1045*03
13
                                                        .9495401
.13+00
                                                                  .16+00
.1976*02
                                                                  .16+00   .235G601 38                                                        .23+00   .6192'01
.41-01
            .13+00         .2326+02   .98-01         .4240+02   .23+00 39                                                                  .6023601
.151G*02
            .13*00         .2202+02   .11+00         .2133+02   .23+00   .632C+01 42   .93*00         .2009*02   .11+00         .3817+02
.11+00
[      45 48
.235G+02 15
            .58-01
.13*00
            .64-01
.1279*02
                            .2268+02
.40-01
                            .2771+02
.3772+08
                                        .97-01         .3970+02
.60-01
                                                                  .93-01
.1751+02 17
                                                                  .16*00
.13*00
                                                                            .5502601
.1255*02 4H+00
                                                                            .110l+02 57
.3488-01
                                        .91-01         .3433*02   .16+00   .1647+02
.32+00
            .21+00         .4483+02   .67-01         .3019+02   .53-01 63   .16+00         .6822+02                                        .1072+02
.4250*00 19
                                        .11+00         .855t+02   .50-01   .214G+02 65   .15+00         .6254+02
.13*00
[      67 69
.120t+02
            .15+00
.38-01
            .17+00
.6751*01
                            .3597+02
.17+00
                            .2237+02
.2898+01 28
                                        .98-01
.22+00
                                        .'82-01
.1192*02
                                                        .1338+03
.29-01
                                                        .1122+03
.4958+01
                                                                  .53-01
.17+00
                                                                  .22+00
.182Jo02
                                                                            .360t+02
[
                                                                            .6150+02
23
                                        .27+00         .4428+02   .22+00   .5864+02 71   .45+00         .1127+02   .94-01         .3174+01   .15+00 74   +14+00         .4421+01                                        .5825+01
.17+00
                                        .84-01         .7905+01   .15+00   .3845+01
.1939+02
.20-01
.8745*01
.17+00
.1349*02 25
.17+00
.2437+02
.15-01
.1576*00
.15+00
.142H+02 26
.17+00
.2525+02
.15-01
.1310*00
.15+00
.1255*02 27
.17+00
.2420+02
.14-01
.1082+00
.15+00
.4839+01 28
.17+00
.1965+02
.14-01
.1700*00
.17+00
.5003*01
[
29
.16*00
.1276+02
.80-02
.5335-01
.16+C0
.5341+01 30
.83-01
.6746*01
.30-02
.2G22-01
.16+00
.5150+01 31
.51-08
.4394*01
.30-02
.2699-01
.16+00
.4595+01 32
.25+00
.1264*02
.25+00
.3960*01
.50-02
.4000-03 33
.27+00
.1329*02
.14-01
.8089-01
.24+00
.4323*01
[
34
.16*00
.3406+0s
.50-01
.5270+02
.16+00
.5723*01 35
.16+00
.7432*00
.59-01
.1045*03
.16+00
.235G601 37
.11400
.2417*02
.1t+00
.9495401
.23+00
.6192'01 38
.13+00
.2326+02
.98-01
.4240+02
.23+00
.6023601 39
.13*00
.2202+02
.11+00
.2133+02
.23+00
.632C+01
[
42
.93*00
.2009*02
.11+00
.3817+02
.93-01
.5502601 45
.58-01
.2268+02
.97-01
.3970+02
.16*00
.110l+02 48
.64-01
.2771+02
.91-01
.3433*02
.16+00
.1647+02 57
.21+00
.4483+02
.67-01
.3019+02
.53-01
.1072+02 63
.16+00
.6822+02
.11+00
.855t+02
.50-01
.214G+02
[
65
.15+00
.6254+02
.98-01
.1338+03
.53-01
.360t+02 67
.15+00
.3597+02
.'82-01
.1122+03
.22+00
.6150+02 69
.17+00
.2237+02
.27+00
.4428+02
.22+00
.5864+02 71
.45+00
.1127+02
.94-01
.3174+01
.15+00
.5825+01 74
+14+00
.4421+01
.84-01
.7905+01
.15+00
.3845+01
[
[
[
[              *For element location see Exhibit 2.
*For element location see Exhibit 2.
[
[
[
[
e                                                                                                             ;
r e
_______-_a
_______-_a


C SARGENT & LUNDY DNGIN3Eas                                                                           TABLE 8
C SARGENT & LUNDY
[                                                                                  cmCAGo SL-3647 5 78
[
[                                                                                                                                                                   PAGE 3 0F 4 a
DNGIN3Eas TABLE 8 cmCAGo SL-3647 5 78
q w
[
* OOOOmeeOOO--N==**--=*O*eO-Owe                                                             -OOOOOwOeOO b     0000000000000000000000000000
PAGE 3 0F 4 aq OOOOmeeOOO--N==**--=*O*eO-Owe
                      + + + + + + + + ++++5                                                                 0 00000000000 6
-OOOOOwOeOO 0000000000000000000000000000 w
                                                                ++ + ++++++* + + +                                 + + ++ + ++ +++
6 b
1 w w        NOM-bOOOMMeNoneM,me,NwwomebnbMommmme-emM SpWOOMemecevMngmONmM w
0 00000000000
g Mw      b e m Ws M O N = m w O 4 0 b O b m 1 @ f.NbOm4NbWmmmmmWmOQWmo  bbMMommmmbM6-WOc@m*T h
+ + + + + + + + ++++5
3        G. N. M. b. *. eN.e M m     e M..M   . n. e w N. N. T. e. H. M. T.    . M. W. . eeb.       *ee@.
++ + ++++++* + + +
b.N.M.
+ + ++ + ++ +++
W.N.e. *. >eMe N. eb 3
1 w NOM-bOOOMMeNoneM,me,NwwomebnbMommmme-emM w
mu WE um
SpWOOMemecevMngmONmM b e m Ws M O N = m w O 4 0 b O b m 1 @ f. b b M M o m m m m b M 6 - W O c @ m
[      au O
* T g
ww      a gw 3    e  00-0000000000000000000000000000*O0000000 0000000000000000000000000000000000000000 U      + + i + + + + + + +++++++++++++++++++++                                                           + ++ ++ +++
NbOm4NbWmmmmmWmOQWmo w M G. N. M. b. *. N. M m M. M n. e w N. N. T. e. H. M T. M. W.. e b. e b. M. N.
(b w      w mem*--N-MemTbb>Wbb>>TMbOW@m*N-Me*@**Mben g      m      . w. @. . m. e. *. . . *. N. N. e. e. . N. . w. w     e . N. . N. e. w. w. N. e. w. . e. m. M. N. N. N.ee.* N. N
e *e @. N. W. e. *. >eM N. b h
[.     W w
w e e e
w                                                                                                                               e m
e e
: a. gJ wg b
3 3
                      -*=ww-O*--*-e-wwCO*O-NNON-eeOOOeOOwOwwwO 0000000000000000000000000000000000000000 b   >z             + + + + + +           +++++++++++++++e                               + + + + + + + +++++++f
mu
[      mo A 2m 40 gm N
[
M OMOMecNmNm-e--mmwwMewbomOboeNw
WE um au O
                      @M9N-6ThMa                     *O469mNM*QNNQ-0AM@eWMMmhmmbe*M WMOpomOQNmObemewombemNcN4bMbm-mnhowmMamb omowmOw->m                i +
00-0000000000000000000000000000*O0000000 ww a
G U
3 e
pg W
0000000000000000000000000000000000000000 gw
w N. e. e. *. N. e. @ e. *. N. W. T. N.v.v. 4. b. 9. w e. m. n.. M.         @. N.N. w. n. s. M. Q. W. m. M. @.e *.. b @ b.
+ + i + + + + + + +++++++++++++++++++++
+ ++ ++ +++
U (b
mem*--N-MemTbb>Wbb>>TMbOW@m*N-Me*@**Mben w
w
[.
. w. @.. m. e. *... *. N. N. e. e.
. N.. w. w. N.
. N. e. w. w. N. e. w.
. e. m. M. N. N. N. e
* N. N g
m e
e.
e W
w wm gJ a.
-*=ww-O*--*-e-wwCO*O-NNON-eeOOOeOOwOwwwO b
0000000000000000000000000000000000000000 wg b
>z
[
+ + + + + + +++++++++++++++e
+ + + + + + + +++++++f i +
mo A OMOMecNmNm-e--mmwwMewbomOboeNw omowmOw->m 2m N
@M9N-6ThMa
*O469mNM*QNNQ-0AM@eWMMmhmmbe*M 40 M
WMOpomOQNmObemewombemNcN4bMbm-mnhowmMamb gm N. e. e. *. N. e. @ e. *. N. W. T. N.v.v. 4. b. 9. w e. m. n. M. N.
. @. N. w. n. s. M. Q. W. m. M. @. *. b @ b.
G pg w
e.
U W
3
3
[ W U            ~
[
g       w       '
WU
000000*--00**O0==-0000-0-0000-                                                               O-O*-wCOOO O        3 Q       u00000000000000000000000000000                                                               0 0 00000000 w      + + + + + + e i s ++i i + + >                       i++++i+i++++                                 + i i i + + + +
~
b M      bb---N-DONMemMMmm'ebebbbb-MMO-MmMbMcceenM
g w
[ W Z
000000*--00**O0==-0000-0-0000-O-O*-wCOOO 3 Q u00000000000000000000000000000 O
w      e. . e. . e. . Q b b. e. w. e. v. e e m. q @ * - e. e. m. . m. e.
+ + + + + + e i s ++i i + + >
                                                                .      ....                          . w. e. b N m   . .e.m. m. .v .e .e .w *
i++++i+i++++
  <       e
0 0 00000000 w
                ~
bb---N-DONMemMMmm'ebebbbb-MMO-MmMbMcceenM
m b e - -w E                              ww-O***wN*--wCO*-NN==NN--woOOOOOOOOp 00000C0000000                                                                                                                               N g       O   A      + + + + + + +               +++ + 000000000000000
+ i i i + + + +
                                                                + + + + + +++ +                           0 0 0000000000 N
b
[  y y
[
a b      oco-ONoo-NMS-cicMotoOM=-mme.obMcMNommowmM GONS-vm&Mgn4cOOAbm-N3=O$7cNNNO3c-mbqvmwm N@Mm90bMWecmmOOGNO*b60mMmN04QWOM4GMOOTbT
M
                                                                                                                            + + + + + + +                          y A
: e.. e.
e    e. N M. M.w.w . e. . .e M. N. m M.v . . m b.w. m                   * -.v .N .- e. n. - .n .M .e .m .e .b o
. e.. Q b b. e. w. e. v. e e m. q @ * - e. e. m.. m. e.. w. e. b N m e m m v e e w
                                                                                                                                .m . m . .M .*                   g E            M w
* w W
A J                                                                                                                                                                M
Z<
[  J                                                                                                                                                                W W            ^
~
* e w
e b ww-O***wN*--wCO*-NN==NN--woOOOOOOOOp N
O      000000000000000000-000000000000e -0000000                                                                                                    e m      -
e - -w E
3 w +Ne  00000000000000000000000000000000
00000C0000000 m
                        +- +--*=+ + + + ++++++++++                                  ++++++++++                          0 0000000                                  E
000000000000000 A
                                                                                                                            + + ++ + + +
[
s,e b
0 0 0000000000 g
N                            eeMNbNbbmhNobbbbGbbbo*NNemcme@@me N. e . . . . . w e n. e. w. .m.. a. e w n. N..g.- w. e. -.e .. w. w. -. -.e.@..m. . w. n.. e N. N. N.
O
w -e - e                                                                                                                              g
+ + + + + + +
[  W w                            .
+++ + + + + + + +++ +
O h      s    a                                                                                                                                                  U
a N
          < 9        e
oco-ONoo-NMS-cicMotoOM=-mme.obMcMNommowmM y
                          --eNNN-OO-NN-en---e---OeNe *O                                                                                                            4 m
+ + + + + + +
* g    Oe +0 0 +0,    + 0 0+ +0 + 0, 0 0          e +0 0 ++  0 00000000000000000                OO-----www 0000000000                                U
y b
: m.                                                                                                                                                          o
GONS-vm&Mgn4cOOAbm-N3=O$7cNNNO3c-mbqvmwm N@Mm90bMWecmmOOGNO*b60mMmN04QWOM4GMOOTbT y
[              N                                                                        + +
: e. N M. M.w.w. e.. e M. N. m M.v.. m b.w. m * - v N - e n - n M e m e b o m m M
      *z zw      b    mmc *vhecoccoNo-moemr-mNMebcobemeOmm-gghw- + + + ++ + + +                      +  +  *    +                                              g we      g    NmebeMMM-WWmO=Nomm@39Q@@m=bgmO@b@mmbNbnd y      w
* A e
          .      e ONbmO4QOOmmombmTe mb4mJwo-NN*4vvhMb@-@ mom                                                                                                  M 33      X    N
E M
* M. W . e -. M. @ b.. m. e m. . M. N. m m. e. b. 4. N m. N. b. e m. h. *. N. @. @. w. M. W. @.gm. e. r. N.
g A
U      a    w                                                                                                                                                  #
w
y      u                                                                                                                                                        E
[
[  -
J MW JW e
X U    m
^
* g O
000000000000000000-000000000000e -0000000 e
(      w O
00000000e
                                                  *O0000000000000*O0-**OOeOOOOOOO 3
          -    w     C00000000,
                      + + + + + + + + i +00000000000000000,000
                                                    + + + +        ++++++e            + + i                0 0000000000
                                                                                                                  ++ ++ + +          + +    +
N 6
N    e--*--*-NO-MMboowwwwwechmNOMW-Omm-emebMe                                                                                                      0
[ W W
e.- .w .e =. =. -.w.@. b.  . e. - .- =. N.
                                                                . N. N. N. N N    . .N. N e - @ N e .b m
                                                                                        . .                  . b . *..........
                                                                                                                      *mNeewwMN                        ,
w O
J            ~
M      s w          N=-*-NNN--NNNNNN------NONn=-DO--------OO
  <      ,          0000000000000000000000000000000000000000
                      + + +
[              \                        +        +++              + +                  + + + +
o          MbTNN@                                                                                                  + + + +      + +
h
* b                          NN@@WWO-bhbON=*WMmOMONbemMOS-mMTN mNOTOO@bmMNbNOOOMQm@v@N3OMOOOOMmmOmm-MWO O
w g
6 I
                      ~5NmMOONONNSONmmmm-$$O*"mmMMoo-mN'h-'*h*
: e. v. M. M. @. e.  . . M. N. p. M.
W    M                                            . w. e.e. 6.T. v. v. N. M. T. M. . M. b. b. m. e. w. M. w. e. N. W. e. m. M. W.
2    w
                ^
w 3
w 3
y
O 00000000000000000000000000000000 m
* OO*OOOOO--OOOOO*OOO*-O*OO*O***OOOOOOOOOO 00000000000000000000000 w          + + + + + +
0 0000000 E
cebN--N=i                  e + + + ++ e +++i +                     0000,0000000000000
w + + + + + + + ++++++++++
                                                                                            + +         i i       + + + +++ ++ ++
++++++++++
b    w                                -MMMbbhmben
+ + ++ + + +
[              W
[
: w. e. s. e. w. w.. w. b. W. w. . m. e. e. m. e. e. w. s. N M b b b b b N m - O m O. m                       N. m     e n e e ,m. . m. w. e. @. e. h. m. b. e. n. e. w. e.
Ne - --*=
                                                                                                                                        . N. w.
eeMNbNbbmhNobbbbGbbbo*NNemcme@@me b
3 w
N s,e N. e.....
ab wg W
g w -e - e w e n. e w m. a e w n. N. g - w e - e w w - - e @ m.
wNMTmebmO=Mmbm-Me@bemO=NM9mbemNembMmbewT
w n. e N. N. N.
                                                ==*-*-NNNNNNNMMMMMMMMMT,vvd@@@@h5
O W
w
-h U
s a
4
< 9
--eNNN-OO-NN-en---e---OeNe *O OO-----www U
e m
g O 0 0 0, 0 0 0 0, 0 0 0 0 0 00000000000000000 0000000000 o
[
m.
e +
+ +
+ + +
e +
++
+ +
+ + * + + + + ++ + + +
*z N
mmc *vhecoccoNo-moemr-mNMebcobemeOmm-gghw-g zw b
NmebeMMM-WWmO=Nomm@39Q@@m=bgmO@b@mmbNbnd ONbmO4QOOmmombmTe mb4mJwo-NN*4vvhMb@-@ mom we g
y e
N
* M. W. e -. M. @ b. m. e m.. M. N. m m. e. b. 4. N m. N. b. e m. h. *. N. @. @. w. M. W. @. m. e. r. N.
g M
w U
33 X
a w
[
u E
y g
-X U
m O
(
w 00000000e
*O0000000000000*O0-**OOeOOOOOOO 3
O C00000000, 00000000000000000,000 0 0000000000 N
w
+ + + + + + + + i + + + + +
++++++e
+ + i
++ ++ + + + + +
[
N e--*--*-NO-MMboowwwwwechmNOMW-Omm-emebMe 0
6 e - w e = = - w @ b. e - - = N. N. N. N. N N N N e - @ N e b m b *
* m N e e w w M N w
W O
W J
~
M N=-*-NNN--NNNNNN------NONn=-DO--------OO s
[
0000000000000000000000000000000000000000 w
+ + +
+
+++
+ +
+ + + +
+ + + + + +
\\
o MbTNN@
NN@@WWO-bhbON=*WMmOMONbemMOS-mMTN h
b mNOTOO@bmMNbNOOOMQm@v@N3OMOOOOMmmOmm-MWO O
6
~5NmMOONONNSONmmmm-$$O*"mmMMoo-mN'h-'*h*
I
: e. v. M. M. @. e... M. N. p. M.
. w. e.e. 6.T. v. v. N. M. T. M.. M. b. b. m. e. w. M. w. e. N. W. e. m. M. W.
wg W
M 2
w
^
OO*OOOOO--OOOOO*OOO*-O*OO*O***OOOOOOOOOO w
00000000000000000000000 3
0000,0000000000000 y
+ + + + + +
e + + + ++ e +++i +
b w cebN--N=i w
[
+ +
i i
+ + + +++ ++ ++
-MMMbbhmben w e. s. e. w. w.. w. b. W. w.. m. e. e. m. e. e. w. s. N M b b b b b N m - O m O m m e n e e,m.. m. w. e. @. e. h. m. b. e. n. e. w. e.
. N.
. N. w.
W 3w wNMTmebmO=Mmbm-Me@bemO=NM9mbemNembMmbewT ab wg
 
==*-*-NNNNNNNMMMMMMMMMT,vvd@@@@h5 W


m m       m         m       m     rm .. rm           m. m         rm       rm     m         m     em     m         m         m       m       m     n TABLE 8 MAXIMUM NEGATIVE SHELL MEMBRANE FORCES (CONT.)
m m
ELEM                                         MQgENTS ENT         T!vE   MERIDIONAL                                                                         TRANSVERSE SHEAR FORCES TIME CIRCUMFERENTIAL         TIME           CROSS       TIME   MERIDIONAL         TIME CIRCUMFERENTIAL (SEC. )   (K-PT/FT)       (SEC.)     (K-FT/FT)       (SEC.)   (K-FT/FT)       (SEC.)       (K/FT)     (SEC.)         (K/FT) 1     .17+00       .9921+08   .20+00         .1817+01     .11+00       .13t8+01     .15+00       .3142+01     .15+00         .1090+01 2     .20+00       .3G47+01   .22+00         .1555 01     .11+00       .2423+01     .22+00       .1614+01     .16+00         .3104+00 3     .12+00       .2015+01   .,11+00         .4168 0:     .11+00       .3021+01     .22+00       .8421+00     .11+00         .4138+00 4     .67-01       .1293+01   .11+00         .7139+01     .11+00       .3477+01     .75-08       .6754+00     .11+00         .9440+00 5     .61-01       .2377+01   .11+00         .1042 02     .12+00       .3804+0     .75-01       .1355+01     .11+00         .1610+01 6     .75-01       .6343+01   .11+00         .1436+02     .12+00       .374S+01     .76-01       .2150+01     .11+00         .2551+01 7     .76-01       .1400+02   .1t+00         .1875+02   .29+00         .1737+01     .st+00       .5153+01     .1t+00         .36G4+01 9     .49-01       .2835+01     48-01         .3992+00   .29+00         .718t+00     .1t+00       .1327+02   .12+00         .1240+01 10     .12+00       .5359+01   .11+00         .7654+00   .29+00         .1676+01     .11+00       .8642+01   .1t+00         .4120+00 13     .11+00       .8133+01   .1t+00         .2398+01   .12+00         .1033+01   .12+00       .2374+01   .61-01         .2C61+00 13       44+00       .2701+01   .29+00         .1002+02     11+00       .495t+01     49-01     .7310+00     .23+00         .10G5+01 15     .47-01       .6184+01     44+00         .6173+01   .16+00       .502t+01       46-01     .1240+01     .13+00         .2115+01 17     .17+00       .5G20+01   .33+00         .422?-02   .29+00       .9423-02     .13+00       .1771+02     .13+00         .2337-02 19     .13+00       .3865+02   .24+00         .2861401   .13+00       .6935+01     .54-01       .7947+01     .17+00         .1520+01 21     .55-01       .2990+02   .24+00         .5074+01   .13+00       .20to+02       45-01     .4102+00     .17+00         .160?*#1 23       43-01     .5370+01     .24+00         .2754+02     .13+00                                                                                     m
m m
                                                                                .4746+01     .13+00       .3167+01     .29+00         . 2 3 D. .             >
m rm.. rm m.
25     .37+00       .2249+01     .17+00         .iC52+02     .14+00       .3003+01     .86-01       .3247+01     .29+00         .16tf*L:               p 26     .17+00       .4912+01     .17+00         .1256+02     .14+00       .3J29+01     .19+00       .7321+01                   .1C98+01 27     .17+00       .1884+02     .17+00         .1586+02     .17+00
m rm rm m
                                                                                                                        .29+00                               mO
m em m
                                                                                                          .0785+01                                       n zm
m m
                                                                                .2550+01    .15+00                    .29+00         .1752+01 28     .69-01       .2964+02     .24+00         .169t*02     .17+00       .3293+01     .17+00       .1424+01     .29+00         .1552+01           2OZ 29     .69-01       .2756+02     .24+00         .1344+02       17+00       .3953+01     .17+00       .2247+01 30     .60-01       .2963+01   .24+00         .4813+01   .17+00         .3944+01       49+00     .308t+01
m m
                                                                                                                        .17+00
n TABLE 8 MAXIMUM NEGATIVE SHELL MEMBRANE FORCES (CONT.)
                                                                                                                        .23+00
ELEM MQgENTS TRANSVERSE SHEAR FORCES ENT T!vE MERIDIONAL TIME CIRCUMFERENTIAL TIME CROSS TIME MERIDIONAL TIME CIRCUMFERENTIAL (SEC. )
                                                                                                                                      .9700+00
(K-PT/FT)
                                                                                                                                      .2071+00 5gH
(SEC.)
                          .5600+01 31 32
(K-FT/FT)
            .50+00
(SEC.)
            .17+00      .1154+00
(K-FT/FT)
                                      .27+00
(SEC.)
                                      .17+00
(K/FT)
                                                      .1576+01
(SEC.)
                                                      .0398-01
(K/FT) 1
                                                                  .16+00
.17+00
                                                                  .17+00
.9921+08
                                                                                .7020+01
.20+00
                                                                                .9376-01
.1817+01
                                                                                              .50+00
.11+00
                                                                                              .17+00
.13t8+01
                                                                                                          .3976+01
.15+00
                                                                                                          .5601+00
.3142+01
                                                                                                                        .86-01
.15+00
                                                                                                                      .17+00
.1090+01 2
                                                                                                                                      .3739+01
.20+00
                                                                                                                                      .3836-01 h,pm F p
.3G47+01
33     .16+00       .3465*01   .16+00         .2269+01   .16+00         .1402+01.   .13+00       .1644+02                                           " C 34      .13+00       .1095+02
.22+00
                                                                                                                      .17+00         .2098+01                  *
.1555 01
                                      .27+00         .4006+01   .36+00       .5137+01     .53-01       .2078+02     .17+00         .3987+01               I 35     .17+00       .2216+01   .10+00         .5064+01   .16+00       .4482+01     .53-01       .8944+01                                             U 37                  .4613+00
.11+00
                                                                                                                      .10+00        .1681+01
.2423+01
            .1t+00                   .11+00         .1185+00   .12+00       .2474-01     .71-01       .4910+00     .10+00         .1062-01 38     .72-01     .1656+00     .72-01         .5029-01     .11+00       .1935-01     .83-01       .1352+00     .11+00         .4055-01 39     .11+00     .2510+00     .12+00         .6228-01   .1t+00       .4012-01     .97-01       .1685+01     .12+00         .1625-01 42     .50-01     .2797+00     .28+00         .3199+00     .22+00       .2850+00     .28+00       .4064+00     .96-01         .1111+00 45     .10+00     .6149+01     .10+00         .125t+01     .28+00       .2937+00     .28+00       .3714+01 48
.22+00
                                                                                                                      .16+00         .5977+00
.1614+01
            .28+00     .6735+00     .28+00         .1034+01     .16+00       .5625+00     .90-01       .4963+00     .98-01         .3596+00 57     .91-01       .1252+01     .21+00         .2745+01     .16+00       .480t+00     .54-01       .3832+00 63    .16+00       .1892+01    .16+00         .4285+01
.16+00
                                                                                                                      .2t+00         .8765+00
.3104+00 3
                                                                  .63-01       .2618+00     .17+00       .8362+00     .16+00         .1482+01 65     .16+00       .2253+01     .16+00         .4261+01   .16+00         .7657+00     .13+00       .2276+00 67                  .1885+01                    .2980+01
.12+00
                                                                                                                      .16+00         .1788+01
.2015+01
            .27+00                   .16+00                      .16+00       .2245+01     .47+00       .1598+00     .15+00         .1745+01 69     .22+00       .2241+02     .13+00         .5657+01   .16+00         .2349+01     .22+00       .3093+02     .16+00 71                  .4269+00                    .1191+01                                                                         .1149+01
.,11+00
            .t3+00                   .25+00                     .15+00         .3776+00     .15+00       .2169+00     .94-01         .1978*00 74     .27+00       .4768+00     .25+00         .4080+01   .15+00         .1201+01   .13+00       .8782+00     .94-01         .4220+00
.4168 0:
                                      *For element location see Exhibit 2.
.11+00
15 1 YI U) -4 G) P* r- )>
.3021+01
P1 T' I r"03 El 36 %J OB
.22+00
                                                                                                                                                        %4 g,
.8421+00
.11+00
.4138+00 4
.67-01
.1293+01
.11+00
.7139+01
.11+00
.3477+01
.75-08
.6754+00
.11+00
.9440+00 5
.61-01
.2377+01
.11+00
.1042 02
.12+00
.3804+0
.75-01
.1355+01
.11+00
.1610+01 6
.75-01
.6343+01
.11+00
.1436+02
.12+00
.374S+01
.76-01
.2150+01
.11+00
.2551+01 7
.76-01
.1400+02
.1t+00
.1875+02
.29+00
.1737+01
.st+00
.5153+01
.1t+00
.36G4+01 9
.49-01
.2835+01 48-01
.3992+00
.29+00
.718t+00
.1t+00
.1327+02
.12+00
.1240+01 10
.12+00
.5359+01
.11+00
.7654+00
.29+00
.1676+01
.11+00
.8642+01
.1t+00
.4120+00 13
.11+00
.8133+01
.1t+00
.2398+01
.12+00
.1033+01
.12+00
.2374+01
.61-01
.2C61+00 13 44+00
.2701+01
.29+00
.1002+02 11+00
.495t+01 49-01
.7310+00
.23+00
.10G5+01 15
.47-01
.6184+01 44+00
.6173+01
.16+00
.502t+01 46-01
.1240+01
.13+00
.2115+01 17
.17+00
.5G20+01
.33+00
.422?-02
.29+00
.9423-02
.13+00
.1771+02
.13+00
.2337-02 19
.13+00
.3865+02
.24+00
.2861401
.13+00
.6935+01
.54-01
.7947+01
.17+00
.1520+01 21
.55-01
.2990+02
.24+00
.5074+01
.13+00
.20to+02 45-01
.4102+00
.17+00
.160?*#1 23 43-01
.5370+01
.24+00
.2754+02
.13+00
.4746+01
.13+00
.3167+01
.29+00
. 2 3 D..
m 25
.37+00
.2249+01
.17+00
.iC52+02
.14+00
.3003+01
.86-01
.3247+01
.29+00
.16tf*L:
p 26
.17+00
.4912+01
.17+00
.1256+02
.14+00
.3J29+01
.19+00
.7321+01
.29+00
.1C98+01 mO 27
.17+00
.1884+02
.17+00
.1586+02
.17+00
.2550+01
.15+00
.0785+01
.29+00
.1752+01 zm 28
.69-01
.2964+02
.24+00
.169t*02
.17+00
.3293+01
.17+00
.1424+01
.29+00
.1552+01 2OZ n
29
.69-01
.2756+02
.24+00
.1344+02 17+00
.3953+01
.17+00
.2247+01
.17+00
.9700+00 5gH 30
.60-01
.2963+01
.24+00
.4813+01
.17+00
.3944+01 49+00
.308t+01
.23+00
.2071+00
>h,p 31
.50+00
.5600+01
.27+00
.1576+01
.16+00
.7020+01
.50+00
.3976+01
.86-01
.3739+01 m
32
.17+00
.1154+00
.17+00
.0398-01
.17+00
.9376-01
.17+00
.5601+00
.17+00
.3836-01 p
F 33
.16+00
.3465*01
.16+00
.2269+01
.16+00
.1402+01.
.13+00
.1644+02
.17+00
.2098+01 C
34
.13+00
.1095+02
.27+00
.4006+01
.36+00
.5137+01
.53-01
.2078+02
.17+00
.3987+01 I
35
.17+00
.2216+01
.10+00
.5064+01
.16+00
.4482+01
.53-01
.8944+01
.10+00
.1681+01 U
37
.1t+00
.4613+00
.11+00
.1185+00
.12+00
.2474-01
.71-01
.4910+00
.10+00
.1062-01 38
.72-01
.1656+00
.72-01
.5029-01
.11+00
.1935-01
.83-01
.1352+00
.11+00
.4055-01 39
.11+00
.2510+00
.12+00
.6228-01
.1t+00
.4012-01
.97-01
.1685+01
.12+00
.1625-01 42
.50-01
.2797+00
.28+00
.3199+00
.22+00
.2850+00
.28+00
.4064+00
.96-01
.1111+00 45
.10+00
.6149+01
.10+00
.125t+01
.28+00
.2937+00
.28+00
.3714+01
.16+00
.5977+00 48
.28+00
.6735+00
.28+00
.1034+01
.16+00
.5625+00
.90-01
.4963+00
.98-01
.3596+00 57
.91-01
.1252+01
.21+00
.2745+01
.16+00
.480t+00
.54-01
.3832+00
.2t+00
.8765+00 63
.16+00
.1892+01
.16+00
.4285+01
.63-01
.2618+00
.17+00
.8362+00
.16+00
.1482+01 65
.16+00
.2253+01
.16+00
.4261+01
.16+00
.7657+00
.13+00
.2276+00
.16+00
.1788+01 67
.27+00
.1885+01
.16+00
.2980+01
.16+00
.2245+01
.47+00
.1598+00
.15+00
.1745+01 69
.22+00
.2241+02
.13+00
.5657+01
.16+00
.2349+01
.22+00
.3093+02
.16+00
.1149+01 71
.t3+00
.4269+00
.25+00
.1191+01
.15+00
.3776+00
.15+00
.2169+00
.94-01
.1978*00 74
.27+00
.4768+00
.25+00
.4080+01
.15+00
.1201+01
.13+00
.8782+00
.94-01
.4220+00
*For element location see Exhibit 2.
1 Y U) -4 15 G) P* r- )>
I P1 T' I 03 r"
36 %J El OB
%4 g,


SARGENT & LUNDY                     g
SARGENT & LUNDY
[                                              E N GIN E E R S cincaco                  SL-3647 REV. 2, 3-14-80
[
[
g E N GIN E E R S cincaco SL-3647 REV. 2, 3-14-80
[
{
TABLE 9 MAXIMUM STRESSES IN PLATES
TABLE 9 MAXIMUM STRESSES IN PLATES
{
[
[
SHELL***
SHELL***
MERIDIONAL **       CIRCUMFERENTIAL** MEMBRANE
MERIDIONAL **
(                 SECTION*     SHELL MEMBRANE         SHELL MEMBRANE   SHEAR NO.             (ksi)                     (ksi)   (ksi) l             12.73                       18.00     5.37
CIRCUMFERENTIAL**
MEMBRANE
(
SECTION*
SHELL MEMBRANE SHELL MEMBRANE SHEAR NO.
(ksi)
(ksi)
(ksi) l 12.73 18.00 5.37
{
{
2             12.62                       16.18     8.67 3             7.51                       6.20     1.80 4             7.24                       5.35     6.55
2 12.62 16.18 8.67 3
7.51 6.20 1.80 4
7.24 5.35 6.55
[
[
(
(
* For Section Number see Exhibit 3.
For Section Number see Exhibit 3.
Allowable Shell Membrane Force = 47.5 ksi
Allowable Shell Membrane Force = 47.5 ksi
                  *** Allowable Shell Membrane Shear = 27.42 ksi
*** Allowable Shell Membrane Shear = 27.42 ksi
[
[
[
[
[
[                                                                                          .
[
[
[
[
Line 1,001: Line 1,956:
J
J


m rm rm   rm   i   1               rm   rm     rm   rm   rm   rm     rm. rm   rm     i 1 rm   rm   rm     rm   r-TABLE 10 MAXIMUM STRESSES IN WELDS ACTUAL VALUES                         ALLOWABLE VALUES ALLOWABLE     ALLOWABLE     ALLOWABLE SECTION*     TENSION               ' COMPRESSION   SHEAR     TENSION     COMPRESSION     SHEAR NUMBER         (ksi)                       (ksi)     (ksi)       (ksi)         (ksi)         (ksi) 1**         17.84                     -27.00     8.06       33.6           -47.5       27.42 2           16.18                     -8.77     8.67       47.5         -47.5         27.42           ,$
m rm rm rm i
2E5 3           7.51                     -6.62     1.80       47.5         -47.5         27.42         k5>
1 rm rm rm rm rm rm rm.
Ej 4**         10.86                     -1.86     9.83       33.6         -41.5         27.42             g
rm rm i
1 rm rm rm rm r-TABLE 10 MAXIMUM STRESSES IN WELDS ACTUAL VALUES ALLOWABLE VALUES ALLOWABLE ALLOWABLE ALLOWABLE SECTION*
TENSION
' COMPRESSION SHEAR TENSION COMPRESSION SHEAR NUMBER (ksi)
(ksi)
(ksi)
(ksi)
(ksi)
(ksi) 1**
17.84
-27.00 8.06 33.6
-47.5 27.42 2
16.18
-8.77 8.67 47.5
-47.5 27.42 2E5 3
7.51
-6.62 1.80 47.5
-47.5 27.42 k5>
Ej 4**
10.86
-1.86 9.83 33.6
-41.5 27.42 g
* For Section Number See Exhibit 3.
* For Section Number See Exhibit 3.
      ** Partial Penetration Welds
** Partial Penetration Welds
:D (A -4 m I~ >
:D (A -4 m I~ >
                                                                                                              < l III ca
< l III
                                                                                                              .N $ r-M y     o I
.N $ r-ca M
b l
y o
I b
l


SARGENT & LUNDY E 11
SARGENT & LUNDY
[                                                    E N GIN E E R S cnicaco                SL-3647 REV. 2, 3-14-80
[
[
E 11 E N GIN E E R S cnicaco SL-3647 REV. 2, 3-14-80
[
[
[
{
TABLE 11 MAXIMUM STRESSES IN COLUMNS
TABLE 11 MAXIMUM STRESSES IN COLUMNS
{
[
[                                                                    MAXIMUM SECTION                     STRESS **
MAXIMUM SECTION STRESS **
(ksi)
NUMBER *
NUMBER *
-                                          1                         18.61 2                           9.83 3                          1.97
(ksi) 1 18.61 2
9.83
{
{
4                           2.06                     l
3 1.97 4
2.06 l
[
[
                                      *For Section Number See Exhibit 3.
*For Section Number See Exhibit 3.
* Allowable Combined Axial and Bending Stress = 47.5 ksi
* Allowable Combined Axial and Bending Stress = 47.5 ksi
[
[
Line 1,032: Line 2,013:
[
[
[
[
[                                                                                                 l
[
l


SARGENT & LUNDY ENGINEEas                   TAELE 12 CHICAGO                   g(_3g47 5- 26-78
SARGENT & LUNDY ENGINEEas TAELE 12 CHICAGO g(_3g47 5-26-78
[
[
[
[
[
[
_    TABLE 12 MAXIMUM SHEAR STRESSES IN CONCRETE FILL IN SACRIFICIAL SHIELD
TABLE 12 MAXIMUM SHEAR STRESSES IN CONCRETE FILL IN SACRIFICIAL SHIELD
[                                            MAXIMUM SECTION                    SHEAR STRESS **
NUMBER *                        (PSI)
[
[
1                          135.29 2                          104.24
MAXIMUM SECTION SHEAR STRESS **
NUMBER *
(PSI)
[
[
3                          34.20
1 135.29 2
104.24
[
[
  ~            *For Section Number See Exhibit 3.
3 34.20
              ** Allowable Shear Stress = 154.9 psi
[
*For Section Number See Exhibit 3.
~
** Allowable Shear Stress = 154.9 psi
[
[
[
[
Line 1,057: Line 2,043:


5$g4 e r@o* -
5$g4 e r@o* -
                            ,z
m 1>RrM C
* 1>RrM
,z 5"
                                                                      -    C m                                .
n k0 Urlw$
n k0 5"                                 )
)
Urlw$
Dm< F y E b m
Dm< F y E b m             e s
esr
r    )
)
ert       9         9     9     2     0 vaf          .          .    .    .  .
ert 9
m             se/
9 9
nhk 8
2 0
5 8
m vaf se/
5 8
8 8
5 8
8 8
7 2
2 nhk 5
8 aS(
5 5
r S T E
7 8
m          U L   e e
aS(
r A   t)                                         a V   ei       4         4     4     4     4 rs         .          .    .    .  . e m      )
r S
N E
T m
L ck n(
EU e
3         3     3     3     3      t e
L e
B   o                                           r O   A   C                                           c NT I
r A
W                                                n O                                               o GC     L g                                             c S E        n I
t) a V
L EI R    A i                                             n DD        cl)                                         i rei       0         0     0     0     0 TL         oes         .          .    .    .    . s AA       ftk         4         4     4     4     4     e nS(       5         5     5     5     5     s S N      i                                             s EI O      e                                             e SD       R                                             r SI R E E t
ei 4
s R          e s                                           d TM        rr)                                           n eat       7         2     0     2           a m  S (L MA         vef sh/       5 2
4 4
4 4
m rs e
E ck 3
3 3
3 3
t
)
L n(
e N
B o
r O
A C
c W
n I
m I
E L
n NT O
o GC L
g c
S R
EI A
i n
cl) i DD m
rei 0
0 0
0 0
TL oes s
AA ftk 4
4 4
4 4
e N
nS(
5 5
5 5
5 s
S i
s O
EI e
e m
SD R
r SI t
R E
s E
e RT M s
d rr) n m
S (L eat 7
2 0
2 6
a vef MA sh/
5 2
6 2
6 2
6 8
8 s
s UT         nSk       5         5     4     5     6     e MSE I
UT nSk 5
a r
5 4
(                                        s .
5 6
ss m  X D       T                                             ee AE
e MS a
* rs MP     S E   e t s se FF     U   t)                                             r OO     L   ei                                         et m  YS A
s.
V rs ck ls i       .
(
RN           n(       7         6     8     7     4     sl   4 AO     L   o         .          .    .    .    . na MIT    A   C       0         0     0     0     0     er   t U
m E
m    MC UE T
r ss IX D T
C g t u ee x
ee A E rs MP S
i b
t s E
i SS     A n                                             rl   h i                                             af   x 3         cl)                                               E m    1 E
e se FF U
rei oes 6
t) r m
OO L
ei et A
rs ls YS V
ck i
RN n(
7 6
8 7
4 sl 4
AO L
o na MI A
C 0
0 0
0 0
er t
m T
U t u i
MC T
x b
UE C
g ee i
SS A
n rl h
i af x
m 3
cl)
E rei 6
1 9
1 9
5 2
5 2
ts nu   e L        ftk         5         6     4     0     7     el   e nS(       3         3     4     5     3     mp S B       i                                             e A         e                                             ce   n             -
ts 1
T         R                                             rn oa   i o
E oes nu e
f r   t n                                       nb   a o   "        "    "    "    "    im     c m                  i     5)       5     5     5     3     ee   o t
ftk 5
a
6 4
                            - e s    '
0 7
                                                        -)
el e
p rm   L v
L nS(
e
3 3
                          'a 1
4 5
7B 8
3 mp S B
7 9
i e
8 2
m A
9 7o 9T ne iv n
e ce n
o l     5(       5     5     5     5(       i i m                  E                                       ss es t
T R
c se   e
rn o
* sr   S n*                                         ep m               or i e tb rm to r
oa i
o             _
f r t
1         2     3     4     5     Sc   F cm                                         *
n nb a
* eu
m o
* SN m.
im c
\
i 5) 5 5
5 3
ee o
t
- e
-)
rm L
a p
s
'a v
1 8
9 2
7o ne n
e 7B 7
8 9
9T iv o
m l
5(
5 5
5 5(
i i
E ss t
es c
se e
sr S
n*
ep m
or rm r
i e to o
tb 1
2 3
4 5
Sc F
cm eu m.
SN
\\
ll
ll


                  $$ms>r50 m
$$ms>r50 m
r                        mz2N"                                 Yarm E n5KC                                 *7a.
mz2N" Yarm E r
              )                                                Y~Tg m           eT r            sF r/                                        e e1 v(
n5KC
0 0      0      4    2    v
*7a.
                                .      .          . i s    7        7      7      6    0    s m            nr    5        5      5      7    8    s r           aa                                        e re                                        r Th                                        p S    S                                      m m        E                                            o r        U                                            c L  e A  t                                        e V  e)                                        r rI    4        4      4      4    4    a m        E  cS      .          .      .
Y~Tg
r        L  nK    3        3      3      3    3    e B  o(                                        t S      A  C                                        e N      W                                            r m O      O                                            c r I      L L  g)                                        n T                                                    o C      A  nI                                        c E        iS S          cK r(                                        n m
)
r N          o 0
m eT sF r
r/
e e1 0
0 0
0 0
2 v
4 v(
i s
7 7
7 6
0 s
m nr 5
5 5
7 8
s r
aa e
re r
Th p
S S
m m
E o
U c
r L
e A
t e
V e) r rI 4
4 4
m 4
4 a
E cS r
L nK 3
3 3
3 3
e B
o(
t S
A C
e N
W r
m O
O c
r I
L n
T L
g) o C
A nI c
E iS S
cK n
m r(
0 0
0 0
i G        fl    4        4    4      4    4      s I          ne    5        5    5      5      5    e S        ie                                        s m E          et                                        s r
D          RS                                        e T                                                    r t
A                                                    s
              )
S          eT                                      d m
r E          sF                                        n S )N      r/                                        a S  O      eK    1        3    6      6    7 EI        v(      .          .      .      .  . s RT        s nr    1        0    1      2    3      e m TC        aa                                        s SE r                                                      s R      re                                        e MID      Th                                        r U
* S                                    t S                                            s m MP      E r I O    U  e                                        e XO A
L t                                        l A  e)                                      i      .
M (H    V  rI    2        3      4      3    5      s    4 m
r FL      L cS nK    0 0
0 0
0 0
0
0 i
                                                  . n
r N
: e. t OA T   A o(                                       ts   i YS    U C                                             e b RE      T                                           es   i C                                           rs   h m AD     A                                           ae   x r  MEP g) nI                                          r E M                                                 tt UF      iS                                         ns   e SO        cK                                       e     e r(   0       0     4     2     4     ml     s m
o G
r           o      .          .      .      .  . ea 4       fl     2       4     3     2     8     cr     n 1
fl 4
ne   3       3     3     4     2     ru     o E         ia ox   i L         et                                       fe   t m B       RS                                         nl   a r A                                                 if     c T                                                   e     o n                                    rs   l u
4 4
o                                     nl     n m
4 4
r i  "        "      "      "    "    ip     o t   5)       5     5     5     3           i a   - e       -      -      -    -)p se   t v '    s   '      '      '    '
s ne 5
en   c e 1a       8     9     2     7o   sa     e m             l 7B       7     8     9     9T   sr     s r              E   5(       5     5     5     5(     eb rm te r
5 5
o
5 5
* S     F n*
e I
or
S ie s
                                                      *m
m E
* m r           ie th   1         2     3     4     5 cm eu SN ll
et s
D RS e
r r
T t
A s
)
S eT d
m E
sF n
r S )N r/
a S O eK 1
3 6
6 7
EI v(
s RT s
1 0
1 2
3 e
m T C nr s
r S E aa s
R re e
MI Th r
D S
U t
m I
O U
e e
S s
MP E
r XO L
t l
A M (H A
e) i V
rI 2
3 4
3 5
s 4
m F L cS n
O A L
nK 0
0 0
0 0
e.
t r
T A
o(
ts i
U C
e b
YS T
es i
RE C
rs h
m AD A
ae x
ME g) r E
r P
M nI tt iS ns e
UF cK e
e SO r(
0 0
4 2
4 ml s
m o
ea r
4 fl 2
4 3
2 8
cr n
1 ne 3
3 3
4 2
ru o
E ia ox i
L et fe t
m B
RS nl a
r A
if c
T e
o rs l
n u
o nl n
m i
ip o
r t
5) 5 5
5 3
i a
- e
-)
se t
v s
p en c
e 1a 8
9 2
7o sa e
m l
7B 7
8 9
9T sr s
E 5(
5 5
5 5(
eb r
rm r
te o
S F
*m n*
m or r
ie th 1
2 3
4 5
cm eu SN ll


, rm   m     m       m         e     rm   m     i 1 m     rm   m     rm   rm   m     m rm Fm       m     r TABLE 15  
rm m
m m
e rm m
i 1
m rm m
rm rm m
m rm Fm m
r TABLE 15  


==SUMMARY==
==SUMMARY==
OF MAXIMUM FORCES IN ANCHOR BOLTS ACTUAL VALUES                     ALLOWABLE VALUES COMBINED                           COMBINED TENSION     TENSION &   SHEAR     TENSION     TENSION &   SHEAR (ksi)     SHEAR (ksi)   (ksi)       (ksi)     SHEAR (ksi)   (ksi)
OF MAXIMUM FORCES IN ANCHOR BOLTS ACTUAL VALUES ALLOWABLE VALUES COMBINED COMBINED TENSION TENSION &
RPV                 16.10         16.10     27.56     60.72         40.50     40.48 5
SHEAR TENSION TENSION &
SA     CIAL             34.5         34.5       24.97     60.72         44.16     40.48 9                                                                                           }
SHEAR (ksi)
l             52   "
SHEAR (ksi)
(ksi)
(ksi)
SHEAR (ksi)
(ksi)
RPV 16.10 16.10 27.56 60.72 40.50 40.48 5
SA CIAL
}
34.5 34.5 24.97 60.72 44.16 40.48 9
l 52 "
8 "" E z
8 "" E z
k II) Maximum Value Occurs in 2-3/4" p Bolt.
k II) Maximum Value Occurs in 2-3/4" p Bolt.
II These values are based on the RPV skirt loads given in the FSAR Section 3.9.1.5 (Ref. 5) .
II These values are based on the RPV skirt loads given in the FSAR Section 3.9.1.5 (Ref. 5).
* x u) -i mr>
x u) -i mr>
                                                                                                      < l CD
< l CD
                                                                                                        *M y"a I
*My"a I
b
b


b EXHIBITS
b EXHIBITS
[                     l l
[
l l
l l
l l
[
[
Line 1,180: Line 2,443:
l W
l W


SARGENT Q LUNDY ENGINEER $                                                   EXHillT 1 CHICAG SL-3647 5-26-78
SARGENT Q LUNDY ENGINEER $
EXHillT 1 CHICAG SL-3647 5-26-78
[
[
{
,/ m '
(
\\[
[
REFUELING BELLOWS c
c' RPV 9TA&lLIZER
[
[
/
STABILIZER TRUSS FEEDWATER LINE
/
EL. C47 -G**
l E L EV. G4 t'-li("
g
[
[
'N
{,"_ PREc.;5URE REACTOR VESSEL SACR!FiCI A w 9hiELO /<4tt
{
{
                                                        ,/ m '
a PRIMARY STEEL
(                                                  ,
/
[                                         c
\\
                                                                                        \[ c' REFUELING BELLOWS RPV 9TA&lLIZER
COMA V M aJ T
                                                                                                /                    STABILIZER TRUSS
[
[ FEEDWATER LINE                                                                            /                        EL. C47 -G**                  l E L EV. G4 t'-li("                                    g REACTOR
\\
[                              'N
-- UPPER DRV WELL TRUSS LN
{ ,"_ PREc.;5URE                                      ,.
[
VESSEL                #                  SACR!FiCI A w a                                                      9hiELO /<4tt
EL.Gl3'-IO}J g PLATFORM f
(
/
/ EL.GO7 O"
{
{
PRIMARY STEEL
l j
                                /                                                                \                 COMA V M aJ T
\\
[                                                                                                    \
'l l
                                                                                                                      -- UPPER DRV WELL TRUSS LN
[
[ EL.Gl3'-IO}J g f PLATFORM
REACTOR
                - - _          ___-                                    (            /                                          / EL.GO7 O"
[ PLATFOR M 8
* j l
EL 565' 31-supponr
{              \                                                      'l               %
l
                  '                                                                                                        8 REACTOR                                           [ PLATFOR EL 565' 31-eM
______1,,
______1,,
[                                                                          supponr                                ,
e PEDE.,TA L3
PEDE.,TA L3                     / LCWER       * **
/
DR/WELL jA f ,./ g-ELEV. 572'l
LCWER DR/WELL j f,./ g-ELEV. 572'l A
{                                 s                               ,        ,
{
                                                                ' %..                    ,/
s
,/
[
[
r                     SECTION THROUGH CENTERLINE OF DRYWELL L
r SECTION THROUGH CENTERLINE OF DRYWELL L
b
b


SARGENT & LUNDY ENGINEERS                                                       EXHIBIT 2 CHICAGO SL-3647 erca c.uy ,                                                                                       s 78
SARGENT & LUNDY ENGINEERS EXHIBIT 2 CHICAGO SL-3647 s 78 erca c.uy,
[                 se                               r l                 82.
[
ID        4 ,3.       ,'
se r
Q       460
ID l
[               Slo 44<     '
82.
                                @ lE
4,3.
                                            < >30 a
Q 460
g, 430
[
[                       4to @          @o u               .
@ lE a
[E O.,     360                                                                               REFuELsuq so                 eeaan
Slo 44<
                        $' @ Ois"
<>30 g,
[         >              slo "g @
[
to 76 8/             ,, 1 s u.
430
                                                                                                                  +
[E 4to o u
                                                                                                                            . '- 41
@ Ois REFuELsuq O.,
      )
360 so eeaan
3ft > ))*>               <>t;
" to
                                                    'd                                 77 t i h
[
      .h
"g @
        '      ]        310 d$'>
8/
,, 1 s u.. '- 41 slo 76
+
)
3ft >
))*>
<>t; h
'd 77 t
.h ]
310 i
Q
Q
                                            < >T. n
>T. n d$'>
        'I
'I
                    '] b b o*J '                      l 97A BILL' E E
']
[     t V               244                         J Gi>
b l
tu u                 1so bb        o i" a                                    "7F 3<                                                                '
97A BILL' E E
                                                                                                                        / ms.
[
T'RL $$asz
b t
                                                                  .u                               s
o*J V
[                                41                 1           6                             N o 74 o .6
244 J
                                                        '                              ,',      3                                 ~
Gi>
b b a
"7F tu 3<
u 1so o i"
[
.u s
/ ms. asz 41 1
6 N
o 74 T'RL $$
o.6 3
g E L.646-4
g E L.646-4
[                         ,    ,        8,, , ,                   v g  3, 7' E       ?
~
Q                   70<>             I
[
                                                                                                          > 66
8,,,,
[             r          154
7' E
                                'a g<
?
                                              >il g
v g
6-V
3, Q
                                                                                        '4 "
70<>
                                                                                              ]h          , 4-14 4 '            4> ll                N g        <
I > 66 6-
46i l       14 1 EL54l10 lc,       bb    3       4         0
]h
                                                                                                @      o 6Z
>il V
                                                                                                                  }
154
g ~m                                                 as gg                 y
[
                                        ]                                             66'>
'a g<
g
'4 "
r
, 4-g 14 4 ll N
4>
46i l 14 bb 1 EL54l10 lc,
}
3 4
0 o 6Z g ~m as gg y
]
66'>
W
W
[                                   7''                                                                           J db'>                       1 b                                                     b$                 U j
[
oo                                                 ''
7''
[                                                                          ,,
J db'>
o se       'j to                               5                                                                       U 51 0 r       v                           i
1 b
* So
b$
                                                                                    '          E @'              Y 57 o     g 8             b       4>   62 4o                                                   548 '
U
g L        N                                                                   dlai'
[
                                        $                                                530
j
                                                                                                        <,   47 e
'j oo o se to 5
30 S0t>
E @'
b@
Y 51 0 U
h                                      8I                     4 > kl
i
                                    ; o                                                 444       @
* r v
1                                            e
So 57 o g
-                                        t                                                                 33
8 b
"          LELG71'-l'
4> 62 4o 548 g
              -~
I N
i                                 '
dlai'
b '
<, 47 L
                                                                                                @b
530b@
                                                                                \< > M ATCH LIM E ANNULUS PRESSURIZATION MATHEMATICAL MODEL J
3 0 S0t>
e h
kl 8I 4 >
; o 444
@ b 33 1
e t
LELG71'-l' i
b
-~
\\< > M ATCH LIM E ANNULUS PRESSURIZATION MATHEMATICAL MODEL J


SARGENT & LUNDY
SARGENT & LUNDY
[                                                                  ENGINEERS CHICAGO EXHIBIT 3
                                                                                                                                                    $(-3647 5 78
{            PRIM A EitY FE.EL e      CONTAINMENT                                                          $                      '
                      .    ,:r-STABILIZER TRUSS                          R.              of c                                                        e                        s. no-            o 6.L . fo d -9f      &G,                                                                          .
            .        /          )    REAC. TOR
(                *, eg                VESSEL 9(/p
{4              4 s
                          .  %    - SAGRIFICI AL                      '
[                  f                SHIELD /9 ,*
7    ,                                                                                      *3,I
                                                                  /                    dKlfACTo C,
                                                                                      ~
(A g  i        ,,    [      Af __
                                                                                        '                                  ['              oo 1                            /S'
{ 't                              'q"t "                      ,        s
[
[
                                                              \\                                         *      ,
ENGINEERS EXHIBIT 3 CHICAGO
4"                 '\\
$(-3647 5 78
{
PRIM A EitY FE.EL e
CONTAINMENT
,:r-STABILIZER TRUSS R.
of c
e
: s. no-o 6.L. fo d -9f
/
)
REAC. TOR G,
(
{
*, eg 9(/p VESSEL 4
4 s
% - SAGRIFICI AL
[
f SHIELD
*3,I
/9,*
7
'/
dKlfACTo C, (A g
[
Af
['
~
i o
o 1
/S'
{ 't
'' 'q"t "
s
[
\\\\
4"
'\\\\
l p
l p
3             S
3 S
                                  - ANNULUS BETWEEN,                                   .e SHIELD AND           S                                                               9 9,
- ANNULUS BETWEEN,
[                                   RE.A CTOR Q                          ,  ,
.e SHIELD AND S
a
[
                                                                                                                                'g ,
Q 99, RE.A CTOR a
'g,
9
[
RECIRCULATION LINE 0
g jOPNG.,
1 EL.G !- o fa t
[
[
9    *'        $
iL v
g RECIRCULATION LINE                                          0  -
's!
jOPNG.,        .,,,
PL A hJ 1
_        iL                 t1  EL.G !- o fa
v         '
                      's!
PL A hJ 1         _
2
2
[
[
                ,                                  4' REACTOR
4 REACTOR
                                                                    . R RV.               ,    y ''
. R RV.
(               a
y ''
_ f INV. EL . 060 -4 Ty f EL 597'-so 3 -
(
[       1                   L
_ f INV. EL. 060 -4 Ty a
                                  /
f EL 597'-so 3 -
[                       ,              REACTOR SUPPORT
[
_ j                     PEDESTAL SECTION A-A
1 L
/
[
REACTOR SUPPORT
_ j PEDESTAL SECTION A-A
[
[
SACRIFICIAL SHIELD
SACRIFICIAL SHIELD


L SARGENT & LUNDY ENGINEERS                                                      EXHIBIT 4
L SARGENT & LUNDY
[                                                                    CHICAGO SL-3647 5 78
[
[
ENGINEERS EXHIBIT 4 CHICAGO SL-3647 5 78
[
[
[                                                           24 - l l         o, PIA.
[
[
l o,
24 - l PIA.
6'- I
{
i s' - I" s'-(
,'. RPl/ 3EllCT
-dAcce Ff C. AL TjdOLC 5
Aucwc4 8()L 5
$H ELD
/ e t se'- - GLj e[p n n 7
*L_3.
g
,. g g c gag,,,
crM'f 80LTf/
f,':i@t ~5 v bh l
v 5
:ev
[
l EL.V$8?s
=,
(
y 4 f 4
r EL591 l((
\\7pv i
)
i i
ji
~;
[
b
'3 v r
2 v
M w
[
\\--
e u
f j-i
,. i
_4-o 2I-t og
, 2,..o '
{
{
{
6'- I            _
l i
i s' - I"                    _
v
s'-(
.. w
                                                                          ,'. RPl/ 3EllCT        ,          -dAcce Ff C. AL TjdOLC            5 Aucwc4 8()L7 5                                  $H ELD
{
                                                / e t se'- - GLj                                e[p g          n n , . g g c gag,,,
~
                    *L_3.
v z z v i
          -                                                                  l crM'f 80LTf/
I
v 5 f,':i@t  :ev                      ~5 v                                           bh
[                                                                      ,,
                      =,                    l EL.V$8?s
                                                                                              \7pv
(        y 4        f                          4 i r EL591 l[[                                                ,.
                      )          i' i
ji          ~;
[              b    :
v          w
:            '3 v                                                r            2 M
[
[
    \--
FILI. Floc 4 E L. 5,~2 '- 1 "
u                                                                    ,
e f                                    ,. i j-                    ,,                            ,    ,,
i    ,                      .
_4-o              _
2I-t og                                      , 2,. .o '
i
i
{                                    {                                                              l              ,
~~
v            .
~ ~ '
w
~ +
            -                                  ~
{
vz                    i                zv                        !
I
I
[                                                   FILI. Floc 4 E L. 5,~2 '- 1 "                                  ;            i
\\
  ~~                                                                      '
[
                                        ~ +
y f.
        ~ ~ '
I I
I           \  - - -
ly I
I
I
[    . y f.          I ly                                                      I    I e                                                                                                                           ,
.e
                                                                                  , ' _-~     .                          , , _ __
' _-~
[                                                  5 E CTioM
[
[
5 E CTioM
[
{
REACTOR PEDESTAL
REACTOR PEDESTAL
{


(
(
SARGENT Q LUNDY
SARGENT Q LUNDY
[                                             ENGINEERS CHICAGO EXHICIT 5 g(_3g47 5- 26-78
[
[                                                   hi r%
ENGINEERS EXHICIT 5 CHICAGO g(_3g47 5-26-78
[
hi r%
Q
Q
              /p y ,m y x
/p y,m y x
[
[
x%
iEEAcro<.
iEEAcro<.
s,-
s,-
x%
]
[
__ ]
1:
1:
                  ]
./ -
9ACRI FIC A L j
'l l
[
[
9ACRI FIC A L
3''
                                                        .;_ .                    __
% # E. L P J
j
J i
                                                                                      ]                                            ./ -
\\
''
/
3
'y l,
                                % # E. L P                                     J
/,
                                                                                                  'l J
~
l i
\\
                  \         /                                                                           '
/
          'y         l,                                                   ~    /,
}-l,seGbfgz'A\\
            \       #
g c
c          /       g
:',x f
:',x
\\
                \                    _-
/
                                                }-l,seGbfgz'A\
s
f   -
(
                                                                                                          /
                            . . _ _      s                                 _
p
p
                                                                                ,/                                       ***
,/
(                                                              ,
%v,,q/
                                                                            ^^
^^
                                %v, ,q/
vesc~
[
[
vesc~
'g PRIMARY $~E s t
                                                    'g                 '-
[
PRIMARY $~E s t
COUTAI M M EMT L
[
[
L                                                                              COUTAI M M EMT
FR,A M lLl4 PL A LJ l
[                                          FR,A M lLl4 PL A LJ                                                                           l r
r L
L i
i r
r STABILIZER TRUSS t
STABILIZER TRUSS t
r
r


SARGENT Q LUNDY
SARGENT Q LUNDY
[                                                                 ENGINEERS CHICAGO EXHIBIT 6 SL-3647
[
[                                                                                                                                               5 78 L
ENGINEERS EXHIBIT 6 CHICAGO SL-3647
b                                                       w m
[
O F
5 78 L
                                                        'g 'e* ~                       ,
b wm O
o                       ,
F
                                                              -                                                  ~,                     E et-
'g 'e*
                                                                            ,          .c
~
                                                                                        <                  p Q oz %ce..; c.a.               .-                            . . . . , n e . ..                 y       e c s>- s > t' o - ' ,             t^             ,=             _. . ..                    w_           f             ' E' L ese ' ac- A           i
o e
                                                                                . , * . ''
.c
* N *                         ,              ,
~,
      ,              j                       .s..
E p
                                                                  ..      -.      ', ., . , .                    qf#<                  s g              ,/
t-Q oz %ce..; c.a.
                                      .    .  *;        .
...., n e...
y e
c s>- s > t' o - ',
t^
,=
w_
f
' E' L
ese ' ac-A i
., *. ''
* N
* qf#<
j
.s.
s d ' #,,',
t
t
                                                                          ''      .        . **                                  d ' #,,',
{
{                              ,                                                                    ,
g
  , ?g           /         .
,/
s.
, ?g
                                                                                                          ,5            ,                          t
"*,5
[ -ll
/
  ~
t s.
in.4, ,     N.
[
                                                                                                        . . ..\ . el.2       -
-ll in.4,,
                                                                                                                                            . 0' r                            .*                                                        -
N.
r N -             . j *.                                                         j
0'
                                                                                                                        ++-+
.. \\. el.2
L
~
* i IUb           * "*            .f
r N -
                                                                                                                  ,.          _ . . _              C
. j *.
                          **t                                                                                           .<,4
j r
[                 .4*
L i
                            *,.                                                  K f, I,                   **.
.f
7 qs$         e       av         J'   /j''
++-+
            .g
IUb C
                                  ~
**t
6'                   *,
.<,4
F       sX-               .*                  sourse st'o.c .                                         /
[
* i     ~. As '
.4*
L       -
K f, I, 7
                      ,\.*.. *' .                                                                    ~.
~
e- .
qs$ e av J' /j''
                                                                                                                            /
6'
t
.g F
                                                                                                .v.?*                    *
sX-sourse st'o.c.
,\\.*. '
/
/
i
~. As '
L t
~.
e
: s.
: s.
* N s            *                                                '
* N
[                            .,              . , ,                                      j.*,-                     /
.v.?
                                '        =
j.*,-
x         . -/# ?<
/
                      .y                   s'.           ..                        *
[
                                                                                            ~.-
s x
[                 f                     N 'N* ' . .                                   "'
. /# ?
=
.y s'.
~. -
[
f N 'N* '..
y,,
y,,
i Y
i i
i                                      's -
's -
O                               a 8                               -
Y O
e, a                 .
a 8
                                                                                }
}
[                                                                    Eb".!S r
e, a
L PLAN AT EL.597 lO9                           i so, r
[
Eb".!S PLAN AT EL.597 lO9 ''
i r
L so, r
b r
b r
L ANCHOR BOLT LAYOUT L
L ANCHOR BOLT LAYOUT L
Line 1,495: Line 2,902:


SARGENT & LUNDY
SARGENT & LUNDY
{                                                                                         ENGINEEas CHICAGO EXHIBIT 7 SL-3647 5--26-78 b
{
[                                                                   ,.
ENGINEEas EXHIBIT 7 CHICAGO SL-3647 5--26-78 b
q '_ y
[
* To                                                                                                        '
I l* C N' q '_ y
* L, IOI                        l* C N'                  'O
'O
                =                               -
'
                                                                  ~ ~ ~
* L, IO To l
l g               .
=
esAcrom pe e u er                                        SACRIRc AL $s. ELD ( j'                                                                                       'l' 3            ,,
~ ~ ~
{            n 9"    ,          ,,            __.                                                                        I I                                          2( 1 d ig t i-4 d<g<2_2                     II                                                                         i c
g esAcrom pe SACRIRc AL $s. ELD ( j'
            $sa a t.v4                                                       -
'l' e u er 2( d ig t i-4 3
[__r} i(%]j' i         __        l            (" h                 l9" Ear.tum l
{
lA //M / /[
9" d<g<2_2 II I I n
[                                     i T
1 i
                                                                      -[T_F1
$sa a t.v4
                                                                                                                  ,1 i 4 /< '~l               .
[__r}
i n
i(%]j' i h
i I        *
l9" Ear.tum c
                                                                                                                                  ,                  i 1Ll.
l
                                                                                                                                                                                )EL54i-w **i p           EL.54-[ d'y ' '
("
i;I .                   .i         I..N                       3                     ,
l
t                                                    ,                                                                                                        e y
[
[                 -
-[T_F1
aj                                                                         .
,1 i lA //M / /[
s bk o '
4 /< '~l
noas ffd.                    f z ,.4           l
. )EL54i-w **i i
                                                                                                                                                            , f1A
i T
i i
1Ll.
p EL.54-[ d'y ' '
I n
t i;I.
.i I..N 3
e y
[
aj s bk o '
f z,.4 l
ffd.
f ec}o
, f1A 9xoo noas
(
(
s e
s e
9xoo                s f ec}o                s zog i
s s
                                                                                        =
zog i
r__     _ ,
=
r                                                                                                                    l 1      '                  '
r r__
L                                            -
L l
e l     l il                                                      I G;                                             G us+                       w                                                 ;;,~
l il l 1 I
                        - ~ ~ - -
e G;
[                                                                       BE CT iou A- A E
;;,~
L I
G us+
w
- ~ ~ - -
[
BE CT iou A-A EL I
ANCHOR BOLT DETAIL L
ANCHOR BOLT DETAIL L
~
~


  - - ,    r--- ,                       rm       rw             rm     rm   rm   rm     rm   rm     rm   rm     rm     rm     rm   rm rm       rm     r Top o                                                           Azirnuth (degrees)                                                             l Shield                               A4-0         30           60         90 I          I            i 120       150         180 l                                       i           l         I           I   El. 646.83'
r---,
                                    =-
rm rw rm rm rm rm rm rm rm rm rm rm rm rm rm rm r
                                          '$            Node *
Top o Azirnuth (degrees) l Shield A4-0 30 60 90 120 150 180 l
                                  #2 B                   1             2           3         4           5         6             B Strip 1
I I
                                $SA r
i i
                                -t A(See Exhibit 9)
l I
O
I El. 646.83'
                                                                                                                        ~   ''"'
=-
          >                              0
Node *
                                          "                                                                                   El. 637.0' O
#2 B 1
z                               e             7             8           9       10         11       12               Strip 2 O                               y                                                                                   El. 633.44' m                               O 13           14         15         16         17 z                                                                                                        18               Strip 3                 y
2 3
        -i                                                                                                                                                 n W                                                                                                                                               mO O                                                                                                                                             085 s
4 5
El. 624.44'
6 B
Strip 1
$SA A(See Exhibit
-t 9) r O
~
0" El. 637.0' O
z e
7 8
9 10 11 12 Strip 2 O
y El. 633.44' m
O 13 14 15 16 17 18 Strip 3 y
z
-i n
W m O O
085 El. 624.44'
{-
{-
8 ;; e o
s 8 ;; e o
3 19           20         21         22         23       24               Strip 4               "y
19 20 21 22 23 24 Strip 4 "y
        %                                                                                                                                                  o El. 617.87'                   <
3 o
n
El. 617.87' n
        ~
~>r j
r j                                             25           26         27         28         29       30               Strip 5 m
25 26 27 28 29 30 Strip 5 mr El. 609.87' O
r                                                                                                                    El. 609.87' O
31 32 33 34 35 36 Strip 6 m in m l
31           32         33         34         35       36               Strip 6 l                                                                                                                                                  m in m l                                                                                                                             El. 602.29'         mrX 37           38         39         40
l El. 602.29' mrX
                                                                                                                                                  < b3 41       42               Strip 7       ."E
< b3 37 38 39 40 41 42 Strip 7 "E
                                                      ]                                                                     El. 597.88'         y     a ro (See Exhibit 10)
]
* NOTE: Nodes correspond to those                   y A
El. 597.88' y
                                        . .}                                                         used in NUS report NUS-3129.               g Pedestcl
a ro (See Exhibit 10)
* NOTE: Nodes correspond to those y
..}
used in NUS report NUS-3129.
g A
Pedestcl


j u>WO S " > E $ <-
j u>WO S " > E $ <-
  ,                                m!E " C r                                  Eyo mXI     e n
m!E " C mXI e
tr[E mM <, ". Y g i $
r Eyo tr[E n
-t r
-t mM <, ". Y g i $
      ~
-r
            ~   -    -    -            -      -      -  -            0 6
~
m
0
          /                                                               3 r
~
0 3
6 m
m r 3
/
3 r
0 m
0 m
r                                                                        0 3
3 3
m r
r m
0 7
0 0
2 m r                                                                      0 4
r 3
2 m
m 0
                                                                              )
r 72 m
r 0
r 0
s 1    e     )
42 m
e m r j       2 r
)
g e
r s
B 8
0 e
                                                                                  - T B I d     B 0   (   N I 0       O H i 1   H   I X m r T   T E C
)
U M   E E w        0 5
12 e
1 I
8 m
Z A
j r
S E S
B g
- T r
e B
I d
B N I 0
(
0 O H i 1 H
I X
m T
T E r
U C
w M
E E I
S E 0
Z S
5 A
(
(
  -r
^
                                                                ^
1 r
  ,                                                                      0
0 2
-r                                                                       2 1
r 1
m r                                                                         0 9
m r
0 9
m r
m r
0 6
0 6
r 0
-r 0
3 m
3 m
r
r
          \                                                               O 0   0   0     0     0           0     0       0   0         0 m      9   8   7     6     5           4     3       2   1 m$wrC$ n            .
\\
6$S r                     nn mxm(iCxM 2nl25 e-        S 0 E (13 n- m~
O m
0 0
0 0
0 0
0 0
0 0
9 8
7 6
5 4
3 2
1 m$wrC$ 6$S n
-r mxm(iCxM 2nl25 S 0 E (13 m~
nn e-n-
(
(


SARGENT & LUNDY E NGIN E ERS occa                                EXHl'IllT 10 SL-3647 REV. 1, 3-22-79 Top of Shield Elevation 646.83'       '    '    '      '        '      '  '    '        '            '
SARGENT & LUNDY E NGIN E ERS EXHl'IllT 10 occa SL-3647 REV. 1, 3-22-79 Top of Shield Elevation 646.83' Strip 1 637.0' Strip 2 633.44' Strip 3 624.44' Strip 4 617.87' Strip 5 609.87' Strip 6 602.29 Top of Pedestal Strip 7-597.88' j
Strip 1 637.0' Strip 2 633.44' Strip 3 624.44' Strip 4 617.87' Strip 5 609.87' Strip 6 602.29                                                                                     Top of Pedestal Strip 7-597.88'     ,    ,    ,      j       ,      ,  ,    ,        ,            i 0   10   20   30     40     50     60 70   80       90           100 Pressure (psid)
i 0
10 20 30 40 50 60 70 80 90 100 Pressure (psid)
SECTION A-A (See Exhibit 8)
SECTION A-A (See Exhibit 8)
VERTICAL DISTRIBUTION OF PRESSURE         30*
VERTICAL DISTRIBUTION OF PRESSURE 30*


[
[
:                  APPENDIX A
APPENDIX A
[
[
[
[
Line 1,622: Line 3,095:
[
[
[
[
[                  -
[
[
[
[
Line 1,628: Line 3,100:
[
[
[
[
mummmm. . .
[
mummmm...


L CARGENT O LUNDY                                   APPENDIX A EN   N ERD                                   g(_3g47
L CARGENT O LUNDY APPENDIX A EN N ERD g(_3g47
                                                      ,o 5 78 COMPUTER PROGRAMS
,o 5 78 COMPUTER PROGRAMS
[ DYNAX DYNAX (Dynamic Analysis of Axisymmetric Structures) is a finite element program capable of performing both static and dynamic analyses of axisymmetric structures.
[
DYNAX DYNAX (Dynamic Analysis of Axisymmetric Structures) is a finite element program capable of performing both static and dynamic analyses of axisymmetric structures.
Its formulation is based on a small displacement theory.
Its formulation is based on a small displacement theory.
[ Three types of finite elements are available: quadrilateral, triangular, and shell. The geometry of the structure can be general as long as it is axisymmetric. Both the isotropic and orthotropic elastic material properties can be modeled. Discrete and distributed springs are available for modeling elastic foundations, etc.
[
Three types of finite elements are available: quadrilateral, triangular, and shell. The geometry of the structure can be general as long as it is axisymmetric. Both the isotropic and orthotropic elastic material properties can be modeled. Discrete and distributed springs are available for modeling elastic foundations, etc.
For static analysis, input loads can be structure weight, nodal forces, nodal displace-ments, distributed loads, or temperatures. Loads can be axisymmetric or nonaxisym-metric. For the solids of revolution, the program outputs nodal displacements and element nodal point stresses in the global system (radial, circumferential, and axial).
For static analysis, input loads can be structure weight, nodal forces, nodal displace-ments, distributed loads, or temperatures. Loads can be axisymmetric or nonaxisym-metric. For the solids of revolution, the program outputs nodal displacements and element nodal point stresses in the global system (radial, circumferential, and axial).
In the case of shells of revolution, the output consists of nodal displacements and element and nodal point shcIl forces in a shell coordinate system (meridional, cir-
In the case of shells of revolution, the output consists of nodal displacements and element and nodal point shcIl forces in a shell coordinate system (meridional, cir-
[ cumferential, and normal).
[
For dynamic analysis, three methods are available: direct integration method, modal superposition method, and response spectrum method. In the case of dynamic analysis by direct integration method or modal superposition method, a forcing function can b be input as: 1) nodal force components versus time for any number of nodes, or
cumferential, and normal).
For dynamic analysis, three methods are available: direct integration method, modal superposition method, and response spectrum method. In the case of dynamic analysis by direct integration method or modal superposition method, a forcing function can b
be input as: 1) nodal force components versus time for any number of nodes, or
: 2) vertical or horizontal ground acceleration versus time. For nonaxisymmetric loads
: 2) vertical or horizontal ground acceleration versus time. For nonaxisymmetric loads
[ the equivalent Fourier expansion is used. In the case of dynamic analysis by response spectrum method, spectral velocity versus natural frequency for up to four damping constants is input. The output of dynamic analysis is in terms of nodal displacements,
[
the equivalent Fourier expansion is used. In the case of dynamic analysis by response spectrum method, spectral velocity versus natural frequency for up to four damping
{
{
element strestes, and resultant forces and moments :t specified time steps. When                                   '
constants is input. The output of dynamic analysis is in terms of nodal displacements, element strestes, and resultant forces and moments :t specified time steps. When the modal superposition method is used, and in the case of earthquake response analysis, the requested number of frequencies and mode shapes is computed and printed together with the cumulative response of all the specified modes, as
the modal superposition method is used, and in the case of earthquake response analysis, the requested number of frequencies and mode shapes is computed and printed together with the cumulative response of all the specified modes, as
(
( computed by the root sum square (RSS) method and the absolute sum method.
computed by the root sum square (RSS) method and the absolute sum method.
E A-1
E A-1


CARGENT O LUNDY                                                                     APPENDIX A
CARGENT O LUNDY APPENDIX A
(                                                     " Q fns                                                                   SL-3647 5 78
(
" Q fns SL-3647 5 78
[
[
DYNAX was originally developed under the acronym ASHAD by S. Ghosh and
DYNAX was originally developed under the acronym ASHAD by S. Ghosh and
{         E. L. Wilson of the University of California, Berkeley in 1969. It was acquired by Sargent & Lundy in 1972 and is operating under EXEC 8 on a UNIVAC 1106.
{
(         TEMCO TEMCO (Reinforced Concrete Sections Under Eccentric Loads and Thermal Gradi-(         ents) analyzes reinforced concrete sections subject to separate or combined action of eccentric loads and thermal gradients. The effect of temperature is induced in the
E. L. Wilson of the University of California, Berkeley in 1969. It was acquired by Sargent & Lundy in 1972 and is operating under EXEC 8 on a UNIVAC 1106.
[         section by reactions created by the curvature restraint.
(
The analysis may be done assuming either a cracked or an uncracked section. Mate-
TEMCO TEMCO (Reinforced Concrete Sections Under Eccentric Loads and Thermal Gradi-(
[        rial properties can be assumed to be either linear or nonlinear. The program is capable of handling rectangular as well as nonrectangular sections.
ents) analyzes reinforced concrete sections subject to separate or combined action of eccentric loads and thermal gradients. The effect of temperature is induced in the
[
section by reactions created by the curvature restraint.
[
The analysis may be done assuming either a cracked or an uncracked section. Mate-rial properties can be assumed to be either linear or nonlinear. The program is capable of handling rectangular as well as nonrectangular sections.
The program input consists of section dimensions, areas and location of each layer of reinforcing steel, loads, load combinations and material properties.
The program input consists of section dimensions, areas and location of each layer of reinforcing steel, loads, load combinations and material properties.
The curvature and axial strain corresponding to the given eccentric loads (axialload
The curvature and axial strain corresponding to the given eccentric loads (axialload
(         and bending moments) are determined by an iterative procedure. Thermal gradient is applied on the section by inducing reactions created by the curvature restraints, i.e.,
(
{         there is no curvature change due to a thermal gradient on the section. The axial expansion is assumed to be free after thermal gradient is applied. An iterative procedure is completed again for finding the final strain distribution such that equilibrium of internal and external loads is satisfied.
and bending moments) are determined by an iterative procedure. Thermal gradient is applied on the section by inducing reactions created by the curvature restraints, i.e.,
{         The program output consists of the echo of input, combined loads, final location of neutral axis, final stresses in s. al and concrete and final internal forces. Similar intermediate results (before thermal gradient is applied) can also be output if desired.
{
there is no curvature change due to a thermal gradient on the section. The axial expansion is assumed to be free after thermal gradient is applied. An iterative procedure is completed again for finding the final strain distribution such that equilibrium of internal and external loads is satisfied.
{
The program output consists of the echo of input, combined loads, final location of neutral axis, final stresses in s. al and concrete and final internal forces. Similar
{
{
intermediate results (before thermal gradient is applied) can also be output if desired.
The program has applications to a wide variety of reinforced concrete beams and
The program has applications to a wide variety of reinforced concrete beams and
(         columns, slabs, and containment structures, subject to various combinations of ex-ternal loads and thermal gradients.
(
[        The program was developed and is maintained by Sargent & Lundy. Since February 1972, the program has been used extensively at Sargent & Lundy on UNIVAC 1106
columns, slabs, and containment structures, subject to various combinations of ex-ternal loads and thermal gradients.
[        hardware operating under EXEC 8.
[
[
A-2 I.. . . .
The program was developed and is maintained by Sargent & Lundy. Since February 1972, the program has been used extensively at Sargent & Lundy on UNIVAC 1106
[
hardware operating under EXEC 8.
[
A-2 I..


CARGENT O LUNDY                               APPENDIX A
CARGENT O LUNDY APPENDIX A
[                                       EN01NEER9                                 g(_3g47 5 78 FORANL h   FORANL (Fourier Analysis Postprocessor) provides methods of performing an approximate Fourier Analysis along each strip of spatial arrangement of the nodal
[
[   pressure values.
EN01NEER9 g(_3g47 5 78 FORANL h
FORANL (Fourier Analysis Postprocessor) provides methods of performing an approximate Fourier Analysis along each strip of spatial arrangement of the nodal
[
pressure values.
The Fourier Analysis is performed by the histogram numerical method or by a linear interpolation of the pressure values between node centers.
The Fourier Analysis is performed by the histogram numerical method or by a linear interpolation of the pressure values between node centers.
{   The output consists of a data file for each strip analyzed as well as printer output which echoes the data and lists the computed values stored in the generated data files. Maximum and minimum Fourier coefficients and the time they occur are also listed.
{
[   The FORANL program was originally developed by Sargent & Lundy in 1976. The program is currently maintained on a UNIVAC 1106 operating under EXEC 8.
The output consists of a data file for each strip analyzed as well as printer output which echoes the data and lists the computed values stored in the generated data files. Maximum and minimum Fourier coefficients and the time they occur are also listed.
                                                                                          ~
[
The FORANL program was originally developed by Sargent & Lundy in 1976. The program is currently maintained on a UNIVAC 1106 operating under EXEC 8.
[
[
~
{
{
[
[
[
[
[
[
[                                                                                                l
[
[
l
[
[
A-3 Final
[
A-3
{
{
                            \
Final
\\


[
[
Line 1,699: Line 3,196:
E E
E E


C CARGENT O LUNDY                                 APPENDIX D E N GIN E E RQ                               g(_3647 5 78 DEFINITIONS OF LOAD COMBINATION CATEGORIES Abnormal / Severe Environmental Category                                 ,
C CARGENT O LUNDY APPENDIX D E N GIN E E RQ g(_3647 5 78 DEFINITIONS OF LOAD COMBINATION CATEGORIES Abnormal / Severe Environmental Category
[ This category includes combinations that result from the postulated combined occurrence of abnormal and severe environmental effects when the occurrence of a specified Severe Environmental Category load condition at the plant site imposes
[
{ effects that significantly increase the probability of the occurrence of Abnormal Category load conditions or when the specified Abnormal or Severe Environmental Category load condition is of such extended duration that a significant probability exists that loads in these two aforementioned categories will occur simultaneously.
This category includes combinations that result from the postulated combined occurrence of abnormal and severe environmental effects when the occurrence of a
{
specified Severe Environmental Category load condition at the plant site imposes effects that significantly increase the probability of the occurrence of Abnormal Category load conditions or when the specified Abnormal or Severe Environmental Category load condition is of such extended duration that a significant probability exists that loads in these two aforementioned categories will occur simultaneously.
Abnormal / Extreme Environmental Category
Abnormal / Extreme Environmental Category
[ This category includes combinations that result from the postulated combined occurrence of abnormal and extreme environmental effects when the occurrence of a specific Extreme Environmental Category load condition at the plant site imposes
{ effects that significantly increase the probability of the occurrence of Abnormal Category load conditions or when the specified Abnormal or Extreme Environmental
[ Category load condition is of such extended duration that a significant probability exists that loaas in these two aforementioned categories will occur simultaneously.
[
[
This category includes combinations that result from the postulated combined occurrence of abnormal and extreme environmental effects when the occurrence of a
{
specific Extreme Environmental Category load condition at the plant site imposes effects that significantly increase the probability of the occurrence of Abnormal Category load conditions or when the specified Abnormal or Extreme Environmental
[
Category load condition is of such extended duration that a significant probability exists that loaas in these two aforementioned categories will occur simultaneously.
[
[
[
[
Line 1,712: Line 3,213:
[
[
[
[
B-1 Final
[
{                       ,
B-1
r t
{
Final r
t


;
e l
e l
DOCU                             ENT PAGE PULLE
DOCU ENT PAGE PULLE T0050/0STn NO. OF PAGES REASON-O PAGE ILLEGIBLE:
                        ,  T0050/0STn NO. OF PAGES REASON-O PAGE ILLEGIBLE:
O HARD COPY RLED AT: PDR CF OTHER 3
PDR  CF O HARD COPY RLED AT:
l_
OTHER 3   l_
O BETTER COP / REQUESTED ON O PAGE100 LARGE TO RLM:
O BETTER COP / REQUESTED ON O PAGE100 LARGE TO RLM:
CF PDR                  1 O HARD COPV RLED AT:                       '
O HARD COPV RLED AT: PDR CF
                              .OTHER 7069A/d W A' O FILMED ON APERTURE CARD NO 60060/03S% 4lseuyh- 09 l                                         -}}
.OTHER 7069A/d W A' O FILMED ON APERTURE CARD NO 60060/03S% 4lseuyh- 09 l
-}}

Latest revision as of 02:41, 2 January 2025

Structural Design Assessment for Safe-End Break
ML19309F828
Person / Time
Site: Fermi DTE Energy icon.png
Issue date: 03/14/1980
From:
SARGENT & LUNDY, INC.
To:
Shared Package
ML19309F825 List:
References
SL-3647, NUDOCS 8005010388
Download: ML19309F828 (53)


Text

.

800 01038I Q

5

[

{

NUCLEAR SAFETY-RELATED

~

STRUCTURAL DESIGN ASSESSMENT FOR SAFE - END BREAK ENRICO FERMI POWER PLANT - UNIT 2

[

REPORT PREPARED FOR DETROIT EDISON COMPANY

~

h REPORT SL-3647

[

MAY 26,1978 MARCH 14,1980 (REV. 2)

[

SARGENT&LUNDY i E NGIN E E 548

S ARGENT O LUNDY

[

ENGINEEHC POUNDEJBY FREDERICR SARGENT 1896 55 E AST MONROE STREET

[

CHICAGO.lLLINOIS 60603 TELEPHONE 312 269 2000 CABLE ADDRESS - S ARLUN-CHICAC O

[

JOHN M. MC LAUGHLIN PAmthgR

{

sia - 2..

7 7.

March 14,1980

[

Detroit Edison Company

[

Enrico Fermi 2 Project Document Control Office - 110 S.B.

2000 Second Avenue Detroit, Michigan 48226

[

Attention: Mr. M. L. Batch Room No. 318 ECT

Dear Mr. Batch:

We are enclosing herewith fifteen copies of the following revised report in response to your letter EF2-47110, dated November 13, 1979:

(

Report SL-3647 Structural Design Assessment for Safe-End Break Enrico Fermi Atomic Plant - Unit 2

{

Revision 2, March 14,1980 This report has been revised to incorporate the revised results of the Annulus Pres-surization (AP) analysis performed by General Electric Company.

{

If you have any questions or comments, or feel that any further points should be reviewed, kindly advise.

Yours very truly,

[

4e

')

[

. M. McLaughd n, Manager Structural Department JMM/mgg

[

Enclosures

[

@@@Y

SARGENT C LUNDY

[

xxoxxunus roVNCEO By rREDERICA $ ARGENT-9691 55 EAST MONROE STREET

[

CHICAGO.lLLINOIS 60603 TEttawoNE -

312 269-2000 CABLE ADDRESS - S ARLUN-CMIC AGO

[

JOH N M. MC LAUGH LIN

,,,'.",".','.',"o,,

March 22,1979

[

Mr. W. F. Colbert, Project Engineer

[

Detroit Edison Company 2000 Second Avenue, Room 333 ECT Detroit, Michigan 48226

Dear Mr. Colbert:

We are enclosing herewith fifteen copies of the Revision 1, change-out pages for:

Report sic 3647 Structural Design Assessment for Safe-End Break

{

Enrico Fermi Atomic Power Plant - Unit 2 Revision 1, March 22,1979 This report has been revised to expand the description of the metho& employed to transform the data received from NUS to be compatible with our analysis tech-nique, and also to include changes in the RPV anchor bolt stresses due to vessel skirt loas received from General Electric Company.

{

The following pages have been revised or added. Please insert these pages in the appropriate place in the report and void the superseded pages of the previous issue:

[

Table of Contents page ii Text pages 6, 6 A, 7, 7A, 8, and 9 Table 15

{

Exhibits 8, 9, and 10.

If you have any questions or comments, or feel that any further points should be

{

reviewed, kinaly advise.

Yours very truly, f

l N,

. M. McLaug

[

Assistant Manager, Structural Department

(

JMM/ ens Enclosures

[

@@W

L san (nowT C LUNny ENGINEEHN ROUNDED BY FREDERICA SAROENT-8891 55 EAST MONROE STREET

[

CHICAGO.lLLINOIS 60603 TELEpwoNE -

312-269-2000 C ABLE ADDRESS - S ARLUN CHICAGO

[

JOHN M. MC LAUGHLIN

, =...

g May 26,1978

[

Mr. W. F. Colbert, Project Engineer

[

Detroit Edison Company 2000 Second Avenue, Main Lobby Detroit, Michigan 48226

Dear Mr. Colbert:

[

We are enclosing herewith fifteen copies of the following report:

[

Report Sle3647 Structural Design Assessment for Safe-End Break Enrico Fermi Atomic Power Plant - Unit 2 Dated May 26,1978 This report presents the results of our analysis of the effect of annulus pressurization

{

between the reactor vessel and the sacrificial shield to assess the design adequacy of the affected structures. We have concluded that the sacrificial shield, reactor pedestal, stabilizer truss, RPV and shield anchor bolts can safely accommodate the effects of annulus pressurization resulting from a postulated safe-end break.

[

If you have any questions or comments, or feel that any further points should be re-viewed, kindly advise.

E L

Yours very truly, r

f l

L M.

. M. McLaug Assistant Manager,

[

Structural Department L

JMM/ ens Enclosures

@@W

[

[

1 NUCLEAR SAFETY-RELATED STRUCTURAL DESIGN ASSESSMENT FOR SAFE - END BREAK ENRICO FERMI POWER PLANT - UNIT 2

[

[

[

[

REPORT PREPARED FOR

[

DETROIT EDISON COMPANY

[

REPORT SL-3647 MAY 26,1978 MARCH 14,1980 (REV. 2)

[

[

SARGENT&LUNDY iENO4NEERS E

[

T ABLE OF CONTENTS

{

LIST OF EX HIBITS Rev.1, 3-22-79

[

PAGE I

SUMMARY

1 II STRUCTURAL COMPONENTS 1

III MATERIAL AND MATERIAL PROPERTIES 3

IV DESIGN CRITERIA 4

[

V ANALYSIS AND RESULTS 5

VI STRUCTURAL ASSESSMENT 7

VII CONCLUSION 8

VIII REFERENCES 9

EXHIBITS 1 - Section Through Centerline of Drywell 2 - Annulus Pressurization Mathematical Model 3 - Sacrificial Shield

{

4 Reactor Pedestal 5 - Stabilizer Truss 6 - Anchor Bolt Layout 7 - Anchor Bolt Detail Load Node Points on Sacrificial Shield 8

{

9 - Section B-B 10 - Section A-A APPENDICES Appendix A - Computer Programs

[

Appendix B - Definitions of Load Combination Categories ii SL-3647

[

[

LIST OF T A B L ES

[

5-26-78

[

1 Load Combinations for Sacrificial Shield, Stabilizer Truss and Anchor Bolts

{

2 Load Combinations for Reactor Pedestal l

3

- Allowable Stresses for Sacrificial Shield l

4 Allowable Stresses for Reactor Pedestal l

5 Allowable Stresses for Bolting Material and Shear Lugs

{

6 Geometry of Nodal Points 7

Elements 11 dices 8

Maximum Shell Membrane Forces 9

Maximum Stresses in Plates

{

10 Maximum Stresses in Welds 11 -

Maximum Stresses in Columns

[

12 Maximum Shear Stresses in Concrete Fill in Sacrificial Shield 13 - Summary of Maximum Stresses at Design Sections of Pedestal (Meridional Direction)

[

14 Summary of Maximum Stresses at Design Sections of Pedestal (Hoop Diree-tion) 15 Summary of Maximum Forces in Anchor Bolts

[

r' i

SL-3647

[

SARGENT & LUNDY

[

E N GIN E E R5 onc^co 5-26-78

(

STRUCTURAL DESIGN ASSl'SSMENT FOR SAFE-END BREAK ENRICO FERMI ATObllC POWER PLANT - UNIT 2

(

DETROIT EDISON COMPANY

{

l SUMM A RY

{

The purpose of this study is to analyze for the effect of annulus pressurization be-tween the reactor vessel and the sacrificial shield and to assess the design adequacy of the affected structural components.

The study considered three independent postulated safe-end breaks: recirculation inlet, recirculation outlet, and feedwater pipe break.

A thin shell finite element model is used to analyze for forces and moments on the

{

structure. The structural components assessed in this report are:

1) sacrificial shield, 2) reactor pedestal,

3) stabilizer truss, 4) reactor anchor bolts, and

(

5) sacrificial shield anchor bolts.

The various components are shown in Exhibit 1.

The model used in the analysis is shown in Exhibit 2. The resulting forces and moments are combined with other appro-priate loads as defined in the design criteria to obtain the final design forces and b

moments. The resulting stresses are found to be within the allowables.

(

II STRUCTURAL COMPONENTS

{

A.

Sacrificial Shield The sacrificial shield is a cylindrical shell with 14 feet-6-1/2 inches average

{

radius, 48 feet-9 inches high and 1 foot-9 inches thick. It has 3/8 inch thick steel exterior and interior plates meridionally stiffened by 12 vertical steel columns.

The steel plates are welded to the flanges of columns.

The annular space between the plates is filled with concrete which functions as the primary l

(

PROJECT S285-19 SL-3647

SARGENT & LUN DY

[.

ENGINEER 5 caucac Rev. 2, 3-14-80

[

radiation shield and also transmits shear forces between the exterior and the interior plates. Buckling of the plates is prevented by studs welded to the plates and embedded in the concrete. Cross-sectional views of the sacrificial shield along the meridian and the circumference are shown in Exhibit 3.

[

The bottom of the shield is rigidly attached to the reactor support pedestal; the top is free to displace in all directions, except tangential, which is restrained by a stabilizer truss system.

[

B.

Reactor Pedestal The reactor pedestal provides a support for the reactor pressure vessel, the

[

sacrificial shield wall and the pipe break support truss system.

[

The reactor pedestal is a reinforced concrete cylindrical shell with an average radius of 12 feet-6-1/2 inches and a height of approximately 26 feet as shown in Exhibit 4.

The thickness of the shell varies from 4 feet at its base to 5 feet-(

6 inches at its top. The shell is reinforced on the inside and outside faces in the hoop as well as meridional directions.

[

C.

Stabilizer Truss The stabilizer truss system (Exhibit 5) is a horizontal structural steel truss con-necting the top of the sacrificial shield to the primary steel containment. The function of this system is to stabilize the RPV and the sacrificial shield under dynamic excitation. The RPV is connected to the sacrificial shield by the RPV stabilizer and the sacrificial shield, in turn, is connected to the primary steel b

containment by the stabilizer trussi. A specien " shear lug" connection attaches the truss gusset plates to the containment wall.

The shear lug connection

{

permits radial and vertical movements but restrains tangential movement of the shield.

D.

RPV Anchor Bolts The function of the RPV anchor bolts is to transmit the forces from the RPV skirt to the reactor pedestal. The RPV anchoring consists of two 3-1/4 inch Q bolts every 12 degrees around the circumference of the pedestal. The anchor h

bolts and their locations are shown in Exhibits 6 and 7.

( SL-3647 r

1

C SARGENT& LUN DY E N GIN E E R5 cmcsc 5-26-78 E.

Sacrificial Shield Anchor Bolts

[

The function of the sacrificial shield anchor bolts is to transmit the forces from the sacrificial shield to the reactor pedestal. The sacrificial shield anchoring

{

consists of three sizes of bolts: 2-3/4 inch 0, 2-1/2 inch 0, and 2 inch 0 bolts which are spaced approximately every 6*.

The anchor bolts and their locations are shown in Exhibits 6 and 7.

lll MATERIAL AND MATERIAL PROPERTIES

[

A.

Sacrificial Shield Steel Plates A588 Grade A Material Fy = 50 ksi Concrete Fill f = 6000 psi

{

Weld E70 Electrode B.

Reactor Pedestal

[

Concrete f = 4000 psi

(

Reinforcing Steel A615 Grade 60 Material Fy = 60 ksi

(

C.

Stabilizer Truss Steel Pipes A53 Grade B Material

{

Fy = 35 ksi Weld E70 Electrode

[

D.

Bolting Material

(

Anchor Bolts A193 Grade B7 Material Fy = 105 ksi for 0 <2-1/2" f = 125 ksi for 0 <2-1/2" u

Fy = 95 ksi for 2-1/2" < 0 <4" F = 115 ksi for 2-1/2" < 0 <4" u SL-3647

L SARGENT A LUNDY

(

ENGINEERS

[

aucac 5-26-78

[

Nuts A194 Grade 2H Material

[

where Fy = specified minimum yield stress of steel.

fy = specified yield strength of nonprestressed reinforcement.

fh = specified compressive strength of concrete, f = tensile strength of steel.

u IV DESIGN CRITERIA

(

A.

Loads and Load Combinations This study is mainly concerned with the effect of a postulated safe-end break of the fecdwater and the recirculation lines.

The three major loads that are associated with a rafe-end break are:

1) annulus pressurization load,

{

2) jet impingement load, and 3) pipe whip reaction load.

(

The first two loads are described in NUS Report NUS-3129 (Ref. 4). The pipe whip reaction loads are described in Sargent & Lundy Report SL-2880 (Ref. 3).

Other loads that are considered in the structural assessment are:

1) dead load, 2) thermal effect due to accident temperature = 281*F, and

[

3) seismic effect due to OBE and SSE excitations.

[

The accident transient temperature is given in EF-2-FSAR (Ref.1). The seismic forces and moments are obtained from Sargent & Lundy Report SL-2682 (Ref. 2).

(

Load combinations considered in this study are presented in Tables 1 and 2.

Table 1 gives the load combinations for the sacrificial shield, stabilizer truss and the anchor bolts.

Table 2 gives the load combinations for the reactor SL-3647

SARGENT & LUN DY ENGINEER 5 Rev. 2, 3-14-80

[

pedestal. The only two load combination categories that are considered in this

(

assessment are th9 Abnormal / Severe Environmental and the Abnormal / Extreme Environmental, since they are the only ones associated with a safe-end break.

[

The combined forces and moments derived by the General Electric Co. for the concrete RPV pedestal, RPV anchor bolts and stabilizer truss as provided in Reference 5 are also included in this study. Thus the larger of the stresses computed from the S&L and GE analyses are presented in this report.

B.

Allowable Stresses f

The yield limit criteria are used in defining the allowable stresses for the L

sacrificial shield, stabilizer truss, anchor bolts and the reactor pedestal.

Tables 3,4 and 5 specify the allowable stresses used in the assessment.

[

V ANALYSIS AND RESULTS

[

The structure was analyzed using a Sargent & Lundy thin shell of revolution program,

[

DYNAX (see Appendix A). The various components included in the model are:

1) sacrificial shield,

[

2) reactor pedestal,

{

3) reactor pressure vessel,

4) stabilizer truss, and 5) refueling bellows.

{

Exhibit 2 presents the model used in the analysis, and Tables 6 and 7 give the geo-metric properties of the elements.

(

The boundary conditions at the base of the pedestal and the points where the stabilizer truss and refueling bellows are attached to the containment wall were

{

considered to be fixed. Since the stabilizer truss, the refueling bellows and the RPV stabilizer can resist only tangential loads, they were modeled as thin annular steel plates accounting for the tangential stiffness only.

1

[

' SL-3647 F

i l

L SARGENT & LUNDY

[

E NGIN E E RS ciuc^c Rev.1, 3-22-79 The sacrificial shield is modeled as an orthotropic material to simulate the difference in stiffness between the meridional and the hoop direction. The reactor pedestal is modeled as an isotropic material axisymmetrical shell. Small openings are assumed to have little effect on the overall behavior of the structure. The reactor pressure vessel (RPV) is modeled also as an isotropic material. The masses and member prop-erties were chosen to simulate the natural frequency of the RPV. The RPV and the

(

sacrificial shield are attached to the reactor pedestal through rigid horizontal members to account for the rigid connection between three components.

A finer finite element mesh is provided in the sacrificial shield and the shell of the RPV in order to more accurately model the pressure distribution that acts on these two components in the meridional direction.

{

The annulus pressurization load is due to any of the three postulated pipe ruptures:

1) feedwater line, 2) recirculation inlet, and 3) recirculation outlet.

The pressure time histories and spatial distributions for these three pipe ruptures are

{

provided in NUS Report NUS-3129 (Ref. 4).

The differential pressure due to a postulated feedwater pipe rupture was found to be the governing load. Therefore, all

{

snalyses are performed using the feedwater pressure time histories.

The annulus pressurization loads on the sacrificial shield were defined, both tem-

[

porally and spatially, with 42 individual pressure time-histories distributed over a 180*

segment of the shield. Since the pressure loads are symmetric about the ruptured

{

pipe, it was only necessary to define the load distributions over a semicylindrical portion of the shield. Exhibit 8 shows the arrangement of the node points on the inside surfaces of the annulus for which time-histories of differential pressures were computed. It should be noted that the azimuth locations mentioned here and in Exhibits 8,9, and 10 are relative to the postulated feedwater line rupture.

The node / time-history points on the inside surfaces were then divided into seven

{

circumferential strips as shown on Exhibit 6.

The strip configurations were used to

)

arrange the individual time-histories into a format that could be readily converted SL-3647

SARGENT A LUNDY E N GIN E E R S Rev.1, 3-22-79

[

(

into a set of Feurler harmotiles. Since the analysis was to be performed on an axisymmetric shell model, the loads have to be in terms of circumferential strips so

{

as to coincide with the model elements.

By using Sargent & Lundy's computer applications program, FORANL (see

(

Appendix A), the six pressure time-histories per strip were converted into 13 symmetric Fourier harmonics and their corresponding time-histories, cosine (0)

[

through cosine (12). Since the load is symmetric about the pipe break, the cine terms for the Fourier series are all zero. The time-histories produced by FORANL are, in

{

essence, a set of Fourier coefficients that were computed for each time step of the loading. The Fourier harmonic time-histories were normalized to produce a single representative coefficient for each harmonic, and to show the contribution of each harmonic to the idealized load. Based upon the normalized Fourier coefficients, it could be seen that only the first four harmonics need be used. Exhibit 9 shows the

(

pressures in strip 1 as a histogram, at the time of occurrence of the peak pressure at the feedwater pipe rupture location. Superimposed onto Exhibit 9 is the pressure load

{

distribution as represented by the four Fourier harmonics at the same instant of time.

Exhibit 10 illustrates the distribution of the pressures across the seven strips between azimuths +30 at the time of occurrence of the peak pressure in strip 1.

The pressures were applied to the RPV and sacrificial shield in the mathematical

(

model as nodal forces by identifying which strip coincides with each node, and then applying a factor which relates to the surface area, per foot of the circumference,

{

that contributes to the total nodal load. The analysis, as performed by DYNAX, consisted of solving the equations of motion for each time step of the harmonic time-

[

history, for each harmonic individually.

To insure that the maximum probable responses would be used in the assessment

(

herein, discrete responses were obtained with the solutions of the equations of motion for several azimuths between O' and 180", and then summing for all four of the

{

harmonics considered. The results from the Individual azimuths were then enveloped.

Presented in Table 8 is a listing of the enveloped maximum positive and negative membrane forces, moments and shears.

[

-6 A-SL-3647 r

L 5 ARGENT & LUN DY

[

E NGINE ER5 cmcaco Rev. 2, 3-14-80

[

VI STRUCTURAL ASSESSMENT

[

A.

Sacrificial Shield

[

The assessment of the sacrificial shield is made by choosing four critical sections at different elevations of the shield as shown in Exhibit 3.

Each section is designed for the load combinations given in Table 1. Final stresses are obtained for the concrete fill, the steel plates, the column stiffeners and the welds. They are presented in Tables 9 through 12.

It is found that the Abnormal / Extreme Environmentalload combination category

{

governs the design.

B.

Reactor Pedestal

[

In the assessment of the reactor pedestal, five design sections are selected as shown in Exhibit 4.

Each section is designed for the load combinations given in Table 2.

The final stresses in reinforcement and concrete are obtained by using the TEMCO program. The maximum stresses in reinforcing steel and concrete

(

and maximum shear forces are presented in Tables 13 and 14 for meridional and hoop sections, respectively.

[

It is found that the Abnormal / Extreme Environmental load combination governs the design.

[

C.

Stabilizer Truss

(

The stabilizer truss is assessed for the governing Abnormal / Extreme Environ-mental load combination category as presented in Table 1.

Each 10-inch-

[

diameter double extra strong pipe of the stabilizer truss is designed for an axial load of 450 kips. The computed compressive stress is 13.1 ksi, which is less than I

the allowable axial compressive stress of 33.4 ksi. The high-strength bolts and l

L fillet welds at the end connections are also checked and found to be satisfactory, with a minimum margin factor of 2.01.

L D.

Anchor Bolts

[

The anchor bolts are also assessed for the governing Abnormal / Extreme Environ-mental load combination category as presented in Table 1.

The maximum r

' SLc3647

SARGENT & LUNDY E NGIN E E R5 cmcaco Rev. 2, 3-14-80 stresses in the shear lugs and the maximum tensile forces in bolts are given in Table 15. The RPV anchor bolts' assessment is based on the skirt loads given in the FSAR section 3.9.1.5 (Ref. 5).

Vil CONCLUSION The existing design of the sacrificial shield, reactor pedestal, stabilizer truss, RPV and shield anchor bolts can safely accommodate the effects of annulus pressurization resulting from a postulated safe-end break.

SARGENT & LUNDY, Rev. 2, 3-14-80 Prepared by:

Senior Structural Engin/

F. Villalta, eering Specialist Reviewed by:

Rev. 2, 3-14-80 II. R. Radwan, Supervising Structural Engineering Specialist APP' V d DY Rev. 2, 3-14-80 4 Of MICg g

g(

'o

r Head, Structural Project GLEN A.

Engineering CHAUVIN ENGINEER h

22139

%0 FESS \\0 SL-3647

L SARGENT& LUN DY

[

E NGIN E E R5 cincac Rev.1, 3-22-79 Vill REFERENCES

[

1.

Enrico Fermi Atomic Power Plant Unit Final Safety Analysis Report, Vol. 2.

2.

Seismic Analysis of the Reactor Auxiliary Building Complex, Enrico Fermi Atomic Power Plant Unit 2, Sargent & Lundy Report SL-2682, revised September 27,1974.

3.

Pipe Whip Restraint Support System Design Criteria, Enrico Fermi Atomic Power Plant Unit 2, Sargent & Lundy Report SL-2880, January 10,1973.

[

4.

Reactor Vessel-Sacrificial Shield Annulus Pressurization Analysis, Enrico Fermi

{

Unit 2, NUS Report NUS-3129, April 1978.

5.

Enrico Fermi Atomic Power Plant Unit 2, Final Safety Analysis Report Section 3.9.1.5.

[

[

[

[

[

[

[ SL-3647 l

Final

~

E.

T A BL ES

[

[

r L

E E

E r<

E E

E E

ru L

L r

TABLE 1 LOAD COMBINATIONS FOR SACRIFICIAL SHIELD, STABILIZER TRUSS AND ANCHOR BOLTS LOAD LOAD COMBINATION COMBINATION D

T A

Y Y

E E

8 P

r j

o s

NUMBER CATEGORY 1

ABNORMAL / SEVERE ENVIRONMENTAL 1.0 1.0 1.0 1.0 1.0 1.0 2

ABNORMAL / EXTREME

~

w ENVIRONMENTAL 1.0 1.0 1.0 1.0 1.0 1.0

,o ae*

n z bmP cm r.

.C D

Dead load of structure plus any other permanent loads.

=

2 T

Thermal effects which occur during a postulated accident.

=

g A

=

Annulus Pressurization load which occurs during a postulated safe-end p

breaks.

Y Forces Associated with a Whipping Pipe.

=

r Y

3 Jet Impingement Forces.

=

E Operating Mais earthquake (OBE) eHects.

=

n E

Safe shutdown earthquake (SSE) effects.

=

g Y$N.

~ i TW r" g$M n


y ro ro r

r, o

r r

r, rm r

r r,

r r

r r

r r

r-TABLE 2 LOAD COMBINATIONS FOR REACTOR PEDESTAL s

LOAD LOAD COMBINATION COMBINATION D

T, A

Y Y

E E,

p r

j g

NUMBER CATEGORY l

ABNORMAL / SEVERE ENVIRONMENTAL 1.0 1.0 1.0 1.0 1.0 1.25 2

ABNORMAL / EXTREME ENVIRONMENTAL 1.0 1.0 1.0 1.0 1.0 1.0 g0 A : 'i Dead load of structure plus any other permanent loads.

o;5 D

=

r-Thermal effects which occur during a postulated accident.

o T

=

o A

=

Annulus Pressurization load which occurs during a postulated safe-end p

breaks.

Forces Associated with a Whipping Pipe.

Y

=

r Y)

Jet Impingement Forces.

=

E, Operating basis earthquake (OBE) effects.

=

Safe shutdown earthquake (SSE) effects.

E O

P (n -l "r>

i lW iWF w $ FI

    • M n s.

-- a rm rm rm w

rm rm rm rm rm rm rm rm rm r,

rm rm rm r-4 TABLE 3 ALLOWABLE STRESSES FOR SACRIFICIAL SHIELD ALLOWABLE STRESSES LOAD STEEL CONCRETE WELD COMB.

zm n

NO.

moj Qz e ta >

COMPRESSION COMPRESSION o r= e TENSION 5

O M

1.6 AISC 1.6 AISC 1.6 AISC 1.6 AISC ALLOWABLE ALLOWABLE 2}f, ALLOWABLE ALLOWABLE c

5 0 5F g

F 1&2 5.95 F s

F Base Metal of Base Metal l

l

~'h Y *i TsFm g Nw

- --- a m

rm rm rm rm rm rm rm rm rm rm rm rm rm rm m

rm rm r'

TABLE 4 ALLOWABLE STRESSES FOR REACTOR PEDESTAL CONCRETE REINFORCING STEEL 5

MEMBRANE PLUS RADIAL TENSION AND

=

FLEXURAL COMPRESSION TENSION SHEAR **

COMPRESSION y0

$S$

$E*

o;@e

=

c Chapter 11 Y

e

  • Due to primary plus secondary forces.
    • The meridional reinforcing steel is designed to carry the entire tangential shear.

T '*I a$

~Tar

    • . m u wa

-T M

n i

i n

n n

i i

n n

i 1

n_.

n_

I i

n n

R R

F TABLE 5 ALLOWABLE STRESSES FOR BOLTING MATERIAL AND SHEAR LUGS LOAD BOLTS

  • SHEAR LUGS COMB.

CONCRETE NO.

^

TENSION COMBINED TENSION SHEAR Ft AND SHEAR Ft' Fu 1&2 1.6 x 0.33 Fu 1.6 x 0.43 Fu - 1.4 f 1.6 x 0.22 Fu ACI 318-71 Y

Sect. 10.14 j;

=

zO n=nz

  • 1978 AISC Table 1.6.3 Page 23, with 1.6 factor.

ggH 8?"

Fu = ultimate strength of steel, ksi gg Z

f computed shear stress, ksi S

=

y

o in -1 m [~ >

f

.~ : m l

Y""

r

E' SARGENT & LUNDY

[

ENGINEERS TABLE 6 mcAc SL-3647 5-2 6-78

[

TABLE 6 GEOMETRY OF NODAL POINTS

[

Nodcl Point Radius Elevation Nodal Point Radius Elevation

{

Number R (ft)

Z (ft)

Number R (ft)

Z (ft) 1 12.54

.00 43 10.73 47.71 2

12.54 3.78 44 10.73 48.47 I

3 12.54 7.56 45 10.73 50.26 4

12.54 11.34 46 6.00 58.17 5

12.54 15.12 47 13.66 57.87

[

6 12.54 18.90 48 10.73 52.04 7

12.54 22.68 49 10.73 53.82 8

12.54 26.46 50 10.73 55.61

[

9 13.66 26.46 51 6.00 61.65 10 10.73 26.46 52 13.66 59.87 11 13.66 23.11 53 10.73 57.39 12 13.66 29.75 54 10.73 59.18

(

13 13.66 31.40 55 4.00 64.85 14 10.73 28.10 56 13.66 61.87 15 10.73 29.73 57 10.73 60.96

[

16 10.73 31.37 58 13.66 63.87 17 5.09 26.46 59 10.73 62.74 18 13.66 33.04 60 13.66 66.87 19 13.66 35.62 61 10.73 64.53

[

20 13.66 37.78 62 13.66 69.90 21 13.66 39.93 63 10.73 66.08 22 10.73 33.87 64 10.73 67.64

(

23 10.73 35.55 65 10.73 69.19 24 10.73 37.23 66 10.73 70.75 25 10.73 38.91 67 13.66 71.90

[

26 6.00 38.91 68 13.66 73.87 27 13.66 42.08 69 10.73 72.30 28 13.66 44.08 70 10.73 73.86 29 13.66 46.08 71 13.66 75.41

[

30 13.66 48.29 72 19.50 75.41 31 6.00 42.07 73 10.73 75.41 32 10.73 41.02 74 13.66 77.44

(

33 10.73 42.07 75 13.66 79.22 34 10.73 43.14 76 10./3 80.09 35 10.73 44.20 77 10.73 88.79

[

36 13.66 50.51 78 10.73 90.41 37 6.00 48.47 79 16.46 90.41 38 13.66 52.72 80 10.73 93.04 39 10.73 45.27 81 8.65 97.33

[

40 6.00 51.70 82 3.98 101.62 41 13.66 54.94 83 10.73 39.96 42 10.73 46.34 r

L1 r

l l

E SARGENT Q LUNDY

[

Eno:NEERS TABLE 7 CHICAGO SL-3647 5 78

[

[

TABLE 7 ELEMENT INDICES

[

Element Start End Element Start End

, Numbers Joint Joint Numbers Joint Joint i

1 1

2 43 23 24 2

2 3

44 24 25

[

3 3

4 45 25 83 4

4 5

46 83 32 5

5 6

47 32 33 6

6 7

48 33 34

[

7 7

8 49 34 35 8

8 9

50 35 39 9

9 11 51 39 42

[

10 11 12 52 42 43 11 12 13 53 43 44 12 13 18 54 44 45

[

13 18 19 55 45' 48 14 19 20 56 48 49 15 20 21 57 49 50 16 21 27 58 50 53

[

17 27 28 59 53 54 18 28 29 60 54 57 19 29 30 61 57 59

{

20 30 36 62 59 61 21 36 38 63 61 63 l

22 38 41 64 63 64 23 41 47 65 64 65 1

[

24 47 52 66 65 66 25 52 56 67 66 69 26 56 58 68 69 70

[

27 58 60 69 70 73 28 60 62 70 73 76 29 62 67 71 76 77 30 67 68 72 77 78 31 68 71 73 78 79 32 71 72 74 78 80 33 71 73 75 80 81 i

34 71 74 76 81 82 i

35 74 75 77 25 26 36 8

10 78 26 31

[

37 10 14 79 31 37 38 14 15 80 37 40 39 15 16 81 40 46

{

40 16 17 82 46 51 41 16 22 83 51 55 42 22 23 I

L i

E l

1

}

SARGENT & LUNDY

[

ENGINEEas TABLE 8 CHICAGO SL-3647 5 78

[

PAGE 1 OF 4 N

- 3 e

,\\

o

= -

e

.A o

u

[

k\\

\\

O C

O N

h b

\\

O

\\s

\\

b O

U

.be M E k

\\

\\

-e=

0 o.

C O

e u

.C e w u

4

\\

"2,,

2 O A

C w

\\

\\

1

\\

O b k

f

  • e k.

~

4 a u t.

E C

C

\\

.C 5

6

\\

.C E"

. m..

4 4

e C a a.

w

\\

M

\\

j te we J

N (f

N *>

4 e4 9

e4 E

G W

[

\\U O g e.4 e.4

.C C

W

{

U w U

64 E 4 4 4 C

C he Le O

1

%/

2 M

M we we O

69

+

_s i o -

e e u.

r.. 1 s

e.4 e.4

.C

.C

.C e.4

~

.-e

.4 h

V w

s

-/

\\

==.

4 we 4

we 03 03

.C

.b.e

+4 w

+.-

m C

.e en u

C o

.c

~ ~

x s.

. u.

u.

u.

O O

~ C C

4 4 C

m O =

0 = n = E O w u.

O **

8 ** 5 8

s

.n u.

[

W o

o..

o w w w w O

O e w w Z

u u 4 E U K U U U M

E U

<m m

[

2W

.. 3. t2o R2 2 2 E E E E O O O 2

J

[

Jw


O---NNNNNNN-NN-NNNNNNN-NN---

b 00000000,00000000000000000000000000000000 1

4 W

g

+ + + + +++++++ ++ +++

++ +++ + +++++++++

J O O M e - N O f* f5 C

  • O O C*. O M O N fN M.fN :D C in.* O - M 0 r* v O== - O O O LD O I

\\

C O

  • O e e e N b @ W tD - f* - @ c f* 9 N 05 = = N O O f* (D CD r= N N O CD b O CD 40 @ en g,3 M

McNov@m-OGOOWTOOe4mMON@O-m@MMMmW-M-NOW-h

[

w>

b. CD. G. O.e CD. r* tD. d. W. to. r* m. N.== W. G.

=... E9. W. W. W. W. 4. =.= es N. N. N..===. N..= m... W. b. T.

w

[

O O O O O O O O O O O O O O O O O.=.===.=.= 0 - O O O O O O O O O O O O O O ===

W OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOC b

U

+

++++++++++++++++t e e t 8

+e

++++++++++++++0 0

W O O O O O O O Pm f9 M M tm O b b f4 M M T N N== M O f"1 f4 N e *= - N== CD== 40 40 tD 40 CD E9 y

g N.N. N. N. N. N.

.M. N. N. N.

. N. =. e -. e d. @. m. W. W. e b. e. N. N...... N.... e.

. S. S.

[

J

^

=--NNNNNN-NNNNNMMMNN-NNN---ON-----N

=

4 b

0000000000,00000o.00000000000000oO00000000 N

E Memm-mOmN-eMecosM-N,.moonMob-mMcMe-ons-No y

g

+ +

+ ++

++

+ +

+ +++++++++++++

"- \\

M - m P ' 40 O #4 6 in o CD #9 m - O 4D t'l O r= ED O @ @ m @ @ @ T m CD O N *===.= m N T in en

,M

sob, 3m, n n.. n,n.,,. n.. m. b. g. m,n e v b,,O,O,N,o,b O v o m - @ b b e. v. e. m T N N. W,W,S,

-TTO

[

co a

.n. n...... g n. n. n. n. n.

,3.......

g

,o W

e M

'3

.g "g

Jm W

x (4

=

[

u g

e O.=.= === 0 O O O O O O O -====== -==== - O O O O O== 0 *===.= O== *= - - - O O O W

00 0000000000000 000 0000000000000000000000 2

U

+ i e

+ +++++++e g

i+++++

i i+i e ie s+++

W O c e- - N N N N N - -.= m M N M = m m m e M O M c M m M m e m m a: m e e M N e in g

N. e. h. h. M.. *...... N. e. m. m @ @ @ @ @ w n. M. N.. G.

. b. v. N. N. N.. N. N. N. N N -

C

~

e e e Q

.n M

N N N - e===.= N N N N N N N N N N N N N N N N *= N *=== N N N N N N N N N *= N N e=

4 b

e g

O O O O O O O O O O O O O O O O O O O. O. O O. O O O O O. O. O. O O O. O O O O O O O O 7

g

+ + + + + + ++++++++++++

+ ++++

++ ++++++++

O N

e e m e*,.D w w - N n e. m e m o - m e r* m n N e m o c - m o m o M e w M o m >

.o 4

m e m N M m o m - M w e b m e w o.= m m - w c o w M w M.= e m e m o u m m e k e e n M.

f

,T N,O N b N W O,CD P,= P,= @ O O f9,e=

  1. 9 M r* 4 *= M r* 40 0 0

O

..... a. n. n. n...... a. n.

p g g. n..CD.r* O v O O CD== W== en 89 w

g n. n. g gggg g

,g

a. n. a. n. a.. n...

C

~

w e

l l

[

.4 m

G 00000000000000000000000000-00----00000--

y 00000000000000000000000000000000000o0000 9

+ + + + + + ++++++++++++++++++++e++e i e i

+++++e N f4 f4 9 9 9 89 M 19 f4 f4 54 N 81 N to h Po P. P= + O fi f"5== n m v v *= r* P. v c f* E4 9 6 #9 89 O

g

v. g q N. N. M. M................. M. N. N. T. T. g @ p @ c.. N. N. N.

. O. S.

h e

-NMWeehmO-MWhm-Me@bemO-NMTchemnemhMehm-T

{

s


NNNNNNNMMnMMnMnnswwmeeeenn

.e W

L SARGENT & LUNDY ENGINEEas TABLE 8 CHICAG SL-3647 5 78

[

PAGE 2 OF 4 c

4:m;,

a

[

TABLE 8 MAXIMUM NEGATIVE SHELL MEMBRANE FORCES (CONT.)

(

ntM r:ME MERIDIONAL TIME CIRCUMFERENTIAL TIME SHEAR (SEC.)

(K/PT)

(SEC.)

(K/FT)

(SEC.)

(K/PT) t

.15*00

.2329*02

.16+00

.5470*01

.89-01

.7952+01

[

2

.15*00

.2105+02

.16+00

.4015 01

.89-01

.9091+0*

3

.15+00

.1974*02

.96-01

.2702*01

.88-01

.9530*0*

4

.15+00

.1655+02

,.10*00

.2141+01

.87-01

.9550+01 5

.15+00

.1442+02

.10+00

.2033+01

.86-01

.9443+01 6

.15+00

.1236*02 44-01

.200a*01

.86-08

.8980*01

[

7

.25*00

.l162+02

.71-01

.9978*01

.87-01

.8277+01 9

.22+00

.1549+02

.71-01

.3054+01

.11+00

.2025+02 10

.22*00

.1300+02

.71-01

.4462+01

.1t+00

.2160*02 11

.22*00

.1996+02

.61-01

.4759+0s

.ft+00

.2239*02

[-

13

.13+00

.1976*02

.41-01

.151G*02

.11+00

.235G+02 15

.13*00

.1279*02

.40-01

.3772+08

.60-01

.1751+02 17

.13*00

.1255*02 4H+00

.3488-01

.32+00

.4250*00 19

.13*00

.120t+02

.38-01

.6751*01

.17+00

.2898+01 28

.22+00

.1192*02

.29-01

.4958+01

.17+00

.182Jo02

[

23

.17+00

.1939+02

.20-01

.8745*01

.17+00

.1349*02 25

.17+00

.2437+02

.15-01

.1576*00

.15+00

.142H+02 26

.17+00

.2525+02

.15-01

.1310*00

.15+00

.1255*02 27

.17+00

.2420+02

.14-01

.1082+00

.15+00

.4839+01 28

.17+00

.1965+02

.14-01

.1700*00

.17+00

.5003*01

[

29

.16*00

.1276+02

.80-02

.5335-01

.16+C0

.5341+01 30

.83-01

.6746*01

.30-02

.2G22-01

.16+00

.5150+01 31

.51-08

.4394*01

.30-02

.2699-01

.16+00

.4595+01 32

.25+00

.1264*02

.25+00

.3960*01

.50-02

.4000-03 33

.27+00

.1329*02

.14-01

.8089-01

.24+00

.4323*01

[

34

.16*00

.3406+0s

.50-01

.5270+02

.16+00

.5723*01 35

.16+00

.7432*00

.59-01

.1045*03

.16+00

.235G601 37

.11400

.2417*02

.1t+00

.9495401

.23+00

.6192'01 38

.13+00

.2326+02

.98-01

.4240+02

.23+00

.6023601 39

.13*00

.2202+02

.11+00

.2133+02

.23+00

.632C+01

[

42

.93*00

.2009*02

.11+00

.3817+02

.93-01

.5502601 45

.58-01

.2268+02

.97-01

.3970+02

.16*00

.110l+02 48

.64-01

.2771+02

.91-01

.3433*02

.16+00

.1647+02 57

.21+00

.4483+02

.67-01

.3019+02

.53-01

.1072+02 63

.16+00

.6822+02

.11+00

.855t+02

.50-01

.214G+02

[

65

.15+00

.6254+02

.98-01

.1338+03

.53-01

.360t+02 67

.15+00

.3597+02

.'82-01

.1122+03

.22+00

.6150+02 69

.17+00

.2237+02

.27+00

.4428+02

.22+00

.5864+02 71

.45+00

.1127+02

.94-01

.3174+01

.15+00

.5825+01 74

+14+00

.4421+01

.84-01

.7905+01

.15+00

.3845+01

[

[

  • For element location see Exhibit 2.

[

[

r e

_______-_a

C SARGENT & LUNDY

[

DNGIN3Eas TABLE 8 cmCAGo SL-3647 5 78

[

PAGE 3 0F 4 aq OOOOmeeOOO--N==**--=*O*eO-Owe

-OOOOOwOeOO 0000000000000000000000000000 w

6 b

0 00000000000

+ + + + + + + + ++++5

++ + ++++++* + + +

+ + ++ + ++ +++

1 w NOM-bOOOMMeNoneM,me,NwwomebnbMommmme-emM w

SpWOOMemecevMngmONmM b e m Ws M O N = m w O 4 0 b O b m 1 @ f. b b M M o m m m m b M 6 - W O c @ m

  • T g

NbOm4NbWmmmmmWmOQWmo w M G. N. M. b. *. N. M m M. M n. e w N. N. T. e. H. M T. M. W.. e b. e b. M. N.

e *e @. N. W. e. *. >eM N. b h

w e e e

e e

3 3

mu

[

WE um au O

00-0000000000000000000000000000*O0000000 ww a

3 e

0000000000000000000000000000000000000000 gw

+ + i + + + + + + +++++++++++++++++++++

+ ++ ++ +++

U (b

mem*--N-MemTbb>Wbb>>TMbOW@m*N-Me*@**Mben w

w

[.

. w. @.. m. e. *... *. N. N. e. e.

. N.. w. w. N.

. N. e. w. w. N. e. w.

. e. m. M. N. N. N. e

  • N. N g

m e

e.

e W

w wm gJ a.

-*=ww-O*--*-e-wwCO*O-NNON-eeOOOeOOwOwwwO b

0000000000000000000000000000000000000000 wg b

>z

[

+ + + + + + +++++++++++++++e

+ + + + + + + +++++++f i +

mo A OMOMecNmNm-e--mmwwMewbomOboeNw omowmOw->m 2m N

@M9N-6ThMa

  • O469mNM*QNNQ-0AM@eWMMmhmmbe*M 40 M

WMOpomOQNmObemewombemNcN4bMbm-mnhowmMamb gm N. e. e. *. N. e. @ e. *. N. W. T. N.v.v. 4. b. 9. w e. m. n. M. N.

. @. N. w. n. s. M. Q. W. m. M. @. *. b @ b.

G pg w

e.

U W

3

[

WU

~

g w

000000*--00**O0==-0000-0-0000-O-O*-wCOOO 3 Q u00000000000000000000000000000 O

+ + + + + + e i s ++i i + + >

i++++i+i++++

0 0 00000000 w

bb---N-DONMemMMmm'ebebbbb-MMO-MmMbMcceenM

+ i i i + + + +

b

[

M

e.. e.

. e.. Q b b. e. w. e. v. e e m. q @ * - e. e. m.. m. e.. w. e. b N m e m m v e e w

  • w W

Z<

~

e b ww-O***wN*--wCO*-NN==NN--woOOOOOOOOp N

e - -w E

00000C0000000 m

000000000000000 A

[

0 0 0000000000 g

O

+ + + + + + +

+++ + + + + + + +++ +

a N

oco-ONoo-NMS-cicMotoOM=-mme.obMcMNommowmM y

+ + + + + + +

y b

GONS-vm&Mgn4cOOAbm-N3=O$7cNNNO3c-mbqvmwm N@Mm90bMWecmmOOGNO*b60mMmN04QWOM4GMOOTbT y

e. N M. M.w.w. e.. e M. N. m M.v.. m b.w. m * - v N - e n - n M e m e b o m m M
  • A e

E M

g A

w

[

J MW JW e

^

000000000000000000-000000000000e -0000000 e

w 3

O 00000000000000000000000000000000 m

0 0000000 E

w + + + + + + + ++++++++++

++++++++++

+ + ++ + + +

[

Ne - --*=

eeMNbNbbmhNobbbbGbbbo*NNemcme@@me b

N s,e N. e.....

g w -e - e w e n. e w m. a e w n. N. g - w e - e w w - - e @ m.

w n. e N. N. N.

O W

w

-h U

s a

4

< 9

--eNNN-OO-NN-en---e---OeNe *O OO-----www U

e m

g O 0 0 0, 0 0 0 0, 0 0 0 0 0 00000000000000000 0000000000 o

[

m.

e +

+ +

+ + +

e +

++

+ +

+ + * + + + + ++ + + +

  • z N

mmc *vhecoccoNo-moemr-mNMebcobemeOmm-gghw-g zw b

NmebeMMM-WWmO=Nomm@39Q@@m=bgmO@b@mmbNbnd ONbmO4QOOmmombmTe mb4mJwo-NN*4vvhMb@-@ mom we g

y e

N

  • M. W. e -. M. @ b. m. e m.. M. N. m m. e. b. 4. N m. N. b. e m. h. *. N. @. @. w. M. W. @. m. e. r. N.

g M

w U

33 X

a w

[

u E

y g

-X U

m O

(

w 00000000e

  • O0000000000000*O0-**OOeOOOOOOO 3

O C00000000, 00000000000000000,000 0 0000000000 N

w

+ + + + + + + + i + + + + +

++++++e

+ + i

++ ++ + + + + +

[

N e--*--*-NO-MMboowwwwwechmNOMW-Omm-emebMe 0

6 e - w e = = - w @ b. e - - = N. N. N. N. N N N N e - @ N e b m b *

  • m N e e w w M N w

W O

W J

~

M N=-*-NNN--NNNNNN------NONn=-DO--------OO s

[

0000000000000000000000000000000000000000 w

+ + +

+

+++

+ +

+ + + +

+ + + + + +

\\

o MbTNN@

NN@@WWO-bhbON=*WMmOMONbemMOS-mMTN h

b mNOTOO@bmMNbNOOOMQm@v@N3OMOOOOMmmOmm-MWO O

6

~5NmMOONONNSONmmmm-$$O*"mmMMoo-mN'h-'*h*

I

e. v. M. M. @. e... M. N. p. M.

. w. e.e. 6.T. v. v. N. M. T. M.. M. b. b. m. e. w. M. w. e. N. W. e. m. M. W.

wg W

M 2

w

^

OO*OOOOO--OOOOO*OOO*-O*OO*O***OOOOOOOOOO w

00000000000000000000000 3

0000,0000000000000 y

+ + + + + +

e + + + ++ e +++i +

b w cebN--N=i w

[

+ +

i i

+ + + +++ ++ ++

-MMMbbhmben w e. s. e. w. w.. w. b. W. w.. m. e. e. m. e. e. w. s. N M b b b b b N m - O m O m m e n e e,m.. m. w. e. @. e. h. m. b. e. n. e. w. e.

. N.

. N. w.

W 3w wNMTmebmO=Mmbm-Me@bemO=NM9mbemNembMmbewT ab wg

==*-*-NNNNNNNMMMMMMMMMT,vvd@@@@h5 W

m m

m m

m rm.. rm m.

m rm rm m

m em m

m m

m m

n TABLE 8 MAXIMUM NEGATIVE SHELL MEMBRANE FORCES (CONT.)

ELEM MQgENTS TRANSVERSE SHEAR FORCES ENT T!vE MERIDIONAL TIME CIRCUMFERENTIAL TIME CROSS TIME MERIDIONAL TIME CIRCUMFERENTIAL (SEC. )

(K-PT/FT)

(SEC.)

(K-FT/FT)

(SEC.)

(K-FT/FT)

(SEC.)

(K/FT)

(SEC.)

(K/FT) 1

.17+00

.9921+08

.20+00

.1817+01

.11+00

.13t8+01

.15+00

.3142+01

.15+00

.1090+01 2

.20+00

.3G47+01

.22+00

.1555 01

.11+00

.2423+01

.22+00

.1614+01

.16+00

.3104+00 3

.12+00

.2015+01

.,11+00

.4168 0:

.11+00

.3021+01

.22+00

.8421+00

.11+00

.4138+00 4

.67-01

.1293+01

.11+00

.7139+01

.11+00

.3477+01

.75-08

.6754+00

.11+00

.9440+00 5

.61-01

.2377+01

.11+00

.1042 02

.12+00

.3804+0

.75-01

.1355+01

.11+00

.1610+01 6

.75-01

.6343+01

.11+00

.1436+02

.12+00

.374S+01

.76-01

.2150+01

.11+00

.2551+01 7

.76-01

.1400+02

.1t+00

.1875+02

.29+00

.1737+01

.st+00

.5153+01

.1t+00

.36G4+01 9

.49-01

.2835+01 48-01

.3992+00

.29+00

.718t+00

.1t+00

.1327+02

.12+00

.1240+01 10

.12+00

.5359+01

.11+00

.7654+00

.29+00

.1676+01

.11+00

.8642+01

.1t+00

.4120+00 13

.11+00

.8133+01

.1t+00

.2398+01

.12+00

.1033+01

.12+00

.2374+01

.61-01

.2C61+00 13 44+00

.2701+01

.29+00

.1002+02 11+00

.495t+01 49-01

.7310+00

.23+00

.10G5+01 15

.47-01

.6184+01 44+00

.6173+01

.16+00

.502t+01 46-01

.1240+01

.13+00

.2115+01 17

.17+00

.5G20+01

.33+00

.422?-02

.29+00

.9423-02

.13+00

.1771+02

.13+00

.2337-02 19

.13+00

.3865+02

.24+00

.2861401

.13+00

.6935+01

.54-01

.7947+01

.17+00

.1520+01 21

.55-01

.2990+02

.24+00

.5074+01

.13+00

.20to+02 45-01

.4102+00

.17+00

.160?*#1 23 43-01

.5370+01

.24+00

.2754+02

.13+00

.4746+01

.13+00

.3167+01

.29+00

. 2 3 D..

m 25

.37+00

.2249+01

.17+00

.iC52+02

.14+00

.3003+01

.86-01

.3247+01

.29+00

.16tf*L:

p 26

.17+00

.4912+01

.17+00

.1256+02

.14+00

.3J29+01

.19+00

.7321+01

.29+00

.1C98+01 mO 27

.17+00

.1884+02

.17+00

.1586+02

.17+00

.2550+01

.15+00

.0785+01

.29+00

.1752+01 zm 28

.69-01

.2964+02

.24+00

.169t*02

.17+00

.3293+01

.17+00

.1424+01

.29+00

.1552+01 2OZ n

29

.69-01

.2756+02

.24+00

.1344+02 17+00

.3953+01

.17+00

.2247+01

.17+00

.9700+00 5gH 30

.60-01

.2963+01

.24+00

.4813+01

.17+00

.3944+01 49+00

.308t+01

.23+00

.2071+00

>h,p 31

.50+00

.5600+01

.27+00

.1576+01

.16+00

.7020+01

.50+00

.3976+01

.86-01

.3739+01 m

32

.17+00

.1154+00

.17+00

.0398-01

.17+00

.9376-01

.17+00

.5601+00

.17+00

.3836-01 p

F 33

.16+00

.3465*01

.16+00

.2269+01

.16+00

.1402+01.

.13+00

.1644+02

.17+00

.2098+01 C

34

.13+00

.1095+02

.27+00

.4006+01

.36+00

.5137+01

.53-01

.2078+02

.17+00

.3987+01 I

35

.17+00

.2216+01

.10+00

.5064+01

.16+00

.4482+01

.53-01

.8944+01

.10+00

.1681+01 U

37

.1t+00

.4613+00

.11+00

.1185+00

.12+00

.2474-01

.71-01

.4910+00

.10+00

.1062-01 38

.72-01

.1656+00

.72-01

.5029-01

.11+00

.1935-01

.83-01

.1352+00

.11+00

.4055-01 39

.11+00

.2510+00

.12+00

.6228-01

.1t+00

.4012-01

.97-01

.1685+01

.12+00

.1625-01 42

.50-01

.2797+00

.28+00

.3199+00

.22+00

.2850+00

.28+00

.4064+00

.96-01

.1111+00 45

.10+00

.6149+01

.10+00

.125t+01

.28+00

.2937+00

.28+00

.3714+01

.16+00

.5977+00 48

.28+00

.6735+00

.28+00

.1034+01

.16+00

.5625+00

.90-01

.4963+00

.98-01

.3596+00 57

.91-01

.1252+01

.21+00

.2745+01

.16+00

.480t+00

.54-01

.3832+00

.2t+00

.8765+00 63

.16+00

.1892+01

.16+00

.4285+01

.63-01

.2618+00

.17+00

.8362+00

.16+00

.1482+01 65

.16+00

.2253+01

.16+00

.4261+01

.16+00

.7657+00

.13+00

.2276+00

.16+00

.1788+01 67

.27+00

.1885+01

.16+00

.2980+01

.16+00

.2245+01

.47+00

.1598+00

.15+00

.1745+01 69

.22+00

.2241+02

.13+00

.5657+01

.16+00

.2349+01

.22+00

.3093+02

.16+00

.1149+01 71

.t3+00

.4269+00

.25+00

.1191+01

.15+00

.3776+00

.15+00

.2169+00

.94-01

.1978*00 74

.27+00

.4768+00

.25+00

.4080+01

.15+00

.1201+01

.13+00

.8782+00

.94-01

.4220+00

  • For element location see Exhibit 2.

1 Y U) -4 15 G) P* r- )>

I P1 T' I 03 r"

36 %J El OB

%4 g,

SARGENT & LUNDY

[

g E N GIN E E R S cincaco SL-3647 REV. 2, 3-14-80

[

{

TABLE 9 MAXIMUM STRESSES IN PLATES

[

SHELL***

MERIDIONAL **

CIRCUMFERENTIAL**

MEMBRANE

(

SECTION*

SHELL MEMBRANE SHELL MEMBRANE SHEAR NO.

(ksi)

(ksi)

(ksi) l 12.73 18.00 5.37

{

2 12.62 16.18 8.67 3

7.51 6.20 1.80 4

7.24 5.35 6.55

[

(

For Section Number see Exhibit 3.

Allowable Shell Membrane Force = 47.5 ksi

      • Allowable Shell Membrane Shear = 27.42 ksi

[

[

[

[

[

[

l F

J

m rm rm rm i

1 rm rm rm rm rm rm rm.

rm rm i

1 rm rm rm rm r-TABLE 10 MAXIMUM STRESSES IN WELDS ACTUAL VALUES ALLOWABLE VALUES ALLOWABLE ALLOWABLE ALLOWABLE SECTION*

TENSION

' COMPRESSION SHEAR TENSION COMPRESSION SHEAR NUMBER (ksi)

(ksi)

(ksi)

(ksi)

(ksi)

(ksi) 1**

17.84

-27.00 8.06 33.6

-47.5 27.42 2

16.18

-8.77 8.67 47.5

-47.5 27.42 2E5 3

7.51

-6.62 1.80 47.5

-47.5 27.42 k5>

Ej 4**

10.86

-1.86 9.83 33.6

-41.5 27.42 g

  • For Section Number See Exhibit 3.
D (A -4 m I~ >

< l III

.N $ r-ca M

y o

I b

l

SARGENT & LUNDY

[

E 11 E N GIN E E R S cnicaco SL-3647 REV. 2, 3-14-80

[

[

{

TABLE 11 MAXIMUM STRESSES IN COLUMNS

[

MAXIMUM SECTION STRESS **

NUMBER *

(ksi) 1 18.61 2

9.83

{

3 1.97 4

2.06 l

[

  • For Section Number See Exhibit 3.
  • Allowable Combined Axial and Bending Stress = 47.5 ksi

[

[

[

m

[

[

[

l

SARGENT & LUNDY ENGINEEas TAELE 12 CHICAGO g(_3g47 5-26-78

[

[

[

TABLE 12 MAXIMUM SHEAR STRESSES IN CONCRETE FILL IN SACRIFICIAL SHIELD

[

MAXIMUM SECTION SHEAR STRESS **

NUMBER *

(PSI)

[

1 135.29 2

104.24

[

3 34.20

[

  • For Section Number See Exhibit 3.

~

    • Allowable Shear Stress = 154.9 psi

[

[

[

[

[

[

[

5$g4 e r@o* -

m 1>RrM C

,z 5"

n k0 Urlw$

)

Dm< F y E b m

esr

)

ert 9

9 9

2 0

m vaf se/

8 8

8 8

2 nhk 5

5 5

7 8

aS(

r S

T m

EU e

L e

r A

t) a V

ei 4

4 4

4 4

m rs e

E ck 3

3 3

3 3

t

)

L n(

e N

B o

r O

A C

c W

n I

m I

E L

n NT O

o GC L

g c

S R

EI A

i n

cl) i DD m

rei 0

0 0

0 0

TL oes s

AA ftk 4

4 4

4 4

e N

nS(

5 5

5 5

5 s

S i

s O

EI e

e m

SD R

r SI t

R E

s E

e RT M s

d rr) n m

S (L eat 7

2 0

2 6

a vef MA sh/

5 2

6 2

8 s

UT nSk 5

5 4

5 6

e MS a

s.

(

m E

r ss IX D T

ee A E rs MP S

t s E

e se FF U

t) r m

OO L

ei et A

rs ls YS V

ck i

RN n(

7 6

8 7

4 sl 4

AO L

o na MI A

C 0

0 0

0 0

er t

m T

U t u i

MC T

x b

UE C

g ee i

SS A

n rl h

i af x

m 3

cl)

E rei 6

1 9

5 2

ts 1

E oes nu e

ftk 5

6 4

0 7

el e

L nS(

3 3

4 5

3 mp S B

i e

m A

e ce n

T R

rn o

oa i

f r t

n nb a

m o

im c

i 5) 5 5

5 3

ee o

t

- e

-)

rm L

a p

s

'a v

1 8

9 2

7o ne n

e 7B 7

8 9

9T iv o

m l

5(

5 5

5 5(

i i

E ss t

es c

se e

sr S

n*

ep m

or rm r

i e to o

tb 1

2 3

4 5

Sc F

cm eu m.

SN

\\

ll

$$ms>r50 m

mz2N" Yarm E r

n5KC

  • 7a.

Y~Tg

)

m eT sF r

r/

e e1 0

0 0

2 v

4 v(

i s

7 7

7 6

0 s

m nr 5

5 5

7 8

s r

aa e

re r

Th p

S S

m m

E o

U c

r L

e A

t e

V e) r rI 4

4 4

m 4

4 a

E cS r

L nK 3

3 3

3 3

e B

o(

t S

A C

e N

W r

m O

O c

r I

L n

T L

g) o C

A nI c

E iS S

cK n

m r(

0 0

0 0

0 i

r N

o G

fl 4

4 4

4 4

s ne 5

5 5

5 5

e I

S ie s

m E

et s

D RS e

r r

T t

A s

)

S eT d

m E

sF n

r S )N r/

a S O eK 1

3 6

6 7

EI v(

s RT s

1 0

1 2

3 e

m T C nr s

r S E aa s

R re e

MI Th r

D S

U t

m I

O U

e e

S s

MP E

r XO L

t l

A M (H A

e) i V

rI 2

3 4

3 5

s 4

m F L cS n

O A L

nK 0

0 0

0 0

e.

t r

T A

o(

ts i

U C

e b

YS T

es i

RE C

rs h

m AD A

ae x

ME g) r E

r P

M nI tt iS ns e

UF cK e

e SO r(

0 0

4 2

4 ml s

m o

ea r

4 fl 2

4 3

2 8

cr n

1 ne 3

3 3

4 2

ru o

E ia ox i

L et fe t

m B

RS nl a

r A

if c

T e

o rs l

n u

o nl n

m i

ip o

r t

5) 5 5

5 3

i a

- e

-)

se t

v s

p en c

e 1a 8

9 2

7o sa e

m l

7B 7

8 9

9T sr s

E 5(

5 5

5 5(

eb r

rm r

te o

S F

  • m n*

m or r

ie th 1

2 3

4 5

cm eu SN ll

rm m

m m

e rm m

i 1

m rm m

rm rm m

m rm Fm m

r TABLE 15

SUMMARY

OF MAXIMUM FORCES IN ANCHOR BOLTS ACTUAL VALUES ALLOWABLE VALUES COMBINED COMBINED TENSION TENSION &

SHEAR TENSION TENSION &

SHEAR (ksi)

SHEAR (ksi)

(ksi)

(ksi)

SHEAR (ksi)

(ksi)

RPV 16.10 16.10 27.56 60.72 40.50 40.48 5

SA CIAL

}

34.5 34.5 24.97 60.72 44.16 40.48 9

l 52 "

8 "" E z

k II) Maximum Value Occurs in 2-3/4" p Bolt.

II These values are based on the RPV skirt loads given in the FSAR Section 3.9.1.5 (Ref. 5).

x u) -i mr>

< l CD

  • My"a I

b

b EXHIBITS

[

l l

l l

[

E E

E L

r i

1 1

l W

SARGENT Q LUNDY ENGINEER $

EXHillT 1 CHICAG SL-3647 5-26-78

[

[

{

,/ m '

(

\\[

[

REFUELING BELLOWS c

c' RPV 9TA&lLIZER

[

/

STABILIZER TRUSS FEEDWATER LINE

/

EL. C47 -G**

l E L EV. G4 t'-li("

g

[

'N

{,"_ PREc.;5URE REACTOR VESSEL SACR!FiCI A w 9hiELO /<4tt

{

a PRIMARY STEEL

/

\\

COMA V M aJ T

[

\\

-- UPPER DRV WELL TRUSS LN

[

EL.Gl3'-IO}J g PLATFORM f

(

/

/ EL.GO7 O"

{

l j

\\

'l l

[

REACTOR

[ PLATFOR M 8

EL 565' 31-supponr

______1,,

e PEDE.,TA L3

/

LCWER DR/WELL j f,./ g-ELEV. 572'l A

{

s

,/

[

r SECTION THROUGH CENTERLINE OF DRYWELL L

b

SARGENT & LUNDY ENGINEERS EXHIBIT 2 CHICAGO SL-3647 s 78 erca c.uy,

[

se r

ID l

82.

4,3.

Q 460

[

@ lE a

Slo 44<

<>30 g,

[

430

[E 4to o u

@ Ois REFuELsuq O.,

360 so eeaan

" to

[

"g @

8/

,, 1 s u.. '- 41 slo 76

+

)

3ft >

))*>

<>t; h

'd 77 t

.h ]

310 i

Q

>T. n d$'>

'I

']

b l

97A BILL' E E

[

b t

o*J V

244 J

Gi>

b b a

"7F tu 3<

u 1so o i"

[

.u s

/ ms. asz 41 1

6 N

o 74 T'RL $$

o.6 3

g E L.646-4

~

[

8,,,,

7' E

?

v g

3, Q

70<>

I > 66 6-

]h

>il V

154

[

'a g<

g

'4 "

r

, 4-g 14 4 ll N

4>

46i l 14 bb 1 EL54l10 lc,

}

3 4

0 o 6Z g ~m as gg y

]

66'>

W

[

7

J db'>

1 b

b$

U

[

j

'j oo o se to 5

E @'

Y 51 0 U

i

  • r v

So 57 o g

8 b

4> 62 4o 548 g

I N

dlai'

<, 47 L

530b@

3 0 S0t>

e h

kl 8I 4 >

o 444

@ b 33 1

e t

LELG71'-l' i

b

-~

\\< > M ATCH LIM E ANNULUS PRESSURIZATION MATHEMATICAL MODEL J

SARGENT & LUNDY

[

ENGINEERS EXHIBIT 3 CHICAGO

$(-3647 5 78

{

PRIM A EitY FE.EL e

CONTAINMENT

,:r-STABILIZER TRUSS R.

of c

e

s. no-o 6.L. fo d -9f

/

)

REAC. TOR G,

(

{

  • , eg 9(/p VESSEL 4

4 s

% - SAGRIFICI AL

[

f SHIELD

  • 3,I

/9,*

7

'/

dKlfACTo C, (A g

[

Af

['

~

i o

o 1

/S'

{ 't

'q"t "

s

[

\\\\

4"

'\\\\

l p

3 S

- ANNULUS BETWEEN,

.e SHIELD AND S

[

Q 99, RE.A CTOR a

'g,

9

[

RECIRCULATION LINE 0

g jOPNG.,

1 EL.G !- o fa t

[

iL v

's!

PL A hJ 1

2

[

4 REACTOR

. R RV.

y

(

_ f INV. EL. 060 -4 Ty a

f EL 597'-so 3 -

[

1 L

/

[

REACTOR SUPPORT

_ j PEDESTAL SECTION A-A

[

SACRIFICIAL SHIELD

L SARGENT & LUNDY

[

ENGINEERS EXHIBIT 4 CHICAGO SL-3647 5 78

[

[

[

l o,

24 - l PIA.

6'- I

{

i s' - I" s'-(

,'. RPl/ 3EllCT

-dAcce Ff C. AL TjdOLC 5

Aucwc4 8()L 5

$H ELD

/ e t se'- - GLj e[p n n 7

  • L_3.

g

,. g g c gag,,,

crM'f 80LTf/

f,':i@t ~5 v bh l

v 5

ev

[

l EL.V$8?s

=,

(

y 4 f 4

r EL591 l((

\\7pv i

)

i i

ji

~;

[

b

'3 v r

2 v

M w

[

\\--

e u

f j-i

,. i

_4-o 2I-t og

, 2,..o '

{

{

l i

v

.. w

{

~

v z z v i

I

[

FILI. Floc 4 E L. 5,~2 '- 1 "

i

~~

~ ~ '

~ +

I

\\

[

y f.

I I

ly I

I

.e

' _-~

[

5 E CTioM

[

{

REACTOR PEDESTAL

(

SARGENT Q LUNDY

[

ENGINEERS EXHICIT 5 CHICAGO g(_3g47 5-26-78

[

hi r%

Q

/p y,m y x

[

iEEAcro<.

s,-

x%

]

[

__ ]

1:

./ -

9ACRI FIC A L j

'l l

[

3

% # E. L P J

J i

\\

/

'y l,

/,

~

\\

/

}-l,seGbfgz'A\\

g c

',x f

\\

/

s

(

p

,/

%v,,q/

^^

vesc~

[

'g PRIMARY $~E s t

[

COUTAI M M EMT L

[

FR,A M lLl4 PL A LJ l

r L

i r

STABILIZER TRUSS t

r

SARGENT Q LUNDY

[

ENGINEERS EXHIBIT 6 CHICAGO SL-3647

[

5 78 L

b wm O

F

'g 'e*

~

o e

.c

~,

E p

t-Q oz %ce..; c.a.

...., n e...

y e

c s>- s > t' o - ',

t^

,=

w_

f

' E' L

ese ' ac-A i

., *.

  • N
  • qf#<

j

.s.

s d ' #,,',

t

{

g

,/

, ?g

"*,5

/

t s.

[

-ll in.4,,

N.

0'

.. \\. el.2

~

r N -

. j *.

j r

L i

.f

++-+

IUb C

    • t

.<,4

[

.4*

K f, I, 7

~

qs$ e av J' /j

6'

.g F

sX-sourse st'o.c.

,\\.*. '

/

/

i

~. As '

L t

~.

e

s.
  • N

.v.?

j.*,-

/

[

s x

. /# ?

=

.y s'.

~. -

[

f N 'N* '..

y,,

i i

's -

Y O

a 8

}

e, a

[

Eb".!S PLAN AT EL.597 lO9

i r

L so, r

b r

L ANCHOR BOLT LAYOUT L

w

SARGENT & LUNDY

{

ENGINEEas EXHIBIT 7 CHICAGO SL-3647 5--26-78 b

[

I l* C N' q '_ y

'O

'

  • L, IO To l

=

~ ~ ~

g esAcrom pe SACRIRc AL $s. ELD ( j'

'l' e u er 2( d ig t i-4 3

{

9" d<g<2_2 II I I n

1 i

$sa a t.v4

[__r}

i(%]j' i h

l9" Ear.tum c

l

("

l

[

-[T_F1

,1 i lA //M / /[

4 /< '~l

. )EL54i-w **i i

i T

i i

1Ll.

p EL.54-[ d'y ' '

I n

t i;I.

.i I..N 3

e y

[

aj s bk o '

f z,.4 l

ffd.

f ec}o

, f1A 9xoo noas

(

s e

s s

zog i

=

r r__

L l

l il l 1 I

e G;

,~

G us+

w

- ~ ~ - -

[

BE CT iou A-A EL I

ANCHOR BOLT DETAIL L

~

r---,

rm rw rm rm rm rm rm rm rm rm rm rm rm rm rm rm r

Top o Azirnuth (degrees) l Shield A4-0 30 60 90 120 150 180 l

I I

i i

l I

I El. 646.83'

=-

Node *

  1. 2 B 1

2 3

4 5

6 B

Strip 1

$SA A(See Exhibit

-t 9) r O

~

0" El. 637.0' O

z e

7 8

9 10 11 12 Strip 2 O

y El. 633.44' m

O 13 14 15 16 17 18 Strip 3 y

z

-i n

W m O O

085 El. 624.44'

{-

s 8 ;; e o

19 20 21 22 23 24 Strip 4 "y

3 o

El. 617.87' n

~>r j

25 26 27 28 29 30 Strip 5 mr El. 609.87' O

31 32 33 34 35 36 Strip 6 m in m l

l El. 602.29' mrX

< b3 37 38 39 40 41 42 Strip 7 "E

]

El. 597.88' y

a ro (See Exhibit 10)

  • NOTE: Nodes correspond to those y

..}

used in NUS report NUS-3129.

g A

Pedestcl

j u>WO S " > E $ <-

m!E " C mXI e

r Eyo tr[E n

-t mM <, ". Y g i $

-r

~

0

~

6 m

/

3 r

0 m

3 3

r m

0 0

r 3

m 0

r 72 m

r 0

42 m

)

r s

0 e

)

12 e

8 m

j r

B g

- T r

e B

I d

B N I 0

(

0 O H i 1 H

I X

m T

T E r

U C

w M

E E I

S E 0

Z S

5 A

(

^

1 r

0 2

r 1

m r

0 9

m r

0 6

-r 0

3 m

r

\\

O m

0 0

0 0

0 0

0 0

0 0

9 8

7 6

5 4

3 2

1 m$wrC$ 6$S n

-r mxm(iCxM 2nl25 S 0 E (13 m~

nn e-n-

(

SARGENT & LUNDY E NGIN E ERS EXHl'IllT 10 occa SL-3647 REV. 1, 3-22-79 Top of Shield Elevation 646.83' Strip 1 637.0' Strip 2 633.44' Strip 3 624.44' Strip 4 617.87' Strip 5 609.87' Strip 6 602.29 Top of Pedestal Strip 7-597.88' j

i 0

10 20 30 40 50 60 70 80 90 100 Pressure (psid)

SECTION A-A (See Exhibit 8)

VERTICAL DISTRIBUTION OF PRESSURE 30*

[

APPENDIX A

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

mummmm...

L CARGENT O LUNDY APPENDIX A EN N ERD g(_3g47

,o 5 78 COMPUTER PROGRAMS

[

DYNAX DYNAX (Dynamic Analysis of Axisymmetric Structures) is a finite element program capable of performing both static and dynamic analyses of axisymmetric structures.

Its formulation is based on a small displacement theory.

[

Three types of finite elements are available: quadrilateral, triangular, and shell. The geometry of the structure can be general as long as it is axisymmetric. Both the isotropic and orthotropic elastic material properties can be modeled. Discrete and distributed springs are available for modeling elastic foundations, etc.

For static analysis, input loads can be structure weight, nodal forces, nodal displace-ments, distributed loads, or temperatures. Loads can be axisymmetric or nonaxisym-metric. For the solids of revolution, the program outputs nodal displacements and element nodal point stresses in the global system (radial, circumferential, and axial).

In the case of shells of revolution, the output consists of nodal displacements and element and nodal point shcIl forces in a shell coordinate system (meridional, cir-

[

cumferential, and normal).

For dynamic analysis, three methods are available: direct integration method, modal superposition method, and response spectrum method. In the case of dynamic analysis by direct integration method or modal superposition method, a forcing function can b

be input as: 1) nodal force components versus time for any number of nodes, or

2) vertical or horizontal ground acceleration versus time. For nonaxisymmetric loads

[

the equivalent Fourier expansion is used. In the case of dynamic analysis by response spectrum method, spectral velocity versus natural frequency for up to four damping

{

constants is input. The output of dynamic analysis is in terms of nodal displacements, element strestes, and resultant forces and moments :t specified time steps. When the modal superposition method is used, and in the case of earthquake response analysis, the requested number of frequencies and mode shapes is computed and printed together with the cumulative response of all the specified modes, as

(

computed by the root sum square (RSS) method and the absolute sum method.

E A-1

CARGENT O LUNDY APPENDIX A

(

" Q fns SL-3647 5 78

[

DYNAX was originally developed under the acronym ASHAD by S. Ghosh and

{

E. L. Wilson of the University of California, Berkeley in 1969. It was acquired by Sargent & Lundy in 1972 and is operating under EXEC 8 on a UNIVAC 1106.

(

TEMCO TEMCO (Reinforced Concrete Sections Under Eccentric Loads and Thermal Gradi-(

ents) analyzes reinforced concrete sections subject to separate or combined action of eccentric loads and thermal gradients. The effect of temperature is induced in the

[

section by reactions created by the curvature restraint.

[

The analysis may be done assuming either a cracked or an uncracked section. Mate-rial properties can be assumed to be either linear or nonlinear. The program is capable of handling rectangular as well as nonrectangular sections.

The program input consists of section dimensions, areas and location of each layer of reinforcing steel, loads, load combinations and material properties.

The curvature and axial strain corresponding to the given eccentric loads (axialload

(

and bending moments) are determined by an iterative procedure. Thermal gradient is applied on the section by inducing reactions created by the curvature restraints, i.e.,

{

there is no curvature change due to a thermal gradient on the section. The axial expansion is assumed to be free after thermal gradient is applied. An iterative procedure is completed again for finding the final strain distribution such that equilibrium of internal and external loads is satisfied.

{

The program output consists of the echo of input, combined loads, final location of neutral axis, final stresses in s. al and concrete and final internal forces. Similar

{

intermediate results (before thermal gradient is applied) can also be output if desired.

The program has applications to a wide variety of reinforced concrete beams and

(

columns, slabs, and containment structures, subject to various combinations of ex-ternal loads and thermal gradients.

[

The program was developed and is maintained by Sargent & Lundy. Since February 1972, the program has been used extensively at Sargent & Lundy on UNIVAC 1106

[

hardware operating under EXEC 8.

[

A-2 I..

CARGENT O LUNDY APPENDIX A

[

EN01NEER9 g(_3g47 5 78 FORANL h

FORANL (Fourier Analysis Postprocessor) provides methods of performing an approximate Fourier Analysis along each strip of spatial arrangement of the nodal

[

pressure values.

The Fourier Analysis is performed by the histogram numerical method or by a linear interpolation of the pressure values between node centers.

{

The output consists of a data file for each strip analyzed as well as printer output which echoes the data and lists the computed values stored in the generated data files. Maximum and minimum Fourier coefficients and the time they occur are also listed.

[

The FORANL program was originally developed by Sargent & Lundy in 1976. The program is currently maintained on a UNIVAC 1106 operating under EXEC 8.

[

~

{

[

[

[

[

l

[

[

A-3

{

Final

\\

[

APPENDIX B E

[

W

[

[

[

[

[

E E

C CARGENT O LUNDY APPENDIX D E N GIN E E RQ g(_3647 5 78 DEFINITIONS OF LOAD COMBINATION CATEGORIES Abnormal / Severe Environmental Category

[

This category includes combinations that result from the postulated combined occurrence of abnormal and severe environmental effects when the occurrence of a

{

specified Severe Environmental Category load condition at the plant site imposes effects that significantly increase the probability of the occurrence of Abnormal Category load conditions or when the specified Abnormal or Severe Environmental Category load condition is of such extended duration that a significant probability exists that loads in these two aforementioned categories will occur simultaneously.

Abnormal / Extreme Environmental Category

[

This category includes combinations that result from the postulated combined occurrence of abnormal and extreme environmental effects when the occurrence of a

{

specific Extreme Environmental Category load condition at the plant site imposes effects that significantly increase the probability of the occurrence of Abnormal Category load conditions or when the specified Abnormal or Extreme Environmental

[

Category load condition is of such extended duration that a significant probability exists that loaas in these two aforementioned categories will occur simultaneously.

[

[

[

[

[

[

B-1

{

Final r

t

e l

DOCU ENT PAGE PULLE T0050/0STn NO. OF PAGES REASON-O PAGE ILLEGIBLE:

O HARD COPY RLED AT: PDR CF OTHER 3

l_

O BETTER COP / REQUESTED ON O PAGE100 LARGE TO RLM:

O HARD COPV RLED AT: PDR CF

.OTHER 7069A/d W A' O FILMED ON APERTURE CARD NO 60060/03S% 4lseuyh- 09 l

-