ML18151A718: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(3 intermediate revisions by the same user not shown)
Line 2: Line 2:
| number = ML18151A718
| number = ML18151A718
| issue date = 04/15/1994
| issue date = 04/15/1994
| title = Rev 0 to Technical Rept NE-978, Surry Unit 1 Cycle 12 Core Performance Rept.
| title = Rev 0 to Technical Rept NE-978, Surry Unit 1 Cycle 12 Core Performance Rept
| author name = Brookmire J, Chapman D, Laroe C
| author name = Brookmire J, Chapman D, Laroe C
| author affiliation = VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
| author affiliation = VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:I I r I I I I I I 19 I I I I I 9405190110 940509 PDR ADOCK 05000280 p PDR Surry . Unit 1 Cycle 12 Core Peif ormance Report Nuclear Analysis and Fuel Nuclear Engineering Services April 1994
{{#Wiki_filter:I I r I
* VIRGINIA POWER I I f I I I I I I le I I I I I I I .. I TECHNICAL REPORT NE-978 -Rev. 0 SURRY UNIT 1, CYCLE 12 CORE PERFORMANCE REPORT \UCLEAR ANALYSIS AND FUEL NUCLEAR ENGINEERING SERVICES VIRGINIA POWER April, 1994 .~ I" PREPARED BY ,f:l,,,, ;j}j , .. ,.,./JAPR 1'/ D. M. Chapman Date REVIEWED BY:~~ ~-LaRoe __-,1 tl ,* REVIEWED BY: /.~ T. A. Brookmire APPROVED QA Category:
I I
Nuclear Safety Related Keywords:
I I
S1Cl2. CPR, Core Date q.,s-11 Date 'j:M\ Date I I ,. I I I I I I le I I I I I .I I .. 1* TABLE OF CONTENTS PAGE Table or Contents 1 2 3 5 List of Tables . List of Figures. . . Section 1 Introduction and Summary. Section 2 Burnup. . . . . . . . . . . . . . . . 13 Section 3 Reactivity Depletion  
I 19 I
...............
I I
23 Section 4 Power Distribution  
I I
.. . . . . . . . ..... 25 Section 5 Primary Coolant Activity .............
9405190110 940509 PDR ADOCK 05000280 p
47 Section 6 Conclusions . . . . . . . . . . . . . . ..... 55 Section 7 References. . . . . . . . . . 57 ~E-978 S1Cl2 Core Performance Report Page 1 of 58 LIST OF TABLES :ABLE TITLE PAGE 4.1 Summary of Flux Maps for Routine Operation  
PDR Surry  
.........
. Unit 1 Cycle 12 Core Peif ormance Report Nuclear Analysis and Fuel Nuclear Engineering Services April 1994 VIRGINIA POWER  
30 SE-978 S1Cl2 Core Performance Report Page 2 of 58 I I el I I I I I I I .. i I I {' I I I I ,. I I 1* I I ,I I .. I ?IGURE 1. 1 1. 2 1. 3 1. 4 2. 1 ') ') 2.3 LIST OF FIGURES TITLE Core Loading Map ..... ..........
 
I I f I
I I
I I
I le I
I I
I I
I I..
I TECHNICAL REPORT NE-978 - Rev. 0 SURRY UNIT 1, CYCLE 12 CORE PERFORMANCE REPORT  
\\UCLEAR ANALYSIS AND FUEL NUCLEAR ENGINEERING SERVICES VIRGINIA POWER April, 1994  
.~
I" PREPARED BY,f:l,,,, ;j}j,..,.,./JAPR 1'/
D. M. Chapman Date REVIEWED BY:~~  
~- LaRoe
__-,1 tl REVIEWED BY: /.~
T. A. Brookmire APPROVED QA Category: Nuclear Safety Related Keywords: S1Cl2. CPR, Core  
~
Date q.,s-11 Date  
'j:M\\
Date  
 
I I,.
I I
I I
I I
le I
I I
I I  
.I I..
1*
TABLE OF CONTENTS PAGE Table or Contents 1
2 3
5 List of Tables.
List of Figures...
Section 1 Introduction and Summary.
Section 2 Burnup..  
..... 13 Section 3 Reactivity Depletion............... 23 Section 4 Power Distribution..  
............ 25 Section 5 Primary Coolant Activity............. 47 Section 6 Conclusions................... 55 Section 7 References.  
......... 57  
~E-978 S1Cl2 Core Performance Report Page 1 of 58  
 
LIST OF TABLES
:ABLE TITLE PAGE 4.1 Summary of Flux Maps for Routine Operation......... 30 SE-978 S1Cl2 Core Performance Report Page 2
of 58 I
I el I
I I
I I
I I..
i  
 
I I {'
I I
I I,.
I I
1*
I I  
,I I..
I  
?IGURE
: 1. 1
: 1. 2
: 1. 3
: 1. 4
: 2. 1  
')  
')
2.3 LIST OF FIGURES TITLE Core Loading Map...............
Burnable Poison and Source Assembly Locations.  
Burnable Poison and Source Assembly Locations.  
~ovable Detector Locations Control Rod Locations.
~ovable Detector Locations Control Rod Locations.
Cycle Burnup History jonthly Average Load Factors Assemblywise Accumulated Burnup: jeasured and Predicted 2.4 Assemblywise Accumulated Burnup: Comparison of ~easured and Predicted . 2.SA Sub-Batch Burnup Sharing 2.5B Sub-Batch Burnup Sharing 2.SC Sub-Batch Burnup Sharing 3.1 Critical Boron Concentration versus Burnup (HFP,ARO) 4.1 Assemblywise Power Distribution  
Cycle Burnup History jonthly Average Load Factors Assemblywise Accumulated Burnup:
-Sl-12-05 PAGE 8 9 10 11 15 16 17 18 19 20 21 24 31 4.2 Assemblywise Power Distribution  
jeasured and Predicted 2.4 Assemblywise Accumulated Burnup:
-Sl-12-14 32 4.3 Assemblywise Power Distribution  
Comparison of  
-Sl-12-23 33 4.4A Hot Channel Factor Normalized Operating Envelope (Applicable Through May 1992) . . . . . . . . . . . . . . . . 34 4.4B Hot Channel Factor Normalized Operating Envelope (Applicable After May 1992) 35 4.5 Heat Flux Hot Channel Factor, Fq(Z) -Sl-12-05 36 4.6 Heat Flux Hot Channel Factor, Fq(Z) -Sl-12-14 37 4. 7 Heat Flux Hot Channel Factor, Fq(Z) -Sl-12-23 38 NE-978 SlC12 Core Performance Report Page 3 of 58 LIST OF FIGURES (CONT'D) FIGURE TITLE 4.8 Maximum Heat Flux Hot Channel Factor, Fq(Z)*P, vs. Axial Position ............... . 4.9 Maximum Heat Flux Hot Channel Factor, Fq(Z), vs. Burnup 4 .10 Maximum Enthalpy Rise Hot Channel Factor, F-delta-H vs. Burnup 4.11 Target Delta Flux versus Burnup 4 .12 Core Average Axial Power Distribution 4.13 Core Average Axial Power Distribution 4.14 Core Average Axial Power Distribution 4.15 Core Average Axial Peaking Factor vs. 5.1 Dose Equivalent I-131 vs. Time 5.2 I-131/I-133 Activity Ratio vs. Time 5.3 Measured RCS Xenon-133 vs. Time 5.4 Measured RCS Iodine-131 vs. Time ~E-978 S1C12 Core Performance Report ..... __ -Sl-12-05 -Sl-12-14 -Sl-12-23 Burnup Page PAGE 39 40 41 42 43 44 45 46 51 52 53 54 4 of 58 I* I I .s I I I I I .I' , Sect:ion 1 I I I I I I~TRODUCTIO~
~easured and Predicted.
A~D  
2.SA Sub-Batch Burnup Sharing 2.5B Sub-Batch Burnup Sharing 2.SC Sub-Batch Burnup Sharing 3.1 Critical Boron Concentration versus Burnup (HFP,ARO) 4.1 Assemblywise Power Distribution - Sl-12-05 PAGE 8
9 10 11 15 16 17 18 19 20 21 24 31 4.2 Assemblywise Power Distribution - Sl-12-14 32 4.3 Assemblywise Power Distribution - Sl-12-23 33 4.4A Hot Channel Factor Normalized Operating Envelope (Applicable Through May 1992)  
................ 34 4.4B Hot Channel Factor Normalized Operating Envelope (Applicable After May 1992) 35 4.5 Heat Flux Hot Channel Factor, Fq(Z) - Sl-12-05 36 4.6 Heat Flux Hot Channel Factor, Fq(Z) - Sl-12-14 37
: 4. 7 Heat Flux Hot Channel Factor, Fq(Z) - Sl-12-23 38 NE-978 SlC12 Core Performance Report Page 3
of 58  
 
LIST OF FIGURES (CONT'D)
FIGURE TITLE 4.8 Maximum Heat Flux Hot Channel Factor, Fq(Z)*P, vs.
Axial Position................
4.9 Maximum Heat Flux Hot Channel Factor, Fq(Z), vs. Burnup 4.10 Maximum Enthalpy Rise Hot Channel Factor, F-delta-H vs.
Burnup 4.11 Target Delta Flux versus Burnup 4.12 Core Average Axial Power Distribution 4.13 Core Average Axial Power Distribution 4.14 Core Average Axial Power Distribution 4.15 Core Average Axial Peaking Factor vs.
5.1 Dose Equivalent I-131 vs. Time 5.2 I-131/I-133 Activity Ratio vs. Time 5.3 Measured RCS Xenon-133 vs. Time 5.4 Measured RCS Iodine-131 vs. Time  
~E-978 S1C12 Core Performance Report  
- Sl-12-05  
- Sl-12-14  
- Sl-12-23 Burnup Page PAGE 39 40 41 42 43 44 45 46 51 52 53 54 4 of 58 I*
I I.s I
I I
I  
 
I  
.I',
Sect:ion 1 I
I I
I I
I~TRODUCTIO~ A~D  


==SUMMARY==
==SUMMARY==
On i:1nuary :? --, ::.994, Surry Unit 1 completed Cycle 12. Since the i~it:ial criticality of Cycle 12 on May 1, 1992, the reactor core produced Jpproximat:ely 1.1623 x 10 3 MBTU (19,587 Megawat:t:
On i:1nuary :?  
days per met:ric t:on of ~ont:ained uranium).
--, ::.994, Surry Unit 1 completed Cycle 12.
The purpose of this report is to present an analysis of t:he core performance for rout:ine operation during Cycle 12. The *t* physics tests t:hat :.:ere performed during the st:artup of this cycle were *~overed in Jl9herefore, t:he Surry Unit 1 Cycle 12 Startup Physics Test will not be included here. Report: 1 and, I I I i I I I Surry Unit 1 began a power only coastdown on November 4, 1993, at which ~ime the burnup was approximat:ely 17,601 MWD/MTU. The coastdown accounted for an additional core burnup of 1,986 MWD/MTU from the end of full power react:ivity.
Since the i~it:ial criticality of Cycle 12 on May 1, 1992, the reactor core produced Jpproximat:ely 1.1623 x 10 3 MBTU (19,587 Megawat:t: days per met:ric t:on of  
The Cycle 12 core consisted of eight sub-batches of fuel: two fresh batches (batches 14A and l4B); four once-burned batches, two from Cycle 11 (bat:ches 13A and l3B), one from Cycle 8 (batch 10) and one from Cycle 10 (part: of batch Sl/12B); and three twice-burned batches, all from Cycle 11 (bat:ches l'.:'.A, part of l2B, and S2/12A). The Surry 1 Cycle 12 core ~oading map specifying the fuel batch identification and fuel assembly 1*~ocat:1.ons is shown in Figure 1.1. The burnable poison locations and I ~E-978 S1Cl2 Core Performance Report: Page 5 of 58 source assemoly locations are shown in Figure 1. 2. ~ovable detector locations that were available during Cycle 12 are shown in Figure 1.3. Controi rod locations are shown in Figure 1.4. Routine core follow involves the analysis of four principal performance indicators.
~ont:ained uranium).
The purpose of this report is to present an analysis of t:he core performance for rout:ine operation during Cycle 12.
The  
*t* physics tests t:hat :.:ere performed during the st:artup of this cycle were  
*~overed in Jl9herefore, t:he Surry Unit 1 Cycle 12 Startup Physics Test will not be included here.
Report: 1
: and, I
I I
i I
I I
Surry Unit 1 began a power only coastdown on November 4, 1993, at which  
~ime the burnup was approximat:ely 17,601 MWD/MTU.
The coastdown accounted for an additional core burnup of 1,986 MWD/MTU from the end of full power react:ivity.
The Cycle 12 core consisted of eight sub-batches of fuel:
two fresh batches (batches 14A and l4B); four once-burned batches, two from Cycle 11 (bat:ches 13A and l3B), one from Cycle 8 (batch 10) and one from Cycle 10 (part: of batch Sl/12B); and three twice-burned batches, all from Cycle 11 (bat:ches l'.:'.A, part of l2B, and S2/12A).
The Surry 1 Cycle 12 core  
~oading map specifying the fuel batch identification and fuel assembly 1*~ocat:1.ons is shown in Figure 1.1.
The burnable poison locations and I  
~E-978 S1Cl2 Core Performance Report:
Page 5
of 58  
 
source assemoly locations are shown in Figure 1. 2.  
~ovable detector locations that were available during Cycle 12 are shown in Figure 1.3.
Controi rod locations are shown in Figure 1.4.
Routine core follow involves the analysis of four principal performance indicators.
These are burnup distribution, reactivity depletion, power distribution, and primary coolant activity.
These are burnup distribution, reactivity depletion, power distribution, and primary coolant activity.
The core burnup distribution is followed to verify both burnup symmetry and proper batch burnup sharing, ::hereby ensuring that the fuel held over for the next cycle .;ill be compatible with the new fuel that is inserted.
The core burnup distribution is followed to verify both burnup symmetry and proper batch burnup sharing, ::hereby ensuring that the fuel held over for the next cycle.;ill be compatible with the new fuel that is inserted.
Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to determine if the core is depleting as designed, and to indicate the cycle burnup where coastdown operation will begin. Core power distribution follow includes the monitoring of nuclear hot channel factors to verify that they are within the Technical Specification 2 limits, thereby ensuring that adequate margins for linear power density and critical heat flux thermal limits are maintained.
Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to determine if the core is depleting as designed, and to indicate the cycle burnup where coastdown operation will begin.
Lastly, as part of normal core follow, the primary coolant activity is monitored to assess the status of the fuel cladding integrity and to compare the concentration of dose equivalent iodine-131 in the reactor coolant with the limits specified by the Surry Technical Specifications
Core power distribution follow includes the monitoring of nuclear hot channel factors to verify that they are within the Technical Specification 2 limits, thereby ensuring that adequate margins for linear power density and critical heat flux thermal limits are maintained.
: 2. Each of the four performance indicators is discussed in detail for the Surry Cnit 1 Cycle 12 core in the body of this report. The results are summarized below: ~E-978 S1C12 Core Performance Report Page 6 of 58 I I ,, I I I el I t I i I I I .. I I I I I I I le I I I I I I I .. I 1. Burnup -The burnup tilt (deviation from quadrant symmetry) on the core was no greater than +/-0.41% with the burnup accumulation in each batch deviating from design prediction by no more than +/-2.11%. 2. Reactivity Depletion  
Lastly, as part of normal core follow, the primary coolant activity is monitored to assess the status of the fuel cladding integrity and to compare the concentration of dose equivalent iodine-131 in the reactor coolant with the limits specified by the Surry Technical Specifications 2.
-The critical boron concentration, used to monitor reactivity depletion, was consistently within +/-0.48% tK/K I of the design prediction which is within the +/-1% tK/K margin allowed by Section 4.10 of the Technical Specifications.
Each of the four performance indicators is discussed in detail for the Surry Cnit 1 Cycle 12 core in the body of this report. The results are summarized below:  
: 3. Power Distribution  
~E-978 S1C12 Core Performance Report Page 6
-Incore flux maps taken each month indicated that the assemblywise radial power distributions deviated from the design predictions by a maximum average difference of 2.6%. All hot channel factors met their respective Technical Specification limits. 4. Primary Coolant Activity The average dose equivalent iodine-131 activity level in the primary coolant during Cycle 12 was approximately 0.00628 µCi/gm. This corresponds to less than 1% of the operating limit for the concentration of radioiodine in the primary coolant. Radioiodine analysis indicated that there were fuel rod defects in Cycle 12. NE-978 S1Cl2 Core Performance Report Page 7 of 58 R H Figure 1.1 SURRY UNIT 1 -CYCLE 12 CORE LOADING MAP J H G l2B 128 128 I I 2G6 I 4G5 I 3G7 I F E ______ 1 ___ 1 ___ 1 ___ 1 ____ _ I 12A I l3B I 148 I 138 I 148 I 138 I 12A I OG2 I 2H9 I 5J6 I SH2 I 4J9 I 3H3 I 1G2 I D __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ I 12A I 14A I 148 I 13A I 148 I 13A I 148 I 14A I 12A I I 1G4 I 2J4 I 6J2 I OH9 I 4J7 I !HO I 5J3 I 2J6 I OG7 I C __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ I 12A I 138 I 148 I 13A I 14A I 128 I 14A I 13A I 148 I 138 I 12A I I 1G3 I 4H4 I 5J9 I 1H7 I 2JO I 3GO I 3J2 I OH5 I 5J2 I 3H9 I OG8 I B __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ I 12A I 14A I 148 I 138 I 14A I 128 I 14A I 128 I 14A I 138 I 148 I 14A I 12A I I OG9 I l J4 I SJS I 3110 I 2J2 I 3G9 I OJ3 I 4GB I 1J8 I 3H4 I 4J4 I 2J8 I 2G4 I 1 __ 1 __ 1 __ 1 __ 1 __ . 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I 138 I ,s8 I 13A I 14A I 13A I 14A I l3B I 14A I 15A I 14A I 13A I 148 I 138 I I 4H6 I '-Jl I 2Hl I OJ6 I OH3 I 2Jl I 2H6 I 1J2 I !HS I !JO I OHl I 4J3 I 4HO I A __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ ! __ 1 __ I 128 I 148 I 13A I 14A I l2B I 14A I 15A I l5B I 13A I 14A I l2B I 14A I 13A I l4B I l2B I I 4G2 I 6JO I ,HO I lJl I 4GO I 3J5 I OH6 I 3H2 I IH9 I OJ8 I 3G5 I 2J9 I OH4 I 3J8 I 3G2 I : __ 1 __ : __ [ ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ ! ___ 1 ___ 1 I 128 I 138 I 148 I 128 I l',A I l5B I 138 I 10 I 138 I 138 I 14A I 128 I 148 I 158 I 128 I I 3GB I ma I SJ7 I 4Gl I 5JO I 5H7 I 4H2 I lEZ I SHl I 31H I 1J9 I 2G9 I 4JO I 4H7 I 3G6 I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I 128 I 148 I 15A I 14A I 128 I 14A I 15A I 138 I 15A I 14A IS2/12AI 14A I 13A I 148 I 128 I I 3Gl I 3J6 I OH2 I !JS I 4G6 I 3J3 I 1H8 I 3H8 I lHl I OJl I 2UO I OJ7 I 2H2 I SJO I 2G7 I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I 138 I !48 I 13A I 14A I 13A I 14A I 138 I 14A I 13A I 14A I 13A I 148 I 138 I I SHO I 4J6 I 1H4 I 3Jl I ZH4 I OJ4 I 4H3 I lJ6 I OH8 I OJ9 I ZH3 I SJl I 4H5 I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I 12A I 14A I 148 I 138 I 14A I 128 I 14A I 128 I 14A I l3B I 148 I 14A 1 12A I I 1G9 I OJS 1 4J5 I 3115 I 2J5 I 4G4 I 3J4 I 3G4 I 2J3 I 4H8 I 3J7 I OJ2 I OGl I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I 12A I 138 I l',B I 13A I 14A I 128 I 14A I 13A I 148 I 138 I 12A 1 I !GI 1 4Hl I 6J3 I lli3 I lJ7 I 2GB I lJ3 I lH6 I 4J2 I 3H6 I 1G6 I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 1--> BATCH I 12A I 14A I 148 I 13A I 148 I 13A I 148 I 128 I lZA I I OG6 I 2J7 I 4J8 I !HZ I 6Jl I OH7 I 5J4 I 4G7 I lG3 I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I 12A I 138 I 148 I 138 I 148 I 138 I 12A I I OG5 I 2H5 I 5J8 I 2H7 I 3J9 I 4H9 I 2G3 I , __ 1 __ 1 __ , __ 1 __ , __ 1 __ 1 1--> ASSEMBLY ID I I 128 I 128 I 128 I I 3G3 I 4G3 I 2G5 I 1 __ 1 __ 1 __ 1 FUEL ASSEHBLY DESIGN PARAHETERS SUB-BATCH l52/12A I 10 12A l2B 13A 138 14A 148 INITIAL ENRICHHENT 3.79 3.60 3.80 3.99 3.80 4.01 3.81 4.02 (W/0 U-235) BURHUP AT BOC 12 211435 17757 35617 32362 17977 16922 0 0 ( HWD/HTUJ ASSEHBLY TYPE 15xl5 15Xl5 15Xl5 l5Xl5 15Xl5 15Xl5 lSXlS lSXlS HUHBER OF ASSEHBLIES 1 l 16 24 24 28 35 28 FUEL RODS PER ASSEHBL' za4 I 204 204 Z'.04* 204 204 204 204 *ONE ASSEHBLY (4G7J HAD ONE FUEL ROD REPLACED WITH A SOLID STAINLESS STEEL ROD DUl!IHG A RECONSTITUTION PROGRAH. \E-978 S1Cl2 Core Performance Report Page 8 of 58 I I , l I z 3 I ' 5 I 6 7 I a 9 I 111 I 11 lZ el 13 1, 15 I I I I I ! I I I .. I (
of 58 I
I I I I I Section 2 BURNUP The Surry Unit 1 Cycle 12 burnup history is graphically depicted in Figure 2.1. Surry 1 Cycle 12 achieved a cycle burnup of 19,587 MWD/MTU. As shown in Figure 2.2, the average load factor for Cycle 12 was 92.3% ~hen referenced to rated thermal power (2441 MW(t)). Unit 1 performed a ?OWer coastdown starting on November 4, 1993 until shutdown for refueling 0n January 22, 1994. Radial (X-Y) burnup distribution maps show how the core burnup is II..... shared among the various fuel assemblies, and thereby allow a detailed burnup distribution analysis.
I,,
The TOTE 3 computer code is used to I I I I ' *1 I calculate these assemblywise burnups. Figure 2.3 is a radial burnup distribution map in which the assemblywise burnup accumulation of the core ~t the end of Cycle 12 operation is given. For comparison purposes, the design values are also given. Figure 2.4 is a radial burnup distribution map in which the percentage difference comparison of measured and predicted assemblywise burnup accumulation at the end of Cycle 12 operation is given. As can be seen from this figure, the accumulated assembly burnups were within +/-4.14% of the predicted values. In addition, deviation from quadrant symmetry in the core throughout the cycle was no greater than +/-0.41%. .. The burnup sharing on a batch basis is . core is operating as designed and to enable accurate end-of-cycle batch monitored to verify that the I NE-978 S1Cl2 Core Performance Report Page 13 of 58
I I
:::.:urnuo predictions to be made for use in reload fuel design studies. ~ate~ definitions are given in Figure 1.1. As seen in Figures 2.SA, 2.SB, 2.5C, the batch burnup sharing for Surry 1 Cycle 12 followed design ?redictions closely with no batch deviating from prediction by more than _,., , .. o,, _..;. * .I,. ... 0. The batch burnup sharing deviations in conjunction with reasonable agreement between actual and predicted assemblywise burnups, anci symmetric core burnups indicate that the Cycle 12 core did deplete G.S designed.  
I el I
~E-978 SlC12 Core Performance Report Page 14 of 58 I I el I ,, I I I I 1* l' I I I I I I I I i I .. I p H Figure 1.2 SURRY UNIT 1 -CYCLE 12 BURNABLE POISON AND SOURCE ASSEMBLY LOCATIONS H J H G F E I I I I I I __ I __ I __ I ---,---I SP I I SP 1-----,----
t I
1 I I BPl44 I I BPl45 I I I D __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ I I 3P I 16P I I zap I I 16P I 3P I I I 1BP134 1BPl65 I 1BPl70 I 1BPl64 IBPl36 I I C __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ I I I 20P I I zap I I ZOP I I 20P I I I I I I BPl79 I I BPl82 I I BP183 I I BPl81 I I SS7 I __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ , __ 1 __ i I 3P I ZOP I I 17P I I 16P I I 17P I I 2DP I 3P I I I I BP135 I BP180 I I BPl50 I I BPZOO I I BP155 I I BP172 I BP137 I I 1 __ 1 __ 1 __ , __ 1 __ , __ , __ 1 __ 1 __ 1 __ 1 __ , __ , __ , I I 16P I I l7P I I 20P I I 20P I I 17P I I 16P I I I !BPl63 I !BP156 I 1BPl90 I IBP191 I IBP157 I IBP162 I I A __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ , __ 1 __ 1 __ 1 __ 1 __ 1 __ I I SP I I 20P I I 20P I I 12P I I 20P I I 20P I I SP I I I IBP147 I IBP186 I IBP194 I IBP158 I IBP195 I IBP187 I IBP142 I SSl I 1 __ 1 __ , __ 1 __ 1 __ 1 __ 1 __ , __ , __ 1 __ 1 __ 1 __ 1 __ , __ , __ 1 I I I 20P I I 16P I I 12P I I 12P I I 16P I I ZDP I I I I I IBP177 I IBP199 I IBP159 I IBP161 I 1BP20l I IBP171 I I I 1 __ 1 __ , __ 1 __ 1 __ 1 __ 1 __ , __ 1 __ 1 __ 1 __ , __ , __ 1 __ 1 __ , I I SP I I ZOP I I 20P I I 12P I I 20P I I ZOP I I SP I I I ssz I BP146 I I BP189 I I BP197 I I BP160 I I BP196 I I BP188 I I BP143 I I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ , __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I I 16P I I 17P I I 20P I I ZOP I I 17P I I 16P I I I IBP168 I 1BP152 I IBP193 I IBP192 I IBP153 I 1BP169 I I , __ 1 __ 1 __ 1 __ , __ 1 __ 1 __ 1 __ 1 __ , __ 1 __ 1 __ , __ 1 I I 3P I ZOP I I 17P I I 16P I I 17P I I 20P I 3P I I I IBPl<tl IBP174 I 1BP151 I 1BP1911 I IBP154 I IBP176 IBP139 I I 1 __ 1 __ 1 __ 1 __ , __ 1 __ 1 __ , __ 1 __ , __ 1 __ 1 __ , __ , I I I 20P I I 20P I I 20P I I 20P I I I I I I BP173 I I BP1115 I I BP184 I I BPI 75 I I I , __ 1 __ , __ , __ , __ , __ 1 __ , __ 1 __ , __ , __ , I I 3P I 16P I I ZDP I I 16P I 3P I I I I BP140 I BPl67 I I BP1711 I I BP166 I BP138 I I 1 __ 1 __ 1 __ , __ l __ , __ 1 __ 1 __ 1 __ , I I I SP I I SP I I I 3P -3 BURNABLE POISON ROD CLUSTER 5P -5 EURHABLE POISON ROD CLUSTER t:P -12 BURNABLE POISON ROD CLUSTER 16P -16 BURNABLE POISON ROD CLUSTER 17P -17 BURNABLE POISON ROD CLUSTER :oP -20 BURNABLE POISON ROD CLUSTER SSx -SECONDARY SOURCE I I I BPl48 I I BP149 I I I 1 __ 1 __ 1 __ , __ 1 __ 1 __ 1 __ 1 I I I I I I I I I __ I __ I __ I xxP or SSx BP:!::!::!:  
i I
-HUHBER OF BP RODS or SECONDARY SOURCE IO -BP ASS&#xa3;1tBLY ID ~E-978 S1Cl2 Core Performance Report Page 9 of 58 1 z 3 4 5 6 7 II 9 10 11 lZ 13 14 15 R H Figure 1.3 SURRY UNIT 1 -CYCLE 12 MOVABLE DETECTOR LOCATIONS J H G I I I HD I I F E ---,----1
I I..
__ 1 __ 1 __ 1 __ ---,-__ I I I I I I I I I I HD I I D __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ I I I I I I I I I I I HD I I I HD I HD I I I I HD I C __ 1 __ 1 __ 1 __ , __ 1 __ 1 __ 1 __ 1 __ 1 __ , __ I I I I I i
I  
 
I I
I I
I I
le I
I I
I I
I I..
I
: 1. Burnup - The burnup tilt (deviation from quadrant symmetry) on the core was no greater than +/-0.41% with the burnup accumulation in each batch deviating from design prediction by no more than +/-2.11%.
: 2. Reactivity Depletion -
The critical boron concentration, used to monitor reactivity depletion, was consistently within +/-0.48% tK/K I
of the design prediction which is within the +/-1% tK/K margin allowed by Section 4.10 of the Technical Specifications.
: 3. Power Distribution -
Incore flux maps taken each month indicated that the assemblywise radial power distributions deviated from the design predictions by a maximum average difference of 2.6%.
All hot channel factors met their respective Technical Specification limits.
: 4. Primary Coolant Activity The average dose equivalent iodine-131 activity level in the primary coolant during Cycle 12 was approximately 0.00628 &#xb5;Ci/gm.
This corresponds to less than 1% of the operating limit for the concentration of radioiodine in the primary coolant.
Radioiodine analysis indicated that there were fuel rod defects in Cycle 12.
NE-978 S1Cl2 Core Performance Report Page 7
of 58  
 
R H
Figure 1.1 SURRY UNIT 1 - CYCLE 12 CORE LOADING MAP J
H G
l2B 128 128 I
I 2G6 I 4G5 I 3G7 I
F E
______ 1 ___ 1 ___ 1 ___ 1 ____
I 12A I l3B I 148 I 138 I 148 I 138 I 12A I OG2 I 2H9 I 5J6 I SH2 I 4J9 I 3H3 I 1G2 I
D 1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
I 12A I 14A I 148 I 13A I 148 I 13A I 148 I 14A I 12A I
I 1G4 I 2J4 I 6J2 I OH9 I 4J7 I !HO I 5J3 I 2J6 I OG7 I
C 1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
I 12A I 138 I 148 I 13A I 14A I 128 I 14A I 13A I 148 I 138 I 12A I
I 1G3 I 4H4 I 5J9 I 1H7 I 2JO I 3GO I 3J2 I OH5 I 5J2 I 3H9 I OG8 I
B 1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
I 12A I 14A I 148 I 138 I 14A I 128 I 14A I 128 I 14A I 138 I 148 I 14A I 12A I
I OG9 I l J4 I SJS I 3110 I 2J2 I 3G9 I OJ3 I 4GB I 1J8 I 3H4 I 4J4 I 2J8 I 2G4 I
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 I 138 I,s8 I 13A I 14A I 13A I 14A I l3B I 14A I 15A I 14A I 13A I 148 I 138 I
I 4H6 I '-Jl I 2Hl I OJ6 I OH3 I 2Jl I 2H6 I 1J2 I !HS I !JO I OHl I 4J3 I 4HO I
A 1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __ ! __
1 __
I 128 I 148 I 13A I 14A I l2B I 14A I 15A I l5B I 13A I 14A I l2B I 14A I 13A I l4B I l2B I
I 4G2 I 6JO I,HO I lJl I 4GO I 3J5 I OH6 I 3H2 I IH9 I OJ8 I 3G5 I 2J9 I OH4 I 3J8 I 3G2 I
1 __
[ ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ ! ___ 1 ___ 1 I 128 I 138 I 148 I 128 I l',A I l5B I 138 I 10 I 138 I 138 I 14A I 128 I 148 I 158 I 128 I
I 3GB I ma I SJ7 I 4Gl I 5JO I 5H7 I 4H2 I lEZ I SHl I 31H I 1J9 I 2G9 I 4JO I 4H7 I 3G6 I
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 I 128 I 148 I 15A I 14A I 128 I 14A I 15A I 138 I 15A I 14A IS2/12AI 14A I 13A I 148 I 128 I
I 3Gl I 3J6 I OH2 I !JS I 4G6 I 3J3 I 1H8 I 3H8 I lHl I OJl I 2UO I OJ7 I 2H2 I SJO I 2G7 I
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 I 138 I !48 I 13A I 14A I 13A I 14A I 138 I 14A I 13A I 14A I 13A I 148 I 138 I
I SHO I 4J6 I 1H4 I 3Jl I ZH4 I OJ4 I 4H3 I lJ6 I OH8 I OJ9 I ZH3 I SJl I 4H5 I
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 I 12A I 14A I 148 I 138 I 14A I 128 I 14A I 128 I 14A I l3B I 148 I 14A 1 12A I
I 1G9 I OJS 1 4J5 I 3115 I 2J5 I 4G4 I 3J4 I 3G4 I 2J3 I 4H8 I 3J7 I OJ2 I OGl I
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 I 12A I 138 I l',B I 13A I 14A I 128 I 14A I 13A I 148 I 138 I 12A 1
I !GI 1 4Hl I 6J3 I lli3 I lJ7 I 2GB I lJ3 I lH6 I 4J2 I 3H6 I 1G6 I
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 1--> BATCH I 12A I 14A I 148 I 13A I 148 I 13A I 148 I 128 I lZA I
I OG6 I 2J7 I 4J8 I !HZ I 6Jl I OH7 I 5J4 I 4G7 I lG3 I
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 I 12A I 138 I 148 I 138 I 148 I 138 I 12A I
I OG5 I 2H5 I 5J8 I 2H7 I 3J9 I 4H9 I 2G3 I
1 __
1 __
1 __
1 __
1 1--> ASSEMBLY ID I
I 128 I 128 I 128 I
I 3G3 I 4G3 I 2G5 I
1 __
1 __
1 __
1 FUEL ASSEHBLY DESIGN PARAHETERS SUB-BATCH l52/12A I 10 12A l2B 13A 138 14A 148 INITIAL ENRICHHENT 3.79 3.60 3.80 3.99 3.80 4.01 3.81 4.02 (W/0 U-235)
BURHUP AT BOC 12 211435 17757 35617 32362 17977 16922 0
0
( HWD/HTUJ ASSEHBLY TYPE 15xl5 15Xl5 15Xl5 l5Xl5 15Xl5 15Xl5 lSXlS lSXlS HUHBER OF ASSEHBLIES 1
l 16 24 24 28 35 28 FUEL RODS PER ASSEHBL' za4 I 204 204 Z'.04*
204 204 204 204  
*ONE ASSEHBLY (4G7J HAD ONE FUEL ROD REPLACED WITH A SOLID STAINLESS STEEL ROD DUl!IHG A RECONSTITUTION PROGRAH.  
\\E-978 S1Cl2 Core Performance Report Page 8
of 58 I
I,
l I
z 3
I 5
I 6
7 I
a 9
I 111 I
11 lZ el 13 1,
15 I
I I
I I !
I I I..
I
(  
 
I I
I I
I Section 2 BURNUP The Surry Unit 1 Cycle 12 burnup history is graphically depicted in Figure 2.1.
Surry 1 Cycle 12 achieved a cycle burnup of 19,587 MWD/MTU.
As shown in Figure 2.2, the average load factor for Cycle 12 was 92.3%  
~hen referenced to rated thermal power (2441 MW(t)).
Unit 1 performed a  
?OWer coastdown starting on November 4, 1993 until shutdown for refueling 0n January 22, 1994.
Radial (X-Y) burnup distribution maps show how the core burnup is II..... shared among the various fuel assemblies, and thereby allow a detailed  
~
burnup distribution analysis.
The TOTE 3 computer code is used to I
I I
I  
*1 I
calculate these assemblywise burnups.
Figure 2.3 is a radial burnup distribution map in which the assemblywise burnup accumulation of the core  
~t the end of Cycle 12 operation is given. For comparison purposes, the design values are also given.
Figure 2.4 is a radial burnup distribution map in which the percentage difference comparison of measured and predicted assemblywise burnup accumulation at the end of Cycle 12 operation is given.
As can be seen from this figure, the accumulated assembly burnups were within +/-4.14% of the predicted values.
In addition, deviation from quadrant symmetry in the core throughout the cycle was no greater than +/-0.41%.
The burnup sharing on a batch basis is core is operating as designed and to enable accurate end-of-cycle batch monitored to verify that the I
NE-978 S1Cl2 Core Performance Report Page 13 of 58
:::.:urnuo predictions to be made for use in reload fuel design studies.  
~ate~ definitions are given in Figure 1.1.
As seen in Figures 2.SA, 2.SB,  
~~d 2.5C, the batch burnup sharing for Surry 1 Cycle 12 followed design  
?redictions closely with no batch deviating from prediction by more than  
.. o,,  
.I,.... 0.
The batch burnup sharing deviations in conjunction with reasonable agreement between actual and predicted assemblywise burnups, anci symmetric core burnups indicate that the Cycle 12 core did deplete G.S designed.  
~E-978 SlC12 Core Performance Report Page 14 of 58 I
I el I,,
I I
I  
 
I 1*
l' I
I I
I I
I I
I i
I..
I p
H Figure 1.2 SURRY UNIT 1 - CYCLE 12 BURNABLE POISON AND SOURCE ASSEMBLY LOCATIONS H
J H
G F
E I
I I
I I
I __ I __
I __
I  
---,---I SP I
I SP 1-----,----
1 I
I BPl44 I I BPl45 I I
I D
1 __
1 __
1 __ 1 __
1 __
1 __
1 __
1 __
I I
3P I 16P I
I zap I
I 16P I
3P I
I I
1BP134 1BPl65 I 1BPl70 I 1BPl64 IBPl36 I I
C 1 __
1 __
1 __
1 __ 1 __ 1 __
1 __
1 __
1 __
1 __
I I
I 20P I
I zap I
I ZOP I
I 20P I
I I
I I
I BPl79 I I BPl82 I I BP183 I I BPl81 I I SS7 I
__ 1 __
1 __
1 __ 1 __
1 __ 1 __ 1 __
1 __
1 __
1 __
1 __
i I
3P I ZOP I
I 17P I
I 16P I
I 17P I
I 2DP I
3P I
I I
I BP135 I BP180 I I BPl50 I I BPZOO I I BP155 I I BP172 I BP137 I I
1 __ 1 __
1 __  
, __ 1 __  
, __, __ 1 __
1 __ 1 __ 1 __
I I 16P I
I l7P I
I 20P I
I 20P I
I 17P I
I 16P I
I I  
!BPl63 I  
!BP156 I 1BPl90 I IBP191 I IBP157 I IBP162 I I
A
__ 1 __
1 __
1 __
1 __ 1 __
1 __
1 __ 1 __  
, __ 1 __ 1 __ 1 __
1 __
1 __
I I
SP I
I 20P I
I 20P I
I 12P I
I 20P I
I 20P I
I SP I
I I
IBP147 I IBP186 I IBP194 I IBP158 I IBP195 I IBP187 I IBP142 I SSl I
1 __ 1 __
1 __ 1 __
1 __
1 __, __, __
1 __
1 __ 1 __ 1 __
1 I
I I 20P I
I 16P I
I 12P I
I 12P I
I 16P I
I ZDP I
I I
I I
IBP177 I IBP199 I IBP159 I IBP161 I 1BP20l I IBP171 I I
I 1 __
1 __
1 __
1 __
1 __
1 __, __
1 __
1 __
1 __
1 __
1 __,
I I
SP I
I ZOP I
I 20P I
I 12P I
I 20P I
I ZOP I
I SP I
I I ssz I BP146 I I BP189 I I BP197 I I BP160 I I BP196 I I BP188 I I BP143 I I
1 __ 1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 I
I 16P I
I 17P I
I 20P I
I ZOP I
I 17P I
I 16P I
I I
IBP168 I 1BP152 I IBP193 I IBP192 I IBP153 I 1BP169 I I
1 __
1 __
1 __  
, __ 1 __
1 __
1 __
1 __
1 __ 1 __, __
1 I
I 3P I ZOP I
I 17P I
I 16P I
I 17P I
I 20P I
3P I
I I
IBPl<tl IBP174 I 1BP151 I 1BP1911 I IBP154 I IBP176 IBP139 I I
1 __
1 __
1 __
1 __
1 __
1 __
1 __, __
1 __
1 __
I I
I 20P I
I 20P I
I 20P I
I 20P I
I I
I I
I BP173 I I BP1115 I I BP184 I I BPI 75 I I
I  
, __ 1 __, __, __, __, __ 1 __, __ 1 __, __, __,
I I
3P I 16P I
I ZDP I
I 16P I
3P I
I I
I BP140 I BPl67 I I BP1711 I I BP166 I BP138 I I
1 __
1 __
1 __  
, __ l __, __
1 __ 1 __ 1 __
I I
I SP I
I SP I
I I
3P -
3 BURNABLE POISON ROD CLUSTER 5P -
5 EURHABLE POISON ROD CLUSTER t:P -
12 BURNABLE POISON ROD CLUSTER 16P -
16 BURNABLE POISON ROD CLUSTER 17P -
17 BURNABLE POISON ROD CLUSTER
:oP -
20 BURNABLE POISON ROD CLUSTER SSx -
SECONDARY SOURCE I
I I BPl48 I I BP149 I I
I 1 __ 1 __ 1 __, __
1 __
1 __
1 __ 1 I
I I
I I
I I
I I __ I __ I __ I xxP or SSx BP:!::!::!:
HUHBER OF BP RODS or SECONDARY SOURCE IO BP ASS&#xa3;1tBLY ID  
~E-978 S1Cl2 Core Performance Report Page 9
of 58 1
z 3
4 5
6 7
II 9
10 11 lZ 13 14 15  
 
R H
Figure 1.3 SURRY UNIT 1 - CYCLE 12 MOVABLE DETECTOR LOCATIONS J
H G
I I
I HD I
I F
E  
---,----1 __
1 __
1 __
1 __
I I
I I
I I
I I
I I
HD I
I D
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
I I
I I
I I
I I
I I
I HD I
I I
HD I
HD I
I I
I HD I
C 1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
I I
I I
I i
* I I
* I I
* I I I I I I I HD I I I HD I I HD I I I I B __ , __ , __ 1 __ 1 __ 1 __ 1 __
* I I
I I
I I
I HD I
I I
HD I
I HD I
I I
I B
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
I I
I I
I I
I I
I I
I I
I I
I I
HD I
I HD I
I HD I
I I
I HD I
HD I
I HD I
1 __
1 __
1 __
1 __ 1_*_1 __
1 __
1 __ ! __
1 __
1 __
1 __
1 I
I I
I I
I I
I I
I I
I I
I I
I I
HD I
I I
HD I
I HD I
I I
I I
A 1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
I I
I I
I I
I I
I I
I I
I I
I I
I I
I HD I
I I
I HD I
I HD I
I I
HD I
I HD I
I 1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 I
I I
I I
I I
I I
I I
I I
I I
I I
HD I
I HD I
I HD I
I I
I I
HD I
I I
HD I
HD I
I 1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I HD I
I I
I HD I
HD I
I I
I I
HD I
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 I
I I
I I
I I
I I
I I
I I
I I
I HD I
I I
I HD I
I I
I I
HD I
I HD I
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 I
I I
I I
I I
I I
I I
I I
I I
I I
I HD I
I I
HD I
I HD I
HD I
I I
I 1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 I
I I
I I
I I
I I
I I
I I
HD I
I I
I HD I
I I
I I
HD I
HD I
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 I
I I
I I
I I
I I
I I
I I
I I
HD I
I HD I
I I
1 __
1 __
1 __
1 __
._1 __
1 __
1 __
1 __
1 __
1 I
I I
I I
I I
I I
HD I
I I
I HD I
I I
1 __
1 __
1 __
1 __
1 __
1 __
1 __
I I
I I
HD -
Hovable Detector Locations I
HD I
I I
1 __
1 __
1
~ - Locations Unavailable
~E-978 S1C12 Core Performance Report Page 10 of 58 I.,,
l I
z 3
*1 4
5 6
7 I.
a 9
I 10 el.
11 lZ 13 14 I
15 I
I I
I I **
I
 
I I t I
I
*I I
.I I
le
*1 I
I I
I I
j..
. I R
p N
H Figure 1.4 SURRY UNIT 1 - CYCLE 12 CONTROL ROD LOCATIONS L
K J
H 180&deg; I
G F
E D
C Loop C I
I I
I Loop B Outlet I __ I __ I __ I Inlet I
I A I
I D I
I A I
I
_1 __ 1_1_1_1_1_1_1_
H-41 I
I I
I SA I I SA I I SP I I
N-43
__ 1_1 __ 1_1_1_1_1_1_1_1_
I I c I
I B I
I I
I B I
I c I
I B
_1_1_1_1_1_1_1_1_1_1_1_1_
I I SP I I SB I I SP I I
I I SB I I
I I
1_1_1_1 __ 1_1_1_1_1_1_1_1_1_1 IAI IBI IDI lei IDI IBI IAI A
Loop C _1_1_1_1 __ 1 __ 1_1_1_1_1_1_1 __ 1_1_
Inlet 90&deg;-
I I
I SA I I
I I SB I I SB I I SP I I. SA I I
I 1_1_1_1_1 __ 1 __ 1_1_1_1_1_1_1 __ 1_1_1 I
I D I I
I I c I
I I
I c I
I I
I D I
I 1_1_1_1_1 __ 1 __ 1_1_1_1_1_1_1 __ 1_1_1 I
I I SA I I SP I I SB I I SB I I
I I SA I I
I 1_1_1_1_1 __ 1
Surry Technical Specification 3.12 limited the axially dependent heat flux hot channel factor, Fq(Z), to 2.32 x K(Z), where K(Z) is the hot channel factor normalized operating envelope.
Surry Technical Specification 3.12 limited the axially dependent heat flux hot channel factor, Fq(Z), to 2.32 x K(Z), where K(Z) is the hot channel factor normalized operating envelope.
During Cycle 12, there was a revision to Surry Technical Specification 3.12 which modified the K(Z) envelope 5* Figure 4.4A shows a plot of the K(Z) curve applicable for the maps up to Map 05. Figure 4.4B shows a plot of the K(Z) curve applicable for Maps 06 through the end of Cycle 12. The axially dependent heat flux hot channel factors, Fq(Z), for a representative set of flux maps are given in Figures 4.5, 4.6, and 4.7. Throughout Cycle 12, the measured values of Fq(Z) were within the Technical Specification limit. A summary of the maximum values of axially-dependent heat flux hot channel factors measured during Cycle 12 is given in Figure 4.8. The minimum margin to the Fq(Z) limit was 18.55%. It should be noted that the graphical representation of Figure 4.8 does not demonstrate the Fq(Z) limit change. The Fq(Z) limit applicable over the majority of the cycle is shown. Figure 4.9 shows the maximum values for the heat flux hot channel factor measured during Cycle 12. The value of the enthalpy rise hot channel factor, F-delta-H, which is the ratio of the integral of the power along the rod with the highest integrated power to that of the average rod, is routinely followed.
During Cycle 12, there was a revision to Surry Technical Specification 3.12 which modified the K(Z) envelope 5
* Figure 4.4A shows a plot of the K(Z) curve applicable for the maps up to Map 05.
Figure 4.4B shows a plot of the K(Z) curve applicable for Maps 06 through the end of Cycle 12.
The axially dependent heat flux hot channel factors, Fq(Z), for a representative set of flux maps are given in Figures 4.5, 4.6, and 4.7.
Throughout Cycle 12, the measured values of Fq(Z) were within the Technical Specification limit.
A summary of the maximum values of axially-dependent heat flux hot channel factors measured during Cycle 12 is given in Figure 4.8. The minimum margin to the Fq(Z) limit was 18.55%.
It should be noted that the graphical representation of Figure 4.8 does not demonstrate the Fq(Z) limit change.
The Fq(Z) limit applicable over the majority of the cycle is shown.
Figure 4.9 shows the maximum values for the heat flux hot channel factor measured during Cycle 12.
The value of the enthalpy rise hot channel factor, F-delta-H, which is the ratio of the integral of the power along the rod with the highest integrated power to that of the average rod, is routinely followed.
The Technical Specification limit for this parameter is set such that the departure from nucleate boiling ratio (DNBR) limit will not be violated.  
The Technical Specification limit for this parameter is set such that the departure from nucleate boiling ratio (DNBR) limit will not be violated.  
~E-978 S1Cl2 Core Performance Report Page 26 of 58 I ,I .. I I I I I I el I I I I I I .. I I ~: Additionally, the F-delta-H limit ensures that the value of this parameter used in the LOCA-ECCS analysis is not exceeded during normal operation.
~E-978 S1Cl2 Core Performance Report Page 26 of 58 I  
I I I Surry Technical Specification 3.12 was revised in June, 1992 to increase the F-delta-H limit to 1.56(1+0.3(1-P)), where 1.56 is the F-delta-H at rated thermal power 5* The measured F-delta-H without any uncertainty applied is compared directly to this limit. In Table 4.1, flux maps through Map 05 have 4% uncertainty included to the listed F-delta-H values and were compared to the 1.55 limit. The I flux maps after Map 05 have no uncertainty applied and were compared to the 1.56 limit. A summary of the maximum values for the enthalpy rise hot channel factor measured during Cycle 12 is given in Figure 4.10. This I figure reflects the 100% power Technical Specification limit, the change ~in the 100% power Technical Specification limit and measured F-delta-H values that have the appropriate uncertainty applied. (The limit curve I does not reflect the higher limit for maps taken at power levels less than I 100%.) The change in the application of measurement uncertainty associated with the Technical Specification change explains the sudden I drop in the measured F-delta-H values at beginning of cycle in Figure 4.10. As can be seen from this figure, the minimum margin to the limit I I was 4.84% for Cycle 12. The target delta flux* is the delta flux which would occur at conditions of full power, all rods out, and equilibrium xenon. The delta flux is measured with the core at or near these conditions and the target I ~* Oelta Flux= Pt-Pb 2441 X 100 where Pt= power in top of core (MW(t)) Pb= power in bottom of core (MW(t)) I NE-978 S1Cl2 Core Performance Report Page 27 of 58 delta flux is established at this measured point. Since the target delta flux varies as a function of burnup, the target value is updated monthly. By maintaining the value of delta flux relatively constant, adverse axial power shapes due to xenon redistribution are avoided. This target delta-flux was also used to establish the operational axial flux difference bands while under CAOC. The plot of the target delta flux versus burnup, given in Figure 4.11, shows the value of this parameter to have been approximately 2.5% at the beginning of Cycle 12, decreasing to -2.8% near the middle of Cycle 12, and leveling off at -3.5% at the end of Cycle 12 before increasing during the power coastdown.
,I..
This axial power shift can also be observed in the corresponding core average axial power distribution for a representative series of maps given in Figures 4.12 through 4.14. In Map Sl-12-05 (Figure 4.12), taken at 178 MWD/MTU, the axial power distribution had a shape peaked toward the middle of the core with an axial peaking factor (F-Z) of 1.209. In Map Sl-12-14 (Figure 4.13), taken at approximately 9,266 MWD/MTU, the axial power distribution peaked slightly toward the bottom of the core with an axial peaking factor of 1.148. Finally, in Map Sl-12-23 (Figure 4.14), taken at 16,789 MWD/MTU, the axial peaking factor was 1. 151, with an axial power distribution similar to Map Sl-12-14.
I I
The history of F-Z during the cycle can be seen more clearly in a plot of F-Z versus burnup given in Figure 4.15. In conclusion, the Surry 1 Cycle 12 core performed satisfactorily with power distribution analyses verifying that design predictions were ~E-978 SlC12 Core Performance Report Page 28 of 58 I I .. I I I I I I el I I I I I I I .. I I I {' I I I I I !1 ' le I I I I ,, I I ** I accurate and that: the values of the Fq(Z) and F-delta-H hot channel factors were within the limits of the Technical Specifications.
I I
NE-978 S1Cl2 Core Performance Report Page 29 of 58 Table 4.1 SURRY UNIT 1 -CYCLE 12  
I I
el I
I I
I I
I..
I  
 
I  
~:
Additionally, the F-delta-H limit ensures that the value of this parameter  
~
used in the LOCA-ECCS analysis is not exceeded during normal operation.
I I
I Surry Technical Specification 3.12 was revised in June, 1992 to increase the F-delta-H limit to 1.56(1+0.3(1-P)), where 1.56 is the F-delta-H at rated thermal power 5
* The measured F-delta-H without any uncertainty applied is compared directly to this limit.
In Table 4.1, flux maps through Map 05 have 4% uncertainty included  
~
to the listed F-delta-H values and were compared to the 1.55 limit.
The I
flux maps after Map 05 have no uncertainty applied and were compared to the 1.56 limit.
A summary of the maximum values for the enthalpy rise hot channel factor measured during Cycle 12 is given in Figure 4.10. This I
figure reflects the 100% power Technical Specification limit, the change  
~in the 100% power Technical Specification limit and measured F-delta-H values that have the appropriate uncertainty applied. (The limit curve I
does not reflect the higher limit for maps taken at power levels less than I
100%.)
The change in the application of measurement uncertainty associated with the Technical Specification change explains the sudden I
drop in the measured F-delta-H values at beginning of cycle in Figure 4.10.
As can be seen from this figure, the minimum margin to the limit I
I was 4.84% for Cycle 12.
The target delta flux* is the delta flux which would occur at  
~
conditions of full power, all rods out, and equilibrium xenon.
The delta flux is measured with the core at or near these conditions and the target I  
~* Oelta Flux=
Pt-Pb 2441 X 100 where Pt= power in top of core (MW(t))
Pb= power in bottom of core (MW(t))
I NE-978 S1Cl2 Core Performance Report Page 27 of 58  
 
delta flux is established at this measured point. Since the target delta flux varies as a function of burnup, the target value is updated monthly.
By maintaining the value of delta flux relatively constant, adverse axial power shapes due to xenon redistribution are avoided.
This target delta-flux was also used to establish the operational axial flux difference bands while under CAOC.
The plot of the target delta flux versus burnup, given in Figure 4.11, shows the value of this parameter to have been approximately 2.5% at the beginning of Cycle 12, decreasing to -2.8% near the middle of Cycle 12, and leveling off at -3.5% at the end of Cycle 12 before increasing during the power coastdown.
This axial power shift can also be observed in the corresponding core average axial power distribution for a representative series of maps given in Figures 4.12 through 4.14.
In Map Sl-12-05 (Figure 4.12), taken at 178 MWD/MTU, the axial power distribution had a shape peaked toward the middle of the core with an axial peaking factor (F-Z) of 1.209.
In Map Sl-12-14 (Figure 4.13), taken at approximately 9,266 MWD/MTU, the axial power distribution peaked slightly toward the bottom of the core with an axial peaking factor of 1.148.
Finally, in Map Sl-12-23 (Figure 4.14), taken at 16,789 MWD/MTU, the axial peaking factor was
: 1. 151, with an axial power distribution similar to Map Sl-12-14.
The history of F-Z during the cycle can be seen more clearly in a plot of F-Z versus burnup given in Figure 4.15.
In conclusion, the Surry 1 Cycle 12 core performed satisfactorily with power distribution analyses verifying that design predictions were  
~E-978 SlC12 Core Performance Report Page 28 of 58 I
I..
I I
I I
I I
el I
I I
I I
I I..
I  
 
I I {'
I I
I I
I  
!1 le I
I I
I,,
I I
I accurate and that: the values of the Fq(Z) and F-delta-H hot channel factors were within the limits of the Technical Specifications.
NE-978 S1Cl2 Core Performance Report Page 29 of 58  
 
Table 4.1 SURRY UNIT 1 - CYCLE 12  


==SUMMARY==
==SUMMARY==
OF FLUX MAPS FDR ROUTINE OPERATION I I l 2 I 3 I I I I I BURN I BANK F-QCZJ HOT F-DHCNJ HOT ICORE FCZJ CORE I AXIAL I NO.I IHAPI UP I D CHANNEL FACTOR CHNL. FACTOR IHAX TUT I OFF I IF I IHO. I DATE lt\lD/ PIIR I STEPS I I I SET ITHINI I I HTU CZJ I I ASSYIPINIAXIAL I I.AXIAL I FCZJI HAX ILOCI CZ> IILESI I I I I I I IPOINTIF-QCZJ IASSYIPIN IF-DHCNJIPOINT I I I I I I I_I I I __ I 1 __ 1_1 __ 1 __ 1_1_1 __ 1 __ 1 __ 1 __ 1_1 __ 1_1 I 5 105-11-921 178 100.01 220 L05 OKI 30 I 1.866 L051 DK I 1.475 I 30 ll.20911.0161 NWI 2.6921 46 I 6 I 06-10-921 1151 99.931 224 E03 ICI 25 I 1.863 E031 IC I 1.413 I 30 11.20011.0121 NWI 2.Z411 4& I 7 107-10-921 2141 100.01 221 E03 ICI 26 I 1.840 E031 IC I 1.404 I 30 ll.19011.0lGI NWI 1.7981 4& I 8 108-10-921 3193 100.01 225 E03 ICI 25 I 1.801 LlOI GH I 1.408 I 30 ll.17411.0071 Nlfl 1.3261 411 I 9 109-14-921 4242 99.1181 225 FU Hll 32 I 1.767 LlOI GH I 1.410 I 30 I Ll60ll.0061 NEI 0.65el ft7 110 110-14-921 5280 99.9111 224 LlD IHI 41 I 1.759 LlOI IH I 1.411 I 37 IL14111l.0061 NEI -0.2831 4& Ill 111-12-921 6244 99.941 224 LlO IHl42&43 1.763 LIOI IH I 1.415 I 41 ll.14111.0051 NEI -0.76111 4& I 12 I 12-07-921 7105 100 .11 224 LIO IHI 43 1.771 LlOI IH I 1.418 I 42 ll.l4Dll.0041 NWI -1.4461 47 113 IOl-13-931 8260 99.921 224 LlO IHI 45 l.765 LIOI IH I 1.417 I 45 ll.13511.0041 NWI -1.6191 47 114 102-15-931 9266 99.901 224 LlO IHI 4& 1.784 LlOI IH I 1.418 47 ll.14811.0021 NIii -2.7771 47 115 103-15-931 10112 99.921 224 LlO LGI 46 1.784 LlOI LG I 1.421 411 ll.14611.0031 NWI -2.6941 47 116 104-19-931 112110 100.01 224 LlD LGI 47 1.795 LlOI LG I 1.423 48 ll.15311.0021 NWI -3.ZZZI 411 117 105-19-931 12277 100.11 224 LlO LGI 47 1.799 LIDI LG I 1.422 48 ll.15&11.0021 NWI -3.5741 46 118 I0&-18-931 13209 100.01 223 LID LGI 47 1.795 llOI LG-I 1.423 52 ll.15411.0031 NWI -3.5441 47 119 107-16-931 14214 99.921 222 F05 IDI 52 1.794 LIOI LG I 1.419 52 ll.l&Oll.0021 NWI -2.7681 47 120 108-11-931 15060 99.941 222 F05 IDI 52 1.7112 LlOI LG I 1.410 52 ll.16311.0041 NIii -3.4911 47 I 21 I 011-31-931 15417 72.601 172 LlO LGI 411 1.7112 LIOI DF I 1.416 52 ll.16011.0071 NIii -5.6761 OWi 122 109-15-931 15907 99.981 223 F05 JDI 52 1.763 LIOI LG I 1.401 52 ll.16111.0091 NIii -3.4551 42 I 23 110-11-931 16789 99.971 223&2241 Kll FLI 52 1.756 LIOI LF I 1.397 52 11.15111.0041 Nwl -2.a1z1 :sa I 24 111-10-931 177811 95.341 223 I F05 JDI 52 1.631 LlOI LF I 1.396 52 ll.10911.0061 NIii -0.11661 43 I 25 111-22-93 I 111126 87.321 225 I LIO LFI 10 1.762 LIOI LF I 1.399 10 ll.16411.0l-OI NWI 3.59111 44 I 26 112-16-931 18809 73.871 223 I LIO LFI 09 1.867 LlOI LF I 1.402 09 ll.22211.0111 NWI 6.MZI 46 127 IOl-05-941 19263 62.671 218 I K09 JDI 09 1.991 LIO I LF I 1.407 09 ll.28711.0121 NMI 10.4151 4Z I_I ___ I __ I I ___ I _______ I __ I ____ I __ I __ I_I __ I_ NOTES: HOT SPOT LOCATIONS ARE SPECIFIED BY GIVING ASSEKBLY LOCATIONS CE.G. HOB IS TIE CENTER-OF-CORE ASSEIBLY), FOLLOWED IY THE PIN LOCATION (DENOTED BY THE "T" COORDINATE WITH THE FIFTEEN ROWS OF FUEL RODS LETTERED A THROUGH RAND THE *x* COORDINATE DESIGNATED IN A SIMILAR KANNER). IN TIE *z-DIRECTION THE CORE IS DIVIDED INTO 61 AXIAL POINTS STARTING FROII THE TOP OF THE CORE. 1. F-QCZJ INCLUDES A TOTAL UNCERTAINTY OF 1.08. 2. F-DHCNJ INCLUDES AH UNCERTAINTY OF 1.04 FOR NAP 05. THERE IS NO UNCERTAINTY APPLIED TD F-DH(NJ FDR KAPS 06 THROUGH 27. 3. CORE TILT -QUADRANT POWER TILT AS DEFINED BY THE INCDRE CODE. ~E-978 SlC12 Core Performance Report Page 30 of 58 I I I I I I I I I I I I I I .. I I I I I I I I I I I I I I ** I R p Figure 4.1 SURRY UNIT 1 -CYCLE 12 ASSEMBLYWISE POWER DISTRIBUTION Sl-12-05 H PREDICTED tlEASIJRED K J H G F E 0.33 0.37 0.34 D C B PREDICTED 11EASURED
OF FLUX MAPS FDR ROUTINE OPERATION I
* PCT DIFFERENCE. . 0.35. 0.39. 0.35. 5.1. 5.0. 3.3 * . PCT DIFFERENCE.
I l
0.37 0.76 l.14 l.04 1.15 0.76 0.37 . o.:sa . o.79 . 1.18
2 I
3 I
I I
I I
BURN I
BANK F-QCZJ HOT F-DHCNJ HOT ICORE FCZJ CORE I AXIAL I NO.I IHAPI UP I
D CHANNEL FACTOR CHNL. FACTOR IHAX TUT I
OFF I IF I IHO. I DATE lt\\lD/
PIIR I STEPS I
I I
SET ITHINI I
I HTU CZJ I I ASSYIPINIAXIAL I I.AXIAL I FCZJI HAX ILOCI CZ>
IILESI I
I I
I I
I IPOINTIF-QCZJ IASSYIPIN IF-DHCNJIPOINT I I
I I
I I
I_I I
I __ I 1 __ 1_1 __ 1 __ 1_1_1 __
1 __
1 __ 1 __ 1_1 __ 1_1 I 5 105-11-921 178 100.01 220 L05 OKI 30 I 1.866 L051 DK I 1.475 I 30 ll.20911.0161 NWI 2.6921 46 I 6 I 06-10-921 1151 99.931 224 E03 ICI 25 I 1.863 E031 IC I 1.413 I 30 11.20011.0121 NWI 2.Z411 4&
I 7 107-10-921 2141 100.01 221 E03 ICI 26 I 1.840 E031 IC I 1.404 I 30 ll.19011.0lGI NWI 1.7981 4&
I 8 108-10-921 3193 100.01 225 E03 ICI 25 I 1.801 LlOI GH I 1.408 I 30 ll.17411.0071 Nlfl 1.3261 411 I 9 109-14-921 4242 99.1181 225 FU Hll 32 I 1.767 LlOI GH I 1.410 I 30 I Ll60ll.0061 NEI 0.65el ft7 110 110-14-921 5280 99.9111 224 LlD IHI 41 I 1.759 LlOI IH I 1.411 I 37 IL14111l.0061 NEI -0.2831 4&
Ill 111-12-921 6244 99.941 224 LlO IHl42&43 1.763 LIOI IH I 1.415 I 41 ll.14111.0051 NEI -0.76111 4&
I 12 I 12-07-921 7105 100.11 224 LIO IHI 43 1.771 LlOI IH I 1.418 I 42 ll.l4Dll.0041 NWI -1.4461 47 113 IOl-13-931 8260 99.921 224 LlO IHI 45 l.765 LIOI IH I 1.417 I 45 ll.13511.0041 NWI -1.6191 47 114 102-15-931 9266 99.901 224 LlO IHI 4&
1.784 LlOI IH I 1.418 47 ll.14811.0021 NIii -2.7771 47 115 103-15-931 10112 99.921 224 LlO LGI 46 1.784 LlOI LG I 1.421 411 ll.14611.0031 NWI -2.6941 47 116 104-19-931 112110 100.01 224 LlD LGI 47 1.795 LlOI LG I 1.423 48 ll.15311.0021 NWI -3.ZZZI 411 117 105-19-931 12277 100.11 224 LlO LGI 47 1.799 LIDI LG I 1.422 48 ll.15&11.0021 NWI -3.5741 46 118 I0&-18-931 13209 100.01 223 LID LGI 47 1.795 llOI LG-I 1.423 52 ll.15411.0031 NWI -3.5441 47 119 107-16-931 14214 99.921 222 F05 IDI 52 1.794 LIOI LG I 1.419 52 ll.l&Oll.0021 NWI -2.7681 47 120 108-11-931 15060 99.941 222 F05 IDI 52 1.7112 LlOI LG I 1.410 52 ll.16311.0041 NIii -3.4911 47 I 21 I 011-31-931 15417 72.601 172 LlO LGI 411 1.7112 LIOI DF I 1.416 52 ll.16011.0071 NIii -5.6761 OWi 122 109-15-931 15907 99.981 223 F05 JDI 52 1.763 LIOI LG I 1.401 52 ll.16111.0091 NIii -3.4551 42 I 23 110-11-931 16789 99.971 223&2241 Kll FLI 52 1.756 LIOI LF I 1.397 52 11.15111.0041 Nwl -2.a1z1 :sa I 24 111-10-931 177811 95.341 223 I F05 JDI 52 1.631 LlOI LF I 1.396 52 ll.10911.0061 NIii -0.11661 43 I 25 111-22-93 I 111126 87.321 225 I LIO LFI 10 1.762 LIOI LF I 1.399 10 ll.16411.0l-OI NWI 3.59111 44 I 26 112-16-931 18809 73.871 223 I LIO LFI 09 1.867 LlOI LF I 1.402 09 ll.22211.0111 NWI 6.MZI 46 127 IOl-05-941 19263 62.671 218 I K09 JDI 09 1.991 LIO I LF I 1.407 09 ll.28711.0121 NMI 10.4151 4Z I_I ___ I
__ I I ___ I _______ I __ I ____
I __ I __ I_I __ I_
NOTES: HOT SPOT LOCATIONS ARE SPECIFIED BY GIVING ASSEKBLY LOCATIONS CE.G. HOB IS TIE CENTER-OF-CORE ASSEIBLY),
FOLLOWED IY THE PIN LOCATION (DENOTED BY THE "T" COORDINATE WITH THE FIFTEEN ROWS OF FUEL RODS LETTERED A THROUGH RAND THE *x* COORDINATE DESIGNATED IN A SIMILAR KANNER).
IN TIE *z-DIRECTION THE CORE IS DIVIDED INTO 61 AXIAL POINTS STARTING FROII THE TOP OF THE CORE.
: 1. F-QCZJ INCLUDES A TOTAL UNCERTAINTY OF 1.08.
: 2. F-DHCNJ INCLUDES AH UNCERTAINTY OF 1.04 FOR NAP 05.
THERE IS NO UNCERTAINTY APPLIED TD F-DH(NJ FDR KAPS 06 THROUGH 27.
: 3. CORE TILT - QUADRANT POWER TILT AS DEFINED BY THE INCDRE CODE.  
~E-978 SlC12 Core Performance Report Page 30 of 58 I
I I
I I
I I
I I
I I
I I
I..
I  
 
I I
I I
I I
I I
I I
I I
I I
R p
Figure 4.1 SURRY UNIT 1 - CYCLE 12 ASSEMBLYWISE POWER DISTRIBUTION Sl-12-05 H
PREDICTED tlEASIJRED K
J H
G F
E 0.33 0.37 0.34 D
C B
PREDICTED 11EASURED
* PCT DIFFERENCE.  
. 0.35. 0.39. 0.35.
5.1. 5.0. 3.3 *  
. PCT DIFFERENCE.
0.37 0.76 l.14 l.04 1.15 0.76 0.37  
. o.:sa. o.79. 1.18
* 1.01
* 1.01
* 1.11
* 1.11
* a.n . o.3a
* a.n. o.3a
* 4.6. 3.9. 3.2. 2.9. l.7. 0.6. 2.1. 0.41 l.13 1.23 1.20 l.17 l.20 1.24 l.13 0.40 . 0.42. 1.15. 1.26. 1.24. l.18. l.21. 1.24. 1.16. 0.42. 4.1. 2.1. 2.2. 3.3. 0.7. 0.3. 0.6. 3.0. 4.5 * . 0.48 0.93 1.20 1.25 l.ll 0.94 1.11 l.25 1.20 0.93 0.48 . 0.41 . 0.95
* 4.6. 3.9. 3.2. 2.9. l.7. 0.6. 2.1.
0.41 l.13 1.23 1.20 l.17 l.20 1.24 l.13 0.40  
. 0.42. 1.15. 1.26. 1.24. l.18. l.21. 1.24. 1.16. 0.42.
4.1. 2.1. 2.2. 3.3. 0.7. 0.3. 0.6. 3.0. 4.5 *  
. 0.48 0.93 1.20 1.25 l.ll 0.94 1.11 l.25 1.20 0.93 0.48  
. 0.41. 0.95
* 1.21
* 1.21
* 1.28 . 1.14 . 0.% . 1.11 . 1.26
* 1.28. 1.14. 0.%. 1.11. 1.26
* 1.22
* 1.22
* 0.95
* 0.95
* 0.41
* 0.41
* 2.4. 2.1
* 2.4.
* 0.6. 2.1. 2.7. 2.0. 0.1. l.l. l.3. 1.4. 1.6. 0.37 1.13 1.20 1.33 1.22 1.03 1.13 1.03 1.22 1.33 1.20 1.13 0.37 . 0.37. 1.14. 1.22. 1.37. 1.25. 1.06. 1.16. l.05. 1.24. 1.34. 1.19. 1.13. 0.37. l.O. l.O. 1.7. 2.8. 2.4. 3.0. 2.9. 2.0. 1.2. 0.7. *l.2. 0.2. 1.9. 0.76 1.23 1.25 1.22 1.23 1.16 1.25 1.16 1.23 1.22 1.25 1.24 0.76 . 0.77. 1.24. 1.27. 1.26. 1.26. I.la. 1.28. 1.17. 1.25. 1.22. 1.23. 1.21. 0.75. 0.6. 0.6. 1.9. 2.7. 2.4. 2.1. 2.4. l.4. 1.0. -0.1. *1.4. *2.0. *l.8. A 0.33 1.14 1.20 l.11 l.03 1.16 1.26 1.20 1.26 1.16 l.03 1.11 l.20 1.15 0.34 . 0.34. 1.16. 1.20. l.12. l.04. 1.17. l.26. l.21. 1.27. 1.16. l.OZ. 1.08. 1.16. 1.09. 0.32. 2.5. 1.3. o.4. 1.0. 1.2. o.9. 0.1. 1.1. o.4. o.3. -0.9. -2.a. -3.a. -s.o. -4.7. 0.37. 1.04 1.17 0.9't 1.13 1.25 l.20 1.19 1.20 1.25 l.13 0.95 l.17 1.04 0.37 . 0.38
2.1
* 1.06 . 1.19 . 0.95
* 0.6. 2.1. 2.7. 2.0. 0.1. l.l. l.3. 1.4. 1.6.
0.37 1.13 1.20 1.33 1.22 1.03 1.13 1.03 1.22 1.33 1.20 1.13 0.37  
. 0.37. 1.14. 1.22. 1.37. 1.25. 1.06. 1.16. l.05. 1.24. 1.34. 1.19. 1.13. 0.37.
l.O. l.O. 1.7. 2.8. 2.4. 3.0. 2.9. 2.0. 1.2. 0.7. *l.2. 0.2. 1.9.
0.76 1.23 1.25 1.22 1.23 1.16 1.25 1.16 1.23 1.22 1.25 1.24 0.76  
. 0.77. 1.24. 1.27. 1.26. 1.26. I.la. 1.28. 1.17. 1.25. 1.22. 1.23. 1.21. 0.75.
0.6. 0.6. 1.9. 2.7. 2.4. 2.1. 2.4. l.4. 1.0. -0.1. *1.4. *2.0. *l.8.
A 0.33 1.14 1.20 l.11 l.03 1.16 1.26 1.20 1.26 1.16 l.03 1.11 l.20 1.15 0.34  
. 0.34. 1.16. 1.20. l.12. l.04. 1.17. l.26. l.21. 1.27. 1.16. l.OZ. 1.08. 1.16. 1.09. 0.32.
2.5. 1.3. o.4. 1.0. 1.2. o.9. 0.1. 1.1. o.4. o.3. -0.9. -2.a. -3.a. -s.o. -4.7.
0.37. 1.04 1.17 0.9't 1.13 1.25 l.20 1.19 1.20 1.25 l.13 0.95 l.17 1.04 0.37  
. 0.38
* 1.06. 1.19. 0.95
* 1.13
* 1.13
* 1.25 . 1.20
* 1.25. 1.20
* 1.19 . 1.19
* 1.19. 1.19
* 1.24
* 1.24
* 1.11
* 1.11
* 0.9Z
* 0.9Z
* 1.13 . 1.00
* 1.13. 1.00
* 0.36
* 0.36
* 2.4. 1.6. l.6. 0.7. -0.l. 0.1. 0.5. o.o. -0.7. -0.6. *l.7. -3.l. -3.5. -3.6. -3.2. 0.33 1.15 1.20 1.11 1.03 l.16 l.26 1.20 1.26 1.16 1.03 l.11 1.20 1.15 0.33 . o.34 . 1.16. 1.21
* 2.4. 1.6. l.6. 0.7. -0.l. 0.1. 0.5. o.o. -0.7. -0.6. *l.7. -3.l. -3.5. -3.6. -3.2.
* 1.11. 1.02. 1.16. 1.26. 1.19. 1.25. 1.14. 1.00. 1.oa. 1.16. 1.12. o.33. 2.5. 1.5. l.O. 0.6. *O.l. -o.z. 0.4. -0.5. *0.8. *2.l. *2.2. -3.3. *3.3. *2.8. -1.8. 0.76 1.24 l.25 1.22 1.23 1.16. l.25 l.16 1.24 1.23 1.26 1.24 0.77 . 0.76
0.33 1.15 1.20 1.11 1.03 l.16 l.26 1.20 1.26 1.16 1.03 l.11 1.20 1.15 0.33  
. o.34. 1.16. 1.21
* 1.11. 1.02. 1.16. 1.26. 1.19. 1.25. 1.14. 1.00. 1.oa. 1.16. 1.12. o.33.
2.5. 1.5. l.O. 0.6. *O.l. -o.z. 0.4. -0.5. *0.8. *2.l. *2.2. -3.3. *3.3. *2.8. -1.8.
0.76 1.24 l.25 1.22 1.23 1.16. l.25 l.16 1.24 1.23 1.26 1.24 0.77  
. 0.76
* l.24
* l.24
* 1.26
* 1.26
Line 135: Line 2,210:
* 1.22
* 1.22
* 1.20
* 1.20
* 0.74 . 0.1. 0.1. o.9. 2.0. 1.9. -o.6. -o.6. -o.a. -1.1. -1.a. -3.o. -3.Z. -3.o * . 0.37 1.13 1.21. 1.33 1.22 1.03 1.13 1.03 1.22 1.33 1.20 1.13 0.37 . 0.38
* 0.74.
0.1. 0.1. o.9. 2.0. 1.9. -o.6. -o.6. -o.a. -1.1. -1.a. -3.o. -3.Z. -3.o *  
. 0.37 1.13 1.21. 1.33 1.22 1.03 1.13 1.03 1.22 1.33 1.20 1.13 0.37  
. 0.38
* 1.16
* 1.16
* 1.23
* 1.23
Line 148: Line 2,226:
* 1.12
* 1.12
* 0.36
* 0.36
* 2.4. 2.4. 2.2. 2.0. o.6. -1.1. -0.1. -0.1. 0.1. -1.z. -1.1. -1.0. -1.4. 0.40 0.93 1.21 1.25 1.11 0.95 1.11 1.25 1.20 0.93 0.40 . 0.42. 0.97. 1.23. 1.25. 1.09. 0.93. 1.09. l.23. l.18. 0.93. 0.40. 4.7. 3.6. 2.0. -0.2. -1.7. -1.9. -1.8. *1.5. *l.l. -0.Z. 1.0. 0.41 1.13 1.24 1.21 1.17 1.20 1.23 1.12 0.40 . 0.42. 1.16. 1.25. 1.18. 1.13. 1.16. 1.18. 1.09. 8.40. 3.8. 2.9. 0.7. *2.5. -3.3. -3.8. -3.6. *2.3. 0.3. o.37 0.11 1.15 1.04 1.14 o.76 o.36 . 0.3a. 0.77. 1.12. 1.01
* 2.4. 2.4. 2.2. 2.0. o.6. -1.1. -0.1. -0.1. 0.1. -1.z. -1.1. -1.0. -1.4.
* 1.10. 0.73. 0.35. 2.9. l.l. *2.3. -3.3. -4.2. -3.9. *3.5. STAHIWID DEVIATION  
0.40 0.93 1.21 1.25 1.11 0.95 1.11 1.25 1.20 0.93 0.40  
=l.274 0.34 0.37 0.33 . 0.33. 0.36. 0.32. . *1.6. -2.7. -4.4. AVERAGE .PCT DIFFERENCE.  
. 0.42. 0.97. 1.23. 1.25. 1.09. 0.93. 1.09. l.23. l.18. 0.93. 0.40.
= 1.9 SUKttARY t1AP NO: Sl-12-05 DATE: 5/11/92 POWER: 100.oz CONTROL ROD POSITION:
4.7. 3.6. 2.0. -0.2. -1.7. -1.9. -1.8. *1.5. *l.l. -0.Z. 1.0.
F-Q(Z) = 1.866 QPTR: D BANK AT 220 STEPS F-DH(N) = 1.475 NW l. 0164 INE 0.9998 I F(Zl = 1.209 SW 1.0053 ISE 0.9786 BURNUP = 178 HWD/HTU A.O. = 2.6927. NE-978 S1C12 Core Performance Report Page 31 of 58 1 2 3 5 6 7 a 9 u 11 12 13 14 15 R Figure 4.2 SURRY UNIT 1 -CYCLE 12 ASSEMBLYWISE POWER DISTRIBUTION Sl-12-14 11 K H G F E D 0.31 0.35 0.31 C PREDICTED MEASURED ?PEDICTED  
0.41 1.13 1.24 1.21 1.17 1.20 1.23 1.12 0.40  
~EASURED .PCT DIFFERENCE. . 0.33 . 0.37
. 0.42. 1.16. 1.25. 1.18. 1.13. 1.16. 1.18. 1.09. 8.40.
* 0.32 . ,.2. 4.2. 2.9. . PCT DIFFERENCE.
3.8. 2.9. 0.7. *2.5. -3.3. -3.8. -3.6. *2.3. 0.3.
0.36 0.70 1.03 0.93 l.03 0.71 0.36 . 0.37. 0.72 . l.04 . 0.94
o.37 0.11 1.15 1.04 1.14 o.76 o.36  
* l.04 . 0.71 . 0.37. 3.7. 2.5. 1.4. 1.1
. 0.3a. 0.77. 1.12. 1.01
* o.3. 1.0 . 2.8. 0.40 l.06 1.23 l.ll. 1.24 1.12 1.23 l.06 0.40 . 0.42. 1.07. 1.24. 1.13. l.Zl . 1.10. 1.24 . 1.10. 0.43. 3.1 . 0.5. 0.5. 1.7. -Z.l. -1.4. l.O . 3.8. 5.7. 0.40 0.91 1.28 1.20 1.25 0.99 1.25 1.20 1.28 0.91 0.40 . 0.41
* 1.10. 0.73. 0.35.
* 0.91 . 1.26. 1.20. 1.26. 0.99. 1.22. 1.21 . 1.30. 0.92. 0.41 . 0.3. 0.5. -1.S. 0.4. 0.8. -0.l . -Z.9 . 0.9. l.Z. 1.4 . 2.6. o.36 1.06 1.23 1.21 1.33 1.06 1.21 1.06 1.33 1.21 1.28 1.06 o.36 . 0.36. 1.05. 1.28. 1.28. 1.34 . 1.08. 1.29. 1.07. 1.34 . 1.:8. 1.25. 1.07. 0.33. . -1.0. -1.0 . -0.3 . l.O . O.S. l.b. 1.7, 1.0 . 0.6. 0.3. -2.2. l.O. 4.7. 0.70 1.23 1.20 1.34 1.22 1.30 1.21 1.30 1.22 1.33 1.20 1.23 0.70 . 0.70. 1.23. 1.20 . 1.34 . 1.23. 1.31 . 1.23. 1.30 . 1.22. 1.33. 1.13. 1.23. 0.71 . . -0.4. -0.4 . 0.2. 0.2. 0.7. 1.0 . 1.4. 0.6. 0.3. -0.4. -1.3, -0.5, 1.0 . A 0.31 1.03 1.11 1.25 1.06 1.30 1.17 1.15 1.13 1.30 1.06 1.25 1.11 1.03 0.31 * . 0.33. 1.04. 1.12 . 1.25. 1.05. 1.29. 1.17. 1.15. 1.18. 1.30. 1.06. 1.23. 1.10. 1.01
2.9. l.l. *2.3. -3.3. -4.2. -3.9. *3.5.
* 0.31. 4.0 . 1.2. 0.2 . -0.4 . -1.l . -0.8. -0.l . 0.4 . 0.0 . 0.4. -0.l . -1.4 , -1.S, -Z.2. -1.3. o.35 o.93 1.24 o.99 1.21 1.21 1.14 1.03 1.14 1.21 1.21 o.99 1.24 o.93 o.35 . 0.37 . 0.94 . l.24 . 0.99 . 1.25 , 1.20 . l.14
STAHIWID DEVIATION  
=l.274 0.34 0.37 0.33  
. 0.33. 0.36. 0.32.  
. *1.6. -2.7. -4.4.
AVERAGE  
.PCT DIFFERENCE.  
=
1.9 SUKttARY t1AP NO: Sl-12-05 DATE:
5/11/92 POWER: 100.oz CONTROL ROD POSITION:
F-Q(Z) = 1.866 QPTR:
D BANK AT 220 STEPS F-DH(N) = 1.475 NW l. 0164 INE 0.9998 I
F(Zl  
= 1.209 SW 1.0053 ISE 0.9786 BURNUP = 178 HWD/HTU A.O. = 2.6927.
NE-978 S1C12 Core Performance Report Page 31 of 58 1
2 3
5 6
7 a
9 u
11 12 13 14 15  
 
R Figure 4.2 SURRY UNIT 1 - CYCLE 12 ASSEMBLYWISE POWER DISTRIBUTION Sl-12-14 11 K
H G
F E
D 0.31 0.35 0.31 C
PREDICTED MEASURED  
?PEDICTED  
~EASURED  
.PCT DIFFERENCE.  
. 0.33. 0.37
* 0.32.  
,.2. 4.2. 2.9.  
. PCT DIFFERENCE.
0.36 0.70 1.03 0.93 l.03 0.71 0.36  
. 0.37. 0.72. l.04. 0.94
* l.04. 0.71. 0.37.
3.7. 2.5. 1.4. 1.1
* o.3.
1.0.
2.8.
0.40 l.06 1.23 l.ll. 1.24 1.12 1.23 l.06 0.40  
. 0.42. 1.07. 1.24. 1.13. l.Zl. 1.10. 1.24. 1.10. 0.43.
3.1.
0.5. 0.5. 1.7. -Z.l. -1.4.
l.O.
3.8. 5.7.
0.40 0.91 1.28 1.20 1.25 0.99 1.25 1.20 1.28 0.91 0.40  
. 0.41
* 0.91. 1.26. 1.20. 1.26. 0.99. 1.22. 1.21. 1.30. 0.92. 0.41.
0.3. 0.5. -1.S.
0.4. 0.8. -0.l. -Z.9.
0.9. l.Z.
1.4.
2.6.
o.36 1.06 1.23 1.21 1.33 1.06 1.21 1.06 1.33 1.21 1.28 1.06 o.36  
. 0.36. 1.05. 1.28. 1.28. 1.34. 1.08. 1.29. 1.07. 1.34. 1.:8. 1.25. 1.07. 0.33.  
. -1.0. -1.0. -0.3.
l.O.
O.S. l.b. 1.7, 1.0.
0.6. 0.3. -2.2. l.O. 4.7.
0.70 1.23 1.20 1.34 1.22 1.30 1.21 1.30 1.22 1.33 1.20 1.23 0.70  
. 0.70. 1.23. 1.20. 1.34. 1.23. 1.31. 1.23. 1.30. 1.22. 1.33. 1.13. 1.23. 0.71.  
. -0.4. -0.4.
0.2. 0.2. 0.7.
1.0.
1.4. 0.6. 0.3. -0.4. -1.3, -0.5, 1.0.
A 0.31 1.03 1.11 1.25 1.06 1.30 1.17 1.15 1.13 1.30 1.06 1.25 1.11 1.03 0.31 *  
. 0.33. 1.04. 1.12. 1.25. 1.05. 1.29. 1.17. 1.15. 1.18. 1.30. 1.06. 1.23. 1.10. 1.01
* 0.31.
4.0.
1.2. 0.2. -0.4. -1.l. -0.8. -0.l.
0.4.
0.0.
0.4. -0.l. -1.4, -1.S, -Z.2. -1.3.
o.35 o.93 1.24 o.99 1.21 1.21 1.14 1.03 1.14 1.21 1.21 o.99 1.24 o.93 o.35  
. 0.37. 0.94. l.24. 0.99. 1.25, 1.20. l.14
* l.07
* l.07
* l.14 . l.21 . 1.26 . 0.97 . l.22 . 0.93 . 0.36
* l.14. l.21. 1.26. 0.97. l.22. 0.93. 0.36
* 4.0. 1.5. -0.0 . -O.l . -1.S. -0.2. -0.3. -0.2. -0.2. 0.5. -0.6. -1.7. -1.6. 0.4 . l.l. 0.31 1.03 1.12 1.25 1.06 1.30 1.18 1.14 1.17 1.30 1.06 1.25 1.12 1.03. 0.31. . 0.33. 1.04. 1.11 . 1.25 . 1.09 . 1.31 . 1.17. 1.14
* 4.0. 1.5. -0.0. -O.l. -1.S. -0.2. -0.3. -0.2. -0.2. 0.5. -0.6. -1.7. -1.6.
* 1.17. 1.27. 1.05. 1.24. 1.12. 1.04 . 0.32. 4.o . 1.0. -o.5 . o.3 . 2.1 . o.9. -o.3. o.o. -o.3. -2.0 * -o.9. -o.3. o.o. 1.5 . 3.3. 0.70 1.23 1.20 1.33 1.22 1.30 1.21 1.30 1.22 1.34 1.20 1.23 0.71 . 0.70. 1.22. 1.20
0.4.
* 1.36. 1.24. 1.29. 1.20. 1.29. 1.22. 1.33. 1.20 . 1.25. 0.72. . -0.9. -0.9. 0.6. 1.8. 1.8. -0.6. -0.3. -0.4. -0.3. -0.2. -0.l. 1.1. 2.4 . 0.36 1.06 1.28 1.27 1.33 1.06 1.27 1.06 1.33 1.27 1.28 1.06 0.36 . 0.37. 1.03. 1.30 , 1.23. 1.32. 1.05. 1.26. 1.07. 1.35. 1.28. 1.31 . 1.10. 0.37. 1.5. 1.5. 1.1
l.l.
* o.6. -o.s. -1.1. -0.3. o.5. 1.3. o.7. 2.1 . 3.3. 3.3. 0.40 0.91 1.28 1.20 1.25 0.99 1.25 1.19 1.28 0.91 0.40 . 0.42 . 0.93 . 1.29. 1.18. 1.22. 0.97. 1.24. 1.19. 1.29. 0.94. 0.43. 3.9 . 2.6. 0.6. -1.S. -Z.7. -Z.2. -1.1 . -0.3. 1.0. 3.7. 5.7. 0.40 l.06 1.23 1.12 1.24 1.11 1.23 1.06 0.40 . 0.42. 1.10 . 1.24. 1.03. 1.20
0.31 1.03 1.12 1.25 1.06 1.30 1.18 1.14 1.17 1.30 1.06 1.25 1.12 1.03. 0.31.  
. 0.33. 1.04. 1.11. 1.25. 1.09. 1.31. 1.17. 1.14
* 1.17. 1.27. 1.05. 1.24. 1.12. 1.04. 0.32.
4.o.
1.0. -o.5.
o.3.
2.1.
o.9. -o.3. o.o. -o.3. -2.0 * -o.9. -o.3. o.o.
1.5.
3.3.
0.70 1.23 1.20 1.33 1.22 1.30 1.21 1.30 1.22 1.34 1.20 1.23 0.71  
. 0.70. 1.22. 1.20
* 1.36. 1.24. 1.29. 1.20. 1.29. 1.22. 1.33. 1.20. 1.25. 0.72.  
. -0.9. -0.9. 0.6. 1.8. 1.8. -0.6. -0.3. -0.4. -0.3. -0.2. -0.l. 1.1.
2.4.
0.36 1.06 1.28 1.27 1.33 1.06 1.27 1.06 1.33 1.27 1.28 1.06 0.36  
. 0.37. 1.03. 1.30, 1.23. 1.32. 1.05. 1.26. 1.07. 1.35. 1.28. 1.31. 1.10. 0.37.
1.5. 1.5.
1.1
* o.6. -o.s. -1.1. -0.3. o.5. 1.3. o.7.
2.1.
3.3. 3.3.
0.40 0.91 1.28 1.20 1.25 0.99 1.25 1.19 1.28 0.91 0.40  
. 0.42. 0.93. 1.29. 1.18. 1.22. 0.97. 1.24. 1.19. 1.29. 0.94. 0.43.
3.9.
2.6. 0.6. -1.S. -Z.7. -Z.2. -1.1. -0.3. 1.0. 3.7. 5.7.
0.40 l.06 1.23 1.12 1.24 1.11 1.23 1.06 0.40  
. 0.42. 1.10. 1.24. 1.03. 1.20
* 1.03. 1.20
* 1.03. 1.20
* 1.06. 0.42. 3.9. 3.9. 0.5. -2.9. -3.0. -3.0. -2.6. -0.l. 4.6. 0.36 0.71 1.03 0.93 1.03 0.70 0.36 . 0.38. 0.73. 1.03. 0.91
* 1.06. 0.42.
* 0.99. 0.63. 0.35. 3.9. 3.3. o.3. -1.9. -3.5. -3.l . -2.5. STANDARD DEVIATION  
3.9. 3.9. 0.5. -2.9. -3.0. -3.0. -2.6. -0.l. 4.6.
=1.304 0.31 0.35 0.31 . 0.32. 0.35. 0.30. 2.5. 0.1 * -3.6. AVERAGE .PCT DIFFERENCE.  
0.36 0.71 1.03 0.93 1.03 0.70 0.36  
= l.5 SUHHARY HAP NO: Sl-12-14 DATE: 2/15/93 POWER: 99.9% CONTROL ROD POSITION:
. 0.38. 0.73. 1.03. 0.91
F-QCZl = 1.784 QPTR: D BANK AT 224 STEPS F-DHCNI = 1.418 NW 1. a 019 NE 0.9999 F(Zl = 1.148 SW 1.0015 SE 0.9967 BURNUP = 9266 HWD/HTU A.O. = -2. 777% ~E-978 S1Cl2 Core Performance Report Page 32 of 58 I l I z I 3 4 I 5 I 6 I 7 a I 9 el lD 11 I 12 I 13 I lit 15 I I I I .. I --
* 0.99. 0.63. 0.35.
I I I I I I ,, I I I I I I .. I p Figure 4.3 SURRY UNIT 1 -CYCLE 12 ASSE~BLYWISE POWER DISTRIBUTION Sl-12-23 H PREDICTED MEASURED K J H G F E 0.34 0.39 0.34 D C . PCT DIFFERENCE. . 0.37 . 0.42
3.9. 3.3. o.3. -1.9. -3.5. -3.l. -2.5.
STANDARD DEVIATION  
=1.304 0.31 0.35 0.31  
. 0.32. 0.35. 0.30.
2.5. 0.1 * -3.6.
AVERAGE  
.PCT DIFFERENCE.  
=
l.5 SUHHARY HAP NO: Sl-12-14 DATE:
2/15/93 POWER:
99.9%
CONTROL ROD POSITION:
F-QCZl = 1.784 QPTR:
D BANK AT 224 STEPS F-DHCNI = 1.418 NW 1. a 019 NE 0.9999 F(Zl  
= 1.148 SW 1.0015 SE 0.9967 BURNUP = 9266 HWD/HTU A.O. = -2. 777%  
~E-978 S1Cl2 Core Performance Report Page 32 of 58 I  
~
l I
z I
3 4
I 5
I 6
I 7
a I
9 el lD 11 I
12 I
13 I
lit 15 I
I I
I..
I  
 
I I
I I
I I
I I
I I
I I..
I p
Figure 4.3 SURRY UNIT 1 - CYCLE 12 ASSE~BLYWISE POWER DISTRIBUTION Sl-12-23 H
PREDICTED MEASURED K
J H
G F
E 0.34 0.39 0.34 D
C  
. PCT DIFFERENCE.  
. 0.37. 0.42
* 0.36
* 0.36
* 7.7 . 7.7 . 5.7
* 7.7.
* PREDICTED
7.7.
* HEASURED .PCT DIFFERENCE.
5.7
0.38 0.71 1.02 0.93 1.02 0.71 0.38 . 0.41
* PREDICTED HEASURED
.PCT DIFFERENCE.
0.38 0.71 1.02 0.93 1.02 0.71 0.38  
. 0.41
* 0.73. 1.07. 0.98. 1.07. 0.73. 0.40, 6.0
* 0.73. 1.07. 0.98. 1.07. 0.73. 0.40, 6.0
* 2.9 . 4.8 . 5.8 , 4.7 . 2.6
* 2.9.
* 4.1 , , 0.42 1.03 1.21 1.09 1.26 l.09 1.21 1.03 D.42 , 0.44. 1.04. 1.22. 1.13. 1.30, 1.12, 1.25. 1.08. D.45. 5.D
4.8.
* 1.2. 0.3. 2.9. 2.9. 2.6. 2.6. 4.9, 6.4 * . D.42, 0.90 1.26 1.16 1.30 1.02 1.30 1.16 1.26 0.90 D.42 . 0.45, 0.91 . 1.23. 1.15. 1.32. 1.03. 1.28, 1.14 . 1.28. 0.93, 0.45. 6.D . l.l * *2.2. -0.3. l.8. l.8. *l.3. *l.5. 1.6. 3.3, 6.5. 0.38 1.03 l.26 l.21 1.35 1.08 l.32 1.07 l.35 1.22 i.26 1.03 0.38 . 0.39, l.04. !.25. l.Zl . l.34. 1.08. 1.32. l.07. 1.33. 1.20 . 1.24: I.ID. 0.41 . l.D . 0.8. *l.4 . -0.2 . -0.7. 0.3. 0.7. -J.3. *l.4 . *1.4 . -1.5. 6.7. 6.7. J.71 1.21 1.16 l.35 1.19 l.32 1.18 1.32 1.19 1.35 1.16 l.Zl D.71 . 0.72. l.23. 1.15. l.32. l.18. 1.32. 1.18. l.31 . 1.17. 1.32. l.13. 1.24. 0.76. l.D . l.D . -0.5 . -2.0 . -0.8. 0.0. 0.3. -0.8. *l.3. -J.9. *2.6. 1.7. 6.7. A J.34 1.02 l.09 1.30 1.08 1.52 l.13 I.ID 1.13 1.32 l.07 1.30 1.09 1.02 0.34 . 0.37. 1.05. l.10 . 1.28, 1.04. 1.29. l.12. l.09. 1.11 . 1.30 . 1.05. l.26. l.06. 0.99. 0.37. b.8. 3.3. l.O * -1.2. -2.9. *2.2. -l.2. -0.9. *l.5. *l.2. -2.D . -3.3. *3.0. -2.6. 7.7. 0.39 0.93 1.26 1.02 l.32 1.18 I.JO 1.03 l.10 1.18 1.32 1.02 1.26 0.93 0.39 . 0.42 . 0.97 . l.28
5.8,
4.7.
2.6
* 4.1,  
, 0.42 1.03 1.21 1.09 1.26 l.09 1.21 1.03 D.42  
, 0.44. 1.04. 1.22. 1.13. 1.30, 1.12, 1.25. 1.08. D.45.
5.D
* 1.2. 0.3. 2.9. 2.9. 2.6. 2.6. 4.9, 6.4 *  
. D.42, 0.90 1.26 1.16 1.30 1.02 1.30 1.16 1.26 0.90 D.42  
. 0.45, 0.91. 1.23. 1.15. 1.32. 1.03. 1.28, 1.14. 1.28. 0.93, 0.45.
6.D.
l.l * *2.2. -0.3. l.8. l.8. *l.3. *l.5. 1.6. 3.3, 6.5.
0.38 1.03 l.26 l.21 1.35 1.08 l.32 1.07 l.35 1.22 i.26 1.03 0.38  
. 0.39, l.04. !.25. l.Zl. l.34. 1.08. 1.32. l.07. 1.33. 1.20. 1.24: I.ID. 0.41.
l.D.
0.8. *l.4. -0.2. -0.7. 0.3. 0.7. -J.3. *l.4. *1.4. -1.5. 6.7. 6.7.
J.71 1.21 1.16 l.35 1.19 l.32 1.18 1.32 1.19 1.35 1.16 l.Zl D.71  
. 0.72. l.23. 1.15. l.32. l.18. 1.32. 1.18. l.31. 1.17. 1.32. l.13. 1.24. 0.76.
l.D.
l.D. -0.5. -2.0. -0.8. 0.0. 0.3. -0.8. *l.3. -J.9. *2.6. 1.7. 6.7.
A J.34 1.02 l.09 1.30 1.08 1.52 l.13 I.ID 1.13 1.32 l.07 1.30 1.09 1.02 0.34  
. 0.37. 1.05. l.10. 1.28, 1.04. 1.29. l.12. l.09. 1.11. 1.30. 1.05. l.26. l.06. 0.99. 0.37.
b.8. 3.3.
l.O * -1.2. -2.9. *2.2. -l.2. -0.9. *l.5. *l.2. -2.D. -3.3. *3.0. -2.6. 7.7.
0.39 0.93 1.26 1.02 l.32 1.18 I.JO 1.03 l.10 1.18 1.32 1.02 1.26 0.93 0.39  
. 0.42. 0.97. l.28
* l.01
* l.01
* 1.28
* 1.28
* 1.16 . l.09 . l.Ol . l.08 . 1.16 . 1.28 , 0.99 . 1.23 . 0.94
* 1.16. l.09. l.Ol. l.08. 1.16. 1.28, 0.99. 1.23. 0.94
* 0.42 . 6.8. 4.5. 1.0. -0.8. -2.7. -1.5. -1.4. -l.4. -1.9. -1.3. -2.7. -3.0. -2.7. l.5. 7.7. 0.34 l.02 1.09 l.30 l.08 1.32 1.13 l.10 l.13 1.32 1.07 1.30 1.09 l.02 0.34 . J.37. l.04 . 1.07. l.Z9 . 1.08. l.31 . l.ll . l.09. l.ll . 1.26. 1.05. l.29. 1.09. l.06. 0.37. 6.8. 2.4. -!.9. -1.0
* 0.42.
* 0.5. -0.6. -1.4. *0.8. *1.4. -4.2. -2.5. *l.l. -O.l. 3.6. 7.3. D.71 1.21 1.16 l.35 1.19 l.32 1.18 1.32 1.19 1.35 1.16 1.22 0.72 . D.70
6.8. 4.5. 1.0. -0.8. -2.7. -1.5. -1.4. -l.4. -1.9. -1.3. -2.7. -3.0. -2.7. l.5. 7.7.
0.34 l.02 1.09 l.30 l.08 1.32 1.13 l.10 l.13 1.32 1.07 1.30 1.09 l.02 0.34  
. J.37. l.04. 1.07. l.Z9. 1.08. l.31. l.ll. l.09. l.ll. 1.26. 1.05. l.29. 1.09. l.06. 0.37.
6.8. 2.4. -!.9. -1.0
* 0.5. -0.6. -1.4. *0.8. *1.4. -4.2. -2.5. *l.l. -O.l. 3.6. 7.3.
D.71 1.21 1.16 l.35 1.19 l.32 1.18 1.32 1.19 1.35 1.16 1.22 0.72  
. D.70
* 1.19
* 1.19
* 1.15
* 1.15
Line 192: Line 2,451:
* 1.19
* 1.19
* l.28
* l.28
* 1.17 . 1.28
* 1.17. 1.28
* l.16
* l.16
* 1.32
* 1.32
* 1.16
* 1.16
* 1.24 . 0.74 . . -1.9. -t.9. -o.6. o.4. o.4. -3.3. -o.8. -2.6. -2.a. -1.1. -o.z. t.8. 4.1 * . 0.38 1.03 1.26 1.21 1.35 1.08 1.32 1.08 1.35 1.22 1.26 1.03 0.38 . 0.39. 1.05. 1.27. 1.21
* 1.24. 0.74.  
* 1.32. l.04. l.27. 1.07. 1.34, 1.21. 1.28. 1.06. 0.40. 1.8, l.8. 0.9. -0.3. *l.5. -3.3. -3.3. -0.8. -0.8. -0.3, 0.9. 2.4, 3.6. 0.42 0.90 1.26 l.16 1.30 I.OZ 1.30 1.16 1.26 D.90 0.42 . 0.45. 0.93. 1.26. 1.13. l.26. 0.99. 1.27. 1.14 , 1.27. D.93. 0.44. 5.5. 5.2 . -0.3. -2.1 . -3.2. -3.l * *2.6. -1.8. 0.5. 3.2. 3.6. STANDARD DEVIATION  
. -1.9. -t.9. -o.6. o.4. o.4. -3.3. -o.8. -2.6. -2.a. -1.1. -o.z. t.8. 4.1 *  
=2.040 0.42 1.03 1.21 1.10 1.26 1.10 1.22 1.03 0.42 . 0.45. 1.10. 1.24. l.06, 1.23. 1.07. 1.19. 1.03. 0.44. 6.2. 7.0 . l.9. -3.l . -2.8. *2.l * -Z.3. -0.0. 3.6. 0.38 0.71 1.02 0.93 l.02 0.72 D.38 . 0.41. 0.76. 1.05. 0.93. l.Dl. D.70. 0.37. 1.0. 6.7. 2.6. a.a. -1.3. -1.7. -2.4. 0.34 0.39 D.34 . D.36. 0.40
. 0.38 1.03 1.26 1.21 1.35 1.08 1.32 1.08 1.35 1.22 1.26 1.03 0.38  
* 0.34. 6.2
. 0.39. 1.05. 1.27. 1.21
* 3.4 . -1.0
* 1.32. l.04. l.27. 1.07. 1.34, 1.21. 1.28. 1.06. 0.40.
* SUHHARY AVERAGE .PCT DIFFERENCE  
1.8, l.8. 0.9. -0.3. *l.5. -3.3. -3.3. -0.8. -0.8. -0.3, 0.9. 2.4, 3.6.
* = 2.6 HAP NO: Sl-12-23 DATE: 10/11/93 POWER: 99. 9TI. QPTR: CONTROL ROD POSITION:
0.42 0.90 1.26 l.16 1.30 I.OZ 1.30 1.16 1.26 D.90 0.42  
F-Q(Zl = D BANK AT 223 & 224 F-DHINl = F!Zl BURHUP = \S-978 S1Cl2 Core Performance Report 1.75& 1.397 1.151 1&789 tno1D/HTU NW l. 0043 NE l.0036 SW 0.9994 SE 0.9927 A.0.=-2.8127.
. 0.45. 0.93. 1.26. 1.13. l.26. 0.99. 1.27. 1.14, 1.27. D.93. 0.44.
Page 33 of 58 z 3 5 6 7 8 9 10 11 lZ 13 14 15 I __ J l.2 :::, 0.8 O' c., 0 i:,J N H i 0.6 0 z :::. 0.4 ::G 0.2 0 ! I I I ! ' 0 Figure 4.4A SURRY UNIT 1 -CYCLE 12 ~OT CHANNEL FACTOR NORMALIZED OPERATING ENVELOPE (APPLICABLE THROUGH MAY 1992) i I I ; I I i i i I : i i ! : '' ! I ! I : ' ' i (611.0) I I I I ! I I i i i I I i I I I / i I ! I ! I I I ! I i I I I l I I i ' ! / I i i I ! i I I I ! I I I I i ! I i I ! i ! i ! : I I I ' ! l i I ! i I i i I ! I : i I ! I i i I I I I ! I ! ! I I I I I i i I I 2 4 6 8 CORE HEIGHT ( FT) \E-978 S1Cl2 Core Performance Report --i i : I i (10. 9 ,0.94) I ,, i \ I ! !\ i t\ I \ ; ! \ I i I \ ! I \ I I \ l i \ I I \ I I I I I ' (12,0.43)
5.5.
I ! I i i I l ! ; I : i i ! I ! ; 10 12 Page 34 of 58 I I I I I I I el I I I I I I I .. I I I I I I I I le I I I I I I I .. 1.2 ::, 0. 8 'T :.... 0 '1l N H ..... 0.6 0 z 0. 4 0.2 0 ' l I I I I ! I : I I i ' J Figure 4.4B SURRY UNIT 1 -CYCLE 12 HOT CHANNEL FACTOR NORMALIZED OPERATING ENVELOPE (APPLICABLE AFTER MAY 1992) : ! I ~6,l.U) i ' l I I I I ' ! I I i ! I I ' i : i ! i I I i j I i ! I I I ! i I : i ! ! i I I I I : I I i ! I I ! I I i i I i I i i I I I I I I I I ! I i i I i I ! I I I 2 4 6 8 CORE HEIGHT ( FT l I ~rn-9 7 8 SIC 12 Core Performance Report: I i i (12.0.925)
5.2. -0.3. -2.1. -3.2. -3.l * *2.6. -1.8. 0.5. 3.2. 3.6.
I I I I I i i ' I i ! ; ' i i I i I ! I I I ! I ; i i ; I I 10 12 Page 35 of 58 --
STANDARD DEVIATION  
Ii Figure 4.5 SURRY UNIT 1 -CYCLE 12 HEAT FLUX HOT CHANNEL FACTOR, Fq(Z) Sl-12-05 I 2.5 FQ -LIMIT I I :sJ / I *********
=2.040 0.42 1.03 1.21 1.10 1.26 1.10 1.22 1.03 0.42  
* *********
. 0.45. 1.10. 1.24. l.06, 1.23. 1.07. 1.19. 1.03. 0.44.
-*** -" * * ***** ** **
6.2. 7.0.
* I * * * ::::: *
l.9. -3.l. -2.8. *2.l * -Z.3. -0.0. 3.6.
* 0 * * :--1 1. 5 * :J * <
0.38 0.71 1.02 0.93 l.02 0.72 D.38  
* I ::.. * * ..... '.:J
. 0.41. 0.76. 1.05. 0.93. l.Dl. D.70. 0.37.
* z z
1.0. 6.7. 2.6. a.a. -1.3. -1.7. -2.4.
* el < G 1 * * <-I
0.34 0.39 D.34  
* Q
. D.36. 0.40
* X
* 0.34.
* I ::> ..... ::...
6.2
* I :-"' 0.5 < I 0 60 50 40 30 20 10 I BOTTOM AXIAL rOSITION (NODES) TOP I I I ** -;::-978 S1Cl2 Core Performance Report: Page :6 of 58 I I I I I I I I ile I I I I I I I ** I ,-.J w 2.5 1. 5 <:: u e,... g 0.5 * * * * * *
* 3.4. -1.0
* 60 Figure 4.6 SURRY UNIT 1 -CYCLE 12 HEAT FLUX HOT CHANNEL FACTOR, Fq(Z) Sl-12-14 ******* * ** ** * ******** * * ******** * * * * *
* SUHHARY AVERAGE  
* 40 30 50 BOTTOM AXIAL POSITION 20 (NODES) **** * * \E-978 S1Cl2 Core Performance Report * *
.PCT DIFFERENCE *
* 10 TOP *
=
* Page FQ -LIMIT ** *
2.6 HAP NO:
* 37 of 58 
Sl-12-23 DATE: 10/11/93 POWER: 99. 9TI.
-I ' &sect; l t3 I .i: I :::J l.: r I * * * .... 0 E--* 0 = X =:! :::... L -1* =-< = l Q.5 Figure 4.7 SURRY UNIT l CYCLE 12 :-!EAT FLUX HOT CHANNEL FACTOR, FQ(Z) Sl-12-23 **** * * ***
QPTR:
* 50 30TTOM * ** * * *
CONTROL ROD POSITION:
* 40 **********
F-Q(Zl  
* 30 AXIAL POSITION .. * ******** **** *****
=
* 20 NODES
D BANK AT 223 & 224 F-DHINl =
* 10 TOP * ~E-978 S1Cl2 Core Performance Reper~ Page * *
F!Zl BURHUP  
* FQ -LIMIT
=  
* 38 of 58 I I I I I I I el ,, I I I I I I .. I I I ** I I I I I I le I I I I I I Figure 4.8 SURRY UNIT 1 -CYCLE 12 1AXIMUM HEAT FLUX HOT CHANNEL FACTOR, Fq(Z)*P, vs. AXIAL POSITION a. .. 2.4 l i I I i I I I I I I , ! 2.2 I I I li--L...._
\\S-978 S1Cl2 Core Performance Report 1.75&
I ! I I I I --I -20 I I I I I I I I I ! 1.8 I I I **f*4**T* ******.k.
1.397 1.151 1&789 tno1D/HTU NW l. 0043 NE l.0036 SW 0.9994 SE 0.9927 A.0.=-2.8127.
I I I . ... I . -* , ....... ***""T
Page 33 of 58 z
3 5
6 7
8 9
10 11 lZ 13 14 15 I
__ J  
 
l.2
:::, 0.8 O'
c.,
0 i:,J N
H i 0.6 0 z
:::. 0.4
::G 0.2 0
I I
I 0
Figure 4.4A SURRY UNIT 1 - CYCLE 12  
~OT CHANNEL FACTOR NORMALIZED OPERATING ENVELOPE (APPLICABLE THROUGH MAY 1992) i I
I I
I i
i i
I i
i I
I i
(611.0)
I I
I I
I I
i i
i I
I i
I I
I  
/
i I
I I
I I
I i
I I
I l
I I
i  
/
I i
i I
i I
I I
I I
I I
i I
i I
i i
I I
I l
i I
i I
i i
I I
i I
I i
i I
I I
I I
I I
I I I i
i I
I 2
4 6
8 CORE HEIGHT
( FT)  
\\E-978 S1Cl2 Core Performance Report i
i I
i (10. 9,0.94)
I,,
i  
\\
I  
!\\
i t\\
I \\
! \\
I i
I \\
I  
\\
I I  
\\
l i  
\\
I I  
\\
I I
I I
I (12,0.43)
I I
i i
I l
I i
i I
10 12 Page 34 of 58 I  
~
I I
I I
I I
el I
I I
I I
I I..
I  
 
I  
~
I I
I I
I I
le I
I I
I I
I I..
1.2
::, 0. 8  
'T 0  
'1l N
H  
~ 0.6 0 z  
~ 0. 4  
~
0.2 0
l I
I I
I I
I I
i J
Figure 4.4B SURRY UNIT 1 - CYCLE 12 HOT CHANNEL FACTOR NORMALIZED OPERATING ENVELOPE (APPLICABLE AFTER MAY 1992)
I  
~6,l.U) i l
I I
I I
I I
i I
I i
i i
I I
i j
I i
I I
I i
I i
i I
I I
I I
I i
I I
I I
i i
I i
I i
i I
I I
I I
I I
I I
i i
I i
I I
I I
2 4
6 8
CORE HEIGHT
( FT l I ~rn-9 7 8 SIC 12 Core Performance Report:
I i
i (12.0.925)
I I
I I
I i
i '
I i
i i
I i
I I
I I
I i
i I
I 10 12 Page 35 of 58  
 
Ii Figure 4.5  
~
SURRY UNIT 1 - CYCLE 12 HEAT FLUX HOT CHANNEL FACTOR, Fq(Z)
Sl-12-05 I
2.5 FQ -
LIMIT I
I
:sJ  
/
I  
~
I 0
:--1 1. 5
:J I  
'.:J z z el G
1  
<-I Q
X I
I
:-"' 0.5 I
0 60 50 40 30 20 10 I
BOTTOM AXIAL rOSITION (NODES)
TOP I
I I **  
-;::-978 S1Cl2 Core Performance Report:
Page
:6 of 58 I
 
I I
I I
I I
I ile I
I I
I I
I I
I  
,-.J w
2.5  
~ 1. 5 u
e,... g 0.5 60 Figure 4.6 SURRY UNIT 1 - CYCLE 12 HEAT FLUX HOT CHANNEL FACTOR, Fq(Z)
Sl-12-14 40 30 50 BOTTOM AXIAL POSITION 20 (NODES)
\\E-978 S1Cl2 Core Performance Report 10 TOP Page FQ - LIMIT 37 of 58
 
I
&sect; l t3 I
.i:
~
I
:::J l.: r  
~
I 0
E--
0 =
X  
=:!
L 1*  
=-<  
~ =
l Q.5 Figure 4.7 SURRY UNIT l CYCLE 12
:-!EAT FLUX HOT CHANNEL FACTOR, FQ(Z)
Sl-12-23 50 30TTOM 40 30 AXIAL POSITION 20 NODES 10 TOP
~E-978 S1Cl2 Core Performance Reper~
Page FQ -
LIMIT 38 of 58 I
I I
I I
I I
el,,
I I
I I
I I..
I  
 
I I
I I
I I
I I
le I
I I
I I
I Figure 4.8 SURRY UNIT 1 - CYCLE 12 1AXIMUM HEAT FLUX HOT CHANNEL FACTOR, Fq(Z)*P, vs. AXIAL POSITION
: a...  
~
2.4 l i
I I
i I
I I
I I
I 2.2 I
I I
li--L...._ I I
I I
I I -
20 I
I I
I I
I I
I I
1.8 I
I I
**f*
4 **T* ******.k.
I I
I I  
***""T
* I I
* I I
* I I 'l'c .l
* I I  
* i **' *,, 1.6 ! ! '* I I I "' I I ><I ,c ; I ! I I i I I
'l'c  
* I 'f "" I
.l i
* 1.4 I I I I I
1.6 I
* I I I lc I 'l' 1.2 ! ! I * .., I I I
I I  
* 1.0 i ' I I i i
"' I I  
* I I . 0.8 I I I I 0.8 I I i I i I I 0.4 i I i I . I I I I I I 0.2 I I I I 0.0 I I I I I I I 61 55 50 45 40 35 30 25 20 15 '10 5 1 AXIAL POSITION .(NODE) I /,_~ __ FC*_P_U_M_rr
><I  
___ 1_1 _1 _MAXI __ M_U_M_F_C*_P
,c I  
__ I ** BOTTOM OF C8RE TOP OF CORE I ~E-978 S1Cl2 Core Performance Reper~ ?age 39 of 58 2.00 l.96 .:::: :.. . .92 ...... :.J l. 88 A; u ><: 3 1. 84 r.r... z l. 30 H ><: ,:l; z l. 76 l. 72 Figure 4.9 SURRY UNIT 1 -CYCLE 12 1AXH1l:~ HEAT FLUX HOT CHANNEL FACTOR, Fq(Z), vs. BURNUP ' l I i ! I I i l.. I : I I ' i I I I I I I I I ! i I I" I ' ' ! I i I I I i i ! i I i ; ! I ; I i i ! I ! I i i I ! I i I I I I I i I i I I ! I i I I I I I I / i i I i I i i I I I ! ! I ! ! i i ! I I I I I ' ' I i I I I I ; I I i I ' ! ! ! i ! I ! I I ; I ' ! ! i I ' ! I ' I ! I I I I I ' : I ! ! ; ' i I I I ' I ! ' i ' ! ; I I i I I i I i ' ! I ! i I ! I I I I ! I I i I I I I ; ; I I i ! ! I i I ' I ! ' i I i I I I I ! ! I i I I j I ! i I ' ! ' i I I I i I I i ! I I i i I ' I I I I I *~ I I I i I I I i I I i i I I 41( I ' I I I I I i i I ' I I i I I ' I I I ' I I ' ' I i... I I I i i I I i I I ! ':'I' I I I I I i I I I I j I I I I I I I ! I I I I I I I I i I I i I I I ' I i I I j ! I I I I I j I I l... I ; ! ' ! ! ! i i j I ' i l I I i I l I , .... i i I i I i I i I j I I ' ! I I I +~
~
* I I I I i I I i ! I I I I I l. I I I I I I i i i I i ! I I I I
I I
i I
I
* I  
'f  
"" I 1.4 I
I I
I I  
~
I I
I lc I  
'l' 1.2 I
I I
I 1.0 i
I I
i i
I I  
. ~
0.8 I
I I
I 0.8 I
I i
I i
I I
0.4 i
I i
I.
I I
I I
I I
0.2 I
I I
I 0.0 I
I I
I I
I I
61 55 50 45 40 35 30 25 20 15  
'10 5
1 AXIAL POSITION.(NODE)
I  
/,_~
FC*_P_U_M_rr ___
1 1
1 _MAXI M_U_M_F_C*_P __ I  
** BOTTOM OF C8RE TOP OF CORE I  
~E-978 S1Cl2 Core Performance Reper~  
?age 39 of 58  
 
2.00 l.96  
.:::: :....92
:.J  
~ l. 88 A;
u  
><: 3 1. 84 r.r...
z  
~ l. 30 H  
,:l; z
: l. 76
: l. 72 Figure 4.9 SURRY UNIT 1 -
CYCLE 12 1AXH1l:~ HEAT FLUX HOT CHANNEL FACTOR, Fq(Z), vs. BURNUP l
I i
I I
i l..
I I
I i
I I
I I
I I
I I i
I I"
I I
i I
I I
i i
i I
i I
I i
i I
I i
i I
I i
I I I I
I i I i I I
I i
I I
I I
I I  
/
i i I
i I
i i
I I I
I i
i I
I I
I I
I i
I I
I I
I I
i I  
! i I
I I
I i
I I
I I
I I
I I
I i
I I
I I
i I
I i
I I
i I
i I
i I
I I
I I
I I
i I I I
I I
I i
I i
I I
i I
i I
I I I  
! I i
I I j
I  
! i I
i I I I
i I
I i
I I i i I I
I I
I I  
*~
I I I i I I I i
I I i i I I 41(
I I I I
I I
i i
I  
' I I
i I
I I
I I
I I
I i...
I I I i i I I i I I  
':'I' I I I I I i
I I I I j
I I
I I I I I !
I I I I I I I
I i I I i I
I I I
i I I j
I I I I
I j
I I
l... I i
i j
I i
l I
I i
I l
I  
~,....
i i
I i
I i
I i
I j
I I
I I
I +~
* I I I  
~ I i I I i
I I I I I l. I I I
I I
I i
i i
I i
I I I I
* I. ~j
* I. ~j
* I I ' I
* I I
* I I I i I I i i ~1 I I 1 I I I !
I
* I I j I ' . I i I I I I I I I I I I I ! I i I ! I i i I ; I I I ! I I I 1 i ! I I ! ! i I I I ' i ! I I I I I ' I ! I ! ! ! I I I I I I I I I ' i i I I I I I i \ ! I I i I I i I I I ' : I 0 2 4 6 8 10 12 14 l6 18 CYCLE EURNUP (GWd/MTU)  
* I I
~E-978 S1Cl2 Core Performance Report Page 40 of 58 ----< I J I I I I I I I el I I I I I I I .. I --
I i
I I I I I I I le I I I I I I I ... Figure 4. 10 SURRY UNIT 1 -CYCLE 12 '.'..-1XI:!l:~
I I
ENTHALPY RISE HOT CHANNEL FACTOR, F-delta-H, vs. BURNUP -/ J :.J < -. .:75 ::. . S50 ::.. * :;DO --~ ..... :::J z z . ' __.., b 1.475 ..... >-; .:. * . 0 .....:; .:.. * -: :J < "" :::J ::. . 425 ::. . 400 :..375 i I ; ' I i ' I ! I : ' ' ' I I j ! ! I I I I ' I I ! ! i I I I I I I ' I I I I I I I ! i ! ! ! : , !' ll I I ! ' ! l I : I ; : I I I I ll I i I : I II !I I! i l i I I I I i I ! '"" i I I 111 i I I ! : t i i I ) ' ; I : I : l j \ ( ) i ' ! i ' I i I I I I I I i I I i ! i I I I I I I ' I I I I I I I I I I ' i ! I 11 : i I I I I I ; ' ; j I I I f : ! I ! : I I i i I ; II I I 11 11 i I I I 11 ! I I 11 ! ' I I I I I i I I ! I j I I I I I ' ' I I i I I I ! I i ! I i i I I I I I i I I I I ! 1 I ,* I. I I :-, . ., 2 4 6 8 10 12 :...; 16 18 CYCLE BURNUP (GWd/MTU)
i i  
FULL POWER TECH SPEC LIMIT -MEASURED , VALUE
~1 I I 1
* 11 I \E-978 s:c12 Core Performance Report Page -+ 1 of 58
I I
-----I Figure 4 .11 SURRY UNIT 1 -CYCLE 12 TARGET DELTA FLUX vs. BURNUP :.1. 0 I I I I I I ! ::..o. 0 I I I I i I I i I I I I 9.0 I l I ; I i I I I I ! I I i 8.0 I i I I I ,.; ,.o ' .... I 6.0 I I I I C: : I a, I I u I 5.0 I . a, I I 0. I r I I I ><! 4.0 I el ;:) I I I c,... I I I ,'1! 3.0 I e,.. I I I Cu -I I Q I I =--1 2.0 .... .... I I ::,J ... ... I '...? -1 I < =-l. 0 j ' ' I I I I I -l I I r I I ... 0.0 I "" I I i i I _, r I I I i I -1. 0 , ...... I I ..... I I I ! I I -1 I I I r I I I I -2.0 I I ' i ' I I I r I I i I 1 ..... .. -3.0 I , .... ,,.. ... i I ---41 ---4.0 I 0 2 4 6 8 10 12 14 16 18 CYCLE BURNUP (GWd/MTU)  
I  
.. \E-978 SiC12 Core Performance Report Page !+-2 of 58 I ---------*
!
I ., I I I I I I I I I I I .. I Q t:Ll N H '"'" 4! z ::i::: :J z N N et., l. 4 1.2 L-1 ,__ 0.8 ,__ 0.6 ...
* I I j
* 0.4 ,__
I I
* i 0.2 60 Figure 4 .12 SURRY UNIT 1 -CYCLE 12 CORE AVERAGE AXIAL POWER DISTRIBUTION Sl-12-05 Fz = 1.209 AXIAL OFFSET= 2.692% * * * * * * * * *
i I
* 50 * * *** * ** * *
I I I I
* 40 BOTTOM *********
I I I I I
***** * * ** * * ** * *
I I i I
* 30 20 AXIAL POSITION TOP * * *
I i
* 10 ~E-978 S1Cl2 Core Performance Reper~ Page * * * * * *
i I
* 43 of 58 Figure 4.13 SURRY UNIT 1 -CYCLE 12 CORE AVERAGE AXIAL POWER DISTRIBUTION Sl-12-14 Fz = 1.148 AXIAL OFFSET= -2.777% Q tzl :':..2 ... 1 ,_ ... 0.8 ,_ . i 0 '-z 0.6 ... *
I I I I
* 0.4 0.2
I I 1
* 60 * * * * ** * *
i  
* 50 ******** BOTTOM *** * * ***** ******** * * *
! I I
* 40 30 20 AXIAL POSITION NE-978 S1Cl2 Core Performance Report **** * * * * *
i I I I i  
* 10 TOP Page * * * * * *
! I I
* I 44 of 58 I ,. I I I I I el I I I I I I I .. I I ** Figure 4.14 SURRY UNIT 1 -CYCLE 12 I CORE AVERAGE AXIAL POWER DISTRIBUTION Sl-12-23 I I Fz = 1.151 AXIAL OFFSET = -2.812% I I 1. 2 I ** * * * * *
I I I I
* I * * * ** ** * ***** *** * * * * ***** ******** le *
I I I I
* 1 ._ * * * * * *
I I I I I I
* I 0 *
i i
* t.J t-* N
I I
* H .... * .x: I 0 0.8 ,-z *
I I
* I N N CI.a
I i  
* I 0.6 .. I I I 0. 4 I I 60 50 40 30 20 10 I BOTTOM AXIAL POSITION TOP .. I NE-978 S1C12 Core Performance Report Page 45 of 58 -~ ... _
\\
::. . 300 ::. . 275 v .:.. *::: 5 0 J ::..9 z H :G 1. 225 GJ :::i.. 1. 200 a:: ::J > < a:: D u :. .175 ::. .150 :..125 i ' I i ., I l... i I i I I I i I I i i I I I 0 Figure 4.15 SURRY UNIT 1 -CYCLE 12 CORE AVERAGE AXIAL PEAKING FACTOR vs. BURNUP I ' i I I I I I I I I i I : : I I I ' I i i i I I I ! I i ' ' I I I I I I I ! I i i I I i I ! i I I i i I I I I I I I I : I I i I I I ! I I I I i I I i ! I : I I I I I I I I I i i I ! I I I I l ! I I i I i I i I i I l ! ! ! I i i I i : I I ! ! j I I I ' I : I I I i i I i i i i I I I I ! : I : ! i i I i I i ' i I I i I i l ! ! I ' ! I I i i ! i I I I I 1 I I I I I I I I. i I I I I I I I I I ' I I I I I I I I i I i I I I i I I I I I r i I I ' ! I ! I I i I I l I I I I I I I I I I I I I i
I I i I I i
* I I I I I I i I i I I I I i j I l I I : I I I I I ! i ! I ' I ! I I I I I ! i i I I I I I I I I I rl i I i I I I I i I I I I I I I I .. l I I i I ! i i I ! l I ,,,,.. I~ I I ... I ' ! I I I *1 I I ** I I I l i I ! I I ' I I ~. I ! I I I I I I I I I I I I I ., i I I ! : I ! . i I I I I I I I I I i I I I ! I 4 6 8 10 12 14 16 18 CYCLE BURNUP (GWd/MTU)  
I I I
& .. I I I
I 0
* I I \E-978 S1Cl2 Core Performance Repor~ Page 46 of 58 ----~-----
2 4
I I!
6 8
* I I I -I I I I el I I I I I I I .. I I ~. I I I I I I I I I I I I I .. I Section 5 PRIMARY COOLANT ACTIVITY The specific activity levels of radioiodines and radioactive noble gases in the primary coolant are important to core and fuel performance as indicators of failed fuel and are important with respect to offsite dose calculations associated with accident analyses.
10 12 14 l6 18 CYCLE EURNUP (GWd/MTU)  
~E-978 S1Cl2 Core Performance Report Page 40 of 58  
< I J
I I
I I
I I
I el I
I I
I I
I I..
I  
 
I  
~
I I
I I
I I
le I
I I
I I
I I...
Figure 4. 10 SURRY UNIT 1 -
CYCLE 12  
'.'..-1XI:!l:~ ENTHALPY RISE HOT CHANNEL FACTOR, F-delta-H, vs. BURNUP  
-/
J
:.J <  
-..:75
::.. S50
::.. * :;DO  
--~
:::J z z  
~
b 1.475  
. ~ 0
.:.. * -: :J
:::J
::.. 425
::.. 400
:..375 i
I I i I
I
' I I
j I
I I
I I
I i I I I I I I I
I I
I I
I I
i ll I I
l I : I  
; : I I I I ll I i I : I II  
!I I!
i l i I I I I i I !  
'"" i I I 111 i I
I t
i i I  
)
I
: I :
l j  
\\
(  
)
i i
I i
I I
I I
I I i I
I i
i I I I
I I I ' I I I I
I I
I I I I i  
! I 11 i
I I I I
I j
I I I f
I ! :
I I
i i I II I
I 11 11 i I I I
11 ! I I 11 !
I I
I I
I i
I I
I j
I I I I
I I I i I I
I I
i I
i i
I I I I I i
I I
I I 1
I I.
I I
2 4
6 8
10 12 16 18 CYCLE BURNUP (GWd/MTU)
FULL POWER TECH SPEC LIMIT MEASURED,
VALUE
* 1
\\E-978 s:c12 Core Performance Report Page  
-+ 1 of 58  
 
I Figure 4.11  
~
SURRY UNIT 1 - CYCLE 12 TARGET DELTA FLUX vs. BURNUP
:.1. 0 I
I I
I I
I
::..o. 0 I
I I
I i
I I
i I
I I
I 9.0 I
l I
I i
I I
I I
I I
i 8.0 I
i I
I I  
,.o I
6.0 I  
~
I I
I C:
I a,
I I
u I  
~ 5.0 I  
. a, I
I
: 0.
I r
I I
I 4.0 I
el  
;:)
I I  
~
I c,...
I I
I  
,'1!
3.0 I
e,..
I I  
~
I Cu I
I Q
I I  
=--1 2.0 I
I
::,J I  
'...?  
~
-1 I  
=-
: l. 0 j
I I
I I
I l
I I
r I
I 0.0 I
I I
i i
I r
I I
I i
I  
-1. 0 I
I I
I I
I I  
-1 I
I I
r I
I I
I  
-2.0 I
I i
I I
I r
I I
i I  
~
1.....  
-3.0 I
i I
---41 --
-4.0 I
0 2
4 6
8 10 12 14 16 18 CYCLE BURNUP (GWd/MTU)  
\\E-978 SiC12 Core Performance Report Page  
!+-2 of 58 I  
 
I  
~
I I
I I
I I
I I
I I
I..
I Q
t:Ll N
H 4! z
::i:::
:J z
N N
et.,
: l. 4 1.2 L-1 0.8,__
0.6 0.4,__
i 0.2 60 Figure 4.12 SURRY UNIT 1 - CYCLE 12 CORE AVERAGE AXIAL POWER DISTRIBUTION Sl-12-05 Fz = 1.209 AXIAL OFFSET=
2.692%
50 40 BOTTOM 30 20 AXIAL POSITION TOP 10
~E-978 S1Cl2 Core Performance Reper~
Page 43 of 58  
 
Figure 4.13 SURRY UNIT 1 - CYCLE 12 CORE AVERAGE AXIAL POWER DISTRIBUTION Sl-12-14 Fz = 1.148 AXIAL OFFSET= -2.777%
Q tzl
:':..2 1,_  
~ 0.8,_  
~
i 0
z  
~ 0.6 ~
0.4  
~
0.2 60 50 BOTTOM 40 30 20 AXIAL POSITION NE-978 S1Cl2 Core Performance Report 10 TOP Page I
44 of 58 I  
~
I I
I I
I el I
I I
I I
I I..
I  
 
I Figure 4.14 SURRY UNIT 1 - CYCLE 12 I
CORE AVERAGE AXIAL POWER DISTRIBUTION Sl-12-23 I
I Fz = 1.151 AXIAL OFFSET = -2.812%
I I
: 1. 2 I
I le 1._
I 0
t.J t-N H....
.x:
I
~
0 0.8,-
z I
N N
CI.a I
0.6..
I I
I
: 0. 4 I
I 60 50 40 30 20 10 I
BOTTOM AXIAL POSITION TOP I
NE-978 S1C12 Core Performance Report Page 45 of 58  
-~... _
::.. 300
::.. 275 v  
.:.. *::: 5 0 J
::..9 z H
:G  
~ 1. 225 GJ
:::i..  
~ 1. 200  
~
a::
::J > <
a::
D u
:..175
::..150
:..125 i
I i.,
I l...
i I
i I I I
i I I i
i I I I
0 Figure 4.15 SURRY UNIT 1 - CYCLE 12 CORE AVERAGE AXIAL PEAKING FACTOR vs. BURNUP I
i I
I I I I I I I i
I I
I I
I i i i I
I I
I i
I I
I I
I I
I I
i i
I I
i I
i I
I i
i I I I
I I I I
I I
I i
I I
I I
I I
I i
I I i I
I I
I I
I I
I I
I i
i I  
! I I I
I l
I I
i I
i I
i I
i I
l I
i i
I i
I I
j I
I I
I I
I I
i i
I i
i i
i I
I I I I
i i
I i
I i
i I
I i
I i
l I
I I i i  
! i I
I I I
1 I
I I I I I
I I.
i I I
I I
I I
I I
I I I I I I
I I I i
I i
I I
I i I I I I
I r
i I I I
I I i I I
l I
I I
I I
I I
I I
I I
I I
i
* I I
I I I
I i
I i I
I I I
i j
I l
I I
I I I I
I i
I I
I I
I I
I i
i I I I
I I
I I
I I rl i I i I I I
I i
I I
I I I I I I
l  
~
I I
i I  
~
~~
~
i i I l I  
~
I~ I I...
I I
I I *1 I I **
I I
I l
i I
I I
I I ~. I I I I I
I I
I I
I I I I I., i I
I I
i I
I I
I I
I I I I i I I I
I 4
6 8
10 12 14 16 18 CYCLE BURNUP (GWd/MTU)
I I
I
* I I  
\\E-978 S1Cl2 Core Performance Repor~
Page 46 of 58  
----~-----
I I!*
I I
I  
-I I
I I
el I
I I
I I
I I..
I  
 
I  
~.
I I
I I
I I
I I
I I
I I
I..
I Section 5 PRIMARY COOLANT ACTIVITY The specific activity levels of radioiodines and radioactive noble gases in the primary coolant are important to core and fuel performance as indicators of failed fuel and are important with respect to offsite dose calculations associated with accident analyses.
Two mechanisms are primarily responsible for the presence of radioiodines and radioactive.
Two mechanisms are primarily responsible for the presence of radioiodines and radioactive.
noble gases in the primary coolant. These fission products are always present due to direct fission product recoil from trace fissile materials plated onto core components and fuel structured surfaces or trace fissile materials existing as impurities in core structural materials.
noble gases in the primary coolant.
This fissile material is generally referred to as "tramp" material, and the resulting iodines are referred to as tramp iodine. Fission products will also diffuse into the primary coolant if a breach in the cladding (fuel defects) exists. Fuel defects are generally the predominant source of radioiodines and radioactive noble gases in the primary coolant. Surry Technical Specification 3.1.D conditionally limits the primary coolant radioiodine dose equivalent I-131 to a value of 1.0 &#xb5;Ci/gram with provisions that ultimately limit the dose equivalent I-131 activity to a maximum of 10.0 &#xb5;Ci/gm.2 Figure 5.1 shows the dose-equivalent I-131 activity history for Cycle 12. These data show that the dose equivalent I-131 activity remained substantially below 1.0 &#xb5;Ci/gm throughout Cycle 12 operation.
These fission products are always present due to direct fission product recoil from trace fissile materials plated onto core components and fuel structured surfaces or trace fissile materials existing as impurities in core structural materials.
The cycle average steady state power dose equivalent I-131 NE-978 S1C12 Core Performance Report Page 47 of 58 concentration was 6.28 X 10-3 &#xb5;Ci/gm which is less than 1% of the full power Technical Specification limit. Correcting the I-131 concentration for tramp iodine involves calculating the I-131 activity from tramp fissile sources and subtracting this value from the measured I-131. The resultant tramp-corrected I-131 activity is theoretically the I-131 activity from defective fuel. The magnitude of the tramp-corrected I-131 can then be used as an indication of fuel reliability (the average tramp-correct~d I-131 activity for a month is generally referred to as the fuel reliability indicator) as well as assisting in quantifying the extent of fuel cladding defects. The monthly fuel reliability indicator through September 1993 generally remained below 5 X 10-4 &#xb5;Ci/gm. For PWRs, this is considered to be a typical fuel reliability indicator level for a reactor core with no fuel defects. The fuel reliability indicator increased above 5 X 10-4 &#xb5;Ci/gm for the remainder of 1993 having a final fuel reliability indicator of 8.33 X 10-3 &#xb5;Ci/gm when the cycle ended in January 1994. An increase in the fuel reliability indicator of this nature indicates the presence of a cladding defect or defects. The fuel cladding defect(s) became more readily apparent during Cycle 12 late in September 1993. The noble gas activity in the RCS increased sharply indicating a cladding defect event (see Figure 5.3). The measured (not tramp-corrected)
This fissile material is generally referred to as "tramp" material, and the resulting iodines are referred to as tramp iodine. Fission products will also diffuse into the primary coolant if a breach in the cladding (fuel defects) exists.
I-131 RCS activity (Figure 5.4) began to noticably increase in November 1993. The manner in which the RCS coolant activity increased, (i.e., a noble gas activity increase followed much later in time by increasing iodine activity) indicates the defect(s) were either NE-978 SlC12 Core Performance Report Page 48 of 58 I J I I I I I I I I I I I I I I I
Fuel defects are generally the predominant source of radioiodines and radioactive noble gases in the primary coolant.
~* I ** I small or slowly forming. Large defects typically manifest themselves by nearly simultaneous increases in noble gas and iodine RCS activity.
Surry Technical Specification 3.1.D conditionally limits the primary coolant radioiodine dose equivalent I-131 to a value of 1.0 &#xb5;Ci/gram with provisions that ultimately limit the dose equivalent I-131 activity to a maximum of 10.0 &#xb5;Ci/gm. 2 Figure 5.1 shows the dose-equivalent I-131 activity history for Cycle 12.
A failed fuel action plan was issued in November 1993. The principle element of the plan was to perform fuel inspections during the subsequent refueling outage to ensure no fuel assemblies with cladding defects were I I I reinserted for use in Cycle 13. The fuel UT exams resulted in widely varying indications of suspect cladding failures, primarily in fuel assemblies scheduled to be discharged.
These data show that the dose equivalent I-131 activity remained substantially below 1.0 &#xb5;Ci/gm throughout Cycle 12 operation.
The cycle average steady state power dose equivalent I-131 NE-978 S1C12 Core Performance Report Page 47 of 58  
 
concentration was 6.28 X 10-3 &#xb5;Ci/gm which is less than 1% of the full power Technical Specification limit.
Correcting the I-131 concentration for tramp iodine involves calculating the I-131 activity from tramp fissile sources and subtracting this value from the measured I-131.
The resultant tramp-corrected I-131 activity is theoretically the I-131 activity from defective fuel.
The magnitude of the tramp-corrected I-131 can then be used as an indication of fuel reliability (the average tramp-correct~d I-131 activity for a month is generally referred to as the fuel reliability indicator) as well as assisting in quantifying the extent of fuel cladding defects.
The monthly fuel reliability indicator through September 1993 generally remained below 5 X 10-4 &#xb5;Ci/gm.
For PWRs, this is considered to be a typical fuel reliability indicator level for a reactor core with no fuel defects.
The fuel reliability indicator increased above 5 X 10-4 &#xb5;Ci/gm for the remainder of 1993 having a final fuel reliability indicator of 8.33 X 10- 3 &#xb5;Ci/gm when the cycle ended in January 1994.
An increase in the fuel reliability indicator of this nature indicates the presence of a cladding defect or defects.
The fuel cladding defect(s) became more readily apparent during Cycle 12 late in September 1993.
The noble gas activity in the RCS increased sharply indicating a cladding defect event (see Figure 5.3). The measured (not tramp-corrected) I-131 RCS activity (Figure 5.4) began to noticably increase in November 1993.
The manner in which the RCS coolant activity increased, (i.e., a noble gas activity increase followed much later in time by increasing iodine activity) indicates the defect(s) were either NE-978 SlC12 Core Performance Report Page 48 of 58 I
J I
I I
I I
I I
I I
I I
I I
I  
~
I  
 
~* I I
small or slowly forming.
Large defects typically manifest themselves by nearly simultaneous increases in noble gas and iodine RCS activity.
A failed fuel action plan was issued in November 1993.
The principle  
~
element of the plan was to perform fuel inspections during the subsequent refueling outage to ensure no fuel assemblies with cladding defects were I
I I
reinserted for use in Cycle 13.
The fuel UT exams resulted in widely varying indications of suspect cladding failures, primarily in fuel assemblies scheduled to be discharged.
Upon reviewing the UT data, there was not sufficient evidence suggesting the presence of cladding defects in any fuel assemblies other than those being discharged.
Upon reviewing the UT data, there was not sufficient evidence suggesting the presence of cladding defects in any fuel assemblies other than those being discharged.
Given the I uncertainty in the fuel UT data for these assemblies, Westinghouse I I I I I I I .. I (Westinghouse was not the fuel UT vendor) agreed to perform additional fuel exams on the suspect discharged fuel assemblies to help determine their status and potential failure mechanism.
Given the I
to begin in the 2nd quarter of 1994. The exams are scheduled The ratio of the specific activities of I-131 to I-133 is used to characterize the type (size) of fuel failure which may have occurred in the reactor core. Use of the ratio for this determination is feasible because I-133 has a short half-life (approximately 21 hours) compared to that of I-131 (approximately eight days). For pinhole defects, where the diffusion time through the defect is on the order of days, the I-133 decays leaving the I-131 dominant in activity, thereby causing the ratio to be roughly 0.5 or more. In the case of large leaks and tramp material, where the diffusion mechanism is negligible, the I-131/I-133 ratio will generally be less than 0.1. The use of these ratios with regard to defect ~E-978 S1C12 Core Performance Report Page 49 of 58 _J size is empirically determined and generally used throughout the commercial nuclear power industry.
uncertainty in the fuel UT data for these assemblies, Westinghouse I
Figure 5.2 shows the I-131/I-133 ratio data for the Surry 1 Cycle 12. As seen on Figure 5. 2, the ratio began increasing when the fuel defect occurred, but never really attained equilibrium.
I I
I I
I I..
I (Westinghouse was not the fuel UT vendor) agreed to perform additional fuel exams on the suspect discharged fuel assemblies to help determine their status and potential failure mechanism.
to begin in the 2nd quarter of 1994.
The exams are scheduled The ratio of the specific activities of I-131 to I-133 is used to characterize the type (size) of fuel failure which may have occurred in the reactor core. Use of the ratio for this determination is feasible because I-133 has a short half-life (approximately 21 hours) compared to that of I-131 (approximately eight days).
For pinhole defects, where the diffusion time through the defect is on the order of days, the I-133 decays leaving the I-131 dominant in activity, thereby causing the ratio to be roughly 0.5 or more. In the case of large leaks and tramp material, where the diffusion mechanism is negligible, the I-131/I-133 ratio will generally be less than 0.1. The use of these ratios with regard to defect  
~E-978 S1C12 Core Performance Report Page 49 of 58 J
 
size is empirically determined and generally used throughout the commercial nuclear power industry. Figure 5.2 shows the I-131/I-133 ratio data for the Surry 1 Cycle 12.
As seen on Figure 5. 2, the ratio began increasing when the fuel defect occurred, but never really attained equilibrium.
Therefore, the use of the iodine ratio as a defect size indicator is perhaps not applicable.
Therefore, the use of the iodine ratio as a defect size indicator is perhaps not applicable.
However, the characteristic nature of the increase in noble gas and radioiodine RCS activity suggests the defect(s) to be small. NE-978 S1C12 Core Performance Report Page 50 of 58 I I ** I I I I I I el I I I I I I I .. I ---~---
However, the characteristic nature of the increase in noble gas and radioiodine RCS activity suggests the defect(s) to be small.
I ** I I I I I I I le I I I I I I I .. I* Figure 5.1 SURRY UNIT 1 -CYCLE 12 DOSE EQUIVALENT I-131 vs. TIME 1.00E+ol+;------------------------------+ ) i.om:+oo+------------------------------i l j 1.om:-011------------------------------+  
NE-978 S1C12 Core Performance Report Page 50 of 58 I
* .
I I
* I:* ** 1!' \ fi a_" ,. 41d 1 4 . * . ... ft
I I
* I * * * * * * ,, . ' . * * * * * * *
I I
I el I
I I
I I
I I..
I  
 
I I
I I
I I
I I
le I
I I
I I
I I..
I*
Figure 5.1 SURRY UNIT 1 - CYCLE 12 DOSE EQUIVALENT I-131 vs. TIME 1.00E+ol+;------------------------------+  
)
i.om:+oo+------------------------------i l
j 1.om:-011------------------------------+
I:*  
** 1!' \\ fi a_"  
,. 41d 1 4. *....
ft I
* l.OOE-03+-*--------------------..r-----------+  
* l.OOE-03+-*--------------------..r-----------+  
'I * *
'I 1.00!:-M-t-------,------------------------+
* 1.00!:-M-t-------,------------------------+
1.00E-05...------------------------....... -----------+
1.00E-05...------------------------
I I
....... -----------+
I I
I ' I I I I' .. I" I 31.nJLIIZ Ol!NUYIIZ llSrzan 27JIA.Yn 0"8ZPl3 DATE , . * 'IS 0 *= *! :IC .-a NE-978 S1C12 Core Performance Report Page 51 of 58 _J 0 C: n n Figure 5.2 SURRY UNIT 1 -CYCLE 12 I-131 / I-133 ACTIVITY RATIO vs. TIME 1.D-t-----------------------------------+
I'  
j
.. I" I 31.nJLIIZ Ol!NUYIIZ llSrzan 27JIA.Yn 0"8ZPl3 DATE  
* 0.11-t--------------------------------
'IS 0 *=
...... 0.8,t-----------------------------------+
:IC.-
* 0.7-t--------------------------------
a NE-978 S1C12 Core Performance Report Page 51 of 58
...... 0.8-t--------------------------------
_J  
...... 7 0.5+-~------------------------------~  
 
' n -.!.. *
0  
* o.,t-----------------------------------+  
~
*1 "-. 0.3+-----------------------------C------'  
C:
* :r-1--1~ I
n n Figure 5.2 SURRY UNIT 1 - CYCLE 12 I-131 / I-133 ACTIVITY RATIO vs. TIME 1.D-t-----------------------------------+
* 0.2-t------------
j 0.11-t--------------------------------......
....... ---------------,-...---
0.8,t-----------------------------------+
...... 0.1 O.D 31rot82 08HOV92 1811Bn 27DTll3 DA.TB , . . ., =-.__...._,.....
0.7-t--------------------------------......
__ -l *=* *:! ,M .-0 04SEPl3 1:mzcn 23&#xa5;1814
0.8-t--------------------------------......
* NE-978 SlC12 Core Performance Report Page 52 of 58 I I ** I I I I I I el I I I I I I I .. I I 'I ** I I I I I le I I I I I I I .. I 1.DOZ+ol 1.DOE+oO Figure 5.3 SURRY UNIT 1 -CYCLE 12 MEASURED RCS XENON-133 VS. TIME ---* .. Ja.* *** 4..,.. -~* --*. 1.00B-01 * ** * .. . -----~* * ........ . . .
7 0.5+-~------------------------------~
n -
o.,t-----------------------------------+  
*1 0.3+-----------------------------C------'
:r-1--
1~ I 0.2-t------------....... ---------------,-...---......
0.1 O.D 31rot82 08HOV92 1811Bn 27DTll3 DA.TB  
=-.__...._,..... __ -l *=*  
,M.-
0 04SEPl3 1:mzcn 23&#xa5;1814
* NE-978 SlC12 Core Performance Report Page 52 of 58 I
I I
I I
I I
I el I
I I
I I
I I..
I  
 
I  
'I I
I I
I I
le I
I I
I I
I I..
I 1.DOZ+ol 1.DOE+oO Figure 5.3 SURRY UNIT 1 - CYCLE 12 MEASURED RCS XENON-133 VS. TIME  
~..
Ja.*
4..,..  
-~*
1.00B-01  
... -----~*
* 1.00B-03 1.00B-cM 1.00J!:-05  
* 1.00B-03 1.00B-cM 1.00J!:-05  
*-~ ..... ... * * ** * .... * .,. * * -* * * * *
*-~.....
* 11 1111' I 31J1JL82 I I' I I I , 161'D113 DATE NE-978 S1C12 Core Performance Report
11 1111' I
* I p I I 04SBPll3 Page I I ** . .,, *= *! .-0 13DZC8S 23MIRM 53 of 58 a: t.:I a: a. Cl.I t.J 0 a: t.J i Figure 5.4 SURRY UNIT 1 -CYCLE 12 MEkSURED RCS IODINE-131 VS. TIME 1.00J:+ol+---------------------------------+
31J1JL82 I I' I
I I
161'D113 DATE NE-978 S1C12 Core Performance Report I
p I
I 04SBPll3 Page I
I  
*=  
~.-
0 13DZC8S 23MIRM 53 of 58  
 
~
a:
t.:I a:
~
: a.
Cl.I  
~
~
t.J 0 a:
t.J i Figure 5.4 SURRY UNIT 1 - CYCLE 12 MEkSURED RCS IODINE-131 VS. TIME 1.00J:+ol+---------------------------------+
l.OOE+oo+---------------------------------+
l.OOE+oo+---------------------------------+
1.0QE-01 1.DIJB-02 1.DDE-03 I , * * * * * * * * * * * * *
1.0QE-01 1.DIJB-02 1.DDE-03 I,
* I *
I
* l.OOE-04+-----------------------------------+
* l.OOE-04+-----------------------------------+
1.00E-05..,...__
1.00E-05..,...__ ___________
___________
31Jllt82 OBNDYV2 16PDn DATE 04SBP93 NE-978 S1C12 Core Performance Report Page 54 of 58  
__._ ________ ....... ______ ...._ __ 31Jllt82 OBNDYV2 16PDn DATE 04SBP93 NE-978 S1C12 Core Performance Report Page 54 of 58 , .. -~ *= *! ..... 0 I 1. I I I I I el I I I I I I I .. I I .. I I I I I I I I I I I I I I .. I Section 6 CONCLUSIONS The Surry 1, Cycle 12 core has completed operation.
,.. -~ *=  
Throughout this cycle, all core performance indicators compared favorably with the design predictions and the core related Technical Specification limits were met with significant margin. No significant abnormalities in reactivity or burnup accumulation were detected.
~
Evaluation of the radioiodines and radioactive noble gases in the RCS indicate that a fuel cladding defect or defects occurred in late September 1993. Fuel inspections were conducted during the subsequent refueling outage to preclude inserting defective fuel assembies into Cycle 13. The fuel exams indicated that the defective fuel rod(s) existed in the discharged batches of fuel. Additional fuel assembly examinations are scheduled to begin in the second quarter of 1994. NE-978 S1Cl2 Core Performance Report Page 55 of 58
0 I
' , I J I I I I I I I THIS PAGE I~TENTIONALLY BLANK el I I I I I I I .. ~E-978 SlC12 Core Performance Report Page 56 of 58 I I I I I I I I le I I I I I I I ** I Section 7 REFERENCES
: 1.
: 1) E. A. Hoffman, "Surry Unit 1, Cycle 12 Startup Physics Test Report," Technical Report NE-898, Rev. 0, Virginia Power, July, 1992. 2) Surry Power Station Technical Specifications, Sections 3.1.D, 3.12.B and 4.10. 3) T. W. Schleicher, "Virginia Power Fuel Assembly Burnup and Isotopics Calculation Code Manual," Technical Report NE-726, Rev. O, Virginia Power, February, 1990. 4) D. L. Gilliatt, "The Virginia Power FOLLOW Code Manual," Technical Report NE-679, Rev. 1, Virginia Power, April, 1991. 5) W. D. Leggett, III and L. D. Eisenhart, "INCORE Code," WCAP-7149, Westinghouse, December, 1967. 6) Letter from B. C. Buckley (NRC) to W.L. Stewart, "Surry Units 1 and 2 -Issuance of Amendments Re: F-Delta-H Limit and Statistical DNBR Methodology (TAC Nos. M81271 and M82168)", Serial No. 92-405, dated June 1, 1992. 7) W. M. Oppenheimer, "Reload Safety Evaluation Surry 1 Cycle 12 (Pattern CP)", Technical Report NE-874, Rev. O, Virginia Power, February, 1992. NE-978 SlC12 Core Performance Report Page 57 of 58 REFERENCES (cont.) 3) \;. 11. O&#xb5;penheimer, "Reload Safety Evaluation Surry 1 Cycle 12 (Pattern CP)", Technical Report NE-874, Rev. 1, Virginia Power, April, 1992. 9) G. R. Pristas, "Reload Safety Ev.aluation Surry 1 Cycle 12 (Pattern CP)11 , Technical Report NE-874, Rev. 2, Virginia Power, September, 1992. 10) P. D. Banning, "Surry Unit 1 Cycle 12 Design Report", Technicai Report NE-881, Rev. 0, Virginia Power, March, 1992.
I I
* 11) "Surry 1 Cycle 12 TOTE Calculations", Calculational Note PM-425, Rev. 0 and associated addenda, Virginia Power. 12) "Surry 1 Cycle 12 Flux Map Analysis", Calculational Note PM-437, Rev. 0 and associated addenda, Virginia Power. 13) D. M. Chapman, "Surry 1, Cycle 12 FOLOW Input and Calculations", Calculational Note PM-440, Rev. 0, Addendum C, Virginia Power, February, 1994. ~E-978 S1Cl2 Core Performance Report Page 58 of 58 I I I I I I I I I I I I I
I I
I el I
I I
I I
I I..
I  
 
I I
I I
I I
I I
I I
I I
I I
I..
I Section 6 CONCLUSIONS The Surry 1, Cycle 12 core has completed operation.
Throughout this cycle, all core performance indicators compared favorably with the design predictions and the core related Technical Specification limits were met with significant margin.
No significant abnormalities in reactivity or burnup accumulation were detected.
Evaluation of the radioiodines and radioactive noble gases in the RCS indicate that a fuel cladding defect or defects occurred in late September 1993.
Fuel inspections were conducted during the subsequent refueling outage to preclude inserting defective fuel assembies into Cycle 13.
The fuel exams indicated that the defective fuel rod(s) existed in the discharged batches of fuel.
Additional fuel assembly examinations are scheduled to begin in the second quarter of 1994.
NE-978 S1Cl2 Core Performance Report Page 55 of 58  
 
', I J
I I
I I
I I
I THIS PAGE I~TENTIONALLY BLANK el I
I I
I I
I I..  
~E-978 SlC12 Core Performance Report Page 56 of 58 I  
 
I I
I I
I I
I le I
I I
I I
I I
I Section 7 REFERENCES
: 1)
E. A. Hoffman, "Surry Unit 1, Cycle 12 Startup Physics Test Report," Technical Report NE-898, Rev. 0, Virginia Power, July, 1992.
: 2)
Surry Power Station Technical Specifications, Sections 3.1.D, 3.12.B and 4.10.
: 3)
T. W. Schleicher, "Virginia Power Fuel Assembly Burnup and Isotopics Calculation Code Manual," Technical Report NE-726, Rev. O, Virginia Power, February, 1990.
: 4)
D. L. Gilliatt, "The Virginia Power FOLLOW Code Manual,"
Technical Report NE-679, Rev. 1, Virginia Power, April, 1991.
: 5)
W. D. Leggett, III and L. D. Eisenhart, "INCORE Code,"
WCAP-7149, Westinghouse, December, 1967.
: 6)
Letter from B. C. Buckley (NRC) to W.L. Stewart, "Surry Units 1 and 2 - Issuance of Amendments Re: F-Delta-H Limit and Statistical DNBR Methodology (TAC Nos. M81271 and M82168)",
Serial No. 92-405, dated June 1, 1992.
: 7)
W. M. Oppenheimer, "Reload Safety Evaluation Surry 1 Cycle 12 (Pattern CP)", Technical Report NE-874, Rev. O, Virginia Power, February, 1992.
NE-978 SlC12 Core Performance Report Page 57 of 58  
 
REFERENCES (cont.)
: 3)  
\\;. 11. O&#xb5;penheimer, "Reload Safety Evaluation Surry 1 Cycle 12 (Pattern CP)", Technical Report NE-874, Rev. 1, Virginia Power, April, 1992.
: 9)
G. R. Pristas, "Reload Safety Ev.aluation Surry 1 Cycle 12 (Pattern CP) 11
, Technical Report NE-874, Rev. 2, Virginia Power, September, 1992.
: 10) P. D. Banning, "Surry Unit 1 Cycle 12 Design Report",
Technicai Report NE-881, Rev. 0, Virginia Power, March, 1992.
* 11) "Surry 1 Cycle 12 TOTE Calculations", Calculational Note PM-425, Rev. 0 and associated addenda, Virginia Power.
: 12) "Surry 1 Cycle 12 Flux Map Analysis",
Calculational Note PM-437, Rev. 0 and associated addenda, Virginia Power.
: 13) D. M. Chapman, "Surry 1, Cycle 12 FOLOW Input and Calculations",
Calculational Note PM-440, Rev. 0, Addendum C, Virginia Power, February, 1994.  
~E-978 S1Cl2 Core Performance Report Page 58 of 58 I
I I
I I
I I
I I
I I
I I
* I I}}
* I I}}

Latest revision as of 19:58, 5 January 2025

Rev 0 to Technical Rept NE-978, Surry Unit 1 Cycle 12 Core Performance Rept
ML18151A718
Person / Time
Site: Surry Dominion icon.png
Issue date: 04/15/1994
From: Brookmire J, Chapman D, Laroe C
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To:
Shared Package
ML18151A719 List:
References
NE-978, NE-978-R, NE-978-R00, NUDOCS 9405190110
Download: ML18151A718 (58)


Text

I I r I

I I

I I

I 19 I

I I

I I

9405190110 940509 PDR ADOCK 05000280 p

PDR Surry

. Unit 1 Cycle 12 Core Peif ormance Report Nuclear Analysis and Fuel Nuclear Engineering Services April 1994 VIRGINIA POWER

I I f I

I I

I I

I le I

I I

I I

I I..

I TECHNICAL REPORT NE-978 - Rev. 0 SURRY UNIT 1, CYCLE 12 CORE PERFORMANCE REPORT

\\UCLEAR ANALYSIS AND FUEL NUCLEAR ENGINEERING SERVICES VIRGINIA POWER April, 1994

.~

I" PREPARED BY,f:l,,,, ;j}j,..,.,./JAPR 1'/

D. M. Chapman Date REVIEWED BY:~~

~- LaRoe

__-,1 tl REVIEWED BY: /.~

T. A. Brookmire APPROVED QA Category: Nuclear Safety Related Keywords: S1Cl2. CPR, Core

~

Date q.,s-11 Date

'j:M\\

Date

I I,.

I I

I I

I I

le I

I I

I I

.I I..

1*

TABLE OF CONTENTS PAGE Table or Contents 1

2 3

5 List of Tables.

List of Figures...

Section 1 Introduction and Summary.

Section 2 Burnup..

..... 13 Section 3 Reactivity Depletion............... 23 Section 4 Power Distribution..

............ 25 Section 5 Primary Coolant Activity............. 47 Section 6 Conclusions................... 55 Section 7 References.

......... 57

~E-978 S1Cl2 Core Performance Report Page 1 of 58

LIST OF TABLES

ABLE TITLE PAGE 4.1 Summary of Flux Maps for Routine Operation......... 30 SE-978 S1Cl2 Core Performance Report Page 2

of 58 I

I el I

I I

I I

I I..

i

I I {'

I I

I I,.

I I

1*

I I

,I I..

I

?IGURE

1. 1
1. 2
1. 3
1. 4
2. 1

')

')

2.3 LIST OF FIGURES TITLE Core Loading Map...............

Burnable Poison and Source Assembly Locations.

~ovable Detector Locations Control Rod Locations.

Cycle Burnup History jonthly Average Load Factors Assemblywise Accumulated Burnup:

jeasured and Predicted 2.4 Assemblywise Accumulated Burnup:

Comparison of

~easured and Predicted.

2.SA Sub-Batch Burnup Sharing 2.5B Sub-Batch Burnup Sharing 2.SC Sub-Batch Burnup Sharing 3.1 Critical Boron Concentration versus Burnup (HFP,ARO) 4.1 Assemblywise Power Distribution - Sl-12-05 PAGE 8

9 10 11 15 16 17 18 19 20 21 24 31 4.2 Assemblywise Power Distribution - Sl-12-14 32 4.3 Assemblywise Power Distribution - Sl-12-23 33 4.4A Hot Channel Factor Normalized Operating Envelope (Applicable Through May 1992)

................ 34 4.4B Hot Channel Factor Normalized Operating Envelope (Applicable After May 1992) 35 4.5 Heat Flux Hot Channel Factor, Fq(Z) - Sl-12-05 36 4.6 Heat Flux Hot Channel Factor, Fq(Z) - Sl-12-14 37

4. 7 Heat Flux Hot Channel Factor, Fq(Z) - Sl-12-23 38 NE-978 SlC12 Core Performance Report Page 3

of 58

LIST OF FIGURES (CONT'D)

FIGURE TITLE 4.8 Maximum Heat Flux Hot Channel Factor, Fq(Z)*P, vs.

Axial Position................

4.9 Maximum Heat Flux Hot Channel Factor, Fq(Z), vs. Burnup 4.10 Maximum Enthalpy Rise Hot Channel Factor, F-delta-H vs.

Burnup 4.11 Target Delta Flux versus Burnup 4.12 Core Average Axial Power Distribution 4.13 Core Average Axial Power Distribution 4.14 Core Average Axial Power Distribution 4.15 Core Average Axial Peaking Factor vs.

5.1 Dose Equivalent I-131 vs. Time 5.2 I-131/I-133 Activity Ratio vs. Time 5.3 Measured RCS Xenon-133 vs. Time 5.4 Measured RCS Iodine-131 vs. Time

~E-978 S1C12 Core Performance Report

- Sl-12-05

- Sl-12-14

- Sl-12-23 Burnup Page PAGE 39 40 41 42 43 44 45 46 51 52 53 54 4 of 58 I*

I I.s I

I I

I

I

.I',

Sect:ion 1 I

I I

I I

I~TRODUCTIO~ A~D

SUMMARY

On i:1nuary :?

--, ::.994, Surry Unit 1 completed Cycle 12.

Since the i~it:ial criticality of Cycle 12 on May 1, 1992, the reactor core produced Jpproximat:ely 1.1623 x 10 3 MBTU (19,587 Megawat:t: days per met:ric t:on of

~ont:ained uranium).

The purpose of this report is to present an analysis of t:he core performance for rout:ine operation during Cycle 12.

The

  • t* physics tests t:hat :.:ere performed during the st:artup of this cycle were
  • ~overed in Jl9herefore, t:he Surry Unit 1 Cycle 12 Startup Physics Test will not be included here.

Report: 1

and, I

I I

i I

I I

Surry Unit 1 began a power only coastdown on November 4, 1993, at which

~ime the burnup was approximat:ely 17,601 MWD/MTU.

The coastdown accounted for an additional core burnup of 1,986 MWD/MTU from the end of full power react:ivity.

The Cycle 12 core consisted of eight sub-batches of fuel:

two fresh batches (batches 14A and l4B); four once-burned batches, two from Cycle 11 (bat:ches 13A and l3B), one from Cycle 8 (batch 10) and one from Cycle 10 (part: of batch Sl/12B); and three twice-burned batches, all from Cycle 11 (bat:ches l'.:'.A, part of l2B, and S2/12A).

The Surry 1 Cycle 12 core

~oading map specifying the fuel batch identification and fuel assembly 1*~ocat:1.ons is shown in Figure 1.1.

The burnable poison locations and I

~E-978 S1Cl2 Core Performance Report:

Page 5

of 58

source assemoly locations are shown in Figure 1. 2.

~ovable detector locations that were available during Cycle 12 are shown in Figure 1.3.

Controi rod locations are shown in Figure 1.4.

Routine core follow involves the analysis of four principal performance indicators.

These are burnup distribution, reactivity depletion, power distribution, and primary coolant activity.

The core burnup distribution is followed to verify both burnup symmetry and proper batch burnup sharing, ::hereby ensuring that the fuel held over for the next cycle.;ill be compatible with the new fuel that is inserted.

Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to determine if the core is depleting as designed, and to indicate the cycle burnup where coastdown operation will begin.

Core power distribution follow includes the monitoring of nuclear hot channel factors to verify that they are within the Technical Specification 2 limits, thereby ensuring that adequate margins for linear power density and critical heat flux thermal limits are maintained.

Lastly, as part of normal core follow, the primary coolant activity is monitored to assess the status of the fuel cladding integrity and to compare the concentration of dose equivalent iodine-131 in the reactor coolant with the limits specified by the Surry Technical Specifications 2.

Each of the four performance indicators is discussed in detail for the Surry Cnit 1 Cycle 12 core in the body of this report. The results are summarized below:

~E-978 S1C12 Core Performance Report Page 6

of 58 I

I,,

I I

I el I

t I

i I

I I..

I

I I

I I

I I

le I

I I

I I

I I..

I

1. Burnup - The burnup tilt (deviation from quadrant symmetry) on the core was no greater than +/-0.41% with the burnup accumulation in each batch deviating from design prediction by no more than +/-2.11%.
2. Reactivity Depletion -

The critical boron concentration, used to monitor reactivity depletion, was consistently within +/-0.48% tK/K I

of the design prediction which is within the +/-1% tK/K margin allowed by Section 4.10 of the Technical Specifications.

3. Power Distribution -

Incore flux maps taken each month indicated that the assemblywise radial power distributions deviated from the design predictions by a maximum average difference of 2.6%.

All hot channel factors met their respective Technical Specification limits.

4. Primary Coolant Activity The average dose equivalent iodine-131 activity level in the primary coolant during Cycle 12 was approximately 0.00628 µCi/gm.

This corresponds to less than 1% of the operating limit for the concentration of radioiodine in the primary coolant.

Radioiodine analysis indicated that there were fuel rod defects in Cycle 12.

NE-978 S1Cl2 Core Performance Report Page 7

of 58

R H

Figure 1.1 SURRY UNIT 1 - CYCLE 12 CORE LOADING MAP J

H G

l2B 128 128 I

I 2G6 I 4G5 I 3G7 I

F E

______ 1 ___ 1 ___ 1 ___ 1 ____

I 12A I l3B I 148 I 138 I 148 I 138 I 12A I OG2 I 2H9 I 5J6 I SH2 I 4J9 I 3H3 I 1G2 I

D 1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

I 12A I 14A I 148 I 13A I 148 I 13A I 148 I 14A I 12A I

I 1G4 I 2J4 I 6J2 I OH9 I 4J7 I !HO I 5J3 I 2J6 I OG7 I

C 1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

I 12A I 138 I 148 I 13A I 14A I 128 I 14A I 13A I 148 I 138 I 12A I

I 1G3 I 4H4 I 5J9 I 1H7 I 2JO I 3GO I 3J2 I OH5 I 5J2 I 3H9 I OG8 I

B 1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

I 12A I 14A I 148 I 138 I 14A I 128 I 14A I 128 I 14A I 138 I 148 I 14A I 12A I

I OG9 I l J4 I SJS I 3110 I 2J2 I 3G9 I OJ3 I 4GB I 1J8 I 3H4 I 4J4 I 2J8 I 2G4 I

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 I 138 I,s8 I 13A I 14A I 13A I 14A I l3B I 14A I 15A I 14A I 13A I 148 I 138 I

I 4H6 I '-Jl I 2Hl I OJ6 I OH3 I 2Jl I 2H6 I 1J2 I !HS I !JO I OHl I 4J3 I 4HO I

A 1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __ ! __

1 __

I 128 I 148 I 13A I 14A I l2B I 14A I 15A I l5B I 13A I 14A I l2B I 14A I 13A I l4B I l2B I

I 4G2 I 6JO I,HO I lJl I 4GO I 3J5 I OH6 I 3H2 I IH9 I OJ8 I 3G5 I 2J9 I OH4 I 3J8 I 3G2 I

1 __

[ ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ 1 ___ ! ___ 1 ___ 1 I 128 I 138 I 148 I 128 I l',A I l5B I 138 I 10 I 138 I 138 I 14A I 128 I 148 I 158 I 128 I

I 3GB I ma I SJ7 I 4Gl I 5JO I 5H7 I 4H2 I lEZ I SHl I 31H I 1J9 I 2G9 I 4JO I 4H7 I 3G6 I

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 I 128 I 148 I 15A I 14A I 128 I 14A I 15A I 138 I 15A I 14A IS2/12AI 14A I 13A I 148 I 128 I

I 3Gl I 3J6 I OH2 I !JS I 4G6 I 3J3 I 1H8 I 3H8 I lHl I OJl I 2UO I OJ7 I 2H2 I SJO I 2G7 I

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 I 138 I !48 I 13A I 14A I 13A I 14A I 138 I 14A I 13A I 14A I 13A I 148 I 138 I

I SHO I 4J6 I 1H4 I 3Jl I ZH4 I OJ4 I 4H3 I lJ6 I OH8 I OJ9 I ZH3 I SJl I 4H5 I

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 I 12A I 14A I 148 I 138 I 14A I 128 I 14A I 128 I 14A I l3B I 148 I 14A 1 12A I

I 1G9 I OJS 1 4J5 I 3115 I 2J5 I 4G4 I 3J4 I 3G4 I 2J3 I 4H8 I 3J7 I OJ2 I OGl I

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 I 12A I 138 I l',B I 13A I 14A I 128 I 14A I 13A I 148 I 138 I 12A 1

I !GI 1 4Hl I 6J3 I lli3 I lJ7 I 2GB I lJ3 I lH6 I 4J2 I 3H6 I 1G6 I

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 1--> BATCH I 12A I 14A I 148 I 13A I 148 I 13A I 148 I 128 I lZA I

I OG6 I 2J7 I 4J8 I !HZ I 6Jl I OH7 I 5J4 I 4G7 I lG3 I

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 I 12A I 138 I 148 I 138 I 148 I 138 I 12A I

I OG5 I 2H5 I 5J8 I 2H7 I 3J9 I 4H9 I 2G3 I

1 __

1 __

1 __

1 __

1 1--> ASSEMBLY ID I

I 128 I 128 I 128 I

I 3G3 I 4G3 I 2G5 I

1 __

1 __

1 __

1 FUEL ASSEHBLY DESIGN PARAHETERS SUB-BATCH l52/12A I 10 12A l2B 13A 138 14A 148 INITIAL ENRICHHENT 3.79 3.60 3.80 3.99 3.80 4.01 3.81 4.02 (W/0 U-235)

BURHUP AT BOC 12 211435 17757 35617 32362 17977 16922 0

0

( HWD/HTUJ ASSEHBLY TYPE 15xl5 15Xl5 15Xl5 l5Xl5 15Xl5 15Xl5 lSXlS lSXlS HUHBER OF ASSEHBLIES 1

l 16 24 24 28 35 28 FUEL RODS PER ASSEHBL' za4 I 204 204 Z'.04*

204 204 204 204

  • ONE ASSEHBLY (4G7J HAD ONE FUEL ROD REPLACED WITH A SOLID STAINLESS STEEL ROD DUl!IHG A RECONSTITUTION PROGRAH.

\\E-978 S1Cl2 Core Performance Report Page 8

of 58 I

I,

l I

z 3

I 5

I 6

7 I

a 9

I 111 I

11 lZ el 13 1,

15 I

I I

I I !

I I I..

I

(

I I

I I

I Section 2 BURNUP The Surry Unit 1 Cycle 12 burnup history is graphically depicted in Figure 2.1.

Surry 1 Cycle 12 achieved a cycle burnup of 19,587 MWD/MTU.

As shown in Figure 2.2, the average load factor for Cycle 12 was 92.3%

~hen referenced to rated thermal power (2441 MW(t)).

Unit 1 performed a

?OWer coastdown starting on November 4, 1993 until shutdown for refueling 0n January 22, 1994.

Radial (X-Y) burnup distribution maps show how the core burnup is II..... shared among the various fuel assemblies, and thereby allow a detailed

~

burnup distribution analysis.

The TOTE 3 computer code is used to I

I I

I

  • 1 I

calculate these assemblywise burnups.

Figure 2.3 is a radial burnup distribution map in which the assemblywise burnup accumulation of the core

~t the end of Cycle 12 operation is given. For comparison purposes, the design values are also given.

Figure 2.4 is a radial burnup distribution map in which the percentage difference comparison of measured and predicted assemblywise burnup accumulation at the end of Cycle 12 operation is given.

As can be seen from this figure, the accumulated assembly burnups were within +/-4.14% of the predicted values.

In addition, deviation from quadrant symmetry in the core throughout the cycle was no greater than +/-0.41%.

The burnup sharing on a batch basis is core is operating as designed and to enable accurate end-of-cycle batch monitored to verify that the I

NE-978 S1Cl2 Core Performance Report Page 13 of 58

.:urnuo predictions to be made for use in reload fuel design studies.

~ate~ definitions are given in Figure 1.1.

As seen in Figures 2.SA, 2.SB,

~~d 2.5C, the batch burnup sharing for Surry 1 Cycle 12 followed design

?redictions closely with no batch deviating from prediction by more than

.. o,,

.I,.... 0.

The batch burnup sharing deviations in conjunction with reasonable agreement between actual and predicted assemblywise burnups, anci symmetric core burnups indicate that the Cycle 12 core did deplete G.S designed.

~E-978 SlC12 Core Performance Report Page 14 of 58 I

I el I,,

I I

I

I 1*

l' I

I I

I I

I I

I i

I..

I p

H Figure 1.2 SURRY UNIT 1 - CYCLE 12 BURNABLE POISON AND SOURCE ASSEMBLY LOCATIONS H

J H

G F

E I

I I

I I

I __ I __

I __

I

---,---I SP I

I SP 1-----,----

1 I

I BPl44 I I BPl45 I I

I D

1 __

1 __

1 __ 1 __

1 __

1 __

1 __

1 __

I I

3P I 16P I

I zap I

I 16P I

3P I

I I

1BP134 1BPl65 I 1BPl70 I 1BPl64 IBPl36 I I

C 1 __

1 __

1 __

1 __ 1 __ 1 __

1 __

1 __

1 __

1 __

I I

I 20P I

I zap I

I ZOP I

I 20P I

I I

I I

I BPl79 I I BPl82 I I BP183 I I BPl81 I I SS7 I

__ 1 __

1 __

1 __ 1 __

1 __ 1 __ 1 __

1 __

1 __

1 __

1 __

i I

3P I ZOP I

I 17P I

I 16P I

I 17P I

I 2DP I

3P I

I I

I BP135 I BP180 I I BPl50 I I BPZOO I I BP155 I I BP172 I BP137 I I

1 __ 1 __

1 __

, __ 1 __

, __, __ 1 __

1 __ 1 __ 1 __

I I 16P I

I l7P I

I 20P I

I 20P I

I 17P I

I 16P I

I I

!BPl63 I

!BP156 I 1BPl90 I IBP191 I IBP157 I IBP162 I I

A

__ 1 __

1 __

1 __

1 __ 1 __

1 __

1 __ 1 __

, __ 1 __ 1 __ 1 __

1 __

1 __

I I

SP I

I 20P I

I 20P I

I 12P I

I 20P I

I 20P I

I SP I

I I

IBP147 I IBP186 I IBP194 I IBP158 I IBP195 I IBP187 I IBP142 I SSl I

1 __ 1 __

1 __ 1 __

1 __

1 __, __, __

1 __

1 __ 1 __ 1 __

1 I

I I 20P I

I 16P I

I 12P I

I 12P I

I 16P I

I ZDP I

I I

I I

IBP177 I IBP199 I IBP159 I IBP161 I 1BP20l I IBP171 I I

I 1 __

1 __

1 __

1 __

1 __

1 __, __

1 __

1 __

1 __

1 __

1 __,

I I

SP I

I ZOP I

I 20P I

I 12P I

I 20P I

I ZOP I

I SP I

I I ssz I BP146 I I BP189 I I BP197 I I BP160 I I BP196 I I BP188 I I BP143 I I

1 __ 1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 I

I 16P I

I 17P I

I 20P I

I ZOP I

I 17P I

I 16P I

I I

IBP168 I 1BP152 I IBP193 I IBP192 I IBP153 I 1BP169 I I

1 __

1 __

1 __

, __ 1 __

1 __

1 __

1 __

1 __ 1 __, __

1 I

I 3P I ZOP I

I 17P I

I 16P I

I 17P I

I 20P I

3P I

I I

IBPl<tl IBP174 I 1BP151 I 1BP1911 I IBP154 I IBP176 IBP139 I I

1 __

1 __

1 __

1 __

1 __

1 __

1 __, __

1 __

1 __

I I

I 20P I

I 20P I

I 20P I

I 20P I

I I

I I

I BP173 I I BP1115 I I BP184 I I BPI 75 I I

I

, __ 1 __, __, __, __, __ 1 __, __ 1 __, __, __,

I I

3P I 16P I

I ZDP I

I 16P I

3P I

I I

I BP140 I BPl67 I I BP1711 I I BP166 I BP138 I I

1 __

1 __

1 __

, __ l __, __

1 __ 1 __ 1 __

I I

I SP I

I SP I

I I

3P -

3 BURNABLE POISON ROD CLUSTER 5P -

5 EURHABLE POISON ROD CLUSTER t:P -

12 BURNABLE POISON ROD CLUSTER 16P -

16 BURNABLE POISON ROD CLUSTER 17P -

17 BURNABLE POISON ROD CLUSTER

oP -

20 BURNABLE POISON ROD CLUSTER SSx -

SECONDARY SOURCE I

I I BPl48 I I BP149 I I

I 1 __ 1 __ 1 __, __

1 __

1 __

1 __ 1 I

I I

I I

I I

I I __ I __ I __ I xxP or SSx BP:!::!::!:

HUHBER OF BP RODS or SECONDARY SOURCE IO BP ASS£1tBLY ID

~E-978 S1Cl2 Core Performance Report Page 9

of 58 1

z 3

4 5

6 7

II 9

10 11 lZ 13 14 15

R H

Figure 1.3 SURRY UNIT 1 - CYCLE 12 MOVABLE DETECTOR LOCATIONS J

H G

I I

I HD I

I F

E

---,----1 __

1 __

1 __

1 __

I I

I I

I I

I I

I I

HD I

I D

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

I I

I I

I I

I I

I I

I HD I

I I

HD I

HD I

I I

I HD I

C 1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

I I

I I

I i

  • I I
  • I I

I I

I I

I HD I

I I

HD I

I HD I

I I

I B

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

I I

I I

I I

I I

I I

I I

I I

I I

HD I

I HD I

I HD I

I I

I HD I

HD I

I HD I

1 __

1 __

1 __

1 __ 1_*_1 __

1 __

1 __ ! __

1 __

1 __

1 __

1 I

I I

I I

I I

I I

I I

I I

I I

I I

HD I

I I

HD I

I HD I

I I

I I

A 1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

I I

I I

I I

I I

I I

I I

I I

I I

I I

I HD I

I I

I HD I

I HD I

I I

HD I

I HD I

I 1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 I

I I

I I

I I

I I

I I

I I

I I

I I

HD I

I HD I

I HD I

I I

I I

HD I

I I

HD I

HD I

I 1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I HD I

I I

I HD I

HD I

I I

I I

HD I

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 I

I I

I I

I I

I I

I I

I I

I I

I HD I

I I

I HD I

I I

I I

HD I

I HD I

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 I

I I

I I

I I

I I

I I

I I

I I

I I

I HD I

I I

HD I

I HD I

HD I

I I

I 1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 I

I I

I I

I I

I I

I I

I I

HD I

I I

I HD I

I I

I I

HD I

HD I

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 I

I I

I I

I I

I I

I I

I I

I I

HD I

I HD I

I I

1 __

1 __

1 __

1 __

._1 __

1 __

1 __

1 __

1 __

1 I

I I

I I

I I

I I

HD I

I I

I HD I

I I

1 __

1 __

1 __

1 __

1 __

1 __

1 __

I I

I I

HD -

Hovable Detector Locations I

HD I

I I

1 __

1 __

1

~ - Locations Unavailable

~E-978 S1C12 Core Performance Report Page 10 of 58 I.,,

l I

z 3

  • 1 4

5 6

7 I.

a 9

I 10 el.

11 lZ 13 14 I

15 I

I I

I I **

I

I I t I

I

  • I I

.I I

le

  • 1 I

I I

I I

j..

. I R

p N

H Figure 1.4 SURRY UNIT 1 - CYCLE 12 CONTROL ROD LOCATIONS L

K J

H 180° I

G F

E D

C Loop C I

I I

I Loop B Outlet I __ I __ I __ I Inlet I

I A I

I D I

I A I

I

_1 __ 1_1_1_1_1_1_1_

H-41 I

I I

I SA I I SA I I SP I I

N-43

__ 1_1 __ 1_1_1_1_1_1_1_1_

I I c I

I B I

I I

I B I

I c I

I B

_1_1_1_1_1_1_1_1_1_1_1_1_

I I SP I I SB I I SP I I

I I SB I I

I I

1_1_1_1 __ 1_1_1_1_1_1_1_1_1_1 IAI IBI IDI lei IDI IBI IAI A

Loop C _1_1_1_1 __ 1 __ 1_1_1_1_1_1_1 __ 1_1_

Inlet 90°-

I I

I SA I I

I I SB I I SB I I SP I I. SA I I

I 1_1_1_1_1 __ 1 __ 1_1_1_1_1_1_1 __ 1_1_1 I

I D I I

I I c I

I I

I c I

I I

I D I

I 1_1_1_1_1 __ 1 __ 1_1_1_1_1_1_1 __ 1_1_1 I

I I SA I I SP I I SB I I SB I I

I I SA I I

I 1_1_1_1_1 __ 1 __ 1_1_1_1_1_1_1 __ 1_1_1 IAI IBI IDI lei IDI IBI JAi 1_1_1_1 __ 1_1_1_1_1_1_1_1_1_1 I

I I

I SB I I

I I SP I I SB I I SP I I

1_1_1_1 __ 1_1_1_1_1_1_1_1_1_1 I

I c I

I B I

I I

I B I

I c I

I 1_1 __ 1 __ 1 __ 1_1_1_1_1_1_1 __ 1 I

I SP I I SA I I SA I I

I I

H-44 I __ I __ I __ I __ I __ I __ I __ I __ I __ I N-42 I

I A I

I D I

I A I

I 1_1_1_1_1_1_1_1 I

I I

I Loop A I __ I __ I __ I Loop A Absorber Outlet Inlet Haterial Ag-In-Cd Function Control Bank D Control Bank C Control Bank B Control Bank A Shutdown Bank SB Shutdown Bank SA SP (Spare Rod Locations)

I 00 Nunber of Clusters 8

8 8

8 8

8 8

Loop B Outlet 270°

~E-978 S1Cl2 Core Performance Report Page 11 of 58 1

2 3

4 s

7 8

9 10 11 12 13 14 15

I maa 2IODD 2DDDD 19DDD I BUDD 17DDD 16DDD i, :::::

IJDDD mao

a.

11 DOD z

r:z:

10000

, m 9DDD

~ BDDD

~ 7DDD saoo SDDD ma ma ma IDDD a

Figure 2.1 SURRY UNIT 1 - CYCLE 12 CYCLE BURNUP HISTORY

~ l I I I C-J _r1_ I

~ -- *-----

j J

I j

i I

j I I

~ I I I

I I

j I I

I

/

J j

/

/

. I

/~

/"

I/

/

/

I

/

j I

/

I I/

/

/

/

z:

~.... - -

u z

z:

- =

........ =... -... -

a.. - =

!! ~...

~ ~ ~ ~ ~...

~,. ~ !!...

Cl Cl C2 Cl Cl Cl =

Cl C,

C, Cl C,

TIME (MONTHS)

MAXIMUM DESIGN BURNUP -

~

~E-978 S1Cl2 Core Performance Report

_lJ _ _ Ll_

/

/

/

I

/

/

rY'

/

! I I

I I u

a... - -...

z

,...... =....

~ ~ ~ ~ ~

~...

Cl Cl c:,

c:,

Cl Cl Cl 21200 MWD/UTU Page 15 of 57

I

'./.

M I

-...J co C/l

_o N

0 0

'1 (1)

'ti co

'1 t-t, 0

'1 a

Pl :,

n (1)

a:,

(1)

"Cl 0

'1 rt

'ti Pl OQ (1) 0\\

0 t-t, V1

-...J 0

MAY-92 JUN-92 JUL-92 AUG-92 SEP-92 OCT-92 NOV-92 DEC-92 JAN-93 I

FEB-93 s:

MAR-93 0 z I

I 1-3 APR-93

i:

r MAY-93 JUN-93 JUL-93 AUG-93 SEP-93 OCT-93 NOV-93 DEC-93 JAN-94 CYCLE AVERAGE I

I-'

0 I

I N

0 l

I w

0 I

I PEHCEN'l' I

Ul 0

I

0) 0 I

I l

I co 0

I 1111

,.o 0

I I-*'

0 0

I

I I t I

I I

I I

le I

I I

I I

  • 1 I..

I

]

0 9

10 11 12 13 14 15 R

p H

Figure 2.3 SURRY UNIT 1 - CYCLE 12 ASSEMBLYWISE ACCUMULATED BURNUP MEASURED AND PREDICTED (GWD/MTU) 11 J

H G

F E

D C

B A

I 40.57/ 44.98/ 41.471 I 40.69/ 44.93/ 40.691 I

HEASURED I I PREDICTED I I 41.971 32.09/ 21.04/ 35.461 21.011 32.061 41.801 I 41.781 31.981 20.731 35.051 20.731 31.981 41.781 I 45.lll 21.131 24.281 40.031 24.041 39.171 24.491 21.741 45.171 I 45.741 21.061 24.241 39.751 24.181 39.751 24.241 21.061 45.741 I 45.831 34.181 24.341 41.93/ 24.59/ 54.13/ 23.821 41.651 24.951 34.251 45.251 I 45.731 34.071 24.821 42.001 24.23/ 54.261 24.23/ 42.001 24.821 34.071 45.731 I 41.231 20.821 24.601 40.951 25.84/ 52.39/ 24.921 51.661 25.761 41.021 24.241 21.321 41.721 I 41.761 21.061 24.821 41.261 25.871 51.641 24.571 51.641 25.871 41.261 24.821 21.061 41.76/

I 32.041 24.021 42.0ll 25.601 42.24/ 25.21/ 42.70/ 24.97/ 42.20/ 25.43/ 41.461 23.901 31.651 I 32.0ll 24.241 41.981 25.891 42.33/ 25.041 42.341 25.041 42.331 25.891 41.98/ 24.24/ 32.01/

2 3

4 5

6 I C.0.61/ 20.821 39.391 24.10/ 50.701 24.801 40.671 38.00I 40.671 24.901 51.561 23.641 38.941 20.051 40.421 7

I 40.721 20.73/ 39.781 24.231 51.631 25.031 41.531 38.901 41.531 25.031 51.631 24.231 39.781 20.73/ 40.721 I 45.161 35.141 24.181 53.881 24.261 41.40/ 38.551 38.941 38.521 41.881 24.151 53.661 23.551 34.381 44.481 8

I 44.951 35.051 24.171 54.261 24.571 42.34/ 38.881 39.591 38.881 42.341 24.571 54.261 24.171 35.051 44.951 I 40.431 20.741 39.641 24.221 51.501 24.931 40.941 38.571 40.681 24.201 48.861 23.931 39.451 20.731 40.731 9

I 40.721 20.731 39.781 24.231 51.631 25.03/ 41.53/ 38.901 41.531 25.031 49.451 24.231 39.781 20.731 40.721 R

I 31.751 23.831 41.511 26.121 42.31/ 24.311 41.411 24.631 41.791 25.601 41.321 24.221 32.671 I 32.0ll 24.241 41.981 25.891 42.33/ 25.041 42.341 25.041 42.331 25.891 41.981 24.241 32.011 I 41.711 21.121 24.941 41.521 25.481 50.401 24.241 51.31/ 25.721 40.901 24.981 21.301 41.45/

I 41.761 21.061 24.821 41.261 25.871 51.641 24.571 51.641 25.871 41.261 24.821 21.061 41.761 p

I 45.021 34.361 24.901 41.44/ 23.541 53.271 23.811 41.581 24.601 34.701 45.731 I 45.731 :Y..071 24.821 42.00/ 24.231 54.261 24.231 42.00I 24.821 34.071 45.731 I 45.131 21.701 24.271 38.791 23.401 39.331 23.261 22.921 45.451 I 45.741 21.061 24.241 39.751 24.181 39.751 24.241 23.201 45.741 I 41.521 32.651 20.741 34.45/ 19.881 31.101 41.021 I 41.781 31.98/ 20.731 35.051 20.731 31.981 41.781 I 40.261 44.301 40.041 I 40.691 44.931 4o.69I N

11 J

Ii G

F E

D C

A 10 ll 12 13 14 15

\\E-978 S1Cl2 Core Performance Report Page 17 of 58

3 4

5 6

R

?

Figure 2.4 SURRY UNIT 1 - CYCLE 12 ASSEMBLYWISE ACCUMULATED BURNUP COMPARISON OF MEASURED AND PREDICTED (GWD/MTU)

H J

H G

F E

D C

B A

I 40.571 44.981 41.471 I -a.3ol 0.121 1.901 I

HEASURED I

I 11/P Z DIFF I I 41.971 32.091 21.041 35.461 21.011 32.061 41.801 I

o.471 o.351 1.481 1.191 1.331 0.251 0.051 I 45.111 21.131 24.281 40.031 24.041 39.171 24.491 21.741 45.171 I -1.361 o.321 0.111 o.711 -o.561 -1.461 1.061 3.211 -1.231 I 45.831 34.181 24.341 41.931 24.591 54.131 23.821 41.651 24.951 34.251 45.251 I

0.211 0.331 -l.941 -0.161 1.481 -0.251 -l.711 *0.831 o.531 0.531 -I.OSI I 41.231 20.821 24.601 40.951 25.841 52.391 24.921 51.661 25.761 41.021 24.241 21.321 41.721 I *l.291 *l.141 -0.911 -o.741 -0.141 l.471 1.461 0.051 -0.461 -0.591 -2.361 1.211 -0.111 I 32.041 24.021 42.011 25.601 42.241 25.211 42.701 24.971 42.201 25.431 41.461 23.901 31.651 I

0.111 -0.8/1 0.071 -I.IOI -0.191 0.701 0.851 -0.281 -0.301 -l.761 *!.221 -l.391 -I.Ill I 40.611 Z0.821 39.391 24.101 50.701 24.801 40.671 38.00I 40.671 24.901 51.561 23.641 38.941 20.051 40.421 I -0.261 0.411 -0.%1 -0.551 -l.801 -0.931 -2.011 -2.301 -2.061 -0.521 -0.131 *2.451 -2.091 -3.301 -0.741 8

I 45.161 35.141 24.181 53.881 24.261 41.401 38.551 38.941 38.521 41.881 24.151 53.661 23.551 34.381 44.481 I

0.481 0.271 0.061 -0.691 -1.281 -2.231 -0.861 -1.651 -0.931 -1.101 -l.691 -l.111 -2.561 -1.921 -1.041 9

I 40.431 20.741 39.641 24.221 51.501 24.931 40.941 38.571 40.681 24.201 48.861 23.931 39.451 20.731 40.731 I -0.111 0.051 -0.331 -o.061 -o.251 -0.391 -1.421 -0.821 -2.041 -3.321 -1.201 -1.281 -o.821 0.001 0.031 10 11 12 13 14 I 31.751 23.831 41.511 26.121 42.311 24.311 41.411 24.631 41.791 25.601 41.321 24.221 32.671 I -o.811 -1.671 -1.111 o.901 -0.041 -2.911 -2.211 -1.611 -1.271 -1.091 -1.561 -0.091 2.071 I 41.711 21.121 24.941 41.521 25.481 50.401 24.241 51.311 25.721 40.901 24.981 21.301 41.451 I -0.121 0.291 o.461 o.621 -1.541 -2.391 -1.331 -0.641 -o.591 -0.861 o.631 1.141 -o.761 I 45.021 34.361 24.901 41.441 23.541 53.271 23.811 41.581 24.601 34.701 45.731 I -1.551 o.871 o.321 -1.331 -2.861 -1.821 -1.741 -0.991 -o.871 1.841 -0.011 I 45.131 21.101 24.271 38.791 23.401 39.331 23.261 22.921 45.451 I -1.321 3.021 0.131 -2.411 -3.221 -1.051 -4.041 -1.211 -0.641 I 41.521 32.651 20.741 34.451 19.881 31.101 41.021 I -0.611 2.101 0.031 -1.691 -4.141 -2.741 -1.811 I ARITHl1ETIC AVG I IPCT DIFF = -0.651 15 I STANDARD DEV I I 40.261 44.301 40.041 I AVG ABS PCT I I D !FF = l. 13 I I

= o.87 R

p SUB HO. OF BATCH ASSEMBLIES S2/12A l

10 l

12A H,

12B 24 13A 24 138 28 14A 35 14B 28 11 K

SUB-BATCH SHARING Cl1WD/t1TUJ BOC BATCH BURNUP 28,435 17,757 35,617 32,362 17,977 16,922 0

0 I -1.011 -1.391 -1.611 J

H G

F EOC BATCH CYCLE BURNUP BURNUP 48,859 20,424 38,938 21,181 43,445 7,828 45,875 13,513 40,799 22,822 36,371 19,449 24,053 24,053 23,215 23,215 CYCLE AVERAGE ACCUMULATED BURNUP = 19,587

~E-978 S1Cl2 Core Performance Report E

D C

A BURNUP TILT NW=

0.37 I NE=

0.09


1------------

sw = -0.05 I SE= -0.41 Page 18 of 58 I

I..

I 2

I 3

I 4

5 I

6 7

I II 9

  • 1 11 11 el lZ 13 I

14 15 I

I I

  • I I

.1

  • I
1 I' I'

=2 I

I 48 I

44 I,.

40 E-<

~

"Cl I

3 l!)

36 0..

le z

a
i: 32

.11 u

~

ca I ca I

C/l 28 I

24 I,,

20 I

16 I..

i I I I

i I I

I I

i I

I I

i i

I I

I I

i I

i I l I

I I

I I

l i

I I

i I

I I

i i

I

- - - -~------------------------.

Figure 2.SA SURRY UNIT 1 - CYCLE 12 SUB-BATCH BURNUP SHARING I

I I I I l

I i

I I

I I I I i

I i

I i

i i

! I I

I

! I I I I

I I

I i i

I I

I I

! I I

I I I I

I I '

! I~

I I/ Q I I

/ 0

/0 I

,R'>

! I I I I I I I I I ~

i 1~

I i

! I I I I i A

---~r' I I i I yQ~ ~

l7T'1 I

i I

I I

I I

...--&'~ /J"j I

I I

i i

/1'-I.

1 i

i

! k~ Im I

I I I~

I, 7 f:;: / Lt(

i I I

I I/

I f)

~

I/'.

b'-

SUB-BATCH S2/12A 0

SUB-BATCH 10 0

SUB-BATCH 12A i

! ! -~/if

/..>

I I I I/ u

~::;,~ I' i i v<'.D I

17r° I

I I

/I

! I I I !.,.< >

I I

/ "UI I

I I I I A L ro I

i i I j/t, I IL I

I I

i I

I I

.;( I>

I V

I L

j

,,I)

I I

/ vv

/~

I I

/vu

/r, I

I

,..vu I

I I I

,vc I I l I

I I

I I I I I

I V'-

I I I i I i

I i

I l

i i

!7 I I i

i I

I I I

I I

I I

I I 1/C I

I IA I I I

I I IA I I

I

/~

I I

V I

I

/

I y

I I I I

I Vi I

J I I

v-I I ! i I I i

I I I I I i !

I I I I I I

I I 0

2 4

6 8

10 12 14 16 18 CYCLE BURNUP (GWd/MTU)

I NE-978 S1C12 Core Performance Report Page 19 of 57

52 48 i

I I

44 I

i I

40 I

I I

I I

I

6
J

.~9 E-<

~ 32

,.. "{

I I

-a l!)

i 0.. 28 0 z I

I I

o:;

J

[Il 24

i:

i u

E-<

,:i:

i i

I I

I I

i I

I I

I I

i I

I i

I I

I I

I I

I I

Figure 2.5B SURRY UNIT 1 - CYCLE 12 SUB-BATCH BURNUP SHARING I

i j

i I

i I

I i

i i

I i

i I

I I

i I

I i

I I

i j

I j

I I

I I

i i

I I

I i

I i i~.l I

I I

i

.:..<}'v

i I

I I

~

i I

I I

I I/ V1

~,1 V

l i

i

~...'<"1> v1 I

I i

I I

~

I l

1...,-;

i i~"

I

  • ,;,(

~

~

I

/l

/1) 't' I

I I

A i

i I

I <><(

I I

I I

I I

I I

I I

i 0-I I

I I

I I

I I

I I

I

  • ..cl I

I i

i I

i i

I L}

I I

I I

I i

I I,i1)

I I

/

I I

I Pr.

I I

I i

i,-Y !

I i

I I/

I i

I I

./-

i I

I I

,,x.

i I

I I

I I

i I

I I

i I

I i

I i

I I

i /

I

~~

i,e'S V!

i

.,/4-i

<)

1./)

I I

I I

I i

i i

I I

I I

I I

I I

'~

~

~

[Il r;<

I I

i I

20 I

[Il

_I/

I i

I I

I I

0 U'l v-I I

l I

I I

I ', i'l" j

I I

I I

I y,

.6 I

I I

,.;;,s::i I

i i

i i

I.~

i I

I i

I I

I I,1,"'

I I

I I

I i

I i

I I

I, '/

I I

I i

/I' I

I i

I I

7r i

12 i

I I

! 71 I

I I

I I

I

,, I i

I I

,.,/

i I

I 8

i L/'11' I

I I

I I

.,?I I

I I

i I

I ;,

I i

I I

I I

I I ~

I i

i i

I I

i I

I i

4

,,/ I I

i I

I I

I I

I

,, /r' i

I I

I I

V' I

I I

I 0

0 2

4 6

8 10 12 14 16 18 CYCLE BURNUP ( GWd/MTU)

\\E-978 S1Cl2 Core Performance Report Page SUB-BATCH 12B 0

SUB-BATCH 13A 0

SUB-BATCH 14A 20 of 57 I

I I

I I'

el I

I *,

I

I I I' I

I I

I I

I'

.le I

I I

I I

I I..

I "10 I

i I

i 36

' l I

I I

I I i

I Figure 2.SC SURRY UNIT 1 - CYCLE 12 SUB-BATCH BURNUP SHARING I

i i

I i

I i

i i

I I

I I

I I

i I

i I

I I

I i

I I

l i

I I

I I

I i I I

! I j

I i

i i

i i

i I

I i

i i

I i

I I

I

~

I I

I I l#

I I 1.01" !

I l~I I

I I~

i l

SUB-BATCH 13B 0

SUB-BATCH 14B 0

I I

i 1

I i

i I

yC,f i I I

I i

i 32 0..

28

~ 20 ill

c u E-1

~ 16 I

ill u'l l2 8

4 0

i i

l

~

i I

I i

I

~ !

I I

A I

i I,}01 I

-A

' ~

I I

I i

l i

i,/t i

I i

I I

i I

I //{ I I

I i I I

I I

I I

I,_/'

i I

I I

I I

~ '

i I I

I I I

I i

i,,.V'( !

I I I I I

I

.fl l I I I

! I I I

i I

I i_/{ !

l I i I

I I I i

I A

i I

I I I I I

~

I !

I I I I

17'_

I i

i I I I

y I I I

! I I I v-I I

I I I

I I I I v.i I

I j

i i

,;c I

I I

I

' :A i

I i

I i

!,e) i I

I i

i i

I I ~

I I I I

I i I d' I I

I I I I i,,/I I

I I

I v-i I I

I I/{

i I I I i I

I i

jf>

I I I

i I I I

i I ~

i I

I I

I £ i

I I

! I I I

,./ I i

I J

I !

i i

I I

I 1/1 I

I i

I I

0 2

4 6

8 10 12 14 CYCLE BURNUP (GWd/MTU)

~E-978 S1Cl2 Core Performance Report I

,[

I I

I i

l I I i I

i i

I I

I I

I I

I I

i i

I I

I i

! I I /P I !

Pl I P\\

1£5 I

i '7'\\"

I i

i I

I I I

I I i I I !

I I I

I

]

i I

I i

I I

I i

I i

I I I I I I

i I I

I I

I I I I

i I I I

I I I I I

I I

I I

i I

I i i i

i l

I I

i I

I 16 18 Page 21 of 57

I I {'

I I

I I

I I

,le I

Section 3 REACTIVITY DEPLETION The primary coolant critical boron concentration is monitored for the purposes of following core reactivity and to identify any anomalous reactivity behavior.

The FOLOW" computer code was used to normalize "actual" critical boron concentration measurements to design conditions taking i:ito consideration control rod position, xenon concentration, moderator temperature, and power level.

The normalized critical boron concentration versus burnup curve for the Surry 1 Cycle 12 core is shown in Figure 3. 1.

The maximum difference between measured and predicted critical boron concentrations was 55. 3 ppm.

The largest reactivity anomaly was +/-0.478% !:,.K/K which is within the +/-1% !:,.K/K criterion for

~

reactivity anomalies set forth in Section 4.10 of the Technical Specifications.

In conclusion, the trend indicated by the critical boron I

I I

I I..

I concentration verifies that the Cycle 12 core depleted as expected without any reactivity abnormalities.

NE-978 SlC12 Core Performance Report Page 23 of 58

  • '-?

1400

.-. 1300

i
a. 1200
a.

Z 1100 0 i 1000 I-900 z w 800 0

~ 700 u z 600 i 500 0 m 400

~ 300

!:: 200 a:

U 100 a

t~

'\\

I Figure 3.1 SURRY UNIT 1 - CYCLE 12 CRITICAL BORON CONCENTRATION vs. BURNUP (HFP,ARO)

I I I I

~1 I I !',,'-

I

. I

~

I.

~

I I

~ ~

I I

~~

~

I I

~ ~

" \\.

~~

I I I~

~

I

~

I I

I I

I I

I

~ ' ~

' ~~

I I

I a 1 2 3 4 s a 1 a s 10 11 12 13 14 1s 1a 11 1a 1s CYCLE BURNUP (GWD/MTIJ) 11 I I MEASURED PREDICTED I

\\E-978 S1C12 Core Performance Report Page 24 of 58 I

~

I I

I I

I I'

el, I,,

I I

I I

I..

I

I I {'

I I

I I

I I

le I

Section 4 POWER DISTRIBUTION Analysis of core power distribution data on a routine basis is necessary to verify that the hot channel factors are within the Technical Specification limits and to ensure that the reactor is operating without any c1bnormal conditions which could 11 uneven burnup cause an distribution. Three-dimensional core power distributions are determined from movable detector flux map measurements using the INCORE 5 computer program.

A summary of all full core flux maps taken for Surry l Cycle 12 is provided in Table 4.1, excluding the initial power ascension flux maps.

Power distribution maps were generally taken at monthly intervals with additional maps taken as needed.

Radial (X-Y) core power distributions for a representative series of

~,

incore flux maps are given in Figures 4.1, 4.2, and 4.3. Figure 4.1 shows I

I I

I I..

I a power distribution map that was taken early in cycle life.

Figure 4.2 shows a power distribution map that was taken near the mid-cycle burnup.

Figure 4.3 shows a map that was taken near the end of Cycle 12.

The maximum relative assembly power difference between measured and predicted for these maps was 7.7% and the cycle maximum average percent difference was 2.6%.

In addition, as indicated by the INCORE tilt factors, the power distributions were essentially symmetric for each case.

An important aspect of core power distribution follow is the monitoring

if nuclear hot channel factors.

Verification that these factors are

~E-978 SlC12 Core Performance Report Page 25 of 58

within Technical Specification limits ensures that linear power density and critical heat flux limits will not be violated, thereby providing adequate thermal margin and maintaining fuel cladding integrity.

Surry Technical Specification 3.12 limited the axially dependent heat flux hot channel factor, Fq(Z), to 2.32 x K(Z), where K(Z) is the hot channel factor normalized operating envelope.

During Cycle 12, there was a revision to Surry Technical Specification 3.12 which modified the K(Z) envelope 5

  • Figure 4.4A shows a plot of the K(Z) curve applicable for the maps up to Map 05.

Figure 4.4B shows a plot of the K(Z) curve applicable for Maps 06 through the end of Cycle 12.

The axially dependent heat flux hot channel factors, Fq(Z), for a representative set of flux maps are given in Figures 4.5, 4.6, and 4.7.

Throughout Cycle 12, the measured values of Fq(Z) were within the Technical Specification limit.

A summary of the maximum values of axially-dependent heat flux hot channel factors measured during Cycle 12 is given in Figure 4.8. The minimum margin to the Fq(Z) limit was 18.55%.

It should be noted that the graphical representation of Figure 4.8 does not demonstrate the Fq(Z) limit change.

The Fq(Z) limit applicable over the majority of the cycle is shown.

Figure 4.9 shows the maximum values for the heat flux hot channel factor measured during Cycle 12.

The value of the enthalpy rise hot channel factor, F-delta-H, which is the ratio of the integral of the power along the rod with the highest integrated power to that of the average rod, is routinely followed.

The Technical Specification limit for this parameter is set such that the departure from nucleate boiling ratio (DNBR) limit will not be violated.

~E-978 S1Cl2 Core Performance Report Page 26 of 58 I

,I..

I I

I I

I I

el I

I I

I I

I..

I

I

~:

Additionally, the F-delta-H limit ensures that the value of this parameter

~

used in the LOCA-ECCS analysis is not exceeded during normal operation.

I I

I Surry Technical Specification 3.12 was revised in June, 1992 to increase the F-delta-H limit to 1.56(1+0.3(1-P)), where 1.56 is the F-delta-H at rated thermal power 5

  • The measured F-delta-H without any uncertainty applied is compared directly to this limit.

In Table 4.1, flux maps through Map 05 have 4% uncertainty included

~

to the listed F-delta-H values and were compared to the 1.55 limit.

The I

flux maps after Map 05 have no uncertainty applied and were compared to the 1.56 limit.

A summary of the maximum values for the enthalpy rise hot channel factor measured during Cycle 12 is given in Figure 4.10. This I

figure reflects the 100% power Technical Specification limit, the change

~in the 100% power Technical Specification limit and measured F-delta-H values that have the appropriate uncertainty applied. (The limit curve I

does not reflect the higher limit for maps taken at power levels less than I

100%.)

The change in the application of measurement uncertainty associated with the Technical Specification change explains the sudden I

drop in the measured F-delta-H values at beginning of cycle in Figure 4.10.

As can be seen from this figure, the minimum margin to the limit I

I was 4.84% for Cycle 12.

The target delta flux* is the delta flux which would occur at

~

conditions of full power, all rods out, and equilibrium xenon.

The delta flux is measured with the core at or near these conditions and the target I

~* Oelta Flux=

Pt-Pb 2441 X 100 where Pt= power in top of core (MW(t))

Pb= power in bottom of core (MW(t))

I NE-978 S1Cl2 Core Performance Report Page 27 of 58

delta flux is established at this measured point. Since the target delta flux varies as a function of burnup, the target value is updated monthly.

By maintaining the value of delta flux relatively constant, adverse axial power shapes due to xenon redistribution are avoided.

This target delta-flux was also used to establish the operational axial flux difference bands while under CAOC.

The plot of the target delta flux versus burnup, given in Figure 4.11, shows the value of this parameter to have been approximately 2.5% at the beginning of Cycle 12, decreasing to -2.8% near the middle of Cycle 12, and leveling off at -3.5% at the end of Cycle 12 before increasing during the power coastdown.

This axial power shift can also be observed in the corresponding core average axial power distribution for a representative series of maps given in Figures 4.12 through 4.14.

In Map Sl-12-05 (Figure 4.12), taken at 178 MWD/MTU, the axial power distribution had a shape peaked toward the middle of the core with an axial peaking factor (F-Z) of 1.209.

In Map Sl-12-14 (Figure 4.13), taken at approximately 9,266 MWD/MTU, the axial power distribution peaked slightly toward the bottom of the core with an axial peaking factor of 1.148.

Finally, in Map Sl-12-23 (Figure 4.14), taken at 16,789 MWD/MTU, the axial peaking factor was

1. 151, with an axial power distribution similar to Map Sl-12-14.

The history of F-Z during the cycle can be seen more clearly in a plot of F-Z versus burnup given in Figure 4.15.

In conclusion, the Surry 1 Cycle 12 core performed satisfactorily with power distribution analyses verifying that design predictions were

~E-978 SlC12 Core Performance Report Page 28 of 58 I

I..

I I

I I

I I

el I

I I

I I

I I..

I

I I {'

I I

I I

I

!1 le I

I I

I,,

I I

I accurate and that: the values of the Fq(Z) and F-delta-H hot channel factors were within the limits of the Technical Specifications.

NE-978 S1Cl2 Core Performance Report Page 29 of 58

Table 4.1 SURRY UNIT 1 - CYCLE 12

SUMMARY

OF FLUX MAPS FDR ROUTINE OPERATION I

I l

2 I

3 I

I I

I I

BURN I

BANK F-QCZJ HOT F-DHCNJ HOT ICORE FCZJ CORE I AXIAL I NO.I IHAPI UP I

D CHANNEL FACTOR CHNL. FACTOR IHAX TUT I

OFF I IF I IHO. I DATE lt\\lD/

PIIR I STEPS I

I I

SET ITHINI I

I HTU CZJ I I ASSYIPINIAXIAL I I.AXIAL I FCZJI HAX ILOCI CZ>

IILESI I

I I

I I

I IPOINTIF-QCZJ IASSYIPIN IF-DHCNJIPOINT I I

I I

I I

I_I I

I __ I 1 __ 1_1 __ 1 __ 1_1_1 __

1 __

1 __ 1 __ 1_1 __ 1_1 I 5 105-11-921 178 100.01 220 L05 OKI 30 I 1.866 L051 DK I 1.475 I 30 ll.20911.0161 NWI 2.6921 46 I 6 I 06-10-921 1151 99.931 224 E03 ICI 25 I 1.863 E031 IC I 1.413 I 30 11.20011.0121 NWI 2.Z411 4&

I 7 107-10-921 2141 100.01 221 E03 ICI 26 I 1.840 E031 IC I 1.404 I 30 ll.19011.0lGI NWI 1.7981 4&

I 8 108-10-921 3193 100.01 225 E03 ICI 25 I 1.801 LlOI GH I 1.408 I 30 ll.17411.0071 Nlfl 1.3261 411 I 9 109-14-921 4242 99.1181 225 FU Hll 32 I 1.767 LlOI GH I 1.410 I 30 I Ll60ll.0061 NEI 0.65el ft7 110 110-14-921 5280 99.9111 224 LlD IHI 41 I 1.759 LlOI IH I 1.411 I 37 IL14111l.0061 NEI -0.2831 4&

Ill 111-12-921 6244 99.941 224 LlO IHl42&43 1.763 LIOI IH I 1.415 I 41 ll.14111.0051 NEI -0.76111 4&

I 12 I 12-07-921 7105 100.11 224 LIO IHI 43 1.771 LlOI IH I 1.418 I 42 ll.l4Dll.0041 NWI -1.4461 47 113 IOl-13-931 8260 99.921 224 LlO IHI 45 l.765 LIOI IH I 1.417 I 45 ll.13511.0041 NWI -1.6191 47 114 102-15-931 9266 99.901 224 LlO IHI 4&

1.784 LlOI IH I 1.418 47 ll.14811.0021 NIii -2.7771 47 115 103-15-931 10112 99.921 224 LlO LGI 46 1.784 LlOI LG I 1.421 411 ll.14611.0031 NWI -2.6941 47 116 104-19-931 112110 100.01 224 LlD LGI 47 1.795 LlOI LG I 1.423 48 ll.15311.0021 NWI -3.ZZZI 411 117 105-19-931 12277 100.11 224 LlO LGI 47 1.799 LIDI LG I 1.422 48 ll.15&11.0021 NWI -3.5741 46 118 I0&-18-931 13209 100.01 223 LID LGI 47 1.795 llOI LG-I 1.423 52 ll.15411.0031 NWI -3.5441 47 119 107-16-931 14214 99.921 222 F05 IDI 52 1.794 LIOI LG I 1.419 52 ll.l&Oll.0021 NWI -2.7681 47 120 108-11-931 15060 99.941 222 F05 IDI 52 1.7112 LlOI LG I 1.410 52 ll.16311.0041 NIii -3.4911 47 I 21 I 011-31-931 15417 72.601 172 LlO LGI 411 1.7112 LIOI DF I 1.416 52 ll.16011.0071 NIii -5.6761 OWi 122 109-15-931 15907 99.981 223 F05 JDI 52 1.763 LIOI LG I 1.401 52 ll.16111.0091 NIii -3.4551 42 I 23 110-11-931 16789 99.971 223&2241 Kll FLI 52 1.756 LIOI LF I 1.397 52 11.15111.0041 Nwl -2.a1z1 :sa I 24 111-10-931 177811 95.341 223 I F05 JDI 52 1.631 LlOI LF I 1.396 52 ll.10911.0061 NIii -0.11661 43 I 25 111-22-93 I 111126 87.321 225 I LIO LFI 10 1.762 LIOI LF I 1.399 10 ll.16411.0l-OI NWI 3.59111 44 I 26 112-16-931 18809 73.871 223 I LIO LFI 09 1.867 LlOI LF I 1.402 09 ll.22211.0111 NWI 6.MZI 46 127 IOl-05-941 19263 62.671 218 I K09 JDI 09 1.991 LIO I LF I 1.407 09 ll.28711.0121 NMI 10.4151 4Z I_I ___ I

__ I I ___ I _______ I __ I ____

I __ I __ I_I __ I_

NOTES: HOT SPOT LOCATIONS ARE SPECIFIED BY GIVING ASSEKBLY LOCATIONS CE.G. HOB IS TIE CENTER-OF-CORE ASSEIBLY),

FOLLOWED IY THE PIN LOCATION (DENOTED BY THE "T" COORDINATE WITH THE FIFTEEN ROWS OF FUEL RODS LETTERED A THROUGH RAND THE *x* COORDINATE DESIGNATED IN A SIMILAR KANNER).

IN TIE *z-DIRECTION THE CORE IS DIVIDED INTO 61 AXIAL POINTS STARTING FROII THE TOP OF THE CORE.

1. F-QCZJ INCLUDES A TOTAL UNCERTAINTY OF 1.08.
2. F-DHCNJ INCLUDES AH UNCERTAINTY OF 1.04 FOR NAP 05.

THERE IS NO UNCERTAINTY APPLIED TD F-DH(NJ FDR KAPS 06 THROUGH 27.

3. CORE TILT - QUADRANT POWER TILT AS DEFINED BY THE INCDRE CODE.

~E-978 SlC12 Core Performance Report Page 30 of 58 I

I I

I I

I I

I I

I I

I I

I..

I

I I

I I

I I

I I

I I

I I

I I

R p

Figure 4.1 SURRY UNIT 1 - CYCLE 12 ASSEMBLYWISE POWER DISTRIBUTION Sl-12-05 H

PREDICTED tlEASIJRED K

J H

G F

E 0.33 0.37 0.34 D

C B

PREDICTED 11EASURED

  • PCT DIFFERENCE.

. 0.35. 0.39. 0.35.

5.1. 5.0. 3.3 *

. PCT DIFFERENCE.

0.37 0.76 l.14 l.04 1.15 0.76 0.37

. o.:sa. o.79. 1.18

  • 1.01
  • 1.11
  • a.n. o.3a
  • 4.6. 3.9. 3.2. 2.9. l.7. 0.6. 2.1.

0.41 l.13 1.23 1.20 l.17 l.20 1.24 l.13 0.40

. 0.42. 1.15. 1.26. 1.24. l.18. l.21. 1.24. 1.16. 0.42.

4.1. 2.1. 2.2. 3.3. 0.7. 0.3. 0.6. 3.0. 4.5 *

. 0.48 0.93 1.20 1.25 l.ll 0.94 1.11 l.25 1.20 0.93 0.48

. 0.41. 0.95

  • 1.21
  • 1.28. 1.14. 0.%. 1.11. 1.26
  • 1.22
  • 0.95
  • 0.41
  • 2.4.

2.1

  • 0.6. 2.1. 2.7. 2.0. 0.1. l.l. l.3. 1.4. 1.6.

0.37 1.13 1.20 1.33 1.22 1.03 1.13 1.03 1.22 1.33 1.20 1.13 0.37

. 0.37. 1.14. 1.22. 1.37. 1.25. 1.06. 1.16. l.05. 1.24. 1.34. 1.19. 1.13. 0.37.

l.O. l.O. 1.7. 2.8. 2.4. 3.0. 2.9. 2.0. 1.2. 0.7. *l.2. 0.2. 1.9.

0.76 1.23 1.25 1.22 1.23 1.16 1.25 1.16 1.23 1.22 1.25 1.24 0.76

. 0.77. 1.24. 1.27. 1.26. 1.26. I.la. 1.28. 1.17. 1.25. 1.22. 1.23. 1.21. 0.75.

0.6. 0.6. 1.9. 2.7. 2.4. 2.1. 2.4. l.4. 1.0. -0.1. *1.4. *2.0. *l.8.

A 0.33 1.14 1.20 l.11 l.03 1.16 1.26 1.20 1.26 1.16 l.03 1.11 l.20 1.15 0.34

. 0.34. 1.16. 1.20. l.12. l.04. 1.17. l.26. l.21. 1.27. 1.16. l.OZ. 1.08. 1.16. 1.09. 0.32.

2.5. 1.3. o.4. 1.0. 1.2. o.9. 0.1. 1.1. o.4. o.3. -0.9. -2.a. -3.a. -s.o. -4.7.

0.37. 1.04 1.17 0.9't 1.13 1.25 l.20 1.19 1.20 1.25 l.13 0.95 l.17 1.04 0.37

. 0.38

  • 1.06. 1.19. 0.95
  • 1.13
  • 1.25. 1.20
  • 1.19. 1.19
  • 1.24
  • 1.11
  • 0.9Z
  • 1.13. 1.00
  • 0.36
  • 2.4. 1.6. l.6. 0.7. -0.l. 0.1. 0.5. o.o. -0.7. -0.6. *l.7. -3.l. -3.5. -3.6. -3.2.

0.33 1.15 1.20 1.11 1.03 l.16 l.26 1.20 1.26 1.16 1.03 l.11 1.20 1.15 0.33

. o.34. 1.16. 1.21

  • 1.11. 1.02. 1.16. 1.26. 1.19. 1.25. 1.14. 1.00. 1.oa. 1.16. 1.12. o.33.

2.5. 1.5. l.O. 0.6. *O.l. -o.z. 0.4. -0.5. *0.8. *2.l. *2.2. -3.3. *3.3. *2.8. -1.8.

0.76 1.24 l.25 1.22 1.23 1.16. l.25 l.16 1.24 1.23 1.26 1.24 0.77

. 0.76

  • l.24
  • 1.26
  • 1.25
  • 1.26
  • 1.15
  • 1.24 * *l.15
  • 1.22
  • 1.20
  • 1.22
  • 1.20
  • 0.74.

0.1. 0.1. o.9. 2.0. 1.9. -o.6. -o.6. -o.a. -1.1. -1.a. -3.o. -3.Z. -3.o *

. 0.37 1.13 1.21. 1.33 1.22 1.03 1.13 1.03 1.22 1.33 1.20 1.13 0.37

. 0.38

  • 1.16
  • 1.23
  • 1.36
  • 1.23
  • 1.01
  • 1.12
  • 1.03
  • 1.22
  • 1.32
  • 1.19
  • 1.12
  • 0.36
  • 2.4. 2.4. 2.2. 2.0. o.6. -1.1. -0.1. -0.1. 0.1. -1.z. -1.1. -1.0. -1.4.

0.40 0.93 1.21 1.25 1.11 0.95 1.11 1.25 1.20 0.93 0.40

. 0.42. 0.97. 1.23. 1.25. 1.09. 0.93. 1.09. l.23. l.18. 0.93. 0.40.

4.7. 3.6. 2.0. -0.2. -1.7. -1.9. -1.8. *1.5. *l.l. -0.Z. 1.0.

0.41 1.13 1.24 1.21 1.17 1.20 1.23 1.12 0.40

. 0.42. 1.16. 1.25. 1.18. 1.13. 1.16. 1.18. 1.09. 8.40.

3.8. 2.9. 0.7. *2.5. -3.3. -3.8. -3.6. *2.3. 0.3.

o.37 0.11 1.15 1.04 1.14 o.76 o.36

. 0.3a. 0.77. 1.12. 1.01

  • 1.10. 0.73. 0.35.

2.9. l.l. *2.3. -3.3. -4.2. -3.9. *3.5.

STAHIWID DEVIATION

=l.274 0.34 0.37 0.33

. 0.33. 0.36. 0.32.

. *1.6. -2.7. -4.4.

AVERAGE

.PCT DIFFERENCE.

=

1.9 SUKttARY t1AP NO: Sl-12-05 DATE:

5/11/92 POWER: 100.oz CONTROL ROD POSITION:

F-Q(Z) = 1.866 QPTR:

D BANK AT 220 STEPS F-DH(N) = 1.475 NW l. 0164 INE 0.9998 I

F(Zl

= 1.209 SW 1.0053 ISE 0.9786 BURNUP = 178 HWD/HTU A.O. = 2.6927.

NE-978 S1C12 Core Performance Report Page 31 of 58 1

2 3

5 6

7 a

9 u

11 12 13 14 15

R Figure 4.2 SURRY UNIT 1 - CYCLE 12 ASSEMBLYWISE POWER DISTRIBUTION Sl-12-14 11 K

H G

F E

D 0.31 0.35 0.31 C

PREDICTED MEASURED

?PEDICTED

~EASURED

.PCT DIFFERENCE.

. 0.33. 0.37

  • 0.32.

,.2. 4.2. 2.9.

. PCT DIFFERENCE.

0.36 0.70 1.03 0.93 l.03 0.71 0.36

. 0.37. 0.72. l.04. 0.94

  • l.04. 0.71. 0.37.

3.7. 2.5. 1.4. 1.1

  • o.3.

1.0.

2.8.

0.40 l.06 1.23 l.ll. 1.24 1.12 1.23 l.06 0.40

. 0.42. 1.07. 1.24. 1.13. l.Zl. 1.10. 1.24. 1.10. 0.43.

3.1.

0.5. 0.5. 1.7. -Z.l. -1.4.

l.O.

3.8. 5.7.

0.40 0.91 1.28 1.20 1.25 0.99 1.25 1.20 1.28 0.91 0.40

. 0.41

  • 0.91. 1.26. 1.20. 1.26. 0.99. 1.22. 1.21. 1.30. 0.92. 0.41.

0.3. 0.5. -1.S.

0.4. 0.8. -0.l. -Z.9.

0.9. l.Z.

1.4.

2.6.

o.36 1.06 1.23 1.21 1.33 1.06 1.21 1.06 1.33 1.21 1.28 1.06 o.36

. 0.36. 1.05. 1.28. 1.28. 1.34. 1.08. 1.29. 1.07. 1.34. 1.:8. 1.25. 1.07. 0.33.

. -1.0. -1.0. -0.3.

l.O.

O.S. l.b. 1.7, 1.0.

0.6. 0.3. -2.2. l.O. 4.7.

0.70 1.23 1.20 1.34 1.22 1.30 1.21 1.30 1.22 1.33 1.20 1.23 0.70

. 0.70. 1.23. 1.20. 1.34. 1.23. 1.31. 1.23. 1.30. 1.22. 1.33. 1.13. 1.23. 0.71.

. -0.4. -0.4.

0.2. 0.2. 0.7.

1.0.

1.4. 0.6. 0.3. -0.4. -1.3, -0.5, 1.0.

A 0.31 1.03 1.11 1.25 1.06 1.30 1.17 1.15 1.13 1.30 1.06 1.25 1.11 1.03 0.31 *

. 0.33. 1.04. 1.12. 1.25. 1.05. 1.29. 1.17. 1.15. 1.18. 1.30. 1.06. 1.23. 1.10. 1.01

  • 0.31.

4.0.

1.2. 0.2. -0.4. -1.l. -0.8. -0.l.

0.4.

0.0.

0.4. -0.l. -1.4, -1.S, -Z.2. -1.3.

o.35 o.93 1.24 o.99 1.21 1.21 1.14 1.03 1.14 1.21 1.21 o.99 1.24 o.93 o.35

. 0.37. 0.94. l.24. 0.99. 1.25, 1.20. l.14

  • l.07
  • l.14. l.21. 1.26. 0.97. l.22. 0.93. 0.36
  • 4.0. 1.5. -0.0. -O.l. -1.S. -0.2. -0.3. -0.2. -0.2. 0.5. -0.6. -1.7. -1.6.

0.4.

l.l.

0.31 1.03 1.12 1.25 1.06 1.30 1.18 1.14 1.17 1.30 1.06 1.25 1.12 1.03. 0.31.

. 0.33. 1.04. 1.11. 1.25. 1.09. 1.31. 1.17. 1.14

  • 1.17. 1.27. 1.05. 1.24. 1.12. 1.04. 0.32.

4.o.

1.0. -o.5.

o.3.

2.1.

o.9. -o.3. o.o. -o.3. -2.0 * -o.9. -o.3. o.o.

1.5.

3.3.

0.70 1.23 1.20 1.33 1.22 1.30 1.21 1.30 1.22 1.34 1.20 1.23 0.71

. 0.70. 1.22. 1.20

  • 1.36. 1.24. 1.29. 1.20. 1.29. 1.22. 1.33. 1.20. 1.25. 0.72.

. -0.9. -0.9. 0.6. 1.8. 1.8. -0.6. -0.3. -0.4. -0.3. -0.2. -0.l. 1.1.

2.4.

0.36 1.06 1.28 1.27 1.33 1.06 1.27 1.06 1.33 1.27 1.28 1.06 0.36

. 0.37. 1.03. 1.30, 1.23. 1.32. 1.05. 1.26. 1.07. 1.35. 1.28. 1.31. 1.10. 0.37.

1.5. 1.5.

1.1

  • o.6. -o.s. -1.1. -0.3. o.5. 1.3. o.7.

2.1.

3.3. 3.3.

0.40 0.91 1.28 1.20 1.25 0.99 1.25 1.19 1.28 0.91 0.40

. 0.42. 0.93. 1.29. 1.18. 1.22. 0.97. 1.24. 1.19. 1.29. 0.94. 0.43.

3.9.

2.6. 0.6. -1.S. -Z.7. -Z.2. -1.1. -0.3. 1.0. 3.7. 5.7.

0.40 l.06 1.23 1.12 1.24 1.11 1.23 1.06 0.40

. 0.42. 1.10. 1.24. 1.03. 1.20

  • 1.03. 1.20
  • 1.06. 0.42.

3.9. 3.9. 0.5. -2.9. -3.0. -3.0. -2.6. -0.l. 4.6.

0.36 0.71 1.03 0.93 1.03 0.70 0.36

. 0.38. 0.73. 1.03. 0.91

  • 0.99. 0.63. 0.35.

3.9. 3.3. o.3. -1.9. -3.5. -3.l. -2.5.

STANDARD DEVIATION

=1.304 0.31 0.35 0.31

. 0.32. 0.35. 0.30.

2.5. 0.1 * -3.6.

AVERAGE

.PCT DIFFERENCE.

=

l.5 SUHHARY HAP NO: Sl-12-14 DATE:

2/15/93 POWER:

99.9%

CONTROL ROD POSITION:

F-QCZl = 1.784 QPTR:

D BANK AT 224 STEPS F-DHCNI = 1.418 NW 1. a 019 NE 0.9999 F(Zl

= 1.148 SW 1.0015 SE 0.9967 BURNUP = 9266 HWD/HTU A.O. = -2. 777%

~E-978 S1Cl2 Core Performance Report Page 32 of 58 I

~

l I

z I

3 4

I 5

I 6

I 7

a I

9 el lD 11 I

12 I

13 I

lit 15 I

I I

I..

I

I I

I I

I I

I I

I I

I I..

I p

Figure 4.3 SURRY UNIT 1 - CYCLE 12 ASSE~BLYWISE POWER DISTRIBUTION Sl-12-23 H

PREDICTED MEASURED K

J H

G F

E 0.34 0.39 0.34 D

C

. PCT DIFFERENCE.

. 0.37. 0.42

  • 0.36
  • 7.7.

7.7.

5.7

  • PREDICTED HEASURED

.PCT DIFFERENCE.

0.38 0.71 1.02 0.93 1.02 0.71 0.38

. 0.41

  • 0.73. 1.07. 0.98. 1.07. 0.73. 0.40, 6.0
  • 2.9.

4.8.

5.8,

4.7.

2.6

  • 4.1,

, 0.42 1.03 1.21 1.09 1.26 l.09 1.21 1.03 D.42

, 0.44. 1.04. 1.22. 1.13. 1.30, 1.12, 1.25. 1.08. D.45.

5.D

  • 1.2. 0.3. 2.9. 2.9. 2.6. 2.6. 4.9, 6.4 *

. D.42, 0.90 1.26 1.16 1.30 1.02 1.30 1.16 1.26 0.90 D.42

. 0.45, 0.91. 1.23. 1.15. 1.32. 1.03. 1.28, 1.14. 1.28. 0.93, 0.45.

6.D.

l.l * *2.2. -0.3. l.8. l.8. *l.3. *l.5. 1.6. 3.3, 6.5.

0.38 1.03 l.26 l.21 1.35 1.08 l.32 1.07 l.35 1.22 i.26 1.03 0.38

. 0.39, l.04. !.25. l.Zl. l.34. 1.08. 1.32. l.07. 1.33. 1.20. 1.24: I.ID. 0.41.

l.D.

0.8. *l.4. -0.2. -0.7. 0.3. 0.7. -J.3. *l.4. *1.4. -1.5. 6.7. 6.7.

J.71 1.21 1.16 l.35 1.19 l.32 1.18 1.32 1.19 1.35 1.16 l.Zl D.71

. 0.72. l.23. 1.15. l.32. l.18. 1.32. 1.18. l.31. 1.17. 1.32. l.13. 1.24. 0.76.

l.D.

l.D. -0.5. -2.0. -0.8. 0.0. 0.3. -0.8. *l.3. -J.9. *2.6. 1.7. 6.7.

A J.34 1.02 l.09 1.30 1.08 1.52 l.13 I.ID 1.13 1.32 l.07 1.30 1.09 1.02 0.34

. 0.37. 1.05. l.10. 1.28, 1.04. 1.29. l.12. l.09. 1.11. 1.30. 1.05. l.26. l.06. 0.99. 0.37.

b.8. 3.3.

l.O * -1.2. -2.9. *2.2. -l.2. -0.9. *l.5. *l.2. -2.D. -3.3. *3.0. -2.6. 7.7.

0.39 0.93 1.26 1.02 l.32 1.18 I.JO 1.03 l.10 1.18 1.32 1.02 1.26 0.93 0.39

. 0.42. 0.97. l.28

  • l.01
  • 1.28
  • 1.16. l.09. l.Ol. l.08. 1.16. 1.28, 0.99. 1.23. 0.94
  • 0.42.

6.8. 4.5. 1.0. -0.8. -2.7. -1.5. -1.4. -l.4. -1.9. -1.3. -2.7. -3.0. -2.7. l.5. 7.7.

0.34 l.02 1.09 l.30 l.08 1.32 1.13 l.10 l.13 1.32 1.07 1.30 1.09 l.02 0.34

. J.37. l.04. 1.07. l.Z9. 1.08. l.31. l.ll. l.09. l.ll. 1.26. 1.05. l.29. 1.09. l.06. 0.37.

6.8. 2.4. -!.9. -1.0

  • 0.5. -0.6. -1.4. *0.8. *1.4. -4.2. -2.5. *l.l. -O.l. 3.6. 7.3.

D.71 1.21 1.16 l.35 1.19 l.32 1.18 1.32 1.19 1.35 1.16 1.22 0.72

. D.70

  • 1.19
  • 1.15
  • 1.35
  • 1.19
  • l.28
  • 1.17. 1.28
  • l.16
  • 1.32
  • 1.16
  • 1.24. 0.74.

. -1.9. -t.9. -o.6. o.4. o.4. -3.3. -o.8. -2.6. -2.a. -1.1. -o.z. t.8. 4.1 *

. 0.38 1.03 1.26 1.21 1.35 1.08 1.32 1.08 1.35 1.22 1.26 1.03 0.38

. 0.39. 1.05. 1.27. 1.21

  • 1.32. l.04. l.27. 1.07. 1.34, 1.21. 1.28. 1.06. 0.40.

1.8, l.8. 0.9. -0.3. *l.5. -3.3. -3.3. -0.8. -0.8. -0.3, 0.9. 2.4, 3.6.

0.42 0.90 1.26 l.16 1.30 I.OZ 1.30 1.16 1.26 D.90 0.42

. 0.45. 0.93. 1.26. 1.13. l.26. 0.99. 1.27. 1.14, 1.27. D.93. 0.44.

5.5.

5.2. -0.3. -2.1. -3.2. -3.l * *2.6. -1.8. 0.5. 3.2. 3.6.

STANDARD DEVIATION

=2.040 0.42 1.03 1.21 1.10 1.26 1.10 1.22 1.03 0.42

. 0.45. 1.10. 1.24. l.06, 1.23. 1.07. 1.19. 1.03. 0.44.

6.2. 7.0.

l.9. -3.l. -2.8. *2.l * -Z.3. -0.0. 3.6.

0.38 0.71 1.02 0.93 l.02 0.72 D.38

. 0.41. 0.76. 1.05. 0.93. l.Dl. D.70. 0.37.

1.0. 6.7. 2.6. a.a. -1.3. -1.7. -2.4.

0.34 0.39 D.34

. D.36. 0.40

  • 0.34.

6.2

  • 3.4. -1.0
  • SUHHARY AVERAGE

.PCT DIFFERENCE *

=

2.6 HAP NO:

Sl-12-23 DATE: 10/11/93 POWER: 99. 9TI.

QPTR:

CONTROL ROD POSITION:

F-Q(Zl

=

D BANK AT 223 & 224 F-DHINl =

F!Zl BURHUP

=

\\S-978 S1Cl2 Core Performance Report 1.75&

1.397 1.151 1&789 tno1D/HTU NW l. 0043 NE l.0036 SW 0.9994 SE 0.9927 A.0.=-2.8127.

Page 33 of 58 z

3 5

6 7

8 9

10 11 lZ 13 14 15 I

__ J

l.2

, 0.8 O'

c.,

0 i:,J N

H i 0.6 0 z

. 0.4
G 0.2 0

I I

I 0

Figure 4.4A SURRY UNIT 1 - CYCLE 12

~OT CHANNEL FACTOR NORMALIZED OPERATING ENVELOPE (APPLICABLE THROUGH MAY 1992) i I

I I

I i

i i

I i

i I

I i

(611.0)

I I

I I

I I

i i

i I

I i

I I

I

/

i I

I I

I I

I i

I I

I l

I I

i

/

I i

i I

i I

I I

I I

I I

i I

i I

i i

I I

I l

i I

i I

i i

I I

i I

I i

i I

I I

I I

I I

I I I i

i I

I 2

4 6

8 CORE HEIGHT

( FT)

\\E-978 S1Cl2 Core Performance Report i

i I

i (10. 9,0.94)

I,,

i

\\

I

!\\

i t\\

I \\

! \\

I i

I \\

I

\\

I I

\\

l i

\\

I I

\\

I I

I I

I (12,0.43)

I I

i i

I l

I i

i I

10 12 Page 34 of 58 I

~

I I

I I

I I

el I

I I

I I

I I..

I

I

~

I I

I I

I I

le I

I I

I I

I I..

1.2

, 0. 8

'T 0

'1l N

H

~ 0.6 0 z

~ 0. 4

~

0.2 0

l I

I I

I I

I I

i J

Figure 4.4B SURRY UNIT 1 - CYCLE 12 HOT CHANNEL FACTOR NORMALIZED OPERATING ENVELOPE (APPLICABLE AFTER MAY 1992)

I

~6,l.U) i l

I I

I I

I I

i I

I i

i i

I I

i j

I i

I I

I i

I i

i I

I I

I I

I i

I I

I I

i i

I i

I i

i I

I I

I I

I I

I I

i i

I i

I I

I I

2 4

6 8

CORE HEIGHT

( FT l I ~rn-9 7 8 SIC 12 Core Performance Report:

I i

i (12.0.925)

I I

I I

I i

i '

I i

i i

I i

I I

I I

I i

i I

I 10 12 Page 35 of 58

Ii Figure 4.5

~

SURRY UNIT 1 - CYCLE 12 HEAT FLUX HOT CHANNEL FACTOR, Fq(Z)

Sl-12-05 I

2.5 FQ -

LIMIT I

I

sJ

/

I

~

I 0

--1 1. 5
J I

'.:J z z el G

1

<-I Q

X I

I

-"' 0.5 I

0 60 50 40 30 20 10 I

BOTTOM AXIAL rOSITION (NODES)

TOP I

I I **

-;::-978 S1Cl2 Core Performance Report:

Page

6 of 58 I

I I

I I

I I

I ile I

I I

I I

I I

I

,-.J w

2.5

~ 1. 5 u

e,... g 0.5 60 Figure 4.6 SURRY UNIT 1 - CYCLE 12 HEAT FLUX HOT CHANNEL FACTOR, Fq(Z)

Sl-12-14 40 30 50 BOTTOM AXIAL POSITION 20 (NODES)

\\E-978 S1Cl2 Core Performance Report 10 TOP Page FQ - LIMIT 37 of 58

I

§ l t3 I

.i:

~

I

J l.: r

~

I 0

E--

0 =

X

=:!

L 1*

=-<

~ =

l Q.5 Figure 4.7 SURRY UNIT l CYCLE 12

-!EAT FLUX HOT CHANNEL FACTOR, FQ(Z)

Sl-12-23 50 30TTOM 40 30 AXIAL POSITION 20 NODES 10 TOP

~E-978 S1Cl2 Core Performance Reper~

Page FQ -

LIMIT 38 of 58 I

I I

I I

I I

el,,

I I

I I

I I..

I

I I

I I

I I

I I

le I

I I

I I

I Figure 4.8 SURRY UNIT 1 - CYCLE 12 1AXIMUM HEAT FLUX HOT CHANNEL FACTOR, Fq(Z)*P, vs. AXIAL POSITION

a...

~

2.4 l i

I I

i I

I I

I I

I 2.2 I

I I

li--L...._ I I

I I

I I -

20 I

I I

I I

I I

I I

1.8 I

I I

    • f*

4 **T* ******.k.

I I

I I

      • ""T
  • I I
  • I I

'l'c

.l i

1.6 I

I I

"' I I

><: 3 1. 84 r.r...

z

~ l. 30 H

,:l; z

l. 76
l. 72 Figure 4.9 SURRY UNIT 1 -

CYCLE 12 1AXH1l:~ HEAT FLUX HOT CHANNEL FACTOR, Fq(Z), vs. BURNUP l

I i

I I

i l..

I I

I i

I I

I I

I I

I I i

I I"

I I

i I

I I

i i

i I

i I

I i

i I

I i

i I

I i

I I I I

I i I i I I

I i

I I

I I

I I

/

i i I

i I

i i

I I I

I i

i I

I I

I I

I i

I I

I I

I I

i I

! i I

I I

I i

I I

I I

I I

I I

I i

I I

I I

i I

I i

I I

i I

i I

i I

I I

I I

I I

i I I I

I I

I i

I i

I I

i I

i I

I I I

! I i

I I j

I

! i I

i I I I

i I

I i

I I i i I I

I I

I I

  • ~

I I I i I I I i

I I i i I I 41(

I I I I

I I

i i

I

' I I

i I

I I

I I

I I

I i...

I I I i i I I i I I

':'I' I I I I I i

I I I I j

I I

I I I I I !

I I I I I I I

I i I I i I

I I I

i I I j

I I I I

I j

I I

l... I i

i j

I i

l I

I i

I l

I

~,....

i i

I i

I i

I i

I j

I I

I I

I +~

  • I I I

~ I i I I i

I I I I I l. I I I

I I

I i

i i

I i

I I I I

  • I. ~j
  • I I

I

  • I I

I i

I I

i i

~1 I I 1

I I

I

!

  • I I j

I I

i I

I I I I

I I I I I

I I i I

I i

i I

I I I I

I I 1

i

! I I

i I I I i

! I I

I I I I

I I I I

I I I I I I

i i

I I

I I

I i

\\

I I i I I i

I I I

I 0

2 4

6 8

10 12 14 l6 18 CYCLE EURNUP (GWd/MTU)

~E-978 S1Cl2 Core Performance Report Page 40 of 58

< I J

I I

I I

I I

I el I

I I

I I

I I..

I

I

~

I I

I I

I I

le I

I I

I I

I I...

Figure 4. 10 SURRY UNIT 1 -

CYCLE 12

'.'..-1XI:!l:~ ENTHALPY RISE HOT CHANNEL FACTOR, F-delta-H, vs. BURNUP

-/

J

.J <

-..:75

.. S50
.. * :;DO

--~

J z z

~

b 1.475

. ~ 0

.:.. * -: :J

J
.. 425
.. 400
..375 i

I I i I

I

' I I

j I

I I

I I

I i I I I I I I I

I I

I I

I I

i ll I I

l I : I

I I I I ll I i I : I II

!I I!

i l i I I I I i I !

'"" i I I 111 i I

I t

i i I

)

I

I :

l j

\\

(

)

i i

I i

I I

I I

I I i I

I i

i I I I

I I I ' I I I I

I I

I I I I i

! I 11 i

I I I I

I j

I I I f

I ! :

I I

i i I II I

I 11 11 i I I I

11 ! I I 11 !

I I

I I

I i

I I

I j

I I I I

I I I i I I

I I

i I

i i

I I I I I i

I I

I I 1

I I.

I I

2 4

6 8

10 12 16 18 CYCLE BURNUP (GWd/MTU)

FULL POWER TECH SPEC LIMIT MEASURED,

VALUE

  • 1

\\E-978 s:c12 Core Performance Report Page

-+ 1 of 58

I Figure 4.11

~

SURRY UNIT 1 - CYCLE 12 TARGET DELTA FLUX vs. BURNUP

.1. 0 I

I I

I I

I

..o. 0 I

I I

I i

I I

i I

I I

I 9.0 I

l I

I i

I I

I I

I I

i 8.0 I

i I

I I

,.o I

6.0 I

~

I I

I C:

I a,

I I

u I

~ 5.0 I

. a, I

I

0.

I r

I I

I 4.0 I

el

)

I I

~

I c,...

I I

I

,'1!

3.0 I

e,..

I I

~

I Cu I

I Q

I I

=--1 2.0 I

I

,J I

'...?

~

-1 I

=-

l. 0 j

I I

I I

I l

I I

r I

I 0.0 I

I I

i i

I r

I I

I i

I

-1. 0 I

I I

I I

I I

-1 I

I I

r I

I I

I

-2.0 I

I i

I I

I r

I I

i I

~

1.....

-3.0 I

i I

---41 --

-4.0 I

0 2

4 6

8 10 12 14 16 18 CYCLE BURNUP (GWd/MTU)

\\E-978 SiC12 Core Performance Report Page

!+-2 of 58 I

I

~

I I

I I

I I

I I

I I

I..

I Q

t:Ll N

H 4! z

i:::
J z

N N

et.,

l. 4 1.2 L-1 0.8,__

0.6 0.4,__

i 0.2 60 Figure 4.12 SURRY UNIT 1 - CYCLE 12 CORE AVERAGE AXIAL POWER DISTRIBUTION Sl-12-05 Fz = 1.209 AXIAL OFFSET=

2.692%

50 40 BOTTOM 30 20 AXIAL POSITION TOP 10

~E-978 S1Cl2 Core Performance Reper~

Page 43 of 58

Figure 4.13 SURRY UNIT 1 - CYCLE 12 CORE AVERAGE AXIAL POWER DISTRIBUTION Sl-12-14 Fz = 1.148 AXIAL OFFSET= -2.777%

Q tzl

':..2 1,_

~ 0.8,_

~

i 0

z

~ 0.6 ~

0.4

~

0.2 60 50 BOTTOM 40 30 20 AXIAL POSITION NE-978 S1Cl2 Core Performance Report 10 TOP Page I

44 of 58 I

~

I I

I I

I el I

I I

I I

I I..

I

I Figure 4.14 SURRY UNIT 1 - CYCLE 12 I

CORE AVERAGE AXIAL POWER DISTRIBUTION Sl-12-23 I

I Fz = 1.151 AXIAL OFFSET = -2.812%

I I

1. 2 I

I le 1._

I 0

t.J t-N H....

.x:

I

~

0 0.8,-

z I

N N

CI.a I

0.6..

I I

I

0. 4 I

I 60 50 40 30 20 10 I

BOTTOM AXIAL POSITION TOP I

NE-978 S1C12 Core Performance Report Page 45 of 58

-~... _

.. 300
.. 275 v

.:.. *::: 5 0 J

..9 z H
G

~ 1. 225 GJ

i..

~ 1. 200

~

a::

J > <

a::

D u

..175
..150
..125 i

I i.,

I l...

i I

i I I I

i I I i

i I I I

0 Figure 4.15 SURRY UNIT 1 - CYCLE 12 CORE AVERAGE AXIAL PEAKING FACTOR vs. BURNUP I

i I

I I I I I I I i

I I

I I

I i i i I

I I

I i

I I

I I

I I

I I

i i

I I

i I

i I

I i

i I I I

I I I I

I I

I i

I I

I I

I I

I i

I I i I

I I

I I

I I

I I

I i

i I

! I I I

I l

I I

i I

i I

i I

i I

l I

i i

I i

I I

j I

I I

I I

I I

i i

I i

i i

i I

I I I I

i i

I i

I i

i I

I i

I i

l I

I I i i

! i I

I I I

1 I

I I I I I

I I.

i I I

I I

I I

I I

I I I I I I

I I I i

I i

I I

I i I I I I

I r

i I I I

I I i I I

l I

I I

I I

I I

I I

I I

I I

i

  • I I

I I I

I i

I i I

I I I

i j

I l

I I

I I I I

I i

I I

I I

I I

I i

i I I I

I I

I I

I I rl i I i I I I

I i

I I

I I I I I I

l

~

I I

i I

~

~~

~

i i I l I

~

I~ I I...

I I

I I *1 I I **

I I

I l

i I

I I

I I ~. I I I I I

I I

I I

I I I I I., i I

I I

i I

I I

I I

I I I I i I I I

I 4

6 8

10 12 14 16 18 CYCLE BURNUP (GWd/MTU)

I I

I

  • I I

\\E-978 S1Cl2 Core Performance Repor~

Page 46 of 58


~-----

I I!*

I I

I

-I I

I I

el I

I I

I I

I I..

I

I

~.

I I

I I

I I

I I

I I

I I

I..

I Section 5 PRIMARY COOLANT ACTIVITY The specific activity levels of radioiodines and radioactive noble gases in the primary coolant are important to core and fuel performance as indicators of failed fuel and are important with respect to offsite dose calculations associated with accident analyses.

Two mechanisms are primarily responsible for the presence of radioiodines and radioactive.

noble gases in the primary coolant.

These fission products are always present due to direct fission product recoil from trace fissile materials plated onto core components and fuel structured surfaces or trace fissile materials existing as impurities in core structural materials.

This fissile material is generally referred to as "tramp" material, and the resulting iodines are referred to as tramp iodine. Fission products will also diffuse into the primary coolant if a breach in the cladding (fuel defects) exists.

Fuel defects are generally the predominant source of radioiodines and radioactive noble gases in the primary coolant.

Surry Technical Specification 3.1.D conditionally limits the primary coolant radioiodine dose equivalent I-131 to a value of 1.0 µCi/gram with provisions that ultimately limit the dose equivalent I-131 activity to a maximum of 10.0 µCi/gm. 2 Figure 5.1 shows the dose-equivalent I-131 activity history for Cycle 12.

These data show that the dose equivalent I-131 activity remained substantially below 1.0 µCi/gm throughout Cycle 12 operation.

The cycle average steady state power dose equivalent I-131 NE-978 S1C12 Core Performance Report Page 47 of 58

concentration was 6.28 X 10-3 µCi/gm which is less than 1% of the full power Technical Specification limit.

Correcting the I-131 concentration for tramp iodine involves calculating the I-131 activity from tramp fissile sources and subtracting this value from the measured I-131.

The resultant tramp-corrected I-131 activity is theoretically the I-131 activity from defective fuel.

The magnitude of the tramp-corrected I-131 can then be used as an indication of fuel reliability (the average tramp-correct~d I-131 activity for a month is generally referred to as the fuel reliability indicator) as well as assisting in quantifying the extent of fuel cladding defects.

The monthly fuel reliability indicator through September 1993 generally remained below 5 X 10-4 µCi/gm.

For PWRs, this is considered to be a typical fuel reliability indicator level for a reactor core with no fuel defects.

The fuel reliability indicator increased above 5 X 10-4 µCi/gm for the remainder of 1993 having a final fuel reliability indicator of 8.33 X 10- 3 µCi/gm when the cycle ended in January 1994.

An increase in the fuel reliability indicator of this nature indicates the presence of a cladding defect or defects.

The fuel cladding defect(s) became more readily apparent during Cycle 12 late in September 1993.

The noble gas activity in the RCS increased sharply indicating a cladding defect event (see Figure 5.3). The measured (not tramp-corrected) I-131 RCS activity (Figure 5.4) began to noticably increase in November 1993.

The manner in which the RCS coolant activity increased, (i.e., a noble gas activity increase followed much later in time by increasing iodine activity) indicates the defect(s) were either NE-978 SlC12 Core Performance Report Page 48 of 58 I

J I

I I

I I

I I

I I

I I

I I

I

~

I

~* I I

small or slowly forming.

Large defects typically manifest themselves by nearly simultaneous increases in noble gas and iodine RCS activity.

A failed fuel action plan was issued in November 1993.

The principle

~

element of the plan was to perform fuel inspections during the subsequent refueling outage to ensure no fuel assemblies with cladding defects were I

I I

reinserted for use in Cycle 13.

The fuel UT exams resulted in widely varying indications of suspect cladding failures, primarily in fuel assemblies scheduled to be discharged.

Upon reviewing the UT data, there was not sufficient evidence suggesting the presence of cladding defects in any fuel assemblies other than those being discharged.

Given the I

uncertainty in the fuel UT data for these assemblies, Westinghouse I

I I

I I

I I..

I (Westinghouse was not the fuel UT vendor) agreed to perform additional fuel exams on the suspect discharged fuel assemblies to help determine their status and potential failure mechanism.

to begin in the 2nd quarter of 1994.

The exams are scheduled The ratio of the specific activities of I-131 to I-133 is used to characterize the type (size) of fuel failure which may have occurred in the reactor core. Use of the ratio for this determination is feasible because I-133 has a short half-life (approximately 21 hours2.430556e-4 days <br />0.00583 hours <br />3.472222e-5 weeks <br />7.9905e-6 months <br />) compared to that of I-131 (approximately eight days).

For pinhole defects, where the diffusion time through the defect is on the order of days, the I-133 decays leaving the I-131 dominant in activity, thereby causing the ratio to be roughly 0.5 or more. In the case of large leaks and tramp material, where the diffusion mechanism is negligible, the I-131/I-133 ratio will generally be less than 0.1. The use of these ratios with regard to defect

~E-978 S1C12 Core Performance Report Page 49 of 58 J

size is empirically determined and generally used throughout the commercial nuclear power industry. Figure 5.2 shows the I-131/I-133 ratio data for the Surry 1 Cycle 12.

As seen on Figure 5. 2, the ratio began increasing when the fuel defect occurred, but never really attained equilibrium.

Therefore, the use of the iodine ratio as a defect size indicator is perhaps not applicable.

However, the characteristic nature of the increase in noble gas and radioiodine RCS activity suggests the defect(s) to be small.

NE-978 S1C12 Core Performance Report Page 50 of 58 I

I I

I I

I I

I el I

I I

I I

I I..

I

I I

I I

I I

I I

le I

I I

I I

I I..

I*

Figure 5.1 SURRY UNIT 1 - CYCLE 12 DOSE EQUIVALENT I-131 vs. TIME 1.00E+ol+;------------------------------+

)

i.om:+oo+------------------------------i l

j 1.om:-011------------------------------+

I:*

    • 1!' \\ fi a_"

,. 41d 1 4. *....

ft I

  • l.OOE-03+-*--------------------..r-----------+

'I 1.00!:-M-t-------,------------------------+

1.00E-05...------------------------....... -----------+

I I

I I

I'

.. I" I 31.nJLIIZ Ol!NUYIIZ llSrzan 27JIA.Yn 0"8ZPl3 DATE

'IS 0 *=

IC.-

a NE-978 S1C12 Core Performance Report Page 51 of 58

_J

0

~

C:

n n Figure 5.2 SURRY UNIT 1 - CYCLE 12 I-131 / I-133 ACTIVITY RATIO vs. TIME 1.D-t-----------------------------------+

j 0.11-t--------------------------------......

0.8,t-----------------------------------+

0.7-t--------------------------------......

0.8-t--------------------------------......

7 0.5+-~------------------------------~

n -

o.,t-----------------------------------+

  • 1 0.3+-----------------------------C------'
r-1--

1~ I 0.2-t------------....... ---------------,-...---......

0.1 O.D 31rot82 08HOV92 1811Bn 27DTll3 DA.TB

=-.__...._,..... __ -l *=*

,M.-

0 04SEPl3 1:mzcn 23¥1814

  • NE-978 SlC12 Core Performance Report Page 52 of 58 I

I I

I I

I I

I el I

I I

I I

I I..

I

I

'I I

I I

I I

le I

I I

I I

I I..

I 1.DOZ+ol 1.DOE+oO Figure 5.3 SURRY UNIT 1 - CYCLE 12 MEASURED RCS XENON-133 VS. TIME

~..

Ja.*

4..,..

-~*

1.00B-01

... -----~*

  • 1.00B-03 1.00B-cM 1.00J!:-05
  • -~.....

11 1111' I

31J1JL82 I I' I

I I

161'D113 DATE NE-978 S1C12 Core Performance Report I

p I

I 04SBPll3 Page I

I

  • =

~.-

0 13DZC8S 23MIRM 53 of 58

~

a:

t.:I a:

~

a.

Cl.I

~

~

t.J 0 a:

t.J i Figure 5.4 SURRY UNIT 1 - CYCLE 12 MEkSURED RCS IODINE-131 VS. TIME 1.00J:+ol+---------------------------------+

l.OOE+oo+---------------------------------+

1.0QE-01 1.DIJB-02 1.DDE-03 I,

I

  • l.OOE-04+-----------------------------------+

1.00E-05..,...__ ___________

31Jllt82 OBNDYV2 16PDn DATE 04SBP93 NE-978 S1C12 Core Performance Report Page 54 of 58

,.. -~ *=

~

0 I

1.

I I

I I

I el I

I I

I I

I I..

I

I I

I I

I I

I I

I I

I I

I I

I..

I Section 6 CONCLUSIONS The Surry 1, Cycle 12 core has completed operation.

Throughout this cycle, all core performance indicators compared favorably with the design predictions and the core related Technical Specification limits were met with significant margin.

No significant abnormalities in reactivity or burnup accumulation were detected.

Evaluation of the radioiodines and radioactive noble gases in the RCS indicate that a fuel cladding defect or defects occurred in late September 1993.

Fuel inspections were conducted during the subsequent refueling outage to preclude inserting defective fuel assembies into Cycle 13.

The fuel exams indicated that the defective fuel rod(s) existed in the discharged batches of fuel.

Additional fuel assembly examinations are scheduled to begin in the second quarter of 1994.

NE-978 S1Cl2 Core Performance Report Page 55 of 58

', I J

I I

I I

I I

I THIS PAGE I~TENTIONALLY BLANK el I

I I

I I

I I..

~E-978 SlC12 Core Performance Report Page 56 of 58 I

I I

I I

I I

I le I

I I

I I

I I

I Section 7 REFERENCES

1)

E. A. Hoffman, "Surry Unit 1, Cycle 12 Startup Physics Test Report," Technical Report NE-898, Rev. 0, Virginia Power, July, 1992.

2)

Surry Power Station Technical Specifications, Sections 3.1.D, 3.12.B and 4.10.

3)

T. W. Schleicher, "Virginia Power Fuel Assembly Burnup and Isotopics Calculation Code Manual," Technical Report NE-726, Rev. O, Virginia Power, February, 1990.

4)

D. L. Gilliatt, "The Virginia Power FOLLOW Code Manual,"

Technical Report NE-679, Rev. 1, Virginia Power, April, 1991.

5)

W. D. Leggett, III and L. D. Eisenhart, "INCORE Code,"

WCAP-7149, Westinghouse, December, 1967.

6)

Letter from B. C. Buckley (NRC) to W.L. Stewart, "Surry Units 1 and 2 - Issuance of Amendments Re: F-Delta-H Limit and Statistical DNBR Methodology (TAC Nos. M81271 and M82168)",

Serial No.92-405, dated June 1, 1992.

7)

W. M. Oppenheimer, "Reload Safety Evaluation Surry 1 Cycle 12 (Pattern CP)", Technical Report NE-874, Rev. O, Virginia Power, February, 1992.

NE-978 SlC12 Core Performance Report Page 57 of 58

REFERENCES (cont.)

3)

\\;. 11. Oµpenheimer, "Reload Safety Evaluation Surry 1 Cycle 12 (Pattern CP)", Technical Report NE-874, Rev. 1, Virginia Power, April, 1992.

9)

G. R. Pristas, "Reload Safety Ev.aluation Surry 1 Cycle 12 (Pattern CP) 11

, Technical Report NE-874, Rev. 2, Virginia Power, September, 1992.

10) P. D. Banning, "Surry Unit 1 Cycle 12 Design Report",

Technicai Report NE-881, Rev. 0, Virginia Power, March, 1992.

  • 11) "Surry 1 Cycle 12 TOTE Calculations", Calculational Note PM-425, Rev. 0 and associated addenda, Virginia Power.
12) "Surry 1 Cycle 12 Flux Map Analysis",

Calculational Note PM-437, Rev. 0 and associated addenda, Virginia Power.

13) D. M. Chapman, "Surry 1, Cycle 12 FOLOW Input and Calculations",

Calculational Note PM-440, Rev. 0, Addendum C, Virginia Power, February, 1994.

~E-978 S1Cl2 Core Performance Report Page 58 of 58 I

I I

I I

I I

I I

I I

I I

  • I I