ML17309A622: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(Created page by program invented by StriderTol)
Line 110: Line 110:


n0U.S.NRCG.S.VissingA-63October20,1997'0'astherackdesigncontrolledmainlybytheresultsofthesingle-rackanalysis?Ifyes,wasthereanyphysicalrackdesignchangenecessitatedbytheresultsofthemulti-rackanalysis?Asapplicable,describethechange(s).Response:The3-Dsingle-rackdynamicanalysismodeland3-Dwhole-poolmulti-rackdynamicanalysismodelsandtheirintendedusearedescribedinSection3.5(page72oftheLicensingReport)andSection3.5.2.3(pages106to109oftheLicensingReport).Asdescribed,the3-Dsingle-rackdynamicmathematicalmodelisusedforvarioussensitivitystudies.Theloads,displacements,andassociatedstressesareobtainedfromthe3-Dwhole-poolmulti-rackdynamicmathematicalmodel.Thelengthandlocationoftabs,theweldsize,theweldsizeofsupportlegs,etc.,aredesignedfromtheloadingsandstressesfromthe3-Dwhole-poolmulti-rackdynamicanalysis.Thegapsbetweentheracksandthegapsbetweentherackandthewallaredesignedtoprecludeanyimpactfromtheresultsofthe3-Dwhole-poolmulti-rackdynamicanalysis.Thesingle-rackmodelwasusedforparametricstudies.Thewhole-poolmulti-rackmodelwasusedfortheloadsanddisplacements.Therefore,therackdesignwasnotcontrolledbytheresultsofthesingle-rackanalysis.Therewereseveralitemsthatweremodifiedbasedontheresultsofthemulti-rackanalysis.Thoseitemsareasfollows:a)Rackbaseplateweldswereadjustedtoensureadequatedesignmargins.b)Rackinter-connectingtabsandassociatedweldswereadjustedtoensureadequatedesignmargins.
n0U.S.NRCG.S.VissingA-63October20,1997'0'astherackdesigncontrolledmainlybytheresultsofthesingle-rackanalysis?Ifyes,wasthereanyphysicalrackdesignchangenecessitatedbytheresultsofthemulti-rackanalysis?Asapplicable,describethechange(s).Response:The3-Dsingle-rackdynamicanalysismodeland3-Dwhole-poolmulti-rackdynamicanalysismodelsandtheirintendedusearedescribedinSection3.5(page72oftheLicensingReport)andSection3.5.2.3(pages106to109oftheLicensingReport).Asdescribed,the3-Dsingle-rackdynamicmathematicalmodelisusedforvarioussensitivitystudies.Theloads,displacements,andassociatedstressesareobtainedfromthe3-Dwhole-poolmulti-rackdynamicmathematicalmodel.Thelengthandlocationoftabs,theweldsize,theweldsizeofsupportlegs,etc.,aredesignedfromtheloadingsandstressesfromthe3-Dwhole-poolmulti-rackdynamicanalysis.Thegapsbetweentheracksandthegapsbetweentherackandthewallaredesignedtoprecludeanyimpactfromtheresultsofthe3-Dwhole-poolmulti-rackdynamicanalysis.Thesingle-rackmodelwasusedforparametricstudies.Thewhole-poolmulti-rackmodelwasusedfortheloadsanddisplacements.Therefore,therackdesignwasnotcontrolledbytheresultsofthesingle-rackanalysis.Therewereseveralitemsthatweremodifiedbasedontheresultsofthemulti-rackanalysis.Thoseitemsareasfollows:a)Rackbaseplateweldswereadjustedtoensureadequatedesignmargins.b)Rackinter-connectingtabsandassociatedweldswereadjustedtoensureadequatedesignmargins.
0 U.S.NRCG.S.VissingA-64October20,1997Describetheplanandprocedureforthepost-operatingbasisearthquakeinspectionoffuelrackgapconfigurations.~R~Lnn,RG&Ehasseismicinstrumentationlocatedinthesub-basementoftheIntermediateBuilding.Thatinstrumentationwillactivateandrecordvariousdataoftheevent,thepurposeofwhichistodetermineifanOperatingBasisEarthquakehasoccurred.ThatdataisprocessedbywayoftheTechnicalEngineeringGuidelinesTEG2.0,"ResponseSpectrumCalculation,"andTEG2.1,"SSEandOBEExceedanceDetermination".Uponprocessingofthedata,andifanOperatingBaseEarthquakehadoccurred,adetailedstructuralengineeringinspectionwouldbeconductedtodetermineifanystructuraldamagedidoccur.Althoughinspectionofthegapsisnotspecificallyidentifiedasarequirementofthisinspection,thespentfuelpitandtheconditionofthe'spentfuelracks/fuelassemblieswouldreceiveclosescrutiny.TheseinspectionswouldbeperformedbyProfessionalEngineersexperiencedinseismicanalyses/designandalsotrainedasSeismicCapabilityEngineers,perrequirementsoftheSeismicQualificationUser'sGroup(SQUG)GenericImplementationProgram.  
0 U.S.NRCG.S.VissingA-64October20,1997Describetheplanandprocedureforthepost-operatingbasisearthquakeinspectionoffuelrackgapconfigurations.~R~Lnn,RG&Ehasseismicinstrumentationlocatedinthesub-basementoftheIntermediateBuilding.Thatinstrumentationwillactivateandrecordvariousdataoftheevent,thepurposeofwhichistodetermineifanOperatingBasisEarthquakehasoccurred.ThatdataisprocessedbywayoftheTechnicalEngineeringGuidelinesTEG2.0,"ResponseSpectrumCalculation,"andTEG2.1,"SSEandOBEExceedanceDetermination".Uponprocessingofthedata,andifanOperatingBaseEarthquakehadoccurred,adetailedstructuralengineeringinspectionwouldbeconductedtodetermineifanystructuraldamagedidoccur.Althoughinspectionofthegapsisnotspecificallyidentifiedasarequirementofthisinspection,thespentfuelpitandtheconditionofthe'spentfuelracks/fuelassemblieswouldreceiveclosescrutiny.TheseinspectionswouldbeperformedbyProfessionalEngineersexperiencedinseismicanalyses/designandalsotrainedasSeismicCapabilityEngineers,perrequirementsoftheSeismicQualificationUser'sGroup(SQUG)GenericImplementationProgram.}}
}}

Revision as of 10:29, 18 May 2018

Forwards non-proprietary & Proprietary Response to 970905 RAI Re Structural Evaluation of Proposed Mod of Plant Spent Fuel Storage Pool,Dtd 970331.Proprietary Response Withheld, Per 10CFR2.790
ML17309A622
Person / Time
Site: Ginna Constellation icon.png
Issue date: 10/20/1997
From: MECREDY R C
ROCHESTER GAS & ELECTRIC CORP.
To: VISSING G S
NRC (Affiliation Not Assigned), NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
Shared Package
ML17264B076 List:
References
NUDOCS 9710230092
Download: ML17309A622 (101)


Text

CATEGORY1.REUULATQZNFQRMATZONDZSTRZBUTZON'+OEM(RZDS)ACCESSIONNBR:9710230092DOC.DATE:97/10/20'NOTARIZED:YESFACIL:50-244RobertEmmetGinnaNuclearyPlant,Un1t1<RochesterAUTH.NAMEAUTHORAFFILIATIONMECREDY,R.C.RochesterGas6ElectricCorp.RECIP.NAMERECIPIENTAFFILIATION,VISSINGFG.S.DOCKET'G05000244+~PC'

SUBJECT:

Forwardsnon-proprietary&proprietaryresponseto970905RAIrestructuralevaluation,ofproposedmodofplantspentfuelstoragepool,dtd970331.Proprietaryresponsewithheld,Cper10CFR2.790.ADISTRIBUTIONCODE:AP01DCOPIESRECEIVED:LTRENCLSIZE:TITLE:ProprietaryReviewDistribution-PreOperatingLicense6OperatingRNOTES:LicenseExpdateinaccordancewithlOCFR2,2.109(9/19/72).05000244ERECIPIENTIDCODE/NAMEPDl-1LAVISSINGFG.COPIESLTTRENCL1111RECIPIENTIDCODE/NAMEPD1-1PDCOPIESLTTRENCL110EXTERNAL:NRCPDR11OGC/HDS31)43oaf10D0NOTETOALL"RIDS"RECIPIENTSzPLEASEHELPUSTOREDUCEWASTE.TOHAVEYOURNAMEORORGANIZATIONREMOVEDFROMDISTRIBUTIONLISTSORREDUCETHENUMBEROFCOPIESRECEIVEDBYYOUORYOURORGANIZATION,CONTACTTHEDOCUMENTCONTROLDESK(DCD)ONEXTENSION415-2083TOTALNUMBEROFCOPIESREQUIRED:LTTR6ENCL sI+tN ANnROCHESTERGASANDELECTRICCORPORATION~89EASTAVENUE,ROCHESTER,N.YId6rI9-000IAREACODE716546-2~00ROBERTC.MECREDYVicePresidentNvcteorOperationsOctober201997U.S.NuclearRegulatoryCommissionDocumentControlDeskAttn:GuyS.VissingProjectDirectorateI-1Washington,D.C.20555

Subject:

ResponsetoRequestforAdditionalInformation-SpentFuelPool(SFP)Modifications-StructuralDesignConsiderations(TACNo.M95759)R.E.GinnaNuclearPowerPlantDocketNo.50-244Ref.(1):LetterfromG.S.Vissing(NRC)toR.C.Mecredy(RG&E),

Subject:

RequestforAdditionalInformation-SpentFuelPoolModifications-StructuralDesignConsiderations(TACNo.M95759),datedSeptember5,1997.

DearMr.Vissing:

ByReference1,theNRCstaffrequestedadditionalinformationregardingtheproposedModificationoftheGinnaSpentFuelStoragePooldatedMarch31,1997.ThequestionswererelatedtotheStructuralEvaluationoftheproposedModification.EnclosedareresponsestothequestionssubmittedbytheNRCstaffwz.careph'reprovidedintwoseparatedocuments:aNon-ProprietaryandaFRAMATOMEProprietary.TheNon-Proprietarydocumentcontains'nsalltheresponsesbutomitsthefollowinginformationwhichisconsideredFRAMATOMEProprietary:(a)selecteddatainresponsetoNRCQuestionNo.4.b,and(b)electronicfileswithinputdataotheANSYScodeaslistedinresponsestoNRCQuestionsNo.2.eand10.ThedocumententitledFRAMATOMEProprietaryisaduplicateofNon-Proprietaryversionexceptthatproprietarydatahasbeenaddedtothatdocument.TheFRAMATOMEProprietarydatainthatdocument97102300'tt2'tt71020PDRADQCK05000244P'DR Mr.G.S.VissingOctober20,1997issupportedbyanaffidavitsignedbyFRAMATOMETECHNOLOGIES,INC..Accordingly,itisrespectfullyrequestedthatthedocumententitled"FRAMATOMEProprietary"bewithheldfrompublicdisclosureinaccordancewith10CFR2.790oftheCommission'sregulations.Verrulyyours,RobertC.MecredyJPOc:Mr.GuyS.Vissing(MailStop14B2)SeniorProjectManagerProjectDirectorateI-1Washington,D.C.20555U.S.NuclearRegulatoryCommissionRegionI475AllendaleRoadKingofPrussia,PA19406GinnaSeniorResidentInspectorMr.PaulD.EddyStateofNewYorkDepartmentofPublicService3EmpireStatePlaza,TenthFloorAlbany,NY12223-1350 A.MynameisJamesH.Taylor.IamManagerofLicensingServicesforFramatome.Technologies,Inc.(FTQ.FramatomeCogemaFuelsisadministrativelyresponsibletoFramatomeTechnologies,Inc.Therefore,IamauthorizedtoexecutethisAffidavit.B.IamfamiliarwiththecriteriaappliedbyFTItodeterminewhethercertaininformationofFTIisproprietaryandIamfamiliarwiththeproceduresestablishedwithinFTItoensuretheproperapplicationofthesecriteria.C.IndeterminingwhetheranFTIdocumentistobeclassifiedasproprietaryinformation,aninitialdeterminationismadebytheUnitManager,whoisresponsiblefororiginatingthedocument,astowhetheritfallswithinthecriteriasetforthinParagraphDhereof.Iftheinformationfallswithinanyoneofthesecriteria,itisclassifiedasproprietarybytheoriginatingUnitManager.ThisinitialdeterminationisreviewedbythecognizantSectionManager.Ifthedocumentisdesignatedasproprietary,itisreviewedagainbyLicensingpersonnelandothermanagementwithinFTIasdesignatedbytheManagerofLicensingServicestoassurethattheregulatoryrequirementsof10CFRSection2.790aremet.D.Thefollowinginformationisprovidedtodemonstratethattheprovisionsof10CFRSection2.790oftheCommission'sregulationshavebeenconsidered:TheinformationhasbeenheldinconfidencebyFTI.Copiesofthedocumentareclearlyidentifiedasproprietary.Inaddition,wheneverFTItransmitstheinformationtoacustomer,customer'sagent,potentialcustomerorregulatoryagency,thetransmittalrequeststherecipienttoholdtheinformationasproprietary.Also,inordertostrictlylimitanypotentialoractualcustomer'suseofproprietaryinformation,thesubstanceofthefollowingprovisionisincludedinallagreementsenteredintobyFTI,andanequivalentversionoftheproprietaryprovisionisincludedinallofFTI'sproposals:

~Q+~~~~(Cont'd.)"AnyproprietaryinformationconcerningCompany'soritsSupplier'sproductsormanufacturingprocesseswhichissodesignatedbyCompanyoritsSuppliersanddisclosedtoPurchaserincidenttotheperformanceofsuchcontractshallremainthepropertyofCompanyoritsSuppliersandisdisclosedinconfidence,andPurchasershallnotpublishorotherwisediscloseittootherswithoutthewrittenapprovalofCompany,andnorights,impliedorotherwise,aregrantedtoproduceorhaveproducedanyproductsortopracticeorcausetobepracticedanymanufacturingprocessescoveredthereby,Notwithstandingtheabove,PurchasermayprovidetheNRCoranyotherregulatoryagencywithanysuchproprietaryinformationastheNRCorsuchotheragencymayrequire;provided,however,thatPurchasershallfirstgiveCompanywrittennoticeofsuchproposeddisclosureandCompanyshallhavetherighttoamendsuchproprietaryinformationsoastomakeitnon-proprietary.IntheeventthatCompanycannotamendsuchproprietaryinformation,Purchasershall,priortodisclosingsuchinformation,useitsbesteffortstoobtainacommitmentfromNRCorsuchotheragencytohavesuchinformationwithheldfrompublicinspection.Companyshallbegiventherighttoparticipateinpursuitofsuchconfidentialtreatment."

~~~~I~'C(Cont'd.)ThefollowingcriteriaarecustomarilyappliedbyFTIinarationaldecisionprocesstodeterminewhethertheinformationshouldbeclassifiedasproprietary.Informationmaybeclassifiedasproprietaryifoneormoreofthefollowingcriteriaaremet:a.Informationrevealscostorpriceinformation,commercialstrategies,productioncapabilities,orbudgetlevelsofFTI,itscustomersorsuppliers.b.TheinformationrevealsdataormaterialconcerningFTIresearchordevelopmentplansorprogramsofpresentorpotentialcompetitiveadvantagetoFTI.c.Theuseoftheinformationbyacompetitorwoulddecreasehisexpenditures,intimeorresources,indesigning,producingormarketingasimilarproduct.d.Theinformationconsistsoftestdataorothersimilardataconcerningaprocess,methodorcomponent,theapplicationofwhichresultsinacompetitiveadvantagetoFTI.e.Theinformationrevealsspecialaspectsofaprocess,method,componentorthelike,theexclusiveuseofwhichresultsinacompetitiveadvantagetoFTI.f.Theinformationcontainsideasforwhichpatentprotectionmaybesought.Thedocument(s)listedonExhibit"A",whichisattachedheretoandmadeaparthereof,hasbeenevaluatedinaccordancewithnormalFTIprocedureswithrespecttoclassificationandhasbeenfoundtocontaininformationwhichfallswithinoneor

~~~0~(Cont'd.)moreofthecriteriaenumeratedabove.Exhibit"B",whichisattachedheretoandmadeaparthereof,specificallyidentifiesthecriteriaapplicabletothedocument(s)listedinExhibit"A".Thedocument(s)listedinExhibit"A",whichhasbeenmadeavailabletotheUnitedStatesNuclearRegulatoryCommissionwasmadeavailableinconfidencewitharequestthatthedocument(s)andtheinformationcontainedthereinbewithheldfrompublicdisclosure.(iv)TheinformationisnotavailableintheopenliteratureandtothebestofourknowledgeisnotknownbyCombustionEngineering,EXXON,GeneralElectric,WestinghouseorothercurrentorpotentialdomesticorforeigncompetitorsofFramatomeTechnologies,Inc.(v)SpecificinformationwithregardtowhetherpublicdisclosureoftheinformationislikelytocauseharmtothecompetitivepositionofFTI,takingintoaccountthevalueoftheinformationtoFTI;theamountofeffortormoneyexpendedbyFTIdevelopingtheinformation;andtheeaseordifficultywithwhichtheinformationcouldbeproperlyduplicatedbyothersisgiveninExhibit"B".E.Ihavepersonallyreviewedthedocument(s)listedonExhibit"A"andhavefoundthatitisconsideredproprietarybyFTIbecauseitcontainsinformationwhichfallswithinoneormoreofthecriteriaenumeratedinParagraphD,anditisinformationwhichiscustomarilyheldinconfidenceandprotectedasproprietaryinformationbyFTI.Thisreportcomprisesinformation (Cont'd.)utilizedbyFTIinitsbusinesswhichaffordFTIanopportunitytoobtainacompetitiveadvantageoverthosewhomaywishto'knoworusetheinformationcontainedinthedocument(s).JAMESH.TAYLORStateofVirginia)CityofLynchburg)SS.LynchburgJamesH.Taylor,beingdulysworn,onhisoathdeposesandsaysthatheisthepersonwhosubscribedhisnametotheforegoingstatement,andthatthemattersandfactssetforthinthestatementaretrue.JAMESH.TAYLRIL'f"Subscribedandswornbeforemethis++dayofgal1997.NotaryPublicinandfortheCityofLynchburg,StateofVirginia.MyCommissionExpires>8lI99'7

.)l'/gIifrffrJh'I 97i0230092U.S.NRCG.S.VissingA-1October20,1997TnriinRnRochesterGas8'cElectricGinnaspentfuelstoragererackstructuralqualificationisperformedusingstateofthearttechniques.Toeasethelicensingprocess,themajorityofanalyticalmethods,computerprogramuseandverificationarethesameasthemethodsusedinthecurrentlicensingdocuments.Theindividualitemsarediscussedduringtheresponseprocess.Theidealizationoftherackusingbeamrepresentation,theconsiderationofhydrodynamicmasses,andtheseismicanalysismethodsarethesameas1985licensingbasis(References3.23and3.24oftheLicensingReport).ThecomputerprogramANSYS,version5.2,wasusedforthemajorityofstructuralanalysiscalculations.Since1970,thisprogramhasbeenusedextensivelyinthenuclear,chemical,building,andelectronicindustriesthroughouttheworld.Extensiveuseledtoahighdegreeofreliabilityinobtainedcomputerresults,andhasbeenextensivelybenchmarkedbyindustry.ANSYShasbeenandcontinuestobeverifiedbyalargevolumeofusers.AtFramatomeCogemaFuels,itisbenchmarkedtohandcalculationsandtoverificationproblemsprovidedbyits"developer,SwansonAnalysisSystems,Inc.ANSYShasbeenusedinmanyof10CFR50licensinganalysesincludingseismic,timehistory,andgappedstructuralanalyses.AtFramatomeCogemaFuelsthestructuralanalysispersonnelhasextensiveexperienceinthefiniteelementmethodsandanalysistosolvecomplexproblems.Thisexperienceandexpertiseservestominimizemodelinginstabilitiestypicallyassociatedwithlargenon-lineardynamicproblems.ForthemodelsandanalysesreportedintheGinnaspentfuelstorageracklicensingreport,noinstabilitiesexisted.Thebehaviorofspentfuelstorageracksiscomplex,andsomesimplificationoftheactualbehaviorisappropriatewhencreatingamathematicalmodelforuseinafiniteelementanalysis.Throughoutthestructuralanalysistheresultsarecheckedagainstthesimplifiedhandcalculationmethods.Inaddition,theresultshavebeencomparedagainstrecentlyNRC-licensedspentfuelstoragerackstoverifythevalidityoftheanalysisresultsandtoconfirmthedesignoftheracks.Conservativestructuralanalysismethodsareusedthroughoutthestructuralanalysis.Conservatismsinclude:envelopingseismictimehistories,'additionalsafetyfactorsontheseismictimehistories,safetyfactorsonloadsanddisplacements,conservativefrictionfactors,andmaximumfuelweightandloadingintherack,assumedconcurrentimpactofallfuelassemblies.TheresultssummarizedinSection3.5.3.3showlargedesignmarginsforallrackhardwareperASME,AISCandACIcodeallowables.Additionalmarginsexistwhichareintegraltothecodesthemselves.TheresultingmarginsshowtherobustnessoftheGinnaspentfuelstoragesystemdesign.

U.S.NRCG.S.VissingA-2October20,1997~Rf~r~n~:(continuessequentiallythereferencenumbersintheLicensingReport)3.44ApplicationforAmendmenttoFacilityOperatingLicense,RevisedSpentFuelPoolStorageRequirements,RochesterGasandElectricCorporation,R.E.GinnaNuclearPowerPlant,DocketNo.50-244,LetterdatedMarch31,1997,fromRGBtoUSNRC.3.45Scavuzzo-1979,"DynamicFluidStructureCouplingofRectangularModulesinRectangularPools,"R.J.Scavuzzo,etal.,ASMEPublicationPVP-39,1979,pp.77-87.3.46Radke-1978,"ExperimentalStudyofImmersedRectangularSolidsinRectangularCavities,"EdwardF.Radke,ProjectforMasterofScienceDegree,TheUniversityofAkron,Ohio,1978.

U.S.NRCG.S.VissingA-3October20,19978'ithrespecttothesinglesafeshutdownearthquake(SSE)artificialtimehistoryusedforstressanalysisasmentionedonpage75oftheReference,providethefollowing:a)Acomparisonbetweentheresponsespectrum(RS)oftheartificialtimehistoryandthelicensingbasisdesignRSinthefinalsafetyanalysisreport(FSAR).b)Demonstratetheadequacyoftheartificialtimehistoryincludingademonstrationoftheextentofconformancetoatargetpowerspectraldensity(PSD)functionoftheartificialtiInehistoryinaccordancewithguidanceprovidedinStandardReviewPlan(SRP)Section3.7.I.c)IftheRSoftheartificialtiInehistorydoesnotenvelopethelicensingbasisdesignRSintheFSAR,ivhatisthebasisforusingitintheanalysis?~R~~nAtotaloffoursets(X,Y,andZcomponents)oftimehistoriesweregenerated,suchthattheaverageofallfourtimehistories,whenmultipliedbyafactorof1.10,envelopedthedesignresponsespectrum.Asingletimehistorysetwasthenchosen(SSE1forSSEconditions)andanadditionalfactorof1.20wasappliedtotheresultingloadsanddisplacementstoenvelopetheloadsanddisplacementsfromallfourtimehistorysets.a)Acomparisonofthefuelpoolsafeshutdownearthquake(SSE)responsespectraandtheresponsespectrageneratedfromtheSSE1timehistoryusedintheseismicanalysisisprovidedinFiguresNRCQ1a.1,NRCQ1a.2andNRCQla.3.NUREG-800,SRP3.7.1,SectionII.1.bstates"Eachcalculatedspectrumoftheartificialtimehistoryisconsideredtoenvelopthedesignresponsespectrumwhennomorethanfivepointsfallbelow,andnomorethan10percentbelow,thedesignresponsespectrum."Forthiscomparison,the10%belowcurveisalsoplottedinFiguresNRCQla.1,NRCQla.2andNRCQla.3.Thecomparisonshows:East-West(X)Spectra2frequenciesbelowdesignRSbutwithin10%thresholdNorth-South(Y)Spectra2frequenciesbelowdesignRSbutwithin10%thresholdVertical(Z)Spectra1frequencybelowdesignRSbutwithin10%thresholdTherefore,thiscomparisonshowsthattheselectedseismictimehistoriesmeettherequirementsofSRP3.7.1.

U.S.NRCG.S.VissingA-4October20,1997b)Thetargetpowerspectraldensity(PSD)oftheSSEtimehistoryisplottedinFiguresNRCQlb.1,NRCQlb.2andNRCQlb.3.StandardReviewPlanSRP3.7.1,AppendixA,specifiestheminimumPSDrequirements.Thoseminimaarealsoplottedonthesamefiguresforcomparison.ThecomparisonshowsthatalloftheartificialtimehistoriesusedintheanalysismeettheminimumPSDrequirementsoftheSRP3.7.1.c)TheartificialtimehistoryenvelopesthespentfuelpooldesignresponsespectraandmeetstherequirementsofSRP3.7.1.

U.S.NRCG.S.VissingA-5October20,1997inInFrIK1-Hrimn5C0~~880IIIIJIIIIIIYIIIIIJJIIIYIIIIIIIIIIIIIIIIIIIIIIIJIIIJIIIIIIIIIJIII'YIsIIIJI~FIPIJs~~~I~~I~~II~J~~~~~IIIIIIII~IIIIIIIIIIIII~J~JJ~I~~I~II~IIIII~II~~1II~I~I~I~IIIJIIIIIIII~~~~~~II~~~IYI~~~~~~~~~IJIIIIIIII~VI~I~'~III~JIsjsI~'sIIIIIIIIIIIIIII~I~IIIII~I~I~I~I~I~IIIIIIIIIII~~I~I~~'YY~I~I~IIIIIIIII~IIIIIIIIIII~~II~~~~~~~~~~~~~~IIJ~II~s'I~IsIIIJJI1).JI~IIIIIIIIIIIY1IIIIIJI~I~IIIIIIIIIIIIII~IIIJ~~J~I~I~I~I~I~I~III~'Ih1~11IIII~IIIYIIIIIJIIIIIIIIJIIII~~~IIIJIPI~~I~~~III4~~IISYshs'I~~~~~~~~~I~~~I~~~I~s~~~JJJJ~~~~III~~I~I~~I~~~I~I~~~I~I~~~II~~I~~I~~I~ll~JI~~III~~IhSI~~I~II~~III~~III~~I~%II~~~~'+s~I~~IQIII~~~IIlhIIisIIIIIIIIII~II~I~II~I~II~I~II~I~II~I~~III~I~II~I~IIIIII~IIIIII~JJ~~~~~~~~~~III~~~~~II~~II1II~~~IIIIIIIIIII~~~IIIIIIIII1~~IIIIIIIIIIII~1'1IIIIIIIIIIII~JIIIIIIIIII~~~IIIIIIIIIIIII~~~IIIIIIIII~sJI~I~I~I~IIIIIIII~IJJ~~~~I~II~I~I~IIII~IIIIIIIIIIIlllsllI~IIIIIIIIIII~I~I~I~I~I~I~I~I~I~I~I~~IIIII]lssllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII~~~JLI~~I~~II~I~~~I~I~II~~I~~I~s~~I10NaturalFrequencyf(Hz)1QO A-6U.S.NRCG.S.VissingirR12October20,1997DinVIntFrINNAK1-HrimnIY5CD~~88D0x0.10.1IIIIIIIIIIIIIIIIIIJ~~~~~~~~~~IIII~I~I~IIII~I~JJIII~I~JI~~IIII~1~~~~~~I~I~I~II~J~I~I~I~~~~~~~~~~~~IIIII~~I~I~II~I~II~I~II~~~~JII~~~III~~~I~~~I~II~~~~I~I~~J~~~~~~II.M..q.III~I~I~~~~~I'~~~~~~JII~IIIsrIIISIII~I~~II~I~~~~~~~I~~~I~~~~~111~~~~~I~~~I~~I~~IJ~1$II'IIIIIII~~II~II~I~IIIIr~~I1I1~~~I~II~II~II~II~I~J~I~)I~IIIII1IIII~AIIL.I1AI1IIIIIIIIIII~~IIIIIIIII11I~~I~~I~~IIIIAI~~~~~~~~~I~~~~I~~I~~II~~~~~~I~~~~I1~J1~~IIIIIIIIIIIII~AIIIIIII~I~I~I~~II~~II~~II~IAIIIIIII~III~I~I~I~I~~~~I~~~I~I~~~~II~~~~III~~~IIIIIIII~~~~~~'I~~I~I~~I~I~I~I~I~I~II~~II~~~~I~II's~~~~~~g~~~~I~~III~sIIsIIsIIs~~A~I~A~I~~~~~~~~I~III~II~IIIlrI~Is~IIIIIIIII'I111'4~~~~I~~I~II~~~~~~~~IrIIa~r~'I~~~~~~~~~~~~~~~~I~~~II~III~I~~~~s~II~~~~I~~~~I~~~~~~~~~~~~~~~~~~~~~~~~~~I~~~~~I~~~~~~~~~~~IlrIJ~~IIrIrIJlI~~~~~~~~IIIIIIII~~~I~III~III~~~~~III~~I~I~I~~~I~~~110NaturalFrequencyf(HzjI~I~~~~~III~~I~~~~'~I1III~~~I~~IIIIII~~I~I~~~~~~I~~~I~I~I~I~L~~I~I~~~I~~~I~~~I~III~~~~~IIII~~~~III~~I~~~~IIIIIIIIIIII~~IIIIlllm,'II~~I~~~I~~~I~~~I~I~I~~~~I~~~I~~~I~~~~~IIIIIII~~'II~~~11~~I~~~III~II~IA~~I~I~~~II~~II~~II~IA~I~II~I~~I~~~~I~~~~~~I~(IIIIII~I~~~~~~~I~~~I~I~I~~~I~~~I~~~II~~IIII300 0l A-7U.S.NRCG.S.VissingFirNR1a.3inIntFrIOctober20,19971-Vrcl0)8G0~~(5L8CfVX50.10.1~~~I~~t~~I~I~~~~~~~I~~~I~~~t~~~~~~I~~I~~I~~~~~~J~~~~~~I~~~~~~~'I~~~~~~I~~I~~I~IA~IJ~~A~~IIIIIIIIIIJ~AIII~~~J~IIII~A~IIIIIIIIIJIIIIIYIIIIIIIIIIIIJIIIIIIIYIIIIII'~~~IIIIIIIIIIII'IIIIII~~~~~~~~~~~~~~~~IA~~~~~~~~~I~~~~IIIAJI~~~~~~J~~I~I~IIhII~~~~~I'~~~~~~~~~~~~~~II~~~I'~~~~~~~~~~~~~~~I~~~~~~~~~~~~~~~~I~~~I'I~~~~~J~~~~~'I~~~~A~t~~~~~~~~I~~'~~~~~~~~'~~~~~~~~~~~I~~I~~I~~I~~~~A~AJ~~~~t~~Al~~~~III~~~~~~~~~I~~I~~~~II1IIIII~~~~YI~~I~III~~~IIIIIIIIII~~II~IJ~~~~I~~~I~I~I~~I~~~IIIA~I~~~III~I~I~~~II~~Al~~~~~~~~~~~~~~~~~~~~I~III~~~rIIIII~~~~~~~~~A~~1~~r4Iff~fI~I1flfft1t~I~I~~I~~I~IIf1fff1~I~Vff~1II~~~I~~~~I~~I~ltl~JI'eAf>>~~~I~I~I~~~~~~~~t~~~~~~~~~f~~~~~~~~~~~~~~~~~~~~~~A~~~~~~~I~~~~~~~~~~~~~~~~~~~~1Y~~~~t~~~I~I~A~~~~~~~~~~~~~~~~~~~~~~~~~~~~Y~I~I~I~~~II~I~AJ~~~~~~I~I~~I~IIIIII1J'1II~I~IYIIYII~~~~~~Y1~~~~~~~~~~~~"'LjvŽgpss~t~tt'p'jifI~~II~II~II~II~~~I~JIhlJ'~~I~~~10NaturalFrequencyf(Hz)~~~~~~~A~~~~~~~~A~~~~~~~~'~~~~~~~~~J~I~~~~~~~~~~1Y~~~~~~~~II~~~~I~~A~~~~~~IIII~~~~~~~~~~~~~~~~~~11~~~I~I~I~~~I~~~I~I~I~~1~III~I~~I~~~I~~~f1~~~~~~~~~~~~~~~~~I~~~~II1~~~~~~~~~~~~~I~~I~~~~II~~~~~~II~I~I~I~~II~~~~IIIIlffflfff1f(flII~~I~~I~I~IIIII~~~~100

A-8U.S.NRCG.S.VissingFireNROctober20,1997P9marinFrINAE1-Hrizn1X1000'~~pp'IIIII~JIJ~J~~~'PPhP~hh'IPPh~~~LhJhIJJ\LL~J~~~IOO1IrrlLLI~~I~~YY~~~~~~~e'~~~II~YJ'YrYLJ~~~~I'1I~~~YJIIYII~~I~~~~~~I4JI'~~~~~PaIJLYYJY~~~I'Y~~~~~~~~~~~~~P~~~~Y1~~~~'a~~'F~~~~FIIYY4~JaeI~II~I~~~II~~~~~II~~~~I~~I~s~~\~~~P~'h~~'P'Ih~~'~~~IPF11aII~JaJl~J~~~~~~~~~~~11~~~~~~~~~~~~'I~~VQlOCUC~~DrD0100.1I1'I~~~')'FIFFFeCLCLlFs~~~4~~~~dI~~~~~~~~~~CCrI'~~PPhJYY~~~p'IP4IalIeIIJI~~~~~~~~~~~~~~~~~~~~~~~~~~~~CC'4ddJ~~~rI'~~~~~I~I~~~~~~~~~~~~CX>IJJLJJ~~~rYYp'a'~~~~4C~ehL~JhJJ~LdLJdLJJJIL~~~~~~I~JIe~~~~~~II~II~JII~JIJJ~~~~~I~II~~III~~~+Ir----r~~I~~~~I~II~~I~~~~~~Ipp'Ip'I'I~p~'hP~'I~PrYYYY1~YrY'YY'YY~rr~~J~JJ~I~~~h~J~~~IJ~~~~~PPrJII~~1~~~~II~~111I~~'h'II~J~'I'a~~JJ~~~~~'h'h'~~~~,JeII~I~~JJ~~~1YY11YY1~JJ~~~~~p~'ah'I~~IIh~J~I~~~~I~~~~I~JJ~I~~~~~~~~~II~~I~~~~~~~~~~C)LJJJ~IJJJ~~~~~~Y11h~p~'a\~IY~~p~~YFYII~~~I~~~~~~Y1YF11~~~~~~~~~~~~~I~~~~~~~~~~pI'II~~p'I'IIr~Y~11Y~'Y'11P'Ihe~'~I~JI~I~~~~~~pp'I'hIa~~~~~I~4h~Ja~~I~I~~II~II~~~~JJlJJ~~~~I~~~~II~~II~II~~IICC))t)~LLJJI,lJJYrrr4~~~~~1YF1'I1YF11IJ~~~~~~~~~~~~~~~IIII~J~~~~~~~~~~~J~~~~~~~~~~~~~~~CLJJJJ~~~F11JICCLII~YIPI'he'~ehI~~J~~~~lI~I~~J~JJ~~~~~~~I~J~~~~~~~~~lIII~JJlJJ~~~~~~~~FFrYhYYY~~~~~~~~'~~~~~~~~~I~~~1rYY'1'Y1~IYI10F11~I~~I~~~'II~~~~~~IP'IP'I'I~PI~I~~'h'ePP~'h~~~~~~~~~~~~~I~~~~~~II~~~~II~II~~I~~~~~~~~~hhJhJJ~h~0.010.1I~~~~~~~~~~~I~~~I~~~~~~~~~~~~~I~~~~~~~~~~I~~~~~~~~~~~~~~~~I~~I~~~~~~I~~~~~~~~~~~~~~~~30100Frequency(Hz)

IrUf A-9U.S.NRCG.S.VissingFiurNR12PDmarinFrIOctober20,1997<1-HrimntY1000:'~P~~~~~P~~~~~~'1I~I~~~PPP'I'I~~~~~J1AJ~AA~'VA'II~~A~~JJ~~A~1A~~~~~~~r~CY~d~ld~~~~~~~~~~~~I"r-Irr~~~~~~~~~~~~~~P~~P~~~~~~~lIIII~1~1J~~~~~~~~J~~~~~~11I11I~~I~~~~~~~~~~~11I11~~~~I~~~~I~~'~'~~~~~~~~~~~~~~~~~~~~~~1I~~~~~~~~~~~~II~~~~~~~~~~~II~lI~~~I~I~~~~~~11I1~~~I~I~~IIII~I~I~~I~~~~~~~AA~hAJA~~~~~~~~I"rYY~'VY1JlJlJJ~JA~~~~~~~~~~~~II'YY1YYI~~I~I~~~~~~~~~~PIA~\I~~IIII~~~~~~~I~~~III~~~~~~I~~41JJ~JJYJYA'I'I11'1IA'~~~~~~~~~~~~~~~~~~~~~~~~h~I~~~~~P~~P100.:IPP'1'~~P~~P~~'h'hhAI~~~P~~P'IY~~~~~4~~J1AA~AA~~~~'1JlAA~JA~~~~~~~~'~~P~~~~1~lA~~Jl~ld~~~~~~~~II~IAJJllII1~AJ~~~~~~JJIJJ~~~I~I~~~~~~'VY~'V'V~~~~~~~~~~~~lI~lI~~~~~~~~~~~II~WC-r-r~~~~~~~~I~~~~~l~JJIIIIIIYII~IIJP1III~'~~I~~~~~II~~~~I~~~P~~I~~I~~~I~~I~~~~~~~~~~~~~~P~~P~hh~~h10CU1Q(0tL~~PPIP~~rr'vY~YrYY1'I'I~~~~~P~P'I'I~~4~~JA~I~~~~I~~~~P'Ih~~~~~~~~h~IJA~~~JI~~~~~~~~~~~~~~~~~~I~~~~I~~JJ~~JJ~~~~~I~~I~~~I~~~~~I~~~~~I~4.~..~.............~~~~I~'"C'C)))')')'~t'4JJIJJ~~~I~~I~~rr'\'v1'v'vCr0Y1YY~~~~A~~JA~~~~~~~~h~'II~~II~~~J~JJI~~II~~~~~~114~JA~AJ~I~~~~~~~~~~~~~~~~~~~~~~~CC)))))))1IAAIJJJlJlJJIJJ~~~~~~rYYY1Y'I~~PP~'1'I~I~P~~~P~~I~'VY'VY1~1111I'1C~~1~1~~~~Ih~~~~~~~~~~~1JP~~~I~~I~r~CYCY1I~CI~~~I~~~~~~~~~~'I~~~~~~~~I~~~~~~~~~II~~~~~~I~~~~~I~I~~~~~III~~~~JII~~~~~~~~~~~~l~~CII~~I~)~~~~~)I~I~~~"~~~cI~~~~I~~~~~'II~1'1I~1I~~~~~~~~~~~~~~~~~~h~~'~~~I~~~II~J~~~~~~~~~I~~I~~~~~~~~A~~~~~~~~~~~~~~~~~~~~~~~~I~~I~~III~~~~~~~~))[))AI~~~IJII1~~I~~~~~~~~~~~~Y11I11~~I~~~~~~~~~~~~~~Y11I11I~I~II~I~'~~~~1I11~~~~~~~~I~~~~~~~~P~~~I~~~~~~~1~~1~~~~~~~~~~~~~~~~I~~I~~~~~~~~~~~~I~~~~I~~~~~~C))'C)CC~~'1~1I~~I.~lI~~~~~~Y~tY~~P~~~~~~~~~II'II'~~~~~~~P~PP~~~YhIJJAAAJJ'VYhI'VYI'hII~~~~~~~~~~1~~~~~~~~~~IC1lII0.1~~~II11'1~rr'VY1Y1~~~~~~I~~~~,~~~~PPhA'~~~~~~~~~~~~~~~~~I~~~~~~I~~~~A~~~AJ~J~~~~~~~~~~~I~~~~~~~~~~I~~~~~~~~~~1~fA~I~~~~~II~~~~~~~~~~~~III~~IA~I~I~~~~~~~~I~~~~~~~~~~~~~II~~~~~~~~~~~~~I~~~~~~~~~~~~0.010.11l0100~~~~~A~~JJJ~~~J~~IAAA~Frequency(Hz)

A-10U.S.NRCG.S.VissingFirR13October20,1997PDmrinFrINNAK1-VerticalZ10010P)Q1Nt:0.1Q(6Q0.010.0010.1II'III'111~~~~~~~~~~fIY~~~~II'II~~~~~~~4~~r~~~~J~A~~4~~~IsrO'Y~JA~~~~~Irr1YYI~II~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~4~~yJ~~J1JJI~V(r%QPAtAI~~AJJssPAhhA~<YJthtrttht~P~~~~~~~~'I~~~~~'I~~~~~~JtAII~11~II~~~A~~~~JJ~~~~~~~h~tAA~~~~~~IAIYI~~~~~~~~P~tPI'YIIYII"r-IIr""""~~~~~pY1YY1'h~~~~IJJ~~I~~~~~A~Ih~~~~~~~~JJ~JA~~~~I~~~~~~~~4JJ~AJ~~1II~~~~1~I11I\~I~~~~~1~I~~~~~1II~~~~~~Ir1YA~~Y~~~I1YYIAA~~~~~~1YY~~~~~~~~'h~~~~~~~~~~~~~t\~~~~t~~~~~'I~~t~I~~~~'~'~~~I~~t~~t~tt~$~I~I~~~~~~II~~II1~I~~~~~~I~IIISI~~~~1~~~~~~~~~~I~~~I1~~~~~4Af1151'I11~~~~~~~~~~~~I~~~~~PPh'h'PPhh~IIdJeff~~I~~~JJ~AA~~IIAA~~II~~Y'Y~~~~~I~~~~~IAJJI~I~~~I~~~I~~~~~~~~~~~~~~~~~~rP'I'h'Yr1Y1YYYY'IY1YY~~'I'h~htrAAJA~AA~~~~~~~~~~~~~~~~~~~~~~~~~~~~P~h'h~hh~~~~~~~~~JJ~JJ~IIII11C~~~~~~CC1~~I~~CrI~II~~~CCCC11~~~~~~~~~IIIIsr~~AA~~A~AII~~I~~I~I~~~~~)C$~I~I~~~I~~~~I~~~~~))~~~11C~~\~~~~~~P~~~~~~It~tIA~~~~~~~~~~\IIhI~~~~~~~~~~~~~~~~~I~~~~~~~CCCCC11I1I~A~I~I~YIII~s~~s~~~~~~~CIIC1IIII11II'~'~~~~1~~~~~~ff~~~~I'I'~~P~~~~~~~~I'~Pt~~I~I~~~~~~~~I~~II~~~~~~~~~~~~~~~~~~~~~~~~~~~~'~~~~~~~I~~~I~~~~~I~~~)II1~~~~~~I~~'~~~~~~~~~~III~~II~~)C~I~~~I)C))IAAAAJAY~~1I~I~~~~'~~YY~~~~YYY~~~~~~I~S'h~'t~I~II~~I~~~~~~~~~~~~~I~~~~~~I~~I~I~~~~~~~~sC1I.I.ZP.ICAYI'r~~~~s~~~I~~~h~~~~CCAdAAI'~~~~~~~~~~A~AA~~s~~~~~~~1~~~~I~~~~)C)))A~AAI~~~~Y~YYYY~YYA~AA~~~~~~~~~~J~~~~~~~~~~~~AJ~~~~~~~~~~~~~~~~~~~~~~~~~)AJIJAJA~AJ~~~~~YY~YYh\Ah~~~~~'IY~YYII~~I~hh~~~~AII~~~~~~~~~~~~sI~~~~~~~~~~I110100Frequency(Hz)

U.S.NRCG.S.VissingA-11October20,19978'ithrespecttothedynamicfliiid-stnictureinteractionanalysesusingthecomputercode,ANSYS,inthe

Reference:

a)Erplainhowthesimplestickmodeliisedinthedynamicanalysescanaccuratelyandrealisticallyrepresenttheactualhighlycomplicatednonlinearhydrodynamicfluid-rackstnictureinteractionsandbehaviorofthefiielassembliesandthebox-typerackslnicture.b)Providetheresultsofanyexistingexperimentalstiidythatverifiesthecorrectoradequatesimulationofthefluidcouplingutilizedinthenumericanalysesforthefiielasseinblies,racksandwalls.Ifthereisnosuchexperimentalstudyavailable,provideindetailtechnicaljustificationsonhowthecurrenlleveloftheANSYScodeverificationisadequateforengineeringapplicationsandshouldbeacceptedwithoutfiirtherexperimentalverificationworkc)Provideinatabularformthematerialproperliesincludingthesliffiiess(k)usedforthesimplifiedcomputerstnicturalmodelsshowninFigures3.5-31and3.5-32ontheReference,andthetechnicalbasisfortheconclusionthaithepropertiesusedintheanalysesarerealisticandequivalenttothepropertiesoftheactualrackstnicture.d)Indicatewhetheryouhadanynuinericalconvergencyand!orstabilityproblem(s)duringthenonlinear,dynainicsingle-andmulli-rackanalysesusingtheANSYScode.Iftherewereany,howdidyouovercometheproblem?e)SubmittheANSYSinputdatainASCIIfortheModelI(3-DSingleRackPlateModel)andtheModel2(3-DSingleRackBeamModel)analyseswithcompleteinformation(i.e.,artificialtiinehistoryinputmotions,loadingconditions,boundaryconditions,materialproperlies,loadingsteps,etc.)ona3.5-inchdiskette.~R~~na)Thebehaviorofspentfuelstorageracksiscomplex,andsomesimplificationoftheactualbehaviorisappropriatewhencreatingamathematicalmodelforuseinafiniteelementanalysis.Onehastoassesstheaspectsofthestructuralbehaviorwhichareimportanttosimulationwhileconsideringtheenduse.

U.S.NRCG.S.VissingA-12October20,1997Theracksareveryrigidstructuresandtheirnaturalfrequenciesaremuchgreaterthanthepredominantseismicinputforcingfrequencies.Hence,therackstructuremotioncanbedescribedbya3-Dbeamelement(sixdegrees-of-freedom,threetranslationalandthreerotational).Themathematicalmodels(3-Dsinglerackandwholepoolmulti-rack)usedtoperformdynamicanalysesofthefuelstoragerackstructuresimulatedthethree-dimensionalcharacteristicsoftherackmodulesinacomprehensivemanner.Thesemodelsincludedfeaturestoallowforslidingandtippingoftheracksandtorepresentthehydrodynamiccouplingwhichcanoccurbetweenfuelassembliesandrackcells,betweenracks,andbetweentheracksandthereinforcedconcretewalls.Thegapelementswereincorporatedtoaccountforimpactbetweenthefuelassemblyandtherack.Todetectanyimpactbetweenracksand/oranyimpactbetweentheracksandthepoolwall,additionalgapelementswereintroducedintothe3D-wholepoolmodelofthesinglerackThesupportlegsweremodeledascompression-onlygapelementswhichconsideredthelocalverticalflexibilityoftherack-supportinterface.Frictionelementswereusedatthebottomofthesupportlegs.Thespentfuelstorageracksarefree-standingstructures.Theyareconstructedofasimpletubestructureassembledinahoneycombpattern.Undergivenseismicexcitationtheybehavesimilartoaveryrigidstructure.Thebeamrepresentationgivesadequatesimulationforseismicloadings.Asdiscussedinthereport,forthermalandotherconditions,thecompleterackwasidealizedusingplateelements.Thespentfuelstorageracksseemlikeacomplexstructure.However,whencomparedtoother10CFR50licenseapplications,likereactorvesselinternals,steamgeneratorinternals,containmentbuilding,whichallareanalyzedusingbeamrepresentation,thespentfuelstoragerackitselfisaverysimpleassemblyofsquaretubestructures.Also,thebeamrepresentationisconsistentwiththe1985licensingbasis,NRCSERdatedNovember14,1984(Reference3.24oftheLicensingReport).Also,thisapproachisconcurrentwithrecentlylicensedspentfuelstorageracks,namely,ZionStationUnits1and2,DocketNos.50-295and50-304;HaddamNeckPlant,Docket50-213;andPilgrimNuclearPowerStation,Docket50-293.Insummary,themethodologyusedforthemathematicalmodeloftherackstructuresisconsistentwithindustrypractice.

A-13U.S.NRCG.S.Vissingb)October20,1997TheexperimentalverificationofthefluidcouplingsimulationisprovidedinAppendixNRCQ2-Atothisquestion.TheresultsshowverygoodagreementbetweentheANSYSresultsandtheexperimentaltestresults.ThevalidationoftheANSYSVersion5.2isinconformancewiththeprovisionoftheFramatomeTechnologiesInc.,QualityAssuranceProgram,Doc.No.56-1201212(Section7.2oftheLicensingReport).ThevalidationmeetstherequirementsofthesubsectionII.4.cofSRPSection3.8.4andsubsectionII.4.eofSRPSection3.8.1.SRP3.8.1statescomputerprogramvalidationshouldmeetanyofthefollowingproceduresorcriteria:(i)Thecomputerprogramisarecognizedprograminthepublicdomain,andhashadsufficienthistoryofusetojustifyitsapplicabilityandvaliditywithoutfurther.demonstration.(ii)Thecomputerprogramsolutiontoaseriesoftestproblemshasbeendemonstratedtobesubstantiallyidenticaltothoseobtainedbyasimilarandindependentlywrittenandrecognizedprograminthepublicdomain.Thetestproblemsshouldbedemonstratedtobesimilartoorwithintherangeofapplicabilityoftheproblemsanalyzedbythepublicdomaincomputerprogram.(iii)Thecomputerprogramsolutiontoaseriesoftestproblemshasbeendemonstratedtobesubstantiallyidenticaltothoseobtainedfromclassicalsolutionsorfromacceptedexperimentaltestsortoanalyticalresultspublishedintechnicalliterature.Thetestproblemshouldbedemonstratedtobesimilartoorwithintherangeofapplicabilityoftheclassicalproblemsanalyzedtojustifyacceptanceoftheprogram.ANSYSisawidelyusedandacceptedcomputerprograminthepublicdomain.ThevalidationofthefluidcouplingelementusingclassicalequationswaspresentedtotheNRCStaffduringameetingonAugust25,1997.TheexperimentalverificationisprovidedinAppendixNRCQ2-Atothisquestion.ThecomputerprogramvalidationrequirementsoftheSRP3.8.4andSRP3.8.1aremet.c)Thematerialpropertiesusedinthe3-DSingleRackand3-DWholePoolRackmodelaregiveninTables3.4-2through3.4-8oftheLicensingReport.ThematerialpropertiesforthestructuralmaterialarefromtheASMECode,whichisreferencedinthereport.Therackstiffnessesaregeneratedinternallyinthecomputerprogramfromcross-sectionpropertiesandareprovidedinthefollowingsummary.Therackstiffness,intermsofcross-sectionproperties,isprovidedinSection3.5.3.1.1.1,startinginpage136oftheLicensingReport.Thestiffnesspropertiesaredevelopedusingclassicalappliedmechanicsequations.Theseismicanalysisresultsarenotsensitivetotherackstiffness,andthisisdemonstratedinSection3.5.2.7.

U.S.NRCG.S.VissingFuelCellImpactStiffnesssummary:Type1(ExistingU.S.Tool2DieRacks):Type2andType4(NewATEARacks)Type3(NewATEARacks)4,449lb/in7,036lb/in6,595lb/inOctober20,1997Thefollowingaxialstiffnesses(AE/L)arecalculatedinternallyinANSYS,butaregivenforinformationpurposes.AllpagereferencesarefromtheGinnaLicensingReport.ConsolidatedFuelCanisterStructuralProperties:E=27.87E6psiA=3.6681in',a=9.3920inL=159ink,~=1.65E6lb/in(kforA,fr)E(Zircaloy)=12.0E6psiA=7.1419mL=159ink=5.39ESlb/inFuelAssemblyStructuralProperties:

U.S.NRCG.S.VissingOctober20,1997SupportPadStructuralProperties(krepresentsindividualsupportpad)E=27.87E6psiL=10.0in(forRackTypes1,4),andL=19.60in(forRackTypes2,3)LegsofType1Rack:k=3.75E81b/inLegsofRack7(2A):k=5.69E7lb/inLegsofRack8(2B):k=7.54E7Ib/inLegsofRack9(3C):k=3.84E7lb/inLegsofRack10(3A):k=5.69E7lb/inLegsofRack11(3E):k=5.69E7lb/inLegsofRack12(3D):k=3.84E7lb/inLegsofRack13(3B):k=5.23E7lb/inLegsofType4Rack:k=2.91E71b/inA=134.5in~A=40.0in~A=53.0IA=27.0inA=40.0inA=40.0in~A=27.0in~A=36.8in'x=144.0in4Ix=211.0in'x=217.0in'x=144.0in'x=190.0in'y=144.0inIy=211.0in'y=217.0in'y=144.0in'y=190.0in'A=10.45in'x=32.9in4Iy=86.5in'x=1372.6in'y=1274.6in'x=211.0inIy=211.0in'x=290.0in'y=290.0in' U.S.NRCG.S.VissingA-16October20,1997Type1(Existing)RackStructuralProperties:E=27.87E6psiA=420.3in'=159ink=7.37E7lb/inType2RackStructuralProperties:E=27.87E6psiL=158.5inRack7:Rack8:A=113.9in'=1295ink=2.00E7lb/ink=2.28E7lb/inType3RackStructuralProperties:E=27.87E6psiL=162inRack9:Rack10:Rack11:Rack12:Rack13:A=66.2in~A=92.7in~A=84.8in'=66.2in~A=82.1in'=1.14E7lb/ink=1.59E7lb/ink=1.46E7lb/ink=1.14E7lb/ink=1.41E7lb/inType4RackStructuralProperties:E=27.87E06psiL=158.5inRackType4:A=25.9ink=4.55E6lb/in U.S.NRCG.S.VissingA-17October20,1997d)Therewerenoconvergencyorstabilityproblemsforeitherthesingle-ormulti-rackmodelrunsduringthenonlinear,dynamicanalyses.Allloadcasesranforthefulltimehistoryandobtainedaconvergedsolution,usingthesamebasicANSYSprogramparameters.TheANSYSsolverusestheimplicitintegrationschemewhich,uponconvergence,producesarepeatable,stablesolutionwithinprescribed(program-chosendefaults)tolerancelimits.e)TheANSYSinputdataintheASCIIformareprovidedintheenclosed3.5-inchcomputerdiskette.NotethattheseinputdataareproprietaryinformationandshouldbeusedonlyfortheGinnalicensingeffort.ThesedataareforusewithANSYSVersion5.2.Alldataareself-explanatoryandanexperiencedANSYSusershouldbeabletouseiteasily.Ifyouencounteranyproblem,FRAMATOMEcanassisttheNRCStaffatitsLynchburgoffices.DiskFilesInclude:DiskANSYSInputFiles,FileS3DR8PL.TXT3-DSingleRackPlateModelFileS3DR8SC.TXT3-DSingleRackDynamicModelThe3-DSingleRackPlateModel(Model1)wasusedforthestaticstress,thermal,andthebaseplatestressanalysis,aspresentedinthedetaileddescriptionsofModel1inSection3.5.2.3ofthereport.Themodelwasnotusedwithanytimehistoryinput.Theloadingconditions,boundaryconditions,materialproperties,andloadingstepsarepartoftheseinputfiles.Thetimehistoryinput(SSE1)isincludedwiththeinputforModel2.

U.S.NRCG.S.VissingA-18October20,1997AppendixNRCQ2-A"ExperimentalVerificationofANSYSHydrodynamicMassCouplingandDynamicBehaviorofImmersedRectangularSolidsinRectangularCavities1.ObjectiveAnANSYSnumericalstudywasmadetodemonstratethecorrelationbetweenanANSYSmodelutilizinghydrodynamicallycoupledrectangulartubecontainedwithinalaterallyexcitedrectangularcontainer,orcavity,andtheexperimentalresultsreportedinReferences3.45and3.46.Asingledegree-of-freedom(DOF)oscillatormodel(Ref.3.45),usedforestimatingcertainsystem'sparametersisalsocomparedtotheANSYSresults.2.ExperimentSetupFigureA1ExperimentSetupAccelerarnetersPlexiglassWallsAnexperimentalset-up,reportedinReferences3.45and3.46,isshowninFigureA1.Arectangularsteeltubewithasolidbottomisenclosedinalongrectangularplexiglasscontainerrigidlyconnectedtoasolidbaseplate.Thebaseplateissupportedwithfoursteelconsolesactingasspringsforthelaterallyimposedbaseplatemotionviaelectromagneticactuator.Theplexiglasscontainerisadditionallyreinforcedwithaseparaterectangularplexiglassplatefixedtothebaseplate(Fig.A1,leftupper4"x4"SteelTubecorner).SteelSprings(2)SteelSupportSprings(4)-WaterLevelOverlaplngTeflonSealsShakerConcreteBlackThesteeltubebottomplateisconnectedtothebaseplateviatwoelongatedsteelplatesactingasconsoles.Theseverticalsteelplatesactasspringsforthetube'slaterallyinducedmotion.Atthetopandbottomtubeelevations,teflonsealsareintroducedinordertominimizeeventualverticalmeanflowalongtubewalls.Theseal'slocationsalsodefinewatercolumnheight.Apairofaccelerometersisusedtopickupaccelerationtimehistoriesforboththetubeandtherigidplexiglasscontainer.Theshaker'sfrequencyrangedfrom5to35Hz,toobtainadequatedatapoints.Theamplitude

.

U.S.NRCG.S.VissingA-19October20,1997responseratioismeasuredforeachexcitationfrequency.TheresultsareplottedforselectedpointsinFigureA4.3.ANSYSModelDescriptionThesystemshowninFig.A1ismodeledinANSYSasaseriesoftwoverticallyconnectedbeams,withtheupperonebeinghydrodynamicallycoupledtotheenvelopingplexiglasscontainer,asshowninFigureA2.FigureA2ANSYSModelBeamPlexi-WallsAddedWeightLumpedattheTubeBottomSpringBeamHyd.-DynamicCouplingElem.BasePlateInputMotionThebottombeamrepresentsapairofverticalsteelstrips,whiletheupperbeamrepresentsthesteeltube.ANSYS3Delement"BEAM4"(Ref.3.40)isusedforbothbeams,whilehydrodynamiccouplingismodeledwithANSYS"FLUID38"elementsatthetubebeamtop,middleandbottomlocations.Additionalweightplacedinthetube(Ref.3.46)islumpedatitsbottom.Forcedinputharmonicmotionisappliedtobothspringbeambottom(baseplate)andplexiglasscontainerwalls.Modelpropertiesareobtainedasfollows:SteelTubeTubeenvelopemass:m,=V,(pg=0.0174ib-s~/in(weight=m,g=(0.0174)(386.4)=6.72lb),where,V,=4(aht)=24in'thematerialtubeenvelopevolume),a=4.0in(tubesidewidth),h=8.0in(tubeheight),t=3/16"=0.1875in(tubewallthickness)andp,=72.46x10'b-s/in'tubewalldensity,steel,roomtemperature).FromRef.3.46,totaltubeweightis15lb,whichincludesadditionalweighttogetherwithboltsandnutsconnectingtubebasetosteelsprings.Itisassumedthatalladditionalmassisconcentratedatthebottomofthetube;i.e.,itislumpedatthebottomtubebeamnode.Thislumpedmassincludestubebottomplate.

U.S.NRCG.S.VissingA-20October20,1997Lumpedmass(tubebottom):mb=(totalweight)/g-(tubeenvelopemass)=15.0/386.4-0.0174=0.0214lb-s'/inorweight=(0.0214)(386.4)=8.28lbTubecrosssection:A,=4(at)=3in'ubecrosssectionmomentofinertia:I,=2[at/12+(at)(a/2)]=8.0in'teelSpringEquivalentspringbeamconsistsoftwoverticalsteelstrips,each4"long,1"wideand3/32"thick.Bendingoccursabouttheweakaxis.Eqv.Springcrosssection:A,=2(ct,)=2(1")(0.0938")=0.1875in~Eqv.Springcrosssect.momentofinertia:I,=2[t'c/12]=2[0.09383(1")/12]=1.373x10"in4Eqv.Springlateralstiffness:k=12I,E/L=772.3lb/in,forbothbeamendsclamped,where:E=30MSI(steelelasticmodulus@roomtemperature)andL=4"(equivalentspringbeamlength).ItissuggestedinRef.3.46thatwhileexcited,thetuberemainspracticallyparalleltotheplexiglasscontainerwalls.IntheANSYSmodel,thiseffectisachievedbyimposingrotationalconstraintatthecommonbeamsnode.FluidMassesHydrodynamicmass,Ref.3.45:M=(16/3)phb'/w=0.0908Ib-s/in,wherep=9.345x10'b-s'/in'waterdensityroomtemperature),b=(a+w)/2=(4+0.5)/2=2.25in(watercolumncenterlinewidth,(Fig.A3)),andw=0.5in(tube-to-wallgap).Displacedfluidmass,Ref.3.45:M,=(2b-w)'p=0.01196lb-s'/inFluidmassbasedoncontainervolume,Ref.3.45:M,=(2b+w)'p=0.01869Ib-s'/inFigureA3WaterColumnDimensionsTheeffectofhydrodynamicfluidcouplingisdiscretizedas1/2atthetubebeammid-heightand1/4atitstopandbottom(Fig.A2).ANSYSfluidcouplingelement"FLUID38"(Ref.3.40)isusedwithKEYOPT(3)=2forconcentricarbitrarycylinders(i.e.,rectangular)andKEYOPT(6)=2forlocalelementcoordinatesystem'slateralaxesorientedinglobalXandZdirections.2b U.S.NRCG.S.VissingA-21October20,1997BoundaryConditionsBoundaryconditionsareshowninFig.A2.AllDOFsofthespringbeambottomnodearefixed(clampedcondition)excepttheX-displacementcomponent,whichisprescribedassinusoidalmotion.Thesamealsoappliesforthethreewallnodesconnectinghydrodynamicelementstothetubebeam.Duetothefactthatthetuberemainspracticallyparalleltothecontainerwalls,thetubebeambottomnodeispreventedfromrotationaboutlateralZ-axis(spring'sbeambendingaxis).Tomatchthemeasurednaturalfrequencyinwater,springbeamstiffnessisadjustedask=(2mf,)[m+M]=(2n9.2)[0.0388+0.0908]=433.1lb/in.StructuralDampingAtimehistoryanalysisapproachisusedtoobtainthesystem'sresponseamplituderatio.Thesystemisexcitedtoasinusoidalexcitationatselectednodesandresponseamplitude,ornodaldisplacementresponseasafunctionoftimeisobtainedforselectedpointsofthesystem.Theconnectingnodebetweenthespringandthetubebeamsischosen,sinceitsmotionsufficientlydescribesbehaviorofthesystemanditcouldalsobecomparedagainstasingleDOFtheoreticalmodel.Rayleighdampingisusedforcomparisonpurposes.InadditiontothestiffnessmatrixmultiplierP,themassmatrixmultipliernissimultaneouslyusedtoprovidemoreuniformdampingoveradesiredrangeoffrequencies.Thesemultipliersareobtainedasasolutionofthesystemoftwosimultaneouslinearequations:(;=o',/(2(o)+Pio;/2,whereio,.=2mf;[s']Bychoosingknownpairsofnaturalfrequencieswiththeirassociateddampingratiovalues(Ref.3.45),f,=15.3Hzand(,=0.053,inair;f~=9.2Hzand(2=0.062inwater,theRayleighdampingmultipliersareu=5.456andP=5.122x10'.4.ResultsTheexperiment(inwater)datapointsareobtainedfromRef.3.46.Notethattheaccuracyoftheircoordinatesinamplituderesponseplot(Fig.A4)mightbeinsufficient,duetothesmallscaleoftheoriginalexperimentcurveprovidedinRef.3.45.However,theirtrendissufficienttovalidatetheANSYSmodel'scomparison.Inthetimehistorymethod,a3seconddisplacementtimehistoryiscreatedforeachselectedexcitationfrequency,andappliedattheselectednodesofthesystem.Theamplitudeforalltime-historiesisunity,i.e.,1.0in.ANSYSresultsarealsocomparedagainstsingleDOFoscillatormodel(equation24inRef.3.45,labeledas"Theory"inFig.A4),withthetotaltubemasslumpedatthetopofthespringbeam.FigureA4showsgoodcomparisonbetweentheANSYSandtheoreticalresponseratiopredictions.Aminordiscrepancybetweenthesemodelsandtheexperimentisinpartduetoasensitivityofmeasuringequipment,assuggestedinRef.3.46.

U.S.NRCG.S.VissingA-22October20,1997Conclusions1)ItisconcludedthatANSYShydrodynamicelementFLUID38canbeusedtorepresentfluid-structureinteractionofrectangularprismaticcontainerswithgoodcorrelationwithboththeoryandtestresults.ThereisagoodagreementbetweenANSYSresultsandexperimentaltestdatafordynamicfluid-structureinteractionproblems.ThisverifiesthecapacityofANSYStoperformseismictime-historyanalysesofsubmergedspentfuelstorageracksinpools.2)Useofbeamstickmodelandlumpedmassesisarealisticrepresentationoffuelandracktypestructuresforuseintime-historydrivendynamicanalyses.

U.S.NRCG.S.VissingI<'igureA4ComparisonofResultsA-23October20,19972oCLCD~1.5CDCL1CUŽ00IIIIIIIIIIIIIAmplitudeResponseRatioII-Theory,'IIIExperimentalResLilts--rIIIII1IIIIIIIIIIIIoIIIIIIIIIOIIIIIIANSVSTimeHistoryIIIIII12051015ExcitationFrequency[Hz]

U.S.NRCG.S.VissingA-24October20,1997N8'ithrespecttothedynamicfluidcouplingelement(FLUID38oftheANSYScode)usedintheanalysis:a)ItisourunderstandingthattheelementFLUID38wasdevelopedforafluidflowstudyinaninfinitelylongrigidcylindricalpipe.Explainhowthiselementcanbeapplicableforyour3-Dfluid-rack(single-andmultiple-rack)interactionanalysis.b)IftheANSYSinput(realconstantsP2,Al,L,I",DXDZ,PXWZM2,MI,MHXMHZ,CXCZ)andmaterialproperties(DENS))wereusedfortheFLUID38element,providethevaluesandtechnicalbasisfortheconclusionthatthosevaluesarerealistic.c)OneoftheassumptionsforthePLUID38elementofANSYScodeisthatthelumpedoptionisnotavailablewiththiselement.Didyouusethelu>npedoptionforthefluidmass?Ifnot,howdoyoutreatthefluidmass?Explain.~Ryan)b)TheANSYSFLUID38elementisthedynamicfluidcouplingelement.Thiselementisagenericelementtorepresentadynamiccouplingbetweentwopointsofastructure.Thepointsrepresentthecenterlineofconcentriccylinders.Thecylindersmightbecircularorhaveanarbitrarycross-section.Thedefaultvaluesareforacylindervibratinginacylinder.However,whenoneusesKEYOPT(3)=2itcanbeanarbitrarycrosssection.Thisoptionisusedinthesingle-rackandmulti-rackinteractionanalysis.Thedynamicfiuidcouplingusedisbasedonarectangularbodyvibratinginfluidcontainedinanannuluscreatedbyarectangularouterbody.ThefluidcouplingvaluesarebasedontheSingh-1990(Reference3.38oftheLicensingReport)paper.Thederivationoffluid'ynamicvaluesareexperimentallyverifiedbyScavuzzo-1979,"DynamicFluidStructureCouplingofRectangularModulesinRectangularPools"(Reference3.45).IntheANSYSFLUID38elementinputifKEYOPT(3)=0isused,itrepresentstheconcentriccylinders,andforthatcaseR2,R1,etc.,constantsarerequired.InourcaseKEYOPT(3)=2forarbitrarycrosssectionswasused.MMM~,andM>>termsofthefluidcouple-massmatrixwerealsoinput.Tables3.5-10and3.5-11oftheLicensingReportprovidethemassmatrixtermsMM~M~andM>>usedinthefluidstructureinteractionanalysis.c)Thelumpedmassoption(LUMPM,ON)isnotavailableforANSYSFLUID38element.Wedidnotuselumpmassesforthiselement.Thedynamicfiuidcouplingishydrodynamicmassbasedonpotentialtheory,Singh-1990(Reference3.38).Section3.5.2.5discussestheuseandcalculationofhydrodynamicfluidmass.

U.S.NRCG.S.VissingA-25October20,19978'ithrespecttot'eanalyticalsimulationoftherattlingfuelassemblyimpactingagainstthecell:a)Howdidyoucalculatethemagnitudeofthelargestimpactforceandthelocationoftheimpactinthefuelassemblyandthecellwall?b)c)Howdidyoudetermineandanalyzethefidelassemblyandcellwallintegrity?Discusstheconsiderationsgiventotheeffectsofthefluidbetweenthefuelassemblyandcellwallduringtheinteractions.d)Provideavailableexperimentalstudiesthatverifythereasonablenessofthenumericalsimulationadoptedtorepresentthefuelassemblyandthecellwallinteraction.~R~~na)"Impactsbetweentherackandfuelassemblylumpedmasseswereaccountedforbytheuseofgapelements,asshowninFigure3.5-41oftheLicensingReport.Theimpactforcesarecalculatedfromtheseismictime-historyanalysis.Gappedspringelementsareemployedtotracktheimpactforces.Thepeakforcesonthesegappedelementsrepresenttheimpactforce.Theimpactforcesbetweenthefuelassembliesandthecellwallwereobtainedusingtheminimumandmaximumresultssummaryobtainedthroughthepost-processingcapabilityofANSYS.Thepost-processingusedwasPOST26,whichcanextractrequesteddatafromatime-historyanalysis,inordertoproducetablesofresultitemsversustime.Thereal-timefuel/rackimpactloadsweretabulatedinPOST26forthesumofboththetopandmiddleracknodesthroughouttheentiretime-history.Therealtimemaximumimpactloadwasthusobtainedforallthefuelassembliesinanyparticularrack.Theassumptionthatallfuelassembliesactinunisonisconservative.Therefore,themaximumcombinedfueVrackimpactloadwasthendividedbythenumberoffuelassembliesintheracktoobtainamaximumfueVrackimpactloadperfuelassembly.Thesummaryoftheresultingfuel-to-rackimpactloadsforeachrackandforeachloadcaseistabulatedinTables3.5-46through3.5-57oftheLicensingReport.

e A-26October20,1997U.S.NRCG.S.Vissingb)Thecellwallintegrityisdeterminedbystressanalysis.Section3.5;2.2.2.4.discussesthestressanalysis.Table3.5-58providestheresultsofthecellwallstressanalysisandshowscomparisonofactualimpactloadagainsttheallowableload.TheANSYSfiniteelementanalysiswasusedtocalculatestressesinthefuelrack-cellwallduetoimpactloadingoffuelassemblies.ThemaximumallowablefuelrackloadwasdefinedasonewhichwouldreachthemaximumstressintensitybasedonthestresslimitspecifiedintheASMECodeSectionIII,SubsectionNF.Thecalculationgaveanallowableloadpercellof2290.0poundsfortheOBEconditionand2900.0poundsfortheSSEcondition.Theseallowableloadsaremuchlowerthantheloadvaluerequiredtoensurethefuelassemblyintegrity.Theelasticloadlimitsofthefuelassemblyspacergridstestedrangefrom[b,c,d].Thefuelassemblystructuralintegrityisassured,ifthespacergridimpactloadsarelowerthanthespacergridelasticloadlimit.ThehighestimpactloadvalueobtainedfromtheOBEanalysisis908poundsandfromtheSSEanalysisis1600pounds.Thesecalculationsconfirmthelocalrackcellwallintegrityandthefuelassemblyintegrityforthemaximumfueltorackcellwallimpactloads.c)Thefluidbetweenthefuelassemblyandthecellwallwasconsideredintheseismicanalysis.Thetheoryofcylindervibratinginthefluid(Reference3.38oftheLicensingReport)isutilizedinthehydrodynamicmasscalculations.Thefuelassemblycontaining179individualfuelrods,16guidetubesandoneinstrumenttubewasutilizedinthecalculation.Section3.5.2.5.1providesthedetailedfuelassemblyhydrodynamiccalculationsforW-Standard,W-OFAandExxonfuelassemblies.d)Section3.5.3.1.1.3discussesthenumericalsimulationbetweenthefuelassemblyandthecellwall.Thisisaclassicengineeringmechanicsproblem.Noexperimentalstudiesarerequiredforthegeneralstructuralproblem.NoknownexperimentalstudyexistsatFramatomeCogemaFuels.AlltheexperimentsperformedbyBabcock&Wilcoxareforfuelimpactingarigidsurfaceorimpactingotherfuelassemblies.

U.S.NRCG.S.VissinginA-27October20,1997Provideacompletedeformationshapewithmagnitudesofthedeformationsoftherackfion>thebottomtothetopforthesingle-rackSSLanalysiswhenthemaxhnumdisplacementattheracktopcorneroccurs.ReelsThesingle-rack3-Dmodelwasusedforparametricstudiesonly.Thedisplacementsandloadswereobtainedfromthewhole-poolmulti-rackmodel.AsummaryofallthemaximumabsolutehorizontaldisplacementsisprovidedinresponsetoNRCQuestion¹7.Areviewofthosedisplacementsshowsthatthemaximumdisplacementforanyrack,forallloadingconditions,occursatRack¹7,duringLoadCase¹1.Thesummaryofthosemaximumdisplacementsareprovidedinthetablebelow.Therefore,thedescriptionofthemaximumabsolutedisplacementsforRack¹7areprovidedfortherackbottom,middle,andtopfourcorners.TableNRCQ5.1Max.RackHorizontalcrisp.Top-LC¹1GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase¹1-UnconsolidatedFuel-SSE-Mu=0.8MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.257602-0.286803-0.290004-0.251905-0.384406-0.357107-0.591908-0.551609-0.5863010-0.5308011-0.5228012-0.4918013-0.50680MaxX0.332800.262400.186400.191400.241400.271900.416100.556600.567000.440600.573500.571400.45750MinY-0.42080-0.36870-0.26200-0.25300-0.19250-0.24400-0.27550-0.32230-0.33660-0.28250-0.29340-0.33350-0.37800MaxY0.282600.269700.193000.175900.191400.205200.169600.206000.193500.140300.165600.144400.10220 U.S.NRCG.S.VissingA-28October20,1997RackCornerNodalDisplacementsatRack'sTop,Middle,andBaseforRack¹7(inches)~r~nrTopSouth-WestSouth-EastNorth-WestNorth-EastRackCenter-0.52334-0.52334-0.66054-0.66054-0.59194~Y-0.177140.01878-0.177140.01878-0.07918~7-0.077940.19580-0.077860.195880.05897~r~nrMidSouth-WestSouth-EastNorth-WestNorth-EastRackCenter~5(-0.26183-0.26183-0.39891-0.39891-0.33037~Y-0.177080.01867-0.177080.01867-0.07920MZ-0.076390.19417,-0.076060.194490.05905~i~rBaseSouth-WestSouth-EastNorth-WestNorth-EastRackCenter~X-0.00563-0.00589-0.14242-0.14266-0.07427~Y-0.175870.01925-0.176220.01925-0.07840MZ-0.070590.18817-0.069570.189180.05930 IU..S.NRCG.S.VissingA-29October20,1997Providethelargestmagnitudeofthehydrodynamicpressuredistributionalongtheheightoftherackduringthefluidandrackinteractionforeachcaseofthe3-Dsingle-andmulti-rackanalyses.~Resense:Thesingle3-Drackmodelwasusedforparametricstudies.Theloads,includingthehydrodynamicloads,anddisplacementswereallobtainedsolelywiththemulti-rackwhole-poolmodel.Therefore,therequestedhydrodynamicpressuredistributionisprovidedforthewhole-poolmulti-rackmodel.Thehydrodynamicpressuredistributionsaretabulatedforeachrackthatinterfaceswiththespentfuelpoolwalls.Thereal-timesummationofhydrodynamicloadsforthebottom,middle,andtopofeachrackwasusedtoprovideanaveragehydrodynamicpressurefortheentireheightoftherack.Also,areal-timesummationofhydrodynamicloadswasobtainedforalltheracksfacingeachofthefourwalls.Thereal-timeaveragedwallpressureforeachofthefourwallswasthendetermined,andisprovidedinthefollowingtables.ThetablesNRCQ6.1thruNRCQ6.12areforeachoftheLoadCases1thru12.

U.S.NRCG.S.VissingA-30October20,1997TableNRCQ6.1Max.RackSeismicHydroPressures-LC¹1GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase¹1-UnconsolidatedFuel-SSE-Mu=0.8MaximumRackPressuresDuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(psi)-2.4972.853-2.6932.956EastSideR7-EWRl1-EWR12-EWR13-EWJSouthSideRl-SWR3-SWRS-SWRj-SWRl1-SW-3.0523.935-3.7865.008-7.64310.077-4.1764.995-5.4183.758-15.16211.255-18.33415.081-3.3222.726-3.2202.477NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-5.3253.671-18.28213.105-10.4528.595-5.7754.522-2.5242.001'umofRealTimeRackPressures(psi)AveragedforEachSideSUM-WW-1.3971.564SUM-EW-2.3833.144SUM-SW-8.7096.782SUM-NW-8.0236.051Note:Theabovereportedpressuresareontheperimeterracks.

U.S.NRCG.S.VissingA-31October20,1997TableNRCQ6.2Max.RackSeismicHydroPressures-LC¹2GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase¹2-UnconsolidatedFuel-SSE-Mu=0.2MaximumRackPressuresDuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(p>>)-2.5382.322-2.6832.478EastSideRj-EWR11-EWR12-EWR13-EW-3.3993.937-3.5144.294-6.8018.846-3.8084.191SouthSideRl-SWR3-SWRS-SWRj-SWR11-SW-3.9943.166-11.90110.363-16.99714.018-3.2092.633-3.2522.489NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-4.1593.021-14.29312.220-9.6357.681-5.4234.571-2.4412.121SumofRealTimeRackPressures(psi)AveragedforEachSideSUM-WW-1.4051.288SUM-EW-2.3162.789SUM-SW-7.4616.320SUM-NW-6.8355.746Note:Theabovereportedpressuresareontheperimeterracks.

U.S.NRCG.S.VissingA-32October20,1997TableNRCQ6.3Max.RackSeismicHydroPressures-LC¹3GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase¹3-ConsolidatedFuel-SSE-Mu=0.8MaximumRackPressuresDuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(psi)-1.0761.058-1.1361.165EastSideR7-EWRl1-EWR13-EW-3.4343.065-8.0857.052-4.1443.297SouthSideRl-SWR3-SWR5-SWR7-SWRl1-SW-2.8193.758-7.2329.212-9.79911.062-2.0642.120-2.1132.302NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-3.0873.713-9.41211.433-5.9217.043-3.2873.491-1.5391.679SumofRealTimeRackPressures(psi)AveragedforEachSideSUM-WW-0.5730.594SUM-EW-2.5982.140SUM-SW-4.4415.411SUM-NW-4.4385.224Note:Theabovereportedpressuresareontheperimeterracks.

U.S.NRCG.S.VissingA-33October20,1997TableNRCQ6.4Max.RackSideSeismicHydroPressures-LCII4GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase84-UnconsolidatedFuel-SSE-Mu=0.5MaximumRackPressuresDuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(p>>)-2.4962.716-2.6933.450EastSideR7-EWRl1-EWR12-EWR13-EW-2.8333.557-3.6354.561-8.23210.163-4.4125.273SouthSideRl-SWR3-SWR5-SWR7-SWRl1-SW-4.8124.002-13.17111.270-18.10415.125-3.2342.738-3.1432.562NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-4.9003.999-16.62613.171-10.2898.305-5.7174.574-2.5162.100SumofRealTimeRackPressures(psi)AveragedforEachSideSUM-WW-1.3971.649SUM-EW-2.4443.044SUM-SW-7.8906.804SUM-NW-7.3456.082Note:Theabovereportedpressuresareontheperimeterracks.

U.S.NRCG.S.VissingA-34October20,1997TableNRCQ6.5Max.RackSeismicHydroPressures-LC¹5GINNA3DWholePoolModel-WithPerimeterRacksLoadCase¹5-UnconsolidatedFuel-SSE-Mu=0.8MaximumRackPressuresDuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(psi)-2.4722.545-2.8862.509EastSideR7-EWRl1-EWR12-EWR13-EW-3.6132.986-3.3972.998-8.0746.885-4.1463.585SouthSideRl-SWR3-SWRS-SWR7-SWRl1-SW-4.9764.245-14.17411.671-19.04015.898-3.2442.753-3.1902.722NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-4.2063.657-15.83813.773-11.0108.848-5.7304.647-2.5982.032SumofRealTimeRackPressures(psi)AveragedforEachSideSUM-WW-1.4391.232SUM-EW-2.5292.120SUM-SW-8.3277.067SUM-NW-7.5796.289Note:Theabovereportedpressuresareontheperimeterracks.

U.S.NRCG.S.VissingA-35October20,1997TableNRCQ6.6Max.RackSeismicHydroPressures-LCP6GINNA3DWholePoolModel-WithPerimeterRacksLoadCaseA'6-ConsolidatedFuel-SSE-Mu=0.8MaximumRackPressuresDuetoSeismicLoadingRackMin.Press.(psi)Max.Press.(psi)WestSideRl-WWR2-WW-1.5061.348-1.4711.416EastSideR7-EWRl1-EWR12-EWR13-EW-3.2612.409-3.9983.217-7.7096.599-3.7983.236SouthSideRl-SWR3-SWRS-SWR7-SWRl1-SW-3.1403.605-7.7339.405-10.03611.641-2.0062.053-2.1662.111NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-3.0253.625-9.82111.752-6.0907.459-3.3233.438-1.5561.628SumofRealTimeRackPressures(psi)AveragedforEachSideSUM-WW-0.7980.735SUM-EW-2.4642.025SUM-SW-4.7055.519SUM-NW-4.4725.300Note:Theabovereportedpressuresareontheperimeterracks.

U.S.NRCG.S.VissingA-36October20,1997TableNRCQ6.7Max.RackSeismicHydroPressures-LCP7GINNA3DWholePoolModel-WithPerimeterRacksLoadCaseP7-UnconsolidatedFuel-SSE-Mu=0.2MaximumRackPressuresDuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(p>>)-2.6693.256-2.8922.950EastSideR7-EWRl1-EWR12-EWR13-EW-3.0893.847-3.3113.281-6.6947.194-3.2813.099SouthSideRl-SWR3-SWRS-SWR7-SWRl1-SW-4.1743.541-12.36910.802-17.68114.806-3.0882.660-2.8962.522NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-4.5123.821-16.34313.617-10.2528.157-5.4704.614-2.3742.129SumofRealTimeRackPressures(psi)AveragedforEachSideSUM-WW-1.4521.661SUM-EW-2.1572.288SUM-SW-7.7046.603SUM-NW-7.3325.982Note:Theabovereportedpressuresareontheperimeterracks.

U.S.NRCG.S.VissingA-37October20,1997TableNRCQ6.8Max.RackSeismicHydroPressures-LCIISGINNA3DWholePoolModel-WithPerimeterRacksLoadCaseP8-ConsolidatedFuel-OBE-Mu=0.8MaximumRackPressuresDuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Press.(psi)-0.610-0.712Max.Press.(psi)0.5650.616EastSideR7-EWR11-EWR12-EWR13-EW-1.122-1.710-3.812-1.7011.3171.7753.8691.849SouthSideRl-SWR3-SWRS-SWR7-SWR11-SW-1.787-4.039-4.853-0.909-0.8951.7564.7285.3930.9280.895NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-1.7761..756-5.0435.911-3.0193.327-1.4121.448-0.6710.701SumofRealTimeRackPressures(psi)AveragedforEachSideSUM-WW-0.3560.311SUM-EW-1.0261.149SUM-SW-2.3892.668SUM-NW-2.2912.546Note:Theabovereportedpressuresareontheperimeterracks.

U.S.NRCG.S.VissingA-38October20,1997TableNRCQ6.9Max.RackSeismicHydroPressures-LCP9GINNA3DWholePoolModel-WithPerimeterRacksLoadCase89-UnconsolidatedFuel-OBE-Mu=0.2MaximumRackPressuresDuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Press.(psi)-1.165-1.271Max.Press.(psi)1.2011.198EastSideRj-EWRl1-EWR12-EWR13-EW-1.176-1.073-2.231-1.3491.3441.3642.6321.243SouthSideRl-SWR3-SWR5-SWR7-SWRl1-SW-1.987-5.749-7.889-1.247-1.2411.9895.8317.2101.4051.072NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-2.070-7.087-4.472-2.099-0.9831.6766.8343.7171.4530.986SumofRealTimeRackPressures(psi)AveragedforEachSideSUM-WW-0.6560.636SUM-EW-0.7240.871'UM-SW-3.4633.296SUM-NW-3.2062.817Note:Theabovereportedpressuresareontheperimeterracks.

U.S.NRCG.S.VissingA-39October20,1997TableNRCQ6.10Max.RackSeismicHydroPressures-LC¹10GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase¹10-UnconsolidatedFuel-OBE-Mu=0.2MaximumRackPressuresDuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(psi)-0.9190.908-1.1490.950EastSideRj-EWRl1-EWR12-EWR13-EW-1.1081.294-1.1631.449-2.3982.540-1.2371.369SouthSideRl-SWR3-SWRS-SWR7-SWRl1-SW-1.8541.911-5.4745.362-7.4076.794-1.3440.962-1.2510.997NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-1.9571.522-6.7236.387-4.1723.581-2.2652.203-1.0211.169SumofRealTimeRackPressures(psi)AveragedforEachSideSUM-WW-0.5500.500SUM-EW-0.7400.828SUM-SW-3.3123.047SUM-NW-3.0642.681Note:Theabovereportedpressuresareontheperimeterracks.

U.S.NRCG.S.VissingA-40October20,1997TableNRCQ6.11Max.RackSeismicHydroPressures-LCP11GINNA3DWholePoolModel-WithPerimeterRacksLoadCase011-MixedFuel-SSE-Mu=MixedMaximumRackPressuresDuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Press.(psi)-1.595-1.649Max.Press.(psi)2.038.2.091EastSideR7-EWRl1-EWR12-EWR13-EW-1.7731.560-2.5732.054-6.0485.603-3.2902.499SouthSideRl-SWR3-SWRS-SWRj-SWRl1-SW-3.1792.417-8.1056.179-6.9506.892-1.4581.411-2.096'1.857NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-3.3442.535-11.2188.439"-5.2354.926-2.6362.160-1.8411.375SumofRealTimeRackPressures(psi)AveragedforEachSideSUM-WW-0.8591.110SUM-EW-1.7701.435SUM-SW-4.2273.473SUM-NW-4.5613.617Note:Theabovereportedpressuresareontheperimeterracks.

U.S.NRCG.S.VissingA-41October20,1997TableNRCQ6.12Max.RackSeismicHydroPressures-LC¹12GINNA3DWholePoolModel-WithPerimeterRacksLoadCase¹12-MixedFuel-OBE-Mu=MixedMaximumRackPressuresDuetoSeismicLoadingRack,WestSideRl-WWR2-WWMin.Press.(p>>)-0.427-0.329'-Max.Press.(psi)0.4530.385EastSideR7-EWRl1-EWR12-EWR13-EW-0.727-1.437-2.964-1.3430.6831.3782.3541.223SouthSideRl-SWR3-SWRS-SWR7-SWR11-SW-0.884-4.968-6.250-0.876-0.8830.8453.8474.7850.8011.030NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-0.7370.608-3.9483.091-3.3492.345-1.2201.017-0.4970.517SumofRealTimeRackPressures(psi)AveragedforEachSideSUM-WW-0.2030.225SUM-EW-0.8360.736SUM-SW-2.6791.955SUM-NW-1.8931.369Note:Theabovereportedpressuresareontheperimeterracks.

U.S.NRCG.S.VissingA-42October20,1997Provideasummaryofthepeakresponseresults(i.e.,maximumabsolutedisplaceInentsatthetopandbottomoftherack,magnitudesofthebending,shearandaxialstresseswiththeirlocations,maximumpedestalhorizontalandverticalloads,impactloads,etc)ofthesingle-andmulti-rackSSEanalysesinatabularform.~RNLnn;The3-Dsingle-rackdynamicmodelandthe3-Dwholepoolmulti-rackdynamicanalysismodels,andtheirintendeduses,aredescribedinSections3.5(page73oftheLicensingReport)andSection3.5.2.3(pages107to109oftheLicensingReport).Aspresented,the3-Dsingle-rackdynamicmodelwasusedforvarioussensitivitystudies.Thedisplacements,loads,andassociatedstressesareobtainedfromthe3-Dwholepoolmulti-rackdynamicmathematicalmodel.Therefore,thefollowingresultsarepresentedforthemulti-rackmodelonly.ThedisplacementsprovidedintheLicensingReportwererelativedisplacements-betweentheracksandsurroundingracks,orbetweentheperimeterracksandthespentfuelpoolwall.ThemaximumabsolutedisplacementsatthetopandbottomoftheracksaretabulatedintheattachedTablesNRCQ7.1throughNRCQ7.24,forallloadcases.Therackmaximumforces(bendingandshear),moments(bendingandtorsion)arereportedinSection3.5.3.1.8.1,Tables3.5-67through3.5-90inatabularform.Therackmaximumbending,axialandshearstressesarereportedinSection3.5.3.1.2.7.ThemaximumpedestalhorizontalandverticalloadsarereportedinSection3.5.3.1.5,Tables3.5-22through3.5-45inatabularform.ThemaximumfueltorackimpactloadsarereportedinSection3.5.3.1.6,Tables3.5-46through3.5-57inatabularform.

U.S.NRCG.S.VissingA-43October20,1997TableNRCQ7.1Max.RackHorizontalDisp.Top-LC¹1GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase¹1-UnconsolidatedFuel-SSE-Mu=0.8MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.257602-0.286803-0.290004-0.251905-0.384406-0.357107-0.591908-0.551609-0.5863010-0.5308011-0.5228012-0.4918013-0.50680MaxX0.332800.262400.186400.191400.241400.271900.416100.556600.567000.440600.573500.571400.45750MinY-0.42080-0.36870-0.26200-0.25300-0.19250-0.24400-0.27550-0.32230-0.33660-0.28250-0.29340-0.33350-0.37800MaxY0.282600.269700.193000.175900.191400.205200.169600.206000.193500.140300.165600.144400.10220TableNRCQ7.2Max.RackHorizontalDisp.Base-LC¹1GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase¹1-UnconsolidatedFuel-SSE-Mu=0.8MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.037242-0.083733-0.043964-0.045335-0.045236'0.050747-0.081948-0.066229-0.0484510-0.0712211-0.0668612-0.0700913-0.04091MaxX0.060380.043580.027110.024330.029990.025060.033180.067870.070660.031510.066030.057130.08492MinY-0.07127-0.05174-0.05670-0.05314-0.03317-0.04841-0.11520-0.13520-0.13020-0.09588-0.15610-0.13950-0.13190MaxY0.045800.050010.032540.031300.037330.039960.014110.013750.009620.009880.007440.011990.00621

U.S.NRCG.S.VissingA-44October20,1997TableNRCQ7.3Max.RackHorizontalDisp.Top-LC¹2GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase¹2-UnconsolidatedFuel-SSE-Mu=0.2MaximumRackHorizontalDisplacements(XandY-(in))Rack12345678910111213MinX-0.20310-0.20330-0.17020-0.16100-0.16430-0.17680-0.36910-0.31460-0.39740-0.22680*-0.46800-0.47080-0.27060MaxX0.242600.201000.146900.169800.137400.177600.140200.178300.186500.246600.138500.114500.15340MinY-0.23770-0.19230-0.24880-0.25310-0.28210-0.30480-0.35310-0.37400-0.38660-0.30850-0.28450-0.26690-0.34380MaxY0.263500.264300.144000.141200.156700.173700.137000.174300.139900.131400.117000.157100.09970TableNRCQ7.4Max.RackHorizontalDisp.@Base-LC¹2GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase¹2-UnconsolidatedFuel-SSE-Mu=0.2MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.076002-0.090613-0.039904-0.055355-0.056336-0.073677-0.264508-0.233709-0.3163010-0.1447011-0.4071012-0.4170013-0.18190MaxX0.063550.068180.035480.075450.028400.080710.077820.097390.104900.174400.073030.052880.08832MinY-0.16120-0.10310-0.17800-0.18220-0.20670-0.23090-0.23310-0.23790-0.23890-0.17410-0.16430-0.12700-0.21120MaxY0.177800.190000.061310.065460.053550.076780.013800.015960.008230.007300.038250.058330.02261

U.S.NRCG.S.VissingA-45October20,1997TableNRCQ7.5Max.RackHorizontalDisp.@Top-LC¹3GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase¹3-ConsolidatedFuel-SSE-Mu=0.8MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.282502-0.242403-0.156604-0.192405-0.184406-0.197307-0.272008-0.327209-0.3927010-0.2534011-0.4099012-0.4360013-0.32440MaxX0.347400.283500.166300.193100.172100.199300.291900.356800.361800.256200.471200.440500.30230MinY-0.34790-0.30640-0.22950-0.21630-0.21540-0.24260-0.21980-0.29730-0.31500-0.23730-0.28000-0.25880-0.32240MaxY0.330300.295400.189700.196700.215100.264200.241100.248600.235600.206600.169500.199300.15130TableNRCQ7.6Max.RackHorizontalDisp.@Base-LC¹3GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase¹3-ConsolidatedFuel-SSE-Mu=0.8MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.029632-0.030713-0.022154-0.025935-0.021526-0.024607-0.045098-0.042959-0.0716610-0.0323911-0.0944412-0.0661313-0.04723MaxX0.081000.028420.024410.023770.023630.023220.056020.065510.030300.052430.026200.043150.05821MinY-0.06999-0.06237-0.04722-0.04187-0.03840-0.03077-0.04370-0.08174-0.09566-0.04473-0.08570-0.06909-0.07137MaxY0.054010.045880.029900.032270.033030.047590.027140.037140.021310.026350.016010.037570.02015

U.S.NRCG.S.VissingA-46October20,1997TableNRCQ7.7Max.RackHorizontalDisp.Top-LC¹4GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase¹4-UnconsolidatedFuel-SSE-Mu=0.5MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.291402-0.243703-0.284404-0.249705-0.377506-0.344007-0.575908-0.533509-0.5766010-0.5270011-0.5252012-0.4917013-0.49680MaxX0.295700.258300.176200.193000.258000.289400.441300.592200.580200.442800.585400.581700.48470MinY-0.40560-0.35330-0.24460-0.24040-0.18660-0.22980-0.25950-0.30110-0.31510-0.27800-0.29130-0.31280-0.30700MaxY0.276900.257800.164000.164200.175000.200100.164100.206900.195800.139200.146800.142900.14850TableNRCQ7.8Max.RackHorizontalDisp.@Base-LC¹4GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase¹4-UnconsolidatedFuel-SSE-Mu=0.5MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.064482-0.048693-0.030824-0.023375-0.050386-0.035237-0.068548-0.052199-0.0312810-0.0735111-0.0471412-0.0544113-0.04132'MaxX0.039430.044970.027870.026940.025190.041080.041040.088990.091480.039120.078100.069370.11050MinY-0.08053-0.05841-0.05235-0.04774-0.03337-0.06152-0.10440-0.11510-0.09633-0.10520-0.10090-0.10640-0.06561MaxY0.032500.055600.034240.033570.038600.044400.013760.015680.008520.008690.013620.008400.01893

U.S.NRCG.S.VissingA-47October20,1997TableNRCQ7.9Max.RackHorizontalDisp.@Top-LC¹5GINNA3DWholePoolModel-WithPerimeterRacksLoadCase¹5-UnconsolidatedFuel-SSE-Mu=0.8MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.189902-0.202603-0.213804-0.178705-0.292706-0.253007-0.560108-0.512509-0.5243010-0.4608011-0.5294012-0.4879013-0.48880MaxX0.173800.237000.174600.203500.209900.234500.323400.473700.484800.385200.466700.478700.40670MinY-0.31140-0.25600-0.20670-0.20880-0.19080-0.22940-0.24590-0.29380-0.31760-0.28720-0.30500-0.33800-0.33210MaxY0.320500.333700.222200.211700.184300.213100.172400.223300.222300.160000.130700.134400.15320TableNRCQ7.10Max.RackHorizontalDisp.@Base-LC¹5GINNA3DWholePoolModel-WithPerimeterRacksLoadCase¹5-UnconsolidatedFuel-SSE-Mu=0.8MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.035802-0.030483-0.037554-0.028515-0.037596-0.025477-0.062498-0.072559-0.0449910-0.0465611-0.0516112-0.0554913-0.04446MaxX0.046270.037780.024010.028600.027260.041160.053450.073960.061420.044980.076970.088940:08146MinY-0.07851-0.03985-0.03321-0.03982-0.03663-0.04466-0.06886-0.07892-0.11320-0.09735-0.12170-0.12510-0.10460MaxY0.083930.080680.043790.035190.042510.051610.013930.015290.021850.009440.007300.008200.00609 U.S.NRCG.S.VissingA-48October20,1997TableNRCQ7.11Max.RackHorizontalDisp.Top-LC¹6GINNA3DWholePoolModel-WithPerimeterRacksLoadCase¹6-ConsolidatedFuel-SSE-Mu=0.8MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.230502-0.250703-0.166504-0.186905-0.145706-0.160207-0.281908-0.369509-0.3916010-0.2921011-0.3814012-0.3564013-0.37140MaxX0.326700.297600.242400.209700.191000.187800.296200.365000.361500.274300.487700.420700:30730MinY-0.31260-0.27540-0.22420-0.21230-0.21370-0.23410-0.21080-0.28280-0.30990-0.24680-0.28570-0.29250-0.33660MaxY0.358800.323100.195500.185100.201600.246500.234200.241200.237800.192200.156300.186000.14670TableNRCQ7.12Max.RackHorizontalDisp.@Base-LC¹6GINNA3DWholePoolModel-WithPerimeterRacksLoadCase¹6-ConsolidatedFuel-SSE-Mu=0.8MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.029002-0.038873-0.022504-0.023945-0.019346-0.019977-0.034528-0.037699-0.0620410-0.0269111-0.0806912-0.0660613-0.04278MaxX0.047170.033770.032530.028600.024180.024650.053120.086310.051490.061890.045020.042470.05559MinY-0.05076-0.04990-0.04870-0.04665-0.04324-0.03789-0.03707-0.07240-0.06606-0.04530-0.07084-0.05413-0.07601MaxY0.103300.073820.031160.031410.034160.044830.027090.034870.026120.025900.009690.012960.01875 U.S.NRCG.S.VissingA-49October20,1997TableNRCQ7.13Max.RackHorizontalDisp.@Top-LC07GINNA3DWholePoolModel-WithPerimeterRacksLoadCase87-UnconsolidatedFuel-SSE-Mu=0.2MaximumRackHorizontalDisplacements(XandY-(in))'ackMinX1-0.168002-0.190303-0.141404-0.153305-0.131706-0.138507-0.208408-0.254009-0.2807010-0.1943011-0.3857012-0.5453013-0.24120MaxX0.144300.196000.155200.148500.154700.136500.265400.268100.227200.230800.207600.131200.19910MinY-0.20100-0.13870-0.15140-0.17600-0.19070-0.24190-0.33540-0.37390-0.41170-0.29410-0.32050-0.30840-0.31250MaxY0.317900.295300.191600.169900.159100.193200.131500.178700.143900.141000.118400.145600.13130TableNRCQ7.14Max.RackHorizontalDisp.@Base-LCP7GINNA3DWholePoolModel-WithPerimeterRacksLoadCase87-UnconsolidatedFuel-SSE-Mu=0.2MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.059062-0.064823-0.030774-0.044025-0.038206-0.055577-0.094018-0.146909-0.1789010-0.1112011-0.2986012-0.4784013-0.15870MaxXMinY0.05380-0.119800.08367-0.056760.03802-0.069220.03961-0.099450.05111-0.128200.04126-0.189500.20160-0.214900.19920-0.245500.15780-0.247400.16080-0.158600.12690-0.228600.07696-0.212900.13330-0.20260MaxY0.249000.211500.117600.091400.07477'0.107700.013960.028730.007800.010010.010350.021050.03134 U.S.NRCG.S.VissingA-50October20,1997TableNRCQ7.15Max.RackHorizontalDisp.ITop-LC¹8GINNA3DWholePoolModel-WithPerimeterRacksLoadCase¹8-ConsolidatedFuel-OBE-Mu=0.8MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.113702-0.113303-0.077824-0.079655-0.066916-0.070557-0.139508-0.142609-0.1775010-0.1134011-0.2143012-0.2346013-0.17900MaxX0.126300.121200.094540.080750.077640.069130.112300.129300.155800.110800.215000.210000.14510MinY-0.18140-0.16620-0.10110-0.09862-0.10910-0.13020-0.13890-0.18670-0.17680-0.16160-0.17720-0.16030-0.20540MaxY0.193300.166700.097260.093880.100900.120300.119000.130400.137400.095460.087280.100500.07412TableNRCQ7.16Max.RackHorizontalDisp.@Base-LC¹8GINNA3DWholePoolModel-WithPerimeterRacksLoadCase¹8-ConsolidatedFuel-OBE-Mu=0.8MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.018402-0.013553-0.010434-0.010165-0.007276-0.007167-0.020678-0.020899-0.0294010-0.0162111-0.0316612-0.0322213-0.02951MaxX0.012740.011800.009240.010540.009800.010150.016750.019440.019720.015720.037010.031830.01986MinY-0.02858-0.02813-0.01734-0.01771-0.02037-0.02334-0.01500-0.02212-0.01614-0.01618-0.02075-0.02836-0.02110MaxY0.032170'.027440.016670.014870.018450.020990.014850.016550.012910.'010840.008470.004460.00904 U.S.NRCG.S.VissingA-51October20,1997TableNRCQ7.17Max.RackHorizontalDisp.@Top-LC¹9GINNA3DWholePoolModel-WithPerimeterRacksLoadCase¹9-UnconsolidatedFuel-OBE-Mu=0.2MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.106702-0.096043-0.082254-0.070365-0.070506-0.067637-0.100508-0.124509-0.1678010-0.1071011-0.1420012-0.1578013-0.19130MaxX0.101600.099860.074800.072430.072500.070340.157000.148900.139500.102400.128800.106600.07786MinY-0.19560-0.16950-0.10910-0.10590-0.08731-0.10830-0.10310-0.11810-0.09962-0.08660-0.11780-0.09529-0.12740MaxY0.137400.162000.076030.079390.087640.098340.089770.099640.114600.085300.070940.097440.05970TableNRCQ7.18Max.RackHorizontalDisp.Base-LC¹9GINNA3DWholePoolModel-WithPerimeterRacksLoadCase¹9-UnconsolidatedFuel-OBE-Mu=0.2MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.02387'-0.015303-0.018894-0.008855-0.006556-0.008207-0.006598-0.030919-0.0930510-0.0202511-0.0741612-0.1155013-0.11360MaxX0.013970.026300.006890.013030.013520.023310.070380.053740.057860.039150.061330.049830.02916MinY-0.11270-0.07639-0.03814-0.03253-0.01651-0.03289-0.01164-0.03022-0.01004-0.00683-0.04825-0.01237-0.02082MaxY0.055020.095510.016850.016290.020840.022850.014200.012790.030930.020480.006550.022290.00730

U.S.NRCG.S.VissingA-52October20,1997TableNRCQ7.19Max.RackHorizontalDisp.Top-LC¹10GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase¹10-UnconsolidatedFuel-OBE-Mu=0.2MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.142002-0.115403-0.078234-0.084965-0.080166-0.082747-0.110708-0.116209-0.1787010-0.1448011-0.1190012-0.2009013-0.20950MaxX0.136800.133400.094380.109600.083580.094610.168900.167800.152500.093600.176100.093200.07103MinY-0.17300-0.17490-0.11040-0.10800-0.10670-0.10430-0.10380-0.13110-0.14890-0.10690-0.10420-0.12120-0.13520MaxY0.099020.112700.086760.080370.093040.110000.090890.10390'.104300.084820.073830.092070.07252TableNRCQ7.20Max.RackHorizontalDisp.@Base-LC¹10GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase¹10-UnconsolidatedFuel-OBE-Mu=0.2MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.030952-0.023853-0.012504-0.013445-0.013036-0.009797-0.009218-0.009839-0.0885110-0.0655011-0.0386912-0.1599013-0.14080MaxX0.030060.038860.010110.014010.011950.011940.078500.074070.071620.029480.091760.040290.01560MinY-0.09498-0.07780-0.02894-0.02704-0.03653-0.01566-0.02239-0.03278-0.02074-0.02159-0.03615-0.02132-0.02246MaxY0.023110.021930.016210.015550.016360.033230.010610.013210.014590.017490.007600.013120.01026

U.S.NRCG.S.VissingA-53October20,1997TableNRCQ7.21Max.RackHorizontalDisp.@Top-LC¹11GINNA3DWholePoolModel-WithPerimeterRacksLoadCase¹11-MixedFuel-SSE-Mu=MixedMaximumRackHorizontalDisplacements(XandY-(in))Rack,MinX1-0.059482-0.074773-0.197504-0.118305-0.042676.-0.133007-0.377308-0.317109-0.4374010-0.2429011,-0.3821012-0.4511013-0.37550MaxX0.193900.202900.025480.150000.220400.183900.141600.211200.341400.200000.371100.373200.32950MinY-0.27610-0.20820-0.11660-0.14470-0.17710-0.16050-0.07047-0.18530-0.25770-0.15430-0.20210-0.25110-0.28790MaxY0.177100.219400.153000.123600.069500.158500.217000.146500.144500.123300.124900.129600.11450TableNRCQ7.22Max.RackHorizontalDisp.Base-LC¹11GINNA3DWholePoolModel-WithPerimeterRacksLoadCase¹11-MixedFuel-SSE-Mu=MixedMaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.014452-0.015733-0.038144-0.014845-0.014656-0.018007-0.031938-0.113309-0.0373310-0.0329711-0.0654112-0.0815713-0.03724MaxX0.059820.045290.003700.018150.022870.022620.052430.002740.055490.080810.025040.031350.06029MinY-0.15590-0.10070-0.03602-0.03315-0.03013-0.03820-0.01931-0.09398-0.10420-0.06981-0.06771-0.06574-0.08769MaxY0.011500.031210.030540.021770.024010.032200.032620.034850.020300.041400.016110.005410.01894

U.S.NRCG.S.VissingA-54October20,1997TableNRCQ7.23Max.RackHorizontalDisp.@Top-LC¹12GINNA3DWholePoolModel-WithPerimeterRacksLoadCase¹12-MixedFuel-OBE-Mu=MixedMaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.128002-0.027623-0.037874-0.034075-0.100006-0.106107-0.074968-0.122209-0.1364010-0.0771811-0.1844012-0.2211013-0.14960MaxX-0.050990.026080.039150.03728-0.00996-0.006850.102400.120100.167300.093920.186600.158800.11520MinY-0.13840-0.09272-0.05966-0.04433~-0.02910-0.04246-0.04333-0.10590-0.11620-0.10030-0.12090-0.22060-0.16270MaxY0.035720.024210.046530.045760.085730.093430.079830.075940.071650.048850.06964-0.015580.06942TableNRCQ7.24Max.RackHorizontalDisp.Base-LC¹12GINNA3DWholePoolModel-WithPerimeterRacksLoadCase¹12-MixedFuel-OBE-Mu=MixedMaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.010672-0.016133-0.004734-0.008275-0.011206-0.011987-0.004698-0.020379-0.0262910-0.0068611-0.0317312-0.0241313-0.02462MaxX0.000320.013110.005670.009500.003750.003190.070920.016500.018970.040840.019170.036700.01230MinY-0.02250-0.08309-0.01409-0.01946-0.00882-0.01166-0.00503-0.01667-0.02377-0.04963-0.01639-0.06873-0.01833MaxY0.011460.012420.009580.013290.019350.018120.039170.010720.006200.005550.00689-0.001890.00719

U.S.NRCG.S.VissingA-55October20,1997Ifthereisanimpactbetweenarackandareinforcedconcretespentfuelpool(SFP)wall:a)ProvidethemagnitudeofthehydrodynamicpressureusedintheSFPconcretewallanalysis.b)ProvidethetemperatureprofileswithmagnitudesusedfortheSFPslabandwallsanalyses.c)Providethecalculatedsafetymarginsforthefourwallsandtheslabwithrespecttothebendingandshearstrengthevaluations.d)IftheANSYScodewasusedfortheanalysesoftheSFPwallsandslab,provideatechnicalexplanationonhowtheeffectsofreinforcementandconcretecrackingisJ'eflectedinthecomputermodelingsimulations.SubmitthecompleteinputincludingtheANSYSmodelwithallboundaryandloadingconditionsusedfortheSFPanalysesofthewallsandslabona3.5-inchdiskette.~RienThegapsbetweentheracksandbetweentheracksandthewallsaredesignedsuchthatforanyoftheseismic(OBEandSSE)events,theracksdonotimpactthespentfuelpoolwall.ThisistrueforbothresidentU.S.ToolandDieracksandalsoforthenewATEAracks.ThisisdiscussedinSection3.1,"Scope,"Section3.2.2,"AcceptanceCriteria,"andSection3.5.3.5,"Conclusion,"oftheLicensingReport.ITheresultsofallthe3-Dwhole-poolmulti-rackmodelrunsdemonstratedthattherewerenotanyrack-to-poolwallimpacts(noranyrack-to-rackimpacts)fromanyoftheanalyses.Further,asstatedinSection3.5.3.1.14onpage279oftheLicensingReport,therewerenoimpactsafterthecumulativeefFectsof5OBE'splus1SSE.TheminimumracktopoolwallgapsexistingafterthecumulativeefFectsof5OBE'splus1SSEwereasfollows:WestWall:EastWall:SouthWall:NorthWall:9.434in2.686in4.516in1.184inTheabovenumbersweretakendirectlyfromTables3.5-137and3.5-138onpage282oftheLicensingReport.

U.S.NRCG.S.VissingA-56October20,1997Indicatewhethertherewererack-to-poolwallandlorrack-to-rackimpactsfromthemulti-rackanalysis.~RyanThegapsbetweentheracksandbetweentheracksandthewallsaredesignedsuchthatforalloftheseismic(OBEandSSE)events,theracksdonotimpactthespentfuelwallnortheracksimpactanyotherracks.ThisistrueforbothresidentU.S.ToolandDieracksandalsoforthenewATEAracks.ThisisdiscussedinSection3.1,"Scope,"Section3.2.2,"AcceptanceCriteria,"andSection3.5.3.5,"Conclusion,"oftheLicensingReport.Insummary,therewereneitheranyrack-to-racknoranyrack-to-poolwallimpactsfromanyoftheanalyses.Further,asstatedinSection3.5.3.1.14onpage279oftheLicensingReport,therewerenoimpactsafterthecumulativee6ectsof5OBE'splus1SSE.

U.S.NRCG.S.VissingA-57October20,1997SubmittheANSYSinputdataona3.5-inchdiskettefortheweldanalysis,thefuellrackirnpactanalysisandtherackthermalstressanalysisasmentionedintheReference.~Rq~n~g:Thelistingofthecomputerinputdataisprovidedona3.5-inchcomputerdisketteinASCIIformat.TheseinputarefortheANSYSVersion5.2.Thesedataareproprietary.TheweldstressanalysisisdiscussedinSection3.5.3.1.3.Theweldstressanalysiswasperformedusingclassicalequations.ThecomputerprogramANSYSwasnotused.TheDiskFilesInclude:DiskANSYSInputFiles,FileFUELLOAD.TXTFuelRackImpactModelFileS3DPR8TO.TXTRackThermalStressModel U.S.NRCG.S.VissingA-58October20,1997DiscussthequalityassuranceandinspectionprogramstoprecludeinstallationofanyirregularordistortedrackstructureandtoconfirmtheactualfiielrackgapconfigurationswithrespecttothegapsassumedintheANSYSanalysesafterinstallationoftheracks.ggg~n,:TheQualityAssuranceproceduresarediscussedinSection7.0oftheLicensingReport.Section7.2.13discussestheproceduresfortheHandling,Storage,andShipping.Section7.2.14discussestheproceduresforInspection,Tests,andOperatingStatus.Thissectionalsodiscussesinstallationandtesting.ThefollowingQA/QCactionswillassurethatthefuelracksareproperlyfabricatedandinstalled:Dimensionalinspectionsoftheracks,byATEAQualitypersonnel,willoccurduringtherackfabrication.ASourceInspectionwillbeperformedbyFTIQConthefuelstoragerackspriortoshipmentfromATEAinaccordancewithaninspectionplanpreparedbyFTI.Thisinspectionwillverifythattheracksmeetdrawingrequirements,andwillcheckforwarpageanddistortion.a)Theresultsoftheinspectionswillbedocumentedonaninspectionreport.b)Non-conformingconditionswillbepresentedtoATEAforcorrectiveaction,inaccordancewiththeATEAQAProgram.FTIwillfollow-uponthedispositionoftheATEAnon-conformancerep'ortsand,ifrequired,reinspectthefuelrackassemblies.RGBQAwillperformsurveillanceoftheinspectionandpreparationforshipmentactivitiestoprovideadditionalassurancethattheracksarefabricatedasrequired.2.FollowingshipmenttoGinnaandpriortoinstallingthefuelracks,areceiptinspectionwillbeperformedtocheckforshippingdamage.3.TheinstallationofthefuelrackswillbeinaccordancewiththeRG&E-approvedFTISafety-RelatedQAProgram.ATraveler/InstallationProcedureandinstallationdrawingswillbeusedtoinstalltheracks.TheTraveler/Procedurewillprovidedetailedinstructiontosequencetheinstallationandprovidedocumentation(measurements,verifications,sign-offsforstepcompletion,etc.)toshowthattheracksareproperlyinstalled.TheTraveler/Procedurewillincludein-processQCHOLDpointstoverifycriticalinstallationstepsandmeasurementsandallowforRGBHOLDpoints.TheseprocedureswillbepreparedbythecognizantFTIEngineeringorganization,inaccordancewiththeFTIQAProgram,approvedbyFTIQA,andprovidedtoRGEforconcurrence.5.Personnelwillbetrainedandcertified,asrequiredbytheFTIQAProgram.The

U.S.NRCG.S.VissingA-59October20,19975.Personnelwillbetrainedandcertified,asrequiredbytheFTIQAProgram.Theinstallationcrewwillreceivemock-uptraining,pre-jobbriefings,andothertask-specifictraining,asrequiredtosupportthetask.6.FTIQA/QCwillperformafinalinspectionanddetailedreviewoftheinstallationprocedureandsupportingdocumentationatthecompletionofthetasktoverifythattheworkwasdoneinaccordancewiththeapplicableprocedure(s)andtheFTIQAProgram.In-processandfinalinspectionwillbeperformedinaccordancewithapprovedinstallationproceduresanddrawings.Lackofdistortionandgapconfigurationwillbearequirementoftheinstallationprocess.Specificdetailsthataddressdistortion,irregularities,andgapconfigurationinaccordancewiththeStructuralEvaluationintheLicensingReportwillbedevelopedandapprovedpriortoinstallationoftheracks.8.AllinstallationactivitieswillbesubjecttooversightandassessmentbyRGBQA,inadditiontoFTIoversightactivity.

U.S.NRCG.S.VissingA-60October20,1997Providethelocationsoftheleakchasesystemswithrespecttothelocationsoftheracksandpedestals.Reels/TheATEADrawingdescribedbelowprovidesthelocationofleakchasesandalsothelocationofracksupportpads.ThereferencedrawingprovidessupportpadlocationsforboththeresidentspentfuelstorageracksandthenewATEAracks.ATEADrawingNo.SA20.001.00000,Sheet2of2,RevisionD(FramatomeTechnologyDrawingNo.02-1186074F-03).Title,"RochesterGas2ElectricCo.,R.E.GinnaNuclearPowerStationNo1,GeneralArrangementSupportPadsLocation."

U.S.NRCG.S.VissingA-61October20,1997DescribethemethodofleakdetectionintheSFPpoolstnIcture.Ho>vareleaksmonitored?Isthereanyexistingleakage?~R~nTheleakdetectionsystemconsistsofagridofrectangularindentationsintheconcretebehindthesteelliner,locatedinthefioorofthespentfuelpitandrefuelingcanal.Theywereformedduringtheinitialconstructionofthepit.Thegridisarrangedsuchthatanyleakageischanneledtoacollectionchamber,whichisperiodicallycheckedanddrainedofanycollectedboratedwater,whichundergoestreatment.Therehasbeenahistoryofleakagefromthespentfuelpit/refuelingcanalarea,andRG&Ebelievesithasbeendeterminedthatthesourceoftheleakageisintherefuelingcanal.RG&Eistakingmeasurestostopthisleakageandwillmonitortheleakageagainatournextscheduledrefuelingoutage(therefuelingcanalisnormallyemptyduringnormalplantoperations.)

U.S.NRCG.S.VissingA-62October20,1997utin14Indicatewhetherornotyouareplanningtoplaceanoverheadplatformontherackspermanentlyorastemporarystorageduringtheinstallationoftheracks.~RLnne:Thereisnoplantoplaceanoverheadplatformontherackseitherpermanentlyorastemporarystorageduringrackinstallation.

n0U.S.NRCG.S.VissingA-63October20,1997'0'astherackdesigncontrolledmainlybytheresultsofthesingle-rackanalysis?Ifyes,wasthereanyphysicalrackdesignchangenecessitatedbytheresultsofthemulti-rackanalysis?Asapplicable,describethechange(s).Response:The3-Dsingle-rackdynamicanalysismodeland3-Dwhole-poolmulti-rackdynamicanalysismodelsandtheirintendedusearedescribedinSection3.5(page72oftheLicensingReport)andSection3.5.2.3(pages106to109oftheLicensingReport).Asdescribed,the3-Dsingle-rackdynamicmathematicalmodelisusedforvarioussensitivitystudies.Theloads,displacements,andassociatedstressesareobtainedfromthe3-Dwhole-poolmulti-rackdynamicmathematicalmodel.Thelengthandlocationoftabs,theweldsize,theweldsizeofsupportlegs,etc.,aredesignedfromtheloadingsandstressesfromthe3-Dwhole-poolmulti-rackdynamicanalysis.Thegapsbetweentheracksandthegapsbetweentherackandthewallaredesignedtoprecludeanyimpactfromtheresultsofthe3-Dwhole-poolmulti-rackdynamicanalysis.Thesingle-rackmodelwasusedforparametricstudies.Thewhole-poolmulti-rackmodelwasusedfortheloadsanddisplacements.Therefore,therackdesignwasnotcontrolledbytheresultsofthesingle-rackanalysis.Therewereseveralitemsthatweremodifiedbasedontheresultsofthemulti-rackanalysis.Thoseitemsareasfollows:a)Rackbaseplateweldswereadjustedtoensureadequatedesignmargins.b)Rackinter-connectingtabsandassociatedweldswereadjustedtoensureadequatedesignmargins.

0 U.S.NRCG.S.VissingA-64October20,1997Describetheplanandprocedureforthepost-operatingbasisearthquakeinspectionoffuelrackgapconfigurations.~R~Lnn,RG&Ehasseismicinstrumentationlocatedinthesub-basementoftheIntermediateBuilding.Thatinstrumentationwillactivateandrecordvariousdataoftheevent,thepurposeofwhichistodetermineifanOperatingBasisEarthquakehasoccurred.ThatdataisprocessedbywayoftheTechnicalEngineeringGuidelinesTEG2.0,"ResponseSpectrumCalculation,"andTEG2.1,"SSEandOBEExceedanceDetermination".Uponprocessingofthedata,andifanOperatingBaseEarthquakehadoccurred,adetailedstructuralengineeringinspectionwouldbeconductedtodetermineifanystructuraldamagedidoccur.Althoughinspectionofthegapsisnotspecificallyidentifiedasarequirementofthisinspection,thespentfuelpitandtheconditionofthe'spentfuelracks/fuelassemblieswouldreceiveclosescrutiny.TheseinspectionswouldbeperformedbyProfessionalEngineersexperiencedinseismicanalyses/designandalsotrainedasSeismicCapabilityEngineers,perrequirementsoftheSeismicQualificationUser'sGroup(SQUG)GenericImplementationProgram.