|
|
| (7 intermediate revisions by the same user not shown) |
| Line 1: |
Line 1: |
| {{Adams | | {{Adams |
| | number = ML003716792 | | | number = ML20296A425 |
| | issue date = 07/31/2000 | | | issue date = 11/19/2020 |
| | title = Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors | | | title = Revision Public Meeting Slides (11/19/2020) |
| | author name = | | | author name = Blumberg M, Smith M |
| | author affiliation = NRC/RES | | | author affiliation = NRC/NRR/DRA/ARCB |
| | addressee name = | | | addressee name = |
| | addressee affiliation = | | | addressee affiliation = |
| | docket = | | | docket = |
| | license number = | | | license number = |
| | contact person = LAVIE S (301)415-1081 | | | contact person = Smith M |
| | case reference number = -nr, DG-1081 | | | case reference number = RG-1.183 |
| | document report number = RG-1.183
| | | document type = Meeting Briefing Package/Handouts, Slides and Viewgraphs |
| | document type = Regulatory Guide | | | page count = 28 |
| | page count = 60 | |
| }} | | }} |
| {{#Wiki_filter:RegulatoryguidesareissuedtodescribeandmakeavailabletothepublicsuchinformationasmethodsacceptabletotheNRCstaffforimplementingspecificpartsoftheNRC'sregulations,techniquesusedbythestaffinevaluatingspecificproblemsorpostulatedaccidents,anddataneededbytheNRCstaffinitsreviewofapplicationsforpermitsandlicenses.Regulatoryguidesarenotsubstitutesforregulations,andcompliancewiththemisnotrequired.MethodsandsolutionsdifferentfromthosesetoutintheguideswillbeacceptableiftheyprovideabasisforthefindingsrequisitetotheissuanceorcontinuanceofapermitorlicensebytheCommission.Thisguidewasissuedafterconsiderationofcommentsreceivedfromthepublic.Commentsandsuggestionsforimprovementsintheseguidesareencour agedatalltimes,andguideswillberevised,asappropriate,toaccommodatecommentsandtoreflectnewinformationorexperience.WrittencommentsmaybesubmittedtotheRulesandDirectivesBranch,ADM,U.S.NuclearRegulatoryCommission,Washington,DC20555-0001.Regulatoryguidesareissuedintenbroaddivisions:1,PowerReactors;2,ResearchandTestReactors;3,FuelsandMaterialsFacilities;4,EnvironmentalandSiting;5,MaterialsandPlantProtection;6,Products;7,Transportation;8,OccupationalHealth;9,AntitrustandFinancialReview;and10,Ge neral.Singlecopiesofregulatoryguides(whichmaybereproduced)maybeobtainedfreeofchargebywritingtheDistributionServicesSection,U.S.Nuclea rRegulatoryCommission,Washington,DC20555-0001,orbyfaxto(301)415-2289,orbyemailtoDISTRIBUTION@NRC.GOV.Electroniccopiesofthisguide areavailableontheinternetatNRC'shomepageat< | | {{#Wiki_filter:Revision of Regulatory Guide 1.183 Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors Mark Blumberg, Senior Reactor Engineer (Technical Lead) |
| WWW.NRC.GOV>intheReferenceLibraryunderRegulatoryGuidesandthroughtheElectronicR
| | NRR/DRA/ARCB |
| eadingRoom,asAccessionNumberML003716792,alongwithotherrecentlyissuedguides,atthesamewebsite.U.S.NUCLEARREGULATORYCOMMISSIONJuly2000
| | mark.blumberg@nrc.gov Micheal Smith, Health Physicist (Project Lead) |
| REGULATORY
| | NRR/DRA/ARCB |
| GUIDEOFFICEOFNUCLEARREGULATORYRESEARCHREGULATORYGUIDE1.183(DraftwasissuedasDG-1081)ALTERNATIVERADIOLOGICALSOURCETERMSFOREVALUATINGDESIGNBASISACCIDENTSATNUCLEARPOWERREACTORS
| | micheal.smith@nrc.gov November 19, 2020 |
| iiAVAILABILITYINFORMATIONSinglecopiesofregulatoryguides,bothactiveanddraft,anddraftNUREGdocumentsmaybeobtainedfreeofchargebywritingtheReproductionandDistributionServicesSection,OCIO,
| | ML20296A425 |
| USNRC,Washington,DC20555-0001,orbyemailto<DISTRIBUTION@NRC.GOV>,orbyfaxto(301)415-2289.ActiveguidesmayalsobepurchasedfromtheNationalTechnicalInformation Serviceonastandingorderbasis.DetailsonthisservicemaybeobtainedbywritingNTIS,5285 PortRoyalRoad,Springfield,VA22161.ManyNRCdocumentsareavailableelectronicallyinourReferenceLibraryonourwebsite,<WWW.NRC.GOV>,andthroughourElectronicReadingRoom(ADAMS,orPARS,documentsystem)atthesamesite.CopiesofactiveanddraftguidesandmanyotherNRC
| |
| documentsareavailableforinspectionorcopyingforafeefromtheNRCPublicDocumentRoom at2120LStreetNW.,Washington,DC;thePDR'smailingaddressisMailStopLL-6, Washington,DC20555;telephone(202)634-3273or(800)397-4209;fax(202)634-3343;emailis
| |
| <PDR@NRC.GOV>.CopiesofNUREG-seriesreportsareavailableatcurrentratesfromtheU.S.GovernmentPrintingOffice,P.O.Box37082,Washington,DC20402-9328(telephone(202)512-1800);or fromtheNationalTechnicalInformationServicebywritingNTISat5285PortRoyalRoad, Springfield,VA22161;telephone(703)487-4650;orontheinternetat
| |
| <http://www.ntis.gov/ordernow>.Copiesareavailableforinspectionorcopyingforafeefromthe NRCPublicDocumentRoomat2120LStreetNW.,Washington,DC;thePDR'smailingaddress isMailStopLL-6,Washington,DC20555;telephone(202)634-3273or(800)397-4209;fax
| |
| (202)634-3343;emailis<PDR@NRC.GOV>.
| |
| iiiTABLEOFCONTENTS
| |
|
| |
|
| ==A. INTRODUCTION==
| | 2 Agenda |
| ........................................................1
| | * |
| | Key Messages |
| | * |
| | Background |
| | * |
| | Regulatory Guide (RG) Update Process |
| | * |
| | RG 1.183 Guidance Updates Under Consideration |
| | * |
| | Looking Forward |
| | * |
| | Feedback/Discussion |
| | * |
| | Comments and input from the public |
|
| |
|
| ==B. DISCUSSION==
| | 3 Key Messages |
| ...........................................................2 C.REGULATORYPOSITION................................................4
| | * |
| 1.IMPLEMENTATIONOFAST..............................................41.1GenericConsiderations..............................................4
| | The NRC staff has restarted efforts to revise RG 1.183, Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors. |
| 1.2ScopeofImplementation.............................................6
| |
| 1.3ScopeofRequiredAnalyses..........................................7
| |
| 1.4RiskImplications..................................................10 | |
| 1.5SubmittalRequirements.............................................101.6FSARRequirements...............................................112.ATTRIBUTESOFANACCEPTABLEAST..................................11
| |
| 3.ACCIDENTSOURCETERM.............................................123.1FissionProductInventory...........................................123.2ReleaseFractions..................................................13
| |
| 3.3TimingofReleasePhases...........................................143.4RadionuclideComposition..........................................153.5ChemicalForm....................................................15
| |
| 3.6FuelDamageinNon-LOCADBAs....................................16
| |
|
| |
|
| ===4. DOSECALCULATIONAL===
| | * |
| | The objectives of the revision are to: |
| | - incorporate lessons learned from recent NRC staff reviews of Alternative Source Term (AST) and Main Steam Line Isolation Valve (MSIV) leakage LARs; |
| | - incorporate relevant operating experience as well as recent post-Fukushima seismic risk insights and walkdowns; |
| | - respond to change of regulatory environment (e.g., backfit guidance SRM- |
| | SECY-18-0049 & NuScale SRM-SECY-19-0036); |
| | - make the guidance more useful by considering feedback and comments from licensees; |
| | - ensure sufficient guidance is in place for licensing advanced light-water reactors (LWRs), accident tolerant fuel (ATF), high-burnup, and increased enrichment fuel; and, |
| | - incorporate insights from new research activities. |
|
| |
|
| ===METHODOLOGY===
| | 4 Key Messages (Contd) |
| ................................164.1OffsiteDoseConsequences..........................................16 | | * RG 1.183 Rev. 0 and Rev. 1 will co-exist as a result of SRM- |
| 4.2ControlRoomDoseConsequences....................................17
| | SECY-18-0049, Management Directive and Handbook 8.4, Management of Backfitting, Issue Finality, and Information Collection. |
| 4.3OtherDoseConsequences...........................................19
| |
| 4.4AcceptanceCriteria................................................195.ANALYSISASSUMPTIONSAND | |
|
| |
|
| ===METHODOLOGY===
| | * NRC staff will hold public meetings for external stakeholder engagement on the revision of RG 1.183. |
| .........................205.1GeneralConsiderations.............................................20 | |
| 5.2Accident-SpecificAssumptions.......................................22
| |
| 5.3MeteorologyAssumptions...........................................226.ASSUMPTIONSFOREVALUATINGTHERADIATIONDOSESFOREQUIPMENTQUALIFICATION.......................................................23
| |
|
| |
|
| ==D. IMPLEMENTATION==
| | * Publish the draft RG for comment in 4th Quarter CY 2021. |
| ....................................................23 REFERENCES.................................................................24 ivAPPENDICESA.AssumptionsforEvaluatingtheRadiologicalConsequencesofaLWRLoss-of-CoolantAccident..................................................A-1B.AssumptionsforEvaluatingtheRadiologicalConsequencesofaFuelFuelHandlingAccident....................................................B-1C.AssumptionsforEvaluatingtheRadiologicalConsequencesofaBWRRodDropAccident........................................................C-1D.AssumptionsforEvaluatingtheRadiologicalConsequencesofaBWRMainSteamLineBreakAccident.................................................D-1E.AssumptionsforEvaluatingtheRadiologicalConsequencesofaPWRMainSteamLineBreakAccident.................................................E-1F.AssumptionsforEvaluatingtheRadiologicalConsequencesofaPWRMainSteamGeneratorTubeRuptureAccident.......................................F-1G.AssumptionsforEvaluatingtheRadiologicalConsequencesofaPWRLockedRotorAccident...........................................................G-1H.AssumptionsforEvaluatingtheRadiologicalConsequencesofaPWRRodEjectionAccident.........................................................H-1I.AssumptionsforEvaluatingRadiationDosesforEquipmentQualification............I-1 J.AnalysisDecisionChart....................................................J-1 K.Acronyms...............................................................K-1
| |
| 1Applicantsforaconstructionpermit,adesigncertification,oracombinedlicensethatdonotreferenceastandarddesigncertificationwhoappliedafterJanuary10,1997,arerequiredbyregulationtomeetradiologicalcriteriaprovidedin10CFR
| |
|
| |
|
| 50.34.2Asdefinedin10CFR50.2,designbasesmeansinformationthatidentifiesthespecificfunctionstobeperformedbyastructure,system,orcomponentofafacilityandthespecificvaluesorrangesofvalueschosenforcontrollingparametersasreference boundsfordesign.Thesevaluesmaybe(1)restraintsderivedfromgenerallyaccepted"stateoftheart"practicesforachievingfunctionalgoalsor(2)requirementsderivedfromanalysis(basedoncalculationorexperimentsorboth)oftheeffectsofa postulatedaccidentforwhichastructure,system,orcomponentmustmeetitsfunctionalgoals.TheNRCconsiderstheaccidentsourcetermtobeanintegralpartofthedesignbasisbecauseitsetsforthspecificvalues(orarangeofvalues)forcontrolling parametersthatconstitutereferenceboundsfordesign.
| | * Final revised RG being issued in 2nd Quarter CY 2022. |
|
| |
|
| 1.183-1
| | 5 Background |
|
| |
|
| ==A. INTRODUCTION==
| | 6 Background |
| Thisguideprovidesguidancetolicenseesofoperatingpowerreactorsonacceptableapplicationsofalternativesourceterms;thescope,nature,anddocumentationofassociated analysesandevaluations;considerationofimpactsonanalyzedrisk;andcontentofsubmittals.
| | * |
| | Origin: Footnote to 10 CFR 100.11(a) is a performance-based rule to evaluate the defense-in-depth provided by the containment. |
|
| |
|
| Thisguideestablishesanacceptablealternativesourceterm(AST)andidentifiesthesignificant attributesofotherASTsthatmaybefoundacceptablebytheNRCstaff.Thisguidealsoidentifies acceptableradiologicalanalysisassumptionsforuseinconjunctionwiththeacceptedAST.In10CFRPart50,"DomesticLicensingofProductionandUtilizationFacilities,"Section50.34,"ContentsofApplications;TechnicalInformation,"requiresthateachapplicantfora constructionpermitoroperatinglicenseprovideananalysisandevaluationofthedesignand performanceofstructures,systems,andcomponentsofthefacilitywiththeobjectiveofassessing therisktopublichealthandsafetyresultingfromoperationofthefacility.Applicantsarealso requiredby10CFR50.34toprovideananalysisoftheproposedsite.In10CFRPart100,
| | - TID-14844 Source term provided guidance which assumed the source term is instantaneously available in the containment. |
| "ReactorSiteCriteria,"Section100.11, 1"DeterminationofExclusionArea,LowPopulationZone,andPopulationCenterDistance,"providescriteriaforevaluatingtheradiologicalaspectsofthe proposedsite.Afootnoteto10CFR100.11statesthatthefissionproductreleaseassumedin theseevaluationsshouldbebaseduponamajoraccidentinvolvingsubstantialmeltdownofthe corewithsubsequentreleaseofappreciablequantitiesoffissionproducts.TechnicalInformationDocument(TID)14844,"CalculationofDistanceFactorsforPowerandTestReactorSites"(Ref.1),iscitedin10CFRPart100asasourceoffurtherguidanceon theseanalyses.Althoughinitiallyusedonlyforsitingevaluations,theTID-14844sourcetermhas beenusedinotherdesignbasisapplications,suchasenvironmentalqualificationofequipment under10CFR50.49,"EnvironmentalQualificationofElectricEquipmentImportanttoSafetyfor NuclearPowerPlants,"andinsomerequirementsrelatedtoThreeMileIsland(TMI)asstatedin NUREG-0737,"ClarificationofTMIActionPlanRequirements"(Ref.2).Theanalysesand evaluationsrequiredby10CFR50.34foranoperatinglicensearedocumentedinthefacilityfinal safetyanalysisreport(FSAR).Fundamentalassumptionsthataredesigninputs,includingthe sourceterm,aretobeincludedintheFSARandbecomepartofthefacilitydesignbasis.
| |
|
| |
|
| 2SincethepublicationofTID-14844,significantadvanceshavebeenmadeinunderstandingthetiming,magnitude,andchemicalformoffissionproductreleasesfromseverenuclearpower plantaccidents.AholderofanoperatinglicenseissuedpriortoJanuary10,1997,oraholderofa renewedlicenseunder10CFRPart54whoseinitialoperatinglicensewasissuedpriortoJanuary
| | * |
| 1.183-210,1997,isallowedby10CFR50.67,"AccidentSourceTerm,"tovoluntarilyrevisetheaccidentsourcetermusedindesignbasisradiologicalconsequenceanalyses.Ingeneral,informationprovidedbyregulatoryguidesisreflectedinNUREG-0800,theStandardReviewPlan(SRP)(Ref3).TheNRCstaffusestheSRPtoreviewapplicationsto constructandoperatenuclearpowerplants.ThisregulatoryguideappliestoChapter15.0.1ofthe
| | Radionuclide behavior observed during the TMI accident did not appear at all similar to the TID-14844 source term. |
|
| |
|
| SRP.Theinformationcollectionscontainedinthisregulatoryguidearecoveredbytherequirementsof10CFRPart50,whichwereapprovedbytheOfficeofManagementandBudget (OMB),approvalnumber3150-0011.TheNRCmaynotconductorsponsor,andapersonisnot requiredtorespondto,acollectionofinformationunlessitdisplaysacurrentlyvalidOMBcontrol
| | - NRC initiated research effects in the area of severe accidents which culminate in publication of NUREG-1150. |
|
| |
|
| number.
| | - NUREG-1465 source term was derived from the sequences in NUREG-1150. |
|
| |
|
| ==B. DISCUSSION==
| | * RG 1.183 Rev. 0 adopted the NUREG-1465 early in-vessel fuel melt source term. |
| Anaccidentsourcetermisintendedtoberepresentativeofamajoraccidentinvolvingsignificantcoredamageandistypicallypostulatedtooccurinconjunctionwithalargeloss-of-coolant accident(LOCA).AlthoughtheLOCAistypicallythemaximumcredibleaccident,NRCstaff experienceinreviewinglicenseapplicationshasindicatedtheneedtoconsiderotheraccident sequencesoflesserconsequencebuthigherprobabilityofoccurrence.Thedesignbasisaccidents (DBAs)werenotintendedtobeactualeventsequences,butrather,wereintendedtobesurrogatesto enabledeterministicevaluationoftheresponseofafacility'sengineeredsafetyfeatures.These accidentanalysesareintentionallyconservativeinordertocompensateforknownuncertaintiesin accidentprogression,fissionproducttransport,andatmosphericdispersion.Althoughprobabilistic riskassessments(PRAs)canprovideusefulinsightsintosystemperformanceandsuggestchangesin howthedesireddepthisachieved,defenseindepthcontinuestobeaneffectivewaytoaccountfor uncertaintiesinequipmentandhumanperformance.TheNRC'spolicystatementontheuseofPRA
| |
| methods(Ref.4)callsfortheuseofPRAtechnologyinallregulatorymattersinamannerthat complementstheNRC'sdeterministicapproachandsupportsthetraditionaldefense-in-depth philosophy.SincethepublicationofTID-14844(Ref.1),significantadvanceshavebeenmadeinunderstandingthetiming,magnitude,andchemicalformoffissionproductreleasesfromsevere nuclearpowerplantaccidents.In1995,theNRCpublishedNUREG-1465,"AccidentSourceTerms forLight-WaterNuclearPowerPlants"(Ref.5).NUREG-1465usedthisresearchtoprovide estimatesoftheaccidentsourcetermthatweremorephysicallybasedandthatcouldbeappliedtothe designoffuturelight-waterpowerreactors.NUREG-1465presentsarepresentativeaccidentsource termforaboiling-waterreactor(BWR)andforapressurized-waterreactor(PWR).Thesesource termsarecharacterizedbythecompositionandmagnitudeoftheradioactivematerial,thechemical andphysicalpropertiesofthematerial,andthetimingofthereleasetothecontainmen
| |
|
| |
|
| ====t. TheNRC====
| | 7 Background (contd) |
| staffconsideredtheapplicabilityoftherevisedsourcetermstooperatingreactorsanddeterminedthat thecurrentanalyticalapproachbasedontheTID-14844sourcetermwouldcontinuetobeadequateto protectpublichealthandsafety.Operatingreactorslicensedunderthatapproachwouldnotbe requiredtore-analyzeaccidentsusingtherevisedsourceterms.TheNRCstaffalsodeterminedthat somelicenseesmightwishtouseanASTinanalysestosupportcost-beneficiallicensingactions.
| | * |
| | NRC staff developed RG 1.183 Rev. 0 (July 2000) to support implementation of 10 CFR 50.67, Accident source term |
| | * |
| | RG 1.183 Rev. 0 is applicable to nuclear power reactor applicants and licensees adopting 10 CFR 50.67 |
| | - Limited range of applicability on Non-LOCA release fractions |
| | * |
| | RG 1.183 Rev. 0 identified the significant attributes of an acceptable accident AST based on NUREG-1465, Accident Sources Terms for Light-Water Nuclear Power Plants (1995) |
| | * |
| | RG 1.183 Rev. 0 provides assumptions and methods that are acceptable to the NRC staff for performing design basis radiological analyses using an AST |
|
| |
|
| 3TheNUREG-1465sourcetermshaveoftenbeenreferredtoasthe"revisedsourceterms."Inrecognitionthattheremaybeadditionalsourcetermsidentifiedinthefuture,10CFR50.67addresses"alternativesourceterms."Thisregulatoryguide endorsesasourcetermderivedfromNUREG-1465andprovidesguidanceontheacceptableattributesofotheralternativesourceterms.1.183-3TheNRCstaff,therefore,initiatedseveralactionstoprovidearegulatorybasisforoperatingreactorstouseanAST
| | 8 |
| 3indesignbasisanalyses.Theseinitiativesresultedinthedevelopmentandissuanceof10CFR50.67andthisregulatoryguide.TheNRC'straditionalmethodsforcalculatingtheradiologicalconsequencesofdesignbasisaccidentsaredescribedinaseriesofregulatoryguidesandSRPchapters.Thatguidancewas developedtobeconsistentwiththeTID-14844sourcetermandthewholebodyandthyroiddose guidelinesstatedin10CFR100.11.Manyofthoseanalysisassumptionsandmethodsare inconsistentwiththeASTsandwiththetotaleffectivedoseequivalent(TEDE)criteriaprovidedin10
| | * |
| CFR50.67.ThisguideprovidesassumptionsandmethodsthatareacceptabletotheNRCstafffor performingdesignbasisradiologicalanalysesusinganAST.Thisguidancesupersedescorresponding radiologicalanalysisassumptionsprovidedinotherregulatoryguidesandSRPchapterswhenusedin conjunctionwithanapprovedASTandtheTEDEcriteriaprovidedin10CFR50.67.Theaffected guideswillnotbewithdrawnastheirguidancestillapplieswhenanASTisnotused.Specifically, theaffectedregulatoryguidesare:RegulatoryGuide1.3,"AssumptionsUsedforEvaluatingthePotentialRadiologicalConsequencesofaLossofCoolantAccidentforBoilingWaterReactors"(Ref.6)RegulatoryGuide1.4,"AssumptionsUsedforEvaluatingthePotentialRadiologicalConsequencesofaLossofCoolantAccidentforPressurizedWaterReactors"(Ref.7)RegulatoryGuide1.5,"AssumptionsUsedforEvaluatingthePotentialRadiologicalConsequencesofaSteamLineBreakAccidentforBoilingWaterReactors"(Ref.8)RegulatoryGuide1.25,"AssumptionsUsedforEvaluatingthePotentialRadiologicalConsequencesofaFuelHandlingAccidentintheFuelHandlingandStorageFacilityforBoilingandPressurized WaterReactors"(Ref.9)RegulatoryGuide1.77,"AssumptionsUsedforEvaluatingaControlRodEjectionAccidentforPressurizedWaterReactors"(Ref.10)TheguidanceinRegulatoryGuide1.89,"EnvironmentalQualificationofCertainElectricEquipmentImportanttoSafetyforNuclearPowerPlant."(Ref.11),regardingtheradiologicalsource termusedinthedeterminationofintegrateddosesforenvironmentalqualificationpurposesis supersededbythecorrespondingguidanceinthisregulatoryguideforthosefacilitiesthatare proposingto,orhavealready,implementedanAST.AllotherguidanceinRegulatoryGuide1.89 remainseffective.Thisguideprimarilyaddressesdesignbasisaccidents,suchasthoseaddressedinChapter15oftypicalfinalsafetyanalysisreports(FSARs).Thisguidedoesnotaddressallareasofpotentially significantrisk.Althoughthisguideaddressesfuelhandlingaccidents,othereventsthatcouldoccur duringshutdownoperationsarenotcurrentlyaddressed.TheNRCstaffhasseveralongoing
| | In October 2009, the NRC issued for public comment DG-1199 as a proposed Rev. 1 of RG 1.183. |
| 1.183-4initiativesinvolvingrisksofshutdownoperations,extendedburnupfuels,andrisk-informingcurrentregulations.TheinformationinthisguidemayberevisedinthefutureasNRCstaffevaluationsare completedandregulatorydecisionsontheseissuesaremade.C.REGULATORYPOSITION | |
|
| |
|
| ===1. IMPLEMENTATIONOFAST===
| | * |
| 1.1GenericConsiderationsAsusedinthisguide,anASTisanaccidentsourcetermthatisdifferentfromtheaccidentsourcetermusedintheoriginaldesignandlicensingofthefacilityandthathasbeenapprovedforuse under10CFR50.67.ThisguideidentifiesanASTthatisacceptabletotheNRCstaffandidentifies significantcharacteristicsofotherASTsthatmaybefoundacceptable.WhiletheNRCstaff recognizesseveralpotentialusesofanAST,itisnotpossibletoforeseeallpossibleuse
| | Staff received 150 public comments |
| | * |
| | The reasons for revision of RG 1.183 in DG-1199 were: |
| | - Providing additional guidance for modeling BWR MSIV leakage, |
| | - Expand applicability of Non-LOCA release fractions to support modern fuel utilization, |
| | - Extending the applicability of the proposed RG for use in satisfying the radiological dose analysis requirements contained in 10 CFR Part 52 for advanced LWR design and siting, |
| | - Providing additional meteorological assumption guidance. |
|
| |
|
| ====s. TheNRC====
| | DG-1199 |
| staffwillallowlicenseestopursuetechnicallyjustifiableusesoftheASTsinthemostflexible mannercompatiblewithmaintainingaclear,logical,andconsistentdesignbasis.TheNRCstaffwill approvetheselicenseamendmentrequestsifthefacility,asmodified,willcontinuetoprovide sufficientsafetymarginswithadequatedefenseindepthtoaddressunanticipatedeventsandto compensateforuncertaintiesinaccidentprogressionandanalysisassumptionsandparameterinputs.1.1.1SafetyMarginsTheproposedusesofanASTandtheassociatedproposedfacilitymodificationsandchangestoproceduresshouldbeevaluatedtodeterminewhethertheproposedchangesareconsistentwiththe principlethatsufficientsafetymarginsaremaintained,includingamargintoaccountforanalysis uncertainties.Thesafetymarginsareproductsofspecificvaluesandlimitscontainedinthetechnical specifications(whichcannotbechangedwithoutNRCapproval)andothervalues,suchasassumed accidentortransientinitialconditionsorassumedsafetysystemresponsetimes.Changes,orthenet effectsofmultiplechanges,thatresultinareductioninsafetymarginsmayrequirepriorNRC
| |
| approval.OncetheinitialASTimplementationhasbeenapprovedbythestaffandhasbecomepart ofthefacilitydesignbasis,thelicenseemayuse10CFR50.59anditssupportingguidancein assessingsafetymarginsrelatedtosubsequentfacilitymodificationsandchangestoprocedures.1.1.2DefenseinDepthTheproposedusesofanASTandtheassociatedproposedfacilitymodificationsandchangestoproceduresshouldbeevaluatedtodeterminewhethertheproposedchangesareconsistentwiththe principlethatadequatedefenseindepthismaintainedtocompensateforuncertaintiesinaccident progressionandanalysisdata.Consistencywiththedefense-in-depthphilosophyismaintainedif systemredundancy,independence,anddiversityarepreservedcommensuratewiththeexpected frequency,consequencesofchallengestothesystem,anduncertainties.Inallcases,compliancewith theGeneralDesignCriteriainAppendixAto10CFRPart50isessential.Modificationsproposed forthefacilitygenerallyshouldnotcreateaneedforcompensatoryprogrammaticactivities,suchas relianceonmanualoperatoractions.Proposedmodificationsthatseektodowngradeorremoverequiredengineeredsafeguardsequipmentshouldbeevaluatedtobesurethatthemodificationdoesnotinvalidateassumptionsmade infacilityPRAsanddoesnotadverselyimpactthefacility'ssevereaccidentmanagementprogram.
| |
|
| |
|
| 4ThisplanningbasisisalsoaddressedinNUREG-0654,"CriteriaforPreparationandEvaluationofRadiologicalEmergencyResponsePlansandPreparednessinSupportofNuclearPowerPlants"(Ref.13).
| | 9 Modern Fuel Utilization |
| 1.183-51.1.3IntegrityofFacilityDesignBasisThedesignbasisaccidentsourcetermisafundamentalassumptionuponwhichasignificantportionofthefacilitydesignisbased.Additionally,manyaspectsoffacilityoperationderivefrom thedesignanalysesthatincorporatedtheearlieraccidentsourceterm.Althoughacompletere- assessmentofallfacilityradiologicalanalyseswouldbedesirable,theNRCstaffdeterminedthat recalculationofalldesignanalyseswouldgenerallynotbenecessary.RegulatoryPosition1.3ofthis guideprovidesguidanceonwhichanalysesneedupdatingaspartoftheASTimplementation submittalandwhichmayneedupdatinginthefutureasadditionalmodificationsareperformed.Thisapproachwouldcreatetwotiersofanalyses,thosebasedontheprevioussourcetermandthosebasedonanAST.Theradiologicalacceptancecriteriawouldalsobedifferentwithsome analysesbasedonwholebodyandthyroidcriteriaandsomebasedonTEDEcriteria.Full implementationoftheASTrevisestheplantlicensingbasistospecifytheASTinplaceofthe previousaccidentsourcetermandestablishestheTEDEdoseasthenewacceptancecriteria.
| | * Since DG-1199 was issued for public comment, NRC issued several license amendments to support modern fuel utilization. |
|
| |
|
| SelectiveimplementationoftheASTalsorevisestheplantlicensingbasisandmayestablishthe TEDEdoseasthenewacceptancecriteria.Selectiveimplementationdiffersfromfull implementationonlyinthescopeofthechange.Ineithercase,thefacilitydesignbasesshouldclearly indicatethatthesourcetermassumptionsandradiologicalcriteriaintheseaffectedanalyseshave beensupersededandthatfuturerevisionsoftheseanalyses,ifany,willusetheupdatedapproved assumptionsandcriteria.Radiologicalanalysesgenerallyshouldbebasedonassumptionsandinputsthatareconsistentwithcorrespondingdatausedinotherdesignbasissafetyanalyses,radiologicalandnonradiological, unlessthesedatawouldresultinnonconservativeresultsorotherwiseconflictwiththeguidancein thisguide.1.1.4EmergencyPreparednessApplicationsRequirementsforemergencypreparednessatnuclearpowerplantsaresetforthin10CFR50.47,"EmergencyPlans."AdditionalrequirementsaresetforthinAppendixE,"Emergency PlanningandPreparednessforProductionandUtilizationFacilities,"to10CFRPart50.The planningbasisformanyoftheserequirementswaspublishedinNUREG-0396,"PlanningBasisfor theDevelopmentofStateandLocalGovernmentRadiologicalEmergencyResponsePlansinSupport ofLightWaterNuclearPowerPlants"
| | - Oconee Units 1, 2, and 3 (2019) |
| 4(Ref.12).ThisjointeffortbytheEnvironmentalProtectionAgency(EPA)andtheNRCconsideredtheprincipalcharacteristics(suchasnuclidesreleasedand distances)likelytobeinvolvedforaspectrumofdesignbasisandsevere(coremelt)accidents.No singleaccidentscenarioisthebasisoftherequiredpreparedness.Theobjectiveoftheplanningisto providepublicprotectionthatwouldencompassawidespectrumofpossibleeventswithasufficient basisforextensionofresponseeffortsforunanticipatedevents.Theserequirementswereissuedafter alongperiodofinvolvementbynumerousstakeholders,includingtheFederalEmergency ManagementAgency,otherFederalagencies,localandStategovernments(andinsomecases,foreign governments),privatecitizens,utilities,andindustrygroups.AlthoughtheASTprovidedinthisguidewasbasedonalimitedspectrumofsevereaccidents,theparticularcharacteristicshavebeentailoredspecificallyforDBAanalysisus
| | - Shearon Harris (2018) |
| | - H.B. Robinson (2017) |
| | - Catawba Units 1 and 2, McGuire Units 1 and 2, Oconee Units 1, 2, and 3 (2016) |
| | - Diablo Canyon Units 1 and 2 (2015) |
| | * Reinforced need for expanded Non-LOCA release fractions |
|
| |
|
| ====e. TheASTisnot ====
| | 10 |
| 1.183-6representativeofthewidespectrumofpossibleeventsthatmakeuptheplanningbasisofemergencypreparedness.Therefore,theASTisinsufficientbyitselfasabasisforrequestingrelieffromtheemergencypreparednessrequirementsof10CFR50.47andAppendixEto10CFRPart50.Thisguidancedoesnot,however,precludetheappropriateuseoftheinsightsoftheASTinestablishingemergencyresponseproceduressuchasthoseassociatedwithemergencydose projections,protectivemeasures,andsevereaccidentmanagementguides.1.2ScopeofImplementationTheASTdescribedinthisguideischaracterizedbyradionuclidecompositionandmagnitude,chemicalandphysicalformoftheradionuclides,andthetimingofthereleaseoftheseradionuclides. | | 2019 License Amendment Requests |
| | * |
| | In 2019, NRC received several AST LARs requesting increased MSIV leakage |
| | * |
| | As a result, work on DG-1199 was postponed to allow NRC staff to incorporate lessons learned, from evaluation of the LARs, into the revised RG 1.183: |
| | - James A. FitzPatrick Amendment No. 338 for AST, July 21, 2020 |
| | (ML20140A070) |
| | - Quad Cities Nuclear Power Station, Units 1 & 2 - Amendment Nos. 281 and 277 to increase allowable MSIV leakage, June 26, 2020 |
| | (ML20150A328) |
| | - Nine Mile Point Nuclear Station, Unit 2 - Amendment No. 182 to change allowable MSIV leak rates, October 20, 2020 (ML20241A190) |
| | - Dresden Nuclear Power Station, Units 2 & 3 - Amendments Nos. 272 and 265 to increase allowable MSIV leakage, October 23, 2020 |
| | (ML20265A240) |
|
| |
|
| Theaccidentsourcetermisafundamentalassumptionuponwhichalargeportionofthefacility designisbased.Additionally,manyaspectsoffacilityoperationderivefromthedesignanalysesthat incorporatedtheearlieraccidentsourceterm.AcompleteimplementationofanASTwouldupgrade allexistingradiologicalanalysesandwouldconsidertheimpactofallfivecharacteristicsoftheAST
| | 11 Regulatory Guide Update Process |
| asdefinedin10CFR50.2.However,theNRCstaffhasdeterminedthattherecouldbe implementationsforwhichthislevelofre-analysismaynotbenecessary.Twocategoriesare defined:Fullandselectiveimplementations.1.2.1FullImplementationFullimplementationisamodificationofthefacilitydesignbasisthataddressesallcharacteristicsoftheAST,thatis,compositionandmagnitudeoftheradioactivematerial,its chemicalandphysicalform,andthetimingofitsrelease.Fullimplementationrevisestheplant licensingbasistospecifytheASTinplaceofthepreviousaccidentsourcetermandestablishesthe TEDEdoseasthenewacceptancecriteria.Thisappliesnotonlytotheanalysesperformedinthe application(whichmayonlyincludeasubsetoftheplantanalyses),butalsotoallfuturedesignbasis analyses.Ataminimumforfullimplementations,theDBALOCAmustbere-analyzedusingthe guidanceinAppendixAofthisguide.AdditionalguidanceonanalysisisprovidedinRegulatory Position1.3ofthisguide.SincetheASTandTEDEcriteriawouldbecomepartofthefacilitydesign basis,newapplicationsoftheASTwouldnotrequirepriorNRCapprovalunlessstipulatedby10
| |
| CFR50.59,"Changes,Tests,andExperiments,"orunlessthenewapplicationinvolvedachangetoa technicalspecification.However,achangefromanapprovedASTtoadifferentASTthatisnot approvedforuseatthatfacilitywouldrequirealicenseamendmentunder10CFR50.67.1.2.2SelectiveImplementationSelectiveimplementationisamodificationofthefacilitydesignbasisthat(1)isbasedononeormoreofthecharacteristicsoftheASTor(2)entailsre-evaluationofalimitedsubsetofthedesign basisradiologicalanalyses.TheNRCstaffwillallowlicenseesflexibilityintechnicallyjustified selectiveimplementationsprovidedaclear,logical,andconsistentdesignbasisismaintained.An exampleofanapplicationofselectiveimplementationwouldbeoneinwhichalicenseedesirestouse thereleasetiminginsightsoftheASTtoincreasetherequiredclosuretimeforacontainmentisolation valvebyasmallamount.Anotherexamplewouldbearequesttoremovethecharcoalfiltermedia fromthespentfuelbuildingventilationexhaust.Forthelatter,thelicenseemayonlyneedtore- analyzeDBAsthatcreditedtheiodineremovalbythecharcoalmedia.Additionalanalysisguidance isprovidedinRegulatoryPosition1.3ofthisguide.NRCapprovalfortheAST(andtheTEDEdose criterion)willbelimitedtotheparticularselectiveimplementationproposedbythelicensee.The
| |
| 5Doseguidelinesof10CFR100.11aresupersededby10CFR50.67forlicenseesthathaveimplementedanAST.
| |
|
| |
|
| 1.183-7licenseewouldbeabletomakesubsequentmodificationstothefacilityandchangestoproceduresbasedontheselectedASTcharacteristicsincorporatedintothedesignbasisundertheprovisionsof
| | 12 Regulatory Guide Update Process |
| 10CFR50.59.However,useofothercharacteristicsofanASToruseofTEDEcriteriathatarenot partoftheapproveddesignbasis,andchangestopreviouslyapprovedASTcharacteristics,would requirepriorstaffapprovalunder10CFR50.67.Asanexample,alicenseewithanimplementation involvingonlytiming,suchasrelaxedclosuretimeonisolationvalves,couldnotuse10CFR50.59 asamechanismtoimplementamodificationinvolvingareanalysisoftheDBALOCA.However, thislicenseecouldextenduseofthetimingcharacteristictoadjusttheclosuretimeonisolation valvesnotincludedintheoriginalapproval.1.3ScopeofRequiredAnalyses1.3.1DesignBasisRadiologicalAnalysesThereareseveralregulatoryrequirementsforwhichcomplianceisdemonstrated,inpart,bytheevaluationoftheradiologicalconsequencesofdesignbasisaccidents.Theserequirements include,butarenotlimitedto,thefollowing.EnvironmentalQualificationofEquipment(10CFR50.49)ControlRoomHabitability(GDC-19ofAppendixAto10CFRPart50)EmergencyResponseFacilityHabitability(ParagraphIV.E.8ofAppendixEto10CFRPart50)AlternativeSourceTerm(10CFR50.67)EnvironmentalReports(10CFRPart51)FacilitySiting(10CFR100.11)
| | * Identify which RGs need to be revised based on: |
| 5Theremaybeadditionalapplicationsoftheaccidentsourcetermidentifiedinthetechnicalspecificationbasesandinvariouslicenseecommitments.Theseinclude,butarenotlimitedto,the followingfromReference2,NUREG-0737.Post-AccidentAccessShielding(NUREG-0737,II.B.2)Post-AccidentSamplingCapability(NUREG-0737,II.B.3)AccidentMonitoringInstrumentation(NUREG-0737,II.F.1)LeakageControl(NUREG-0737,III.D.1.1)EmergencyResponseFacilities(NUREG-0737,III.A.1.2)ControlRoomHabitability(NUREG-0737,III.D.3.4)1.3.2Re-AnalysisGuidanceAnyimplementationofanAST,fullorselective,andanyassociatedfacilitymodificationshouldbesupportedbyevaluationsofallsignificantradiologicalandnonradiologicalimpactsof theproposedactions.Thisevaluationshouldconsidertheimpactoftheproposedchangesonthe facility'scompliancewiththeregulationsandcommitmentslistedaboveaswellasanyother facility-specificrequirements.Theseimpactsmaybedueto(1)theassociatedfacility modificationsor(2)thedifferencesintheASTcharacteristics.Thescopeandextentofthere-
| | - Rulemakings |
| 6Forexample,aproposedmodificationtochangethetimingofacontainmentisolationvalvefrom2.5secondsto5.0secondsmightbeacceptablewithoutanydosecalculations.However,aproposedmodificationthatwoulddelaycontainmentsprayactuationcouldinvolverecalculationofDBALOCAdoses,re-assessmentofthecontainmentpressureandtemperaturetransient, recalculationofsumppH,re-assessmentoftheemergencydieselgeneratorloadingsequence,integrateddosestoequipmentin thecontainment,andmore.
| | - Lessons learned |
| | - Stakeholder feedback |
| | - Periodic reviews |
| | * Develop draft RG through internal collaboration |
| | * Draft RG available for public comment (4th Quarter CY 2021) |
| | * Internal staff comment resolution |
| | * Finalize RG package for OGC and ACRS review |
| | * Issue final RG (2nd Quarter CY 2022) |
|
| |
|
| 1.183-8evaluationwillnecessarilybeafunctionofthespecificproposedfacilitymodification | | 13 RG 1.183 Guidance Updates Under Consideration |
| 6 andwhetherafullorselectiveimplementationisbeingpursued.TheNRCstaffdoesnotexpecta completerecalculationofallfacilityradiologicalanalyses,butdoesexpectlicenseestoevaluateall impactsoftheproposedchangesandtoupdatetheaffectedanalysesandthedesignbases appropriately.Ananalysisisconsideredtobeaffectediftheproposedmodificationchangesone ormoreassumptionsorinputsusedinthatanalysissuchthattheresults,ortheconclusionsdrawn onthoseresults,arenolongervalid.Genericanalyses,suchasthoseperformedbyownergroups orvendortopicalreports,maybeusedprovidedthelicenseejustifiestheapplicabilityofthe genericconclusionstothespecificfacilityandimplementation.Sensitivityanalyses,discussed below,mayalsobeanoption.Ifaffecteddesignbasisanalysesaretobere-calculated,allaffected assumptionsandinputsshouldbeupdatedandallselectedcharacteristicsoftheASTandthe TEDEcriteriashouldbeaddressed.Thelicenseamendmentrequestshoulddescribethelicensee's re-analysiseffortandprovidestatementsregardingtheacceptabilityoftheproposed implementation,includingmodifications,againsteachoftheapplicableanalysisrequirementsand commitmentsidentifiedinRegulatoryPosition1.3.1ofthisguide.TheNRCstaffhasperformedanevaluationoftheimpactoftheASTonthreerepresentativeoperatingreactors(Ref.14).Thisevaluationdeterminedthatradiologicalanalysis resultsbasedontheTID-14844sourcetermassumptions(Ref.1)andthewholebodyandthyroid methodologygenerallyboundtheresultsfromanalysesbasedontheASTandTEDEmethodology.
| |
|
| |
|
| Licenseesmayusetheapplicableconclusionsofthisevaluationinaddressingtheimpactofthe ASTondesignbasisradiologicalanalyses.However,thisdoesnotexemptthelicenseefrom evaluatingtheremainingradiologicalandnonradiologicalimpactsoftheASTimplementationand theimpactsoftheassociatedplantmodifications.Forexample,aselectiveimplementationbased onthetiminginsightsoftheASTmaychangetherequiredisolationtimeforthecontainment purgedampersfrom2.5secondsto5.0seconds.Thisapplicationmightbeacceptablewithout dosecalculations.However,evaluationsmayneedtobeperformedregardingtheabilityofthe dampertocloseagainstincreasedcontainmentpressureortheabilityofductworkdownstreamof thedamperstowithstandincreasedstresses.Forfullimplementation,acompleteDBALOCAanalysisasdescribedinAppendixAofthisguideshouldbeperformed,asaminimum.Otherdesignbasisanalysesareupdatedin accordancewiththeguidanceinthissection.AselectiveimplementationofanASTandanyassociatedfacilitymodificationbasedontheASTshouldevaluatealltheradiologicalandnonradiologicalimpactsoftheproposedactions astheyapplytotheparticularimplementation.Designbasisanalysesareupdatedinaccordance withtheguidanceinthissection.ThereisnominimumrequirementthataDBALOCAanalysisbe performed.Theanalysesperformedneedtoaddressallimpactsoftheproposedmodification,the selectedcharacteristicsoftheAST,andifdosecalculationsareperformed,theTEDEcriteria.For selectiveimplementationsbasedonthetimingcharacteristicoftheAST,e.g.,changeintheclosure timingofacontainmentisolationvalve,re-analysisofradiologicalcalculationsmaynotbe
| | 14 Expected General Updates |
| 7Inperformingscreeningsandevaluationspursuantto10CFR50.59,itmaybenecessarytocomparedoseresultsexpressedintermsofwholebodyandthyroidwithnewresultsexpressedintermsofTEDE.Inthesecases,thepreviousthyroiddoseshould bemultipliedby0.03andtheproductaddedtothewholebodydose.TheresultisthencomparedtotheTEDEresultinthe screeningsandevaluations.Thischangeindosemethodologyisnotconsideredachangeinthemethodofevaluationifthe licenseewaspreviouslyauthorizedtouseanASTandtheTEDEcriteriaunder10CFR50.67.
| | * |
| | The intent of the NRC staff is for RG 1.183 Rev. 0 and Rev. 1 to co- exist |
| | * |
| | With the exception of items discussed later, NRC will consider changes proposed in DG-1199 as modified by public comments. |
|
| |
|
| 1.183-9necessaryifthemodifiedelapsedtimeremainsafraction(e.g.,25%)ofthetimebetweenaccidentinitiationandtheonsetofthegapreleasephase.Longertimedelaysmaybeconsideredonan individualbasis.Forlongertimedelays,evaluationoftheradiologicalconsequencesandother impactsofthedelay,suchasblockagebydebrisinsumpwater,maybenecessary.Ifaffected designbasisanalysesaretobere-calculated,allaffectedassumptionsandinputsshouldbeupdated andallselectedcharacteristicsoftheASTandtheTEDEcriteriashouldbeaddressed.1.3.3UseofSensitivityorScopingAnalysesItmaybepossibletodemonstratebysensitivityorscopingevaluationsthatexistinganalyseshavesufficientmarginandneednotberecalculated.Asusedinthisguide,asensitivity analysisisanevaluationthatconsidershowtheoverallresultsvaryasaninputparameter(inthiscase,ASTcharacteristics)isvaried.Ascopinganalysisisabriefevaluationthatusesconservative,simplemethodstoshowthattheresultsoftheanalysisboundthoseobtainablefrom amorecompletetreatment.Sensitivityanalysesareparticularlyapplicabletosuitesofcalculations thataddressdiversecomponentsorplantareasbutareotherwiselargelybasedongeneric assumptionsandinputs.Suchcasesmightincludepostaccidentvitalareaaccessdosecalculations, shieldingcalculations,andequipmentenvironmentalqualification(integrateddose).Itmaybe possibletoidentifyaboundingcase,re-analyzethatcase,andusetheresultstodrawconclusions regardingtheremainderoftheanalyses.Itmayalsobepossibletoshowthatforsomeanalysesthe wholebodyandthyroiddosesdeterminedwiththeprevioussourcetermwouldboundtheTEDE
| | - Incorporate updates, new or withdrawn regulatory guidance (i.e., RG 1.194 (meteorology)). |
| obtainedusingtheAST.Wherepresent,arbitrary"designermargins"maybeadequatetobound anyimpactoftheASTandTEDEcriteria.Ifsensitivityorscopinganalysesareused,thelicense amendmentrequestshouldincludeadiscussionoftheanalysesperformedandtheconclusions drawn.Scopingorsensitivityanalysesshouldnotconstituteasignificantpartoftheevaluations forthedesignbasisexclusionareaboundary(EAB),lowpopulationzone(LPZ),orcontrolroom
| | - Guidance for modern fuel utilization (non-LOCA gap fractions). |
| | - Changes due to Regulatory Information Summaries (i.e., 06-04, |
| | 01-19). |
| | - Lessons learned from license reviews (i.e., clarify DFs and containment isolation as used in the FHA). |
| | - Clarify TEDE calculation terminology (i.e., EDEX vs. EDE). |
| | - Remove environmental qualification guidance from RG and refer to RG 1.89. |
|
| |
|
| dose.1.3.4UpdatingAnalysesFollowingImplementationFullimplementationoftheASTreplacesthepreviousaccidentsourcetermwiththeapprovedASTandtheTEDEcriteriaforalldesignbasisradiologicalanalyses.The implementationmayhavebeensupportedinpartbysensitivityorscopinganalysesthatconcluded manyofthedesignbasisradiologicalanalyseswouldremainboundingfortheASTandtheTEDE
| | 15 ATF, High-Burnup, Extended Enrichment |
| criteriaandwouldnotrequireupdating.Aftertheimplementationiscomplete,theremaybea subsequentneed(e.g.,aplannedfacilitymodification)torevisetheseanalysesortoperformnew analyses.Fortheserecalculations,theNRCstaffexpectsthatallcharacteristicsoftheASTandthe TEDEcriteriaincorporatedintothedesignbasiswillbeaddressedinallaffectedanalysesonan individualas-neededbasis.Re-evaluationusingthepreviouslyapprovedsourcetermmaynotbe appropriate.SincetheASTandtheTEDEcriteriaarepartoftheapproveddesignbasisforthe facility,useoftheASTandTEDEcriteriainnewapplicationsatthefacilitydonotconstitutea changeinanalysismethodologythatwouldrequireNRCapproval.
| | * |
| | Applicability of Rev.1 expanded to encompass fuel burnup extension to 68 GWd/MTU (rod average) and 235U enrichments up to 8.0wt%. |
| | * |
| | Applicability of Rev.1 to near-term ATF design concepts being considered. |
|
| |
|
| 7
| | - Non-LOCA release fractions sensitive to fuel design |
| 1.183-10Thisguidanceisalsoapplicabletoselectiveimplementationstotheextentthattheaffectedanalysesarewithinthescopeoftheapprovedimplementationasdescribedinthefacilitydesign basis.Inthesecases,thecharacteristicsoftheASTandTEDEcriteriaidentifiedinthefacility designbasisneedtobeconsideredinupdatingtheanalyses.Useofothercharacteristicsofthe ASTorTEDEcriteriathatarenotpartoftheapproveddesignbasis,andchangestopreviously approvedASTcharacteristics,requirespriorNRCstaffapprovalunder10CFR50.67.1.3.5EquipmentEnvironmentalQualificationCurrentenvironmentalqualification(EQ)analysesmaybeimpactedbyaproposedplantmodificationassociatedwiththeASTimplementation.TheEQanalysesthathaveassumptionsor inputsaffectedbytheplantmodificationshouldbeupdatedtoaddresstheseimpact | | * |
| | Utilize accident source terms from Sandia National Laboratories report SAND2011-0128, Accident Source Terms for Light Water Nuclear Power Plants Using High-Burnup of MOX Fuel, and non-loss-of-coolant accident (non-LOCA) source terms based on FAST calculations (similar to those calculated in the proposed update to RG 1.183, Draft Guide 1199). |
| | NRC Memorandum, Applicability of Source Term for Accident Tolerant Fuel, High Burn Up and Extended Enrichment, dated May 13, 2020, ADAMS Accession Number ML20126G376 |
|
| |
|
| ====s. TheNRC====
| | 16 Draft Guide DG-1199 Non-LOCA Release Fractions DG-1199 (2011) included the following components: |
| staffisassessingtheeffectofincreasedcesiumreleasesonEQdosestodeterminewhether licenseeactioniswarranted.Untilsuchtimeasthisgenericissueisresolved,licenseesmayuse eithertheASTortheTID14844assumptionsforperformingtherequiredEQanalyses.However, noplantmodificationsarerequiredtoaddresstheimpactofthedifferenceinsourceterm characteristics(i.e.,ASTvsTID14844)onEQdosespendingtheoutcomeoftheevaluationofthe genericissue.TheEQdoseestimatesshouldbecalculatedusingthedesignbasissurvivability
| | 1. |
|
| |
|
| period.1.4RiskImplicationsTheuseofanASTchangesonlytheregulatoryassumptionsregardingtheanalyticaltreatmentofthedesignbasisaccidents.TheASThasnodirecteffectontheprobabilityofthe accident.UseofanASTalonecannotincreasethecoredamagefrequency(CDF)orthelargeearly releasefrequency(LERF).However,facilitymodificationsmadepossiblebytheASTcouldhave animpactonrisk.IftheproposedimplementationoftheASTinvolveschangestothefacility designthatwouldinvalidateassumptionsmadeinthefacility'sPRA,theimpactontheexisting PRAsshouldbeevaluated.Considerationshouldbegiventotheriskimpactofproposedimplementationsthatseektoremoveordowngradetheperformanceofpreviouslyrequiredengineeredsafeguardsequipmenton thebasisofthereducedpostulateddoses.TheNRCstaffmayrequestriskinformationifthereisa reasontoquestionadequateprotectionofpublichealthandsafety.ThelicenseemayelecttouseriskinsightsinsupportofproposedchangestothedesignbasisthatarenotaddressedincurrentlyapprovedNRCstaffpositions.Forguidance,referto RegulatoryGuide1.174,"AnApproachforUsingProbabilisticRiskAssessmentinRisk-Informed DecisionsonPlant-SpecificChangestotheLicensingBasis"(Ref.15).1.5SubmittalRequirementsAccordingto10CFR50.90,anapplicationforanamendmentmustfullydescribethechangesdesiredandshouldfollow,asfarasapplicable,theformprescribedfororiginal applications.RegulatoryGuide1.70,"StandardFormatandContentofSafetyAnalysisReports forNuclearPowerPlants(LWREdition)"(Ref16),providesadditionalguidanc
| | Revised Table 3 Non-LOCA release fractions based on expanded power profile |
| | 2. |
|
| |
|
| ====e. TheNRC====
| | New Table 4 RIA transient fission gas release fractions |
| staff'sfindingthattheamendmentmaybeapprovedmustbebasedonthelicensee'sanalyses,
| | 3. |
| 1.183-11sinceitistheseanalysesthatwillbecomepartofthedesignbasisofthefacility.Theamendmentrequestshoulddescribethelicensee'sanalysesoftheradiologicalandnonradiologicalimpactsof theproposedmodificationinsufficientdetailtosupportreviewbytheNRCstaff.Thestaff recommendsthatlicenseessubmitaffectedFSARpagesannotatedwithchangesthatreflectthe revisedanalysesorsubmittheactualcalculationdocumentation.IfthelicenseehasusedacurrentapprovedversionofanNRC-sponsoredcomputercode,theNRCstaffreviewcanbemademoreefficientifthelicenseeidentifiesthecodeusedand submitstheinputsthatthelicenseeusedinthecalculationsmadewiththatcode.Inmanycases, thiswillreducetheneedforNRCstaffconfirmatoryanalyses.Thisrecommendationdoesnot constitutearequirementthatthelicenseeuseNRC-sponsoredcomputercodes.1.6FSARRequirementsRequirementsforupdatingthefacility'sfinalsafetyanalysisreport(FSAR)arein10CFR50.71,"MaintenanceofRecords,MakingofReports."Theregulationsin10CFR50.71(e)require thattheFSARbeupdatedtoincludeallchangesmadeinthefacilityorproceduresdescribedinthe FSARandallsafetyevaluationsperformedbythelicenseeinsupportofrequestsforlicense amendmentsorinsupportofconclusionsthatchangesdidnotinvolveunreviewedsafety questions.Theanalysesrequiredby10CFR50.67aresubjecttothisrequirement.Theaffected radiologicalanalysisdescriptionsintheFSARshouldbeupdatedtoreflectthereplacementofthe designbasissourcetermbytheAST.Theanalysisdescriptionsshouldcontainsufficientdetailto identifythemethodologiesused,significantassumptionsandinputs,andnumericresults.
| |
|
| |
|
| RegulatoryGuide1.70(Ref.16)providesadditionalguidance.Thedescriptionsofsuperseded analysesshouldberemovedfromtheFSARintheinterestofmaintainingacleardesignbasis.2.ATTRIBUTESOFANACCEPTABLEASTAnacceptableASTisnotsetforthin10CFR50.67.RegulatoryPosition3ofthisguideidentifiesanASTthatisacceptabletotheNRCstaffforuseatoperatingpowerreactors.A
| | New analytical procedure for revising release fractions |
| substantialeffortwasexpendedbytheNRC,itscontractors,variousnationallaboratories,peer reviewers,andothersinperformingsevereaccidentresearchandindevelopingthesourceterms providedinNUREG-1465(Ref.5).However,futureresearchmayidentifyopportunitiesfor changesinthesesourceterms.TheNRCstaffwillconsiderapplicationsforanASTdifferentfrom thatidentifiedinthisguide.However,theNRCstaffdoesnotexpecttoapproveanysourceterm thatisnotofthesamelevelofqualityasthesourcetermsinNUREG-1465.Tobeconsidered acceptable,anASTmusthavethefollowingattributes:
| |
| 2.1TheASTmustbebasedonmajoraccidents,hypothesizedforthepurposesofdesignanalysesorconsiderationofpossibleaccidentalevents,thatcouldresultinhazardsnot exceededbythosefromotheraccidentsconsideredcredible.TheASTmustaddressevents thatinvolveasubstantialmeltdownofthecorewiththesubsequentreleaseofappreciable quantitiesoffissionproducts.
| |
|
| |
|
| 8TheuncertaintyfactorusedindeterminingthecoreinventoryshouldbethatvalueprovidedinAppendixKto10CFRPart50,typically1.02.
| | 17 Planned Updates for Non-LOCA Release Fractions |
| | 1. Maintain Table 3 release fractions up to 62 GWd/MTU rod average burnup |
| | 2. New table for release fractions with expanded applicability up to 68 GWd/MTU rod average burnup |
| | 3. Update Table 4 RIA transient fission gas release to include burnup-dependent correlations |
| | 4. Update example calculation based on FAST |
|
| |
|
| 9Notethatforsomeradionuclides,suchasCs-137,equilibriumwillnotbereachedpriortofueloffload.Thus,themaximuminventoryattheendoflifeshouldbeused.
| | 18 DG-1327 CRE/CRD Public Comments (2019) |
| | * |
| | Many of the planned changes to RG 1.183 were included in draft regulatory guide DG-1327 |
| | - Revised Table 3 Non-LOCA gap fractions using new version of FAST fuel rod thermal-mechanical code |
| | - Revised Table 4 RIA transient fission gas release with BU-dependent correlations |
| | - Acceptable analytical procedure for revising Non- LOCA gap releases |
| | * |
| | Public comments received on these topics will be reflected in RG 1.183 |
|
| |
|
| 1.183-12 2.2TheASTmustbeexpressedintermsoftimesandratesofappearanceofradioactivefissionproductsreleasedintocontainment,thetypesandquantitiesoftheradioactivespecies released,andthechemicalformsofiodinereleased. | | 19 FAST Calculations (1) |
| | * |
| | Extended rod average power profiles out to 68 GWd/MTU |
| | * |
| | Preliminary calculations show no increase in release fractions |
| | * |
| | Axial Power Distribution: |
| | - Sweeping (3 cycles) AXPDs with the following peak Fz peaking factors |
| | * PWR Peak Fz = 1.144 |
| | * BWR Peak Fz = 1.228 |
| | * |
| | Is this sufficient to support future reloads? |
|
| |
|
| 2.3TheASTmustnotbebaseduponasingleaccidentscenariobutinsteadmustrepresentaspectrumofcrediblesevereaccidentevents.Riskinsightsmaybeused,nottoselecta singlerisk-significantaccident,butrathertoestablishtherangeofeventstobeconsidered. | | 20 |
| | FAST Calculations (2) |
| | * Generic fuel rod parameters for bounding PWR and BWR designs |
| | * Should there be separate PWR and BWR |
| | tables? |
| | * How to address BWR |
| | part-length fuel rods? |
|
| |
|
| Relevantinsightsfromapplicablesevereaccidentresearchonthephenomenologyof fissionproductreleaseandtransportbehaviormaybeconsidered.
| | 21 Revised Fuel Handling Accident |
| | * |
| | Revisited the original studies forming the technical basis for the FHA and incorporate updated information. |
|
| |
|
| 2.4TheASTmusthaveadefensibletechnicalbasissupportedbysufficientexperimentalandempiricaldata,beverifiedandvalidated,andbedocumentedinascrutableformthat facilitatespublicreviewanddiscourse.
| | * |
| | Model improvements established from the current understanding of reactor fuel pin physics and iodine chemistry under the environmental conditions in which fuel handling operations are taking place. |
|
| |
|
| 2.5TheASTmustbepeer-reviewedbyappropriatelyqualifiedsubjectmatterexperts.Thepeer-reviewcommentsandtheirresolutionshouldbepartofthedocumentationsupporting theAST.3.ACCIDENTSOURCETERMThissectionprovidesanASTthatisacceptabletotheNRCstaff.ThedatainRegulatoryPositions3.2through3.5arefundamentaltothedefinitionofanAST.Onceapproved,theAST
| | * |
| assumptionsorparametersspecifiedinthesepositionsbecomepartofthefacility'sdesignbasis.
| | Concluded that considerable margin exists regarding the scrubbing effects of iodine in the spent fuel or reactor pool and that the current staff DBA FHA fission product transport model can be refined while still maintaining conservatism. |
|
| |
|
| DeviationsfromthisguidancemustbeevaluatedagainstRegulatoryPosition
| | * |
| | Reference: Memo from RES to NRR, Closeout to Research Assistance Request for Independent Review of Regulatory and Technical Basis for Revising the Design-basis Accident Fuel Handling Accident, November 23, 2019 (ML19270E335) |
|
| |
|
| ===2. AftertheNRC===
| | 22 Additional Method for Aerosol Deposition Models |
| staffhasapprovedanimplementationofanAST,subsequentchangestotheASTwillrequireNRC
| | * |
| staffreviewunder10CFR50.67.3.1FissionProductInventoryTheinventoryoffissionproductsinthereactorcoreandavailableforreleasetothecontainmentshouldbebasedonthemaximumfullpoweroperationofthecorewith,asa minimum,currentlicensedvaluesforfuelenrichment,fuelburnup,andanassumedcorepower equaltothecurrentlicensedratedthermalpowertimestheECCSevaluationuncertainty.
| | Staff is considering an additional method for aerosol deposition models |
| | * |
| | Staff is addressing issues in RIS 2006-04, Experience with Implementation of Alternative Source Terms (considering reconstitution of AEB-98-03 and reviewing the multigroup method). |
| | * |
| | Regulatory position in Rev. 0 continues to be acceptable. As a result, RG |
| | 1.183 Rev. 0 and Rev. 1 will co-exist. |
|
| |
|
| 8 Theperiodofirradiationshouldbeofsufficientdurationtoallowtheactivityofdose-significant radionuclidestoreachequilibriumortoreachmaximumvalues. | | * |
| | Over the last 10 years no applicant or licensee has adopted the methodology from SAND2008-6601, Analysis of Main Steam Isolation Valve Leakage in Design Basis Accident Using MELCOR 1.8.6 and RADTRAD. |
|
| |
|
| 9ThecoreinventoryshouldbedeterminedusinganappropriateisotopegenerationanddepletioncomputercodesuchasORIGEN
| | * |
| 2(Ref.17)orORIGEN-ARP(Ref.18).Coreinventoryfactors(Ci/MWt)providedinTID14844 andusedinsomeanalysiscomputercodeswerederivedforlowburnup,lowenrichmentfueland shouldnotbeusedwithhigherburnupandhigherenrichmentfuels.
| | There have been no communications that applicants or licensees intend to adopt the SAND2008-6601 methodology. |
|
| |
|
| 10ThereleasefractionslistedherehavebeendeterminedtobeacceptableforusewithcurrentlyapprovedLWRfuelwithapeakburnupupto62,000MWD/MTU.Thedatainthissectionmaynotbeapplicabletocorescontainingmixedoxide(MOX)fuel.
| | * |
| | NRC staff plans to consider stakeholder input/feedback to inform the NRCs decision on what methodology to include in RG 1.183 Rev. 1. |
|
| |
|
| 1.183-13FortheDBALOCA,allfuelassembliesinthecoreareassumedtobeaffectedandthecoreaverageinventoryshouldbeused.ForDBAeventsthatdonotinvolvetheentirecore,thefission productinventoryofeachofthedamagedfuelrodsisdeterminedbydividingthetotalcore inventorybythenumberoffuelrodsinthecore.Toaccountfordifferencesinpowerlevelacross thecore,radialpeakingfactorsfromthefacility'scoreoperatinglimitsreport(COLR)ortechnical specificationsshouldbeappliedindeterminingtheinventoryofthedamagedrods.Noadjustmenttothefissionproductinventoryshouldbemadeforeventspostulatedtooccurduringpoweroperationsatlessthanfullratedpowerorthosepostulatedtooccuratthe beginningofcorelife.Foreventspostulatedtooccurwhilethefacilityisshutdown,e.g.,afuel handlingaccident,radioactivedecayfromthetimeofshutdownmaybemodeled.3.2ReleaseFractions | | 23 Lessons Learned from Licensing Reviews |
| 10Thecoreinventoryreleasefractions,byradionuclidegroups,forthegapreleaseandearlyin-vesseldamagephasesforDBALOCAsarelistedinTable1forBWRsandTable2forPWRs.
| | * |
| | Staff are considering whether to clarify: |
| | - the expectations for containment spray in BWR |
| | drywells/containments (i.e., Rev. 0 Appendix A Assumption 3.3) |
| | - the expectations for performing and using sensitivity analysis (i.e., Rev. 0, RPs 1.3.3 and 5.1.3) |
| | - if crediting pathways should be consistent with design requirements for safety (i.e. technical specifications, safety related, Rev. 0, RP 5.1.2) |
| | - RG wording to assume that a LOOP is coincident with a turbine trip (not with initiation of the accident)(i.e., Rev. 0, App. F & G |
| | Assumption 5.4) |
| | - the expectations for BWR MSIV Leakage LOCA analysis assumptions with respect to pipe breaks |
|
| |
|
| ThesefractionsareappliedtotheequilibriumcoreinventorydescribedinRegulatoryPosition3.1.Fornon-LOCAevents,thefractionsofthecoreinventoryassumedtobeinthegapforthevariousradionuclidesaregiveninTable3.ThereleasefractionsfromTable3areusedin conjunctionwiththefissionproductinventorycalculatedwiththemaximumcoreradialpeaking factor.Table1BWRCoreInventoryFractionReleasedIntoContainmentGapEarly ReleaseIn-vesselGroupPhasePhaseTotalNobleGases0.050.951.0Halogens0.050.250.3 AlkaliMetals0.050.200.25 TelluriumMetals0.000.050.05Ba,Sr0.000.020.02NobleMetals0.000.00250.0025 CeriumGroup0.000.00050.0005 Lanthanides0.000.00020.0002
| | 24 Use of Risk and Engineering Insights |
| 11ThereleasefractionslistedherehavebeendeterminedtobeacceptableforusewithcurrentlyapprovedLWRfuelwithapeakburnupupto62,000MWD/MTUprovidedthatthemaximumlinearheatgenerationratedoesnotexceed6.3kw/ftpeakrod averagepowerforburnupsexceeding54GWD/MTU.Asanalternative,fissiongasreleasecalculationsperformedusingNRC-approvedmethodologiesmaybeconsideredonacase-by-casebasis.Tobeacceptable,thesecalculationsmustuseaprojectedpowerhistorythatwillboundthelimitingprojectedplant-specificpowerhistoryforthespecificfuelload.FortheBWRrod dropaccidentandthePWRrodejectionaccident,thegapfractionsareassumedtobe10%foriodinesandnoblegases.
| | * Update the expectations for use of risk insights as directed in SRM- |
| | SECY-19-0036. |
|
| |
|
| 12Inlieuoftreatingthereleaseinalinearrampmanner,theactivityforeachphasecanbemodeledasbeingreleasedinstantaneouslyatthestartofthatreleasephase,i.e.,instepincreases.
| | * NRC staff has developed a technical assessment on this topic considering 20+ years of operational and seismic risk insights. |
|
| |
|
| 1.183-14Table2PWRCoreInventoryFractionReleasedIntoContainmentGapEarlyReleaseIn-vesselGroupPhasePhaseTotalNobleGases0.050.951.0Halogens0.050.350.4 AlkaliMetals0.050.250.3 TelluriumMetals0.000.050.05 Ba,Sr0.000.020.02 NobleMetals0.000.00250.0025 CeriumGroup0.000.00050.0005 Lanthanides0.000.00020.0002Table3 11Non-LOCAFractionofFissionProductInventoryinGapGroupFraction I-1310.08 Kr-850.10
| | * Assessment will be publicly available via the NRCs Interim Staff Guidance process. |
| OtherNobleGases0.05 OtherHalogens0.05 AlkaliMetals0.123.3TimingofReleasePhasesTable4tabulatestheonsetanddurationofeachsequentialreleasephaseforDBALOCAsatPWRsandBWRs.Thespecifiedonsetisthetimefollowingtheinitiationoftheaccident(i.e.,
| |
| time=0).Theearlyin-vesselphaseimmediatelyfollowsthegapreleasephase.Theactivity releasedfromthecoreduringeachreleasephaseshouldbemodeledasincreasinginalinear fashionoverthedurationofthephase.
| |
|
| |
|
| 12Fornon-LOCADBAsinwhichfueldamageisprojected,thereleasefromthefuelgapandthefuelpelletshouldbeassumedtooccurinstantaneouslywith theonsetoftheprojecteddamage.
| | * Four issued safety evaluations are supported by risk and engineering insights. |
|
| |
|
| 1.183-15Table4LOCAReleasePhasesPWRsBWRsPhaseOnsetDurationOnsetDurationGapRelease30sec0.5hr2min0.5hrEarlyIn-Vessel0.5hr1.3hr0.5hr1.5hrForfacilitieslicensedwithleak-before-breakmethodology,theonsetofthegapreleasephasemaybeassumedtobe10minutes.Alicenseemayproposeanalternativetimefortheonset ofthegapreleasephase,basedonfacility-specificcalculationsusingsuitableanalysiscodesoron anacceptedtopicalreportshowntobeapplicabletothespecificfacility.Intheabsenceof approvedalternatives,thegapreleasephaseonsetsinTable4shouldbeused.3.4RadionuclideCompositionTable5liststheelementsineachradionuclidegroupthatshouldbeconsideredindesignbasisanalyses.Table5RadionuclideGroupsGroupElementsNobleGasesXe,KrHalogensI,Br AlkaliMetalsCs,Rb TelluriumGroupTe,Sb,Se,Ba,Sr NobleMetalsRu,Rh,Pd,Mo,Tc,Co LanthanidesLa,Zr,Nd,Eu,Nb,Pm,PrSm,Y,Cm,AmCeriumCe,Pu,Np3.5ChemicalFormOftheradioiodinereleasedfromthereactorcoolantsystem(RCS)tothecontainmentinapostulatedaccident,95percentoftheiodinereleasedshouldbeassumedtobecesiumiodide(CsI),
| | * Staff is exploring streamlined approach for quantitative credit for hold-up and retention of MSIV leakage within the power conversion system for BWRs. |
| 4.85percentelementaliodine,and0.15percentorganiciodide.Thisincludesreleasesfromthe gapandthefuelpellets.Withtheexceptionofelementalandorganiciodineandnoblegases, fissionproductsshouldbeassumedtobeinparticulateform.Thesamechemicalformisassumed inreleasesfromfuelpinsinFHAsandfromreleasesfromthefuelpinsthroughtheRCSinDBAs otherthanFHAsorLOCAs.However,thetransportoftheseiodinespeciesfollowingreleasefrom thefuelmayaffecttheseassumedfractions.Theaccident-specificappendicestothisregulatory guideprovideadditionaldetails.
| |
|
| |
|
| 13ThepriorpracticeofbasinginhalationexposureononlyradioiodineandnotincludingradioiodineinexternalexposurecalculationsisnotconsistentwiththedefinitionofTEDEandthecharacteristicsoftherevisedsourceterm.
| | * Is there interest in a streamlined approach? |
| | * What portion(s) of the alternative pathway justification in Rev. 0 are resource intensive (availability of pathway, seismic robustness steps, both?) |
|
| |
|
| 1.183-163.6FuelDamageinNon-LOCADBAsTheamountoffueldamagecausedbynon-LOCAdesignbasiseventsshouldbeanalyzedtodetermine,forthecaseresultinginthehighestradioactivityrelease,thefractionofthefuelthat reachesorexceedstheinitiationtemperatureoffuelmeltandthefractionoffuelelementsfor whichthefuelcladisbreached.AlthoughtheNRCstaffhastraditionallyrelieduponthedeparture fromnucleateboilingratio(DNBR)asafueldamagecriterion,licenseesmayproposeother methodstotheNRCstaff,suchasthosebaseduponenthalpydeposition,forestimatingfuel damageforthepurposeofestablishingradioactivityreleases.TheamountoffueldamagecausedbyaFHAisaddressedinAppendixBofthisguide.
| | 25 Additional Considerations |
| | * Consider revising footnote 7 which provides an incorrect method to convert thyroid dose to TEDE |
| | - Implies a back-of-the-envelope calculation appropriately converts between ICRP 2 and ICRP 26/30 dosimetry methodologies. |
|
| |
|
| ===4. DOSECALCULATIONAL===
| | - There is no simple methodology to convert between these two systems of dosimetry. |
|
| |
|
| ===METHODOLOGY===
| | - To correctly calculate the radiological dose consequences for design basis accidents the appropriate dose methodology (and DCFs) must be applied. |
| TheNRCstaffhasdeterminedthatthereisanimpliedsynergybetweentheASTsandtotaleffectivedoseequivalent(TEDE)criteria,andbetweentheTID-14844sourcetermsandthewhole bodyandthyroiddosecriteria,andtherefore,theydonotexpecttoallowtheTEDEcriteriatobe usedwithTID-14844calculatedresults.Theguidanceofthissectionappliestoalldose calculationsperformedwithanASTpursuantto10CFR50.67.Certainselectiveimplementations maynotrequiredosecalculationsasdescribedinRegulatoryPosition1.3ofthisguide.4.1OffsiteDoseConsequencesThefollowingassumptionsshouldbeusedindeterminingtheTEDEforpersonslocatedatorbeyondtheboundaryoftheexclusionarea(EAB):
| |
| 4.1.1ThedosecalculationsshoulddeterminetheTEDE.TEDEisthesumofthecommittedeffectivedoseequivalent(CEDE)frominhalationandthedeepdoseequivalent(DDE)
| |
| fromexternalexposure.ThecalculationofthesetwocomponentsoftheTEDEshouldconsiderall radionuclides,includingprogenyfromthedecayofparentradionuclides,thataresignificantwith regardtodoseconsequencesandthereleasedradioactivity.
| |
|
| |
|
| 13 4.1.2Theexposure-to-CEDEfactorsforinhalationofradioactivematerialshouldbederivedfromthedataprovidedinICRPPublication30,"LimitsforIntakesofRadionuclidesby Workers"(Ref.19).Table2.1ofFederalGuidanceReport11,"LimitingValuesofRadionuclide IntakeandAirConcentrationandDoseConversionFactorsforInhalation,Submersion,and Ingestion"(Ref.20),providestablesofconversionfactorsacceptabletotheNRCstaff.The factorsinthecolumnheaded"effective"yielddosescorrespondingtotheCEDE.
| | 26 Looking Forward |
| | * Consider feedback from stakeholders |
| | * Develop updated draft RG 1.183 Rev. 1 |
| | * Hold additional public meeting 1st Quarter CY 2021 |
| | * Draft RG 1.183 Rev. 1 issued for public comment (4th Quarter CY 2021) |
| | * Staff review and disposition of public comments |
| | * Update of draft RG 1.183 Rev. 1 as necessary |
| | * ACRS and OGC review of final draft (1st Quarter CY 2022) |
| | * Issuance of RG 1.183 Rev. 1 (2nd Quarter CY 2022) |
|
| |
|
| 4.1.3Forthefirst8hours,thebreathingrateofpersonsoffsiteshouldbeassumedtobe3.5x10-4cubicmeterspersecond.From8to24hoursfollowingtheaccident,thebreathingrateshouldbeassumedtobe1.8x10
| | 27 Discussion/Feedback |
| -4cubicmeterspersecond.Afterthatanduntiltheendoftheaccident,therateshouldbeassumedtobe2.3x10
| |
| -4cubicmeterspersecond.
| |
|
| |
|
| 14WithregardtotheEABTEDE,themaximumtwo-hourvalueisthebasisforscreeningandevaluationunder10CFR50.59.Changestodosesoutsideofthetwo-hourwindowareonlyconsideredinthecontextoftheirimpactonthemaximumtwo-hour EABTEDE.1.183-17 4.1.4TheDDEshouldbecalculatedassumingsubmergenceinsemi-infinitecloudassumptionswithappropriatecreditforattenuationbybodytissue.TheDDEisnominally equivalenttotheeffectivedoseequivalent(EDE)fromexternalexposureifthewholebodyis irradiateduniformly.Sincethisisareasonableassumptionforsubmergenceexposuresituations, EDEmaybeusedinlieuofDDEindeterminingthecontributionofexternaldosetotheTEDE.
| | 28 Questions/Comments? |
| | | Mark Blumberg, Senior Reactor Engineer (Technical Lead) |
| TableIII.1ofFederalGuidanceReport12,"ExternalExposuretoRadionuclidesinAir,Water,andSoil"(Ref.21),providesexternalEDEconversionfactorsacceptabletotheNRCstaff.Thefactors inthecolumnheaded"effective"yielddosescorrespondingtotheEDE.
| | NRR/DRA/ARCB |
| | | mark.blumberg@nrc.gov Micheal Smith, Health Physicist (Project Lead) |
| 4.1.5TheTEDEshouldbedeterminedforthemostlimitingpersonattheEAB.ThemaximumEABTEDEforanytwo-hourperiodfollowingthestartoftheradioactivityrelease shouldbedeterminedandusedindeterminingcompliancewiththedosecriteriain10CFR
| | NRR/DRA/ARCB |
| | | micheal.smith@nrc.gov}} |
| 50.67.14Themaximumtwo-hourTEDEshouldbedeterminedbycalculatingthepostulateddoseforaseriesofsmalltimeincrementsandperforminga"sliding"sumovertheincrementsfor successivetwo-hourperiods.ThemaximumTEDEobtainedissubmitted.Thetimeincrements shouldappropriatelyreflecttheprogressionoftheaccidenttocapturethepeakdoseinterval betweenthestartoftheeventandtheendofradioactivityrelease(seealsoTable6).
| |
| 4.1.6TEDEshouldbedeterminedforthemostlimitingreceptorattheouterboundaryofthelowpopulationzone(LPZ)andshouldbeusedindeterminingcompliancewiththedose criteriain10CFR50.67.
| |
| | |
| 4.1.7Nocorrectionshouldbemadefordepletionoftheeffluentplumebydepositionontheground.4.2ControlRoomDoseConsequencesThefollowingguidanceshouldbeusedindeterminingtheTEDEforpersonslocatedinthecontrolroom:
| |
| 4.2.1TheTEDEanalysisshouldconsiderallsourcesofradiationthatwillcauseexposuretocontrolroompersonnel.Theapplicablesourceswillvaryfromfacilitytofacility,buttypically willinclude:Contaminationofthecontrolroomatmospherebytheintakeorinfiltrationoftheradioactivematerialcontainedintheradioactiveplumereleasedfromthefacility,Contaminationofthecontrolroomatmospherebytheintakeorinfiltrationofairborneradioactivematerialfromareasandstructuresadjacenttothecontrolroom
| |
| | |
| envelope,Radiationshinefromtheexternalradioactiveplumereleasedfromthefacility,
| |
| 15Theiodineprotectionfactor(IPF)methodologyofReference22maynotbeadequatelyconservativeforallDBAsandcontrolroomarrangementssinceitmodelsasteady-statecontrolroomcondition.Sincemanyanalysisparameterschangeoverthedurationoftheevent,theIPFmethodologyshouldonlybeusedwithcaution.TheNRCcomputercodesHABIT(Ref.23)and RADTRAD(Ref.24)incorporatesuitablemethodologies.
| |
| | |
| 16Thisoccupancyismodeledinthe c/QvaluesdeterminedinReference22andshouldnotbecreditedtwice.TheARCON96Code(Ref.26)doesnotincorporatetheseoccupancyassumptions,makingitnecessarytoapplythiscorrectioninthedosecalculations.
| |
| | |
| 1.183-18Radiationshinefromradioactivematerialinthereactorcontainment,Radiationshinefromradioactivematerialinsystemsandcomponentsinsideorexternaltothecontrolroomenvelope,e.g.,radioactivematerialbuildupin recirculationfilters.
| |
| | |
| 4.2.2Theradioactivematerialreleasesandradiationlevelsusedinthecontrolroomdoseanalysisshouldbedeterminedusingthesamesourceterm,transport,andreleaseassumptionsused fordeterminingtheEABandtheLPZTEDEvalues,unlesstheseassumptionswouldresultinnon- conservativeresultsforthecontrolroom.
| |
| | |
| 4.2.3Themodelsusedtotransportradioactivematerialintoandthroughthecontrol room, 15andtheshieldingmodelsusedtodetermineradiationdoseratesfromexternalsources,shouldbestructuredtoprovidesuitablyconservativeestimatesoftheexposuretocontrolroom
| |
| | |
| personnel.
| |
| | |
| 4.2.4Creditforengineeredsafetyfeaturesthatmitigateairborneradioactivematerialwithinthecontrolroommaybeassumed.Suchfeaturesmayincludecontrolroomisolationor pressurization,orintakeorrecirculationfiltration.RefertoSection6.5.1,"ESFAtmospheric CleanupSystem,"oftheSRP(Ref.3)andRegulatoryGuide1.52,"Design,Testing,and MaintenanceCriteriaforPostaccidentEngineered-Safety-FeatureAtmosphereCleanupSystemAir FiltrationandAdsorptionUnitsofLight-Water-CooledNuclearPowerPlants"(Ref.25),for guidance.ThecontrolroomdesignisoftenoptimizedfortheDBALOCAandtheprotection affordedforotheraccidentsequencesmaynotbeasadvantageous.Inmostdesigns,controlroom isolationisactuatedbyengineeredsafeguardsfeature(ESF)signalsorradiationmonitors(RMs).
| |
| Insomecases,theESFsignaliseffectiveonlyforselectedaccidents,placingrelianceontheRMs fortheremainingaccidents.SeveralaspectsofRMscandelaythecontrolroomisolation, includingthedelayforactivitytobuilduptoconcentrationsequivalenttothealarmsetpointand theeffectsofdifferentradionuclideaccidentisotopicmixesonmonitorresponse.
| |
| | |
| 4.2.5Creditshouldgenerallynotbetakenfortheuseofpersonalprotectiveequipmentorprophylacticdrugs.Deviationsmaybeconsideredonacase-by-casebasis.
| |
| | |
| 4.2.6Thedosereceptorfortheseanalysesisthehypotheticalmaximumexposedindividualwhoispresentinthecontrolroomfor100%ofthetimeduringthefirst24hoursafter theevent,60%ofthetimebetween1and4days,and40%ofthetimefrom4daysto30days.
| |
| | |
| 16Forthedurationoftheevent,thebreathingrateofthisindividualshouldbeassumedtobe3.5x10
| |
| -4cubicmeterspersecond.
| |
| | |
| 1.183-19 4.2.7ControlroomdosesshouldbecalculatedusingdoseconversionfactorsidentifiedinRegulatoryPosition4.1aboveforuseinoffsitedoseanalyses.TheDDEfromphotonsmaybe correctedforthedifferencebetweenfinitecloudgeometryinthecontrolroomandthesemi- infinitecloudassumptionusedincalculatingthedoseconversionfactors.Thefollowing expressionmaybeusedtocorrectthesemi-infiniteclouddose,DDE,toafiniteclouddose, DDEfinite,wherethecontrolroomismodeledasahemispherethathasavolume,V,incubicfeet,equivalenttothatofthecontrolroom(Ref.22).Equation1 DDEDDEVfinite=¥03381173.4.3OtherDoseConsequencesTheguidanceprovidedinRegulatoryPositions4.1and4.2shouldbeused,asapplicable,inre-assessingtheradiologicalanalysesidentifiedinRegulatoryPosition1.3.1,suchasthosein NUREG-0737(Ref.2).DesignenvelopesourcetermsprovidedinNUREG-0737shouldbe updatedforconsistencywiththeAST.Ingeneral,radiationexposurestoplantpersonnelidentified inRegulatoryPosition1.3.1shouldbeexpressedintermsofTEDE.Integratedradiationexposure ofplantequipmentshouldbedeterminedusingtheguidanceofAppendixIofthisguide.4.4AcceptanceCriteriaTheradiologicalcriteriafortheEAB,theouterboundaryoftheLPZ,andforthecontrolroomarein10CFR50.67.Thesecriteriaarestatedforevaluatingreactoraccidentsofexceedingly lowprobabilityofoccurrenceandlowriskofpublicexposuretoradiation,e.g.,alarge-break LOCA.Thecontrolroomcriterionappliestoallaccidents.Foreventswithahigherprobabilityof occurrence,postulatedEABandLPZdosesshouldnotexceedthecriteriatabulatedinTable6.TheacceptancecriteriaforthevariousNUREG-0737(Ref.2)itemsgenerallyreferenceGeneralDesignCriteria19(GDC19)fromAppendixAto10CFRPart50orspecifycriteria derivedfromGDC-19.Thesecriteriaaregenerallyspecifiedintermsofwholebodydose,orits equivalenttoanybodyorgan.Forfacilitiesapplyingfor,orhavingreceived,approvalfortheuse ofanAST,theapplicablecriteriashouldbeupdatedforconsistencywiththeTEDEcriterionin10CFR50.67(b)(2)(iii)
| |
| .
| |
| 17ForPWRswithsteamgeneratoralternativerepaircriteria,differentdosecriteriamayapplytosteamgeneratortuberuptureandmainsteamlinebreakanalyses.
| |
| | |
| 1.183-20Table6 17AccidentDoseCriteriaAccidentorCaseEABandLPZDoseCriteriaAnalysisReleaseDurationLOCA25remTEDE30daysforcontainment,ECCS,andMSIV(BWR)leakageBWRMainSteamLineBreakInstantaneouspuffFuelDamageorPre-incidentSpike25remTEDEEquilibriumIodineActivity2.5remTEDEBWRRodDropAccident6.3remTEDE24hours PWRSteamGeneratorTubeRuptureAffectedSG:timetoisolate;UnaffectedSG(s):untilcoldshutdownisestablishedFuelDamageorPre-incidentSpike25remTEDECoincidentIodineSpike2.5remTEDEPWRMainSteamLineBreakUntilcoldshutdownisestablishedFuelDamageorPre-incidentSpike25remTEDE
| |
| CoincidentIodineSpike2.5remTEDEPWRLockedRotorAccident2.5remTEDEUntilcoldshutdownisestablished PWRRodEjectionAccident6.3remTEDE30daysforcontainmentpathway;untilcoldshutdownisestablishedfor secondarypathwayFuelHandlingAccident6.3remTEDE2hoursThecolumnlabeled"AnalysisReleaseDuration"isasummaryoftheassumedradioactivityreleasedurationsidentifiedintheindividualappendicestothisguide.Refertothese appendicesforcompletedescriptionsofthereleasepathwaysanddurations.5.ANALYSISASSUMPTIONSAND
| |
| | |
| ===METHODOLOGY===
| |
| 5.1GeneralConsiderations5.1.1AnalysisQualityTheevaluationsrequiredby10CFR50.67arere-analysesofthedesignbasissafetyanalysesandevaluationsrequiredby10CFR50.34;theyareconsideredtobeasignificantinputto theevaluationsrequiredby10CFR50.92or10CFR50.59.Theseanalysesshouldbeprepared, reviewed,andmaintainedinaccordancewithqualityassuranceprogramsthatcomplywith AppendixB,"QualityAssuranceCriteriaforNuclearPowerPlantsandFuelReprocessingPlants,"
| |
| to10CFRPart50.Thesedesignbasisanalyseswerestructuredtoprovideaconservativesetofassumptionstotesttheperformanceofoneormoreaspectsofthefacilitydesign.Manyphysicalprocessesand phenomenaarerepresentedbyconservative,boundingassumptionsratherthanbeingmodeled
| |
| 18Notethatforsomeparameters,thetechnicalspecificationvaluemaybeadjustedforanalysispurposesbyfactorsprovidedinotherregulatoryguidance.Forexample,ESFfilterefficienciesarebasedontheguidanceinRegulatoryGuide1.52(Ref.25)and inGenericLetter99-02(Ref.27)ratherthanthesurveillancetestcriteriainthetechnicalspecifications.Generally,these adjustmentsaddresspotentialchangesintheparameterbetweenscheduledsurveillancetests.
| |
| | |
| 1.183-21directly.Thestaffhasselectedassumptionsandmodelsthatprovideanappropriateandprudentsafetymarginagainstunpredictedeventsinthecourseofanaccidentandcompensateforlarge uncertaintiesinfacilityparameters,accidentprogression,radioactivematerialtransport,and atmosphericdispersion.Licenseesshouldexercisecautioninproposingdeviationsbasedupon datafromaspecificaccidentsequencesincetheDBAswereneverintendedtorepresentany specificaccidentsequence--theproposeddeviationmaynotbeconservativeforotheraccident
| |
| | |
| sequences.5.1.2CreditforEngineeredSafeguardFeaturesCreditmaybetakenforaccidentmitigationfeaturesthatareclassifiedassafety-related,arerequiredtobeoperablebytechnicalspecifications,arepoweredbyemergencypowersources,and areeitherautomaticallyactuatedor,inlimitedcases,haveactuationrequirementsexplicitly addressedinemergencyoperatingprocedures.Thesingleactivecomponentfailurethatresultsin themostlimitingradiologicalconsequencesshouldbeassumed.Assumptionsregardingthe occurrenceandtimingofalossofoffsitepowershouldbeselectedwiththeobjectiveof maximizingthepostulatedradiologicalconsequences.5.1.3AssignmentofNumericInputValuesThenumericvaluesthatarechosenasinputstotheanalysesrequiredby10CFR50.67shouldbeselectedwiththeobjectiveofdeterminingaconservativepostulateddose.Insome instances,aparticularparametermaybeconservativeinoneportionofananalysisbutbe nonconservativeinanotherportionofthesameanalysis.Forexample,assumingminimum containmentsystemsprayflowisusuallyconservativeforestimatingiodinescrubbing,butin manycasesmaybenonconservativewhendeterminingsumppH.Sensitivityanalysesmaybe neededtodeterminetheappropriatevaluetouse.Asaconservativealternative,thelimitingvalue applicabletoeachportionoftheanalysismaybeusedintheevaluationofthatportion.Asingle valuemaynotbeapplicableforaparameterforthedurationoftheevent,particularlyfor parametersaffectedbychangesindensity.Forparametersaddressedbytechnicalspecifications, thevalueusedintheanalysisshouldbethatspecifiedinthetechnicalspecifications.
| |
| | |
| 18Ifarangeofvaluesoratolerancebandisspecified,thevaluethatwouldresultinaconservativepostulated doseshouldbeused.Iftheparameterisbasedontheresultsoflessfrequentsurveillancetesting, e.g.,steamgeneratornondestructivetesting(NDT),considerationshouldbegiventothe degradationthatmayoccurbetweenperiodictestsinestablishingtheanalysisvalue.5.1.4ApplicabilityofPriorLicensingBasisTheNRCstaffconsiderstheimplementationofanASTtobeasignificantchangetothedesignbasisofthefacilitythatisvoluntarilyinitiatedbythelicensee.Inordertoissuealicense amendmentauthorizingtheuseofanASTandtheTEDEdosecriteria,theNRCstaffmustmakea currentfindingofcompliancewithregulationsapplicabletotheamendment.Thecharacteristics oftheASTsandthereviseddosecalculationalmethodologymaybeincompatiblewithmanyofthe analysisassumptionsandmethodscurrentlyreflectedinthefacility'sdesignbasisanalyses.The NRCstaffmayfindthatneworunreviewedissuesarecreatedbyaparticularsite-specific
| |
| 1.183-22implementationoftheAST,warrantingreviewofstaffpositionsapprovedsubsequenttotheinitialissuanceofthelicense.Thisisnotconsideredabackfitasdefinedby10CFR50.109,
| |
| "Backfitting."However,priordesignbasesthatareunrelatedtotheuseoftheAST,orare unaffectedbytheAST,maycontinueasthefacility'sdesignbasis.Licenseesshouldensurethat analysisassumptionsandmethodsarecompatiblewiththeASTsandtheTEDEcriteria.5.2Accident-SpecificAssumptionsTheappendicestothisregulatoryguideprovideaccident-specificassumptionsthatareacceptabletothestaffforperforminganalysesthatarerequiredby10CFR50.67.TheDBAs addressedintheseattachmentswereselectedfromaccidentsthatmayinvolvedamagetoirradiated fuel.ThisguidedoesnotaddressDBAswithradiologicalconsequencesbasedontechnical specificationreactororsecondarycoolant-specificactivitiesonly.Theinclusionorexclusionofa particularDBAinthisguideshouldnotbeinterpretedasindicatingthatananalysisofthatDBAis requiredornotrequired.LicenseesshouldanalyzetheDBAsthatareaffectedbythespecific proposedapplicationsofanAST.TheNRCstaffhasdeterminedthattheanalysisassumptionsintheappendicestothisguideprovideanintegratedapproachtoperformingtheindividualanalysesandgenerallyexpects licenseestoaddresseachassumptionorproposeacceptablealternatives.Suchalternativesmaybe justifiableonthebasisofplant-specificconsiderations,updatedtechnicalanalyses,or,insome cases,apreviouslyapprovedlicensingbasisconsideration.Theassumptionsintheappendicesare deemedconsistentwiththeASTidentifiedinRegulatoryPosition3andinternallyconsistentwith eachother.Althoughlicenseesarefreetoproposealternativestotheseassumptionsfor considerationbytheNRCstaff,licenseesshouldavoiduseofpreviouslyapprovedstaffpositions thatwouldadverselyaffectthisconsistency.TheNRCiscommittedtousingprobabilisticriskanalysis(PRA)insightsinitsregulatoryactivitiesandwillconsiderlicenseeproposalsforchangesinanalysisassumptionsbaseduponrisk insights.Thestaffwillnotapproveproposalsthatwouldreducethedefenseindepthdeemed necessarytoprovideadequateprotectionforpublichealthandsafety.Insomecases,thisdefense indepthcompensatesforuncertaintiesinthePRAanalysesandaddressesaccidentconsiderations notadequatelyaddressedbythecoredamagefrequency(CDF)andlargeearlyreleasefrequency (LERF)surrogateindicatorsofoverallrisk.5.3MeteorologyAssumptionsAtmosphericdispersionvalues(c/Q)fortheEAB,theLPZ,andthecontrolroomthatwereapprovedbythestaffduringinitialfacilitylicensingorinsubsequentlicensingproceedingsmaybeusedinperformingtheradiologicalanalysesidentifiedbythisguide.Methodologiesthathavebeenusedfordetermining c/QvaluesaredocumentedinRegulatoryGuides1.3and1.4,RegulatoryGuide1.145,"AtmosphericDispersionModelsforPotentialAccidentConsequenceAssessmentsatNuclearPowerPlants,"andthepaper,"NuclearPowerPlantControlRoom VentilationSystemDesignforMeetingGeneralCriterion19"(Refs.6,7,22,and28).
| |
| 19TheARCON96computercodecontainsprocessingoptionsthatmayyield c/Qvaluesthatarenotsufficientlyconservativeforuseinaccidentconsequenceassessmentsormaybeincompatiblewithreleasepointandventilationintakeconfigurationsatparticularsites.Theapplicabilityoftheseoptionsandassociatedinputparametersshouldbeevaluatedonacase-by-casebasis.
| |
| | |
| TheassumptionsmadeintheexamplesintheARCON96documentationareillustrativeonlyanddonotimplyNRCstaff acceptanceofthemethodsordatausedintheexample.
| |
| | |
| 1.183-23References22and28shouldbeusediftheFSAR
| |
| c/Qvaluesaretoberevisedorifvaluesaretobedeterminedfornewreleasepointsorreceptordistances.FumigationshouldbeconsideredwhereapplicablefortheEABandLPZ.FortheEAB,theassumedfumigationperiod shouldbetimedtobeincludedintheworst2-hourexposureperiod.TheNRCcomputercode PAVAN(Ref.29)implementsRegulatoryGuide1.145(Ref.28)anditsuseisacceptabletothe NRCstaff.ThemethodologyoftheNRCcomputercodeARCON96
| |
| 19(Ref.26)isgenerallyacceptabletotheNRCstaffforuseindeterminingcontrolroom c/Qvalues.Meteorologicaldatacollectedinaccordancewiththesite-specificmeteorologicalmeasurementsprogramdescribedinthefacilityFSARshouldbeusedingeneratingaccident c/Qvalues.AdditionalguidanceisprovidedinRegulatoryGuide1.23,"OnsiteMeteorologicalPrograms"(Ref.30).Allchangesin
| |
| ÿ/QanalysismethodologyshouldbereviewedbytheNRCstaff.6.ASSUMPTIONSFOREVALUATINGTHERADIATIONDOSESFOREQUIPMENTQUALIFICATIONTheassumptionsinAppendixItothisguideareacceptabletotheNRCstaffforperformingradiologicalassessmentsassociatedwithequipmentqualification.TheassumptionsinAppendixI
| |
| willsupersedeRegulatoryPositions2.c(1)and2.c(2)andAppendixDofRevision1ofRegulatory Guide1.89,"EnvironmentalQualificationofCertainElectricEquipmentImportanttoSafetyfor NuclearPowerPlants"(Ref.11),foroperatingreactorsthathaveamendedtheirlicensingbasisto useanalternativesourceterm.ExceptasstatedinAppendixI,allotherassumptions,methods, andprovisionsofRevision1ofRegulatoryGuide1.89remaineffective.TheNRCstaffisassessingtheeffectofincreasedcesiumreleasesonEQdosestodeterminewhetherlicenseeactioniswarranted.Untilsuchtimeasthisgenericissueisresolved, licenseesmayuseeithertheASTortheTID14844assumptionsforperformingtherequiredEQ
| |
| analyses.However,noplantmodificationsarerequiredtoaddresstheimpactofthedifferencein sourcetermcharacteristics(i.e.,ASTvsTID14844)onEQdosespendingtheoutcomeofthe evaluationofthegenericissue.
| |
| | |
| ==D. IMPLEMENTATION==
| |
| ThepurposeofthissectionistoprovideinformationtoapplicantsandlicenseesregardingtheNRCstaff'splansforusingthisregulatoryguide.ExceptinthosecasesinwhichanapplicantorlicenseeproposesanacceptablealternativemethodforcomplyingwiththespecifiedportionsoftheNRC'sregulations,themethodsdescribed inthisguidewillbeusedintheevaluationofsubmittalsrelatedtotheuseofASTsinradiological consequenceanalysesatoperatingpowerreactors.
| |
| | |
| 1.183-24
| |
| 1.183-25REFERENCES{SeetheinsidefrontcoverofthisguideforinformationonobtainingNRCdocuments.}1.J.J.DiNunnoetal.,"CalculationofDistanceFactorsforPowerandTestReactorSites,"USAECTID-14844,U.S.AtomicEnergyCommission(nowUSNRC),1962.2.USNRC,"ClarificationofTMIActionPlanRequirements,"NUREG-0737,November
| |
| 1980.3.USNRC,"StandardReviewPlanfortheReviewofSafetyAnalysisReportsforNuclearPowerPlants,"NUREG-0800,September1981(orupdatesofspecificsections).4.USNRC,"UseofProbabilisticRiskAssessmentMethodsinNuclearActivities:FinalPolicyStatement,"FederalRegister,Volume60,page42622(60FR42622)August16, 1995.5.L.Sofferetal.,"AccidentSourceTermsforLight-WaterNuclearPowerPlants,"NUREG-1465,USNRC,February1995.6.USNRC,"AssumptionsUsedforEvaluatingthePotentialRadiologicalConsequencesofaLossofCoolantAccidentforBoilingWaterReactors."RegulatoryGuide1.3,Revision2, June1974.7.USNRC,"AssumptionsUsedforEvaluatingthePotentialRadiologicalConsequencesofaLossofCoolantAccidentforPressurizedWaterReactors,"RegulatoryGuide1.4,Revision
| |
| 2,June1974.8.USNRC,"AssumptionsUsedforEvaluatingthePotentialRadiologicalConsequencesofaSteamLineBreakAccidentforBoilingWaterReactors,"RegulatoryGuide1.5,March
| |
| | |
| 1971.9.USNRC,"AssumptionsUsedforEvaluatingthePotentialRadiologicalConsequencesofaFuelHandlingAccidentintheFuelHandlingandStorageFacilityforBoilingand PressurizedWaterReactors,"RegulatoryGuide1.25,March1972.10.USNRC,"AssumptionsUsedforEvaluatingaControlRodEjectionAccidentforPressurizedWaterReactors,"RegulatoryGuide1.77,May1974.11.USNRC,"EnvironmentalQualificationofCertainElectricEquipmentImportanttoSafetyforNuclearPowerPlants,"RegulatoryGuide1.89,Revision1,June1984.12.USNRC,"PlanningBasisfortheDevelopmentofStateandLocalGovernmentRadiologicalEmergencyResponsePlansinSupportofLightWaterNuclearPowerPlants,"
| |
| NUREG-0396,December1978.
| |
| | |
| 1.183-2613.USNRC,"CriteriaforPreparationandEvaluationofRadiologicalEmergencyResponsePlansandPreparednessinSupportofNuclearPowerPlants,"NUREG-0654,Revision1 (FEMA-REP-1),November1980.14.USNRC,"ResultsoftheRevised(NUREG-1465)SourceTermRebaseliningforOperatingReactors,"SECY-98-154,June30,1998.15.USNRC,"AnApproachforUsingProbabilisticRiskAssessmentinRisk-InformedDecisionsonPlant-SpecificChangestotheLicensingBasis,"RegulatoryGuide1.174,July
| |
| | |
| 1998.16.USNRC,"StandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants(LWREdition),"RegulatoryGuide1.70,Revision3,November1978.17.A.G.Croff,"AUser'sManualfortheORIGEN2ComputerCode,"ORNL/TM-7175,OakRidgeNationalLaboratory,July1980.18.S.M.BowmanandL.C.Leal,"TheORIGNARPInputProcessorforORIGEN-ARP,"AppendixF7.AinSCALE:AModularCodeSystemforPerformingStandardizedAnalysesforLicensingEvaluation,NUREG/CR-0200,USNRC,March1997.19.ICRP,"LimitsforIntakesofRadionuclidesbyWorkers,"ICRPPublication30,1979.
| |
| | |
| 20.K.F.Eckermanetal.,"LimitingValuesofRadionuclideIntakeandAirConcentrationandDoseConversionFactorsforInhalation,Submersion,andIngestion,"FederalGuidance Report11,EPA-520/1-88-020,EnvironmentalProtectionAgency,1988.21.K.F.EckermanandJ.C.Ryman,"ExternalExposuretoRadionuclidesinAir,Water,andSoil,"FederalGuidanceReport12,EPA-402-R-93-081,EnvironmentalProtectionAgency,
| |
| 1993.22.K.G.MurphyandK.W.Campe,"NuclearPowerPlantControlRoomVentilationSystemDesignforMeetingGeneralCriterion19,"publishedinProceedingsof13thAECAirCleaningConference,AtomicEnergyCommission(nowUSNRC),August1974.23.USNRC,"ComputerCodesforEvaluationofControlRoomHabitability(HABITV1.1),"Supplement1toNUREG/CR-6210,November1998.24.S.L.Humphreysetal.,"RADTRAD:ASimplifiedModelforRadionuclideTransportandRemovalandDoseEstimation,"NUREG/CR-6604,USNRC,April1998.25.USNRC,"Design,Testing,andMaintenanceCriteriaforPostaccidentEngineeredSafetyFeatureAtmosphereCleanupSystemAirFiltrationandAdsorptionUnitsofLight-Water- CooledNuclearPowerPlants,"RegulatoryGuide1.52,Revision2,March1978.
| |
| | |
| 1.183-2726.J.V.RamsdellandC.A.Simonen,"AtmosphericRelativeConcentrationsinBuildingWakes,NUREG-6331,Revision1,USNRC,May1997.27.USNRC,"LaboratoryTestingofNuclear-GradeActivatedCharcoal,"NRCGenericLetter99-02,June3,1999.28.USNRC,"AtmosphericDispersionModelsforPotentialAccidentConsequenceAssessmentsatNuclearPowerPlants,"RegulatoryGuide1.145,Revision1,November
| |
| | |
| 1982.29.T.J.Bander,"PAVAN:AnAtmosphericDispersionProgramforEvaluatingDesignBasisAccidentalReleasesofRadioactiveMaterialsfromNuclearPowerStations,"NUREG-
| |
| 2858,USNRC,November1982.30.USNRC,"OnsiteMeteorologicalPrograms,"RegulatoryGuide1.23,February1972.
| |
| | |
| A-1AppendixAASSUMPTIONSFOREVALUATINGTHERADIOLOGICALCONSEQUENCESOFALWRLOSS-OF-COOLANTACCIDENTTheassumptionsinthisappendixareacceptabletotheNRCstaffforevaluatingtheradiologicalconsequencesofloss-of-coolantaccidents(LOCAs)atlightwaterreactors(LWRs).
| |
| Theseassumptionssupplementtheguidanceprovidedinthemainbodyofthisguide.AppendixA,"GeneralDesignCriteriaforNuclearPowerPlants,"to10CFRPart50definesLOCAsasthosepostulatedaccidentsthatresultfromalossofcoolantinventoryatrates thatexceedthecapabilityofthereactorcoolantmakeupsystem.Leaksuptoadouble-ended ruptureofthelargestpipeofthereactorcoolantsystemareincluded.TheLOCA,aswithall designbasisaccidents(DBAs),isaconservativesurrogateaccidentthatisintendedtochallenge selectiveaspectsofthefacilitydesign.Analysesareperformedusingaspectrumofbreaksizesto evaluatefuelandECCSperformance.Withregardtoradiologicalconsequences,alarge-break LOCAisassumedasthedesignbasiscaseforevaluatingtheperformanceofreleasemitigation systemsandthecontainmentandforevaluatingtheproposedsitingofafacility.SOURCETERMASSUMPTIONS
| |
| 1.AcceptableassumptionsregardingcoreinventoryandthereleaseofradionuclidesfromthefuelareprovidedinRegulatoryPosition3ofthisguide.
| |
| | |
| 2.IfthesumporsuppressionpoolpHiscontrolledatvaluesof7orgreater,thechemicalformofradioiodinereleasedtothecontainmentshouldbeassumedtobe95%cesiumiodide(CsI),
| |
| 4.85percentelementaliodine,and0.15percentorganiciodide.Iodinespecies,includingthose fromiodinere-evolution,forsumporsuppressionpoolpHvalueslessthan7willbeevaluatedon acase-by-casebasis.EvaluationsofpHshouldconsidertheeffectofacidsandbasescreated duringtheLOCAevent,e.g.,radiolysisproducts.Withtheexceptionofelementalandorganic iodineandnoblegases,fissionproductsshouldbeassumedtobeinparticulateform.ASSUMPTIONSONTRANSPORTINPRIMARYCONTAINMENT
| |
| 3.Acceptableassumptionsrelatedtothetransport,reduction,andreleaseofradioactivematerialinandfromtheprimarycontainmentinPWRsorthedrywellinBWRsareasfollows:
| |
| 3.1TheradioactivityreleasedfromthefuelshouldbeassumedtomixinstantaneouslyandhomogeneouslythroughoutthefreeairvolumeoftheprimarycontainmentinPWRsorthe drywellinBWRsasitisreleased.Thisdistributionshouldbeadjustedifthereareinternal compartmentsthathavelimitedventilationexchange.Thesuppressionpoolfreeair volumemaybeincludedprovidedthereisamechanismtoensuremixingbetweenthe drywelltothewetwell.Thereleaseintothecontainmentordrywellshouldbeassumedto terminateattheendoftheearlyin-vesselphase.
| |
| | |
| 3.2Reductioninairborneradioactivityinthecontainmentbynaturaldepositionwithinthecontainmentmaybecredited.Acceptablemodelsforremovalofiodineandaerosolsare
| |
| 1Thisdocumentdescribesstatisticalformulationswithdifferinglevelsofuncertainty.Theremovalrateconstantsselectedforuseindesignbasiscalculationsshouldbethosethatwillmaximizethedoseconsequences.ForBWRs,thesimplifiedmodel shouldbeusedonlyifthereleasefromthecoreisnotdirectedthroughthesuppressionpool.Iodineremovalinthesuppression poolaffectstheiodinespeciesassumedbythemodeltobepresentinitially.
| |
| | |
| A-2describedinChapter6.5.2,"ContainmentSprayasaFissionProductCleanupSystem,"oftheStandardReviewPlan(SRP),NUREG-0800(Ref.A-1)andinNUREG/CR-6189,"A
| |
| SimplifiedModelofAerosolRemovalbyNaturalProcessesinReactorContainments"
| |
| (Ref.A-2).ThelattermodelisincorporatedintotheanalysiscodeRADTRAD(Ref.A-3).
| |
| Thepriorpracticeofdeterministicallyassumingthata50%plateoutofiodineisreleased fromthefuelisnolongeracceptabletotheNRCstaffasitisinconsistentwiththe characteristicsoftherevisedsourceterms.
| |
| | |
| 3.3ReductioninairborneradioactivityinthecontainmentbycontainmentspraysystemsthathavebeendesignedandaremaintainedinaccordancewithChapter6.5.2oftheSRP(Ref.
| |
| | |
| A-1)maybecredited.Acceptablemodelsfortheremovalofiodineandaerosolsare describedinChapter6.5.2oftheSRPandNUREG/CR-5966,"ASimplifiedModelof AerosolRemovalbyContainmentSprays"
| |
| 1(Ref.A-4).ThissimplifiedmodelisincorporatedintotheanalysiscodeRADTRAD(Refs.A-1toA-3).Theevaluationofthecontainmentspraysshouldaddressareaswithintheprimarycontainmentthatarenotcoveredbythespraydrops.Themixingrateattributedtonatural convectionbetweensprayedandunsprayedregionsofthecontainmentbuilding,provided thatadequateflowexistsbetweentheseregions,isassumedtobetwoturnoversofthe unsprayedregionsperhour,unlessotherratesarejustified.Thecontainmentbuilding atmospheremaybeconsideredasingle,well-mixedvolumeifthespraycoversatleast90%
| |
| ofthevolumeandifadequatemixingofunsprayedcompartmentscanbeshown.TheSRPsetsforthamaximumdecontaminationfactor(DF)forelementaliodinebasedonthemaximumiodineactivityintheprimarycontainmentatmospherewhenthesprays actuate,dividedbytheactivityofiodineremainingatsometimeafterdecontamination.
| |
| | |
| TheSRPalsostatesthattheparticulateiodineremovalrateshouldbereducedbyafactor of10whenaDFof50isreached.Thereductionintheremovalrateisnotrequiredifthe removalrateisbasedonthecalculatedtime-dependentairborneaerosolmass.Thereisno specifiedmaximumDFforaerosolremovalbysprays.Themaximumactivitytobeusedin determiningtheDFisdefinedastheiodineactivityinthecolumnslabeled"Total"in Tables1and2ofthisguidemultipliedby0.05forelementaliodineandby0.95for particulateiodine(i.e.,aerosoltreatedasparticulateinSRPmethodology).
| |
| 3.4Reductioninairborneradioactivityinthecontainmentbyin-containmentrecirculationfiltersystemsmaybecreditedifthesesystemsmeettheguidanceofRegulatoryGuide1.52and GenericLetter99-02(Refs.A-5andA-6).Thefiltermedialoadingcausedbythe increasedaerosolreleaseassociatedwiththerevisedsourcetermshouldbeaddressed.
| |
| | |
| 3.5ReductioninairborneradioactivityinthecontainmentbysuppressionpoolscrubbinginBWRsshouldgenerallynotbecredited.However,thestaffmayconsidersuchreductionon anindividualcasebasis.Theevaluationshouldconsidertherelativetimingoftheblowdown andthefissionproductreleasefromthefuel,theforcedrivingthereleasethroughthepool, A-3andthepotentialforanybypassofthesuppressionpool(Ref.7).Analysesshouldconsideriodinere-evolutionifthesuppressionpoolliquidpHisnotmaintainedgreaterthan7.
| |
| | |
| 3.6Reductioninairborneradioactivityinthecontainmentbyretentioninicecondensers,orotherengineeringsafetyfeaturesnotaddressedabove,shouldbeevaluatedonanindividualcase basis.SeeSection6.5.4oftheSRP(Ref.A-1).
| |
| 3.7Theprimarycontainment(i.e.,drywellforMarkIandIIcontainmentdesigns)shouldbeassumedtoleakatthepeakpressuretechnicalspecificationleakrateforthefirst24hours.
| |
| | |
| ForPWRs,theleakratemaybereducedafterthefirst24hoursto50%ofthetechnical specificationleakrate.ForBWRs,leakagemaybereducedafterthefirst24hours,if supportedbyplantconfigurationandanalyses,toavaluenotlessthan50%ofthetechnical specificationleakrate.Leakagefromsubatmosphericcontainmentsisassumedtoterminate whenthecontainmentisbroughttoandmaintainedatasubatmosphericconditionasdefined bytechnicalspecifications.ForBWRswithMarkIIIcontainments,theleakagefromthedrywellintotheprimarycontainmentshouldbebasedonthesteamingrateoftheheatedreactorcore,withnocredit forcoredebrisrelocation.Thisleakageshouldbeassumedduringthetwo-hourperiod betweentheinitialblowdownandterminationofthefuelradioactivityrelease(gapandearly in-vesselreleasephases).Aftertwohours,theradioactivityisassumedtobeuniformly distributedthroughoutthedrywellandtheprimarycontainment.
| |
| | |
| 3.8Iftheprimarycontainmentisroutinelypurgedduringpoweroperations,releasesviathepurgesystempriortocontainmentisolationshouldbeanalyzedandtheresultingdoses summedwiththepostulateddosesfromotherreleasepaths.Thepurgereleaseevaluation shouldassumethat100%oftheradionuclideinventoryinthereactorcoolantsystemliquidis releasedtothecontainmentattheinitiationoftheLOCA.Thisinventoryshouldbebasedon thetechnicalspecificationreactorcoolantsystemequilibriumactivity.Iodinespikesneednot beconsidered.Ifthepurgesystemisnotisolatedbeforetheonsetofthegapreleasephase, thereleasefractionsassociatedwiththegapreleaseandearlyin-vesselphasesshouldbe consideredasapplicable.ASSUMPTIONSONDUALCONTAINMENTS
| |
| 4.Forfacilitieswithdualcontainmentsystems,theacceptableassumptionsrelatedtothetransport,reduction,andreleaseofradioactivematerialinandfromthesecondarycontainmentor enclosurebuildingsareasfollows.
| |
| | |
| 4.1Leakagefromtheprimarycontainmentshouldbeconsideredtobecollected,processedbyengineeredsafetyfeature(ESF)filters,ifany,andreleasedtotheenvironmentviathe secondarycontainmentexhaustsystemduringperiodsinwhichthesecondarycontainment hasanegativepressureasdefinedintechnicalspecifications.Creditforanelevatedrelease shouldbeassumedonlyifthepointofphysicalreleaseismorethantwoandone-halftimes theheightofanyadjacentstructure.
| |
| | |
| A-4 4.2Leakagefromtheprimarycontainmentisassumedtobereleaseddirectlytotheenvironmentasaground-levelreleaseduringanyperiodinwhichthesecondarycontainmentdoesnot haveanegativepressureasdefinedintechnicalspecifications.
| |
| | |
| 4.3Theeffectofhighwindspeedsontheabilityofthesecondarycontainmenttomaintainanegativepressureshouldbeevaluatedonanindividualcasebasis.Thewindspeedtobe assumedisthe1-houraveragevaluethatisexceededonly5%ofthetotalnumberofhoursin thedataset.Ambienttemperaturesusedintheseassessmentsshouldbethe1-houraverage valuethatisexceededonly5%or95%ofthetotalnumbersofhoursinthedataset, whicheverisconservativefortheintendeduse(e.g.,ifhightemperaturesarelimiting,use thoseexceededonly5%).
| |
| 4.4Creditfordilutioninthesecondarycontainmentmaybeallowedwhenadequatemeanstocausemixingcanbedemonstrated.Otherwise,theleakagefromtheprimarycontainment shouldbeassumedtobetransporteddirectlytoexhaustsystemswithoutmixing.Creditfor mixing,iffoundtobeappropriate,shouldgenerallybelimitedto50%.Thisevaluation shouldconsiderthemagnitudeofthecontainmentleakageinrelationtocontiguousbuilding volumeorexhaustrate,thelocationofexhaustplenumsrelativetoprojectedrelease locations,therecirculationventilationsystems,andinternalwallsandfloorsthatimpede streamflowbetweenthereleaseandtheexhaust.
| |
| | |
| 4.5Primarycontainmentleakagethatbypassesthesecondarycontainmentshouldbeevaluatedatthebypassleakrateincorporatedinthetechnicalspecifications.Ifthebypassleakageis throughwater,e.g.,viaafilledpipingrunthatismaintainedfull,creditforretentionofiodine andaerosolsmaybeconsideredonacase-by-casebasis.Similarly,depositionofaerosol radioactivityingas-filledlinesmaybeconsideredonacase-by-casebasis.
| |
| | |
| 4.6ReductionintheamountofradioactivematerialreleasedfromthesecondarycontainmentbecauseofESFfiltersystemsmaybetakenintoaccountprovidedthatthesesystemsmeetthe guidanceofRegulatoryGuide1.52(Ref.A-5)andGenericLetter99-02(Ref.A-6).ASSUMPTIONSONESFSYSTEMLEAKAGE
| |
| 5.ESFsystemsthatrecirculatesumpwateroutsideoftheprimarycontainmentareassumedtoleakduringtheirintendedoperation.Thisreleasesourceincludesleakagethroughvalvepacking glands,pumpshaftseals,flangedconnections,andothersimilarcomponents.Thisreleasesource mayalsoincludeleakagethroughvalvesisolatinginterfacingsystems(Ref.A-7).Theradiological consequencesfromthepostulatedleakageshouldbeanalyzedandcombinedwithconsequences postulatedforotherfissionproductreleasepathstodeterminethetotalcalculatedradiological consequencesfromtheLOCA.Thefollowingassumptionsareacceptableforevaluatingthe consequencesofleakagefromESFcomponentsoutsidetheprimarycontainmentforBWRsand
| |
| | |
| PWRs.5.1Withtheexceptionofnoblegases,allthefissionproductsreleasedfromthefueltothecontainment(asdefinedinTables1and2ofthisguide)shouldbeassumedto instantaneouslyandhomogeneouslymixintheprimarycontainmentsumpwater(inPWRs)
| |
| orsuppressionpool(inBWRs)atthetimeofreleasefromthecore.Inlieuofthis A-5deterministicapproach,suitablyconservativemechanisticmodelsforthetransportofairborneactivityincontainmenttothesumpwatermaybeused.Notethatmanyofthe parametersthatmakesprayanddepositionmodelsconservativewithregardtocontainment airborneleakagearenonconservativewithregardtothebuildupofsumpactivity.
| |
| | |
| 5.2TheleakageshouldbetakenastwotimesthesumofthesimultaneousleakagefromallcomponentsintheESFrecirculationsystemsabovewhichthetechnicalspecifications,or licenseecommitmentstoitemIII.D.1.1ofNUREG-0737(Ref.A-8),wouldrequiredeclaringsuchsystemsinoperable.Theleakageshouldbeassumedtostartattheearliesttimethe recirculationflowoccursinthesesystemsandendatthelatesttimethereleasesfromthese systemsareterminated.Considerationshouldalsobegiventodesignleakagethroughvalves isolatingESFrecirculationsystemsfromtanksventedtoatmosphere,e.g.,emergencycore coolingsystem(ECCS)pumpminiflowreturntotherefuelingwaterstoragetank.
| |
| | |
| 5.3Withtheexceptionofiodine,allradioactivematerialsintherecirculatingliquidshouldbeassumedtoberetainedintheliquidphase.
| |
| | |
| 5.4Ifthetemperatureoftheleakageexceeds212°F,thefractionoftotaliodineintheliquidthatbecomesairborneshouldbeassumedequaltothefractionoftheleakagethatflashesto vapor.Thisflashfraction,FF,shouldbedeterminedusingaconstantenthalpy,h,process, basedonthemaximumtime-dependenttemperatureofthesumpwatercirculatingoutsidethe
| |
| | |
| containment:
| |
| FF hh h ff fg=-12Where: h f1istheenthalpyofliquidatsystemdesigntemperatureandpressure;h f2istheenthalpyofliquidatsaturationconditions(14.7psia,212ºF);andh fgistheheatofvaporizationat212ºF.
| |
| | |
| 5.5Ifthetemperatureoftheleakageislessthan212°Forthecalculatedflashfractionislessthan10%,theamountofiodinethatbecomesairborneshouldbeassumedtobe10%ofthetotal iodineactivityintheleakedfluid,unlessasmalleramountcanbejustifiedbasedonthe actualsumppHhistoryandareaventilationrates.
| |
| | |
| 5.6Theradioiodinethatispostulatedtobeavailableforreleasetotheenvironmentisassumedtobe97%elementaland3%organic.Reductioninreleaseactivitybydilutionorholdupwithin buildings,orbyESFventilationfiltrationsystems,maybecreditedwhereapplicable.Filter systemsusedintheseapplicationsshouldbeevaluatedagainsttheguidanceofRegulatory Guide1.52(Ref.A-5)andGenericLetter99-02(Ref.A-6).ASSUMPTIONSONMAINSTEAMISOLATIONVALVELEAKAGEINBWRS
| |
| 6.ForBWRs,themainsteamisolationvalves(MSIVs)havedesignleakagethatmayresultinaradioactivityrelease.TheradiologicalconsequencesfrompostulatedMSIVleakageshouldbe analyzedandcombinedwithconsequencespostulatedforotherfissionproductreleasepathsto A-6determinethetotalcalculatedradiologicalconsequencesfromtheLOCA.ThefollowingassumptionsareacceptableforevaluatingtheconsequencesofMSIVleakage.
| |
| | |
| 6.1Forthepurposeofthisanalysis,theactivityavailableforreleaseviaMSIVleakageshouldbeassumedtobethatactivitydeterminedtobeinthedrywellforevaluating containmentleakage(seeRegulatoryPosition3).Nocreditshouldbeassumedfor activityreductionbythesteamseparatorsorbyiodinepartitioninginthereactorvessel.
| |
| | |
| 6.2AlltheMSIVsshouldbeassumedtoleakatthemaximumleakrateabovewhichthetechnicalspecificationswouldrequiredeclaringtheMSIVsinoperable.Theleakage shouldbeassumedtocontinueforthedurationoftheaccident.Postulatedleakagemay bereducedafterthefirst24hours,ifsupportedbysite-specificanalyses,toavaluenot lessthan50%ofthemaximumleakrate.
| |
| | |
| 6.3ReductionoftheamountofreleasedradioactivitybydepositionandplateoutonsteamsystempipingupstreamoftheoutboardMSIVsmaybecredited,buttheamountof reductioninconcentrationallowedwillbeevaluatedonanindividualcasebasis.
| |
| | |
| Generally,themodelshouldbebasedontheassumptionofwell-mixedvolumes,but othermodelssuchasslugflowmaybeusedifjustified.
| |
| | |
| 6.4IntheabsenceofcollectionandtreatmentofreleasesbyESFssuchastheMSIVleakagecontrolsystem,orasdescribedinparagraph6.5below,theMSIVleakageshouldbe assumedtobereleasedtotheenvironmentasanunprocessed,ground-levelrelease.
| |
| | |
| Holdupanddilutionintheturbinebuildingshouldnotbeassumed.
| |
| | |
| 6.5AreductioninMSIVreleasesthatisduetoholdupanddepositioninmainsteampipingdownstreamoftheMSIVsandinthemaincondenser,includingthetreatmentofair ejectoreffluentbyoffgassystems,maybecreditedifthecomponentsandpipingsystems usedinthereleasepatharecapableofperformingtheirsafetyfunctionduringand followingasafeshutdownearthquake(SSE).Theamountofreductionallowedwillbe evaluatedonanindividualcasebasis.ReferencesA-9andA-10provideguidanceon acceptablemodels.ASSUMPTIONONCONTAINMENTPURGING
| |
| 7.Theradiologicalconsequencesfrompost-LOCAprimarycontainmentpurgingasacombustiblegasorpressurecontrolmeasureshouldbeanalyzed.Iftheinstalledcontainment purgingcapabilitiesaremaintainedforpurposesofsevereaccidentmanagementandarenot creditedinanydesignbasisanalysis,radiologicalconsequencesneednotbeevaluated.Ifthe primarycontainmentpurgingisrequiredwithin30daysoftheLOCA,theresultsofthisanalysis shouldbecombinedwithconsequencespostulatedforotherfissionproductreleasepathsto determinethetotalcalculatedradiologicalconsequencesfromtheLOCA.Reductioninthe amountofradioactivematerialreleasedviaESFfiltersystemsmaybetakenintoaccount providedthatthesesystemsmeettheguidanceinRegulatoryGuide1.52(Ref.A-5)andGeneric Letter99-02(Ref.A-6).
| |
| A-7AppendixAREFERENCESA-1USNRC,"StandardReviewPlanfortheReviewofSafetyAnalysisReportsforNuclearPowerPlants,"NUREG-0800.A-2D.A.Powersetal,"ASimplifiedModelofAerosolRemovalbyNaturalProcessesinReactorContainments,"NUREG/CR-6189,USNRC,July1996.A-3S.L.Humphreysetal.,"RADTRAD:ASimplifiedModelforRadionuclideTransportandRemovalandDoseEstimation,"NUREG/CR-6604,USNRC,April1998.A-4D.A.PowersandS.B.Burson,"ASimplifiedModelofAerosolRemovalbyContainmentSprays,"NUREG/CR-5966,USNRC,June1993.A-5USNRC,"Design,Testing,andMaintenanceCriteriaforPostaccidentEngineered-Safety-FeatureAtmosphereCleanupSystemAirFiltrationandAdsorptionUnitsofLight- Water-CooledNuclearPowerPlants,"RegulatoryGuide1.52,Revision2,March1978.A-6USNRC,"LaboratoryTestingofNuclearGradeActivatedCharcoal,"GenericLetter99-02,June3,1999.A-7USNRC,"PotentialRadioactiveLeakagetoTankVentedtoAtmosphere,"InformationNotice91-56,September19,1991.A-8USNRC,"ClarificationofTMIActionPlanRequirements,"NUREG-0737,November
| |
| 1980.A-9J.E.Cline,"MSIVLeakageIodineTransportAnalysis,"LetterReportdatedMarch26,1991.(ADAMSAccessionNumberML003683718)A-10USNRC,"SafetyEvaluationofGETopicalReport,NEDC-31858P(ProprietaryGEreport),Revision2,BWROGReportforIncreasingMSIVLeakageLimitsandEliminationofLeakageControlSystems
| |
| ,September1993,"letterdatedMarch3,1999,ADAMSAccessionNumber9903110303.
| |
| | |
| B-1AppendixBASSUMPTIONSFOREVALUATINGTHERADIOLOGICALCONSEQUENCESOFAFUELHANDLINGACCIDENTThisappendixprovidesassumptionsacceptabletothestaffforevaluatingtheradiologicalconsequencesofafuelhandlingaccidentatlightwaterreactors.Theseassumptionssupplement theguidanceprovidedinthemainbodyofthisguide.1.SOURCETERMAcceptableassumptionsregardingcoreinventoryandthereleaseofradionuclidesfromthefuelareprovidedinRegulatoryPosition3ofthisguide.Thefollowingassumptionsalso apply.1.1Thenumberoffuelrodsdamagedduringtheaccidentshouldbebasedonaconservativeanalysisthatconsidersthemostlimitingcase.Thisanalysisshouldconsiderparameters suchastheweightofthedroppedheavyloadortheweightofadroppedfuelassembly (plusanyattachedhandlinggrapples),theheightofthedrop,andthecompression, torsion,andshearstressesontheirradiatedfuelrods.Damagetoadjacentfuel assemblies,ifapplicable(e.g.,eventsoverthereactorvessel),shouldbeconsidered.
| |
| | |
| 1.2ThefissionproductreleasefromthebreachedfuelisbasedonRegulatoryPosition3.2ofthisguideandtheestimateofthenumberoffuelrodsbreached.Allthegapactivityin thedamagedrodsisassumedtobeinstantaneouslyreleased.Radionuclidesthatshould beconsideredincludexenons,kryptons,halogens,cesiums,andrubidiums.
| |
| | |
| 1.3Thechemicalformofradioiodinereleasedfromthefueltothespentfuelpoolshouldbeassumedtobe95%cesiumiodide(CsI),4.85percentelementaliodine,and0.15percent organiciodide.TheCsIreleasedfromthefuelisassumedtocompletelydissociateinthe poolwater.BecauseofthelowpHofthepoolwater,theiodinere-evolvesaselemental iodine.Thisisassumedtooccurinstantaneously.TheNRCstaffwillconsider,ona case-by-casebasis,justifiablemechanistictreatmentoftheiodinereleasefromthepool.2.WATERDEPTHIfthedepthofwaterabovethedamagedfuelis23feetorgreater,thedecontamina-tionfactorsfortheelementalandorganicspeciesare500and1,respectively,givinganoverall effectivedecontaminationfactorof200(i.e.,99.5%ofthetotaliodinereleasedfromthe damagedrodsisretainedbythewater).Thisdifferenceindecontaminationfactorsforelemental
| |
| (99.85%)andorganiciodine(0.15%)speciesresultsintheiodineabovethewaterbeing composedof57%elementaland43%organicspecies.Ifthedepthofwaterisnot23feet,the decontaminationfactorwillhavetobedeterminedonacase-by-casemethod(Ref.B-1).
| |
| 1Theseanalysesshouldconsiderthetimefortheradioactivityconcentrationtoreachlevelscorrespondingtothemonitorsetpoint,instrumentlinesamplingtime,detectorresponsetime,diversiondamperalignmenttime,andfiltersystemactuation,as applicable.
| |
| | |
| 2Containment isolationdoesnotimplycontainmentintegrityasdefinedbytechnicalspecificationsfornon-shutdownmodes.Thetermisolationisusedherecollectivelytoencompassbothcontainmentintegrityandcontainmentclosure,typicallyinplace duringshutdownperiods.Tobecreditedintheanalysis,theappropriateformofisolationshouldbeaddressedintechnical specifications.B-23.NOBLEGASESTheretentionofnoblegasesinthewaterinthefuelpoolorreactorcavityisnegligible(i.e.,decontaminationfactorof1).Particulateradionuclidesareassumedtoberetainedbythe waterinthefuelpoolorreactorcavity(i.e.,infinitedecontaminationfactor).4.FUELHANDLINGACCIDENTSWITHINTHEFUELBUILDINGForfuelhandlingaccidentspostulatedtooccurwithinthefuelbuilding,thefollowingassumptionsareacceptabletotheNRCstaff.
| |
| | |
| 4.1Theradioactivematerialthatescapesfromthefuelpooltothefuelbuildingisassumedtobereleasedtotheenvironmentovera2-hourtimeperiod.
| |
| | |
| 4.2Areductionintheamountofradioactivematerialreleasedfromthefuelpoolbyengineeredsafetyfeature(ESF)filtersystemsmaybetakenintoaccountprovidedthese systemsmeettheguidanceofRegulatoryGuide1.52andGenericLetter99-02(Refs.B-2, B-3).Delaysinradiationdetection,actuationoftheESFfiltrationsystem,ordiversionof ventilationflowtotheESFfiltrationsystem
| |
| 1shouldbedeterminedandaccountedforintheradioactivityreleaseanalyses.
| |
| | |
| 4.3TheradioactivityreleasefromthefuelpoolshouldbeassumedtobedrawnintotheESFfiltrationsystemwithoutmixingordilutioninthefuelbuilding.Ifmixingcanbe demonstrated,creditformixinganddilutionmaybeconsideredonacase-by-casebasis.
| |
| | |
| Thisevaluationshouldconsiderthemagnitudeofthebuildingvolumeandexhaustrate, thepotentialforbypasstotheenvironment,thelocationofexhaustplenumsrelativeto thesurfaceofthepool,recirculationventilationsystems,andinternalwallsandfloorsthat impedestreamflowbetweenthesurfaceofthepoolandtheexhaustplenums.5.FUELHANDLINGACCIDENTSWITHINCONTAINMENTForfuelhandlingaccidentspostulatedtooccurwithinthecontainment,thefollowingassumptionsareacceptabletotheNRCstaff.
| |
| | |
| 5.1Ifthecontainmentisisolated
| |
| 2duringfuelhandlingoperations,noradiologicalconsequencesneedtobeanalyzed.
| |
| | |
| 5.2Ifthecontainmentisopenduringfuelhandlingoperations,butdesignedtoautomaticallyisolateintheeventofafuelhandlingaccident,thereleasedurationshouldbebasedon
| |
| 3Thestaffwillgenerallyrequirethattechnicalspecificationsallowingsuchoperationsincludeadministrativecontrolstoclosetheairlock,hatch,oropenpenetrationswithin30minutes.Suchadminstrativecontrolswillgenerallyrequirethatadedicated individualbepresent,withnecessaryequipmentavailable,torestorecontainmentclosureshouldafuelhandlingaccidentoccur.Radiologicalanalysesshouldgenerallynotcreditthismanualisolation.B-3delaysinradiationdetectionandcompletionofcontainmentisolation.Ifitcanbeshownthatcontainmentisolationoccursbeforeradioactivityisreleasedtotheenvironment, 1 noradiologicalconsequencesneedtobeanalyzed.
| |
| | |
| 5.3Ifthecontainmentisopenduringfuelhandlingoperations(e.g.,personnelairlockorequipmenthatchisopen), 3theradioactivematerialthatescapesfromthereactorcavitypooltothecontainmentisreleasedtotheenvironmentovera2-hourtimeperiod.
| |
| | |
| 5.4AreductionintheamountofradioactivematerialreleasedfromthecontainmentbyESFfiltersystemsmaybetakenintoaccountprovidedthatthesesystemsmeettheguidanceof RegulatoryGuide1.52andGenericLetter99-02(Refs.B-2andB-3).Delaysinradiation detection,actuationoftheESFfiltrationsystem,ordiversionofventilationflowtothe ESFfiltrationsystemshouldbedeterminedandaccountedforintheradioactivityrelease analyses.1 5.5Creditfordilutionormixingoftheactivityreleasedfromthereactorcavitybynaturalorforcedconvectioninsidethecontainmentmaybeconsideredonacase-by-casebasis.
| |
| | |
| Suchcreditisgenerallylimitedto50%ofthecontainmentfreevolume.Thisevaluation shouldconsiderthemagnitudeofthecontainmentvolumeandexhaustrate,thepotential forbypasstotheenvironment,thelocationofexhaustplenumsrelativetothesurfaceof thereactorcavity,recirculationventilationsystems,andinternalwallsandfloorsthat impedestreamflowbetweenthesurfaceofthereactorcavityandtheexhaustplenums.
| |
| | |
| B-4AppendixBREFERENCESB-1.G.Burley,"EvaluationofFissionProductReleaseandTransport,"StaffTechnicalPaper,1971.(NRCAccessionnumber8402080322inADAMSorPARS)B-2.USNRC,"Design,Testing,andMaintenanceCriteriaforPostaccidentEngineered-Safety-FeatureAtmosphereCleanupSystemAirFiltrationandAdsorptionUnitsofLight-Water- CooledNuclearPowerPlants,"RegulatoryGuide1.52,Revision2,March1978.B-3.USNRC,"LaboratoryTestingofNuclearGradeActivatedCharcoal,"GenericLetter99-02,June3,1999.
| |
| | |
| 1Theactivityassumedintheanalysisshouldbebasedontheactivityassociatedwiththeprojectedfueldamageorthemaximumtechnicalspecificationvalues,whichevermaximizestheradiologicalconsequences.IndeterminingthedoseequivalentI-131 (DEI-131),onlytheradioiodineassociatedwithnormaloperationsoriodinespikesshouldbeincluded.Activityfromprojected fueldamageshouldnotbeincluded.
| |
| | |
| 2Ifthereareforcedflowpathsfromtheturbineorcondenser,suchasunisolatedmotorvacuumpumpsorunprocessedairejectors,theleakagerateshouldbeassumedtobetheflowrateassociatedwiththemostlimitingofthesepaths.Creditfor collectionandprocessingofreleases,suchasbyoffgasorstandbygastreatment,willbeconsideredonacase-by-casebasis.C-1AppendixCASSUMPTIONSFOREVALUATINGTHERADIOLOGICALCONSEQUENCESOFABWRRODDROPACCIDENTThisappendixprovidesassumptionsacceptabletotheNRCstaffforevaluatingtheradiologicalconsequencesofaroddropaccidentatBWRlight-waterreactors.These assumptionssupplementtheguidanceprovidedinthemainbodyofthisguide.
| |
| | |
| 1.AssumptionsacceptabletotheNRCstaffregardingcoreinventoryareprovidedinRegulatoryPosition3ofthisguide.Fortheroddropaccident,thereleasefromthebreachedfuel isbasedontheestimateofthenumberoffuelrodsbreachedandtheassumptionthat10%ofthe coreinventoryofthenoblegasesandiodinesisinthefuelgap.Thereleaseattributedtofuel meltingisbasedonthefractionofthefuelthatreachesorexceedstheinitiationtemperaturefor fuelmeltingandontheassumptionthat100%ofthenoblegasesand50%oftheiodines containedinthatfractionarereleasedtothereactorcoolant.
| |
| | |
| ===2. Ifnoorminimal===
| |
| 1fueldamageispostulatedforthelimitingevent,thereleasedactivityshouldbethemaximumcoolantactivity(typically4µCi/gmDEI-131)allowedbythetechnical specifications.
| |
| | |
| 3.TheassumptionsacceptabletotheNRCstaffthatarerelatedtothetransport,reduction,andreleaseofradioactivematerialfromthefuelandthereactorcoolantareasfollows.
| |
| | |
| 3.1Theactivityreleasedfromthefuelfromeitherthegaporfromfuelpelletsisassumedtobeinstantaneouslymixedinthereactorcoolantwithinthepressurevessel.
| |
| | |
| 3.2Creditshouldnotbeassumedforpartitioninginthepressurevesselorforremovalbythesteamseparators.
| |
| | |
| 3.3Oftheactivityreleasedfromthereactorcoolantwithinthepressurevessel,100%ofthenoblegases,10%oftheiodine,and1%oftheremainingradionuclidesareassumedto reachtheturbineandcondensers.
| |
| | |
| 3.4Oftheactivitythatreachestheturbineandcondenser,100%ofthenoblegases,10%oftheiodine,and1%oftheparticulateradionuclidesareavailableforreleasetothe environment.Theturbineandcondensersleaktotheatmosphereasaground-level releaseatarateof1%perday
| |
| 2foraperiodof24hours,atwhichtimetheleakageisassumedtoterminate.Nocreditshouldbeassumedfordilutionorholdupwithinthe C-2turbinebuilding.Radioactivedecayduringholdupintheturbineandcondensermaybe assumed.3.5Inlieuofthetransportassumptionsprovidedinparagraphs3.2through3.4above,amoremechanisticanalysismaybeusedonacase-by-casebasis.Suchanalysesaccountforthe quantityofcontaminatedsteamcarriedfromthepressurevesseltotheturbineand condensersbasedonareviewoftheminimumtransporttimefromthepressurevesselto thefirstmainsteamisolation(MSIV)andconsidersMSIVclosuretime.
| |
| | |
| 3.6Theiodinespeciesreleasedfromthereactorcoolantwithinthepressurevesselshouldbeassumedtobe95%CsIasanaerosol,4.85%elemental,and0.15%organic.Therelease fromtheturbineandcondensershouldbeassumedtobe97%elementaland3%organic.
| |
| | |
| 1Theactivityassumedintheanalysisshouldbebasedontheactivityassociatedwiththeprojectedfueldamageorthemaximumtechnicalspecificationvalues,whichevermaximizestheradiologicalconsequences.IndeterminingdoseequivalentI-131(DEI-
| |
| 131),onlytheradioiodineassociatedwithnormaloperationsoriodinespikesshouldbeincluded.Activityfromprojectedfuel damageshouldnotbeincluded.D-1AppendixDASSUMPTIONSFOREVALUATINGTHERADIOLOGICALCONSEQUENCESOFABWRMAINSTEAMLINEBREAKACCIDENTThisappendixprovidesassumptionsacceptabletotheNRCstaffforevaluatingtheradiologicalconsequencesofamainsteamlineaccidentatBWRlightwaterreactors.These assumptionssupplementtheguidanceprovidedinthemainbodyofthisguid
| |
| | |
| ====e. SOURCETERM====
| |
| 1.AssumptionsacceptabletotheNRCstaffregardingcoreinventoryandthereleaseofradionuclidesfromthefuelareprovidedinRegulatoryPosition3ofthisguide.Thereleasefrom thebreachedfuelisbasedonRegulatoryPosition3.2ofthisguideandtheestimateofthe numberoffuelrodsbreached.
| |
| | |
| ===2. Ifnoorminimal===
| |
| 1fueldamageispostulatedforthelimitingevent,thereleasedactivityshouldbethemaximumcoolantactivityallowedbytechnicalspecification.Theiodine concentrationintheprimarycoolantisassumedtocorrespondtothefollowingtwocasesinthe nuclearsteamsupplysystemvendor'sstandardtechnicalspecifications.
| |
| | |
| 2.1Theconcentrationthatisthemaximumvalue(typically4.0µCi/gmDEI-131)permittedandcorrespondstotheconditionsofanassumedpre-accidentspike,and
| |
| 2.1Theconcentrationthatisthemaximumequilibriumvalue(typically0.2µCi/gmDEI-131)permittedforcontinuedfullpoweroperation.
| |
| | |
| 3.Theactivityreleasedfromthefuelshouldbeassumedtomixinstantaneouslyandhomogeneouslyinthereactorcoolant.Noblegasesshouldbeassumedtoenterthesteamphase instantaneously.TRANSPORT 4.AssumptionsacceptabletotheNRCstaffrelatedtothetransport,reduction,andreleaseofradioactivematerialtotheenvironmentareasfollows.
| |
| | |
| 4.1Themainsteamlineisolationvalves(MSIV)shouldbeassumedtocloseinthemaximumtimeallowedbytechnicalspecifications.
| |
| | |
| 4.2Thetotalmassofcoolantreleasedshouldbeassumedtobethatamountinthesteamlineandconnectinglinesatthetimeofthebreakplustheamountthatpassesthroughthe valvespriortoclosure.
| |
| | |
| D-2 4.3Alltheradioactivityinthereleasedcoolantshouldbeassumedtobereleasedtotheatmosphereinstantaneouslyasaground-levelrelease.Nocreditshouldbeassumedfor plateout,holdup,ordilutionwithinfacilitybuildings.
| |
| | |
| 4.4Theiodinespeciesreleasedfromthemainsteamlineshouldbeassumedtobe95%CsIasanaerosol,4.85%elemental,and0.15%organic.
| |
| | |
| 1Facilitieslicensedwith,orapplyingfor,alternativerepaircriteria(ARC)shouldusethissectioninconjunctionwiththeguidancethatisbeingdevelopedinDraftRegulatoryGuideDG-1074,"SteamGeneratorTubeIntegrity,"foracceptableassumptionsandmethodologiesforperformingradiologicalanalyses.
| |
| | |
| 2Theactivityassumedintheanalysisshouldbebasedontheactivityassociatedwiththeprojectedfueldamageorthemaximumtechnicalspecificationvalues,whichevermaximizestheradiologicalconsequences.IndeterminingdoseequivalentI-131(DEI-
| |
| 131),onlytheradioiodineassociatedwithnormaloperationsoriodinespikesshouldbeincluded.Activityfromprojectedfuel damageshouldnotbeincluded.E-1AppendixEASSUMPTIONSFOREVALUATINGTHERADIOLOGICALCONSEQUENCESOFAPWRMAINSTEAMLINEBREAKACCIDENTThisappendixprovidesassumptionsacceptabletotheNRCstaffforevaluatingtheradiologicalconsequencesofamainsteamlinebreakaccidentatPWRlightwaterreactors.
| |
| | |
| Theseassumptionssupplementtheguidanceprovidedinthemainbodyofthisguide.
| |
| | |
| 1SOURCETERMS
| |
| 1.AssumptionsacceptabletotheNRCstaffregardingcoreinventoryandthereleaseofradionuclidesfromthefuelareprovidedinRegulatoryPosition3ofthisregulatoryguide.The releasefromthebreachedfuelisbasedonRegulatoryPosition3.2ofthisguideandtheestimate ofthenumberoffuelrodsbreached.Thefueldamageestimateshouldassumethatthehighest worthcontrolrodisstuckatitsfullywithdrawnposition.
| |
| | |
| ===2. Ifnoorminimal===
| |
| 2fueldamageispostulatedforthelimitingevent,theactivityreleasedshouldbethemaximumcoolantactivityallowedbythetechnicalspecifications.Twocasesof iodinespikingshouldbeassumed.
| |
| | |
| 2.1Areactortransienthasoccurredpriortothepostulatedmainsteamlinebreak(MSLB)andhasraisedtheprimarycoolantiodineconcentrationtothemaximumvalue(typically
| |
| 60µCi/gmDEI-131)permittedbythetechnicalspecifications(i.e.,apreaccidentiodine spikecase).
| |
| 2.2TheprimarysystemtransientassociatedwiththeMSLBcausesaniodinespikeintheprimarysystem.Theincreaseinprimarycoolantiodineconcentrationisestimatedusinga spikingmodelthatassumesthattheiodinereleaseratefromthefuelrodstotheprimary coolant(expressedincuriesperunittime)increasestoavalue500timesgreaterthanthe releaseratecorrespondingtotheiodineconcentrationattheequilibriumvalue(typically
| |
| 1.0µCi/gmDEI-131)specifiedintechnicalspecifications(i.e.,concurrentiodinespike case).Aconcurrentiodinespikeneednotbeconsiderediffueldamageispostulated.
| |
| | |
| Theassumediodinespikedurationshouldbe8hours.Shorterspikedurationsmaybe consideredonacase-by-casebasisifitcanbeshownthattheactivityreleasedbythe8- hourspikeexceedsthatavailableforreleasefromthefuelgapofallfuelpins.
| |
| | |
| 3.Theactivityreleasedfromthefuelshouldbeassumedtobereleasedinstantaneouslyandhomogeneouslythroughtheprimarycoolant.
| |
| | |
| 3Inthisappendix,rupturedreferstothestateofthesteamgeneratorinwhichprimary-to-secondaryleakageratehasincreasedtoavaluegreaterthantechnicalspecifications.FaultedreferstothestateofthesteamgeneratorinwhichthesecondarysidehasbeendepressurizedbyaMSLBsuchthatprotectivesystemresponse(mainsteamlineisolation,reactortrip,safetyinjection,etc.)hasoccurred.PartitioningCoefficientisdefinedas:
| |
| PCmassofIperunitmassofliquidmassofIperunitmassofgas
| |
| =2 2E-2 4.Thechemicalformofradioiodinereleasedfromthefuelshouldbeassumedtobe95%cesiumiodide(CsI),4.85percentelementaliodine,and0.15percentorganiciodide.Iodine releasesfromthesteamgeneratorstotheenvironmentshouldbeassumedtobe97%elemental and3%organic.Thesefractionsapplytoiodinereleasedasaresultoffueldamageandtoiodine releasedduringnormaloperations,includingiodinespiking.TRANSPORT 3 5.AssumptionsacceptabletotheNRCstaffrelatedtothetransport,reduction,andreleaseofradioactivematerialtotheenvironmentareasfollows.
| |
| | |
| 5.1Forfacilitiesthathavenotimplementedalternativerepaircriteria(seeRef.E-1,DG-1074),theprimary-to-secondaryleakrateinthesteamgeneratorsshouldbeassumedto betheleakratelimitingconditionforoperationspecifiedinthetechnicalspecifications.
| |
| | |
| Forfacilitieswithtraditionalgeneratorspecifications(bothpergeneratorandtotalofall generators),theleakageshouldbeapportionedbetweenaffectedandunaffectedsteam generatorsinsuchamannerthatthecalculateddoseismaximized.
| |
| | |
| 5.2Thedensityusedinconvertingvolumetricleakrates(e.g.,gpm)tomassleakrates(e.g.,lbm/hr)shouldbeconsistentwiththebasisoftheparameterbeingconverte
| |
| | |
| ====d. TheARC====
| |
| leakratecorrelationsaregenerallybasedonthecollectionofcooledliquid.Surveillance testsandfacilityinstrumentationusedtoshowcompliancewithleakratetechnical specificationsaretypicallybasedoncooledliquid.Inmostcases,thedensityshouldbe assumedtobe1.0gm/cc(62.4lbm/ft
| |
| 3).5.3Theprimary-to-secondaryleakageshouldbeassumedtocontinueuntiltheprimarysystempressureislessthanthesecondarysystempressure,oruntilthetemperatureofthe leakageislessthan100°C(212°F).Thereleaseofradioactivityfromunaffectedsteam generatorsshouldbeassumedtocontinueuntilshutdowncoolingisinoperationand releasesfromthesteamgeneratorshavebeenterminated.
| |
| | |
| 5.4Allnoblegasradionuclidesreleasedfromtheprimarysystemareassumedtobereleasedtotheenvironmentwithoutreductionormitigation.
| |
| | |
| 5.5Thetransportmodeldescribedinthissectionshouldbeutilizedforiodineandparticulatereleasesfromthesteamgenerators.ThismodelisshowninFigureE-1andsummarized
| |
| | |
| below:
| |
| E-3SteamSpaceBulkWaterPrimaryLeakageScrubbingPartitioningReleaseFigureE-1TransportModel
| |
| 5.5.1Aportionoftheprimary-to-secondaryleakagewillflashtovapor,basedonthethermodynamicconditionsinthereactorandsecondarycoolant.
| |
| | |
| *Duringperiodsofsteamgeneratordryout,alloftheprimary-to-secondaryleakageisassumedtoflashtovaporandbereleasedtotheenvironmentwithnomitigation.
| |
| | |
| *Withregardtotheunaffectedsteamgeneratorsusedforplantcooldown,theprimary-to-secondaryleakagecanbeassumedtomixwiththesecondarywaterwithoutflashingduringperiodsoftotaltube submergence.
| |
| | |
| 5.5.2Theleakagethatimmediatelyflashestovaporwillrisethroughthebulkwaterofthesteamgeneratorandenterthesteamspace.Creditmaybetakenforscrubbing inthegenerator,usingthemodelsinNUREG-0409,"IodineBehaviorinaPWR
| |
| CoolingSystemFollowingaPostulatedSteamGeneratorTubeRuptureAccident"
| |
| (Ref.E-2),duringperiodsoftotalsubmergenceofthetubes.
| |
| | |
| 5.5.3Theleakagethatdoesnotimmediatelyflashisassumedtomixwiththebulk water.5.5.4Theradioactivityinthebulkwaterisassumedtobecomevaporataratethatisthefunctionofthesteamingrateandthepartitioncoefficient.Apartitioncoefficient foriodineof100maybeassumed.Theretentionofparticulateradionuclidesin thesteamgeneratorsislimitedbythemoisturecarryoverfromthesteam generators.
| |
| | |
| 5.6Operatingexperienceandanalyseshaveshownthatforsomesteamgeneratordesigns,tubeuncoverymayoccurforashortperiodfollowinganyreactortrip(Ref.E-3).The potentialimpactoftubeuncoveryonthetransportmodelparameters(e.g.,flashfraction, scrubbingcredit)needstobeconsidered.Theimpactofemergencyoperatingprocedure restorationstrategiesonsteamgeneratorwaterlevelsshouldbeevaluated.
| |
| | |
| E-4AppendixEREFERENCESE-1USNRC,"SteamGeneratorTubeIntegrity,"DraftRegulatoryGuideDG-1074,December
| |
| 1998.E-2.USNRC,"IodineBehaviorinaPWRCoolingSystemFollowingaPostulatedSteamGeneratorTubeRuptureAccident,"NUREG-0409,May1985.E-3USNRC,"SteamGeneratorTubeRuptureAnalysisDeficiency,"InformationNotice88-31,May25,1988.
| |
| | |
| 1Facilitieslicensedwith,orapplyingfor,alternativerepaircriteria(ARC)shouldusethissectioninconjunctionwiththeguidancethatisbeingdevelopedinDraftRegulatoryGuideDG-1074,"SteamGeneratorTubeIntegrity"(USNRC,December1998),foracceptableassumptionsandmethodologiesforperformingradiologicalanalyses.
| |
| | |
| 2Theactivityassumedintheanalysisshouldbebasedontheactivityassociatedwiththeprojectedfueldamageorthemaximumtechnicalspecificationvalues,whichevermaximizestheradiologicalconsequences.IndeterminingdoseequivalentI-131(DEI-
| |
| 131),onlytheradioiodineassociatedwithnormaloperationsoriodinespikesshouldbeincluded.Activityfromprojectedfuel damageshouldnotbeincluded.F-1AppendixFASSUMPTIONSFOREVALUATINGTHERADIOLOGICALCONSEQUENCESOFAPWRSTEAMGENERATORTUBERUPTUREACCIDENTThisappendixprovidesassumptionsacceptabletotheNRCstaffforevaluatingtheradiologicalconsequencesofasteamgeneratortuberuptureaccidentatPWRlight-water reactors.Theseassumptionssupplementtheguidanceprovidedinthemainbodyofthisguide.
| |
| | |
| 1SOURCETERM1.AssumptionsacceptabletotheNRCstaffregardingcoreinventoryandthereleaseofradionuclidesfromthefuelareinRegulatoryPosition3ofthisguide.Thereleasefromthe breachedfuelisbasedonRegulatoryPosition3.2ofthisguideandtheestimateofthenumberof fuelrodsbreached.
| |
| | |
| ===2. Ifnoorminimal===
| |
| 2fueldamageispostulatedforthelimitingevent,theactivityreleasedshouldbethemaximumcoolantactivityallowedbytechnicalspecification.Twocasesofiodine spikingshouldbeassumed.
| |
| | |
| 2.1Areactortransienthasoccurredpriortothepostulatedsteamgeneratortuberupture(SGTR)andhasraisedtheprimarycoolantiodineconcentrationtothemaximumvalue (typically60µCi/gmDEI-131)permittedbythetechnicalspecifications(i.e.,a preaccidentiodinespikecase).
| |
| 2.2TheprimarysystemtransientassociatedwiththeSGTRcausesaniodinespikeintheprimarysystem.Theincreaseinprimarycoolantiodineconcentrationisestimatedusing aspikingmodelthatassumesthattheiodinereleaseratefromthefuelrodstotheprimary coolant(expressedincuriesperunittime)increasestoavalue335timesgreaterthanthe releaseratecorrespondingtotheiodineconcentrationattheequilibriumvalue(typically
| |
| 1.0µCi/gmDEI-131)specifiedintechnicalspecifications(i.e.,concurrentiodinespike case).Aconcurrentiodinespikeneednotbeconsiderediffueldamageispostulated.
| |
| | |
| Theassumediodinespikedurationshouldbe8hours.Shorterspikedurationsmaybe consideredonacase-by-casebasisifitcanbeshownthattheactivityreleasedbythe8- hourspikeexceedsthatavailableforreleasefromthefuelgapofallfuelpins.
| |
| | |
| 3.Theactivityreleasedfromthefuel,ifany,shouldbeassumedtobereleasedinstantaneouslyandhomogeneouslythroughtheprimarycoolant.
| |
| | |
| 3Inthisappendix,rupturedreferstothestateofthesteamgeneratorinwhichprimary-to-secondaryleakageratehasincreasedtoavaluegreaterthantechnicalspecifications.F-2 4.Iodinereleasesfromthesteamgeneratorstotheenvironmentshouldbeassumedtobe97%elementaland3%organic.TRANSPORT 3 5.AssumptionsacceptabletotheNRCstaffrelatedtothetransport,reduction,andreleaseofradioactivematerialtotheenvironmentareasfollows:
| |
| 5.1Theprimary-to-secondaryleakrateinthesteamgeneratorsshouldbeassumedtobetheleakratelimitingconditionforoperationspecifiedinthetechnicalspecifications.The leakageshouldbeapportionedbetweenaffectedandunaffectedsteamgeneratorsinsuch amannerthatthecalculateddoseismaximized.
| |
| | |
| 5.2Thedensityusedinconvertingvolumetricleakrates(e.g.,gpm)tomassleakrates(e.g.,lbm/hr)shouldbeconsistentwiththebasisofsurveillancetestsusedtoshowcompliance withleakratetechnicalspecifications.Thesetestsaretypicallybasedoncoolliquid.
| |
| | |
| Facilityinstrumentationusedtodetermineleakageistypicallylocatedonlinescontaining coolliquids.Inmostcases,thedensityshouldbeassumedtobe1.0gm/cc(62.4lbm/ft
| |
| 3).5.3Theprimary-to-secondaryleakageshouldbeassumedtocontinueuntiltheprimarysystempressureislessthanthesecondarysystempressure,oruntilthetemperatureoftheleakageislessthan100
| |
| °C(212°F).Thereleaseofradioactivityfromtheunaffectedsteamgeneratorsshouldbeassumedtocontinueuntilshutdowncoolingisinoperationandreleasesfromthesteamgeneratorshavebeenterminated.
| |
| | |
| 5.4Thereleaseoffissionproductsfromthesecondarysystemshouldbeevaluatedwiththeassumptionofacoincidentlossofoffsitepower.
| |
| | |
| 5.5Allnoblegasradionuclidesreleasedfromtheprimarysystemareassumedtobereleasedtotheenvironmentwithoutreductionormitigation.
| |
| | |
| 5.6ThetransportmodeldescribedinRegulatoryPositions5.5and5.6ofAppendixEshouldbeutilizedforiodineandparticulates.
| |
| | |
| 1Facilitieslicensedwith,orapplyingfor,alternativerepaircriteria(ARC)shouldusethissectioninconjunctionwiththeguidancethatisbeingdevelopedinDraftRegulatoryGuideDG-1074,"SteamGeneratorTubeIntegrity"(USNRC,December1998),foracceptableassumptionsandmethodologiesforperformingradiologicalanalyses.G-1AppendixGASSUMPTIONSFOREVALUATINGTHERADIOLOGICALCONSEQUENCESOFAPWRLOCKEDROTORACCIDENTThisappendixprovidesassumptionsacceptabletotheNRCstaffforevaluatingtheradiologicalconsequencesofalockedrotoraccidentatPWRlightwaterreactors.
| |
| | |
| 1 Theseassumptionssupplementtheguidanceprovidedinthemainbodyofthisguid
| |
| | |
| ====e. SOURCETERM====
| |
| 1.AssumptionsacceptabletotheNRCstaffregardingcoreinventoryandthereleaseofradionuclidesfromthefuelareinRegulatoryPosition3ofthisregulatoryguide.Therelease fromthebreachedfuelisbasedonRegulatoryPosition3.2ofthisguideandtheestimateofthe numberoffuelrodsbreached.
| |
| | |
| 2.Ifnofueldamageispostulatedforthelimitingevent,aradiologicalanalysisisnotrequiredastheconsequencesofthiseventareboundedbytheconsequencesprojectedforthe mainsteamlinebreakoutsidecontainment.
| |
| | |
| 3.Theactivityreleasedfromthefuelshouldbeassumedtobereleasedinstantaneouslyandhomogeneouslythroughtheprimarycoolant.
| |
| | |
| 4.Thechemicalformofradioiodinereleasedfromthefuelshouldbeassumedtobe95%cesiumiodide(CsI),4.85percentelementaliodine,and0.15percentorganiciodide.Iodine releasesfromthesteamgeneratorstotheenvironmentshouldbeassumedtobe97%elemental and3%organic.Thesefractionsapplytoiodinereleasedasaresultoffueldamageandtoiodine releasedduringnormaloperations,includingiodinespikin
| |
| | |
| ====g. RELEASETRANSPORT====
| |
| 5.AssumptionsacceptabletotheNRCstaffrelatedtothetransport,reduction,andreleaseofradioactivematerialtotheenvironmentareasfollows.
| |
| | |
| 5.1Theprimary-to-secondaryleakrateinthesteamgeneratorsshouldbeassumedtobetheleak-rate-limitingconditionforoperationspecifiedinthetechnicalspecifications.The leakageshouldbeapportionedbetweenthesteamgeneratorsinsuchamannerthatthe calculateddoseismaximized.
| |
| | |
| 5.2Thedensityusedinconvertingvolumetricleakrates(e.g.,gpm)tomassleakrates(e.g.,lbm/hr)shouldbeconsistentwiththebasisofsurveillancetestsusedtoshowcompliance withleakratetechnicalspecifications.Thesetestsaretypicallybasedoncoolliquid.
| |
| | |
| G-2Facilityinstrumentationusedtodetermineleakageistypicallylocatedonlinescontainingcoolliquids.Inmostcases,thedensityshouldbeassumedtobe1.0gm/cc(62.4lbm/ft
| |
| 3).5.3Theprimary-to-secondaryleakageshouldbeassumedtocontinueuntiltheprimarysystempressureislessthanthesecondarysystempressure,oruntilthetemperatureoftheleakageislessthan100
| |
| °C(212°F).Thereleaseofradioactivityshouldbeassumedtocontinueuntilshutdowncoolingisinoperationandreleasesfromthesteamgeneratorshavebeenterminated.
| |
| | |
| 5.4Thereleaseoffissionproductsfromthesecondarysystemshouldbeevaluatedwiththeassumptionofacoincidentlossofoffsitepower.
| |
| | |
| 5.5Allnoblegasradionuclidesreleasedfromtheprimarysystemareassumedtobereleasedtotheenvironmentwithoutreductionormitigation.
| |
| | |
| 5.6Thetransportmodeldescribedinassumptions5.5and5.6ofAppendixEshouldbeutilizedforiodineandparticulates.
| |
| | |
| 1Facilitieslicensedwith,orapplyingfor,alternativerepaircriteria(ARC)shouldusethissectioninconjunctionwiththeguidancethatisbeingdevelopedinDraftRegulatoryGuideDG-1074,"SteamGeneratorTubeIntegrity"(USNRC,December1998),foracceptableassumptionsandmethodologiesforperformingradiologicalanalyses.H-1AppendixHASSUMPTIONSFOREVALUATINGTHERADIOLOGICALCONSEQUENCESOFAPWRRODEJECTIONACCIDENTThisappendixprovidesassumptionsacceptabletotheNRCstaffforevaluatingtheradiologicalconsequencesofarodejectionaccidentatPWRlightwaterreactors.
| |
| | |
| 1 Theseassumptionssupplementtheguidanceprovidedinthemainbodyofthisguid
| |
| | |
| ====e. SOURCETERM====
| |
| 1.AssumptionsacceptabletotheNRCstaffregardingcoreinventoryareinRegulatoryPosition3ofthisguide.Fortherodejectionaccident,thereleasefromthebreachedfuelisbased ontheestimateofthenumberoffuelrodsbreachedandtheassumptionthat10%ofthecore inventoryofthenoblegasesandiodinesisinthefuelgap.Thereleaseattributedtofuelmelting isbasedonthefractionofthefuelthatreachesorexceedstheinitiationtemperatureforfuel meltingandtheassumptionthat100%ofthenoblegasesand25%oftheiodinescontainedin thatfractionareavailableforreleasefromcontainment.Forthesecondarysystemrelease pathway,100%ofthenoblegasesand50%oftheiodinesinthatfractionarereleasedtothe reactorcoolant.
| |
| | |
| 2.Ifnofueldamageispostulatedforthelimitingevent,aradiologicalanalysisisnotrequiredastheconsequencesofthiseventareboundedbytheconsequencesprojectedforthe loss-of-coolantaccident(LOCA),mainsteamlinebreak,andsteamgeneratortuberupture.
| |
| | |
| 3.Tworeleasecasesaretobeconsidered.Inthefirst,100%oftheactivityreleasedfromthefuelshouldbeassumedtobereleasedinstantaneouslyandhomogeneouslythroughthe containmentatmosphere.Inthesecond,100%oftheactivityreleasedfromthefuelshouldbe assumedtobecompletelydissolvedintheprimarycoolantandavailableforreleasetothe secondarysystem.
| |
| | |
| 4.Thechemicalformofradioiodinereleasedtothecontainmentatmosphereshouldbeassumedtobe95%cesiumiodide(CsI),4.85%elementaliodine,and0.15%organiciodide.If containmentspraysdonotactuateorareterminatedpriortoaccumulatingsumpwater,orifthe containmentsumppHisnotcontrolledatvaluesof7orgreater,theiodinespeciesshouldbe evaluatedonanindividualcasebasis.EvaluationsofpHshouldconsidertheeffectofacids createdduringtherodejectionaccidentevent,e.g.,pyrolysisandradiolysisproducts.Withthe exceptionofelementalandorganiciodineandnoblegases,fissionproductsshouldbeassumed tobeinparticulateform.
| |
| | |
| 5.Iodinereleasesfromthesteamgeneratorstotheenvironmentshouldbeassumedtobe97%elementaland3%organic.
| |
| | |
| H-2TRANSPORTFROMCONTAINMENT
| |
| 6.AssumptionsacceptabletotheNRCstaffrelatedtothetransport,reduction,andreleaseofradioactivematerialinandfromthecontainmentareasfollows.
| |
| | |
| 6.1Areductionintheamountofradioactivematerialavailableforleakagefromthecontainmentthatisduetonaturaldeposition,containmentsprays,recirculatingfilter systems,dualcontainments,orotherengineeredsafetyfeaturesmaybetakeninto account.RefertoAppendixAtothisguideforguidanceonacceptablemethodsand assumptionsforevaluatingthesemechanisms.
| |
| | |
| 6.2Thecontainmentshouldbeassumedtoleakattheleakrateincorporatedinthetechnicalspecificationsatpeakaccidentpressureforthefirst24hours,andat50%ofthisleakrate fortheremainingdurationoftheaccident.Peakaccidentpressureisthemaximum pressuredefinedinthetechnicalspecificationsforcontainmentleaktesting.Leakage fromsubatmosphericcontainmentsisassumedtobeterminatedwhenthecontainmentis broughttoasubatmosphericconditionasdefinedintechnicalspecifications.TRANSPORTFROMSECONDARYSYSTEM
| |
| 7.AssumptionsacceptabletotheNRCstaffrelatedtothetransport,reduction,andreleaseofradioactivematerialinandfromthesecondarysystemareasfollows.
| |
| | |
| 7.1Aleakrateequivalenttotheprimary-to-secondaryleakratelimitingconditionforoperationspecifiedinthetechnicalspecificationsshouldbeassumedtoexistuntil shutdowncoolingisinoperationandreleasesfromthesteamgeneratorshavebeen terminated.
| |
| | |
| 7.2Thedensityusedinconvertingvolumetricleakrates(e.g.,gpm)tomassleakrates(e.g.,lbm/hr)shouldbeconsistentwiththebasisofsurveillancetestsusedtoshowcompliance withleakratetechnicalspecifications.Theseteststypicallyarebasedoncooledliquid.
| |
| | |
| Thefacility'sinstrumentationusedtodetermineleakagetypicallyislocatedonlines containingcoolliquids.Inmostcases,thedensityshouldbeassumedtobe1.0gm/cc
| |
| (62.4lbm/ft
| |
| 3).7.3Allnoblegasradionuclidesreleasedtothesecondarysystemareassumedtobereleasedtotheenvironmentwithoutreductionormitigation.
| |
| | |
| 7.4Thetransportmodeldescribedinassumptions5.5and5.6ofAppendixEshouldbeutilizedforiodineandparticulates.
| |
| | |
| I-1AppendixIASSUMPTIONSFOREVALUATINGRADIATIONDOSESFOREQUIPMENTQUALIFICATIONThisappendixaddressesassumptionsassociatedwithequipmentqualificationthatareacceptabletotheNRCstaffforperformingradiologicalassessments.AsstatedinRegulatory Position6ofthisguide,thisappendixsupersedesRegulatoryPositions2.c.(1)and2.c.(2)and AppendixDofRevision1ofRegulatoryGuide1.89,"EnvironmentalQualificationofCertain ElectricEquipmentImportanttoSafetyforNuclearPowerPlants"(USNRC,June1984),for operatingreactorsthathaveamendedtheirlicensingbasistouseanalternativesourceterm.
| |
| | |
| Exceptasstatedinthisappendix,otherassumptions,methods,andprovisionsofRevision1of RegulatoryGuide1.89remaineffectiv
| |
| | |
| ====e. BASICASSUMPTIONS====
| |
| 1.Gammaandbetadosesanddoseratesshouldbedeterminedforthreetypesofradioactivesourcedistributions:(1)activitysuspendedinthecontainmentatmosphere,(2)activityplatedout oncontainmentsurfaces,and(3)activitymixedinthecontainmentsumpwater.Agivenpieceof equipmentmayreceiveadosecontributionfromanyorallofthesesources.Theamountofdose contributedbyeachofthesesourcesisdeterminedbythelocationoftheequipment,thetime- dependentandlocation-dependentdistributionofthesource,andtheeffectsofshieldin
| |
| | |
| ====g. ForEQ====
| |
| componentslocatedoutsideofthecontainment,additionalradiationsourcesmayincludepiping andcomponentsinsystemsthatcirculatecontainmentsumpwateroutsideofcontainment.
| |
| | |
| Activitydepositedinventilationandprocessfiltermediamaybeasourceofpost-accidentdose.
| |
| | |
| 2.Theintegrateddoseshouldbedeterminedfromestimateddoseratesusingappropriateintegrationfactorsdeterminedforeachofthemajorsourceterms(e.g.,containmentsump, containmentatmosphere,ECCS,normaloperation).Theperiodofexposureshouldbeconsistent withthesurvivabilityperiodfortheEQequipmentbeingevaluated.Thesurvivabilityperiodis themaximumduration,post-accident,thattheparticularEQcomponentisexpectedtooperate andperformitsintendedsafetyfunction.Theperiodofexposurefornormaloperationdoseis generallythedurationoftheplantlicense,i.e.,40years.FISSIONPRODUCTCONCENTRATIONS
| |
| 3.Theradiationenvironmentresultingfromnormaloperationsshouldbebasedontheconservativesourcetermestimatesreportedinthefacility'sSafetyAnalysisReportorshouldbe consistentwiththeprimarycoolantspecificactivitylimitscontainedinthefacility'stechnical specifications.Theuseofequilibriumprimarycoolantconcentrationsbasedon1%fuelcladding failureswouldbeoneacceptablemethod.Inestimatingtheintegrateddosefrompriornormal operations,appropriatehistoricaldoseratedatamaybeusedwhereavailable.
| |
| | |
| 4.Theradioactivityreleasedfromthecoreduringadesignbasisloss-of-coolantaccident(LOCA)shouldbebasedontheassumptionsprovidedinRegulatoryPosition3andAppendixA
| |
| ofthisregulatoryguide.AlthoughthedesignbasisLOCAisgenerallylimitingforradiological I-2environmentalqualification(EQ)purposes,theremaybecomponentsforwhichanotherdesignbasisaccidentmaybelimiting.Inthesecases,theassumptionsprovidedinAppendicesB
| |
| throughHofthisregulatoryguide,asapplicable,shouldbeused.Applicablefeaturesand mechanismsmaybeassumedinEQcalculationsprovidedthatanyprerequisitesandlimitations identifiedregardingtheirusearemet.Thereareadditionalconsiderations:*ForPWRicecondensercontainments,thesourceshouldbeassumedtobeinitiallyreleasedtothelowercontainmentcompartment.Thedistributionoftheactivityshould bebasedontheforcedrecirculationfanflowratesandthetransferratesthroughtheice bedsasfunctionsoftime.*ForBWRMarkIIIdesigns,alltheactivityshouldbeassumedinitiallyreleasedtothedrywellareaandthetransferofactivityfromtheseregionsviacontainmentleakagetothe surroundingreactorbuildingvolumeshouldbeusedtopredictthequalificationlevels withinthereactorbuilding(secondarycontainment).DOSEMODELFORCONTAINMENTATMOSPHERE
| |
| 5.Thebetaandgammadoseratesandintegrateddosesfromtheairborneactivitywithinthecontainmentatmosphereandfromtheplateoutofaerosolsoncontainmentsurfacesgenerally shouldbecalculatedforthemidpointinthecontainment,andthisdoserateshouldbeusedforall exposedcomponents.Radiationshieldingaffordedbyinternalstructuresmaybeneglectedfor modelingsimplicity.Itisexpectedthattheshieldingaffordedbythesestructureswouldreduce thedoseratesbyfactorsoftwoormoredependingonthespecificlocationandgeometry.More detailedcalculationsmaybewarrantedforselectedcomponentsifacceptabledoseratescannot beachievedusingthesimplermodelingassumptions.
| |
| | |
| 6.Becauseoftheshortrangeofthebetasinair,theairbornebetadoseratesshouldbecalculatedusinganinfinitemediummodel.Othermodels,suchasfinitecloudandsemi-infinite cloud,maybeapplicabletoselectedcomponentswithsufficientjustification.Theapplicability ofthesemi-infinitemodelwoulddependonthelocationofthecomponent,availableshielding, andreceptorgeometry.Forexample,betadoseratesforequipmentlocatedonthecontainment wallsoronlargeinternalstructuresmightbeadequatelyassessedusingthesemi-infinitemodel.
| |
| | |
| Useofafinitecloudmodelwillbeconsideredonacase-by-casemethod.
| |
| | |
| 7.Allgammadoseratesshouldbemultipliedbyacorrectionfactorof1.3toaccountfortheomissionofthecontributionfromthedecaychainsoftheradionuclides.Thiscorrectionis particularlyimportantfornon-gamma-emittingradionuclideshavinggammaemittingprogeny, forexample,Cs-137decaytoBa-137m.Thiscorrectionmaybeomittedifthecalculational methodexplicitlyaccountsfortheemissionsfrombuildupanddecayoftheradioactiveprogeny.DOSEMODELFORCONTAINMENTSUMPWATERSOURCES
| |
| 8.Withtheexceptionofnoblegases,alltheactivityreleasedfromthefuelshouldbeassumedtobetransportedtothecontainmentsumpasitisreleased.Thisactivityshouldbe assumedtomixinstantaneouslyanduniformlywithotherliquidsthatdraintothesump.This I-3transportcanalsobemodeledmechanisticallyasthetime-dependentwashoutofairborneaerosolsbytheactionofcontainmentsprays.Radionuclidesthatdonotbecomeairborneon releasefromthereactorcoolantsystem,e.g.,theyareentrainedinnon-flashedreactorcoolant, shouldbeassumedtobeinstantaneouslytransportedtothesumpandbeuniformlydistributedin thesumpwater.
| |
| | |
| 9.Thegammaandbetadoseratesandtheintegrateddosesshouldbecalculatedforapointlocatedonthesurfaceofthewateratthecenterlineofthelargepoolofsumpwater.Theeffects ofbuildupshouldbeconsidered.Moredetailedmodelingwithshieldinganalysiscodesmaybe
| |
| | |
| performed.DOSEMODELFOREQUIPMENTLOCATEDOUTSIDECONTAINMENT
| |
| 10.EQequipmentlocatedoutsideofcontainmentmaybeexposedto(1)radiationfromsourceswithinthecontainmentbuilding,(2)radiationfromactivitycontainedinpipingand componentsinsystemsthatre-circulatecontainmentsumpwateroutsideofcontainment(e.g.,
| |
| ECCS,RHR,samplingsystems),(3)radiationfromactivitycontainedinpipingandcomponents insystemsthatprocesscontainmentatmosphere(e.g.,hydrogenrecombiners,purgesystems),(4)
| |
| radiationfromactivitydepositedinventilationandprocessfiltermedia,and(5)radiationfrom airborneactivityinplantareasoutsideofthecontainment(i.e.,leakagefromrecirculation systems).Theamountofdosecontributedbyeachofthesesourcesisdeterminedbythelocation oftheequipment,thetime-dependentandlocation-dependentdistributionofthesource,andthe effectsofshielding.
| |
| | |
| 11.BecauseofthelargeamountofEQequipmentandthecomplexityofsystemandcomponentlayoutinplantbuildings,itisgenerallynotreasonabletomodeleachEQcomponent.
| |
| | |
| Areasonableapproachistodeterminethelimitingdoseratefromallsourcesinaparticularplant area(e.g.,cubicle,floor,building)toarealorhypotheticalreceptorandtobasetheintegrated dosesforallcomponentsinthatareaonthispostulateddoserate.Individualdetailedmodeling ofselectedequipmentmaybeperformed.
| |
| | |
| 12.Theintegrateddosesfromcomponentsandpipinginsystemsrecirculatingsumpwatershouldassumeasourcetermbasedonthetime-dependentcontainmentsumpsourceterm describedabove.Similarly,thedosesfromcomponentsthatcontainairfromthecontainment atmosphereshouldassumeasourcetermbasedonthetime-dependentcontainmentatmosphere sourcetermdescribedabove.
| |
| | |
| 13.Analysesofintegrateddosescausedbyradiationfromthebuildupofactivityonventilationandprocessfiltermediainsystemscontainingcontainmentsumpwateroratmosphere orbothshouldassumethattheventilationorprocessflowisatitsnominaldesignvalueandthat thefiltermediais100%efficientforiodineandparticulates.Thedurationofflowthroughthe filtermediashouldbeconsistentwiththeplantdesignandoperatingprocedures.Radioactive decayinthefiltermediashouldbeconsidered.Shieldingbystructuresandcomponentsbetween thefilterandtheEQequipmentmaybeconsidered.
| |
| | |
| K-1AppendixKAcronymsASTAlternativesourcetermBWRBoilingwaterreactor CDFCoredamagefrequency CEDECommittedeffectivedoseequivalent COLRCoreoperatinglimitsreport DBADesignbasisaccident DDEDeepdoseequivalent DNBRDeparturefromnucleateboilingratio EABExclusionareaboundary EDEEffectivedoseequivalent EPAEnvironmentalProtectionAgency EQEnvironmentalqualification ESFEngineeredsafetyfeature FHAFuelhandlingaccident FSARFinalsafetyanalysisreport IPFIodineprotectionfactor LERFLargeearlyreleasefraction LOCALoss-of-coolantaccident LPZLowpopulationzone MOXMixedoxide MSLBMainsteamlinebreak NDTNon-destructivetesting NSSSNuclearsupplysystemsupplier PRAProbabilisticriskassessment PWRPressurizedwaterreactor RMSRadiationmonitoringsystem SGSteamgenerator SGTRSteamgeneratortuberupture TEDETotaleffectivedoseequivalent TIDTechnicalinformationdocument TMIThreeMileIsland VALUE/IMPACTSTATEMENTAseparatevalue/impactanalysishasnotbeenpreparedforthisRegulatoryGuide1.183.Avalue/impactanalysiswasincludedintheregulatoryanalysisfortheproposedamendmentsto
| |
| 10CFRParts21,50,and54publishedonMarch11,1999(64FR12117).Thisregulatory analysiswasupdatedaspartofthefinalamendmentsto10CFRParts21,50,and54,published inDecember1999(64FR71998).Copiesofbothregulatoryanalysesareavailablefor inspectionorcopyingforafeeintheCommission'sPublicDocumentRoomat2120LStreet NW,Washington,DC,underRGINAG12.ADAMSAccessionNumberML003716792}}
| |
|
| |
|
| {{RG-Nav}} | | {{RG-Nav}} |
Revision of Regulatory Guide 1.183 Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors Mark Blumberg, Senior Reactor Engineer (Technical Lead)
NRR/DRA/ARCB
mark.blumberg@nrc.gov Micheal Smith, Health Physicist (Project Lead)
NRR/DRA/ARCB
micheal.smith@nrc.gov November 19, 2020
ML20296A425
2 Agenda
Key Messages
Background
Regulatory Guide (RG) Update Process
RG 1.183 Guidance Updates Under Consideration
Looking Forward
Feedback/Discussion
Comments and input from the public
3 Key Messages
The NRC staff has restarted efforts to revise RG 1.183, Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors.
The objectives of the revision are to:
- incorporate lessons learned from recent NRC staff reviews of Alternative Source Term (AST) and Main Steam Line Isolation Valve (MSIV) leakage LARs;
- incorporate relevant operating experience as well as recent post-Fukushima seismic risk insights and walkdowns;
- respond to change of regulatory environment (e.g., backfit guidance SRM-
SECY-18-0049 & NuScale SRM-SECY-19-0036);
- make the guidance more useful by considering feedback and comments from licensees;
- ensure sufficient guidance is in place for licensing advanced light-water reactors (LWRs), accident tolerant fuel (ATF), high-burnup, and increased enrichment fuel; and,
- incorporate insights from new research activities.
4 Key Messages (Contd)
- RG 1.183 Rev. 0 and Rev. 1 will co-exist as a result of SRM-
SECY-18-0049, Management Directive and Handbook 8.4, Management of Backfitting, Issue Finality, and Information Collection.
- NRC staff will hold public meetings for external stakeholder engagement on the revision of RG 1.183.
- Publish the draft RG for comment in 4th Quarter CY 2021.
- Final revised RG being issued in 2nd Quarter CY 2022.
5 Background
6 Background
Origin: Footnote to 10 CFR 100.11(a) is a performance-based rule to evaluate the defense-in-depth provided by the containment.
- TID-14844 Source term provided guidance which assumed the source term is instantaneously available in the containment.
Radionuclide behavior observed during the TMI accident did not appear at all similar to the TID-14844 source term.
- NRC initiated research effects in the area of severe accidents which culminate in publication of NUREG-1150.
- NUREG-1465 source term was derived from the sequences in NUREG-1150.
7 Background (contd)
NRC staff developed RG 1.183 Rev. 0 (July 2000) to support implementation of 10 CFR 50.67, Accident source term
RG 1.183 Rev. 0 is applicable to nuclear power reactor applicants and licensees adopting 10 CFR 50.67
- Limited range of applicability on Non-LOCA release fractions
RG 1.183 Rev. 0 identified the significant attributes of an acceptable accident AST based on NUREG-1465, Accident Sources Terms for Light-Water Nuclear Power Plants (1995)
RG 1.183 Rev. 0 provides assumptions and methods that are acceptable to the NRC staff for performing design basis radiological analyses using an AST
8
In October 2009, the NRC issued for public comment DG-1199 as a proposed Rev. 1 of RG 1.183.
Staff received 150 public comments
The reasons for revision of RG 1.183 in DG-1199 were:
- Providing additional guidance for modeling BWR MSIV leakage,
- Expand applicability of Non-LOCA release fractions to support modern fuel utilization,
- Extending the applicability of the proposed RG for use in satisfying the radiological dose analysis requirements contained in 10 CFR Part 52 for advanced LWR design and siting,
- Providing additional meteorological assumption guidance.
DG-1199
9 Modern Fuel Utilization
- Since DG-1199 was issued for public comment, NRC issued several license amendments to support modern fuel utilization.
- Oconee Units 1, 2, and 3 (2019)
- Shearon Harris (2018)
- H.B. Robinson (2017)
- Catawba Units 1 and 2, McGuire Units 1 and 2, Oconee Units 1, 2, and 3 (2016)
- Diablo Canyon Units 1 and 2 (2015)
- Reinforced need for expanded Non-LOCA release fractions
10
2019 License Amendment Requests
In 2019, NRC received several AST LARs requesting increased MSIV leakage
As a result, work on DG-1199 was postponed to allow NRC staff to incorporate lessons learned, from evaluation of the LARs, into the revised RG 1.183:
- James A. FitzPatrick Amendment No. 338 for AST, July 21, 2020
(ML20140A070)
- Quad Cities Nuclear Power Station, Units 1 & 2 - Amendment Nos. 281 and 277 to increase allowable MSIV leakage, June 26, 2020
(ML20150A328)
- Nine Mile Point Nuclear Station, Unit 2 - Amendment No. 182 to change allowable MSIV leak rates, October 20, 2020 (ML20241A190)
- Dresden Nuclear Power Station, Units 2 & 3 - Amendments Nos. 272 and 265 to increase allowable MSIV leakage, October 23, 2020
(ML20265A240)
11 Regulatory Guide Update Process
12 Regulatory Guide Update Process
- Identify which RGs need to be revised based on:
- Rulemakings
- Lessons learned
- Stakeholder feedback
- Periodic reviews
- Develop draft RG through internal collaboration
- Draft RG available for public comment (4th Quarter CY 2021)
- Internal staff comment resolution
13 RG 1.183 Guidance Updates Under Consideration
14 Expected General Updates
The intent of the NRC staff is for RG 1.183 Rev. 0 and Rev. 1 to co- exist
With the exception of items discussed later, NRC will consider changes proposed in DG-1199 as modified by public comments.
- Incorporate updates, new or withdrawn regulatory guidance (i.e., RG 1.194 (meteorology)).
- Guidance for modern fuel utilization (non-LOCA gap fractions).
- Changes due to Regulatory Information Summaries (i.e., 06-04,
01-19).
- Lessons learned from license reviews (i.e., clarify DFs and containment isolation as used in the FHA).
- Clarify TEDE calculation terminology (i.e., EDEX vs. EDE).
- Remove environmental qualification guidance from RG and refer to RG 1.89.
15 ATF, High-Burnup, Extended Enrichment
Applicability of Rev.1 expanded to encompass fuel burnup extension to 68 GWd/MTU (rod average) and 235U enrichments up to 8.0wt%.
Applicability of Rev.1 to near-term ATF design concepts being considered.
- Non-LOCA release fractions sensitive to fuel design
Utilize accident source terms from Sandia National Laboratories report SAND2011-0128, Accident Source Terms for Light Water Nuclear Power Plants Using High-Burnup of MOX Fuel, and non-loss-of-coolant accident (non-LOCA) source terms based on FAST calculations (similar to those calculated in the proposed update to RG 1.183, Draft Guide 1199).
NRC Memorandum, Applicability of Source Term for Accident Tolerant Fuel, High Burn Up and Extended Enrichment, dated May 13, 2020, ADAMS Accession Number ML20126G376
16 Draft Guide DG-1199 Non-LOCA Release Fractions DG-1199 (2011) included the following components:
1.
Revised Table 3 Non-LOCA release fractions based on expanded power profile
2.
New Table 4 RIA transient fission gas release fractions
3.
New analytical procedure for revising release fractions
17 Planned Updates for Non-LOCA Release Fractions
1. Maintain Table 3 release fractions up to 62 GWd/MTU rod average burnup
2. New table for release fractions with expanded applicability up to 68 GWd/MTU rod average burnup
3. Update Table 4 RIA transient fission gas release to include burnup-dependent correlations
4. Update example calculation based on FAST
18 DG-1327 CRE/CRD Public Comments (2019)
Many of the planned changes to RG 1.183 were included in draft regulatory guide DG-1327
- Revised Table 3 Non-LOCA gap fractions using new version of FAST fuel rod thermal-mechanical code
- Revised Table 4 RIA transient fission gas release with BU-dependent correlations
- Acceptable analytical procedure for revising Non- LOCA gap releases
Public comments received on these topics will be reflected in RG 1.183
19 FAST Calculations (1)
Extended rod average power profiles out to 68 GWd/MTU
Preliminary calculations show no increase in release fractions
Axial Power Distribution:
- Sweeping (3 cycles) AXPDs with the following peak Fz peaking factors
Is this sufficient to support future reloads?
20
FAST Calculations (2)
- Generic fuel rod parameters for bounding PWR and BWR designs
- Should there be separate PWR and BWR
tables?
part-length fuel rods?
21 Revised Fuel Handling Accident
Revisited the original studies forming the technical basis for the FHA and incorporate updated information.
Model improvements established from the current understanding of reactor fuel pin physics and iodine chemistry under the environmental conditions in which fuel handling operations are taking place.
Concluded that considerable margin exists regarding the scrubbing effects of iodine in the spent fuel or reactor pool and that the current staff DBA FHA fission product transport model can be refined while still maintaining conservatism.
Reference: Memo from RES to NRR, Closeout to Research Assistance Request for Independent Review of Regulatory and Technical Basis for Revising the Design-basis Accident Fuel Handling Accident, November 23, 2019 (ML19270E335)
22 Additional Method for Aerosol Deposition Models
Staff is considering an additional method for aerosol deposition models
Staff is addressing issues in RIS 2006-04, Experience with Implementation of Alternative Source Terms (considering reconstitution of AEB-98-03 and reviewing the multigroup method).
Regulatory position in Rev. 0 continues to be acceptable. As a result, RG
1.183 Rev. 0 and Rev. 1 will co-exist.
Over the last 10 years no applicant or licensee has adopted the methodology from SAND2008-6601, Analysis of Main Steam Isolation Valve Leakage in Design Basis Accident Using MELCOR 1.8.6 and RADTRAD.
There have been no communications that applicants or licensees intend to adopt the SAND2008-6601 methodology.
NRC staff plans to consider stakeholder input/feedback to inform the NRCs decision on what methodology to include in RG 1.183 Rev. 1.
23 Lessons Learned from Licensing Reviews
Staff are considering whether to clarify:
- the expectations for containment spray in BWR
drywells/containments (i.e., Rev. 0 Appendix A Assumption 3.3)
- the expectations for performing and using sensitivity analysis (i.e., Rev. 0, RPs 1.3.3 and 5.1.3)
- if crediting pathways should be consistent with design requirements for safety (i.e. technical specifications, safety related, Rev. 0, RP 5.1.2)
- RG wording to assume that a LOOP is coincident with a turbine trip (not with initiation of the accident)(i.e., Rev. 0, App. F & G
Assumption 5.4)
- the expectations for BWR MSIV Leakage LOCA analysis assumptions with respect to pipe breaks
24 Use of Risk and Engineering Insights
- Update the expectations for use of risk insights as directed in SRM-
SECY-19-0036.
- NRC staff has developed a technical assessment on this topic considering 20+ years of operational and seismic risk insights.
- Assessment will be publicly available via the NRCs Interim Staff Guidance process.
- Four issued safety evaluations are supported by risk and engineering insights.
- Staff is exploring streamlined approach for quantitative credit for hold-up and retention of MSIV leakage within the power conversion system for BWRs.
- Is there interest in a streamlined approach?
- What portion(s) of the alternative pathway justification in Rev. 0 are resource intensive (availability of pathway, seismic robustness steps, both?)
25 Additional Considerations
- Consider revising footnote 7 which provides an incorrect method to convert thyroid dose to TEDE
- Implies a back-of-the-envelope calculation appropriately converts between ICRP 2 and ICRP 26/30 dosimetry methodologies.
- There is no simple methodology to convert between these two systems of dosimetry.
- To correctly calculate the radiological dose consequences for design basis accidents the appropriate dose methodology (and DCFs) must be applied.
26 Looking Forward
- Consider feedback from stakeholders
- Hold additional public meeting 1st Quarter CY 2021
- Staff review and disposition of public comments
- Update of draft RG 1.183 Rev. 1 as necessary
27 Discussion/Feedback
28 Questions/Comments?
Mark Blumberg, Senior Reactor Engineer (Technical Lead)
NRR/DRA/ARCB
mark.blumberg@nrc.gov Micheal Smith, Health Physicist (Project Lead)
NRR/DRA/ARCB
micheal.smith@nrc.gov