ML040630687: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
Line 2: Line 2:
| number = ML040630687
| number = ML040630687
| issue date = 02/29/2004
| issue date = 02/29/2004
| title = to WCAP-15161, Vogtle Electric Generating Plant, Unit 2, Heatup and Cooldown Limit Curves for Normal Operation.
| title = To WCAP-15161, Vogtle Electric Generating Plant, Unit 2, Heatup and Cooldown Limit Curves for Normal Operation
| author name = Ghergurovich J, Laubham T
| author name = Ghergurovich J, Laubham T
| author affiliation = Westinghouse Electric Co
| author affiliation = Westinghouse Electric Co
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:Westinghouse Non-Proprietary Class 3 WCAP-15161                                       February 2004 Revision 3 Vogtle Electric Generating Plant Unit 2 Heatup and Cooldown Limit Curves for Normal Operation Westinghouse i
{{#Wiki_filter:Westinghouse Non-Proprietary Class 3 WCAP-15161 Revision 3 February 2004 Vogtle Electric Generating Plant Unit 2 Heatup and Cooldown Limit Curves for Normal Operation Westinghouse i


WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-15161, Revision 3 Vogtle Electric Generating Plant Unit 2 Heatup and Cooldown Limit Curves for Normal Operation T. J. Laubham February 2004 Approved:     &i         fv   !       7   J   4 J. Ghergurovich, Manager     '
WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-15161, Revision 3 Vogtle Electric Generating Plant Unit 2 Heatup and Cooldown Limit Curves for Normal Operation T. J. Laubham February 2004 Approved:  
Reactor Component Design & Analysis Westinghouse Electric Company LLC Energy Systems P.O. Box 355 Pittsburgh, PA 15230-0355 02004 Westinghouse Electric Company LLC All Rights Reserved
& i fv !
7 J
4 J. Ghergurovich, Manager Reactor Component Design & Analysis Westinghouse Electric Company LLC Energy Systems P.O. Box 355 Pittsburgh, PA 15230-0355 02004 Westinghouse Electric Company LLC All Rights Reserved


Hi PREFACE This report has been technically reviewed and verified by:
Hi PREFACE This report has been technically reviewed and verified by:
Reviewer:                                                           K. G.Knight Hi n ? it         4A Record of Revision Revision 1:
Reviewer:
K. G.Knight Hi  
?
n it 4A Record of Revision Revision 1:
Updated all pressure-temperature curves using the 1996 App. G to Section Xl of the ASME Code, Kic from Code Case N-640 and the removal of the flange requirement per WCAP-15315. All calculations for adjusted reference temperature remain unchanged from Revision 0. Text has been updated to support the use of the '96 App. 0. K1c and elimination of the flange notch.
Updated all pressure-temperature curves using the 1996 App. G to Section Xl of the ASME Code, Kic from Code Case N-640 and the removal of the flange requirement per WCAP-15315. All calculations for adjusted reference temperature remain unchanged from Revision 0. Text has been updated to support the use of the '96 App. 0. K1c and elimination of the flange notch.
Revision 2:
Revision 2:
The reference to WCAP-14040-NP-A, Revision 2 has been revised to WCAP-14040-A, Revision 4 to reflect the latest NRC approved version. The reference to WCAP-15315 has been revised to WCAP-16142 to reflect the Vogtle Units I and 2 flange elimination justification rather than the generic flange elimination justification contained in WCAP-15315. In addition, the thermal stress intensity factors wvere added for the highest heatup and cooldown rate.
The reference to WCAP-14040-NP-A, Revision 2 has been revised to WCAP-14040-A, Revision 4 to reflect the latest NRC approved version. The reference to WCAP-15315 has been revised to WCAP-16142 to reflect the Vogtle Units I and 2 flange elimination justification rather than the generic flange elimination justification contained in WCAP-15315. In addition, the thermal stress intensity factors wvere added for the highest heatup and cooldown rate.
Revision 3:
Revision 3:
Updated Reference 11, WCAP- 16142, to Revision 1.
Updated Reference 11, WCAP-16142, to Revision 1.
Revision 3
Revision 3


iv TABLE OF CONTENTS PREFACE       ..............................................                                                                                          iii LISTOFTABLES..........................................................................................................................................LV LIST OF FIGURES                                 ...............................................                                                      vii EXECUTIVE  
iv TABLE OF CONTENTS PREFACE iii LISTOFTABLES..........................................................................................................................................LV LIST OF FIGURES vii EXECUTIVE  


==SUMMARY==
==SUMMARY==
                                        ...............................................                                              iii I       INTRODUCTION .1-I 2     PURPOSE .2-1 3     CRITERIA FOR ALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS .3-1 4     CALCULATION OF ADJUSTED REFERENCE TEMPERATURE                                                                           .4-1 5     HEATUP AND COOLDOWN PRESSURE-TEMPERATURE LIMIT CURVES                                                                           5             -I 6     REFERENCES                                                                                                                 ....                  I APPENDIX A THERMAL STRESS INTENSITY FACTORS ............................................... A-1 Revision 3
iii I
INTRODUCTION.1-I 2
PURPOSE.2-1 3
CRITERIA FOR ALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS.3-1 4
CALCULATION OF ADJUSTED REFERENCE TEMPERATURE  
.4-1 5
HEATUP AND COOLDOWN PRESSURE-TEMPERATURE LIMIT CURVES 5  
-I 6
REFERENCES I
APPENDIX A THERMAL STRESS INTENSITY FACTORS............................................... A-1 Revision 3


V LIST OF TABLES Table 4-1 Summary of Peak Pressure Vessel Neutron Fluence Values at 26 EFPY used for the calculation of ART Values (n/cm 2, E > 1.0 MeV) .........................................................                   4-2 Table 4-2 Summary of Peak Pressure Vessel Neutron Fluence Values at 36 EFPY used for the calculation of ART Values (n/cm2 , E > 1.0 MeV) ..................................                                           4-3 Table 4-3 Calculated Integrated Neutron Exposure of the Vogtle Unit 2 Surveillance Capsules Tested to Date........                                                                                                       4-4 Table 4-4 Measured 30 ft-lb Transition Temperature Shifts of the Beltline Materials Contained in the Surveillance Program .4-5 Table 4-5 Reactor Vessel Beltline Material Unirradiated Toughness Properties .4-6 Table 4-6 Calculation of Chemistry Factors using Vogtle Unit 2 Surveillance Capsule Data.                                             4-7 Table 4-7 Summary of the Vogtle Unit 2 Reactor Vessel Beltline Material Chemistry Factors Based on Regulatory Guide 1.99, Revision 2. Position 1.1 and Position 2.1 ................. 4-8 Table 4-8 Summary of the Calculated Fluence Factors used for the Generation of the 26 EFPY Heatup and Cooldown Curves......................................................................... 4-9 Table 4-9 Summary of the Calculated Fluence Factors used for the Generation of the 36 EFPY Heatup and Cooldown Curves..4-101 Table 4-10 Calculation of the ART Values for the 1/4T Location @ 26 EFPY .                                                           4-11 Table 4-11 Calculation of the ART Values for the 3/4T Location @ 26 EFPY ..                                                           4-1' Table 4-12 Calculation of the ART Values for the 1/4T Location                     @ 36 EFPY ..                 .            .      I Table 4-13 Calculation of the ART Values for the 3/4T Location @ 36 EFPY .                                                           4-14 Table 4-14 Summary of the Limiting ART Values used in the Generation of the Vogtle Unit 2 Heatup/Cooldown Curves .................                                                                                   4- 1, Table 5-1 Vogtle Unit 2 Heatup Data at 26 EFPY Without Margins for Instrumentation Errors.....................................................................................................5-5 Revision 3
V LIST OF TABLES Table 4-1 Summary of Peak Pressure Vessel Neutron Fluence Values at 26 EFPY used for the calculation of ART Values (n/cm2, E > 1.0 MeV).........................................................
4-2 Table 4-2 Summary of Peak Pressure Vessel Neutron Fluence Values at 36 EFPY used for the calculation of ART Values (n/cm2, E > 1.0 MeV)..................................
4-3 Table 4-3 Calculated Integrated Neutron Exposure of the Vogtle Unit 2 Surveillance Capsules Tested to Date........
4-4 Table 4-4 Measured 30 ft-lb Transition Temperature Shifts of the Beltline Materials Contained in the Surveillance Program.4-5 Table 4-5 Reactor Vessel Beltline Material Unirradiated Toughness Properties.4-6 Table 4-6 Calculation of Chemistry Factors using Vogtle Unit 2 Surveillance Capsule Data.
4-7 Table 4-7 Summary of the Vogtle Unit 2 Reactor Vessel Beltline Material Chemistry Factors Based on Regulatory Guide 1.99, Revision 2. Position 1.1 and Position 2.1................. 4-8 Table 4-8 Summary of the Calculated Fluence Factors used for the Generation of the 26 EFPY Heatup and Cooldown Curves......................................................................... 4-9 Table 4-9 Summary of the Calculated Fluence Factors used for the Generation of the 36 EFPY Heatup and Cooldown Curves..4-101 Table 4-10 Calculation of the ART Values for the 1/4T Location @ 26 EFPY.
4-11 Table 4-11 Calculation of the ART Values for the 3/4T Location @ 26 EFPY..
4-1' Table 4-12 Calculation of the ART Values for the 1/4T Location @ 36 EFPY..
I Table 4-13 Calculation of the ART Values for the 3/4T Location @ 36 EFPY.
4-14 Table 4-14 Summary of the Limiting ART Values used in the Generation of the Vogtle Unit 2 Heatup/Cooldown Curves.................
4-1, Table 5-1 Vogtle Unit 2 Heatup Data at 26 EFPY Without Margins for Instrumentation Errors.....................................................................................................5-5 Revision 3


vi LIST OF TABLES - (Continued)
vi LIST OF TABLES - (Continued)
Table 5-2 Vogtle Unit 2 Cooldown Data at 26 EFPY Without Margins for Instrumentation Errors ............................................................       5-6 Table 5-3 Vogtle Unit 2 Heatup Data at 36 EFPY Without Margins for Instrumentation Errors ...5-9 Table 5-4 Vogtie Unit 2 Cooldown Data at 36 EFPY Without Margins for Instrumentation Errors .                                                                 5-10 Revision 3
Table 5-2 Vogtle Unit 2 Cooldown Data at 26 EFPY Without Margins for Instrumentation Errors............................................................
5-6 Table 5-3 Vogtle Unit 2 Heatup Data at 36 EFPY Without Margins for Instrumentation Errors... 5-9 Table 5-4 Vogtie Unit 2 Cooldown Data at 36 EFPY Without Margins for Instrumentation Errors.
5-10 Revision 3


vii LIST OF FIGURES Figure 5-1 Vogtle Unit 2 Reactor Coolant System Heatup Limitations (Heatup Rates of 60 and I 00 0 F/hr) Applicable to 26 EFPY (Without Margins for Instrumentation Errors) ......... 5-3 Figure 5-2 Vogtle Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates of 0, 20, 40, 60 and I 00 0 F/hr) Applicable to 26 EFPY (Without Margins for Instrumentation Errors) ...............................               5-4 Figure 5-3 Vogtle Unit 2 Reactor Coolant System Heatup Limitations (Heatup Rates of 60 and 1000 F/hr) Applicable to 36 EFPY (Without Margins for Instrumentation Errors) ......... 5-7 Figure 5-4 Vogtle Unit 2 Reactor Coolant System Cooldoxwn Limitations (Cooldown Rates of 0, 20,40, 60 and 1000 F/hr) Applicable to 36 EFPY (Without Margins for Instrumentation Errors) ...............................               5-8 Revision 3
vii LIST OF FIGURES Figure 5-1 Vogtle Unit 2 Reactor Coolant System Heatup Limitations (Heatup Rates of 60 and I 000F/hr) Applicable to 26 EFPY (Without Margins for Instrumentation Errors).........
5-3 Figure 5-2 Vogtle Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates of 0, 20, 40, 60 and I 000F/hr) Applicable to 26 EFPY (Without Margins for Instrumentation Errors)...............................
5-4 Figure 5-3 Vogtle Unit 2 Reactor Coolant System Heatup Limitations (Heatup Rates of 60 and 1 000F/hr) Applicable to 36 EFPY (Without Margins for Instrumentation Errors).........
5-7 Figure 5-4 Vogtle Unit 2 Reactor Coolant System Cooldoxwn Limitations (Cooldown Rates of 0, 20,40, 60 and 1000F/hr) Applicable to 36 EFPY (Without Margins for Instrumentation Errors)...............................
5-8 Revision 3


viii EXECUTIVE  
viii EXECUTIVE  


==SUMMARY==
==SUMMARY==
 
The purpose of this report is to generate pressure-temperature limit curves for Vogtle Electric Generating Plant Unit 2 for normal operation at 26 and 36 EFPY using the methodology from the 1996 ASME Boiler and Pressure Vessel Code, Section Xi, Appendix G Regulatory Guide 1.99, Revision 2 is used for the calculation of Adjusted Reference Temperature (ART) values at the 1/4T and 3/4T location. The 1/4T and 3/4T ART values are summarized in Table 4-14 and were calculated using the lower shell plate R8-1 (i.e. the limiting beltline region material). The pressure-temperature limit curves were generated without margins for instrumentation errors for heatup rates of 60 and 1 000F/hr and cooldow'n rates of 0. 20, 40, 60 and 1000F/hr. These curves can be found in Figures 5-1 through 5-4. The Vogdle Electric Generating Plant Unit 2 heatup and cooldown pressure-temperature limit curves have been updated based on the use of the ASME Code Case N-6401101, which allows the use of the Kl, methodology, and the elimination of the reactor vessel flange temperature requirement (Ref, WCAP-161421"1).
The purpose of this report is to generate pressure-temperature limit curves for Vogtle Electric Generating Plant Unit 2 for normal operation at 26 and 36 EFPY using the methodology from the 1996 ASME Boiler and Pressure Vessel Code, Section Xi, Appendix G Regulatory Guide 1.99, Revision 2 is used for the calculation of Adjusted Reference Temperature (ART) values at the 1/4T and 3/4T location. The 1/4T and 3/4T ART values are summarized in Table 4-14 and were calculated using the lower shell plate R8-1 (i.e. the limiting beltline region material). The pressure-temperature limit curves were generated without margins for instrumentation errors for heatup rates of 60 and 1000 F/hr and cooldow'n rates of 0. 20, 40, 60 and 1000 F/hr. These curves can be found in Figures 5-1 through 5-4. The Vogdle Electric Generating Plant Unit 2 heatup and cooldown pressure-temperature limit curves have been updated based on the use of the ASME Code Case N-640 110 1, which allows the use of the Kl, methodology, and the elimination of the reactor vessel flange temperature requirement (Ref, WCAP-161421 "1 ).
Revision 3
Revision 3


I-'
I-'
I         INTRODUCTION Heatup and cooldown limit curves are calculated using the adjusted RTNDT (reference nil-ductility temperature) corresponding to the limiting beitline region material of the reactor vessel. The adjusted RTNDT of the limiting material in the core region of the reactor vessel is determined by using the unirradiated reactor vessel material fracture toughness properties, estimating the radiation-induced ARTNDT, and adding a margin. The unirradiated RTNDT is designated as the higher of either the drop weight nil-ductility transition temperature (NDTT) or the temperature at which the material exhibits at least 50 fl-lb of impact energy and 35-mil lateral expansion (normal to the major working direction) minus 60 0F.
I INTRODUCTION Heatup and cooldown limit curves are calculated using the adjusted RTNDT (reference nil-ductility temperature) corresponding to the limiting beitline region material of the reactor vessel. The adjusted RTNDT of the limiting material in the core region of the reactor vessel is determined by using the unirradiated reactor vessel material fracture toughness properties, estimating the radiation-induced ARTNDT, and adding a margin. The unirradiated RTNDT is designated as the higher of either the drop weight nil-ductility transition temperature (NDTT) or the temperature at which the material exhibits at least 50 fl-lb of impact energy and 35-mil lateral expansion (normal to the major working direction) minus 600F.
RTNDT   increases as the material is exposed to fast-neutron radiation. Therefore, to find the most limiting RTNDT at   any time period in the reactor's life, ARTNDT due to the radiation exposure associated with that time period must be added to the unirradiated RTNDT(IRTNDT). The extent of the shift in RTNDT is enhanced by certain chemical elements (such as copper and nickel) present in reactor vessel steels. The Nuclear Regulatory Commission (NRC) has published a method for predicting radiation embrittlement in Regulatory Guide 1.99, Revision 2, "Radiation Embrittlement of Reactor Vessel Materials"11 I.
RTNDT increases as the material is exposed to fast-neutron radiation. Therefore, to find the most limiting RTNDT at any time period in the reactor's life, ARTNDT due to the radiation exposure associated with that time period must be added to the unirradiated RTNDT(IRTNDT). The extent of the shift in RTNDT is enhanced by certain chemical elements (such as copper and nickel) present in reactor vessel steels. The Nuclear Regulatory Commission (NRC) has published a method for predicting radiation embrittlement in Regulatory Guide 1.99, Revision 2, "Radiation Embrittlement of Reactor Vessel Materials"11I.
Regulatory Guide 1.99, Revision 2, is used for the calculation of Adjusted Reference Temperature (ART) values (IRTNDT + ARTNDT + margins for uncertainties) at the 1/4T and 3/4T locations, where T is the thickness of the vessel at the beltline region measured from the clad/base metal interface. The most limiting ART values are used in the generation of heatup and cooldowh pressure-temperature limit curves for normal operation. As a note, calculated capsule and vessel fluence projections171 were used in determination of the most limiting ART values. The fluence evaluation in Reference 7 used the ENDF/B-VI scattering cross-section data set. This is consistent with the methods presented in WCAP-14040-A, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves" 18 1.
Regulatory Guide 1.99, Revision 2, is used for the calculation of Adjusted Reference Temperature (ART) values (IRTNDT + ARTNDT + margins for uncertainties) at the 1/4T and 3/4T locations, where T is the thickness of the vessel at the beltline region measured from the clad/base metal interface. The most limiting ART values are used in the generation of heatup and cooldowh pressure-temperature limit curves for normal operation. As a note, calculated capsule and vessel fluence projections171 were used in determination of the most limiting ART values. The fluence evaluation in Reference 7 used the ENDF/B-VI scattering cross-section data set. This is consistent with the methods presented in WCAP-14040-A, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves"18 1.
The heatup and cooldown curves documented in this report were generated using the most limiting ARTI values and the NRC approved methodology documented in WCAP- 14040-A, Revision 418X, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves" with one exception. The neutron fluence calculations used Equation 3 of Regulatory Guide 1.190 rather than Equation 4 to perform the flux synthesis. As discussed in Section 1.3.4 of Regulatory Guide 1.190, this approach tends to over predict the maximum flux at the pressure vessel, therefore resulting in slightly conservative calculated results. The reactor vessel flange temperature requirement has also been eliminated. Justification has been provided in WCAP-16142 111 .
The heatup and cooldown curves documented in this report were generated using the most limiting ARTI values and the NRC approved methodology documented in WCAP-14040-A, Revision 418X, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves" with one exception. The neutron fluence calculations used Equation 3 of Regulatory Guide 1.190 rather than Equation 4 to perform the flux synthesis. As discussed in Section 1.3.4 of Regulatory Guide 1. 190, this approach tends to over predict the maximum flux at the pressure vessel, therefore resulting in slightly conservative calculated results. The reactor vessel flange temperature requirement has also been eliminated. Justification has been provided in WCAP-16142111.
Intrducton                                                                   evison Introduction                                                                                       Revision 3
Intrducton evison Introduction Revision 3


2-1 2       PURPOSE Southern Nuclear contracted Westinghouse to generate new heatup and cooldown curves for 26 and 36 EFPY using the latest Code Methodologies and the elimination of the flange requirement. The heatup and cooldown curves were generated without margins for instrumentation errors. The curves include a hydrostatic leak test limit curve from 2485 to 2000 psig.
2-1 2
PURPOSE Southern Nuclear contracted Westinghouse to generate new heatup and cooldown curves for 26 and 36 EFPY using the latest Code Methodologies and the elimination of the flange requirement. The heatup and cooldown curves were generated without margins for instrumentation errors. The curves include a hydrostatic leak test limit curve from 2485 to 2000 psig.
The purpose of this report is to present the calculations and the development of the Southern Nuclear Vogtle Electric Generating Plant Unit 2 heatup and cooldown curves for 26 and 36 EFPY. This report documents the calculated adjusted reference temperature (ART) values following the methods of Regulatory Guide 1.99, Revision 2111, for all the beltline materials and the development of the heatup and cooldown pressure-temperature limit curves for normal operation.
The purpose of this report is to present the calculations and the development of the Southern Nuclear Vogtle Electric Generating Plant Unit 2 heatup and cooldown curves for 26 and 36 EFPY. This report documents the calculated adjusted reference temperature (ART) values following the methods of Regulatory Guide 1.99, Revision 2111, for all the beltline materials and the development of the heatup and cooldown pressure-temperature limit curves for normal operation.
Revision 3 Purpose                                                                                           Revision 3
Purpose Revision 3 Purpose Revision 3


3-1 3         CRITERIA FOR ALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS 3.1       Overall Approach The ASME approach for calculating the allowable limit curves for various heatup and cooldown rates specifics that the total stress intensity factor, K1, for the combined thermal and pressure stresses at any time during heatup or cooldown cannot be greater than the reference stress intensity factor, Kl,, for the metal temperature at that time. KI, is obtained from the reference fracture toughness curve, defined in Code Case N-640, "Alternative Reference Fracture Toughness for Development of PT Limit Curves for Section Xl" 3 & 101 of the ASME Appendix G to Section Xl. The Kic curve is given by the following equation:
3-1 3
2 K, . =33.2+20.734*elOO     '?ilIl Al                           ( )
CRITERIA FOR ALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS 3.1 Overall Approach The ASME approach for calculating the allowable limit curves for various heatup and cooldown rates specifics that the total stress intensity factor, K1, for the combined thermal and pressure stresses at any time during heatup or cooldown cannot be greater than the reference stress intensity factor, Kl,, for the metal temperature at that time. KI, is obtained from the reference fracture toughness curve, defined in Code Case N-640, "Alternative Reference Fracture Toughness for Development of PT Limit Curves for Section Xl" 3 & 101 of the ASME Appendix G to Section Xl. The Kic curve is given by the following equation:
: where, K1,           reference stress intensity factor as a function of the metal temperature T and the metal reference nil-ductility temperature RTNDT This KI, curve is based on the lower bound of static critical K, values measured as a function of temperature on specimens of SA-533 Grade B Class], SA-508-1, SA-508-2, SA-508-3 steel.
K,. =33.2+20.734*elOO 2 '?ilIl Al
( )
: where, K1, reference stress intensity factor as a function of the metal temperature T and the metal reference nil-ductility temperature RTNDT This KI, curve is based on the lower bound of static critical K, values measured as a function of temperature on specimens of SA-533 Grade B Class], SA-508-1, SA-508-2, SA-508-3 steel.
3.2 Methodology for Pressure-Temperature Limit Curve Development The governing equation for the beatup-cooldown analysis is defined in Appendix G of the ASME Code as follows:
3.2 Methodology for Pressure-Temperature Limit Curve Development The governing equation for the beatup-cooldown analysis is defined in Appendix G of the ASME Code as follows:
C* Kin, + Kit < K1 c                                  (2)
C* Kin, + Kit < K1c (2)
: where, Kin,   -    stress intensity factor caused by membrane (pressure) stress K,     =     stress intensity factor caused by tile thermal gradients K,     =     function of temperature relative to the   RTNDT   of the material C       =     2.0 for Level A and Level B service limits C             1.5 for hydrostatic and leak test conditions during which the reactor core is not critical Revision 3 Criteria For Allowvable Pressure-Temperature Relationships Allowable Pressure-Temperature   Relationships                                         Revision 3
: where, Kin, stress intensity factor caused by membrane (pressure) stress K,  
=
stress intensity factor caused by tile thermal gradients K,  
=
function of temperature relative to the RTNDT of the material C  
=
2.0 for Level A and Level B service limits C
1.5 for hydrostatic and leak test conditions during which the reactor core is not critical Criteria For Allowable Pressure-Temperature Relationships Revision 3 Criteria For Allowvable Pressure-Temperature Relationships Revision 3


3J-2 For membrane tension, the corresponding K, for the postulated defect is:
3J-2 For membrane tension, the corresponding K, for the postulated defect is:
KIm= M.x(pR /t)                                                         (3) where, Mm for an inside surface flaw is given by:
KIm= M.x(pR /t)
Mm     =     1.85 for ft < 2, Mm     =     0.92617 for 2*<17 < 3.464, Mm     =     3.21 for 17 >3.464 Similarly, Mm for an outside surface flaw is given by:
(3) where, Mm for an inside surface flaw is given by:
Mm     =     1.77 for Ft < 2, Mm     =     0.893 F1 for 2 < a     < 3.464, Mm     =     3.09 for 1I > 3.464 and p = internal pressure, Ri = vessel inner radius, and t = vessel wall thickness.
Mm  
=
1.85 for ft < 2, Mm  
=
0.92617 for 2*<17 < 3.464, Mm  
=
3.21 for 17 >3.464 Similarly, Mm for an outside surface flaw is given by:
Mm  
=
1.77 for Ft < 2, Mm  
=
0.893 F1 for 2 < a < 3.464, Mm  
=
3.09 for 1I > 3.464 and p = internal pressure, Ri = vessel inner radius, and t = vessel wall thickness.
For bending stress, the corresponding K, for the postulated defect is:
For bending stress, the corresponding K, for the postulated defect is:
KIb = Mb
KIb = Mb
* Maximum Stress, where Mb is two-thirds of M,,,
* Maximum Stress, where Mb is two-thirds of M,,,
The maximum K, produced by radial thermal gradient for the postulated inside surface defect of G-2120 is KI, = 0.953x] 0'3 x CR x t25 , where CR is the cooldowvn rate in 'F/hr., or for a postulated outside surface defect, KI, = 0.753xI O3 x HU x t25 , where HU is the heatup rate in 'F/hr.
The maximum K, produced by radial thermal gradient for the postulated inside surface defect of G-2120 is KI, = 0.953x] 0'3 x CR x t25, where CR is the cooldowvn rate in 'F/hr., or for a postulated outside surface defect, KI, = 0.753xI O3 x HU x t25, where HU is the heatup rate in 'F/hr.
The through-wall temperature difference associated with the maximum thermal K, can be determined from Fig. G-2214-1. The temperature at any radial distance from the vessel surface can be determined from Fig. G-2214-2 for the maximum thermal K1 .
The through-wall temperature difference associated with the maximum thermal K, can be determined from Fig. G-2214-1. The temperature at any radial distance from the vessel surface can be determined from Fig. G-2214-2 for the maximum thermal K1.
(a)       The maximum thermal K, relationship and the temperature relationship in Fig. G-2214-1 are applicable only for the conditions given in G-2214.3(a)(1) and (2).
(a)
(b)       Alternatively, the K, for radial thermal gradient can be calculated for any thermal stress distribution and at any specified time during cooldown for a /4-thickness inside surface defect using the relationship:
The maximum thermal K, relationship and the temperature relationship in Fig. G-2214-1 are applicable only for the conditions given in G-2214.3(a)(1) and (2).
KS,= (1.0359Co + 0.6322C, + 0.4753C2 + 0.3855C-)         *                           (4)
(b)
Criteria For Allowable Pressure-Temperature Relationships                                             Revision 3
Alternatively, the K, for radial thermal gradient can be calculated for any thermal stress distribution and at any specified time during cooldown for a /4-thickness inside surface defect using the relationship:
KS, = (1.0359Co + 0.6322C, + 0.4753C2 + 0.3855C-) *
(4)
Criteria For Allowable Pressure-Temperature Relationships Revision 3


3 or similarly. KIT during heatup for a '/,-thickness outside surface defect using the relationship:
3 or similarly. KIT during heatup for a '/,-thickness outside surface defect using the relationship:
Ki1 = (1.043Co + 0.630C, + 0.481C2 + 0.401C3)*                                         (5) where the coefficients C0, Cl, C2 and C3 are determined from the thermal stress distribution at any specified time during the heatup or cooldown using the form:
Ki1 = (1.043Co + 0.630C, + 0.481C2 + 0.401C3)*
a(x)   = Co + Ci(x / a) + C2(x / a)2 + Ci(x / a)'                                   (6) and x is a variable that represents the radial distance from the appropriate (i.e., inside or outside) surface to any point on the crack front and a is the maximum crack depth.
(5) where the coefficients C0, Cl, C2 and C3 are determined from the thermal stress distribution at any specified time during the heatup or cooldown using the form:
a(x)  
= Co + Ci(x / a) + C2(x / a)2 + Ci(x / a)'
(6) and x is a variable that represents the radial distance from the appropriate (i.e., inside or outside) surface to any point on the crack front and a is the maximum crack depth.
Note, that equations 3, 4 and 5 were implemented in the OPERLIM computer code, which is the program used to generate the pressure-temperature (P-T) limit curves. No other changes were made to the OPERLIM computer code with regard to P-T calculation methodology. Therefore, the P-T curve methodology is unchanged from that described in WCAP-14040, "Methodology used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves" 181 Section 2.6 (equations 2.6.2-4 and 2.6.3-1) with the exceptions just described above.
Note, that equations 3, 4 and 5 were implemented in the OPERLIM computer code, which is the program used to generate the pressure-temperature (P-T) limit curves. No other changes were made to the OPERLIM computer code with regard to P-T calculation methodology. Therefore, the P-T curve methodology is unchanged from that described in WCAP-14040, "Methodology used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves" 181 Section 2.6 (equations 2.6.2-4 and 2.6.3-1) with the exceptions just described above.
At any time during the heatup or cooldown transient, KI, is detennined by the metal temperature at the tip of a postulated flaw at the 1/4T and 3/4T location, the appropriate value for RTNDT, and the reference fracture toughness curve. The thermal stresses resulting from the temperature gradients through the vessel wall are calculated and then the corresponding (thermal) stress intensity factors, KI,, for the reference flaw are computed. From Equation 2, the pressure stress intensity factors are obtained and.
At any time during the heatup or cooldown transient, KI, is detennined by the metal temperature at the tip of a postulated flaw at the 1/4T and 3/4T location, the appropriate value for RTNDT, and the reference fracture toughness curve. The thermal stresses resulting from the temperature gradients through the vessel wall are calculated and then the corresponding (thermal) stress intensity factors, KI,, for the reference flaw are computed. From Equation 2, the pressure stress intensity factors are obtained and.
Line 89: Line 146:
For the calculation of the allowable pressure versus coolant temperature during cooldown, the reference flaw of Appendix G to the ASME Code is assumed to exist at the inside of the vessel wvall. During cooldown. the controlling location of the flaw is always at the inside of the wall because the thermal gradients produce tensile stresses at the inside, which increase with increasing cooldown rates.
For the calculation of the allowable pressure versus coolant temperature during cooldown, the reference flaw of Appendix G to the ASME Code is assumed to exist at the inside of the vessel wvall. During cooldown. the controlling location of the flaw is always at the inside of the wall because the thermal gradients produce tensile stresses at the inside, which increase with increasing cooldown rates.
Allowable pressure-temperature relations are generated for both steady-state and finite cooldown rate situations. From these relations, composite limit curves are constructed for each cooldown rate of interest.
Allowable pressure-temperature relations are generated for both steady-state and finite cooldown rate situations. From these relations, composite limit curves are constructed for each cooldown rate of interest.
Tile use of the composite curve in the cooldown analysis is necessary because control of the cooldown procedure is based on the measurement of reactor coolant temperature, whereas the limiting pressure is actually dependent on the material temperature at the tip of the assumed flaw. During cooldown, the 1/4T vessel location is at a higher temperature than the fluid adjacent to the vessel inner diameter. This condition. of course. is not tnie for the steady-state situation. It follows that, at any given reactor coolant temperature. the AT (temperature) developed during cooldown results in a higher value of K1 , at the 1/4T location for finite cooldown rates than for steady-state operation. Furthermore, if conditions exist so that the increase in KI, exceeds KIt, the calculated allowable pressure during cooldown will be greater than the stcadv-state value.
Tile use of the composite curve in the cooldown analysis is necessary because control of the cooldown procedure is based on the measurement of reactor coolant temperature, whereas the limiting pressure is actually dependent on the material temperature at the tip of the assumed flaw. During cooldown, the 1/4T vessel location is at a higher temperature than the fluid adjacent to the vessel inner diameter. This condition. of course. is not tnie for the steady-state situation. It follows that, at any given reactor coolant temperature. the AT (temperature) developed during cooldown results in a higher value of K1, at the 1/4T location for finite cooldown rates than for steady-state operation. Furthermore, if conditions exist so that the increase in KI, exceeds KIt, the calculated allowable pressure during cooldown will be greater than the stcadv-state value.
Criteria For Allowable Pressure-Temperature Relationships                                               Revision 3
Criteria For Allowable Pressure-Temperature Relationships Revision 3


34 The above procedures are needed because there is no direct control on temperature at the I/4T location and, therefore, allowable pressures may unknowingly be violated if the rate of cooling is decreased at various intervals along a cooldown ramp. The use of the composite curne eliminates this problem and ensures conservative operation of the system for the entire cooldown period.
34 The above procedures are needed because there is no direct control on temperature at the I/4T location and, therefore, allowable pressures may unknowingly be violated if the rate of cooling is decreased at various intervals along a cooldown ramp. The use of the composite curne eliminates this problem and ensures conservative operation of the system for the entire cooldown period.
Line 96: Line 153:
The second portion of the heatup analysis concerns the calculation of the pressure-temperature limitations forthe case in wvhich a I/4T flaw located at the 1/4T location from the outside surface is assumed. Unlike the situation at the vessel inside surface, the thermal gradients established at the outside surface during heatup produce stresses which are tensile in nature and therefore tend to reinforce any pressure stresses present. These thermal stresses are dependent on both the rate of heatup and the time (or coolant temperature) along the heatup ramp. Since the thermal stresses at the outside are tensile and increase with increasing heatup rates, each heatup rate must be analyzed on an individual basis.
The second portion of the heatup analysis concerns the calculation of the pressure-temperature limitations forthe case in wvhich a I/4T flaw located at the 1/4T location from the outside surface is assumed. Unlike the situation at the vessel inside surface, the thermal gradients established at the outside surface during heatup produce stresses which are tensile in nature and therefore tend to reinforce any pressure stresses present. These thermal stresses are dependent on both the rate of heatup and the time (or coolant temperature) along the heatup ramp. Since the thermal stresses at the outside are tensile and increase with increasing heatup rates, each heatup rate must be analyzed on an individual basis.
Following the generation of pressure-temperature curves for both the steady-state and finite heatup rate situations. the final limit curves are produced by constructing a composite curve based on a point-by-point comparison of the steady-state and finite heatup rate data. At any given temperature, the allowable pressure is taken to be the lesser of the three values taken from the curves under consideration. The use of the composite curve is necessary to set conservative heatup limitations because it is possible for conditions to exist wherein, over the course of the heatup ramp, the controlling condition switches from the inside to the outside, and the pressure limit must at all times be based on analysis of the most critical criterion.
Following the generation of pressure-temperature curves for both the steady-state and finite heatup rate situations. the final limit curves are produced by constructing a composite curve based on a point-by-point comparison of the steady-state and finite heatup rate data. At any given temperature, the allowable pressure is taken to be the lesser of the three values taken from the curves under consideration. The use of the composite curve is necessary to set conservative heatup limitations because it is possible for conditions to exist wherein, over the course of the heatup ramp, the controlling condition switches from the inside to the outside, and the pressure limit must at all times be based on analysis of the most critical criterion.
3.3 Closure Head/Vessel Flange Requirements 10 CFR Part 50. Appendix G addresses the metal temperature of the closure head flange and vessel flange regions. This rule states that the metal temperature of the closure flange regions must exceed the material unirradiated RTNDT by at least 1207F for normal operation when the pressure exceeds 20 percent of the preservice hydrostatic test pressure (3 106 psi), which is 621 psig for the Vogtle Electric Generating Plant Unit 2. However, per WCAP- 16142, 'Reactor Vessel Closure Head/Vessel Flange Requirements Evaluation for Vogtle Units I and 2[ 11,this requirement is no longer necessary when using the Fo Aloal CriteriarsueTmeaueRltosisRvso Criteria For Allowable Pressure-Temperature Relationships                                           Revision 3
3.3 Closure Head/Vessel Flange Requirements 10 CFR Part 50. Appendix G addresses the metal temperature of the closure head flange and vessel flange regions. This rule states that the metal temperature of the closure flange regions must exceed the material unirradiated RTNDT by at least 1207F for normal operation when the pressure exceeds 20 percent of the preservice hydrostatic test pressure (3 106 psi), which is 621 psig for the Vogtle Electric Generating Plant Unit 2. However, per WCAP-16142, 'Reactor Vessel Closure Head/Vessel Flange Requirements Evaluation for Vogtle Units I and 2[ 1 1, this requirement is no longer necessary when using the Criteria Fo Aloal rsueTmeaueRltosisRvso Criteria For Allowable Pressure-Temperature Relationships Revision 3


3-5 methodology of Code Case N-64011 ' ). Hence, the Vogtle Electric Generating Plant Unit 2 heatup and cooldown limit curves will be generated without flange requirements included.
3-5 methodology of Code Case N-6401 '
Revision 3 Criteria For AlIovable Pressure-Temperaturc Relationships Allowable Pressure-Temperature Relationships                                     Revision 3
1 ). Hence, the Vogtle Electric Generating Plant Unit 2 heatup and cooldown limit curves will be generated without flange requirements included.
Criteria For AlIovable Pressure-Temperature Relationships Revision 3 Criteria For Allowable Pressure-Temperaturc Relationships Revision 3


4-1 4         CALCULATION OF ADJUSTED REFERENCE TEMPERATURE From Regulatory Guide 1.99, Revision 2, the adjusted reference temperature (ART) for each material in the beltline region is given by the following expression:
4-1 4
ART   = Initial RTXD7 + A RTNDT + Margin                               (7)
CALCULATION OF ADJUSTED REFERENCE TEMPERATURE From Regulatory Guide 1.99, Revision 2, the adjusted reference temperature (ART) for each material in the beltline region is given by the following expression:
Initial RTNDT is the reference temperature for the unirradiated material as defined in paragraph NB-233 1 of Section III of the ASME Boiler and Pressure Vessel Code 6 1. If measured values of initial RTNDT for the material in question are not available, generic mean values for that class of material may be used if there are sufficient test results to establish a mean and standard deviation for the class.
ART = Initial RTXD7 + A RTNDT + Margin (7)
ARTNDT   is the mean value of the adjustment in reference temperature caused by irradiation and is calculated as follows:
Initial RTNDT is the reference temperature for the unirradiated material as defined in paragraph NB-233 1 of Section III of the ASME Boiler and Pressure Vessel Code 61. If measured values of initial RTNDT for the material in question are not available, generic mean values for that class of material may be used if there are sufficient test results to establish a mean and standard deviation for the class.
A RTA',n- =CF*ff0.28.o0v1o0.O                               (8)
ARTNDT is the mean value of the adjustment in reference temperature caused by irradiation and is calculated as follows:
A RTA',n- =CF *ff0.28.o0v1o0.O (8)
To calculate ARTNDT at any depth (e.g., at 1/4T or 3/4T), the following formula must first be used to attenuate the fluence at the specific depth.
To calculate ARTNDT at any depth (e.g., at 1/4T or 3/4T), the following formula must first be used to attenuate the fluence at the specific depth.
                                            =
=f =  
                                            =f        *    )(9) where x inches (vessel beltline thickness is 8.625 inches131) is the depth into the vessel wall measured from the vessel clad/base metal interface. The resultant fluence is then placed in Equation 8 to calculate the ARTNDT at the specific depth.
)(9) where x inches (vessel beltline thickness is 8.625 inches131) is the depth into the vessel wall measured from the vessel clad/base metal interface. The resultant fluence is then placed in Equation 8 to calculate the ARTNDT at the specific depth.
The Westinghouse Radiation Engineering and Analysis group evaluated the vessel fluence projections and the results are presented in Section 6 of WCAP-151591 7 1. The evaluation used the ENDF/B-VI scattering cross-section data set. This is consistent with the methods presented in WCAP-14040-A.
The Westinghouse Radiation Engineering and Analysis group evaluated the vessel fluence projections and the results are presented in Section 6 of WCAP-151591 71. The evaluation used the ENDF/B-VI scattering cross-section data set. This is consistent with the methods presented in WCAP-14040-A.
"Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves"18 1. Tables 4-1 and 4-2, herein, contain the calculated vessel surface fluence values along with the Regulatory Guide 1.99, Revision 2, 1/4T and 3/4T calculated fluences used to calculate the ART values for all beltline materials in the Vogtle Unit 2 reactor vessel. Additionally, the calculated surveillance capsule fluence values are presented in Table 4-3.
"Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves"18 1. Tables 4-1 and 4-2, herein, contain the calculated vessel surface fluence values along with the Regulatory Guide 1.99, Revision 2, 1/4T and 3/4T calculated fluences used to calculate the ART values for all beltline materials in the Vogtle Unit 2 reactor vessel. Additionally, the calculated surveillance capsule fluence values are presented in Table 4-3.
Calculation of Adjusted Reference Temperature                                                       Revision 3
Calculation of Adjusted Reference Temperature Revision 3


4-2 TABLE 4-1 Summary of the Peak Pressure Vessel Neutron Fluence Values at 26 EFPY used for the Calculation of ART Values (n/cm2 , E > 1.0 MeV) 3 Material                       Surface(b)             '/4 T               /4 T Interrnediate Shell Plate R4-1             1.46 x IO"         8.70 x 1018         3.09 x IO's Intermediate Shell Plate R4-2             1.46 x i0'9         8.70 x 108         3.09 xI Intermediate Shell Plate R4-3             1.46 x 10'9         8.70 x 1018         3.09 x 1018 Lowner Shell Plate B8825-1               1.46 x 10'9         8.70 x 1018         3.09 x 1018 Lowver Shell PlateB8-1                 1.46 x 1O'9         8.70 x 1           3.09 x 0" Lower Shell Plate B8628-1               1.46 x 1019         8.70 x 10"         3.09 x 10"8 Interrnediate Shell Longitudinal             1.46 x 1019         8.70 x 1018         3.09 x 10's Weld Seams 101-124A, B, C(a)
4-2 TABLE 4-1 Summary of the Peak Pressure Vessel Neutron Fluence Values at 26 EFPY used for the Calculation of ART Values (n/cm2, E > 1.0 MeV)
Lower Shell Longitudinal               1.46 x 10'9         8.70 x I 0"         3.09 x lOts Weld Seams 101-142A, B, C(a)
Material Surface(b)  
Intermediateto Lower Shell Circ.             1.46x 10'9         8.70x I0'8         3.09x 1018 Weld Seam 101-171(a)
'/4 T 3/4 T Interrnediate Shell Plate R4-1 1.46 x IO" 8.70 x 1018 3.09 x IO's Intermediate Shell Plate R4-2 1.46 x i0'9 8.70 x 108 3.09 xI Intermediate Shell Plate R4-3 1.46 x 10'9 8.70 x 1018 3.09 x 1018 Lowner Shell Plate B8825-1 1.46 x 10'9 8.70 x 1018 3.09 x 1018 Lowver Shell Plate B8-1 1.46 x 1O'9 8.70 x 1 3.09 x 0" Lower Shell Plate B8628-1 1.46 x 1019 8.70 x 10" 3.09 x 10"8 Interrnediate Shell Longitudinal 1.46 x 1019 8.70 x 1018 3.09 x 10's Weld Seams 101-124A, B, C(a)
Lower Shell Longitudinal 1.46 x 10'9 8.70 x I 0" 3.09 x l Ots Weld Seams 101-142A, B, C(a)
Intermediateto Lower Shell Circ.
1.46x 10'9 8.70x I0'8 3.09x 1018 Weld Seam 101-171(a)
Notes:
Notes:
(a)       It was conservatively assumed that all the welds would see the peak vessel fluence at 300.
(a)
(b)       Surface fluence values are calculated.
It was conservatively assumed that all the welds would see the peak vessel fluence at 300.
R fere f ce Calc laton        emp ratue Adustd                                                            R vison Calculation of Adjusted Reference Temperature                                                       Revision 3
(b)
Surface fluence values are calculated.
Calc laton f Adustd R fere ce emp ratue R vison Calculation of Adjusted Reference Temperature Revision 3


4-3 TABLE 4-2 Summary of the Peak Pressure Vessel Neutron Fluence Values at 36 EFPY used for the Calculation of ART Values (n/cm2 , E > 1.0 MeV)
4-3 TABLE 4-2 Summary of the Peak Pressure Vessel Neutron Fluence Values at 36 EFPY used for the Calculation of ART Values (n/cm2, E > 1.0 MeV)
Material                       Surface b)           1/4 T               3/4 T Intermediate Shell Plate R4-1             2.01 x 1019         1.20 x IO"         4.26 x IO's Intermediate Shell Plate R4-2             2.01 x 1019         1.20 x 1019         4.26 x   10' 8
Material Surface b) 1/4 T 3/4 T Intermediate Shell Plate R4-1 2.01 x 1019 1.20 x IO" 4.26 x IO's Intermediate Shell Plate R4-2 2.01 x 1019 1.20 x 1019 4.26 x 10'8 Intermediate Shell Plate R4-3 2.01 x l0'9 1.20 x 1019 4.26 x 10l" LowerShell Plate B8825-1 2.01 x 1019 1.20x 1019 4.26x 108 Lower Shell Plate R8-1 2.01 x IO 1.20 x 10'9 4.26 x IO Lower Shell Plate B8628-1 2.01 x 1019 1.20 x lI0' 4.26 x lO's Intermediate Shell Longitudinal 2.01 x 1019 1.20 x 1O'9 4.26 x lIO' Weld Seams 10I -124A, B, C0)
Intermediate Shell Plate R4-3             2.01 x l0'9         1.20 x 1019         4.26 x 10l" LowerShell Plate B8825-1                 2.01 x 1019         1.20x 1019         4.26x 108 Lower Shell Plate R8-1                 2.01 x IO           1.20 x 10'9         4.26 x IO Lower Shell Plate B8628-1               2.01 x 1019         1.20 x lI0'         4.26 x lO's Intermediate Shell Longitudinal             2.01 x 1019         1.20 x 1O' 9       4.26 x lIO' Weld Seams 10I -124A, B, C0)
Lower Shell Longitudinal 2.01 x 1019 1.20 x 10'9 4.26 x I0O Weld Seams 101-142A, B. C(a)
Lower Shell Longitudinal               2.01 x 1019         1.20 x 10'9         4.26 x I0O Weld Seams 101-142A, B. C(a)
Intermediate to Lower Shell Circ.
Intermediate to Lower Shell Circ.             2.01 x 10'9         1.20 x lO'9       . 4.26 x 10" Weld Seam 101 -171 Notes:
2.01 x 10'9 1.20 x lO'9  
(a)       It was conservatively assumed that all the welds would see the peak vessel fluence at 300.
. 4.26 x 10" Weld Seam 101 -171 Notes:
(b)       Surface fluence values are calculated.
(a)
Calculation of Adjusted Reference Temperature                                                       Revision 3
It was conservatively assumed that all the welds would see the peak vessel fluence at 300.
(b)
Surface fluence values are calculated.
Calculation of Adjusted Reference Temperature Revision 3


4-4 TABLE 4-3 Calculated Integrated Neutron Exposure of the Vogtle Unit 2 Surveillance Capsules Tested to Date Capsule                         Fluencc U               3.97 x I 08 n/cm 2 , (E > 1.0 MeV)
4-4 TABLE 4-3 Calculated Integrated Neutron Exposure of the Vogtle Unit 2 Surveillance Capsules Tested to Date Capsule Fluencc U
Y               1.27 x 10'9 n/cm 2, (E > 1.0 MeV)
3.97 x I 08 n/cm2, (E > 1.0 MeV)
X               2.01 x 10'9n/cm 2, (E> 1.0MeV)
Y 1.27 x 10'9 n/cm2, (E > 1.0 MeV)
Margin is calculated as, M = 2 oa2 + a.? . The standard deviation for the initial RTNDT margin term, a,,
X 2.01 x 10'9 n/cm 2, (E> 1.0MeV)
is 07F when the initial RTNDT is a measured value, and 17'F when a generic value is used. The standard deviation for the ARTNDT margin term, a,%, is I 7'F for plates when surveillance capsule data is not used and 8.51F for plates when surveillance capsule data is used. For welds, cS is 281F when surveillance capsule data is not used and 14'F when surveillance capsule data is used. In addition, a, need not exceed one-half the mean value of ARTNDT.
Margin is calculated as, M = 2 oa2 + a.?. The standard deviation for the initial RTNDT margin term, a,,
Revision 3 Reference Temperature Calculation of Adjusted Reference Temperature                                                     Revision '3
is 07F when the initial RTNDT is a measured value, and 1 7'F when a generic value is used. The standard deviation for the ARTNDT margin term, a,%, is I 7'F for plates when surveillance capsule data is not used and 8.51F for plates when surveillance capsule data is used. For welds, cS is 281F when surveillance capsule data is not used and 14'F when surveillance capsule data is used. In addition, a, need not exceed one-half the mean value of ARTNDT.
Calculation of Adjusted Reference Temperature Revision 3 Calculation of Adjusted Reference Temperature Revision '3


4-5 Contained in Table 4-4 is a summary of the Measured 30 ft-lb transition temperature shifts of the beltline materialst 7 l. These measured shift values were obtained using CVGRAPH, Version 4.1141, which is a hyperbolic tangent curve-fitting program.
4-5 Contained in Table 4-4 is a summary of the Measured 30 ft-lb transition temperature shifts of the beltline materialst 7l. These measured shift values were obtained using CVGRAPH, Version 4.1141, which is a hyperbolic tangent curve-fitting program.
TABLE 4-4 Measured 30 ft-lb Transition Temperature Shifts of the Beltline Materials Contained in the Surveillance Program Material                             Capsule               Measured 30 ft-lb Transition Temperature Shift(')
TABLE 4-4 Measured 30 ft-lb Transition Temperature Shifts of the Beltline Materials Contained in the Surveillance Program Material Capsule Measured 30 ft-lb Transition Temperature Shift(')
Lower Shell Plate B8628-1                           U                               2.120 F Y                               5.760 F (Longitudinal Orientation)                         X                             29.350 F Lower Shell Plate B8628-1                           U                               0.OoFlb)
Lower Shell Plate B8628-1 U
Y                               I.930 F (Transverse Orientation)                         X                               29.720 F Surveillance Program                             U                             OOoF(h)
2.120F Y
Weld Metal                               Y                               18.590 F X                               20.070 F U                             O.OOF(b)
5.760F (Longitudinal Orientation)
Heat Affected Zone                             Y                               O.OoFNb)
X 29.350F Lower Shell Plate B8628-1 U
V                               O.OOF(b)
0.OoFlb)
Y I.930 F (Transverse Orientation)
X 29.720F Surveillance Program U
OOoF(h)
Weld Metal Y
18.590F X
20.070F U
O.OOF(b)
Heat Affected Zone Y
O.OoFNb)
V O.OOF(b)
Notes:
Notes:
(a) Calculated using measured Charpy data and plotted using CVGRAPH141 (b) Actual values for ARTNDT are -7.14 (Plate), -17.49 (Weld), -24.05 (IIAZ Cap. U). -9.86 (HAZ Cap. Y) and -2.1 (HAZ Cap. X). This physically should not occur, therefore for conservatism a value of zero will be used.
(a) Calculated using measured Charpy data and plotted using CVGRAPH141 (b) Actual values for ARTNDT are -7.14 (Plate), -17.49 (Weld), -24.05 (IIAZ Cap. U). -9.86 (HAZ Cap. Y) and -2.1 (HAZ Cap. X). This physically should not occur, therefore for conservatism a value of zero will be used.
Temperature                                                     Revision 3 Adjusted Reference Calculation of Adjusted Reference Temperature                                                     Revision 3
Calculation of Adjusted Reference Temperature Revision 3 Calculation of Adjusted Reference Temperature Revision 3


4-6 Table 4-5 contains a summary of the weight percent of copper, the wveight percent of nickel and the initial RTNDT of the beltline materials and vessel flanges. The weight percent values of Cu and Ni given in Table 4-5 wvere used to generate the calculated chemistry factor (CF) values based on Tables I and 2 of Regulatory Guide 1.99, Revision 2, and presented in Table 4-7. Table 4-6 provides the calculation of the CF values based on surveillance capsule data, Regulatory Guide 1.99, Revision 2, Position 2.1, which are also summarized in Table 4-7.
4-6 Table 4-5 contains a summary of the weight percent of copper, the wveight percent of nickel and the initial RTNDT of the beltline materials and vessel flanges. The weight percent values of Cu and Ni given in Table 4-5 wvere used to generate the calculated chemistry factor (CF) values based on Tables I and 2 of Regulatory Guide 1.99, Revision 2, and presented in Table 4-7. Table 4-6 provides the calculation of the CF values based on surveillance capsule data, Regulatory Guide 1.99, Revision 2, Position 2.1, which are also summarized in Table 4-7.
TABLE 4-5 Reactor Vessel Beltline Material Unirradiated Toughness Properties' 5 &9]
TABLE 4-5 Reactor Vessel Beltline Material Unirradiated Toughness Properties'5 & 9]
Material Description                     Cu (%)           Ni(%)           Initial RTNDTt '
Material Description Cu (%)
Closure Head Flange R7-1                                                       100 F Vessel Flange RI-i                                         ---          -600 F Intermediate Shell Plate R4-1                   0.07             0.63           10F Intermediate Shell Plate R4-2                   0.06             0.61           10F Intennediate Shell Plate R4-3                   0.05             0.60           30 0 F Lower Shell Plate B8825-1                     0.06             0.62           40 0 F Lower Shell Plate R8-1                     0.07             0.63           400 F Lower Shell Plate B8628-1                     0.05             0.59           500 F Intermediate Shell Longitudinal Weld                 0.05             015           -10 0 F Seams 101-I 24A. B & C Lower Shell Longitudinal Weld Seams                   0.05             0.15           -10T 101-142A. B & C Intermediate to Lox er Shell Plate                 0.05             0.15           -30 0 F Circumferential Weld Seam 101-171 Surveillance Weldlb)                       0.04             0.13 Note s:
Ni(%)
(a) The initial RTNDT values for the plates and welds are based on measured data.
Initial RTNDTt' Closure Head Flange R7-1 100F Vessel Flange RI-i  
(b) The weld material in the Vogtle Unit 2 surveillance program was made of the same wire and flux as the reactor vessel intermediate to lower shell girth seam weld (101-171). These welds were fabricated using weld wire heat no. 87005, Linde 124 Flux, lot no. 1061. The intermediate shell longitudinal weld seams (101-124A,B,C) and the lower shell longitudinal weld seams (101-142A,BC) were fabricated using weld wire heat no. 87005, Linde 0091 Flux, lot no. 0145. Hence the surveillance weld is representative of all beltline welds.
-600F Intermediate Shell Plate R4-1 0.07 0.63 10F Intermediate Shell Plate R4-2 0.06 0.61 10F Intennediate Shell Plate R4-3 0.05 0.60 30 0F Lower Shell Plate B8825-1 0.06 0.62 400F Lower Shell Plate R8-1 0.07 0.63 400 F Lower Shell Plate B8628-1 0.05 0.59 500 F Intermediate Shell Longitudinal Weld 0.05 015  
Calculation of Adjusted Reference Temperature                                                             Revision 3
-10 0F Seams 101-I 24A. B & C Lower Shell Longitudinal Weld Seams 0.05 0.15  
-10T 101-142A. B & C Intermediate to Lox er Shell Plate 0.05 0.15  
-30 0F Circumferential Weld Seam 101-171 Surveillance Weldlb) 0.04 0.13 Note (a)
(b) s:
The initial RTNDT values for the plates and welds are based on measured data.
The weld material in the Vogtle Unit 2 surveillance program was made of the same wire and flux as the reactor vessel intermediate to lower shell girth seam weld (101-171). These welds were fabricated using weld wire heat no. 87005, Linde 124 Flux, lot no. 1061. The intermediate shell longitudinal weld seams (101-124A,B,C) and the lower shell longitudinal weld seams (101-142A,BC) were fabricated using weld wire heat no. 87005, Linde 0091 Flux, lot no. 0145. Hence the surveillance weld is representative of all beltline welds.
Calculation of Adjusted Reference Temperature Revision 3


4-7 TABLE 4-6 Calculation of Chemistr) Factors using Vogtle Unit 2 Surveillance Capsule Data Material           Capsule       Capsule jo)       FFb)l       ARTNDT"             l FF*ARTNDT         FF2 Lower Shell             U           0.397           0.744             2.1                 1.6         0.554 Plate B8628-1             Y             1.27           1.07             5.8                 6.2         1.14 (Longitudinal)           X             2.01           1.19           29.4                 35.0         1.42 Lower Shell             U           0.397           0.744           0.0()                 0         0.554 Plate B8628-1             Y             1.27           1.07               1.9               2.0         1.14 (Transverse)             X             2.01           1.19             29.7               35.3         1.42 SUM:           80.1         6.228 CFXS628.1=:(FF *RTNDr)         2:( FF 2 )=(80.1)         (6.228) 12.97F Surveillance Weld           U           0.397           0.744           0.0(e)                 0         0.554 Material             Y             1.27           1.07     22 .1(1 8 .6 )"'           23.6         1.14 X             2.01           1.19     2 3 . 9 ( 2 0 .1 )Id,       28.4         1.42 SUM:           52.0         3.114 CFsLI. Bad = X;(FF
4-7 TABLE 4-6 Calculation of Chemistr) Factors using Vogtle Unit 2 Surveillance Capsule Data Material Capsule Capsule jo)
* RTNDT) *    ( FF2) = (52.0) . (3.114) = 16.70 F Notes (a)   f= Calculated fluence from capsule X dosimetry analysis results 17), (x 1019 n!cm 2 , E > 1.0 MeV).
FFb)l ARTNDT" l FF*ARTNDT FF2 Lower Shell U
(b)    FF = fluence factor= pO.2 -. lorI)
0.397 0.744 2.1 1.6 0.554 Plate B8628-1 Y
(c)    ARTNDT values are the measured 30 ft-lb shift values from App. B of Ref. 7, rounded to one decimal point.
1.27 1.07 5.8 6.2 1.14 (Longitudinal)
(d)    The surveillance weld metal ARTNDT values have been adjusted by a ratio factor of 1. 19.
X 2.01 1.19 29.4 35.0 1.42 Lower Shell U
(e)    Actual values for ARTNDT are -7.14 (Plate) and -17.49 (Weld). This phy)sicall) should not occur, therefore for conservatism a value of zero will be used.
0.397 0.744 0.0()
Calculation of Adjusted Reference Temperature                                                               Revision 3
0 0.554 Plate B8628-1 Y
1.27 1.07 1.9 2.0 1.14 (Transverse)
X 2.01 1.19 29.7 35.3 1.42 SUM:
80.1 6.228 CFXS628.1=:(FF *RTNDr) 2:( FF2)=(80.1)
(6.228) 12.97F Surveillance Weld U
0.397 0.744 0.0(e) 0 0.554 Material Y
1.27 1.07 22.1(18.6 )"'
23.6 1.14 X
2.01 1.19 2 3.9(2 0.1 )Id, 28.4 1.42 SUM:
52.0 3.114 CFsLI. Bad = X;(FF
* RTNDT)
( FF2) = (52.0). (3.114) = 16.70F Notes (a)
(b)
(c)
(d)
(e) f= Calculated fluence from capsule X dosimetry analysis results 17), (x 1019 n!cm2, E > 1.0 MeV).
FF = fluence factor= pO.2 -.
lorI)
ARTNDT values are the measured 30 ft-lb shift values from App. B of Ref. 7, rounded to one decimal point.
The surveillance weld metal ARTNDT values have been adjusted by a ratio factor of 1. 19.
Actual values for ARTNDT are -7.14 (Plate) and -17.49 (Weld). This phy)sicall) should not occur, therefore for conservatism a value of zero will be used.
Calculation of Adjusted Reference Temperature Revision 3


4-8 TABLE 4-7 Summary of the Vogtle Unit 2 Reactor Vessel Beltline Material Chemistry Factors Based on Regulatory Guide 1.99, Revision 2, Position 1.1 and Position 2.1 Material                             Chemistn- Factor Position 1.1(')       Position 2.1")
4-8 TABLE 4-7 Summary of the Vogtle Unit 2 Reactor Vessel Beltline Material Chemistry Factors Based on Regulatory Guide 1.99, Revision 2, Position 1.1 and Position 2.1 Material Chemistn-Factor Position 1.1(')
Intermediate Shell Plate R4-1             44.0F                   ---
Position 2.1")
Intermediate Shell Plate R4-2             37.0 0 F      l         ---
Intermediate Shell Plate R4-1 44.0F Intermediate Shell Plate R4-2 37.00F l
Intermediate Shell Plate R4-3             31.0 0 F      l Lower Shell Plate B8825-1                 37.0F                   ---
Intermediate Shell Plate R4-3 31.0 0F l
Lower Shell Plate R8-1                 44.0 0 F1 Lower Shell Plate B8628-1                 31.0 0F               12.9 0 F Intermediate Shell Longitudinal Welds,         43.3 0 F              16.7 01-101-124A, B & C Lower Shell Longitudinal Welds             43.3 0 F              16.7 0 F 101-142A, B & C Circumferential Weld 101-171               43.3 0 F              16.701 Surveillance Program Weld Metal             36.4`F Notes:
Lower Shell Plate B8825-1 37.0F Lower Shell Plate R8-1 44.00F1 Lower Shell Plate B8628-1 31.0 0F 12.9 0F Intermediate Shell Longitudinal Welds, 43.3 0F 16.7 01-101-124A, B & C Lower Shell Longitudinal Welds 43.3 0F 16.7 0F 101-142A, B & C Circumferential Weld 101-171 43.3 0F 16.701 Surveillance Program Weld Metal 36.4`F Notes:
(a) Regulatory Guide 1;99, Revision 2, Position 1. I or Position 2.1 mnethodology.
(a) Regulatory Guide 1;99, Revision 2, Position 1. I or Position 2.1 mnethodology.
Revision 3 Reference Temperature Calculation of Adjusted Reference Temperature                                                     Revision 3
Calculation of Adjusted Reference Temperature Revision 3 Calculation of Adjusted Reference Temperature Revision 3


4-9 Contained in Tables 4-8 and 4-9 are summaries of the fluence factors (FF) used in the calculation of adjusted reference temperatures for the Vogtle Electric Generating Plant Unit 2 reactor vessel beltline materials for 26 EFPY and 36 EFPY.
4-9 Contained in Tables 4-8 and 4-9 are summaries of the fluence factors (FF) used in the calculation of adjusted reference temperatures for the Vogtle Electric Generating Plant Unit 2 reactor vessel beltline materials for 26 EFPY and 36 EFPY.
TABLE 4-8 Summary of the Calculated Fluence Factors used for the Generation of the 26 EFPY Heatup and Cooldown Curves Material                       %T   r       1/4 T FF(2)           3
TABLE 4-8 Summary of the Calculated Fluence Factors used for the Generation of the 26 EFPY Heatup and Cooldown Curves Material  
                                                                                /4T f       3 4 T FFb) 2                              2 (n/cm , E > 1.0               (n/cm , E >1.0 Mel')
% T r 1/4 T FF(2) 3/4T f 3 4 T FFb)
__NW                                         MeV)
(n/cm2, E > 1.0 (n/cm2, E >1.0 Mel')
Intennediate Shell Plate R4-1         8.70 x 1018       0.961           3.09 x IO'8         0.678 Intermediate Shell Plate R4-2         8.70 x IO"       0.961           3.09 x I0"'         0.678 Intermediate Shell Plate R4-3         8.70 x I0"       0.961           3.09 x 1O18         0.678 Lower Shell Plate B8825-1           8.70 x 1O08       0.961           3.09 x 1018         0.678 Lower Shell PlateB8-1               8.70 x 1018       0.961           3.09 x 1I0          0.678 Lower Shell Plate B8628-1             8.70 x 1018       0.961           3.09 x 1018         0.678 Intermediate Shell Longitudinal         8.o x 1O,8       0.961           3.09 x l0'           0.678 Weld Seams 101-124A, B, C Lower Shell Longitudinal             8.70 x 1018       0.961           3.09 x 108           0.678 Weld Seams 101-142A, B, C Intermediate to Lower Shell           8.70 x I0O"       0.961           3.09 x lI0'         0.678 Circ.
__NW MeV)
Intennediate Shell Plate R4-1 8.70 x 1018 0.961 3.09 x IO'8 0.678 Intermediate Shell Plate R4-2 8.70 x IO" 0.961 3.09 x I0"'
0.678 Intermediate Shell Plate R4-3 8.70 x I0" 0.961 3.09 x 1O18 0.678 Lower Shell Plate B8825-1 8.70 x 1O08 0.961 3.09 x 1018 0.678 Lower Shell Plate B8-1 8.70 x 1018 0.961 3.09 x 1I 0 0.678 Lower Shell Plate B8628-1 8.70 x 1018 0.961 3.09 x 1018 0.678 Intermediate Shell Longitudinal 8.o x 1O,8 0.961 3.09 x l0' 0.678 Weld Seams 101-124A, B, C Lower Shell Longitudinal 8.70 x 1018 0.961 3.09 x 108 0.678 Weld Seams 101-142A, B, C Intermediate to Lower Shell 8.70 x I0O" 0.961 3.09 x lI0' 0.678 Circ.
Weld Seam 101-171 Notes:
Weld Seam 101-171 Notes:
(a) Fluence Factor at the 1/4T vessel thickness location.
(a) Fluence Factor at the 1/4T vessel thickness location.
(b) Fluence Factor at the 3/4T vessel thickness location.
(b) Fluence Factor at the 3/4T vessel thickness location.
empratue f Adustd Rferece Calclaton                                                                      Rvison Calculation of Adjusted Reference Temperature                                                     Revision;3
Calclaton f Adustd Rferece empratue Rvison Calculation of Adjusted Reference Temperature Revision;3


4-10 TABLE 4-9 Summary of the Calculated Fluence Factors used for the Generation of the 36 EFPY Heatup and Cooldown Curves Material                       %T r           %T FF"'I         %Tf         3/ T FFb 2                                2 (n/cm , E > 1.0                   (n/cm , E > 1.0 nr         i     S la)                       x.2e6x)
4-10 TABLE 4-9 Summary of the Calculated Fluence Factors used for the Generation of the 36 EFPY Heatup and Cooldown Curves Material  
Intermediate Shell Plate R4-1             1.20 x l 09       1.051         4.26 x IO"S       0.763 Intermediate Shell Plate R4-2             1.20 x 1019       1.051         4.26 x 11O8       0.763 oIntermediate Shell Plate R4-3       1.20 x 10'9       1.051         4.26 x I 0"       0.763 Lower Shell Plate B8825-1               1.20 x 10O9       1.051         4.26 x I0' 8     0.763 Lower Shell Plate R8-1               1.20 x i '9       1.051         4.26 x 10"'       0.763 l Lowver Sllell Plate B8628-1             1.20 x 1O'9       1.051         4.26 x 10"8       0.763 Intermediate Shell Longitudinal           1.20 x 1019       1.051         4.26 x 1018       0.763 Weld Seams 101- 124A, B, C Lower Shell Longitudinal               1.20 x 10'9       1.051         4.26 x 1018       0.763 Weld Seams 101-142A. B, C Intermediate to Lower Shell             1.20 x l0'9       1.051         4.26 x Il0        0.763 Circ. Weld Seam 101 - 171 Notes:
% T r  
% T FF"'I  
% Tf 3/ T FFb (n/cm2, E > 1.0 (n/cm2, E > 1.0 nr i
S la) x.2e6x)
Intermediate Shell Plate R4-1 1.20 x l 09 1.051 4.26 x IO"S 0.763 Intermediate Shell Plate R4-2 1.20 x 1019 1.051 4.26 x 11O8 0.763 oIntermediate Shell Plate R4-3 1.20 x 10'9 1.051 4.26 x I 0" 0.763 Lower Shell Plate B8825-1 1.20 x 10O9 1.051 4.26 x I0' 8 0.763 Lower Shell Plate R8-1 1.20 x i '9 1.051 4.26 x 10"'
0.763 l Lowver Sllell Plate B8628-1 1.20 x 1 O'9 1.051 4.26 x 10"8 0.763 Intermediate Shell Longitudinal 1.20 x 1019 1.051 4.26 x 1018 0.763 Weld Seams 101 -124A, B, C Lower Shell Longitudinal 1.20 x 10'9 1.051 4.26 x 1018 0.763 Weld Seams 101-142A. B, C Intermediate to Lower Shell 1.20 x l0'9 1.051 4.26 x Il 0 0.763 Circ. Weld Seam 101 -171 Notes:
(a) Fluence Factor at the 1/4T vessel thickness location.
(a) Fluence Factor at the 1/4T vessel thickness location.
(b) Fluence Factor at the 3/4T vessel thickness location.
(b) Fluence Factor at the 3/4T vessel thickness location.
Calculation of Adjusted Reference Temperature                                                   Revision 3
Calculation of Adjusted Reference Temperature Revision 3


4-1l Contained in Tables 4-10 through 4-13 are the calculations of the ART values used for the generation of the 26 EFPY and 36 EFPY heatup and cooldown curves.
4-1l Contained in Tables 4-10 through 4-13 are the calculations of the ART values used for the generation of the 26 EFPY and 36 EFPY heatup and cooldown curves.
TABLE 4-10 Calculation of the ART Values for the 1/4T Location @ 26 EFPY Material                 RG 1.99 R2       CF         FF IRTNDT" ) ARTNDT4 1   Margin     ART(b)
TABLE 4-10 Calculation of the ART Values for the 1/4T Location @ 26 EFPY Material RG 1.99 R2 CF FF IRTNDT" )
Method         (OF)
ARTNDT4 1 Margin ART(b)
Intermediate Shell Plate R4-1         Position 1.1   44.0       0.961     10       42.3       34           86 Intermediate Shell Plate R4-2         Position 1.1   37.0       0.961     10       35.6       34           80 Intermediate Shell Plate R4-3         Position 1.1   31.0       0.961     30       29.8       29.8         90 Lower Shell Plate B8825-1           Position 1.1   37.0       0.961     40       35.6       34         110 Lower Shell Plate 18-1           Position 1.1   44.0       0.961     40       42.3       34         116 Lower Shell Plate B8628-1           Position 1.1   31.0       0.961     50       29.8       29.8         110 Position 2.1     12.9     0.961     50       12.4     12.4         75 Intermediate Shell Longitudinal       Position 1.1   43.3       0.961   -10       41.6       41.6         73 Weld Seams 101-124A, B, C           Position 2.1     16.7     0.961   -10       16.0     16.0         22 Lower Shell Longitudinal           Position 1.1   43.3       0.961   -10       41.6       41.6         73 Weld Seams 101-142A, B, C           Position 2.1     16.7     0.961   -10       16.0     16.0         22 Intermediate to Lower Shell         Position 1.1   43.3       0.961   -30       41.6       41.6         53 Circ. Weld Seam 101-171           Position 2.1     16.7     0.961   -30       16.0     16.0 Notes:
Method (OF)
(a)     Initial RTNDT values are measured values (see Table 4-5).
Intermediate Shell Plate R4-1 Position 1.1 44.0 0.961 10 42.3 34 86 Intermediate Shell Plate R4-2 Position 1.1 37.0 0.961 10 35.6 34 80 Intermediate Shell Plate R4-3 Position 1.1 31.0 0.961 30 29.8 29.8 90 Lower Shell Plate B8825-1 Position 1.1 37.0 0.961 40 35.6 34 110 Lower Shell Plate 18-1 Position 1.1 44.0 0.961 40 42.3 34 116 Lower Shell Plate B8628-1 Position 1.1 31.0 0.961 50 29.8 29.8 110 Position 2.1 12.9 0.961 50 12.4 12.4 75 Intermediate Shell Longitudinal Position 1.1 43.3 0.961  
(b)     ART = Initial RTNDT + ARTNDT + Margin (IF); (Rounded per ASTM E29, using the "Rounding Method")
-10 41.6 41.6 73 Weld Seams 101-124A, B, C Position 2.1 16.7 0.961  
(c)      ARTNDT = CF
-10 16.0 16.0 22 Lower Shell Longitudinal Position 1.1 43.3 0.961  
* FF Revision 3 Calculation of             Reference Temperature Adjusted Reference of Adjusted          Temperature                                                 Revision 3
-10 41.6 41.6 73 Weld Seams 101-142A, B, C Position 2.1 16.7 0.961  
-10 16.0 16.0 22 Intermediate to Lower Shell Position 1.1 43.3 0.961  
-30 41.6 41.6 53 Circ. Weld Seam 101-171 Position 2.1 16.7 0.961  
-30 16.0 16.0 Notes:
(a)
Initial RTNDT values are measured values (see Table 4-5).
(b)
(c)
ART = Initial RTNDT + ARTNDT + Margin (IF); (Rounded per ASTM E29, using the "Rounding Method")
ARTNDT = CF
* FF Calculation of Adjusted Reference Temperature Revision 3 Calculation of Adjusted Reference Temperature Revision 3


4-12 TABLE 4-11 Calculation of the ART Values for the 3/4T Location     @ 26 EFPY Material                 RG 1.99 R2       CF         FF     IRTNTz'a   ARTNDT(C) Margin   ART"b' Method         ('F)
4-12 TABLE 4-11 Calculation of the ART Values for the 3/4T Location @ 26 EFPY Material RG 1.99 R2 CF FF IRTNTz'a ARTNDT(C)
Intermediate Shell Plate R4-1       Position 1.1     44.0       0.678       10       29.8     29.8       70 Intermediate Shell Plate R4-2       Position 1.1     37.0       0.678       10       25.1     25.1       60 Intermediate Shell Plate R4-3       Position 1.1     31.0       0.678       30         21.0     21.0       72 Lower Shell Plate B8825-1         Position 1.1     37.0       0.678       40         25.1     25.1       90 Lowver Shell Plate R8-1         Position 1.1     44.0       0.678       40         29.8     29.8     100 Lower Shell Plate B8628-1         Position 1.1     31.0       0.678       50       21.0     21.0       92 Position 2.1     12.9     0.678       50         8.7     8.7       67 Intermediate Shell Longitudinal       Position 1.1     43.3       0.678       -10       29.4     29.4       49 Weld Seams 101- 124A, B, C         Position 2.1     16.7     0.678       -10         11.3   11.3       13 Lower Shell Longitudinal         Position 1.1     43.3       0.678       -10       29.4     29.4       49 Weld Seams 101-142A, B, C           Position 2.1     16.7     0.678       -10         11.3   11.3       13 Intermediate to Lower Shell       Position 1.1     43.3       0.678       -30       29.4     29.4       29 Circ. Weld Seam 101-171           Position 2.1     16.7     0.678       -30         11.3   11.3       -7 Notes:
Margin ART"b' Method
(a)     Initial RTNDT values are measured values (see Table 4-5).
('F)
(b)     ART = Initial RTNDT + ARTNDT + Margin (F) ; (Rounded per ASTM E29, using the "Rounding Method")
Intermediate Shell Plate R4-1 Position 1.1 44.0 0.678 10 29.8 29.8 70 Intermediate Shell Plate R4-2 Position 1.1 37.0 0.678 10 25.1 25.1 60 Intermediate Shell Plate R4-3 Position 1.1 31.0 0.678 30 21.0 21.0 72 Lower Shell Plate B8825-1 Position 1.1 37.0 0.678 40 25.1 25.1 90 Lowver Shell Plate R8-1 Position 1.1 44.0 0.678 40 29.8 29.8 100 Lower Shell Plate B8628-1 Position 1.1 31.0 0.678 50 21.0 21.0 92 Position 2.1 12.9 0.678 50 8.7 8.7 67 Intermediate Shell Longitudinal Position 1.1 43.3 0.678  
(c)      ARTNDT = CF
-10 29.4 29.4 49 Weld Seams 101 -124A, B, C Position 2.1 16.7 0.678  
* FF Calculation of Adjusted Reference Temperature t                   oRevision                               3
-10 11.3 11.3 13 Lower Shell Longitudinal Position 1.1 43.3 0.678  
-10 29.4 29.4 49 Weld Seams 101-142A, B, C Position 2.1 16.7 0.678  
-10 11.3 11.3 13 Intermediate to Lower Shell Position 1.1 43.3 0.678  
-30 29.4 29.4 29 Circ. Weld Seam 101-171 Position 2.1 16.7 0.678  
-30 11.3 11.3  
-7 Notes:
(a)
Initial RTNDT values are measured values (see Table 4-5).
(b)
(c)
ART = Initial RTNDT + ARTNDT + Margin (F) ; (Rounded per ASTM E29, using the "Rounding Method")
ARTNDT = CF
* FF Calculation of Adjusted Reference Temperature t oRevision 3


4-13 TABLE 4-12 Calculation of the ART Values for the 1/4T Location @ 36 EFPY Material               RG 1.99 R2       CF         FF   IRTNDTz ' ARTNDT( )   Margin     ART b)
4-13 TABLE 4-12 Calculation of the ART Values for the 1/4T Location @ 36 EFPY Material RG 1.99 R2 CF FF IRTNDTz '
Method         (&deg;F)
ARTNDT( )
Intermediate Shell Plate R4-1       Position 1.1     44.0       1.051     10       46.2         34         90 Intermediate Shell Plate R4-2       Position 1.1     37.0       1.051     10       38.9         34           83 Intenmediate Shell Plate R4-3       Position 1.1     31.0       1.051     30       32.6       32.6         95 Lower Shell Plate B8825-1         Position 1.1     37.0       1.051   40       38.9         34         113 Lower Shell Plate R18- I         Position 1.1     44.0       1.051   40       46.2         34         120 Lower Shell Plate B8628-1         Position 1.1     31.0       1.051     50       32.6       32.6         115 Position 2.1     12.9     1.051     50       13.6       13.6         77 Intennediate Shell Longitudinal       Position 1.1     43.3       1.051   -10       45.5       45.5         81 Weld Seams 101-124A, B. C           Position 2.1     16.7     1.051   -10       17.6       17.6         25 Lower Shell Longitudinal         Position 1.1     43.3       1.051   -10       45.5       45.5         81 Weld Seams 101-142A B, C           Position 2.1     16.7     1.051   -10       17.6       17.6         25 Intermediate to Lower Shell       Position 1.1     43.3       1.051   -30       45.5       45.5         61 Circ. Weld Seam 101 - 171         Position 2.1     16.7     1.051   -30       17.6       17.6         5 Notes:
Margin ART b)
(a)       Initial RTNDT values are measured values (see Table 4-5).
Method
(b)       ART = Initial RTNDT + ARTNDT + Margin (fF); (Rounded per ASTM E29, using the "Rounding, Method")
(&deg;F)
(c)      ARTNDT= CF
Intermediate Shell Plate R4-1 Position 1.1 44.0 1.051 10 46.2 34 90 Intermediate Shell Plate R4-2 Position 1.1 37.0 1.051 10 38.9 34 83 Intenmediate Shell Plate R4-3 Position 1.1 31.0 1.051 30 32.6 32.6 95 Lower Shell Plate B8825-1 Position 1.1 37.0 1.051 40 38.9 34 113 Lower Shell Plate R18-I Position 1.1 44.0 1.051 40 46.2 34 120 Lower Shell Plate B8628-1 Position 1.1 31.0 1.051 50 32.6 32.6 115 Position 2.1 12.9 1.051 50 13.6 13.6 77 Intennediate Shell Longitudinal Position 1.1 43.3 1.051  
* FF Revision 3 Calculation of of Adjusted Reference Temperature Adjusted Reference Temperature                                                   Revision 3
-10 45.5 45.5 81 Weld Seams 101-124A, B. C Position 2.1 16.7 1.051  
-10 17.6 17.6 25 Lower Shell Longitudinal Position 1.1 43.3 1.051  
-10 45.5 45.5 81 Weld Seams 101-142A B, C Position 2.1 16.7 1.051  
-10 17.6 17.6 25 Intermediate to Lower Shell Position 1.1 43.3 1.051  
-30 45.5 45.5 61 Circ. Weld Seam 101 -171 Position 2.1 16.7 1.051  
-30 17.6 17.6 5
Notes:
(a)
Initial RTNDT values are measured values (see Table 4-5).
(b)
(c)
ART = Initial RTNDT + ARTNDT + Margin (fF); (Rounded per ASTM ARTNDT= CF
* FF E29, using the "Rounding, Method")
Calculation of Adjusted Reference Temperature Revision 3 Calculation of Adjusted Reference Temperature Revision 3


4-14 TABLE 4-13 Calculation of the ART Values for the 314T Location   @ 36 EFPY Material                 RG 1.99 R2       CF         FF IRTNDTP')   ARTNDT(C) Margin     ART'b)
4-14 TABLE 4-13 Calculation of the ART Values for the 314T Location @ 36 EFPY Material RG 1.99 R2 CF FF IRTNDTP')
Method         (OF)
ARTNDT(C)
Intermediate Shell Plate R4-1       Position 1.1     44.0       0.763     10       33.6     33.6         77 Intennediate Shell Plate R4-2       Position 1.1     37.0       0.763     10       28.2     28.2         66 Intermediate Shell Plate R4-3       Position 1.1     31.0       0.763     30       23.7     23.7         77 Lower Shell Plate B8825-1           Position 1.1     37.0       0.763     40       28.2     28.2         96 Lower Shell Plate R8-1           Position 1.1     44.0       0.763     40       33.6     33.6       107 Lower Shell Plate B8628-1           Position 1.1     31.0       0.763     50       23.7     23.7         97 Position 2.1     12.9     0.763     50         9.8     9.8         70 Intenmediate Shell Longitudinal         Position 1.1     43.3       0.763   -10       33.0     33.0         56 Weld Seams 101-124A, B. C           Position 2.1     16.7     0.763   -10         12.7   12.7         15 Lower Shell Longitudinal           Position 1.1     43.3       0.763   -10       33.0     33.0         56 Weld Seams 101 -142A, B, C           Position 2.1     16.7     0.763   -10         12.7   12.7         IS Intenmediate to Lower Shell         Position 1.1     43.3       0.763   -30       33.0     33.0         36 Circ. Weld Seam 101-171           Position 2.1     16.7     0.763   -30         12.7   12.7         .5 Notes:
Margin ART'b)
(a)       Initial RTNDT values are measured values (see Table 4-5).
Method (OF)
(b)       ART = Initial RTNDT + ARTNDT + Margin (IF); (Rounded per ASTM E29. using the "Rounding Method")
Intermediate Shell Plate R4-1 Position 1.1 44.0 0.763 10 33.6 33.6 77 Intennediate Shell Plate R4-2 Position 1.1 37.0 0.763 10 28.2 28.2 66 Intermediate Shell Plate R4-3 Position 1.1 31.0 0.763 30 23.7 23.7 77 Lower Shell Plate B8825-1 Position 1.1 37.0 0.763 40 28.2 28.2 96 Lower Shell Plate R8-1 Position 1.1 44.0 0.763 40 33.6 33.6 107 Lower Shell Plate B8628-1 Position 1.1 31.0 0.763 50 23.7 23.7 97 Position 2.1 12.9 0.763 50 9.8 9.8 70 Intenmediate Shell Longitudinal Position 1.1 43.3 0.763  
(c)      ARTNDT = CF
-10 33.0 33.0 56 Weld Seams 101-124A, B. C Position 2.1 16.7 0.763  
* FF Calculation of Adjusted Reference Temperature                                                     Revision 3
-10 12.7 12.7 15 Lower Shell Longitudinal Position 1.1 43.3 0.763  
-10 33.0 33.0 56 Weld Seams 101 -142A, B, C Position 2.1 16.7 0.763  
-10 12.7 12.7 IS Intenmediate to Lower Shell Position 1.1 43.3 0.763  
-30 33.0 33.0 36 Circ. Weld Seam 101-171 Position 2.1 16.7 0.763  
-30 12.7 12.7  
.5 Notes:
(a)
Initial RTNDT values are measured values (see Table 4-5).
(b)
(c)
ART = Initial RTNDT + ARTNDT + Margin (IF); (Rounded per ASTM ARTNDT = CF
* FF E29. using the "Rounding Method")
Calculation of Adjusted Reference Temperature Revision 3


4-15 The Lower Shell Plate R8-1 is the limiting beltline material for all heatup and cooldown curnes to be generated. Contained in Table 4-14 is a summary of the limiting ARTs to be used in the generation of the Vogtle Electric Generating Plant Unit 2 reactor vessel lieatup and cooldown curves.
4-15 The Lower Shell Plate R8-1 is the limiting beltline material for all heatup and cooldown curnes to be generated. Contained in Table 4-14 is a summary of the limiting ARTs to be used in the generation of the Vogtle Electric Generating Plant Unit 2 reactor vessel lieatup and cooldown curves.
TABLE 4-14 Summary of the Limiting ART Values Used in the Generation of the Vogule Unit 2 Heatup/Cooldown Curves EFPY             1/4T Limiting ART         3/4T Limiting ART 26                     116 0 F                   lOOTF I3 36120&deg;F                                     107&deg;F Revision 3 Adjusted Reference Calculation of Adjusted           Temperature Reference Temperature                                                     Revision 3
TABLE 4-14 Summary of the Limiting ART Values Used in the Generation of the Vogule Unit 2 Heatup/Cooldown Curves EFPY 1/4T Limiting ART 3/4T Limiting ART 26 116 0 F lOOTF I3 36120&deg;F 107&deg;F Calculation of Adjusted Reference Temperature Revision 3 Calculation of Adjusted Reference Temperature Revision 3


5-I 5         HEATUP AND COOLDOWN PRESSURE-TEMPERATURE LIMIT CURVES Pressure-temperature limit curves for normal heatup and cooldown of tile primary reactor coolant system have been calculated for the pressure and temperature in the reactor vessel beltline region using the methods discussed in Section 3 and 4 of this report. This approved methodology is also presented in WCAP-1 4040-A18 1 .
5-I 5
Figures 5-1 and 5-3 present the heatup curves with no margins for possible instrumentation errors for heatup rates of 60 and 100 0 F/hr. These curves are applicable for 26 EFPY and 36 EFPY respectively. for the Vogtle Unit 2 reactor vessel. Additionally, Figures 5-2 and 5-4 present the cooldown curves with no margins for possible instrumentation errors for cooldown rates of 0, 20, 40. 60, and I 000 F/hr. These curves are also applicable for 26 EFPY and 36 EFPY, respectively3 for the Vogtle Electric Generating Plant Unit 2 reactor vessel. Allowable combinations of temperature and pressure for specific temperature change rates are below and to the right of the limit lines shown in Figures 5-1 through 5-4.
HEATUP AND COOLDOWN PRESSURE-TEMPERATURE LIMIT CURVES Pressure-temperature limit curves for normal heatup and cooldown of tile primary reactor coolant system have been calculated for the pressure and temperature in the reactor vessel beltline region using the methods discussed in Section 3 and 4 of this report. This approved methodology is also presented in WCAP-1 4040-A181.
This is in addition to other criteria which must be met before the reactor is made critical, as discussed in the following paragraphs.                                                                           O The reactor must not be made critical until pressure-temperature combinations are to the right of the criticality limit line shown in Figures 5-1 and 5-3 (for the specific heatup rate being utilized). The straight-line portion of the criticality limit is at the minimum permissible temperature for the 2485 psig inservice hydrostatic test as required by Appendix G to 10 CFR Part 50. The governing equation for the hydrostatic test is defined in Appendix G to Section Xl of the ASME CodePI   3 as follows:
Figures 5-1 and 5-3 present the heatup curves with no margins for possible instrumentation errors for heatup rates of 60 and 1 000F/hr. These curves are applicable for 26 EFPY and 36 EFPY respectively. for the Vogtle Unit 2 reactor vessel. Additionally, Figures 5-2 and 5-4 present the cooldown curves with no margins for possible instrumentation errors for cooldown rates of 0, 20, 40. 60, and I 000F/hr. These curves are also applicable for 26 EFPY and 36 EFPY, respectively3 for the Vogtle Electric Generating Plant Unit 2 reactor vessel. Allowable combinations of temperature and pressure for specific temperature change rates are below and to the right of the limit lines shown in Figures 5-1 through 5-4.
1.5K; i. < K.                                                 (10)
This is in addition to other criteria which must be met before the reactor is made critical, as discussed in the following paragraphs.
: where, Kim is the stress intensity factor covered by membrane (pressure) stress, K1 ,= 33.2 + 20.734e 10 02 (T -RTNDT)]
O The reactor must not be made critical until pressure-temperature combinations are to the right of the criticality limit line shown in Figures 5-1 and 5-3 (for the specific heatup rate being utilized). The straight-line portion of the criticality limit is at the minimum permissible temperature for the 2485 psig inservice hydrostatic test as required by Appendix G to 10 CFR Part 50. The governing equation for the hydrostatic test is defined in Appendix G to Section Xl of the ASME CodePI 3 as follows:
1.5K; i. < K.
(1 0)
: where, Kim is the stress intensity factor covered by membrane (pressure) stress, K1,= 33.2 + 20.734e 10 02 (T -RTNDT)]
T is the minimum permissible metal temperature, and RTNDT is the metal reference nil-ductility temperature The criticality limit curve specifies pressure-temperature limits for core operation to provide additional margin during actual power production as specified in Reference 2. The pressure-temperature limits for core operation (except for low power physics tests) are that the reactor vessel must be at a temperature equal to or higher than the minimum temperature required for the inservice hydrostatic test. and at least 40'F higher than the minimum permissible temperature in the corresponding pressure-temperature curve for heatup and cooldown calculated as described in Section 3 of this report. The vertical line drawn from these points on the pressure-temperature curve, intersecting a curve 40'F higher than the pressure-temperature limit curve, constitutes the limit for core operation for the reactor vessel.
T is the minimum permissible metal temperature, and RTNDT is the metal reference nil-ductility temperature The criticality limit curve specifies pressure-temperature limits for core operation to provide additional margin during actual power production as specified in Reference 2. The pressure-temperature limits for core operation (except for low power physics tests) are that the reactor vessel must be at a temperature equal to or higher than the minimum temperature required for the inservice hydrostatic test. and at least 40'F higher than the minimum permissible temperature in the corresponding pressure-temperature curve for heatup and cooldown calculated as described in Section 3 of this report. The vertical line drawn from these points on the pressure-temperature curve, intersecting a curve 40'F higher than the pressure-temperature limit curve, constitutes the limit for core operation for the reactor vessel.
Revision 3 Heatup and Cooldown Pressure Ileatup                                          Limit Curves Temperature Limit Pressure Temperature          Curves                                       Revision 3
Ileatup and Cooldown Pressure Temperature Limit Curves Revision 3 Heatup and Cooldown Pressure Temperature Limit Curves Revision 3


5-2 Figures 5-1 through 5-4 define all of the above limits for ensuring prevention of nonductile failure for the Vogtle Electric Generating Plant Unit 2 reactor vessel. The data points for tile heatup and cooldown pressure-temperature limit curves shown in Figures 5-1 through 5-4 are presented in Tables 5-1 through 5-4, respectively.
5-2 Figures 5-1 through 5-4 define all of the above limits for ensuring prevention of nonductile failure for the Vogtle Electric Generating Plant Unit 2 reactor vessel. The data points for tile heatup and cooldown pressure-temperature limit curves shown in Figures 5-1 through 5-4 are presented in Tables 5-1 through 5-4, respectively.
Revision 3 Heatup and Cooldo   Pressure Temperature CooldownNm Pressure             Limit Curves Temperature Limit Curves           ;                                Revision 3
Heatup and Cooldown Pressure Temperature Limit Curves Revision 3 Heatup and Cooldo Nm Pressure Temperature Limit Curves Revision 3
* 5-3 MATERIAL PROPERTY BASIS LIMITING MATERIAL: LOWER SHELL PLATE R8-1 LIMITING ART VALUES AT 26 EFPY:                   I /4T, 116F 3/4T, 1000 F 2500 2250 2000 1750 XL 1500 2! 1250 0.
* 5-3 MATERIAL PROPERTY BASIS LIMITING LIMITING 2500 2250 2000 1750 XL 1500 I-2! 1250 0.
I-0, U
0, U
750 500 250 0
MATERIAL: LOWER SHELL PLATE R8-1 ART VALUES AT 26 EFPY:
0     50     100   150     200   250       300 350   400     450   500    550 Moderator Temperature (Deg. F)
I /4T, 116F 3/4T, 1000F 750 500 250 0
FIGURE 5-1 Vogtle Unit 2 Reactor Coolant System -Heatup Limitations (Heatup Rates of 60 and 100 0F/hr) Applicable to 26 EFPY (Without Margins of for Instrumentation Errors)
0 50 100 150 200 250 300 350 400 450 Moderator Temperature (Deg. F) 500 550 FIGURE 5-1 Vogtle Unit 2 Reactor Coolant System -Heatup Limitations (Heatup Rates of 60 and 100 0F/hr) Applicable to 26 EFPY (Without Margins of for Instrumentation Errors)
Limit Curves                                       Revision 3 Pressure Temperature Heatup and Cooldown Pressure Temperature Limit Curves                                       Revision 3
Heatup and Cooldown Pressure Temperature Limit Curves Revision 3 Heatup and Cooldown Pressure Temperature Limit Curves Revision 3


5-4 MATERIAL PROPERTY BASIS LIMITING MATERIAL: LOWER SHELL PLATE R8-1 LIMITING ART VALUES AT 26 EFPY:                     1/4T, 11 60 F 3/4T, 100 0 F 2500 2250 2000 1750 CL   1500 01 2!
5-4 MATERIAL PROPERTY BASIS LIMITING MATERIAL: LOWER SHELL PLATE R8-1 LIMITING ART VALUES AT 26 EFPY:
1/4T, 11 60F 3/4T, 1000F 2500 2250 2000 1750 01 CL 1500 2!
in 1250 IL i 1000 U
in 1250 IL i 1000 U
M.
M.
750 500 250 0
750 500 250 0
0     50     100   150     200     250     300   350 400   450     500     550 Moderator Temperature (Deg. F)
0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)
FIGURE 5-2 Vogtle Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates of 0, 20, 40, 60 and 1007F/hr) Applicable to 26 EFPY (Without Margins for Instrumentation Errors)
FIGURE 5-2 Vogtle Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates of 0, 20, 40, 60 and 1 007F/hr) Applicable to 26 EFPY (Without Margins for Instrumentation Errors) 1-leatup and Cooldown Pressure Temperature Limit Curves Revision 3 Hentup and Cooldo~vn Pressure Temperature Limit Curves Revision 3
Revision 3 Hentup and Cooldown 1-leatup               Pressure Temperature Cooldo~vn Pressure             Limit Curves Temperature Limit Curves                                       Revision 3


5-5 TABLE 5-1 Vogtle Unit 2 Heatup Data at 26 EFPY Without Margins for Instrumentation Errors 60&deg;Flhr Ileatup   60OF/hr Criticality     100 0F/hr Hleatup     1000F/hr Critical. Leak Test Limit Limit             T                         Limit T           P       T           P         T           P   I-T               P     T           r 60           0     176           0        60          0        176         0    159        2000 60          731    176         744        60          709      176         709  176       2485 65          740    176         749        65          709      176         709 70          740    176         742        70          709      176         709 75          740    176         740         75         709       176        709 80          740    176        743        80          709       176        709 85          743    176        749        85          709       176        709 90          749    176        758        90          709       176        709 95          758    176         771        95          709      176         711 100        771    176         787      100          711      176         715 105        787    176         806      105          715      176         722 110        806    176         829      110          722      176         732 115        829    176         855        115          732      176         745 120        855    176         885      120          745      176         760 125        885    176         919      125          760      176         779 130        919    176         957      130          779      176         801 135        957    180         1000      135          801       180        826 140        1000    185        1048      140          826      185        854 145        1048    190        1101      145          854       190        887 150        1101    195        1159      150          887       195        923 155        1159  200          1224      155          923     200          964 160        1224  205          1297      160          964     205        1010 165        1297  210          1376      165          1010    210        1062 170        1376  215          1465      170          1062     215        1119 175        1465  220          1562      175          1119    220        1182 180        1562  225          1670      180          1182    225        1252 185        1670  230          1789      185          1252     230        1330 190        1789  235          1921      190          1330     235        1417 195        1921  240          2066      195          1417     240        1512 200        2066    245          2226      200          1512     245        1617 205        2226    250          2403      205          1617    250        1734 210        2403                            210          1734     255        1862 215          1862    260        2004 220        2004      265        2161 225        2161      270        2333 230        2333  &
5-5 TABLE 5-1 Vogtle Unit 2 Heatup Data at 26 EFPY Without Margins for Instrumentation Errors 60&deg;Flhr Ileatup 60OF/hr Criticality 1000F/hr Hleatup 1000F/hr Critical.
Heatup and Cooldown Pressure Temperature Limit Curves                                         Revision 3
Leak Test Limit Limit T
Limit T
P T
P T
P I-T P
T r
60 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 0
731 740 740 740 740 743 749 758 771 787 806 829 855 885 919 957 1000 1048 1101 1159 1224 1297 1376 1465 1562 1670 1789 1921 2066 2226 2403 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 0
744 749 742 740 743 749 758 771 787 806 829 855 885 919 957 1000 1048 1101 1159 1224 1297 1376 1465 1562 1670 1789 1921 2066 2226 2403 60 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 0
709 709 709 709 709 709 709 709 711 715 722 732 745 760 779 801 826 854 887 923 964 1010 1062 1119 1182 1252 1330 1417 1512 1617 1734 1862 2004 2161 2333 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 0
709 709 709 709 709 709 709 711 715 722 732 745 760 779 801 826 854 887 923 964 1010 1062 1119 1182 1252 1330 1417 1512 1617 1734 1862 2004 2161 2333 159 176 2000 2485 Heatup and Cooldown Pressure Temperature Limit Curves Revision 3


5-6 TABLE 5-2 Vogtle Unit 2 Cooldown Data at 26 EFPY Without Margins for Instrumentation Errors Steady State             2 0 1F/hr               401F/hr             60'F/hr         100&deg;F/hr T           P         T             P           T           P       T           P   T           P 60         0         60             0         60           0     60           0 60           0 60         731       60           691         60         651     60         612 60           533 65         744       65           705         65         667     65         628 65           554 70         759       70           721         70         684     70         647 70           576 75         775       75           738         75         703     75         668 75           602 80         792       80           757         80         724     80         691 80           630 85         812       85           779         85         747     85         716 85           661 90         833       90           802         90         773     90         745 90           696 95         857       95           828         95         801     95         776 95           734 100         883       100           857         100         833     100         811 100         777 105         912       105           889         105         868     105         850 105         825 110         944       110           924         110         906     110         892 110         877 115         979       115           963         115         949     115         940 115         936 120         1018     120           1006       120         997     120         992 125       1062       125           1053       125         1049 130       1109       130           1106 135         1162 140         1221 145         1285 150         1356 155         1435 160         1522 165         1618 170       1725 175       1842 180         1972 185       2116 190       2274 195       2449 Revision 3 and Cooldown Heatup and           Pressure Temperature Cooldowvn Pressure               Limit Curves Temperature Limit Curves                                     Revision 3
5-6 TABLE 5-2 Vogtle Unit 2 Cooldown Data at 26 EFPY Without Margins for Instrumentation Errors Steady State 20 1F/hr 401F/hr 60'F/hr 100&deg;F/hr T
P T
P T
P T
P T
P 60 0
60 0
60 0
60 0
60 0
60 731 60 691 60 651 60 612 60 533 65 744 65 705 65 667 65 628 65 554 70 759 70 721 70 684 70 647 70 576 75 775 75 738 75 703 75 668 75 602 80 792 80 757 80 724 80 691 80 630 85 812 85 779 85 747 85 716 85 661 90 833 90 802 90 773 90 745 90 696 95 857 95 828 95 801 95 776 95 734 100 883 100 857 100 833 100 811 100 777 105 912 105 889 105 868 105 850 105 825 110 944 110 924 110 906 110 892 110 877 115 979 115 963 115 949 115 940 115 936 120 1018 120 1006 120 997 120 992 125 1062 125 1053 125 1049 130 1109 130 1106 135 1162 140 1221 145 1285 150 1356 155 1435 160 1522 165 1618 170 1725 175 1842 180 1972 185 2116 190 2274 195 2449 Heatup and Cooldown Pressure Temperature Limit Curves Revision 3 Heatup and Cooldowvn Pressure Temperature Limit Curves Revision 3


5-7 MATERIAL PROPERTY BASIS LIMITING MATERIAL: LOWER SHELL PLATE R8-1 LIMITING ART VALUES AT 36 EFPY:                     1/4T, 120WF 3/4T, 107-F 2500 2250 2000 1750 1500 1250 If I5 n  1000 60 750 500 250 0
5-7 MATERIAL PROPERTY BASIS LIMITING MATERIAL: LOWER SHELL PLATE R8-1 LIMITING ART VALUES AT 36 EFPY:
0     50       100   150     200     250     300 350     400   450     500     550 Moderator Temperature (Deg. F)
1/4T, 120WF 3/4T, 107-F 2500 2250 2000 1750 1500 1250 1000 If I5 n60 750 500 250 0
FIGURE 5-3 Vogtle Unit 2 Reactor Coolant System Heatup Limitations (Heatup Rate of 60 and 100IF/hr) Applicable to 36 EFPY (Without Margins of for Instrumentation Errors)
0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)
Revision 3 1-leatup and Cooldown Heatup                Pressure Temperature Cooldowtn Pressure             Limit Curves Temperature Limit Curves                                       Revision;3
FIGURE 5-3 Vogtle Unit 2 Reactor Coolant System Heatup Limitations (Heatup Rate of 60 and 100IF/hr) Applicable to 36 EFPY (Without Margins of for Instrumentation Errors) 1-leatup and Cooldown Pressure Temperature Limit Curves Revision 3 Heatup and Cooldowtn Pressure Temperature Limit Curves Revision;3


5-8 MATERIAL PROPERTY BASIS LIMITING MATERIAL: LOWER SHELL PLATE R8-1 LIMITING ART VALUES AT 36 EFPY:                   I /4T, I 20 0 F 3/4T, 1070 F 2500 2250 2000 1750 R   1500 g   1250 0   1000 750 500 250 0
5-8 MATERIAL PROPERTY BASIS LIMITING MATERIAL: LOWER SHELL PLATE R8-1 LIMITING ART VALUES AT 36 EFPY:
0       50     100   150     200     250       300 350 400     450     500     550 Moderator Temperature (Deg. F)
I /4T, I 200 F 3/4T, 1070F 2500 2250 2000 1750 R 1500 g
FIGURE 5-4     Vogtle Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates of 0, 20, 40, 60 and 1000 F/hr) Applicable to 36 EFPY (Without Margins for Instrumentation Errors)
1250 0 1000 750 500 250 0
Revision 3 Heatup and Cooldown Hcatup              Pressure Temperature Cooldo'vn Pressure             Limit Cunes Temperature Limit Curves                                       Revision 3
0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)
FIGURE 5-4 Vogtle Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates of 0, 20, 40, 60 and 1000F/hr) Applicable to 36 EFPY (Without Margins for Instrumentation Errors)
Heatup and Cooldo'vn Pressure Temperature Limit Cunes Revision 3 Hcatup and Cooldown Pressure Temperature Limit Curves Revision 3


5-9 TABLE 5-3 Vogtle Unit 2 Heatup Data at 36 EFPY Without Margins for Instrumentation Errors 601Fh Ietp           0   rLim it   y     100 0 F/hr Ileatup     100 0 F/hr Critical. Leak Test Limit Limit                                   I       Limit t     o     p         T   fAMA          *                    -      T       r             T           P 6U         U       1o           0          60            0        180           0      163        2000 60        717        180         734        60            684      180           684    180       2485 65        717        180         727        65            684      180           684 70        717        180         720         70           684      180          684 75       717        180         717        75          684       180          684 80        717        180        717        80            684       180          684 85        717        180        721        85            684       180          684 90        721        180        729        90            684       180          684 95        729        180        739        95          684       180           684 100        739        180         753        100          684        180           686 105        753        180         769        105          686        180           691 110        769        180         788        110          691        180           699 115        788        180         811        115          699        180           709 120        811        180         837        120          709        180           722 125        837        180         866        125          722        180           737 130        866        180       *899        130            737      180           756 135        899        180         936        135            756      180           777 140        936        185         977        140          777       185          801 145        977        190        1023      145            801       190          829 150        1023      195        1074      150            829       195          860 155        1074      200          1130      155            860      200            896 160        1130      205          1193      160          896       205          935 165        1193      210          1262      165          935       210            979 170        1262      215          1339      170          979      215          1029 175        1339      220          1424      175          1029      220          1084 180        1424      225          1517      180          1084      225          1144 185        1517      230          1621      185          1144      230          1212 190        1621      235          1735      190          1212     235          1287 195        1735      240          1861      195          1287      240          1369 200        1861      245        2000        200          1369      245          1461 205      2000      250        2154        205          1461     250          1562 210      2154      255        2324        210          1562     255          1673 215      2324                              215          1673     260          1796 220          1796     265          1932 225          1932     270          2082 230          2082      275          2248 235          2248       280          2430 240          2430    J.                      L
5-9 TABLE 5-3 Vogtle Unit 2 Heatup Data at 36 EFPY Without Margins for Instrumentation Errors 601Fh Ietp 0
                                          .1.
rLim it y
Revision 3 Temperature Limit Curves Heatup Heatup and         Pressure Temperature Cooldown Pressure and Cooldown                      Limit Curves                                               Revision 3
1000F/hr Ileatup 100 0F/hr Critical.
Leak Test Limit Limit I
Limit t
o p
T fA MA T
r T
P 6U 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 U
717 717 717 717 717 717 721 729 739 753 769 788 811 837 866 899 936 977 1023 1074 1130 1193 1262 1339 1424 1517 1621 1735 1861 2000 2154 2324 1o 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 0
734 727 720 717 717 721 729 739 753 769 788 811 837 866
*899 936 977 1023 1074 1130 1193 1262 1339 1424 1517 1621 1735 1861 2000 2154 2324 60 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 0
684 684 684 684 684 684 684 684 684 686 691 699 709 722 737 756 777 801 829 860 896 935 979 1029 1084 1144 1212 1287 1369 1461 1562 1673 1796 1932 2082 2248 2430 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 0
684 684 684 684 684 684 684 684 686 691 699 709 722 737 756 777 801 829 860 896 935 979 1029 1084 1144 1212 1287 1369 1461 1562 1673 1796 1932 2082 2248 2430 163 180 2000 2485
.1.
J.
L Heatup and Cooldown Pressure Temperature Limit Curves Revision 3 Heatup and Cooldown Pressure Temperature Limit Curves Revision 3


5-10 TABLE 54 Vogdle Unit 2 Cooldown Data at 36 EFPY Without Margins for Instrumentation Errors Steady State           2 0 1F/hr               401F/hr             60 'F/hr         100IF/hr T           P     T             P         T           P       T             P   T           P 60           0     60             0       60           0     60             0 60             0 60         722     60           681       60         640     60           599 60           518 65         734     65           694       65         654     65           614 65       ,  537 70         747     70           708       70         670     70           632 70           557 75         762     75             724       75         687     75           651 75           581 80         778     80           742       80         706     80           672 80           606 85         796     85           761       85         728     85           695 85           635 90         816     90             783       90         752     90           721 90           667 95         838     95           807       95         778     95           750 95           703 100         862     100           833       100         807     100         782 100         742 105         889     105           863       105         839     105         818 105         786 110         918     110           895       110         875     110         858 110         834 115         951     115           931       115         914     115         901 115         888 120         987     120           971       120         958     120         950 120         948 125         1027   125           1015       125         1007     125         1003 125         1003 130         1071   130           1063     130         1060     130         1060 135         1120   135           1117 140         1173 145         1233 150         1299 155         1371 160         1452 165         1541 170         1639 175         1747 180         1867 185       2000 190       2146 195       2308 Heatup and Cooldown Pressure Temperature Limit Curves                                       Revision 3
5-10 TABLE 54 Vogdle Unit 2 Cooldown Data at 36 EFPY Without Margins for Instrumentation Errors Steady State 201F/hr 401F/hr 60 'F/hr 100IF/hr T
P T
P T
P T
P T
P 60 0
60 0
60 0
60 0
60 0
60 722 60 681 60 640 60 599 60 518 65 734 65 694 65 654 65 614 65 537 70 747 70 708 70 670 70 632 70 557 75 762 75 724 75 687 75 651 75 581 80 778 80 742 80 706 80 672 80 606 85 796 85 761 85 728 85 695 85 635 90 816 90 783 90 752 90 721 90 667 95 838 95 807 95 778 95 750 95 703 100 862 100 833 100 807 100 782 100 742 105 889 105 863 105 839 105 818 105 786 110 918 110 895 110 875 110 858 110 834 115 951 115 931 115 914 115 901 115 888 120 987 120 971 120 958 120 950 120 948 125 1027 125 1015 125 1007 125 1003 125 1003 130 1071 130 1063 130 1060 130 1060 135 1120 135 1117 140 1173 145 1233 150 1299 155 1371 160 1452 165 1541 170 1639 175 1747 180 1867 185 2000 190 2146 195 2308 Heatup and Cooldown Pressure Temperature Limit Curves Revision 3


6-1 6       REFERENCES 1       Regulatory Guide 1.99, Revision 2, "Radiation Embrittlement of Reactor Vessel Materials", U.S.
6-1 6
REFERENCES 1
Regulatory Guide 1.99, Revision 2, "Radiation Embrittlement of Reactor Vessel Materials", U.S.
Nuclear Regulatory Commission, May, 1988.
Nuclear Regulatory Commission, May, 1988.
2       10 CFR Part 50, Appendix G."Fracture Toughness Requirements", Federal Register, Volume 60, No. 243, dated December 19, 1995.
2 10 CFR Part 50, Appendix G. "Fracture Toughness Requirements", Federal Register, Volume 60, No. 243, dated December 19, 1995.
3       Section XI of the ASME Boiler and Pressure Vessel Code, Appendix G."Fracture Toughness Criteria for Protection Against Failure.", Dated December 1995.
3 Section XI of the ASME Boiler and Pressure Vessel Code, Appendix G. "Fracture Toughness Criteria for Protection Against Failure.", Dated December 1995.
4       CVGRAPH, Hyperbolic Tangent Curve-Fitting Program, Version 4.1, developed by ATI Consulting, March 1996.
4 CVGRAPH, Hyperbolic Tangent Curve-Fitting Program, Version 4.1, developed by ATI Consulting, March 1996.
5       WCAP-14533, "Vogtle Electric Generating Plant (VEGP) Unit 2 Heatup and Cooladown Limit Curves for Normal Operation", P.A. Grendys, February 1996.
5 WCAP-14533, "Vogtle Electric Generating Plant (VEGP) Unit 2 Heatup and Cooladown Limit Curves for Normal Operation", P. A. Grendys, February 1996.
6       1989 Section III, Division 1 of the ASME Boiler and Pressure Vessel Code, Paragraph NB-2331, "Material for Vessels".
6 1989 Section III, Division 1 of the ASME Boiler and Pressure Vessel Code, Paragraph NB-2331, "Material for Vessels".
7       WCAP-15159, "Analysis of Capsule X from the Southern Nuclear Vogtle Electric Generating Plant Unit 2 Reactor Vessel Radiation Surveillance Program", T. J. Laubham, et al., January 1999.
7 WCAP-15159, "Analysis of Capsule X from the Southern Nuclear Vogtle Electric Generating Plant Unit 2 Reactor Vessel Radiation Surveillance Program", T. J. Laubham, et al., January 1999.
8       WCAP-14040-A, Revision 4, "Methodology used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves", J. D. Andrachek, et al., XXXX 2003.
8 WCAP-14040-A, Revision 4, "Methodology used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves", J. D. Andrachek, et al., XXXX 2003.
9       CE NPSD-1039, Rev. 2, "Best Estimate Copper and Nickel Values in CE Fabricated Reactor Vessel Welds, Appendix A, CE Reactor Vessel Weld Properties Database, Volume 1," CEOG Task 902, June 1997.
9 CE NPSD-1039, Rev. 2, "Best Estimate Copper and Nickel Values in CE Fabricated Reactor Vessel Welds, Appendix A, CE Reactor Vessel Weld Properties Database, Volume 1," CEOG Task 902, June 1997.
10     ASME Code Case N-640, "Alternative Reference Fracture Toughness for Development of P-T Limit Curves for Section XI, Division 1", February 26, 1999.
10 ASME Code Case N-640, "Alternative Reference Fracture Toughness for Development of P-T Limit Curves for Section XI, Division 1", February 26, 1999.
11     WCAP-16142, "Reactor Vessel Closure Head/Vessel Flange Requirements Evaluation For Vogtle Units 1and 2", Revision 1, W. Bamford, et.al., February 2004.
11 WCAP-16142, "Reactor Vessel Closure Head/Vessel Flange Requirements Evaluation For Vogtle Units 1 and 2", Revision 1, W. Bamford, et.al., February 2004.
Revision 3 References References                                                                                      Revision 3
References Revision 3 References Revision 3


A-]
A-]
APPENDIX A Thermal Stress Intensity Factors (K1 t)
APPENDIX A Thermal Stress Intensity Factors (K1t)
The following page contain the thermal stress intensity factors (Kb,) for the maximum heatup and cooldown rates at 26 and 36 EFPY. The vessel radius to the 4T and 3/4T locations are as follows:
The following page contain the thermal stress intensity factors (Kb,) for the maximum heatup and cooldown rates at 26 and 36 EFPY. The vessel radius to the 4T and 3/4T locations are as follows:
* 1/4TRadius= 88.812"
1/4TRadius= 88.812" 3/4T Radius = 93.125" Revision 3
* 3/4T Radius = 93.125" Revision 3


A-2 TABLE Al Ki, Values for 100&deg;F/hrHeatup Curve (26 EFPY)
A-2 TABLE Al Ki, Values for 100&deg;F/hrHeatup Curve (26 EFPY)
Vessel Temperature           1/4T Thermal     Vessel Temperature   3/4T Thermal Water       @ 1/4T Location for               Stress       @ 3/4T Location for       Stress Temp.       1001F/hr Heatup           Intensity Factor     100 0 F/hr Heatup   Intensity Factor (OF)   I         ( 0 F)           (KSI SQ. RT. IN.)             (OF)       (KSI SQ. RT. IN.)
Vessel Temperature 1/4T Thermal Vessel Temperature 3/4T Thermal Water  
60               55.99                   -0.9954              55.04            0.4731 65               58.56                   -2.4522              55.29            1.4378 70              61.62                    -3.7125              55.96            2.4257 75              64.90                    -4.9101              57.10            3.3563 80              68.45                    -5.9455               58.65            4.1903 85              72.11                    -6.8918               60.59            4.9375 90              75.95                    -7.7139               62.86            5.5992 95              79.90                    -8.4650               65.44            6.1920 100              83.97                    -9.1227               68.28            6.7187 105              88.13                    -9.7209               71.36            7.1893 110              92.39                  -10.2475               74.64            7.6093 115              96.72                  -10.7283               78.10            7.9875 120            101.12                  -11.1541               81.71            8.3272 125            105.58                  -11.5441               85.47            8.6336 130            110.09                  -11.8911               89.36            8.9098 135            114.65                  -12.2102               93.35            9.1601 140            119.25                  -12.4955               97.44            9.3868 145            123.89                  -12.7594               101.61            9.5932 150            128.56                  -12.9966               105.86            9.7812 155            133.26                  -13.2173              110.18            9.9534 160            137.98                  -13.4168              114.56            10.1112 165            142.73                  -13.6038              118.98            10.2566 170            147.50                  -13.7740              123.46            10.3908 175            152.28                  -13.9346              127.97           10.5153 180            157.08                  -14.0817              132.52           10.6310 185              161.89                  -14.2217              137.10            10.7391 190            166.71                  -14.3508              141.71            10.8404 195              171.55                  -14.4746              146.35            10.9357 200              176.39                  -14.5897              151.01            11.0256 205              181.25                  -14.7007              155.68            11.1109 210              186.11                 -14.8048              160.38            11.1919
@ 1/4T Location for Stress  
              .1                       .1                   I.
@ 3/4T Location for Stress Temp.
* Note: The 100 0 F/hr Heatup Curve is limited entirely by the 3/4T Location Revision 3
1001F/hr Heatup Intensity Factor 1000F/hr Heatup Intensity Factor (OF)
I (0F)
(KSI SQ. RT. IN.)
(OF)
(KSI SQ. RT. IN.)
60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 55.99 58.56 61.62 64.90 68.45 72.11 75.95 79.90 83.97 88.13 92.39 96.72 101.12 105.58 110.09 114.65 119.25 123.89 128.56 133.26 137.98 142.73 147.50 152.28 157.08 161.89 166.71 171.55 176.39 181.25 186.11
-0.9954
-2.4522
-3.7125
-4.9101
-5.9455
-6.8918
-7.7139
-8.4650
-9.1227
-9.7209
-10.2475
-10.7283
-11.1541
-11.5441
-11.8911
-12.2102
-12.4955
-12.7594
-12.9966
-13.2173
-13.4168
-13.6038
-13.7740
-13.9346
-14.0817
-14.2217
-14.3508
-14.4746
-14.5897
-14.7007
-14.8048 55.04 55.29 55.96 57.10 58.65 60.59 62.86 65.44 68.28 71.36 74.64 78.10 81.71 85.47 89.36 93.35 97.44 101.61 105.86 110.18 114.56 118.98 123.46 127.97 132.52 137.10 141.71 146.35 151.01 155.68 160.38 0.4731 1.4378 2.4257 3.3563 4.1903 4.9375 5.5992 6.1920 6.7187 7.1893 7.6093 7.9875 8.3272 8.6336 8.9098 9.1601 9.3868 9.5932 9.7812 9.9534 10.1112 10.2566 10.3908 10.5153 10.6310 10.7391 10.8404 10.9357 11.0256 11.1109 11.1919
.1  
.1 I.
* Note: The 1000F/hr Heatup Curve is limited entirely by the 3/4T Location Revision 3


A-3 TABLE A2 K11 Values for 1000 F/hr Cooldown Curve (26 EFPY)
A-3 TABLE A2 K11 Values for 1000 F/hr Cooldown Curve (26 EFPY)
Vessel Temperature 100 0 F/hr Cooldown Water       @ 1/4T Location for 1/4T Thermal Stress
.0 Vessel Temperature 1000F/hr Cooldown Water  
.0 Temp.       100&deg;F/hr Cooldown     Intensity Factor (OF)                 (OF)         (KSI SQ. RT. IN.)
@ 1/4T Location for 1/4T Thermal Stress Temp.
195               221.79               16.9334 190               216.70               16.8646 185               211.61               16.7952 180               206.53               16.7262 175               201.44               16.6565 170               196.35               16.5873 165               191.27               16.5176 160               186.18               16.4483 155               181.09               16.3786 150               176.00               16.3093 145               170.92               16.2396 140               165.83               16.1704 135               160.74               16.1008 130               155.65               16.0317 125               150.56               15.9623 120               145.48               15.8933 115               140.39               15.8240 110               135.30               15.7553 105               130.22               15.6862 100               125.13               15.6177 95               120.04               15.5488 90               114.95               15.4805 85               109.87               15A120 80               104.78               15.3439 75                 99.69               15.2756 70                 94.61               15.2078 65                 89.52               15.1398 60                 84.44               15.0715 I.
100&deg;F/hr Cooldown Intensity Factor (OF)
(OF)
(KSI SQ. RT. IN.)
195 221.79 16.9334 190 216.70 16.8646 185 211.61 16.7952 180 206.53 16.7262 175 201.44 16.6565 170 196.35 16.5873 165 191.27 16.5176 160 186.18 16.4483 155 181.09 16.3786 150 176.00 16.3093 145 170.92 16.2396 140 165.83 16.1704 135 160.74 16.1008 130 155.65 16.0317 125 150.56 15.9623 120 145.48 15.8933 115 140.39 15.8240 110 135.30 15.7553 105 130.22 15.6862 100 125.13 15.6177 95 120.04 15.5488 90 114.95 15.4805 85 109.87 15A120 80 104.78 15.3439 75 99.69 15.2756 70 94.61 15.2078 65 89.52 15.1398 60 84.44 15.0715 I.
Revision 3
Revision 3


A-4 TABLE A3 K,, Values for 100 0F/hr Heatup Curve (36 FIPY)
A-4 TABLE A3 K,, Values for 1000F/hr Heatup Curve (36 FIPY)
Vessel Temperature         1/4T Thermal       Vessel Temperature   314T Thermal Water     @ 1/4T Location for             Stress       @ 3/4T Location for       Stress Temp.     1000 F/hr Heatup         Intensity Factor     100&deg;F/hr Heatup   Intensity Factor (0 F)           (OF)             (KSI SQ. RT. IN.)           (OF)       (KSI SQ. RT. IN.)
Vessel Temperature 1/4T Thermal Vessel Temperature 314T Thermal Water  
60             55.99                   -0.9954               55.04             0.4731 65             58.56                   -2.4522               55.29             1.4378 70             61.62                   -3.7125               55.96             2.4257 75             64.90                   -4.9101               57.10             3.3563 80             68'.45                 -5.9455               58.65             4.1903 85             72.11                   -6.8918               60.59             4.9375 90             75.95                   -7.7139               62.86             5.5992 95             79.90                   -8.4650               65.44             6.1920 100             83.97                   -9.1227               68.28             6.7187 105             88.13                   -9.7209               71.36             7.1893 110             92.39                 -10.2475               74.64             7.6093 115             96.72                 -10.7283               78.10             7.9875 120           101.12                 -11.1541               81.71             8.3272 125           105.58                 -11.5441               85.47             8.6336 130           110.09                 -11.8911               89.36             8.9098 135           114.65                 -12.2102               93.35             9.1601 140           119.25                 -12A955               97.44             9.3868 145           123.89                 -12.7594               101.61             9.5932 150           128.56                 -12.9966               105.86             9.7812 155           133.26                 -13.2173               110.18             9.9534 160           137.98                 -13.4168               114.56           10.1112 165           142.73                 -13.6038               118.98           10.2566 170           147.50                 -13.7740               123.46           10.3908 175           152.28                 -13.9346               127.97           10.5153 180           157.08                 -14.0817               132.52           10.6310 185           161.89                 -14.2217               137.10           10.7391 190           166.71                 -14.3508               141.71           10.8404 195           171.55                 -14.4746               146.35           10.9357 200           176.39                 -14.5897               151.01           11.0256 205           181.25                 -14.7007               155.68           11.1109 210           186.11                 -14.8048               160.38           11.1919 215           190.97                 -14.9059               165.09           11.26.93 Note: The 100F/hr Heatup Curve is limited entirely by the 314T Location Revision 3
@ 1/4T Location for Stress  
@ 3/4T Location for Stress Temp.
1000F/hr Heatup Intensity Factor 100&deg;F/hr Heatup Intensity Factor (0F)
(OF)
(KSI SQ. RT. IN.)
(OF)
(KSI SQ. RT. IN.)
60 55.99  
-0.9954 55.04 0.4731 65 58.56  
-2.4522 55.29 1.4378 70 61.62  
-3.7125 55.96 2.4257 75 64.90  
-4.9101 57.10 3.3563 80 68'.45  
-5.9455 58.65 4.1903 85 72.11  
-6.8918 60.59 4.9375 90 75.95  
-7.7139 62.86 5.5992 95 79.90  
-8.4650 65.44 6.1920 100 83.97  
-9.1227 68.28 6.7187 105 88.13  
-9.7209 71.36 7.1893 110 92.39  
-10.2475 74.64 7.6093 115 96.72  
-10.7283 78.10 7.9875 120 101.12  
-11.1541 81.71 8.3272 125 105.58  
-11.5441 85.47 8.6336 130 110.09  
-11.8911 89.36 8.9098 135 114.65  
-12.2102 93.35 9.1601 140 119.25  
-12A955 97.44 9.3868 145 123.89  
-12.7594 101.61 9.5932 150 128.56  
-12.9966 105.86 9.7812 155 133.26  
-13.2173 110.18 9.9534 160 137.98  
-13.4168 114.56 10.1112 165 142.73  
-13.6038 118.98 10.2566 170 147.50  
-13.7740 123.46 10.3908 175 152.28  
-13.9346 127.97 10.5153 180 157.08  
-14.0817 132.52 10.6310 185 161.89  
-14.2217 137.10 10.7391 190 166.71  
-14.3508 141.71 10.8404 195 171.55  
-14.4746 146.35 10.9357 200 176.39  
-14.5897 151.01 11.0256 205 181.25  
-14.7007 155.68 11.1109 210 186.11  
-14.8048 160.38 11.1919 215 190.97  
-14.9059 165.09 11.26.93 Note: The 100F/hr Heatup Curve is limited entirely by the 314T Location Revision 3


A-5 TABLE A4 K1 t Values for 1001F/hr Cooldown Curve (36 EFPY)
A-5 TABLE A4 K1t Values for 1001F/hr Cooldown Curve (36 EFPY)
Vessel Temperature 1000 F/hr Cooldown Water       @ 114T Location for 114T Thermal Stress Temp.         100&deg;F/hr Cooldown     Intensity Factor (0 F)               (0 F)       (KSI SQ. RT. IN.)
Vessel Temperature 1000F/hr Cooldown Water  
195               221.79               16.9334 190              216.70               16.8646 185              211.61               16.7952 180              206.53               16.7262 175              201.44               16.6565 170              196.35               16.5873 165              191.27               16.5176 160              186.18               16.4483 155              181.09               16.3786 150              176.00               16.3093 145              170.92               16.2396 140              165.83               16.1704 135              160.74               16.1008 130              155.65               16.0317 125              150.56               15.9623 120              145.48               15.8933 115              140.39               15.8240 110              135.30               15.7553 105              130.22               15.6862 100              125.13               15.6177 95                120.04             15.5488 90                114.95             15.4805 85              109.87               15A4120 80              104.78               15.3439 75                99.69              15.2756 70                94.61              15.2078 65                89.52              15.1398 60                84.44              15.0715 Revision 3}}
@ 114T Location for 114T Thermal Stress Temp.
100&deg;F/hr Cooldown Intensity Factor (0F)
(0F)
(KSI SQ. RT. IN.)
195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 221.79 216.70 211.61 206.53 201.44 196.35 191.27 186.18 181.09 176.00 170.92 165.83 160.74 155.65 150.56 145.48 140.39 135.30 130.22 125.13 120.04 114.95 109.87 104.78 99.69 94.61 89.52 84.44 16.9334 16.8646 16.7952 16.7262 16.6565 16.5873 16.5176 16.4483 16.3786 16.3093 16.2396 16.1704 16.1008 16.0317 15.9623 15.8933 15.8240 15.7553 15.6862 15.6177 15.5488 15.4805 15A4120 15.3439 15.2756 15.2078 15.1398 15.0715 Revision 3}}

Latest revision as of 04:39, 16 January 2025

To WCAP-15161, Vogtle Electric Generating Plant, Unit 2, Heatup and Cooldown Limit Curves for Normal Operation
ML040630687
Person / Time
Site: Vogtle  Southern Nuclear icon.png
Issue date: 02/29/2004
From: Ghergurovich J, Laubham T
Westinghouse
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
WCAP-15161, Rev 3
Download: ML040630687 (46)


Text

Westinghouse Non-Proprietary Class 3 WCAP-15161 Revision 3 February 2004 Vogtle Electric Generating Plant Unit 2 Heatup and Cooldown Limit Curves for Normal Operation Westinghouse i

WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-15161, Revision 3 Vogtle Electric Generating Plant Unit 2 Heatup and Cooldown Limit Curves for Normal Operation T. J. Laubham February 2004 Approved:

& i fv !

7 J

4 J. Ghergurovich, Manager Reactor Component Design & Analysis Westinghouse Electric Company LLC Energy Systems P.O. Box 355 Pittsburgh, PA 15230-0355 02004 Westinghouse Electric Company LLC All Rights Reserved

Hi PREFACE This report has been technically reviewed and verified by:

Reviewer:

K. G.Knight Hi

?

n it 4A Record of Revision Revision 1:

Updated all pressure-temperature curves using the 1996 App. G to Section Xl of the ASME Code, Kic from Code Case N-640 and the removal of the flange requirement per WCAP-15315. All calculations for adjusted reference temperature remain unchanged from Revision 0. Text has been updated to support the use of the '96 App. 0. K1c and elimination of the flange notch.

Revision 2:

The reference to WCAP-14040-NP-A, Revision 2 has been revised to WCAP-14040-A, Revision 4 to reflect the latest NRC approved version. The reference to WCAP-15315 has been revised to WCAP-16142 to reflect the Vogtle Units I and 2 flange elimination justification rather than the generic flange elimination justification contained in WCAP-15315. In addition, the thermal stress intensity factors wvere added for the highest heatup and cooldown rate.

Revision 3:

Updated Reference 11, WCAP-16142, to Revision 1.

Revision 3

iv TABLE OF CONTENTS PREFACE iii LISTOFTABLES..........................................................................................................................................LV LIST OF FIGURES vii EXECUTIVE

SUMMARY

iii I

INTRODUCTION.1-I 2

PURPOSE.2-1 3

CRITERIA FOR ALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS.3-1 4

CALCULATION OF ADJUSTED REFERENCE TEMPERATURE

.4-1 5

HEATUP AND COOLDOWN PRESSURE-TEMPERATURE LIMIT CURVES 5

-I 6

REFERENCES I

APPENDIX A THERMAL STRESS INTENSITY FACTORS............................................... A-1 Revision 3

V LIST OF TABLES Table 4-1 Summary of Peak Pressure Vessel Neutron Fluence Values at 26 EFPY used for the calculation of ART Values (n/cm2, E > 1.0 MeV).........................................................

4-2 Table 4-2 Summary of Peak Pressure Vessel Neutron Fluence Values at 36 EFPY used for the calculation of ART Values (n/cm2, E > 1.0 MeV)..................................

4-3 Table 4-3 Calculated Integrated Neutron Exposure of the Vogtle Unit 2 Surveillance Capsules Tested to Date........

4-4 Table 4-4 Measured 30 ft-lb Transition Temperature Shifts of the Beltline Materials Contained in the Surveillance Program.4-5 Table 4-5 Reactor Vessel Beltline Material Unirradiated Toughness Properties.4-6 Table 4-6 Calculation of Chemistry Factors using Vogtle Unit 2 Surveillance Capsule Data.

4-7 Table 4-7 Summary of the Vogtle Unit 2 Reactor Vessel Beltline Material Chemistry Factors Based on Regulatory Guide 1.99, Revision 2. Position 1.1 and Position 2.1................. 4-8 Table 4-8 Summary of the Calculated Fluence Factors used for the Generation of the 26 EFPY Heatup and Cooldown Curves......................................................................... 4-9 Table 4-9 Summary of the Calculated Fluence Factors used for the Generation of the 36 EFPY Heatup and Cooldown Curves..4-101 Table 4-10 Calculation of the ART Values for the 1/4T Location @ 26 EFPY.

4-11 Table 4-11 Calculation of the ART Values for the 3/4T Location @ 26 EFPY..

4-1' Table 4-12 Calculation of the ART Values for the 1/4T Location @ 36 EFPY..

I Table 4-13 Calculation of the ART Values for the 3/4T Location @ 36 EFPY.

4-14 Table 4-14 Summary of the Limiting ART Values used in the Generation of the Vogtle Unit 2 Heatup/Cooldown Curves.................

4-1, Table 5-1 Vogtle Unit 2 Heatup Data at 26 EFPY Without Margins for Instrumentation Errors.....................................................................................................5-5 Revision 3

vi LIST OF TABLES - (Continued)

Table 5-2 Vogtle Unit 2 Cooldown Data at 26 EFPY Without Margins for Instrumentation Errors............................................................

5-6 Table 5-3 Vogtle Unit 2 Heatup Data at 36 EFPY Without Margins for Instrumentation Errors... 5-9 Table 5-4 Vogtie Unit 2 Cooldown Data at 36 EFPY Without Margins for Instrumentation Errors.

5-10 Revision 3

vii LIST OF FIGURES Figure 5-1 Vogtle Unit 2 Reactor Coolant System Heatup Limitations (Heatup Rates of 60 and I 000F/hr) Applicable to 26 EFPY (Without Margins for Instrumentation Errors).........

5-3 Figure 5-2 Vogtle Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates of 0, 20, 40, 60 and I 000F/hr) Applicable to 26 EFPY (Without Margins for Instrumentation Errors)...............................

5-4 Figure 5-3 Vogtle Unit 2 Reactor Coolant System Heatup Limitations (Heatup Rates of 60 and 1 000F/hr) Applicable to 36 EFPY (Without Margins for Instrumentation Errors).........

5-7 Figure 5-4 Vogtle Unit 2 Reactor Coolant System Cooldoxwn Limitations (Cooldown Rates of 0, 20,40, 60 and 1000F/hr) Applicable to 36 EFPY (Without Margins for Instrumentation Errors)...............................

5-8 Revision 3

viii EXECUTIVE

SUMMARY

The purpose of this report is to generate pressure-temperature limit curves for Vogtle Electric Generating Plant Unit 2 for normal operation at 26 and 36 EFPY using the methodology from the 1996 ASME Boiler and Pressure Vessel Code, Section Xi, Appendix G Regulatory Guide 1.99, Revision 2 is used for the calculation of Adjusted Reference Temperature (ART) values at the 1/4T and 3/4T location. The 1/4T and 3/4T ART values are summarized in Table 4-14 and were calculated using the lower shell plate R8-1 (i.e. the limiting beltline region material). The pressure-temperature limit curves were generated without margins for instrumentation errors for heatup rates of 60 and 1 000F/hr and cooldow'n rates of 0. 20, 40, 60 and 1000F/hr. These curves can be found in Figures 5-1 through 5-4. The Vogdle Electric Generating Plant Unit 2 heatup and cooldown pressure-temperature limit curves have been updated based on the use of the ASME Code Case N-6401101, which allows the use of the Kl, methodology, and the elimination of the reactor vessel flange temperature requirement (Ref, WCAP-161421"1).

Revision 3

I-'

I INTRODUCTION Heatup and cooldown limit curves are calculated using the adjusted RTNDT (reference nil-ductility temperature) corresponding to the limiting beitline region material of the reactor vessel. The adjusted RTNDT of the limiting material in the core region of the reactor vessel is determined by using the unirradiated reactor vessel material fracture toughness properties, estimating the radiation-induced ARTNDT, and adding a margin. The unirradiated RTNDT is designated as the higher of either the drop weight nil-ductility transition temperature (NDTT) or the temperature at which the material exhibits at least 50 fl-lb of impact energy and 35-mil lateral expansion (normal to the major working direction) minus 600F.

RTNDT increases as the material is exposed to fast-neutron radiation. Therefore, to find the most limiting RTNDT at any time period in the reactor's life, ARTNDT due to the radiation exposure associated with that time period must be added to the unirradiated RTNDT(IRTNDT). The extent of the shift in RTNDT is enhanced by certain chemical elements (such as copper and nickel) present in reactor vessel steels. The Nuclear Regulatory Commission (NRC) has published a method for predicting radiation embrittlement in Regulatory Guide 1.99, Revision 2, "Radiation Embrittlement of Reactor Vessel Materials"11I.

Regulatory Guide 1.99, Revision 2, is used for the calculation of Adjusted Reference Temperature (ART) values (IRTNDT + ARTNDT + margins for uncertainties) at the 1/4T and 3/4T locations, where T is the thickness of the vessel at the beltline region measured from the clad/base metal interface. The most limiting ART values are used in the generation of heatup and cooldowh pressure-temperature limit curves for normal operation. As a note, calculated capsule and vessel fluence projections171 were used in determination of the most limiting ART values. The fluence evaluation in Reference 7 used the ENDF/B-VI scattering cross-section data set. This is consistent with the methods presented in WCAP-14040-A, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves"18 1.

The heatup and cooldown curves documented in this report were generated using the most limiting ARTI values and the NRC approved methodology documented in WCAP-14040-A, Revision 418X, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves" with one exception. The neutron fluence calculations used Equation 3 of Regulatory Guide 1.190 rather than Equation 4 to perform the flux synthesis. As discussed in Section 1.3.4 of Regulatory Guide 1. 190, this approach tends to over predict the maximum flux at the pressure vessel, therefore resulting in slightly conservative calculated results. The reactor vessel flange temperature requirement has also been eliminated. Justification has been provided in WCAP-16142111.

Intrducton evison Introduction Revision 3

2-1 2

PURPOSE Southern Nuclear contracted Westinghouse to generate new heatup and cooldown curves for 26 and 36 EFPY using the latest Code Methodologies and the elimination of the flange requirement. The heatup and cooldown curves were generated without margins for instrumentation errors. The curves include a hydrostatic leak test limit curve from 2485 to 2000 psig.

The purpose of this report is to present the calculations and the development of the Southern Nuclear Vogtle Electric Generating Plant Unit 2 heatup and cooldown curves for 26 and 36 EFPY. This report documents the calculated adjusted reference temperature (ART) values following the methods of Regulatory Guide 1.99, Revision 2111, for all the beltline materials and the development of the heatup and cooldown pressure-temperature limit curves for normal operation.

Purpose Revision 3 Purpose Revision 3

3-1 3

CRITERIA FOR ALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS 3.1 Overall Approach The ASME approach for calculating the allowable limit curves for various heatup and cooldown rates specifics that the total stress intensity factor, K1, for the combined thermal and pressure stresses at any time during heatup or cooldown cannot be greater than the reference stress intensity factor, Kl,, for the metal temperature at that time. KI, is obtained from the reference fracture toughness curve, defined in Code Case N-640, "Alternative Reference Fracture Toughness for Development of PT Limit Curves for Section Xl" 3 & 101 of the ASME Appendix G to Section Xl. The Kic curve is given by the following equation:

K,. =33.2+20.734*elOO 2 '?ilIl Al

( )

where, K1, reference stress intensity factor as a function of the metal temperature T and the metal reference nil-ductility temperature RTNDT This KI, curve is based on the lower bound of static critical K, values measured as a function of temperature on specimens of SA-533 Grade B Class], SA-508-1, SA-508-2, SA-508-3 steel.

3.2 Methodology for Pressure-Temperature Limit Curve Development The governing equation for the beatup-cooldown analysis is defined in Appendix G of the ASME Code as follows:

C* Kin, + Kit < K1c (2)

where, Kin, stress intensity factor caused by membrane (pressure) stress K,

=

stress intensity factor caused by tile thermal gradients K,

=

function of temperature relative to the RTNDT of the material C

=

2.0 for Level A and Level B service limits C

1.5 for hydrostatic and leak test conditions during which the reactor core is not critical Criteria For Allowable Pressure-Temperature Relationships Revision 3 Criteria For Allowvable Pressure-Temperature Relationships Revision 3

3J-2 For membrane tension, the corresponding K, for the postulated defect is:

KIm= M.x(pR /t)

(3) where, Mm for an inside surface flaw is given by:

Mm

=

1.85 for ft < 2, Mm

=

0.92617 for 2*<17 < 3.464, Mm

=

3.21 for 17 >3.464 Similarly, Mm for an outside surface flaw is given by:

Mm

=

1.77 for Ft < 2, Mm

=

0.893 F1 for 2 < a < 3.464, Mm

=

3.09 for 1I > 3.464 and p = internal pressure, Ri = vessel inner radius, and t = vessel wall thickness.

For bending stress, the corresponding K, for the postulated defect is:

KIb = Mb

  • Maximum Stress, where Mb is two-thirds of M,,,

The maximum K, produced by radial thermal gradient for the postulated inside surface defect of G-2120 is KI, = 0.953x] 0'3 x CR x t25, where CR is the cooldowvn rate in 'F/hr., or for a postulated outside surface defect, KI, = 0.753xI O3 x HU x t25, where HU is the heatup rate in 'F/hr.

The through-wall temperature difference associated with the maximum thermal K, can be determined from Fig. G-2214-1. The temperature at any radial distance from the vessel surface can be determined from Fig. G-2214-2 for the maximum thermal K1.

(a)

The maximum thermal K, relationship and the temperature relationship in Fig. G-2214-1 are applicable only for the conditions given in G-2214.3(a)(1) and (2).

(b)

Alternatively, the K, for radial thermal gradient can be calculated for any thermal stress distribution and at any specified time during cooldown for a /4-thickness inside surface defect using the relationship:

KS, = (1.0359Co + 0.6322C, + 0.4753C2 + 0.3855C-) *

(4)

Criteria For Allowable Pressure-Temperature Relationships Revision 3

3 or similarly. KIT during heatup for a '/,-thickness outside surface defect using the relationship:

Ki1 = (1.043Co + 0.630C, + 0.481C2 + 0.401C3)*

(5) where the coefficients C0, Cl, C2 and C3 are determined from the thermal stress distribution at any specified time during the heatup or cooldown using the form:

a(x)

= Co + Ci(x / a) + C2(x / a)2 + Ci(x / a)'

(6) and x is a variable that represents the radial distance from the appropriate (i.e., inside or outside) surface to any point on the crack front and a is the maximum crack depth.

Note, that equations 3, 4 and 5 were implemented in the OPERLIM computer code, which is the program used to generate the pressure-temperature (P-T) limit curves. No other changes were made to the OPERLIM computer code with regard to P-T calculation methodology. Therefore, the P-T curve methodology is unchanged from that described in WCAP-14040, "Methodology used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves" 181 Section 2.6 (equations 2.6.2-4 and 2.6.3-1) with the exceptions just described above.

At any time during the heatup or cooldown transient, KI, is detennined by the metal temperature at the tip of a postulated flaw at the 1/4T and 3/4T location, the appropriate value for RTNDT, and the reference fracture toughness curve. The thermal stresses resulting from the temperature gradients through the vessel wall are calculated and then the corresponding (thermal) stress intensity factors, KI,, for the reference flaw are computed. From Equation 2, the pressure stress intensity factors are obtained and.

from these, the allowable pressures are calculated.

For the calculation of the allowable pressure versus coolant temperature during cooldown, the reference flaw of Appendix G to the ASME Code is assumed to exist at the inside of the vessel wvall. During cooldown. the controlling location of the flaw is always at the inside of the wall because the thermal gradients produce tensile stresses at the inside, which increase with increasing cooldown rates.

Allowable pressure-temperature relations are generated for both steady-state and finite cooldown rate situations. From these relations, composite limit curves are constructed for each cooldown rate of interest.

Tile use of the composite curve in the cooldown analysis is necessary because control of the cooldown procedure is based on the measurement of reactor coolant temperature, whereas the limiting pressure is actually dependent on the material temperature at the tip of the assumed flaw. During cooldown, the 1/4T vessel location is at a higher temperature than the fluid adjacent to the vessel inner diameter. This condition. of course. is not tnie for the steady-state situation. It follows that, at any given reactor coolant temperature. the AT (temperature) developed during cooldown results in a higher value of K1, at the 1/4T location for finite cooldown rates than for steady-state operation. Furthermore, if conditions exist so that the increase in KI, exceeds KIt, the calculated allowable pressure during cooldown will be greater than the stcadv-state value.

Criteria For Allowable Pressure-Temperature Relationships Revision 3

34 The above procedures are needed because there is no direct control on temperature at the I/4T location and, therefore, allowable pressures may unknowingly be violated if the rate of cooling is decreased at various intervals along a cooldown ramp. The use of the composite curne eliminates this problem and ensures conservative operation of the system for the entire cooldown period.

Three separate calculations are required to determine the limit curves for finite heatup rates. As is done in the cooldown analysis, allowable pressure-temperature relationships are developed for steady-state conditions as well as finite heatup rate conditions assuming the presence of a 1/4T defect at the inside of the wall. The heatup results in compressive stresses at the inside surface that alleviate the tensile stresses produced by internal pressure. The metal temperature at the crack tip lags the coolant temperature; therefore, the K1, for the I/4T crack during heatup is lower than the Kic for the I14T crack during steady-state conditions at the same coolant temperature. During heatup, especially at the end of the transient, conditions may exist so that the effects of compressive thermal stresses and lower K1, values do not offset each other, and the pressure-temperature curve based on steady-state conditions no longer represents a lower bound of all similar curves for finite heatup rates when the I/4T flaw is considered. Therefore, both cases have to be analyzed in order to ensure that at any coolant temperature the lower value of the allowable pressure calculated for steady-state and finite heatup rates is obtained.

The second portion of the heatup analysis concerns the calculation of the pressure-temperature limitations forthe case in wvhich a I/4T flaw located at the 1/4T location from the outside surface is assumed. Unlike the situation at the vessel inside surface, the thermal gradients established at the outside surface during heatup produce stresses which are tensile in nature and therefore tend to reinforce any pressure stresses present. These thermal stresses are dependent on both the rate of heatup and the time (or coolant temperature) along the heatup ramp. Since the thermal stresses at the outside are tensile and increase with increasing heatup rates, each heatup rate must be analyzed on an individual basis.

Following the generation of pressure-temperature curves for both the steady-state and finite heatup rate situations. the final limit curves are produced by constructing a composite curve based on a point-by-point comparison of the steady-state and finite heatup rate data. At any given temperature, the allowable pressure is taken to be the lesser of the three values taken from the curves under consideration. The use of the composite curve is necessary to set conservative heatup limitations because it is possible for conditions to exist wherein, over the course of the heatup ramp, the controlling condition switches from the inside to the outside, and the pressure limit must at all times be based on analysis of the most critical criterion.

3.3 Closure Head/Vessel Flange Requirements 10 CFR Part 50. Appendix G addresses the metal temperature of the closure head flange and vessel flange regions. This rule states that the metal temperature of the closure flange regions must exceed the material unirradiated RTNDT by at least 1207F for normal operation when the pressure exceeds 20 percent of the preservice hydrostatic test pressure (3 106 psi), which is 621 psig for the Vogtle Electric Generating Plant Unit 2. However, per WCAP-16142, 'Reactor Vessel Closure Head/Vessel Flange Requirements Evaluation for Vogtle Units I and 2[ 1 1, this requirement is no longer necessary when using the Criteria Fo Aloal rsueTmeaueRltosisRvso Criteria For Allowable Pressure-Temperature Relationships Revision 3

3-5 methodology of Code Case N-6401 '

1 ). Hence, the Vogtle Electric Generating Plant Unit 2 heatup and cooldown limit curves will be generated without flange requirements included.

Criteria For AlIovable Pressure-Temperature Relationships Revision 3 Criteria For Allowable Pressure-Temperaturc Relationships Revision 3

4-1 4

CALCULATION OF ADJUSTED REFERENCE TEMPERATURE From Regulatory Guide 1.99, Revision 2, the adjusted reference temperature (ART) for each material in the beltline region is given by the following expression:

ART = Initial RTXD7 + A RTNDT + Margin (7)

Initial RTNDT is the reference temperature for the unirradiated material as defined in paragraph NB-233 1 of Section III of the ASME Boiler and Pressure Vessel Code 61. If measured values of initial RTNDT for the material in question are not available, generic mean values for that class of material may be used if there are sufficient test results to establish a mean and standard deviation for the class.

ARTNDT is the mean value of the adjustment in reference temperature caused by irradiation and is calculated as follows:

A RTA',n- =CF *ff0.28.o0v1o0.O (8)

To calculate ARTNDT at any depth (e.g., at 1/4T or 3/4T), the following formula must first be used to attenuate the fluence at the specific depth.

f

)(9) where x inches (vessel beltline thickness is 8.625 inches131) is the depth into the vessel wall measured from the vessel clad/base metal interface. The resultant fluence is then placed in Equation 8 to calculate the ARTNDT at the specific depth.

The Westinghouse Radiation Engineering and Analysis group evaluated the vessel fluence projections and the results are presented in Section 6 of WCAP-151591 71. The evaluation used the ENDF/B-VI scattering cross-section data set. This is consistent with the methods presented in WCAP-14040-A.

"Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves"18 1. Tables 4-1 and 4-2, herein, contain the calculated vessel surface fluence values along with the Regulatory Guide 1.99, Revision 2, 1/4T and 3/4T calculated fluences used to calculate the ART values for all beltline materials in the Vogtle Unit 2 reactor vessel. Additionally, the calculated surveillance capsule fluence values are presented in Table 4-3.

Calculation of Adjusted Reference Temperature Revision 3

4-2 TABLE 4-1 Summary of the Peak Pressure Vessel Neutron Fluence Values at 26 EFPY used for the Calculation of ART Values (n/cm2, E > 1.0 MeV)

Material Surface(b)

'/4 T 3/4 T Interrnediate Shell Plate R4-1 1.46 x IO" 8.70 x 1018 3.09 x IO's Intermediate Shell Plate R4-2 1.46 x i0'9 8.70 x 108 3.09 xI Intermediate Shell Plate R4-3 1.46 x 10'9 8.70 x 1018 3.09 x 1018 Lowner Shell Plate B8825-1 1.46 x 10'9 8.70 x 1018 3.09 x 1018 Lowver Shell Plate B8-1 1.46 x 1O'9 8.70 x 1 3.09 x 0" Lower Shell Plate B8628-1 1.46 x 1019 8.70 x 10" 3.09 x 10"8 Interrnediate Shell Longitudinal 1.46 x 1019 8.70 x 1018 3.09 x 10's Weld Seams 101-124A, B, C(a)

Lower Shell Longitudinal 1.46 x 10'9 8.70 x I 0" 3.09 x l Ots Weld Seams 101-142A, B, C(a)

Intermediateto Lower Shell Circ.

1.46x 10'9 8.70x I0'8 3.09x 1018 Weld Seam 101-171(a)

Notes:

(a)

It was conservatively assumed that all the welds would see the peak vessel fluence at 300.

(b)

Surface fluence values are calculated.

Calc laton f Adustd R fere ce emp ratue R vison Calculation of Adjusted Reference Temperature Revision 3

4-3 TABLE 4-2 Summary of the Peak Pressure Vessel Neutron Fluence Values at 36 EFPY used for the Calculation of ART Values (n/cm2, E > 1.0 MeV)

Material Surface b) 1/4 T 3/4 T Intermediate Shell Plate R4-1 2.01 x 1019 1.20 x IO" 4.26 x IO's Intermediate Shell Plate R4-2 2.01 x 1019 1.20 x 1019 4.26 x 10'8 Intermediate Shell Plate R4-3 2.01 x l0'9 1.20 x 1019 4.26 x 10l" LowerShell Plate B8825-1 2.01 x 1019 1.20x 1019 4.26x 108 Lower Shell Plate R8-1 2.01 x IO 1.20 x 10'9 4.26 x IO Lower Shell Plate B8628-1 2.01 x 1019 1.20 x lI0' 4.26 x lO's Intermediate Shell Longitudinal 2.01 x 1019 1.20 x 1O'9 4.26 x lIO' Weld Seams 10I -124A, B, C0)

Lower Shell Longitudinal 2.01 x 1019 1.20 x 10'9 4.26 x I0O Weld Seams 101-142A, B. C(a)

Intermediate to Lower Shell Circ.

2.01 x 10'9 1.20 x lO'9

. 4.26 x 10" Weld Seam 101 -171 Notes:

(a)

It was conservatively assumed that all the welds would see the peak vessel fluence at 300.

(b)

Surface fluence values are calculated.

Calculation of Adjusted Reference Temperature Revision 3

4-4 TABLE 4-3 Calculated Integrated Neutron Exposure of the Vogtle Unit 2 Surveillance Capsules Tested to Date Capsule Fluencc U

3.97 x I 08 n/cm2, (E > 1.0 MeV)

Y 1.27 x 10'9 n/cm2, (E > 1.0 MeV)

X 2.01 x 10'9 n/cm 2, (E> 1.0MeV)

Margin is calculated as, M = 2 oa2 + a.?. The standard deviation for the initial RTNDT margin term, a,,

is 07F when the initial RTNDT is a measured value, and 1 7'F when a generic value is used. The standard deviation for the ARTNDT margin term, a,%, is I 7'F for plates when surveillance capsule data is not used and 8.51F for plates when surveillance capsule data is used. For welds, cS is 281F when surveillance capsule data is not used and 14'F when surveillance capsule data is used. In addition, a, need not exceed one-half the mean value of ARTNDT.

Calculation of Adjusted Reference Temperature Revision 3 Calculation of Adjusted Reference Temperature Revision '3

4-5 Contained in Table 4-4 is a summary of the Measured 30 ft-lb transition temperature shifts of the beltline materialst 7l. These measured shift values were obtained using CVGRAPH, Version 4.1141, which is a hyperbolic tangent curve-fitting program.

TABLE 4-4 Measured 30 ft-lb Transition Temperature Shifts of the Beltline Materials Contained in the Surveillance Program Material Capsule Measured 30 ft-lb Transition Temperature Shift(')

Lower Shell Plate B8628-1 U

2.120F Y

5.760F (Longitudinal Orientation)

X 29.350F Lower Shell Plate B8628-1 U

0.OoFlb)

Y I.930 F (Transverse Orientation)

X 29.720F Surveillance Program U

OOoF(h)

Weld Metal Y

18.590F X

20.070F U

O.OOF(b)

Heat Affected Zone Y

O.OoFNb)

V O.OOF(b)

Notes:

(a) Calculated using measured Charpy data and plotted using CVGRAPH141 (b) Actual values for ARTNDT are -7.14 (Plate), -17.49 (Weld), -24.05 (IIAZ Cap. U). -9.86 (HAZ Cap. Y) and -2.1 (HAZ Cap. X). This physically should not occur, therefore for conservatism a value of zero will be used.

Calculation of Adjusted Reference Temperature Revision 3 Calculation of Adjusted Reference Temperature Revision 3

4-6 Table 4-5 contains a summary of the weight percent of copper, the wveight percent of nickel and the initial RTNDT of the beltline materials and vessel flanges. The weight percent values of Cu and Ni given in Table 4-5 wvere used to generate the calculated chemistry factor (CF) values based on Tables I and 2 of Regulatory Guide 1.99, Revision 2, and presented in Table 4-7. Table 4-6 provides the calculation of the CF values based on surveillance capsule data, Regulatory Guide 1.99, Revision 2, Position 2.1, which are also summarized in Table 4-7.

TABLE 4-5 Reactor Vessel Beltline Material Unirradiated Toughness Properties'5 & 9]

Material Description Cu (%)

Ni(%)

Initial RTNDTt' Closure Head Flange R7-1 100F Vessel Flange RI-i

-600F Intermediate Shell Plate R4-1 0.07 0.63 10F Intermediate Shell Plate R4-2 0.06 0.61 10F Intennediate Shell Plate R4-3 0.05 0.60 30 0F Lower Shell Plate B8825-1 0.06 0.62 400F Lower Shell Plate R8-1 0.07 0.63 400 F Lower Shell Plate B8628-1 0.05 0.59 500 F Intermediate Shell Longitudinal Weld 0.05 015

-10 0F Seams 101-I 24A. B & C Lower Shell Longitudinal Weld Seams 0.05 0.15

-10T 101-142A. B & C Intermediate to Lox er Shell Plate 0.05 0.15

-30 0F Circumferential Weld Seam 101-171 Surveillance Weldlb) 0.04 0.13 Note (a)

(b) s:

The initial RTNDT values for the plates and welds are based on measured data.

The weld material in the Vogtle Unit 2 surveillance program was made of the same wire and flux as the reactor vessel intermediate to lower shell girth seam weld (101-171). These welds were fabricated using weld wire heat no. 87005, Linde 124 Flux, lot no. 1061. The intermediate shell longitudinal weld seams (101-124A,B,C) and the lower shell longitudinal weld seams (101-142A,BC) were fabricated using weld wire heat no. 87005, Linde 0091 Flux, lot no. 0145. Hence the surveillance weld is representative of all beltline welds.

Calculation of Adjusted Reference Temperature Revision 3

4-7 TABLE 4-6 Calculation of Chemistr) Factors using Vogtle Unit 2 Surveillance Capsule Data Material Capsule Capsule jo)

FFb)l ARTNDT" l FF*ARTNDT FF2 Lower Shell U

0.397 0.744 2.1 1.6 0.554 Plate B8628-1 Y

1.27 1.07 5.8 6.2 1.14 (Longitudinal)

X 2.01 1.19 29.4 35.0 1.42 Lower Shell U

0.397 0.744 0.0()

0 0.554 Plate B8628-1 Y

1.27 1.07 1.9 2.0 1.14 (Transverse)

X 2.01 1.19 29.7 35.3 1.42 SUM:

80.1 6.228 CFXS628.1=:(FF *RTNDr) 2:( FF2)=(80.1)

(6.228) 12.97F Surveillance Weld U

0.397 0.744 0.0(e) 0 0.554 Material Y

1.27 1.07 22.1(18.6 )"'

23.6 1.14 X

2.01 1.19 2 3.9(2 0.1 )Id, 28.4 1.42 SUM:

52.0 3.114 CFsLI. Bad = X;(FF

( FF2) = (52.0). (3.114) = 16.70F Notes (a)

(b)

(c)

(d)

(e) f= Calculated fluence from capsule X dosimetry analysis results 17), (x 1019 n!cm2, E > 1.0 MeV).

FF = fluence factor= pO.2 -.

lorI)

ARTNDT values are the measured 30 ft-lb shift values from App. B of Ref. 7, rounded to one decimal point.

The surveillance weld metal ARTNDT values have been adjusted by a ratio factor of 1. 19.

Actual values for ARTNDT are -7.14 (Plate) and -17.49 (Weld). This phy)sicall) should not occur, therefore for conservatism a value of zero will be used.

Calculation of Adjusted Reference Temperature Revision 3

4-8 TABLE 4-7 Summary of the Vogtle Unit 2 Reactor Vessel Beltline Material Chemistry Factors Based on Regulatory Guide 1.99, Revision 2, Position 1.1 and Position 2.1 Material Chemistn-Factor Position 1.1(')

Position 2.1")

Intermediate Shell Plate R4-1 44.0F Intermediate Shell Plate R4-2 37.00F l

Intermediate Shell Plate R4-3 31.0 0F l

Lower Shell Plate B8825-1 37.0F Lower Shell Plate R8-1 44.00F1 Lower Shell Plate B8628-1 31.0 0F 12.9 0F Intermediate Shell Longitudinal Welds, 43.3 0F 16.7 01-101-124A, B & C Lower Shell Longitudinal Welds 43.3 0F 16.7 0F 101-142A, B & C Circumferential Weld 101-171 43.3 0F 16.701 Surveillance Program Weld Metal 36.4`F Notes:

(a) Regulatory Guide 1;99, Revision 2, Position 1. I or Position 2.1 mnethodology.

Calculation of Adjusted Reference Temperature Revision 3 Calculation of Adjusted Reference Temperature Revision 3

4-9 Contained in Tables 4-8 and 4-9 are summaries of the fluence factors (FF) used in the calculation of adjusted reference temperatures for the Vogtle Electric Generating Plant Unit 2 reactor vessel beltline materials for 26 EFPY and 36 EFPY.

TABLE 4-8 Summary of the Calculated Fluence Factors used for the Generation of the 26 EFPY Heatup and Cooldown Curves Material

% T r 1/4 T FF(2) 3/4T f 3 4 T FFb)

(n/cm2, E > 1.0 (n/cm2, E >1.0 Mel')

__NW MeV)

Intennediate Shell Plate R4-1 8.70 x 1018 0.961 3.09 x IO'8 0.678 Intermediate Shell Plate R4-2 8.70 x IO" 0.961 3.09 x I0"'

0.678 Intermediate Shell Plate R4-3 8.70 x I0" 0.961 3.09 x 1O18 0.678 Lower Shell Plate B8825-1 8.70 x 1O08 0.961 3.09 x 1018 0.678 Lower Shell Plate B8-1 8.70 x 1018 0.961 3.09 x 1I 0 0.678 Lower Shell Plate B8628-1 8.70 x 1018 0.961 3.09 x 1018 0.678 Intermediate Shell Longitudinal 8.o x 1O,8 0.961 3.09 x l0' 0.678 Weld Seams 101-124A, B, C Lower Shell Longitudinal 8.70 x 1018 0.961 3.09 x 108 0.678 Weld Seams 101-142A, B, C Intermediate to Lower Shell 8.70 x I0O" 0.961 3.09 x lI0' 0.678 Circ.

Weld Seam 101-171 Notes:

(a) Fluence Factor at the 1/4T vessel thickness location.

(b) Fluence Factor at the 3/4T vessel thickness location.

Calclaton f Adustd Rferece empratue Rvison Calculation of Adjusted Reference Temperature Revision;3

4-10 TABLE 4-9 Summary of the Calculated Fluence Factors used for the Generation of the 36 EFPY Heatup and Cooldown Curves Material

% T r

% T FF"'I

% Tf 3/ T FFb (n/cm2, E > 1.0 (n/cm2, E > 1.0 nr i

S la) x.2e6x)

Intermediate Shell Plate R4-1 1.20 x l 09 1.051 4.26 x IO"S 0.763 Intermediate Shell Plate R4-2 1.20 x 1019 1.051 4.26 x 11O8 0.763 oIntermediate Shell Plate R4-3 1.20 x 10'9 1.051 4.26 x I 0" 0.763 Lower Shell Plate B8825-1 1.20 x 10O9 1.051 4.26 x I0' 8 0.763 Lower Shell Plate R8-1 1.20 x i '9 1.051 4.26 x 10"'

0.763 l Lowver Sllell Plate B8628-1 1.20 x 1 O'9 1.051 4.26 x 10"8 0.763 Intermediate Shell Longitudinal 1.20 x 1019 1.051 4.26 x 1018 0.763 Weld Seams 101 -124A, B, C Lower Shell Longitudinal 1.20 x 10'9 1.051 4.26 x 1018 0.763 Weld Seams 101-142A. B, C Intermediate to Lower Shell 1.20 x l0'9 1.051 4.26 x Il 0 0.763 Circ. Weld Seam 101 -171 Notes:

(a) Fluence Factor at the 1/4T vessel thickness location.

(b) Fluence Factor at the 3/4T vessel thickness location.

Calculation of Adjusted Reference Temperature Revision 3

4-1l Contained in Tables 4-10 through 4-13 are the calculations of the ART values used for the generation of the 26 EFPY and 36 EFPY heatup and cooldown curves.

TABLE 4-10 Calculation of the ART Values for the 1/4T Location @ 26 EFPY Material RG 1.99 R2 CF FF IRTNDT" )

ARTNDT4 1 Margin ART(b)

Method (OF)

Intermediate Shell Plate R4-1 Position 1.1 44.0 0.961 10 42.3 34 86 Intermediate Shell Plate R4-2 Position 1.1 37.0 0.961 10 35.6 34 80 Intermediate Shell Plate R4-3 Position 1.1 31.0 0.961 30 29.8 29.8 90 Lower Shell Plate B8825-1 Position 1.1 37.0 0.961 40 35.6 34 110 Lower Shell Plate 18-1 Position 1.1 44.0 0.961 40 42.3 34 116 Lower Shell Plate B8628-1 Position 1.1 31.0 0.961 50 29.8 29.8 110 Position 2.1 12.9 0.961 50 12.4 12.4 75 Intermediate Shell Longitudinal Position 1.1 43.3 0.961

-10 41.6 41.6 73 Weld Seams 101-124A, B, C Position 2.1 16.7 0.961

-10 16.0 16.0 22 Lower Shell Longitudinal Position 1.1 43.3 0.961

-10 41.6 41.6 73 Weld Seams 101-142A, B, C Position 2.1 16.7 0.961

-10 16.0 16.0 22 Intermediate to Lower Shell Position 1.1 43.3 0.961

-30 41.6 41.6 53 Circ. Weld Seam 101-171 Position 2.1 16.7 0.961

-30 16.0 16.0 Notes:

(a)

Initial RTNDT values are measured values (see Table 4-5).

(b)

(c)

ART = Initial RTNDT + ARTNDT + Margin (IF); (Rounded per ASTM E29, using the "Rounding Method")

ARTNDT = CF

  • FF Calculation of Adjusted Reference Temperature Revision 3 Calculation of Adjusted Reference Temperature Revision 3

4-12 TABLE 4-11 Calculation of the ART Values for the 3/4T Location @ 26 EFPY Material RG 1.99 R2 CF FF IRTNTz'a ARTNDT(C)

Margin ART"b' Method

('F)

Intermediate Shell Plate R4-1 Position 1.1 44.0 0.678 10 29.8 29.8 70 Intermediate Shell Plate R4-2 Position 1.1 37.0 0.678 10 25.1 25.1 60 Intermediate Shell Plate R4-3 Position 1.1 31.0 0.678 30 21.0 21.0 72 Lower Shell Plate B8825-1 Position 1.1 37.0 0.678 40 25.1 25.1 90 Lowver Shell Plate R8-1 Position 1.1 44.0 0.678 40 29.8 29.8 100 Lower Shell Plate B8628-1 Position 1.1 31.0 0.678 50 21.0 21.0 92 Position 2.1 12.9 0.678 50 8.7 8.7 67 Intermediate Shell Longitudinal Position 1.1 43.3 0.678

-10 29.4 29.4 49 Weld Seams 101 -124A, B, C Position 2.1 16.7 0.678

-10 11.3 11.3 13 Lower Shell Longitudinal Position 1.1 43.3 0.678

-10 29.4 29.4 49 Weld Seams 101-142A, B, C Position 2.1 16.7 0.678

-10 11.3 11.3 13 Intermediate to Lower Shell Position 1.1 43.3 0.678

-30 29.4 29.4 29 Circ. Weld Seam 101-171 Position 2.1 16.7 0.678

-30 11.3 11.3

-7 Notes:

(a)

Initial RTNDT values are measured values (see Table 4-5).

(b)

(c)

ART = Initial RTNDT + ARTNDT + Margin (F) ; (Rounded per ASTM E29, using the "Rounding Method")

ARTNDT = CF

  • FF Calculation of Adjusted Reference Temperature t oRevision 3

4-13 TABLE 4-12 Calculation of the ART Values for the 1/4T Location @ 36 EFPY Material RG 1.99 R2 CF FF IRTNDTz '

ARTNDT( )

Margin ART b)

Method

(°F)

Intermediate Shell Plate R4-1 Position 1.1 44.0 1.051 10 46.2 34 90 Intermediate Shell Plate R4-2 Position 1.1 37.0 1.051 10 38.9 34 83 Intenmediate Shell Plate R4-3 Position 1.1 31.0 1.051 30 32.6 32.6 95 Lower Shell Plate B8825-1 Position 1.1 37.0 1.051 40 38.9 34 113 Lower Shell Plate R18-I Position 1.1 44.0 1.051 40 46.2 34 120 Lower Shell Plate B8628-1 Position 1.1 31.0 1.051 50 32.6 32.6 115 Position 2.1 12.9 1.051 50 13.6 13.6 77 Intennediate Shell Longitudinal Position 1.1 43.3 1.051

-10 45.5 45.5 81 Weld Seams 101-124A, B. C Position 2.1 16.7 1.051

-10 17.6 17.6 25 Lower Shell Longitudinal Position 1.1 43.3 1.051

-10 45.5 45.5 81 Weld Seams 101-142A B, C Position 2.1 16.7 1.051

-10 17.6 17.6 25 Intermediate to Lower Shell Position 1.1 43.3 1.051

-30 45.5 45.5 61 Circ. Weld Seam 101 -171 Position 2.1 16.7 1.051

-30 17.6 17.6 5

Notes:

(a)

Initial RTNDT values are measured values (see Table 4-5).

(b)

(c)

ART = Initial RTNDT + ARTNDT + Margin (fF); (Rounded per ASTM ARTNDT= CF

  • FF E29, using the "Rounding, Method")

Calculation of Adjusted Reference Temperature Revision 3 Calculation of Adjusted Reference Temperature Revision 3

4-14 TABLE 4-13 Calculation of the ART Values for the 314T Location @ 36 EFPY Material RG 1.99 R2 CF FF IRTNDTP')

ARTNDT(C)

Margin ART'b)

Method (OF)

Intermediate Shell Plate R4-1 Position 1.1 44.0 0.763 10 33.6 33.6 77 Intennediate Shell Plate R4-2 Position 1.1 37.0 0.763 10 28.2 28.2 66 Intermediate Shell Plate R4-3 Position 1.1 31.0 0.763 30 23.7 23.7 77 Lower Shell Plate B8825-1 Position 1.1 37.0 0.763 40 28.2 28.2 96 Lower Shell Plate R8-1 Position 1.1 44.0 0.763 40 33.6 33.6 107 Lower Shell Plate B8628-1 Position 1.1 31.0 0.763 50 23.7 23.7 97 Position 2.1 12.9 0.763 50 9.8 9.8 70 Intenmediate Shell Longitudinal Position 1.1 43.3 0.763

-10 33.0 33.0 56 Weld Seams 101-124A, B. C Position 2.1 16.7 0.763

-10 12.7 12.7 15 Lower Shell Longitudinal Position 1.1 43.3 0.763

-10 33.0 33.0 56 Weld Seams 101 -142A, B, C Position 2.1 16.7 0.763

-10 12.7 12.7 IS Intenmediate to Lower Shell Position 1.1 43.3 0.763

-30 33.0 33.0 36 Circ. Weld Seam 101-171 Position 2.1 16.7 0.763

-30 12.7 12.7

.5 Notes:

(a)

Initial RTNDT values are measured values (see Table 4-5).

(b)

(c)

ART = Initial RTNDT + ARTNDT + Margin (IF); (Rounded per ASTM ARTNDT = CF

  • FF E29. using the "Rounding Method")

Calculation of Adjusted Reference Temperature Revision 3

4-15 The Lower Shell Plate R8-1 is the limiting beltline material for all heatup and cooldown curnes to be generated. Contained in Table 4-14 is a summary of the limiting ARTs to be used in the generation of the Vogtle Electric Generating Plant Unit 2 reactor vessel lieatup and cooldown curves.

TABLE 4-14 Summary of the Limiting ART Values Used in the Generation of the Vogule Unit 2 Heatup/Cooldown Curves EFPY 1/4T Limiting ART 3/4T Limiting ART 26 116 0 F lOOTF I3 36120°F 107°F Calculation of Adjusted Reference Temperature Revision 3 Calculation of Adjusted Reference Temperature Revision 3

5-I 5

HEATUP AND COOLDOWN PRESSURE-TEMPERATURE LIMIT CURVES Pressure-temperature limit curves for normal heatup and cooldown of tile primary reactor coolant system have been calculated for the pressure and temperature in the reactor vessel beltline region using the methods discussed in Section 3 and 4 of this report. This approved methodology is also presented in WCAP-1 4040-A181.

Figures 5-1 and 5-3 present the heatup curves with no margins for possible instrumentation errors for heatup rates of 60 and 1 000F/hr. These curves are applicable for 26 EFPY and 36 EFPY respectively. for the Vogtle Unit 2 reactor vessel. Additionally, Figures 5-2 and 5-4 present the cooldown curves with no margins for possible instrumentation errors for cooldown rates of 0, 20, 40. 60, and I 000F/hr. These curves are also applicable for 26 EFPY and 36 EFPY, respectively3 for the Vogtle Electric Generating Plant Unit 2 reactor vessel. Allowable combinations of temperature and pressure for specific temperature change rates are below and to the right of the limit lines shown in Figures 5-1 through 5-4.

This is in addition to other criteria which must be met before the reactor is made critical, as discussed in the following paragraphs.

O The reactor must not be made critical until pressure-temperature combinations are to the right of the criticality limit line shown in Figures 5-1 and 5-3 (for the specific heatup rate being utilized). The straight-line portion of the criticality limit is at the minimum permissible temperature for the 2485 psig inservice hydrostatic test as required by Appendix G to 10 CFR Part 50. The governing equation for the hydrostatic test is defined in Appendix G to Section Xl of the ASME CodePI 3 as follows:

1.5K; i. < K.

(1 0)

where, Kim is the stress intensity factor covered by membrane (pressure) stress, K1,= 33.2 + 20.734e 10 02 (T -RTNDT)]

T is the minimum permissible metal temperature, and RTNDT is the metal reference nil-ductility temperature The criticality limit curve specifies pressure-temperature limits for core operation to provide additional margin during actual power production as specified in Reference 2. The pressure-temperature limits for core operation (except for low power physics tests) are that the reactor vessel must be at a temperature equal to or higher than the minimum temperature required for the inservice hydrostatic test. and at least 40'F higher than the minimum permissible temperature in the corresponding pressure-temperature curve for heatup and cooldown calculated as described in Section 3 of this report. The vertical line drawn from these points on the pressure-temperature curve, intersecting a curve 40'F higher than the pressure-temperature limit curve, constitutes the limit for core operation for the reactor vessel.

Ileatup and Cooldown Pressure Temperature Limit Curves Revision 3 Heatup and Cooldown Pressure Temperature Limit Curves Revision 3

5-2 Figures 5-1 through 5-4 define all of the above limits for ensuring prevention of nonductile failure for the Vogtle Electric Generating Plant Unit 2 reactor vessel. The data points for tile heatup and cooldown pressure-temperature limit curves shown in Figures 5-1 through 5-4 are presented in Tables 5-1 through 5-4, respectively.

Heatup and Cooldown Pressure Temperature Limit Curves Revision 3 Heatup and Cooldo Nm Pressure Temperature Limit Curves Revision 3

  • 5-3 MATERIAL PROPERTY BASIS LIMITING LIMITING 2500 2250 2000 1750 XL 1500 I-2! 1250 0.

0, U

MATERIAL: LOWER SHELL PLATE R8-1 ART VALUES AT 26 EFPY:

I /4T, 116F 3/4T, 1000F 750 500 250 0

0 50 100 150 200 250 300 350 400 450 Moderator Temperature (Deg. F) 500 550 FIGURE 5-1 Vogtle Unit 2 Reactor Coolant System -Heatup Limitations (Heatup Rates of 60 and 100 0F/hr) Applicable to 26 EFPY (Without Margins of for Instrumentation Errors)

Heatup and Cooldown Pressure Temperature Limit Curves Revision 3 Heatup and Cooldown Pressure Temperature Limit Curves Revision 3

5-4 MATERIAL PROPERTY BASIS LIMITING MATERIAL: LOWER SHELL PLATE R8-1 LIMITING ART VALUES AT 26 EFPY:

1/4T, 11 60F 3/4T, 1000F 2500 2250 2000 1750 01 CL 1500 2!

in 1250 IL i 1000 U

M.

750 500 250 0

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

FIGURE 5-2 Vogtle Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates of 0, 20, 40, 60 and 1 007F/hr) Applicable to 26 EFPY (Without Margins for Instrumentation Errors) 1-leatup and Cooldown Pressure Temperature Limit Curves Revision 3 Hentup and Cooldo~vn Pressure Temperature Limit Curves Revision 3

5-5 TABLE 5-1 Vogtle Unit 2 Heatup Data at 26 EFPY Without Margins for Instrumentation Errors 60°Flhr Ileatup 60OF/hr Criticality 1000F/hr Hleatup 1000F/hr Critical.

Leak Test Limit Limit T

Limit T

P T

P T

P I-T P

T r

60 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 0

731 740 740 740 740 743 749 758 771 787 806 829 855 885 919 957 1000 1048 1101 1159 1224 1297 1376 1465 1562 1670 1789 1921 2066 2226 2403 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 0

744 749 742 740 743 749 758 771 787 806 829 855 885 919 957 1000 1048 1101 1159 1224 1297 1376 1465 1562 1670 1789 1921 2066 2226 2403 60 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 0

709 709 709 709 709 709 709 709 711 715 722 732 745 760 779 801 826 854 887 923 964 1010 1062 1119 1182 1252 1330 1417 1512 1617 1734 1862 2004 2161 2333 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 0

709 709 709 709 709 709 709 711 715 722 732 745 760 779 801 826 854 887 923 964 1010 1062 1119 1182 1252 1330 1417 1512 1617 1734 1862 2004 2161 2333 159 176 2000 2485 Heatup and Cooldown Pressure Temperature Limit Curves Revision 3

5-6 TABLE 5-2 Vogtle Unit 2 Cooldown Data at 26 EFPY Without Margins for Instrumentation Errors Steady State 20 1F/hr 401F/hr 60'F/hr 100°F/hr T

P T

P T

P T

P T

P 60 0

60 0

60 0

60 0

60 0

60 731 60 691 60 651 60 612 60 533 65 744 65 705 65 667 65 628 65 554 70 759 70 721 70 684 70 647 70 576 75 775 75 738 75 703 75 668 75 602 80 792 80 757 80 724 80 691 80 630 85 812 85 779 85 747 85 716 85 661 90 833 90 802 90 773 90 745 90 696 95 857 95 828 95 801 95 776 95 734 100 883 100 857 100 833 100 811 100 777 105 912 105 889 105 868 105 850 105 825 110 944 110 924 110 906 110 892 110 877 115 979 115 963 115 949 115 940 115 936 120 1018 120 1006 120 997 120 992 125 1062 125 1053 125 1049 130 1109 130 1106 135 1162 140 1221 145 1285 150 1356 155 1435 160 1522 165 1618 170 1725 175 1842 180 1972 185 2116 190 2274 195 2449 Heatup and Cooldown Pressure Temperature Limit Curves Revision 3 Heatup and Cooldowvn Pressure Temperature Limit Curves Revision 3

5-7 MATERIAL PROPERTY BASIS LIMITING MATERIAL: LOWER SHELL PLATE R8-1 LIMITING ART VALUES AT 36 EFPY:

1/4T, 120WF 3/4T, 107-F 2500 2250 2000 1750 1500 1250 1000 If I5 n60 750 500 250 0

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

FIGURE 5-3 Vogtle Unit 2 Reactor Coolant System Heatup Limitations (Heatup Rate of 60 and 100IF/hr) Applicable to 36 EFPY (Without Margins of for Instrumentation Errors) 1-leatup and Cooldown Pressure Temperature Limit Curves Revision 3 Heatup and Cooldowtn Pressure Temperature Limit Curves Revision;3

5-8 MATERIAL PROPERTY BASIS LIMITING MATERIAL: LOWER SHELL PLATE R8-1 LIMITING ART VALUES AT 36 EFPY:

I /4T, I 200 F 3/4T, 1070F 2500 2250 2000 1750 R 1500 g

1250 0 1000 750 500 250 0

0 50 100 150 200 250 300 350 400 450 500 550 Moderator Temperature (Deg. F)

FIGURE 5-4 Vogtle Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates of 0, 20, 40, 60 and 1000F/hr) Applicable to 36 EFPY (Without Margins for Instrumentation Errors)

Heatup and Cooldo'vn Pressure Temperature Limit Cunes Revision 3 Hcatup and Cooldown Pressure Temperature Limit Curves Revision 3

5-9 TABLE 5-3 Vogtle Unit 2 Heatup Data at 36 EFPY Without Margins for Instrumentation Errors 601Fh Ietp 0

rLim it y

1000F/hr Ileatup 100 0F/hr Critical.

Leak Test Limit Limit I

Limit t

o p

T fA MA T

r T

P 6U 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 U

717 717 717 717 717 717 721 729 739 753 769 788 811 837 866 899 936 977 1023 1074 1130 1193 1262 1339 1424 1517 1621 1735 1861 2000 2154 2324 1o 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 0

734 727 720 717 717 721 729 739 753 769 788 811 837 866

  • 899 936 977 1023 1074 1130 1193 1262 1339 1424 1517 1621 1735 1861 2000 2154 2324 60 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 0

684 684 684 684 684 684 684 684 684 686 691 699 709 722 737 756 777 801 829 860 896 935 979 1029 1084 1144 1212 1287 1369 1461 1562 1673 1796 1932 2082 2248 2430 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 0

684 684 684 684 684 684 684 684 686 691 699 709 722 737 756 777 801 829 860 896 935 979 1029 1084 1144 1212 1287 1369 1461 1562 1673 1796 1932 2082 2248 2430 163 180 2000 2485

.1.

J.

L Heatup and Cooldown Pressure Temperature Limit Curves Revision 3 Heatup and Cooldown Pressure Temperature Limit Curves Revision 3

5-10 TABLE 54 Vogdle Unit 2 Cooldown Data at 36 EFPY Without Margins for Instrumentation Errors Steady State 201F/hr 401F/hr 60 'F/hr 100IF/hr T

P T

P T

P T

P T

P 60 0

60 0

60 0

60 0

60 0

60 722 60 681 60 640 60 599 60 518 65 734 65 694 65 654 65 614 65 537 70 747 70 708 70 670 70 632 70 557 75 762 75 724 75 687 75 651 75 581 80 778 80 742 80 706 80 672 80 606 85 796 85 761 85 728 85 695 85 635 90 816 90 783 90 752 90 721 90 667 95 838 95 807 95 778 95 750 95 703 100 862 100 833 100 807 100 782 100 742 105 889 105 863 105 839 105 818 105 786 110 918 110 895 110 875 110 858 110 834 115 951 115 931 115 914 115 901 115 888 120 987 120 971 120 958 120 950 120 948 125 1027 125 1015 125 1007 125 1003 125 1003 130 1071 130 1063 130 1060 130 1060 135 1120 135 1117 140 1173 145 1233 150 1299 155 1371 160 1452 165 1541 170 1639 175 1747 180 1867 185 2000 190 2146 195 2308 Heatup and Cooldown Pressure Temperature Limit Curves Revision 3

6-1 6

REFERENCES 1

Regulatory Guide 1.99, Revision 2, "Radiation Embrittlement of Reactor Vessel Materials", U.S.

Nuclear Regulatory Commission, May, 1988.

2 10 CFR Part 50, Appendix G. "Fracture Toughness Requirements", Federal Register, Volume 60, No. 243, dated December 19, 1995.

3 Section XI of the ASME Boiler and Pressure Vessel Code, Appendix G. "Fracture Toughness Criteria for Protection Against Failure.", Dated December 1995.

4 CVGRAPH, Hyperbolic Tangent Curve-Fitting Program, Version 4.1, developed by ATI Consulting, March 1996.

5 WCAP-14533, "Vogtle Electric Generating Plant (VEGP) Unit 2 Heatup and Cooladown Limit Curves for Normal Operation", P. A. Grendys, February 1996.

6 1989 Section III, Division 1 of the ASME Boiler and Pressure Vessel Code, Paragraph NB-2331, "Material for Vessels".

7 WCAP-15159, "Analysis of Capsule X from the Southern Nuclear Vogtle Electric Generating Plant Unit 2 Reactor Vessel Radiation Surveillance Program", T. J. Laubham, et al., January 1999.

8 WCAP-14040-A, Revision 4, "Methodology used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves", J. D. Andrachek, et al., XXXX 2003.

9 CE NPSD-1039, Rev. 2, "Best Estimate Copper and Nickel Values in CE Fabricated Reactor Vessel Welds, Appendix A, CE Reactor Vessel Weld Properties Database, Volume 1," CEOG Task 902, June 1997.

10 ASME Code Case N-640, "Alternative Reference Fracture Toughness for Development of P-T Limit Curves for Section XI, Division 1", February 26, 1999.

11 WCAP-16142, "Reactor Vessel Closure Head/Vessel Flange Requirements Evaluation For Vogtle Units 1 and 2", Revision 1, W. Bamford, et.al., February 2004.

References Revision 3 References Revision 3

A-]

APPENDIX A Thermal Stress Intensity Factors (K1t)

The following page contain the thermal stress intensity factors (Kb,) for the maximum heatup and cooldown rates at 26 and 36 EFPY. The vessel radius to the 4T and 3/4T locations are as follows:

1/4TRadius= 88.812" 3/4T Radius = 93.125" Revision 3

A-2 TABLE Al Ki, Values for 100°F/hrHeatup Curve (26 EFPY)

Vessel Temperature 1/4T Thermal Vessel Temperature 3/4T Thermal Water

@ 1/4T Location for Stress

@ 3/4T Location for Stress Temp.

1001F/hr Heatup Intensity Factor 1000F/hr Heatup Intensity Factor (OF)

I (0F)

(KSI SQ. RT. IN.)

(OF)

(KSI SQ. RT. IN.)

60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 55.99 58.56 61.62 64.90 68.45 72.11 75.95 79.90 83.97 88.13 92.39 96.72 101.12 105.58 110.09 114.65 119.25 123.89 128.56 133.26 137.98 142.73 147.50 152.28 157.08 161.89 166.71 171.55 176.39 181.25 186.11

-0.9954

-2.4522

-3.7125

-4.9101

-5.9455

-6.8918

-7.7139

-8.4650

-9.1227

-9.7209

-10.2475

-10.7283

-11.1541

-11.5441

-11.8911

-12.2102

-12.4955

-12.7594

-12.9966

-13.2173

-13.4168

-13.6038

-13.7740

-13.9346

-14.0817

-14.2217

-14.3508

-14.4746

-14.5897

-14.7007

-14.8048 55.04 55.29 55.96 57.10 58.65 60.59 62.86 65.44 68.28 71.36 74.64 78.10 81.71 85.47 89.36 93.35 97.44 101.61 105.86 110.18 114.56 118.98 123.46 127.97 132.52 137.10 141.71 146.35 151.01 155.68 160.38 0.4731 1.4378 2.4257 3.3563 4.1903 4.9375 5.5992 6.1920 6.7187 7.1893 7.6093 7.9875 8.3272 8.6336 8.9098 9.1601 9.3868 9.5932 9.7812 9.9534 10.1112 10.2566 10.3908 10.5153 10.6310 10.7391 10.8404 10.9357 11.0256 11.1109 11.1919

.1

.1 I.

  • Note: The 1000F/hr Heatup Curve is limited entirely by the 3/4T Location Revision 3

A-3 TABLE A2 K11 Values for 1000 F/hr Cooldown Curve (26 EFPY)

.0 Vessel Temperature 1000F/hr Cooldown Water

@ 1/4T Location for 1/4T Thermal Stress Temp.

100°F/hr Cooldown Intensity Factor (OF)

(OF)

(KSI SQ. RT. IN.)

195 221.79 16.9334 190 216.70 16.8646 185 211.61 16.7952 180 206.53 16.7262 175 201.44 16.6565 170 196.35 16.5873 165 191.27 16.5176 160 186.18 16.4483 155 181.09 16.3786 150 176.00 16.3093 145 170.92 16.2396 140 165.83 16.1704 135 160.74 16.1008 130 155.65 16.0317 125 150.56 15.9623 120 145.48 15.8933 115 140.39 15.8240 110 135.30 15.7553 105 130.22 15.6862 100 125.13 15.6177 95 120.04 15.5488 90 114.95 15.4805 85 109.87 15A120 80 104.78 15.3439 75 99.69 15.2756 70 94.61 15.2078 65 89.52 15.1398 60 84.44 15.0715 I.

Revision 3

A-4 TABLE A3 K,, Values for 1000F/hr Heatup Curve (36 FIPY)

Vessel Temperature 1/4T Thermal Vessel Temperature 314T Thermal Water

@ 1/4T Location for Stress

@ 3/4T Location for Stress Temp.

1000F/hr Heatup Intensity Factor 100°F/hr Heatup Intensity Factor (0F)

(OF)

(KSI SQ. RT. IN.)

(OF)

(KSI SQ. RT. IN.)

60 55.99

-0.9954 55.04 0.4731 65 58.56

-2.4522 55.29 1.4378 70 61.62

-3.7125 55.96 2.4257 75 64.90

-4.9101 57.10 3.3563 80 68'.45

-5.9455 58.65 4.1903 85 72.11

-6.8918 60.59 4.9375 90 75.95

-7.7139 62.86 5.5992 95 79.90

-8.4650 65.44 6.1920 100 83.97

-9.1227 68.28 6.7187 105 88.13

-9.7209 71.36 7.1893 110 92.39

-10.2475 74.64 7.6093 115 96.72

-10.7283 78.10 7.9875 120 101.12

-11.1541 81.71 8.3272 125 105.58

-11.5441 85.47 8.6336 130 110.09

-11.8911 89.36 8.9098 135 114.65

-12.2102 93.35 9.1601 140 119.25

-12A955 97.44 9.3868 145 123.89

-12.7594 101.61 9.5932 150 128.56

-12.9966 105.86 9.7812 155 133.26

-13.2173 110.18 9.9534 160 137.98

-13.4168 114.56 10.1112 165 142.73

-13.6038 118.98 10.2566 170 147.50

-13.7740 123.46 10.3908 175 152.28

-13.9346 127.97 10.5153 180 157.08

-14.0817 132.52 10.6310 185 161.89

-14.2217 137.10 10.7391 190 166.71

-14.3508 141.71 10.8404 195 171.55

-14.4746 146.35 10.9357 200 176.39

-14.5897 151.01 11.0256 205 181.25

-14.7007 155.68 11.1109 210 186.11

-14.8048 160.38 11.1919 215 190.97

-14.9059 165.09 11.26.93 Note: The 100F/hr Heatup Curve is limited entirely by the 314T Location Revision 3

A-5 TABLE A4 K1t Values for 1001F/hr Cooldown Curve (36 EFPY)

Vessel Temperature 1000F/hr Cooldown Water

@ 114T Location for 114T Thermal Stress Temp.

100°F/hr Cooldown Intensity Factor (0F)

(0F)

(KSI SQ. RT. IN.)

195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 221.79 216.70 211.61 206.53 201.44 196.35 191.27 186.18 181.09 176.00 170.92 165.83 160.74 155.65 150.56 145.48 140.39 135.30 130.22 125.13 120.04 114.95 109.87 104.78 99.69 94.61 89.52 84.44 16.9334 16.8646 16.7952 16.7262 16.6565 16.5873 16.5176 16.4483 16.3786 16.3093 16.2396 16.1704 16.1008 16.0317 15.9623 15.8933 15.8240 15.7553 15.6862 15.6177 15.5488 15.4805 15A4120 15.3439 15.2756 15.2078 15.1398 15.0715 Revision 3