ML093080010: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot change)
(StriderTol Bot change)
 
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:Attachment E Attachment Page 23 of 49 3.e.1 Plan view of Comanche Figure 3.e.1-1                                upper containment Comanche Peak upper            CAD model containment CAD ENR-2007-002743-20-02 ENR-2007-002743-20-02
{{#Wiki_filter:Attachment E Page 23 of 49 Figure 3.e.1 Plan view of Comanche Peak upper containment CAD model ENR-2007-002743-20-02 Attachment E Page 23 of 49 Figure 3.e.1 Plan view of Comanche Peak upper containment CAD model ENR-2007-002743-20-02  


Attachment E Attachment Page 24 of 49 of49 Figure 3.e.1-2 3.e. 1 Isometric Isometric view of area outside secondary shield wall ENR-2007-002743-20-02 ENR-2007-002743-20-02
Attachment E Page 24 of 49 Figure 3.e. 1 Isometric view of area outside secondary shield wall ENR-2007-002743-20-02 Attachment E Page 24 of49 Figure 3.e.1 Isometric view of area outside secondary shield wall ENR-2007-002743-20-02  


Attachment E Attachment Page 25 of 49 Figure 3.e.1 Cross-section Cross-section View 1 of containment building containment building ENR-2007-002743-20-02 ENR-2007-002743-20-02
Attachment E Page 25 of 49 Figure 3.e.1 Cross-section View 1 of containment building ENR-2007-002743-20-02 Attachment E Page 25 of 49 Figure 3.e.1 Cross-section View 1 of containment building ENR-2007-002743-20-02  


Attachment Attachment EE Page 26 of 49 Figure 3.e.1 Cross-section View 2 of containment building building ENR-2007-002743-20-02 ENR-2007-002743-20-02
Attachment E Page 26 of 49 Figure 3.e.1 Cross-section View 2 of containment building ENR-2007-002743-20-02 Attachment E Page 26 of 49 Figure 3.e.1 Cross-section View 2 of containment building ENR-2007-002743-20-02  


Attachment Attachment E Page 27 of 49 Figure 3.e.1-5 3.e.1 Plan view of Comanche           containment CAD model Comanche Peak lower containment ENR-2007-002743-20-02 ENR-2007-002743-20-02
Attachment E Page 27 of 49 Figure 3.e.1 Plan view of Comanche Peak lower containment CAD model ENR-2007-002743-20-02 Attachment E Page 27 of 49 Figure 3.e.1 Plan view of Comanche Peak lower containment CAD model ENR-2007-002743-20-02  


Attachment Attachment E Page 28 of 49 Figure 3.e.1 Southwest isometric view of Comanche Comanche Peak lower containment containment CAD CAD model ENR-2007-002743-20-02 ENR-2007-002743-20-02
Attachment E Page 28 of 49 Figure 3.e.1 Southwest isometric view of Comanche Peak lower containment CAD model ENR-2007-002743-20-02 Attachment E Page 28 of 49 Figure 3.e.1 Southwest isometric view of Comanche Peak lower containment CAD model ENR-2007-002743-20-02  


Attachment E Page 29 of49 of 49 Figure 3.e.1 Close-up of sumps (outside secondary secondary shield wall) wall)
Attachment E Page 29 of 49 Figure 3.e.1 Close-up of sumps (outside secondary shield wall)
ENR-2007-002743-20-02 ENR-2007-002743-20-02
ENR-2007-002743-20-02 Attachment E Page 29 of49 Figure 3.e.1 Close-up of sumps (outside secondary shield wall)
ENR-2007-002743-20-02  


Attachment Attachment E Page 30 of 49 LOOPS 1 & 4                                 LOOPS 2 & 3 Isometric view of grating in ReS Figure 3.e.1.1 Isometric                   RCS loop rooms rooms ENR-2007-002743-20-02 ENR-2007-002743-20-02
Attachment E Page 30 of 49 LOOPS 1 & 4 LOOPS 2 & 3 Figure 3.e.1.1 Isometric view of grating in RCS loop rooms ENR-2007-002743-20-02 Attachment E Page 30 of 49 LOOPS 1 & 4 LOOPS 2 & 3 Figure 3.e.1.1 Isometric view of grating in ReS loop rooms ENR-2007-002743-20-02  


Attachment Attachment E Page 31 of 49 Z110ft '110 ft2 2
Attachment E Page 31 of 49 Z110ft 2
534 ft 2 ft2 382 ft  2 ft2 2
534 ft2 538 ft2 382 ft2 538 ft2 Figure 3.e. 1.1 RCS loop room areas ENR-2007-002743-20-02 Attachment E Page 31 of 49 534 ft2 538 ft2 Figure 3.e.1.1 ReS loop room areas
538 ft2 ft 538 538 ft2 538   ft2 3.e. 1.1 ReS Figure 3.e.1.1-2    RCS loop room areas areas ENR-2007-002743-20-02 ENR -2007 -0027 43-20-02
'110 ft2 382 ft2 538 ft2 ENR -2007 -0027 4 3 02  


Attachment E Attachment Page 32 of 49 2
Attachment E Page 32 of 49 95ft2 86% Coverage 450 ft2 84% Coverage 465 ft2 86% Coverage 345 ft2 90% Coverage 1
95ft 95 ftl Coverage 86% Coverage ft2 450 ft2 84% Coverage 345 ft22 345 ft 90% Coverage Cove rage 1
468 ft2 87% Coverage Figure 3.e.1.1 RCS loop room grated areas ENR-2007-002743-20-02 Attachment E Page 32 of 49 450 ft2 465 ft2 86% Cove rag e Figure 3.e.1.1 ReS loop room grated areas 95 ftl 86% Coverage 345 ft2 90% Coverage 468 fll 87% Cove rag e ENR-2007-002743-20-02  
2 2                                    ft 468 fll 465 ft 465 ft2 87%
87% Cove  rag e Coverage 86%
86% Cove    rag e Coverage Figure 3.e.1.1 ReS RCS loop room grated areas areas ENR-2007-002743-20-02 ENR-2007-002743-20-02


Attachment E Page 33 of 49 330[49 bris Size           Blowdown         Washdown                   Pool Fill           ReCFD CFD                E             Fraction of Debris
Attachment E Page 33 of 49 CFD bris Size Blowdown Washdown Pool Fill ReCFD E
                                                *,    Slowdown        Washdown                                    . Recirculation CFD                                Fraction  of DebriS]
Fraction of Debris De Transport Transport Transport Recirculation Erosion at Sump Transport 0,00 Retained on 1.00 Structures Transport 0.27 0.00 Washed Down to Sediment 0.73 RCS Loop Bays 1.00 Upper 1.00 Containment i
De Debris Size            Transport         Transport               Transport           Recirculation           Erosion Erosion             at Sump Transport          Transport                                                                                at Sump Transport Transport 0,00 0.00 Retained on                                       1.00 1.00                                     0.039 0.039 Structures Structures                                     Transport Transport 0.27 0.27                                          0.00 0.00 Sediment Washed Down Down to 0.73 0.73        RCS Loop Loop Bays Bays                                 Sediment Upper        RCS                                                  1.00 1.00 Upper                                                             1.00                                     0.095 0.095 Containment Containment  i                                                   Transport 0.65 Washed Down to Washed Down to                                      0.00 Annulus                                      0.00 Sediment
Transport Washed Down to 0.00 Annulus Sediment 1.00 0.08 Transport 0.20 Washed Down to Fines Refueling Canal Sedmen
                                                                        . Annulus Sediment 1.00                                     0.012 0.012
[
                                                                                                              ~~
Sediment 1.00 0.07 Transport A
0.08                                       Transport 0.08 0.20 0.20                "    Washed Down Down to
P0.67
                                                    !                Refueling   Canal                           I        0.00 Sedmen Fines                [       .
[  
Re~ueling  Canal                                Sediment Sediment 1.00 1.00                                     0.036 0.036 0.07 Transport Transport
! ~Active Pool 00 0.039 0.095 0.012 0.036 0.010 0.27 Lower Containment 0.1 Sediment S
[                           !   ~Active A 0.67P0.67 At" C Ive P Pool 00 00 J
0.18 Sump Strainers 0.15 Inactive Cavities LDFG Debris Generation 0.10 Retained on Structures 0.01 0.000 Erodes to Fines 0.99 Remains~intact 0.59 Upper Containment 1.00 0,080 0.17 Transport 0R10 0.000 Washed Down to 0.00 Erodes to Fines RCS Loop Bays Sediment i0n90 1 0 Remains intact 037 0.65 1
I        0.00 0.1    .          Sediment I    0.27 0.27                            I    S    0.18 0.18                                                          0.010 0.010 Lower Lower                                Sump Strainers Strainers Containment Containment                        II        0.15 0.15 Inactive Inactive Cavities Cavities                                0.01               0.000 Erodes to Fines Erodes      Fines LDFG LDFG                                            0.10 0.10 Debris Debris Generation Generation Retained Retained on Structures Structures I RemainsJntact 0.99 Remains~intact 1.00                                     0.080 0,080 0.17                                 I    Transport Transport                0.10 0R10               0.000 0.000 Washed Down Down to                                   0.00           Erodes Erodes to Fines Fines RCS RCS Loop BaysBays I        0.00          I 0.59                                                          Sediment Upper                                                                    1 0   I      0.90i0n90 Remains intact           037 Remains intact Containment                                                          1.00                                      0.307 0.65                                 1     Transport               0.10               0,000 0.65 Washed Down to]                             I    Transport 0.00=
Transport 0.10 0,000 Washed Down to]
0.10 Erodes to Fines 0.000 Washed Down to                                                       Erodes to Fines Annulus Annulus I        0.00 Sediment         I      0,90 Sediment I      0.90 Remains intact Remains    intact 0.80                                                                          1.00 100                                      00.038 038 Small                                                                           1 00 .
0.00=
Transport Pieces Pieces Washed 0.08 0.08                                  I    Transport    .           0.10 0.10              0.000 0.000 Washed Down to I                    j  Erodes to Fines Erodes      Fines Figure 3.e.1.1                                                  Refueling Refueling Canal 0.00 0.00 Sediment I      0.90 0.90 Remains intact Remains    intact Combined    fiberglass Combined fiberglass                                                                                                      1.00 1.00                                     0.279 0.279 Transport logic trees with                                                                                    0.85 Active  Pool Active Pool i                        Erodes 0.10 Erodes to Fines Fines 0.000 I         0.00 0.00        I existing transport                                      0.41                          .
Erodes to Fines Annulus Sediment 0,90 Remains intact 0.80 Small Pieces 1.00 0 038 1 00 Figure 3.e.1.1 Combined fiberglass logic trees with existing transport fractions 0.08 Washed Down to Refueling Canal Transport 0.10 0.00 Erodes to Fines Sediment 0.90 Remains intact 0.000 0.279 1.00 Transport 0.85 Active Pool 0.00 Sediment 0.41 0.00 Lower 1 Sump Strainers Containment Inactive Pool 0.10 0.000 Erodes to Fines 0.90 Remains intact 0,000 Total = 0.896 ENR-2007-002743-20-02 Attachment E Page 330[49 Figure 3.e.1.1-4 Combined fiberglass logic trees with existing transport fractions Debris Size 0.20 Fines J
I          0.00 Sediment Sediment                0.90 Remains intact Remains 0,000 0.000
LDFG Debris Generation 0.80 Small Pieces I
                                                                                        .1 fractions fractions                                              Lower Containment Containment 1 Sump Strainers Strainers 0.15Pool                                                  = 0.896 Total =
Slowdown Transport 0.73 Upper Containment 0.27 Lower Containment 0.59 Upper Containment 0.41 Lower Containment Washdown Transport 0.00 Retained on Structures 0.27 Washed Down to RCS Loop Bays 0.65 Washed Down to  
Inactive            -
. Annulus 0.08 Washed Down to Re~ueling Canal 0.10 Retained on Structures 0.17 Washed Down to RCS Loop Bays 0.65 Washed Down to Annulus 0.08 Washed Down to Refueling Canal CFD Fraction of DebriS]
                                                                                              . Inactive Pool ENR-2007-002743-20-02 ENR-2007-002743-20-02
Recirculation Erosion Transport at Sump 1.00 0.039 Transport 0.00 Sediment 1.00 0.095 Transport 0.00 Sediment 1.00 0.012
~~
Transport I
0.00 Sediment 1.00 0.036 0.67 Transport At" P
I C Ive 00 I
0.00 0.18 Sediment 0.010 I
Sump Strainers 0.15 I
Inactive Cavities 0.01 0.000 I
Erodes to Fines 0.99 RemainsJntact 1.00 0.080 I
Transport 0.10 0.000 I
0.00 I Erodes to Fines Sediment I
0.90 Remains intact 1.00 0.307 I
Transport 0.10 0.000 I
0.00 I Erodes to Fines Sediment I
0.90 Remains intact 100 0.038 I
Transport 0.10 0.000 I
0.00 j Erodes to Fines Sediment I
0.90 Remains intact 1.00 0.279 i
Transport 0.85 0.10 0.000 I
Active Pool I I
Erodes to Fines 0.00 Sediment 0.90 Remains intact
.1 0.00 0.000 Sump Strainers 0.15 Total = 0.896  
. Inactive Pool ENR-2007-002743-20-02  


Attachment E Attachment  E Page 34 of of49 49 Debri BlowdowneBowdownWashdown Washdown               PoFill Pool  Fill CFD CFD                          i Fraction Fraction of of Debris Debris Debris Size Transport           Transport           Transport Transport D  Recirculation Transport Transport Erosion i :atat Sump Sump 0.30 Retained on Retained                                    1.00 1.00                                  0.028 Structures Structures                               Transport I Washed 0.19 0.19 Washed Down to to Sdm0.00 0.73                                                    Sediment 1.00 Loop Bays RCS Loop Upper          (0.27'0.70)
Attachment E Page 34 of 49 Debri eBowdown Washdown PoFill CFD Fraction of Debris D
(0.27-0.70)                                 1.00 1.00                                 0.067 Containment Containment                                                  Transport 0.46 0.46                            I Washed Down Down to Annulus                            I      0.00 0.00 Sediment Sediment 1.00
Recirculation Erosion
                                                                    !I  (0.65-0.70)
:at Transport Transport Transport Transport Sump 0.20 Fines 0.73 Upper Containment 0.27 0.30 Retained on 1.00 Structures Transport 0.19 Washed Down to Sdm RCS Loop Bays 1.00 (0.27-0.70) 1.00 0.46 Transport Washed Down to 0.00 Annulus Sediment (0.65-0.70) 1.00 0.06 Transport Washed Down to 0.00 Refueling Canal Sediment (0.08-0.70) 1.00 0.067 0.009 0.028 0,036 0.67 Active Pool 0.18 Transport 0.00 Sediment LDFG Debris Generation Figure 3.e.1.1 Combined fiberglass Lower Containment 0.59 Upper Containment 0.41 Sump Strainers 0.15 Inactive Cavities 0.010 0.00 0.000 SErodes to Fines 0.30 Retained on Structures 1.00 Remains intact 1.00 0.057 0.12 Transport 0.10 0.000 Washed Down to 0.00 Erodes to Fines RCS Loop Bays Sediment (0.17-0.70) 0.90 Remains intact 1.00 0.217 0.46 Transport 0.10 0.000 Washed Down to 0.00 Erodes to Fines Annulus Sediment (0.65-0.70) 0.90 Remains intact 0.80 Small Pieces 1.00 0.028 0.06 Transport 0.10 0.000 Washed Down to 0.00 1Erodes to Fines Refueling Canal Sediment (0.08-0.70) 0.90 Remains intact 1.00 0,279 logic trees with alternate BWROG washdown transport fractions Transport 0.85 Active Pool 0.00 Sediment 0.00 0.10 0.000 Erodes to Fines 0.90 Remains intact 0.000 Lower Containment Sump Strainers 0.15 Inactive Pool Total = 0.731 ENR-2007-002743-20-02 Attachment E Page 34 of49 Figure 3.e.1.1-6 Combined fiberglass logic trees with alternate BWROG washdown transport fractions Debris Size 0.20 Fines LDFG Debris Generation O.SO Small I
(0.65"0.70)                                  1.00                                 0.009 0.06 0.06                                 Transport I
Pieces I
0.20 0.20                      Washed Down to                                 0.00 Fines Fines                      Refueling Canal                       I      0.00 Sediment Sediment (0.OS"0.70)
Blowdown Transport 0.73 Upper Containment 0.27 Lower Containment 0.59 Upper Containment 0.41 Lower Containment Washdown Transport 0.30 Retained on Structures I
(0.08-0.70) 1.00 1.00                                  0,036 0.67       [    Transport Active Pool       . 0.00 Sediment 0.27                          I        0.1S 0.18                                                      0.010 0.010 Lower Lower                              Sump Strainers Strainers Containment I        0.15 0.15 Inactive Cavities Cavities                          0.00                0.000 0.000 SErodes to Fines Erodes to Fines LDFG LDFG Debris Debris 0.30 0.30 Retained on I      1.00 1.00 Generation Generation                                      Structures Structures                                              Remains intact Remains 1.00 1.00                                 0.057 Transport 0.12 0.12                             I    Transport           0.10               0.000 0.000 Washed Down Washed    Down to                             0.00         Erodes to Fines Fines RCS Loop Loop Bays                       I      0.00 Sediment I
0.19 Washed Down to I I RCS Loop Bays (0.27'0.70) 0.46 Washed Down to Annulus (0.65"0.70) 0.06 Washed Down to Refueling Canal (0.OS"0.70) 0.30 Retained on Structures 0.12 Washed Down to RCS Loop Bays (0.17'0.70) 0.46 Washed Down to Annulus (0.65"0.70) 0.06 Washed Down to Refuelin Canal g
0.59 0.59                                                    Sediment Upper Upper          (0.17'0.70)
(0.OS"0.70)
(0.17-0.70)                                           i      0.90 Remains intact intact Containment                                                    1.00 1.00                                 0.217 0.217 Transport 0.46                                 Transport           0.10               0.000 0.000 Washed Washed Down to                                 0.00         Erodes to Fines Fines Annulus                           I      0.00 Sediment Sediment             0.90
I I
                                                    -                    (0.65"0.70)
Pool Fill Transport 0.67 Active Pool 0.1S Sump Strainers 0.15 Inactive Cavities 0.S5 Active Pool 0.00 Sump Strainers 0.15 Inactive Pool I
(0.65-0.70)
I I
Remains intact intact O.SO 0.80                                                                     1.00 1.00                                 0.028 Small                            0.06                                 Transport           0.10               0.000 Pieces                            0.06                            I    Transport           0.10               0.000 Figure 3.e.1.1                               I I
CFD Recirculation Transport 1.00 Transport 0.00 Sediment 1.00 Transport 0.00 Sediment 1.00 Transport 0.00 Sediment 1.00
Washed Down Washed Refueling Refuelin Down to to g Canal                       I 0.00 0.00 Sediment 1Erodes Erodes to Fines to Fines Sediment (0.OS"0.70)
[
(0.08-0.70)                                                   0.90 Combined fiberglass Combined      fiberglass                                                                                            1.00 1.00 Remains Remains intact 0.279 0,279 logic trees with                                                                                0.S5 0.85 Active Pool Active Transport Transport 0.10 Erodes to Fines Fines 0.000 0.00 alternate BWROG alternate    BWROG                                                                                                  0.00 Sediment            0.90 0.90 Remains Remains intact intact 0.000 washdown washdown transport                                      0.41 Lower 0.00 0.00 Sump Strainers Strainers 0.000 Containment Total = 0.731 0.731 fractions fractions                                                                                        0.15 0.15 Inactive Pool Inactive ENR-2007-002743-20-02 ENR-2007-002743-20-02
Transport 0.00 Sediment I
1.00 I
Transport I
0.00 I
Sediment i
1.00 I
Transport 0.00 Sediment 1.00 I
Transport I
0.00 Sediment 1.00 Transport 0.00 Sediment Erosion i Fraction of Debris i
at Sump 0.028 0.067 0.009 0,036 0.010 0.00 0.000 Erodes to Fines 1.00 Remains intact 0.057 0.10 0.000 Erodes to Fines 0.90 Remains intact 0.217 0.10 0.000 Erodes to Fines 0.90 Remains intact 0.028 0.10 0.000 Erodes to Fines 0.90 Remains intact 0.279 0.10 0.000 Erodes to Fines 0.90 Remains intact 0.000 Total = 0.731 ENR-2007-002743-20-02  


Attachment E Page 35 of 49 for Initial distribution for small and large piece piece debris not blown to to containment upper containment S,932 tr 5,932 fte Figure 3.e. 1.1 Distribution of small and large 3.e.1.1-7                                large piece debris not blown to upper containment containment ENR-2007-002743-20-02 ENR-2007-002743-20-02
Attachment E Page 35 of 49 Initial distribution for small and large piece debris not blown to upper containment 5,932 fte Figure 3.e. 1.1 Distribution of small and large piece debris not blown to upper containment ENR-2007-002743-20-02 Attachment E Page 35 of 49 Initial distribution for small and large piece debris not blown to upper containment S,932 tr Figure 3.e.1.1 Distribution of small and large piece debris not blown to upper containment ENR-2007-002743-20-02  


Attachment E Page 36 of 49 Initial distribution distribution for small and large smnal        large piece debris not blown to debris              to upper containment upper  containment 2
Attachment E Page 36 of 49 Initial distribution for smnal and large piece debris not blown to upper containment 3,644 "t2 Figure 3.e.1.1 Distribution of small and large piece debris not blown to upper containment ENR-2007-002743-20-02 Attachment E Page 36 of 49 Initial distribution for small and large piece debris not blown to upper containment 3,644 ft2 Figure 3.e.1.1 Distribution of small and large piece debris not blown to upper containment ENR-2007-002743-20-02  
3,644 ft2 "t
Figure 3.e.1.1-8 3.e.1.1 Distribution of small and large large piece debris not blown to upper containment containment ENR-2007-002743-20-02 ENR-2007-002743-20-02


Attachment Attachment E Page 37 of49 of 49 Inltl aI dlstrlbutl Initial             on for distribution for washed down debris washed     down Initial
Attachment E Page 37 of 49 Initial distribution for debns washed down refueling canal drains Initial distribution for debris washed down outside secondary shield wall 6,367 t Initial distribution for debris washed down Inside RC$ loop bays 2,311 W Figure 3.e. 1.1 Distribution of debris washed down from upper containment ENR-2007-002743-20-02 Attachment E Page 37 of49
                'ridal                                                  outside secondary distribution for                                                  shield 6,367 wall shieldwaJl t
'ridal distribution for debris washed down refueling canal drains Inltl aI dlstrlbutl on for debris washed down outside secondary shieldwaJl 6,367 ft2 Initial distribution fOf" debris washed down Inside ReS loop bays 2,311 ft2 Figure 3.e.1.1 Distribution of debris washed down from upper containment ENR -2007 -0027 4 3 02  
debns washed debris  washed                                                      6,367 ft2 down refueling refueling canal drains drains Initial distribution distribution fOf" for debris washed down down RC$ loop bays Inside ReS          bays 2,311 Wft2 Figure 3.e. 1.1 Distribution 3.e.1.1-9    Distribution of debris washed down from upper containment containment ENR-2007-002743-20-02 ENR -2007 -0027 43-20-02


Attachment Attachment E Page 38 of 49 of49 Figure 3.e.1.2-1 Northwest isometric 3.e.1.2-1 Northwest isometric view lower containment CAD model ENR-2007-002743-20-02 ENR-2007 -0027 43-20-02
Attachment E Page 38 of 49 Figure 3.e.1.2-1 Northwest isometric view lower containment CAD model ENR-2007-002743-20-02 Attachment E Page 38 of49 Figure 3.e.1.2-1 Northwest isometric view lower containment CAD model ENR -2007 -0027 4 3-20-02  


Attachment Attachment E Page 39 of 49 of49 Case 2: Loop 2 Break Case 3 : Loop 3                                ~       Case 6:   MSLB in 6 : MSLB    In Break                                            Cooling Unit Area
Attachment E Page 39 of 49 Case 2: Loop 2 Break
                                                                              ,,Coolina Case 8:
~
Letdown Line Break Case 4b: Loop 4 Cold Leg Break                                                           r Case 1lb: b: Loop 1I I
Case 6: MSLB In
                                                                                      . Cold Leg Break Case 4a:
,,Coolina Unit Area Case 4b: Loop 4 Cold Leg Break Case 4a: Loop 4 Crossover Leg g Break Case 4c: Loop 4 Hot Leg Break Case 4d: Loop 4 Surge Line Break Case 8:
4a: Loop 4' 4 Crossover Leg Crossover  Legg Break Case 4c 4c:: Loop Loop 4                                               Case 1la: a: Loop 1I Hot Leg Break                                                 Crossover Leg  Leg Break 4d:: Loop 4 Case 4d Surge Line Break                                     Case 1 c: Loop 1 Case9: FWLB                              Hot Leg Break in Loop4 4          1        Case 77:: SG Case 5:
Letdown Line Break r Case lb: Loop I Cold Leg Break Case la: Loop I Crossover Leg Break 4
5 : MSLB in Blowdown Line Blowdown    Line Penetration Penetration Area    Break Break Figure 3.e.1.2-2 3.e.1.2-2 Postulated Break Locations Locations ENR-2007-002743-20-02 ENR-2007-002743-20-02
1 Case 7: SG Case 5: MSLB in Blowdown Line Penetration Area Break Figure 3.e.1.2-2 Postulated Break Locations ENR-2007-002743-20-02 Attachment E Page 39 of49 Case 3: Loop 3 Break Case 4b: Loop 4 Cold Leg Break Case 4a: Loop 4' Crossover Leg Break Case 4c: Loop 4 Hot Leg Break Case 4d: Loop 4 Surge Line Break Case9: FWLB in Loop4 Case 5: MSLB in Penetration Area Case 2: Loop 2 Break Case 6: MSLB in Cooling Unit Area Case 8:
Letdown Line Break Case 1 b: Loop 1 I.
Cold Leg Break Case 1 a: Loop 1 Crossover Leg Break Case 1 c: Loop 1 Hot Leg Break Case 7: SG Blowdown Line Break Figure 3.e.1.2-2 Postulated Break Locations ENR-2007-002743-20-02  


Attachment Attachment E Page 40 of49 of 49 Modeled Modeled Perimeter Region 2 Spray ralnage Case2: Modeled Break Location Modeled Perimeter     A                                                           Modeled Region 1 Spray "
Attachment E Page 40 of 49 Modeled Perimeter Modeled Equipment Drain Spray Drainage Modeled East G"
Drainage /;~
/
Modeled Equipment Modeled    Equipment                                                                                  Modeled Perimeter Region 3 Spray Drainage Drain Spray Drainage Drainage Modeled Modeled East 6"G" / /
Refueling Canal Drai 2 $..
Orai /,2 $..
//fi Modeled 4" Refueling Canal Drains Modeled WestV6" Refueling Canal Drair4\\
Refueling Canal Drai                                                                            "'='--\'r Modeled SE Stair Spray Drainage
Modeled Floor Drain Spray Drainage Case 4: Modeled Break \\1\\
                                  //
Location Modeed umpModeled Sump Modeled Sm ri Train B Train A Modeled Region D Modeled Hydrogen Spray Flow on Sump VentFlow on Sump Train A Train B Figure 3.e.1.2-3 Diagram of significant features modeled ENR-2007-002743-20-02 Attachment E Page 40 of49 Modeled Perimeter A Region 1 Spray Drainage /;~
fi Modeled 4" Refueling ll-J.--i----1=~:u Modeled Canal Drains Drains Modeled WestV6" Modeled   West6"                                                                               I;---f--H_' Modeled H2 Vent Refueling        Drair4\                                                                                        Spray Flow Refueling Canal Orai Modeled        Drain Modeled Floor Drain Spray Drainage Drainage Modeled Region 0 Spray Flow Case 4: Modeled Break Break \1\
Modeled Equipment Drain Spray Drainage Modeled East 6"  
Location Modeled Sm                                                        ri Sump Modeled SumpModeed              umpModeled                    Modeled  Sump Train B                                                      Train Train AA Modeled Region D Modeled Region 0 Modeled Hydrogen Hydrogen                Spray Flow Spray Flow on on Sump Sum p Vent Flow on Sump VentFlow                              Train A Train A Train B Figure 3.e.1.2-3 3.e.1.2-3 Diagram of significant        significant features modeled ENR-2007-002743-20-02 ENR-2007-002743-20-02
/
Refueling Canal Orai /,
Modeled 4" Refueling ll-J.--i----1=~:u Canal Drains Modeled West6" Refueling Canal Orai Modeled Floor Drain Spray Drainage Case 4: Modeled Break Location Modeled Sump Train B Modeled Hydrogen Vent Flow on Sump Train B Modeled Perimeter Region 2 Spray ralnage Case2: Modeled Break Location Modeled Modeled Perimeter Region 3 Spray Drainage
"'='--\\'r Modeled SE Stair Spray Drainage I;---f--H_' Modeled H2 Vent Spray Flow Modeled Region 0 Spray Flow Modeled Sump Train A Modeled Region 0 Spray Flow on Sum p Train A Figure 3.e.1.2-3 Diagram of significant features modeled ENR-2007-002743-20-02  


Attachment E Page 41 of 49 levels Figure 3.e.1.2-4 Illustration of distinct floor levels ENR-2007-002743-20-02 ENR-2007-002743-20-02
Attachment E Page 41 of 49 Figure 3.e.1.2-4 Illustration of distinct floor levels ENR-2007-002743-20-02 Attachment E Page 41 of 49 Figure 3.e.1.2-4 Illustration of distinct floor levels ENR-2007-002743-20-02  


Attachment Attachment E Page 42 of 49 of49 Refueling cavity drains drains                                                    Equipment hatch
Attachment E Page 42 of 49 Refueling cavity drains
                                                              ,, Equipment L       drain area area Inactive sump Inactive   sump Figure 3.e.1.2-5 Streamlines Streamlines showing water origination origination areas for each sump (Loop 4 LBLOCA, two trains)
,, Equipment hatch L
ENR-2007-002743-20-02 ENR-2007-002743-20-02
drain area Inactive sump Figure 3.e.1.2-5 Streamlines showing water origination areas for each sump (Loop 4 LBLOCA, two trains)
ENR-2007-002743-20-02 Attachment E Page 42 of49 Refueling cavity drains Equipment hatch drain area Figure 3.e.1.2-5 Streamlines showing water origination areas for each sump (Loop 4 LBLOCA, two trains)
Inactive sump ENR-2007-002743-20-02  


Attachment E 43 of 49 Page 430[49 Velocity (ft/s)
Attachment E Page 43 of 49 Velocity (ift/s)
(ift/s)
*1.00 0.75 0.50 0.25 LOJ00 Figure 3.e.1.2-6 Vectors showing pool flow direction (Loop 4 LBLOCA Single Train Sump A)
                                                                              *1.00 1.00 0 .75 0.75 0 .50 0.50 0.25 0.25 LOJ00 0 .00 UOII_Vi!ctors_over_combined bmp 200i* 10*~ 5 CPSES C as~ 4*EF Figure 3.e.1.2-6 Vectors showing pool flow direction direction (Loop 4 LBLOCA LBLOCA Single Train Sump A)
ENR-2007-002743-20-02 Attachment E Page 430[49 UOII_Vi!ctors_over_combined bmp 200i* 10*~ 5 CPSES C as~ 4*EF Velocity (ft/s) 1.00 0.75 0.50 0.25 0.00 Figure 3.e.1.2-6 Vectors showing pool flow direction (Loop 4 LBLOCA Single Train Sump A)
ENR-2007-002743-20-02 ENR-2007-002743-20-02
ENR-2007-002743-20-02  


Attachment Attachment E Page 44 of49 of 49 unit_vectors_over_combined.bmp 2007-1 O-::~3 CPSES Case 4-EF-6 Figure Figure 3.e.1.2-7 3.e.1.2-7 Loop 4 LBLOCA Single Train Sump B B
Attachment E Page 44 of 49 Figure 3.e.1.2-7 Loop 4 LBLOCA Single Train Sump B ENR-2007-002743-20-02 Attachment E Page 44 of49 unit_vectors_over_combined.bmp 2007-1 O-::~3 CPSES Case 4-EF-6 Figure 3.e.1.2-7 Loop 4 LBLOCA Single Train Sump B ENR-2007-002743-20-02  
ENR-2007-002743-20-02 ENR-2007-002743-20-02


Attachment Attachment E Page 45 of 49 uniCvectors_over_combined .b mp 2007-10-25 CPSES Ca se 4-EF
Attachment E Page 45 of 49
                                                        /
/
Figure Figure 3.e.1.2-8 Loop 4 LBLOCA Single Train Sump A A
Figure 3.e.1.2-8 Loop 4 LBLOCA Single Train Sump A ENR-2007-002743-20-02 Attachment E Page 45 of 49 uniCvectors_over_combined.bmp 2007-10-25 CPSES Case 4-EF Figure 3.e.1.2-8 Loop 4 LBLOCA Single Train Sump A ENR-2007-002743-20-02  
ENR-2007-002743-20-02 ENR-2007-002743-20-02


Attachment EE Page 46 of49 of 49 North Approach 1 to 30 Figure 3.f-1 Cutting Planes for Test Flume Flume Modeling Modeling ENR-2007-002743-20-02 ENR-2007-002743-20-02
Attachment E Page 46 of 49 Figure 3.f-1 Cutting Planes for Test Flume Modeling ENR-2007-002743-20-02 Attachment E Page 46 of49 North Approach 1 to 30 Figure 3.f-1 Cutting Planes for Test Flume Modeling ENR-2007-002743-20-02  


Attachment E Page 47 of 49
Attachment E Page 47 of 49 Figure 3.f-2 Cutting Planes for Test Flume Modeling ENR-2007-002743-20-02 Attachment E Page 47 of 49 Sump A South pproach Planes 1 to 1
Plane 21
(
(
Sump A South pproach Planes 1 to 1
Figure 3.f-2 Cutting Planes for Test Flume Modeling ENR-2007-002743-20-02  
Plane 21 Figure 3.f-2 3.f-2 Cutting Planes for Test Flume Modeling Modeling ENR-2007-002743-20-02 ENR-2007-002743-20-02


Attachment E Attachment Page 48 of 49 3.f-3 Prepared Figure 3.f-3 Prepared Large LDFG (Nukon) - Dry ENR-2007-002743-20-02 ENR-2007-002743-20-02
Attachment E Page 48 of 49 Figure 3.f-3 Prepared Large LDFG (Nukon) - Dry ENR-2007-002743-20-02 Attachment E Page 48 of 49 Figure 3.f-3 Prepared Large LDFG (Nukon) - Dry ENR-2007-002743-20-02  


r Attachment Attachment E Page 49 of 49 L
Attachment E Page 49 of 49r L
3.f-4 Prepared Large LDFG (Nukon)
Figure 3.f-4 Prepared Large LDFG (Nukon) - Wet ENIR-2007-002743-20-02 Attachment E Page 49 of 49 Figure 3.f-4 Prepared Large LDFG (Nukon) - Wet ENR-2007-002743-20-02  
Figure 3.f-4                     (Nukon) - Wet ENIR-2007-002743-20-02 ENR-2007-002743-20-02


Attachment F Page 1 of 24
Attachment F Page 1 of 24 NRC Public Meeting 7/9/2009 7-
            ****--**-----..1
/
      \.                 !
L,
i i*                                                NRC Public Meeting              Meeting I                           ,
/*J; ENR-2007-002743-20-02
i                         I                                           7/9/2009 7/9/2009 IL  _                      I 7-
****--**-----.. 1  
      /
\\.
L, J
i*
I
i I
              /*J; ALDEN*'*                                             .
i I
              ."    Solving flow protllerris since 1894 -. . - _.. _ .. _ - . __ -  _ _ .' _ - -.- ..
I I
ENR-2007-002743-20-02 ENR-2007-002743-20-02
L J
I NRC Public Meeting 7/9/2009 ALDEN*'*
Solving flow protllerris since 1894 ENR-2007-002743-20-02  


Attachment F Page 2 of 24 Recla~p
Attachment F Page 2 of 24 Recla~p
* Turbulence
'0 of~i * -- 1
                                        "   Turbulence and flow are related                     related
" Turbulence and flow are related Literature treats suspension in terms of shear velocity Literature would indicate that at most pieces smaller than 1"x1" could transport. All others cannot.
                                              - Literature treats suspension in terms of shear Literature                                                    shear velocity
Experimental values for TKE required for suspension are much higher-than analytical values.
                                    '0
" TKE comparison between flume and containment Containment point sources of turbulence lead to higher levels of TKE in containment vs. flume Containment TKE levels were reported on the flume approach, not the prototypical approach path.
                                              -  Literature-would Literature              indicate that at most pieces would indicate                                  pieces smaller than 1"x1"  1"x1" could transport. All could                  All others cannot.
Turbulent kinetic energy levels are low relative to what can reasonably expected to affect transport.
r-----             "-~-----l Experimental values for TKE required
0 Random velocity fluctuations are small relative to mean.
                                              - Experimental                                                    suspension are much required for suspension I
ENR-2007-002743-20-02 r-----
: j.        ,"                          I t
I
_                                      higher-than J
: j.
analytical values.
"-~-----l I
higher-than analytical
t
!                  of~i * -- 1'."          TKE     comparison between TKE comparison                      between flume and containment      containment i
* Turbulence and flow are related Literature treats suspension in terms of shear velocity Literature-would indicate that at most pieces smaller than 1 "x1" could transport. All others cannot.
I Containment point sources
Experimental values for TKE required for suspension are much higher-than analytical values.
                                              - Containment                        sources of turbulence                      higher turbulence lead to higher
J
            ~/..-'~
'. TKE comparison between flume and containment i
:/1'               .. i levels of TKE in containment  containment vs.flume    vs. flume t       I' ("\   .. ,'      \.
I  
        . /
~/..-'~
                                              - Containment Containment TKE levels            levelS were reported on the flume        flume approach, not the prototypical    prototypical approach approach path.
:/1' i
Turbulent kinetic energy
t I' ("\\
                                              - Turbulent                      energy levels are low relative to what can expected to affect transport.
\\.  
reasonably expected reasonably
. /
                                                    *0 Random Random velocity fluctuations are small relative to mean.
Containment point sources of turbulence lead to higher levels of TKE in containment vs.flume Containment TKE levelS were reported on the flume approach, not the prototypical approach path.
ALDEN                                 . -  .      -,                -  - -  -  -  ---~ ':'."   "-  -                    , , , , ' ,
Turbulent kinetic energy levels are low relative to what can reasonably expected to affect transport.
_ " -Solvin!fflow problems since 1894' -- . -~ .. -" -       _ - _ =- >       .-.,          __ .     "," -. ,"        -
* Random velocity fluctuations are small relative to mean.
ENR-2007-002743-20-02 ENR-2007-002743-20-02
ALDEN  
---~ ':'."
_ " -Solvin!fflow problems since 1894'  
--. -~.. -" -
_ - _ =- >.-.,
ENR-2007-002743-20-02  


Attachment F Page 3 of 24 Containment Turbulent Kinetic Energy Containment Operation (A)
Attachment F Page 3 of 24 Containment Turbulent Kinetic Energy One Train Operation (A) 3 ft Above Floor Start of Approach FLUME APPROACH #2 TKE (ft2/s 2X 0.050 0.040 0.030 0.020 i0.010 0.000 Start of Approach FLUME APPROACH #1 End of Approach 44 ft diameter circles centered on array of strainers.
One Train Operation Above Floor 3 ft Above   Floor Start of Approach Start    Approach Start of Approach FLUME FLUME                                                          FLUME FLUME APPROACH #2                                                    APPROACH #1 2  2 TKE (ft (ft2/s2
ENR-2007-002743-20-02 ALDEN 3 ft Above Floor Start of Approach FLUME APPROACH #2 TKE (ft2/s2 0.050 0.040 0.030 0.020 0.010 0.000 Solving flow problems since 1894 Containment Turbulent Kinetic Energy One Train Operation (A)
                                    /s X 0.050 0.050                                                  End of Approach Approach 00.040
End of Approach Start of Approach FLUME APPROACH #1 End of Approach  
                            .040 00.030
~ 44 ft diameter circles  
                            .030 0.020 i0.010 0.010 0.000 0.000                  End of Approach                     ~   44 ft diameter diameter circles circles
~
                                                                                ~ centered on array array of strainers.
centered on array of strainers.
ALDEN Solving flow problems since 1894 ENR-2007-002743-20-02 ENR-2007 -002743 02
ENR -2007 -002 743 02  


Attachment F Page 4 of4 Prototypical single strainer approach     approac
Attachment F Page 4 of4 Prototypical single strainer approach 1 Look at four approaches to central strainers ENR-2007-002743-20-02 Prototypical single strainer approac
              *1 Look at four approaches                        strainers approaches to central strainers ALDEN Solving flow problems since 1894 ENR-2007-002743-20-02 ENR-2007-002743-20-02
* Look at four approaches to central strainers ALDEN Solving flow problems since 1894 ENR-2007-002743-20-02  


Attachment F Page 5 of 24 Turbulence Approach Turbulence                                    Approach TKE
Attachment F Page 5 of 24 Turbulence Approach TKE Typical approach turbulence velocity is slightly lower 0.16 x
* Typical approach turbulence                    turbulence velocity is slightly lower                                 lower 00.16
cc
                                              .16 xx 0.14
.0 0.14 0.12 0.1 0.08 0.06 E Single Train Sump A
                                                                      *E Single Single Train Sump A 0.12
* Single Train Sump A X Flume (effective)
                                                                      ** Single Train Sump A VI
*_._.... - r -
                                    ~                                  X Flume (effective)
*-.W x
(effective) a:      0.1 0.1 cc
U Ex.
                                    '0 Qj 0
-W 0.04 X
                                                      * ****_._* . . ..*-.W- r
X xxxxxxxxxxxxxxx 0.02 0i 0
                                                                                  -       ..... . .. . .            X x
5 10 15 20 25 1-ft increments back from Strainer Module / Test Strainer ENR-2007-002743-20-02 Turbulence Approach TKE
                                      ... 00.08
* Typical approach turbulence velocity is slightly lower 0.16 x
                                      >      .08
0.14 0.12
                                    .0 "3
* Single Train Sump A
                                    .c
* Single Train Sump A VI
                                      ~
~
c:
a:
CII
0.1 X Flume (effective)
                                      ~
'0 0
::I 0.06 II    -
Qj 0.08 c:
                                                        -W * **                                      . U
CII "3  
                                                                                                            .~
.c 0.06
                                                                                                              *Ex.x
~
* 0.04                                                         XXX XXxXXXXXXXXXXXXX xxxxxxxxxxxxxxx 0.02 o0i o0          5                 10                 15 15          20 20          25 25 1-ft increments back from Strainer Module / Test Strainer Strainer ALDEN Solving flow problems since 1894 ENR-2007-002743-20-02 ENR-2007-002743 02
::I
~
X
* x
* II
.~....
0.04 X
XXxXXXXXXXXXXXXX 0.02 o
o 5
10 15 20 25 1-ft increments back from Strainer Module / Test Strainer ALDEN Solving flow problems since 1894 ENR-2007-002743-20-02  


Attachment F Page 6 of 24 Typical ApproachApproach Velocity
Attachment F Page 6 of 24 Typical Approach Velocity
* Flume approach      approach is VERY conservative    conservative relative to containment containment 0.7 0.7 0.6 0.6 1111111100
* Flume approach is VERY conservative relative to containment IA 0
                          -   u cu 0.5 0.5 ~o::-----I---l --          Flume "rnI n Approach rnnr Velocity p~ fr r +II~r I
0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
en IA
1111111100 I
                          ........ 0.4 0.4 1 - -- - - - --1  - S-Single Single Train Sump AApproach A Approach Avg
"rnI n
                          -*u....
rnnr p~ fr r
                          ~
+II~r S-Single Train Sump A Approach Avg
                                                                              -M 0
-M
0.3 0.3                             ,w        i
,w i
                          .2 cu
0 5
                          > 0.2  0.2 0.1 0.1 0
10 15 20 25 Distance (ft)
0         5           10 10                15 15              20         25 25 Distance (ft)
ENR-2007-002743-20-02 ALDEN Typical Approach Velocity
Distance ALDEN Solving flow problems since 1894 ENR-2007-002743-20-02 ENR-2007-002743-20-02
* Flume approach is VERY conservative relative to containment 0.7 0.6 0.5 ~o::-----I---l -
Flume Approach Velocity u
cu en  
........ 0.4  
~
1------- Single Train Sump AApproach Avg  
.... *u
.2 0.3 cu > 0.2 0.1 0
0 5
10 15 20 25 Distance (ft)
Solving flow problems since 1894 ENR-2007-002743-20-02  


Attachment F Page 7 of 24 Conclusiob.ns
Attachment F Page 7 of 24 Conclusiob.ns C
                                      ** Flume turbulence turbulence is lower   lower C
* Flume turbulence is lower Importance is very questionable Magnitudes of random velocity fluctuations are low relative to mean
                            ,;PC           Importance is very questionable
* The key to transport is BULK VELOCITY Flume velocity is DOUBLE relative to typical containment approach velocity for singletrain sump A operation.
                                          - Importance              questionable Magnitudes of random velocity fluctuations are low relative to mean
-i-7 ALDE ENR-2007-002743 02
                                          - Magnitudes I i .*
* Flume turbulence is lower  
iL. _ . ___________ ...... _ _ _ .JI The key to transport is BULK VELOCITY The 7
,;PC Importance is very questionable Magnitudes of random velocity fluctuations are low relative to mean  
            -i-
, Ii.
                                          - Flume velocity is DOUBLE relative to typical containment containment r    "
The key to transport is BULK VELOCITY i
approach velocity for singl~/
I L.  
approach                    singletrain train sump A operation.
. ___________...... ___.J r
operation.
Flume velocity is DOUBLE relative to typical containment approach velocity for singl~/ train sump A operation.
ALDEN ALDE                                -- - ,              "- - ',----".'                          ," -
ALDEN -- -,
__ Solving 'flow problems since 1894 -- - - '~~:"     -- :  .  '-      '            __          . -'
_ _ Solving 'flow problems since 1894  
ENR-2007-002743 ENR-2007-002743-20-02 02
-- - - '~~:"
ENR-2007-002743-20-02  


Attachment F Page 8 of 24 General Overview General                Overview
Attachment F Page 8 of 24 General Overview I
                                  ** Discussion of conservative                   representation of containment conservative representation                    containment approach approach velocities in test flume        flume
L1
                                  ** Discussion Discussion of relevant physics of turbulence     turbulence
* Discussion of conservative representation of containment approach velocities in test flume
                                        - Role of turbulence turbulence in debris suspension
* Discussion of relevant physics of turbulence Role of turbulence in debris suspension 9 NEI 04/07 9 Open Literature
                                                *9 NEI04/07 NEI 04/07 I  L1                                      *9 Open Literature Literature
* Overview of CFD predicted containment turbulence
                                  **    Overview of CFD predicted containment      containment turbulence turbulence
* Overview of CFD predicted flume turbulence
_ _ _ _ _ _ _ _ _ _ _ ----1i
* Discussion ENR-2007-002743-20-02 i
                                  **   Overview of CFD predicted flume turbulence Overview                                           turbulence
___________ ----1 i
                                  **   Discussion Discussion i
\\'
  \'
General Overview
ALDEN                                  -          - --              -    -~ - -..-                                           _
* Discussion of conservative representation of containment approach velocities in test flume
_ ~       Solving -flow problems since 1894 .. - - --    _  ___ - _- _ ___ _      ____ - _    -    - -      -
* Discussion of relevant physics of turbulence Role of turbulence in debris suspension
ENR-2007-002743-20-02 ENR-2007-002743-20-02
* NEI04/07
* Open Literature
* Overview of CFD predicted containment turbulence
* Overview of CFD predicted flume turbulence
* Discussion ALDEN
-~ --..--
_ ~
Solving -flow problems since 1894.. -
ENR-2007-002743-20-02  


Attachment F Page 9 of 24
Attachment F Page 9 of 24 RAI lO& 11 Are flume flow turbulence conditions prototypical of conditions in containment ?
              \.
-~1
RAI 1:0 RAI:  lO&  11
* Are point sources of turbulence near modeled areas of containment accounted for in the flume ?
                                                                              & 1:1)
ALDE
* Are flume flow turbulence      turbulence conditions conditions prototypical of conditions prototypical                conditions in 1--           --" --, ------1             containment?
*Sovn flo proles sic 1
containment ?
ENR-2007-002743-20-02
I,                                 I.
\\.
* Are point sources of turbulence        turbulence near near I
RAI: 1:0 & 1:1)
I i
* Are flume flow turbulence conditions prototypical of conditions in containment?
1--
--" --, ------1 I,
I. Are point sources of turbulence near modeled areas of containment accounted for in the flume?
i I
I I
I I
I I
modeled areas of containment modeled                          containment L _,_  ~ __ , ______ ~ _~ ___ JI
L  
          -~1 accounted accounted for in the flume          flume??
~ __, ______ ~ _~ ___ J
      --'./:~Y
--'./:~Y  
  ,  <::e:~
<::e:~
ALDEN ALDE                                                      -            ,~                                   -
ALDEN  
                          - Solving
,~  
                              *Sovn  flow flo  problems proles  since sic  1894 1    - - -,  - -              -    -
- Solving flow problems since 1894 ENR-2007-002743-20-02  
ENR-2007-002743-20-02 ENR-2007-002743-20-02


Attachment F Page 10 of 24
Attachment F Page 10 of 24 Containment Average Approach Velocity Representation in Test Flume At each 1 ft increment back from each strainer array along the water approach path to the strainers, calculate the weighted average of the velocity along a vertical plane:
                                .. .                  Containment Average Containment                            Average Approach Velocity
L N The weighted average at each increment is weighted by twice the fastest velocity at the increment under consideration.
                                                                  . Representation Representation in Test Flume                               Flume
Low velocities in wake regions behind obstacles were ignored Only velocity vectors pointing towards the strainer array were considered Low velocities in the near wall regions were ignored ENR-2007-002743-20-02 i
                              . i
j'--'--
* At each 1 ft increment  increment back from each strainer array along approach path to the strainers, calculate the water approach                                                        calculate the the weighted weighted averageaverage of the velocity along a vertical plane:
'. ---.---.. - '-'---1 I
j'--'--       '. ---.--- ..-       '-'---1
I C~~'".
,                                           I
,t-j'
:                                           I
"~ _...,
                                                        -- The weighted weighted average    average at each increment  increment is weighted weighted by twice twice the fastest velocity at the increment        increment under consideration.
. '. \\.
consideration.
Containment Average Approach Velocity
                                                          -    Low velocities velocities in wake regions behind obstacles were ignored                     ignored C~~'"
. Representation in Test Flume
L N
* At each 1 ft increment back from each strainer array along the water approach path to the strainers, calculate the weighted average of the velocity along a vertical plane:
                                          .              -    Only velocity vectors pointing towards the strainer                strainer array were were
The weighted average at each increment is weighted by twice the fastest velocity at the increment under consideration.
  ,t-    j'
Low velocities in wake regions behind obstacles were ignored Only velocity vectors pointing towards the strainer array were considered Low velocities in the near wall regions were ignored ALDEN.. *  
                "~ _... ,    . '. \.  .
'-.'.~' --.  
considered
. -Solvin~rtlow problem'i"since 1894  
                                                          -    Low velocities velocities in the near wall regions were ignored              ignored ALDEN .. *                                                   ".      _ '.                    '.    '-.'.~' --.         .            .'                ','
"'". _'.'.'_:' ~ --. '.".'
              .                .   -Solvin~rtlow problem'i"since 1894   -.. -- -:..- --- "'" . _' .'.'_:' ~ --. '." .'   . _ -        . ,- .    .      '"
ENR-2007-002743-20-02  
ENR-2007-002743-20-02 ENR-2007-002743-20-02


Attachment F Page I11   of24 Physics of Turbulence                  Turbulence Turbulent vs. Laminar Flow
Attachment F Page I11 of 24 Physics of Turbulence Turbulent vs. Laminar Flow Turbulent (Re > 2000) vs. Laminar Flow (Re < 2000)
* Turbulent Turbulent (Re > 2000) VS.                      vs. Laminar Flow (Re << 2000)
Re = URh/v > 2000 for open channel flow [1]
                                              -      Re =
* U  
Re   = URh/v URh/v >    > 2000 2000 for    for open open channel channel flow      flow [1]    [1]
= Characteristic Velocity Rh
                                                        ** U U       Characteristic Velocity
= Characteristic Length Scale = Hydraulic Radius v  
                                                                  = Characteristic
=Kinematic Viscosity
* Rh      ==Characteristic Characteristic Length  Length Scale       =Hydraulic
-. Calculation for Containment and Flume Flume Containment Min Max Min Max Velocity (ft/sec) 0.4 0.5 0.4 0.5 Width (ft) 0.3 0.45 Depth (ft) 4.17 4.17 Kinematic viscosity (ftA2/sec) 8E-06 3E-06 Hydraulic Radius (ft) 0.14 I0.21 4.17 Re 7240 13343 556000 695000
                                                                                                                =  Hydraulic Radius  Radius
* v       =
                                                                  =Kinematic Kinematic Viscosity
                                                -. Calculation for Containment Containment and Flume             Flume I
L __ .~ _ _ _ _ _ _ _ ._"_ _ _ _ _ .,
Flume            Containment Containment Min       Max       Min           Max Max (ft/sec)
Velocity (ft/secl      0.4         0.5       0.4           0.5 Width (ft)
(ftl    0.3       0.45       -              -
Depth Depth (ft)
(ftl        4.17                     4.17 Kinematic viscosity (ftJ\2/secl (ftA2/sec)           BE-06 8E-06                    3E-06 3E-06 Hydraulic Radius (ft)
Hydraulic            (ftl I0.21 0.14     v  0.21               4.17       \
Re   7240       13343     556000
                                                                                                                  .556000         695000


== Conclusion:==
==
Conclusion:==
Flow in Flume is Turbulent
Flow in Flume is Turbulent
[1 Flo thog opncanls,-,KG..
c rw-il 91 ALDE Soligfo prblm sic 1894 ENR-2007-002743-20-02 I
Physics of Turbulence Turbulent vs. Laminar Flow
* Turbulent (Re > 2000) VS. Laminar Flow (Re < 2000)
Re = URh/v > 2000 for open channel flow [1]
* U
= Characteristic Velocity
* Rh
= Characteristic Length Scale = Hydraulic Radius v
= Kinematic Viscosity Calculation for Containment and Flume L __.~ _______._" _____.,
Flume Containment Min Max Min Max Velocity (ft/secl 0.4 0.5 0.4 0.5 Width (ftl 0.3 0.45 Depth (ftl 4.17 4.17 Kinematic viscosity (ftJ\\2/secl BE-06 3E-06 Hydraulic Radius (ftl 0.14 v 0.21 4.17
\\
Re 7240 13343
.556000 695000


== Conclusion:==
==
Turbulent A LDEN                                  _                   -                                    __          [1] [1 Flo thog "Flow through opncanls,-,KG..                c rw-il open channels", RaJu, K G.R, McGraw-Hili,   91 1981, ALDE
Conclusion:==
__    Solving-flow Soligfo    proble-ms prblm      since 1894 sic    1894  -- -- -- .-.    -    __    _ __.        _::. -                    ~                   . - ':    --                .
Flow in Flume is Turbulent A L DEN
ENR-2007-002743-20-02 ENR-2007-002743-20-02
_ _ [1] "Flow through open channels", RaJu, K G.R, McGraw-Hili, 1981, Solving-flow proble-ms since 1894  
~
ENR-2007-002743-20-02  


Attachment F Page 12 of24 Physics of Turbulence                              Turbulence "Magnitude" of Turbulence                                              Turbulence
Attachment F Page 12 of 24 Physics of Turbulence "Magnitude" of Turbulence Turbulence Level is a function of Shear Velocity [2]
* Turbulence Turbulence Level is a function of Shear Velocity [2]
i L
i L
            ---*-------1 J !
J !
                                              -  By Definition By                [2]: U Definition [2]:      U*
By Definition [2]: U*
F&#xa5;
S8 f - Darcy-Weisbach friction factor u*- shear velocity Magnitude of Turbulent Velocity Fluctuation:
                                                                                    = S88 Magnitude of Turbulent Velocity Fluctuation:
u' = u* (2.3 exp (-y/h)) for y/h < 0.1 [3]
Magnitude
u' = u* (1.27 exp (-y/h)) for y/h => 0.1 [3]
                                                    **  u'  =
Where:
u' = u*
u' = Turbulent Fluctuating Velocity u* = Shear velocity y
u* (2.3
= Vertical Length Scale h = Depth of Flow Note:
( 2.3 exp exp (-y/h) 0 U
fcontainment" fflume Ycontainment = Yflurme and hcontainment = hflume
2
&deg; Expected flow turbulence levels in the flume due to flowing water are of the same order as containment A L E
(-y/h)) ) for y/h < 0.1 f - Darcy-Weisbach u*-
[3 Neu I an Azra R.
Darcy-Weisbach friction factor u*- shear velocity 0.1 [3]
'Truec Chrceitc an Ineacto bewe Patce ENR-2007-002743 02
                                                    *. u' == u*
---*-------1 I
u'    u* (1.27
i L ___. _______. ____.J 1-*-.... ).
( 1.27 exp (-y/h)  (-y/h)) ) for y/h => 0.1 [3]
:._-c fc;. '"\\
I                              Where:
'~ \\
i L ___._______ .____ .J                                                  u' =
Physics of Turbulence "Magnitude" of Turbulence Turbulence Level is a function of Shear Velocity [2]
u'   = Turbulent Fluctuating Fluctuating Velocity Velocity 1-*-.. .) .                                              u* ==Shear velocity
f - Darcy-Weisbach friction factor F&#xa5; 0 U2 By Definition [2]: U =
:._-c  fc;. '"\
8 u*- shear velocity Magnitude of Turbulent Velocity Fluctuation:
                    '~  \                                                      =
u' = u* ( 2.3 exp (-y/h) ) for y/h < 0.1 [3]
y = Vertical Vertical Length Scale Scale h     == Depth of Flow Flow
u' = u* ( 1.27 exp (-y/h) ) for y/h => 0.1 [3]
                                      **    Note:
Note:
                                            --  fcontainment" fcontainment - fflume fflume
Where:
                                            -      containment = Yflume Ycontainment Y                      Yflurme                hcontainment = hflume and hcontainment                  hflume
u' = Turbulent Fluctuating Velocity u* = Shear velocity y = Vertical Length Scale h = Depth of Flow fcontainment -
                                      &deg;* Expected Expected flow turbulence          turbulence levels in the flume due to flowing                                                flowing water are of the same order as containment                                    containment
fflume Y containment = Yflume and hcontainment = hflume
                                                                      .    -                            [2] The Hydraulics of Open Channel Flow. Chanson, H., Arnold, 1999.
* Expected flow turbulence levels in the flume due to flowing water are of the same order as containment
AALDEN              E                                          -            _
[2] The Hydraulics of Open Channel Flow. Chanson, H., Arnold, 1999.
                                                                                - -              -      [3]
A L DEN
[3  ~ezu, I and Azuma, R , 'Turbulence Charactenstics and Interaction betw~en Particles Neu    I an  Azra    R. 'Truec      Chrceitc      an Ineacto    bewe    Patce and Fluid in Particle-Laden Open Channel Flows", Journal of Hydraulic Engineering,
[3] ~ezu, I and Azuma, R, 'Turbulence Charactenstics and Interaction betw~en Particles and Fluid in Particle-Laden Open Channel Flows", Journal of Hydraulic Engineering,  
                          -Solvingllow*problems since 1894         .- -    c     _  _      .      ~ __     .?ctober~OQ4.                   . _ _          .'                .'
-Solvingllow*problems since 1894 c  
ENR-2007-002743 ENR-2007-002743-20-02  02
~ __  
.?ctober~OQ4.
ENR-2007-002743-20-02  


Attachment F Page 13 of 24 Role of Turbulence     Turbulence in                    in Suspension
Attachment F Page 13 of 24 Role of Turbulence in Suspension 9 Turbulence studies have shown that the fluid shear velocity is directly related to turbulence level [3]
                                            *9   Turbulence studies Turbulence          studies have shown that the fluid shear velocity is directly related to turbulence turbulence level [3]
* Onset of debris suspension is expected to occur when the magnitude of the turbulent velocity fluctuation is greater by some margin than the settling velocity of the debris as defined by the following expression:
                                            ** Onset Onset of    of debris debris suspension suspension is expectedexpected to occur when the                the magnitude of the turbulent velocity fluctuation is greater                      greater by 1-  .. -. ..---------1                          some margin than the settling velocity of the debris as defined I!.,_  .""
> critical value WO wo - settling velocity N
                                . 'I 1
/
                                        !I by the following expression:
Open literature brackets the range of critical values: 0.2 to 2.0 [2]
                                                                                ~- >> critical value             wo settling velocity Wo --
Minimum Shear velocity, U* (Flume and Containment) - 0.031 ft/s Range of settling velocity susceptible to suspension:
i WO Wo J                                        f
* Material with settling velocity < 0.15 ft/sec (c.v. = 0.2)
,__ . _____ ._ - .:~ __ - I N            -            literature brackets the range of critical values: 0.2 to 2.0 [2]
* Material with settling velocity < 0.06 ft/sec (c.v. = 2)
Open literature
ENR-2007-002743-20-02 1-
                                                                                                                  - 0.031 ft/s
.. -...---------1 I',
                                  ',J  "
1
            /I .
. 'I I
                                    \
i J
                                                  -                                  U*(Flume and Minimum Shear velocity, U*(Flume           Containment) =
f
and Containment)               ftls
, __. _____._ -.:~ __ - I I.
                                                  -   Range of settling velocity susceptible susceptible to suspension:
:'::'-..J.v"  
                                                        ** Material Material with settling settling velocity < < 0.15 ftlsec ft/sec (c.v. = 0.2)
-;~~~  
                                                        ** Material Material with settling settling velocity < 0.06 ft/sec (c.v. = 2)
.-.* ;f  
:'::'-..J.v"
',J
                  -;~~~
\\
                    .-.*;f ALDEN                                                                    ' ,- -,           '.,                                                '
Role of Turbulence in Suspension
                              " ' ,Solving 'flow problemssi'nce 1894   --, '-. -,.',  ..,"                .. , "    "    .  ...... . .. -," -
* Turbulence studies have shown that the fluid shear velocity is directly related to turbulence level [3]
ENR-2007-002743-20-02 ENR-2007-002743-20-02
Onset of debris suspension is expected to occur when the magnitude of the turbulent velocity fluctuation is greater by some margin than the settling velocity of the debris as defined by the following expression:
~
> critical value Wo Wo - settling velocity Open literature brackets the range of critical values: 0.2 to 2.0 [2]
Minimum Shear velocity, U*(Flume and Containment) = 0.031 ftls Range of settling velocity susceptible to suspension:
* Material with settling velocity < 0.15 ftlsec (c.v. = 0.2)
* Material with settling velocity < 0.06 ft/sec (c.v. = 2)
ALDEN
" ',Solving 'flow problemssi'nce 1894 ENR-2007-002743-20-02  


Attachment F Page 14 of 24 Role of Turbulence          Turbulence in Suspension
Attachment F Page 14 of 24 Role of Turbulence in Suspension 6&deg;
                        ** Table 4-2, NEI 04/07                                                                                                         Termninl THmllllll Minimum TKE
* Table 4-2, NEI 04/07 Only loose fibers easily suspended by turbulence (w0<O. 15 ft/s)
                                -    Only loose fibers easily Only                       easily suspended                                                          Density Densit,*
Only 1/4" x 1/4" clump turbulence requirements verified experimentally (Analytical TKE levels questionable as indicated in SER)
Settling Settling Velocity Velocit~-
Experimental value tends much higher than analytical value Termninl TKE Settling Required to Density Velocity  
Rl'qllil'ed to Required
. Suspend Debris Category/Type Size (Ibinlft3)
                                                                                                                                                                      . Suspend SIl~pelld 10 Debris De-bl"is Category/Type         Size       (lbIB/C'~)
(fWsec)
(Ibinlft3)      (fWsec)         (ft /sec)2) by turbulence turbulence (wo          <O. 15 ft/s)
(ft /sec)
(w0 <0.15                                    Ca'('gol~'/Typ('      Size                        (C,/sl'e)      (C':/5('c A. Fibl'ous Insulation A. Fibrous      Insulation 6&deg;          -          %" xx 1/4" Only 1/4"     %" clump turbulence turbulence
A. Fibrous Insulation
: 1. Fiberglass Fiberglass - Generic Generic requirements                    experimentally requirements verified experimentally r-------
: 1. Fiberglass - Generic
I
: 2. Fiberglass -
          --------l                 (Analytical TKE TKE levelslevels questionable questionable        2. Fiberglass
: a. 6"
: a. 2.4
: a. 0.41
: a. 0.084 Nsikon
: b. 4"
: b. 2.4
: b. 0.40
: b. 0,080
,c. 1"
: c. 2.4
: c. 0.15 C. 0.011
: d. 1/4"x
: d. 2.4
: d. 0.175
: d. 0.14 1/4" Clumps
'e 175
: e. 0.008
: e. 3E-05
: e. loose fibers ENR-2007-002743-20-02 r-------
I 1-
--------l Role of Turbulence in Suspension Table 4-2, NEI 04/07 Only loose fibers easily suspended by turbulence (wo <0.15 ft/s)
Only %" x %" clump turbulence requirements verified experimentally (Analytical TKE levels questionable as indicated in SER)
Experimental value tends much higher than analytical value
\\
De-bl"is Ca'('gol~'/Typ('
A. Fibl'ous Insulation
: 1. Fiberglass - Generic
: 2. Fibergl~ss -
: 2. Fibergl~ss -
Nsikon Nukoll 11_ 6" a.
Nukoll Size 11_ 6"
: b. 4"
: b. 4"
: b. 4" a.
: c. 1"
II. 2.4
: d. 1/4"x 1/4" clumps
: b. 2.4
: e. loose fibers Minimum THmllllll TKE Settling Rl'qllil'ed 10 Densit,*
: b. 2.4 a.
Velocit~-
II.
SIl~pelld (lbIB/C'~)
b.
(C,/sl'e)
0.41 b.O.40 0.41 0.40
(C':/5('c 2)
: a. 0.084 b.
II. 2.4 II. 0.41
: b. 0,080 0.080 1-                                      indicated in SER) as indicated                                                                            1"      c.c. 2.4                       C. 0.011
: a. 0.084
                                                                                                                          ,c.
: b. 2.4 b.O.40
: c. 1"              2.4   c. 0.15 O.IS       c. 0.011
: b. 0.080
                                -    Experimental value tends much Experimental                              much                                      d. 1/4"x 1/4"x  d. 2.4       d. 0.175 O.liS       d. 0.14 0.14 1/4" 1/4" analytical value higher than analytical            value                                                  clumps Clumps    e.1iS
: c. 2.4
                                                                                                                                            'e 175  e. 0.008
: c. O.IS
: e. 0.008      e. 3E-05 e.
: c. 0.011
loose
: d. 2.4
: e. loose fibers
: d. O.liS
                                                                                    \
: d. 0.14 e.1iS
ALDEN                                   -. -                        - - :--. - '                                                          .                                          _.
: e. 0.008
_ ,,' Solvirigllow -problems since 189*:f --'- -~ -- .... ~. '-.- __ ',   _~:- ___ . _::              _:..              -. --'                .      '- -                  _
: e. 3E-05 ALDEN
ENR-2007-002743-20-02 ENR-2007-002743-20-02
_,,' Solvirigllow -problems since 189*:f --'-
-~ --
.... ~. '-.-__ ',
_~:-
ENR-2007-002743-20-02  


Attachment F Page 15 of 24 Containment Turbulent Kinetic Energy Containment Two Train Operation Operation 0.5 ft Above Floor Floor Start of Approach F Start of Approach Start of Approach APPROACH #1      #1 APPROACH #2 APPROACH TKE (ft2/S2) 0 .050                                 End End of Approach 0 .040 0 .030 0.020 0 .010 0.000     End of
Attachment F Page 15 of 24 Containment Turbulent Kinetic Energy Two Train Operation 0.5 ft Above Floor Start of Approach APPROACH #2 F Start of Approach APPROACH #1 End of Approach End of Approach 44 ft diameter circles centered on array of strainers.
___~ _ _ _ _ _ _ _~   44 ft diameter diameter circles circles Approach
ALDE ENR-2007-002743-20-02 ALDEN Containment Turbulent Kinetic Energy Two Train Operation 0.5 ft Above Floor Start of Approach APPROACH #2 TKE (ft2/S2) 0.050 0.040 0.030 0.020 0.010 0.000 End of Approach Start of Approach APPROACH #1 End of Approach
                                                                                ~ centered centered on array array of strainers.
___ ~ _______ ~ 44 ft diameter circles  
ALDE ALDEN Solving flow problems since 1894 ENR-2007-002743-20-02 ENR-2007-002743-20-02
~
centered on array of strainers.
Solving flow problems since 1894 ENR-2007-002743-20-02  


Attachment F Page 16 of 24 Containment Containment Turbulent Kinetic Energy Two Train Operation Operation 3 ft Above Floor Floor Start of Approach Start of Approach
Attachment F Page 16 of 24 Containment Turbulent Kinetic Energy Two Train Operation 3 ft Above Floor Start of Approach APPROACH #2
                                                                                      ' Start of Approach APPROACH APPROACH #1 APPROACH #2 TKE 0.050                             I  End of Approach 0.040 0 .030 0.020 0.010 0.000 End of Approach                   ~   44 ft diameter diameter circles circles
' Start of Approach APPROACH #1 I
                                                                -------~ centered centered on array of strainers .
End of Approach 44 ft diameter circles centered on array of strainers.
strainers.
ENR,-2007-002743-20-02 ALDEN Containment Turbulent Kinetic Energy Two Train Operation 3 ft Above Floor Start of Approach TKE 0.050 0.040 0.030 0.020 0.010 0.000 End of Approach Start of Approach APPROACH #1 End of Approach
ALDEN Solving flow problems since 1894 ENR,-2007-002743-20-02 ENR-2007-002743-20-02
~ 44 ft diameter circles  
-------~
centered on array of strainers.
Solving flow problems since 1894 ENR-2007-002743-20-02  


Attachment F Page 17 of 24 Containment Turbulent Containment  Turbulent Kinetic Energy One Train Operation (A) 0.5 ft Above Above Floor Start of Approach Start of Approach Start      Approach APPROACH #1 APPROACH          #1 APPROACH #2 APPROACH gT2 /s2 )
Attachment F Page 17 of 24 Containment Turbulent Kinetic Energy One Train Operation (A) 0.5 ft Above Floor Start of Approach APPROACH #2 Start of Approach APPROACH #1 End of Approach 44 ft diameter circles centered on array of strainers.
TKE (ft2/s2)   ,                                               End of Approach End O.OSO 040 0 .040 o  030 0.030 0,o020 0.020 U00108 0.010 0.0:10 End of Approach                     ~     44 ft diameter diameter circles
TKE gT2/s2) 0 040 o 030 0,o020 U00108 ENR-2007-002 743-20-02 ALDEN Containment Turbulent Kinetic Energy One Train Operation (A) 0.5 ft Above Floor Start of Approach APPROACH #2 TKE (ft2/s2),
                                                                                ~ centered on array of  of strainers.
O.OSO 0.040 0.030 0.020 0.010 0.0:10 End of Approach Start of Approach APPROACH #1 End of Approach
strainers .
~ 44 ft diameter circles  
ALDEN Solving flow problems since 1894 ENR-2007-002      743-20-02 ENR-2007-002743-20-02
~
centered on array of strainers.
Solving flow problems since 1894 ENR-2007-002743-20-02  


                                                              ---  ~---------------------
Attachment F Page 18 of 24 Containment Turbulent Kinetic Energy One Train Operation (A) 3 ft Above Floor APPROACH #2 Start of Approach TKE (ft2/s2),
Attachment F Page 18 of 24 Containment Turbulent Containment  Turbulent Kinetic Energy One Train Operation Operation (A) 3 ft Above Above Floor Floor Start of Approach APPROACH APPROACH #2 Start of Approach F       Start of Approach APPROACH APPROACH #1 (ft2/s2 ),
*00050 0.040 0.030 0.020 U0.000 F
TKE (ft2/S2),
Start of Approach APPROACH #1 End of Anoroach 44 ft diameter circles centered on array of strainers.
                      *00050 0 .050                                                 End  of Anoroach End of  Approach 0.040 0.040 0.030 0.030 0.020 0.020 0.010 U0.000 0 .000                 End of Approach                     ~   44 ft diameter diameter circles circles
ENR-2007-002743-20-02 ALDEN 3 ft Above Floor APPROACH #2 Start of Approach TKE (ft2/S2),
                                                                                ~ centered on array of strainers..
0.050 0.040 0.030 0.020 0.010 0.000 Solving flow problems since 1894
strainers ALDEN Solving flow problems since 1894 ENR-2007-002743-20-02 ENR-2007-002743-20-02
--- ~---------------------
Containment Turbulent Kinetic Energy One Train Operation (A)
End of Approach Start of Approach APPROACH #1 End of Approach
~ 44 ft diameter circles  
~
centered on array of strainers.
ENR-2007-002743-20-02  


Attachment F Page 19 of 24 Turbulent Kinetic Energy Test Flume Turbulent CFD Geometry Module Test Module Curb
Attachment F Page 19 of 24 Test Flume Turbulent Kinetic Energy CFD Geometry Curb Test Module
                                                                                        /
/
Inflow Pipe Pipe tALDEN I
Inflow Pipe ENR-2007-002743-20-02 Inflow Pipe tALDEN I
Solving flow problems since 1894 ENR-2007-002743-20-02 ENR-2007-002743-20-02
Solving flow problems since 1894 Test Flume Turbulent Kinetic Energy CFD Geometry Test Module ENR-2007-002743-20-02  


Attachment F Page 20 of 24 I                                       Test Flume Turbulent Test Flume              Kinetic Energy Turbulent Kinetic    Energy 0.5 ft above floor Ii O.Ue.. n      !.l*-,     231e-13 Z.3le-Q3    3A6~'U3   4.52u-13         8.920-03 S.fD31.92e-03    8.08e-03 5.36.-f     9.23111-0l 1.US.-02
Attachment F Page 20 of 24 I
          *.lh*,0J8
Test Flume Turbulent Kinetic Energy 0.5 ft above floor Ii
                                                                                                  - -9.230-03
*.lh*,0J8
                                                                                                      -       l.aOe-02 1
!.l*-,
                **  3 ft above floor ALDEN Solving flow problems since 1894 ENR-2007-002743-20-02 ENR-2007-002743-20-02
3 ft above floor 231e-13 3A6~'U3 4.52u-13 1
S.fD31.92e-03 5.36.-f 9.230-03 1.US.-02 ENR-2007-002743-20-02 Test Flume Turbulent Kinetic Energy 0.5 ft above floor O.Ue.. n Z.3le-Q3 8.920-03 8.08e-03 9.23111-0l l.aOe-02 3 ft above floor ALDEN Solving flow problems since 1894 ENR-2007-002743-20-02  


Attachment F Page 21 of 24 Turbulent Kinetic Energy Turbulent                                                    Energy Profiles            Profiles
Attachment F Page 21 of 24 Turbulent Kinetic Energy Profiles Area averaged quantities for planes back from sump I strainer 0.035000 x
* Area averaged          averaged quantities          quantities for planes                        planes back from sump I/ strainer                              strainer 0.035000 0 .035000 x
0.030000 E Two Train Sump A Two Train Sump B 0.025000 3
X 0.030000 0.030000    *                                         *E Two Train Sump A 0.025000
mm
                                                  *** 3
* Single Train Sump A X Flume S0.020000u m
* Two       Sump B Train Sump Two Train         B 0 .025000 mm                      ** Single Single Train Sump A Train Sump  A X Flume N                                                             X Flume
0.010000 0.005000
                            < 0.020000 N
!+
                              '"S0.020000u m
xx XXXXxxx xxxXXx 0.000000 0
5 10 15 20 25 1-ft increments back from Strainer Module / Test Strainer ALDEN ENR-2007-002743-20-02 ALDEN Turbulent Kinetic Energy Profiles
* Area averaged quantities for planes back from sump / strainer 0.035000 X
0.030000 * ***
* Two Train Sump A 0.025000 Two Train Sump B
* Single Train Sump A N
X Flume 0.020000 N
:E.
:E.
UI
UI 0.015000  
                            ~
~
0 .015000
X 0.010000 0.005000  
* 0.010000    * ***                                        **          X 0.010000 0.005000 0.005000 xx
;i(;~)l 0.000000 0
                                                          !+
5 10 15 20 25 1-ft increments back from Strainer Module I Test Strainer Solving flow problems since 1894 ENR-2007-002743-20-02  
XXXXxxx xxxXXx;i(;~)l 0.000000 0.000000 00          5 5              10 10            15 15               20 20           25 25 1-ft increments back back from from Strainer Module Strainer Module I/ Test Strainer Test Strainer ALDEN ALDEN Solving flow problems since 1894 ENR-2007-002743-20-02 ENR-2007-002743-20-02


Attachment F Page 22 of 24 Summary of Comparison Summary                                  Comparison
Attachment F Page 22 of 24 Summary of Comparison C,
                                                              ** Flume turbulence levels      levels on par with Approach    Approach #2          strainers
-C,
                                                                                                                                          #2 to strainers o          in containment containment for both one and two train operation.
* Flume turbulence levels on par with Approach #2 to strainers in containment for both one and two train operation.
C,
* For one train operation, turbulence level in the flume is on the order of that in the plant over most of Approach #1.
                                                              ** For For one train operation, turbulence    turbulence level in the flume is on the               the
* The flume turbulence level near the test strainer is similar to the higher turbulence in the field at the upstream end of the array.
                                                      -C, order of that in the plant over most of Approach #1.
" For areas where flume turbulence is lower than containment:
r---- .
Greatest part of turbulent kinetic energy is below estimated required level for suspension of 1" smalls based on settling velocities Fines are suspended by both flume and containment turbulence levels Debris > 4" is not able to be suspended by either containment or flume turbulence levels
II'
--- C, 2/
                                ------1 ** The flume turbulence level near the test strainer is similar to                                                   to r,
ENR,-2007-002743 02 o
* i I
Summary of Comparison
* Flume turbulence levels on par with Approach #2 to strainers in containment for both one and two train operation.
* For one train operation, turbulence level in the flume is on the order of that in the plant over most of Approach #1.
------1
* The flume turbulence level near the test strainer is similar to r----.
I I'
r,
* I
(",
(",
:    the higher turbulence turbulence in the field at the upstream end of the                      the array.
I l __________
Il _ _ _ _ _ _ _ _ _ _            ~.       ~_. ___ _
~.  
                                                                " For areas where flume turbulence
~_. ___ _
                                                              *.                                      turbulence is lower than containment:
r--............  
                          ";        r--............     ..
! L '\\,  
            --- C,
\\
                          ! L '\, *
l...,
: ..... :....       \
.~ *
                                                                  -- Greatest Greatest part of turbulentturbulent kinetic energy is below estimated estimated required level for suspension        suspension of 1"  1" smalls smalls
/.~)
                                                          )
~:~~-..  
based on settling velocities velocities l...,            _  .~ *
/,:","")/
                                                                    <  Fines are suspended suspended by both flume and containment         containment turbulence levels turbulence       levels
-,,/
                    /.~)
),
      .        ~:~~-2/      .
i :
                                                                    -  Debris>
the higher turbulence in the field at the upstream end of the array.  
Debris > 4" is not able to be suspended        suspended by eithereither
*. For areas where flume turbulence is lower than containment:
                    /,:","")/
Greatest part of turbulent kinetic energy is below estimated required level for suspension of 1" smalls based on settling velocities Fines are suspended by both flume and containment turbulence levels Debris> 4" is not able to be suspended by either containment or flume turbulence levels ALDEN*
                      - ,,/
_.Solving-flowproblemssincef894---*~------*-:"~.:..  
                      ,>                                              containment containment or flume turbulence   turbulence levels  levels ALDEN*                                                       . - - ...      - - - -. - . - .. -.                                                              .
~  
_.Solving-flowproblemssincef894---*~------*-:"~.: .. ~ .______ .. -._~. -_- ..  -__  .    --        .-  ... '--, ..
. ______.. -._~. -_-..
ENR,-2007-002743  02 ENR-2007-002743-20-02
ENR-2007-002743-20-02  


Attachment F Page 23 of 24 Summary Summary of Comparison          Comparison (cont'd)
Attachment F Page 23 of 24 Summary of Comparison (cont'd)
                                            - Settling velocity is 'proportional
Settling velocity is -proportional to the inverse of viscosity Between flume (120F) and containment (-200F) viscosity is half Effective turbulence level in the flume is double due to lower settling velocity in flume
                                                                        -proportional to the inverse of viscosity
'IV ENR-2007-002743-20-02 i--
* Between Between flume (120F) and containment containment (-200F) viscosity is half half
I I I
                                            - Effective turbulence turbulence level in the flume is double due to
i  
                              'IV lower settling velocity in flume flume i--
\\-
I II      ,.
-~ --~-.- - -----_. -
i
J  
\- -~   --~-.-     - -----_.   -
-~'-.
J
.( :7  
              -~'-
-:::~~~
            .( :7
r' Summary of Comparison (cont'd)
    .    -:::~~~
Settling velocity is 'proportional to the inverse of viscosity
r' ALDEN                                 --                -
* Between flume (120F) and containment (-200F) viscosity is half Effective turbulence level in the flume is double due to lower settling velocity in flume ALDEN  
_ _      *Solving flow problems since 1894 - -  -    -. _  . _-  _              .  -  -
*Solving flow problems since 1894 ENR-2007-002743-20-02  
ENR-2007-002743-20-02 ENR-2007-002743-20-02


Attachment F Page 24 of 24 RAI R* *"AI: *R**
Attachment F Page 24 of 24 RAI Response, Summary Flume flow conditions are turbulent and are representative of flow generated turbulence.
t
Turbulence levels observed are in general not sufficient to keep smalls above 1" suspended in containment or flume.
                                                                    , ~.
* Near strainer turbulence levels are higher in the flume compared to containment calculated values.
Response,
" Point sources of turbulence from jetting located further away from the strainers are not modeled in the flume.
* jes'po' n'*s*e*. S~*
However, blocking of debris by the flow structures existing in this area is also not considered.
f'
Point sources of turbulence are generally located outside the mean radius of travel modeled in the flume.
F->
ENR-2007-002743-20-02 R* *"AI: *R** jes'po' n' *s*e*. S~* "U' *m** (m r 'a' 'ry(' ;
t
~.
f'  
,i' f
)" -
j: i
; ! 1 1.-
i J
Y
_/
_/
                                                                                                                  ,i' f
i
i
                                                                                                                          )"
_,.~
_,.~
Summary "U'*m**
_:/..-
j:
.'..*..1  
_:/..- .'
.1 i  
i      (m'a''ry(';
.. !V
                                                                                                                                              . . * . .1 ._
* Flume flow conditions are turbulent and are  
                                                                                                                                                            ;  ! 1r
~
                                                                                                                                                              .1 1 .-
representative of flow generated turbulence.  
i J
~<'
                                                                                                                                                                                    .. !V i
Turbulence levels observed are in general not sufficient to keep smalls above 1 " suspended in containment or r-'--
Y
-..,.------1 fl u me.  
* Flume flow conditions are turbulent and are
)0 I
                            ~       representative representative of flow generated                              generated turbulence.
\\'
                          ~<'
I,'
* Turbulence levels observed Turbulence                                        observed are in general                        general not sufficient                            sufficient to keep smalls above 1                                         1"" suspended suspended in containment                      containment or r-'-- -..,.---- --1                 fl ume.
Near strainer turbulence levels are higher in the flume  
flume.
- -"~,
)0
I i
!      \'
compared to containment calculated values.
I I,'
L. ----;:=l--r=-~_~-~J. Point sources of turbulence from jetting located further J/  
* Near Near strainer turbulence            turbulence levels are higher in the flume                                                                          flume
,~:.  
                  - -"~,
~-..,
I             .                      compared to containment i compared                              containment calculated                      calculated values.
r /<' -" '" '.
L. ----;:=l--r=-~_~-~J.
away from the strainers are not modeled in the flume.
F->              " Point sources sources of turbulence              turbulence from jetting located                                            located further J/   ,~:.   ~-..,    "-,
However, blocking of debris by the flow structures existing in this area is also not considered.
r /<'         -" '" '.           away from the strainers                  strainers are not modeled                          modeled in the flume.
* Point sources of turbulence are generally located outside the mean radius of travel modeled in the flume.
      ,"                      ':    However, blocking However,           blocking of debris by the flow structures                                                             structures
ALDEN  
              '-                    existing in this area is also not considered.
,~--
* Point sources sources of turbulence are generally                                              generally located outside                                    outside the mean radius of travel modeled in the flume.
-~-
ALDEN                               - - - '-                          .
~  
                                                                                                      .-            ,~--         .--                                                            "      -~- ~
, -Solving flow problems since fS94
                      , -Solving flow problems since fS94                       ,-'                        _~         : '    ,    -                                    -
_ ~
ENR-2007-002743-20-02 ENR-2007-002743-20-02}}
ENR-2007-002743-20-02}}

Latest revision as of 08:29, 14 January 2025

Engineering Report ER-ESP-001, Revision 2, Generic Letter 2004-02 Supplemental Response, Attachment E, Page 23 of 49 Through Attachment F
ML093080010
Person / Time
Site: Comanche Peak  Luminant icon.png
Issue date: 10/13/2009
From:
Luminant Generation Co, Luminant Power
To:
Office of Nuclear Reactor Regulation
References
CP-200901403, ENR-2007-002743-20-02, GL-04-002, TXX-09128 ER-ESP-001, Rev 2
Download: ML093080010 (51)


Text

Attachment E Page 23 of 49 Figure 3.e.1 Plan view of Comanche Peak upper containment CAD model ENR-2007-002743-20-02 Attachment E Page 23 of 49 Figure 3.e.1 Plan view of Comanche Peak upper containment CAD model ENR-2007-002743-20-02

Attachment E Page 24 of 49 Figure 3.e. 1 Isometric view of area outside secondary shield wall ENR-2007-002743-20-02 Attachment E Page 24 of49 Figure 3.e.1 Isometric view of area outside secondary shield wall ENR-2007-002743-20-02

Attachment E Page 25 of 49 Figure 3.e.1 Cross-section View 1 of containment building ENR-2007-002743-20-02 Attachment E Page 25 of 49 Figure 3.e.1 Cross-section View 1 of containment building ENR-2007-002743-20-02

Attachment E Page 26 of 49 Figure 3.e.1 Cross-section View 2 of containment building ENR-2007-002743-20-02 Attachment E Page 26 of 49 Figure 3.e.1 Cross-section View 2 of containment building ENR-2007-002743-20-02

Attachment E Page 27 of 49 Figure 3.e.1 Plan view of Comanche Peak lower containment CAD model ENR-2007-002743-20-02 Attachment E Page 27 of 49 Figure 3.e.1 Plan view of Comanche Peak lower containment CAD model ENR-2007-002743-20-02

Attachment E Page 28 of 49 Figure 3.e.1 Southwest isometric view of Comanche Peak lower containment CAD model ENR-2007-002743-20-02 Attachment E Page 28 of 49 Figure 3.e.1 Southwest isometric view of Comanche Peak lower containment CAD model ENR-2007-002743-20-02

Attachment E Page 29 of 49 Figure 3.e.1 Close-up of sumps (outside secondary shield wall)

ENR-2007-002743-20-02 Attachment E Page 29 of49 Figure 3.e.1 Close-up of sumps (outside secondary shield wall)

ENR-2007-002743-20-02

Attachment E Page 30 of 49 LOOPS 1 & 4 LOOPS 2 & 3 Figure 3.e.1.1 Isometric view of grating in RCS loop rooms ENR-2007-002743-20-02 Attachment E Page 30 of 49 LOOPS 1 & 4 LOOPS 2 & 3 Figure 3.e.1.1 Isometric view of grating in ReS loop rooms ENR-2007-002743-20-02

Attachment E Page 31 of 49 Z110ft 2

534 ft2 538 ft2 382 ft2 538 ft2 Figure 3.e. 1.1 RCS loop room areas ENR-2007-002743-20-02 Attachment E Page 31 of 49 534 ft2 538 ft2 Figure 3.e.1.1 ReS loop room areas

'110 ft2 382 ft2 538 ft2 ENR -2007 -0027 4 3 02

Attachment E Page 32 of 49 95ft2 86% Coverage 450 ft2 84% Coverage 465 ft2 86% Coverage 345 ft2 90% Coverage 1

468 ft2 87% Coverage Figure 3.e.1.1 RCS loop room grated areas ENR-2007-002743-20-02 Attachment E Page 32 of 49 450 ft2 465 ft2 86% Cove rag e Figure 3.e.1.1 ReS loop room grated areas 95 ftl 86% Coverage 345 ft2 90% Coverage 468 fll 87% Cove rag e ENR-2007-002743-20-02

Attachment E Page 33 of 49 CFD bris Size Blowdown Washdown Pool Fill ReCFD E

Fraction of Debris De Transport Transport Transport Recirculation Erosion at Sump Transport 0,00 Retained on 1.00 Structures Transport 0.27 0.00 Washed Down to Sediment 0.73 RCS Loop Bays 1.00 Upper 1.00 Containment i

Transport Washed Down to 0.00 Annulus Sediment 1.00 0.08 Transport 0.20 Washed Down to Fines Refueling Canal Sedmen

[

Sediment 1.00 0.07 Transport A

P0.67

[

! ~Active Pool 00 0.039 0.095 0.012 0.036 0.010 0.27 Lower Containment 0.1 Sediment S

0.18 Sump Strainers 0.15 Inactive Cavities LDFG Debris Generation 0.10 Retained on Structures 0.01 0.000 Erodes to Fines 0.99 Remains~intact 0.59 Upper Containment 1.00 0,080 0.17 Transport 0R10 0.000 Washed Down to 0.00 Erodes to Fines RCS Loop Bays Sediment i0n90 1 0 Remains intact 037 0.65 1

Transport 0.10 0,000 Washed Down to]

0.00=

Erodes to Fines Annulus Sediment 0,90 Remains intact 0.80 Small Pieces 1.00 0 038 1 00 Figure 3.e.1.1 Combined fiberglass logic trees with existing transport fractions 0.08 Washed Down to Refueling Canal Transport 0.10 0.00 Erodes to Fines Sediment 0.90 Remains intact 0.000 0.279 1.00 Transport 0.85 Active Pool 0.00 Sediment 0.41 0.00 Lower 1 Sump Strainers Containment Inactive Pool 0.10 0.000 Erodes to Fines 0.90 Remains intact 0,000 Total = 0.896 ENR-2007-002743-20-02 Attachment E Page 330[49 Figure 3.e.1.1-4 Combined fiberglass logic trees with existing transport fractions Debris Size 0.20 Fines J

LDFG Debris Generation 0.80 Small Pieces I

Slowdown Transport 0.73 Upper Containment 0.27 Lower Containment 0.59 Upper Containment 0.41 Lower Containment Washdown Transport 0.00 Retained on Structures 0.27 Washed Down to RCS Loop Bays 0.65 Washed Down to

. Annulus 0.08 Washed Down to Re~ueling Canal 0.10 Retained on Structures 0.17 Washed Down to RCS Loop Bays 0.65 Washed Down to Annulus 0.08 Washed Down to Refueling Canal CFD Fraction of DebriS]

Recirculation Erosion Transport at Sump 1.00 0.039 Transport 0.00 Sediment 1.00 0.095 Transport 0.00 Sediment 1.00 0.012

~~

Transport I

0.00 Sediment 1.00 0.036 0.67 Transport At" P

I C Ive 00 I

0.00 0.18 Sediment 0.010 I

Sump Strainers 0.15 I

Inactive Cavities 0.01 0.000 I

Erodes to Fines 0.99 RemainsJntact 1.00 0.080 I

Transport 0.10 0.000 I

0.00 I Erodes to Fines Sediment I

0.90 Remains intact 1.00 0.307 I

Transport 0.10 0.000 I

0.00 I Erodes to Fines Sediment I

0.90 Remains intact 100 0.038 I

Transport 0.10 0.000 I

0.00 j Erodes to Fines Sediment I

0.90 Remains intact 1.00 0.279 i

Transport 0.85 0.10 0.000 I

Active Pool I I

Erodes to Fines 0.00 Sediment 0.90 Remains intact

.1 0.00 0.000 Sump Strainers 0.15 Total = 0.896

. Inactive Pool ENR-2007-002743-20-02

Attachment E Page 34 of 49 Debri eBowdown Washdown PoFill CFD Fraction of Debris D

Recirculation Erosion

at Transport Transport Transport Transport Sump 0.20 Fines 0.73 Upper Containment 0.27 0.30 Retained on 1.00 Structures Transport 0.19 Washed Down to Sdm RCS Loop Bays 1.00 (0.27-0.70) 1.00 0.46 Transport Washed Down to 0.00 Annulus Sediment (0.65-0.70) 1.00 0.06 Transport Washed Down to 0.00 Refueling Canal Sediment (0.08-0.70) 1.00 0.067 0.009 0.028 0,036 0.67 Active Pool 0.18 Transport 0.00 Sediment LDFG Debris Generation Figure 3.e.1.1 Combined fiberglass Lower Containment 0.59 Upper Containment 0.41 Sump Strainers 0.15 Inactive Cavities 0.010 0.00 0.000 SErodes to Fines 0.30 Retained on Structures 1.00 Remains intact 1.00 0.057 0.12 Transport 0.10 0.000 Washed Down to 0.00 Erodes to Fines RCS Loop Bays Sediment (0.17-0.70) 0.90 Remains intact 1.00 0.217 0.46 Transport 0.10 0.000 Washed Down to 0.00 Erodes to Fines Annulus Sediment (0.65-0.70) 0.90 Remains intact 0.80 Small Pieces 1.00 0.028 0.06 Transport 0.10 0.000 Washed Down to 0.00 1Erodes to Fines Refueling Canal Sediment (0.08-0.70) 0.90 Remains intact 1.00 0,279 logic trees with alternate BWROG washdown transport fractions Transport 0.85 Active Pool 0.00 Sediment 0.00 0.10 0.000 Erodes to Fines 0.90 Remains intact 0.000 Lower Containment Sump Strainers 0.15 Inactive Pool Total = 0.731 ENR-2007-002743-20-02 Attachment E Page 34 of49 Figure 3.e.1.1-6 Combined fiberglass logic trees with alternate BWROG washdown transport fractions Debris Size 0.20 Fines LDFG Debris Generation O.SO Small I

Pieces I

Blowdown Transport 0.73 Upper Containment 0.27 Lower Containment 0.59 Upper Containment 0.41 Lower Containment Washdown Transport 0.30 Retained on Structures I

0.19 Washed Down to I I RCS Loop Bays (0.27'0.70) 0.46 Washed Down to Annulus (0.65"0.70) 0.06 Washed Down to Refueling Canal (0.OS"0.70) 0.30 Retained on Structures 0.12 Washed Down to RCS Loop Bays (0.17'0.70) 0.46 Washed Down to Annulus (0.65"0.70) 0.06 Washed Down to Refuelin Canal g

(0.OS"0.70)

I I

Pool Fill Transport 0.67 Active Pool 0.1S Sump Strainers 0.15 Inactive Cavities 0.S5 Active Pool 0.00 Sump Strainers 0.15 Inactive Pool I

I I

CFD Recirculation Transport 1.00 Transport 0.00 Sediment 1.00 Transport 0.00 Sediment 1.00 Transport 0.00 Sediment 1.00

[

Transport 0.00 Sediment I

1.00 I

Transport I

0.00 I

Sediment i

1.00 I

Transport 0.00 Sediment 1.00 I

Transport I

0.00 Sediment 1.00 Transport 0.00 Sediment Erosion i Fraction of Debris i

at Sump 0.028 0.067 0.009 0,036 0.010 0.00 0.000 Erodes to Fines 1.00 Remains intact 0.057 0.10 0.000 Erodes to Fines 0.90 Remains intact 0.217 0.10 0.000 Erodes to Fines 0.90 Remains intact 0.028 0.10 0.000 Erodes to Fines 0.90 Remains intact 0.279 0.10 0.000 Erodes to Fines 0.90 Remains intact 0.000 Total = 0.731 ENR-2007-002743-20-02

Attachment E Page 35 of 49 Initial distribution for small and large piece debris not blown to upper containment 5,932 fte Figure 3.e. 1.1 Distribution of small and large piece debris not blown to upper containment ENR-2007-002743-20-02 Attachment E Page 35 of 49 Initial distribution for small and large piece debris not blown to upper containment S,932 tr Figure 3.e.1.1 Distribution of small and large piece debris not blown to upper containment ENR-2007-002743-20-02

Attachment E Page 36 of 49 Initial distribution for smnal and large piece debris not blown to upper containment 3,644 "t2 Figure 3.e.1.1 Distribution of small and large piece debris not blown to upper containment ENR-2007-002743-20-02 Attachment E Page 36 of 49 Initial distribution for small and large piece debris not blown to upper containment 3,644 ft2 Figure 3.e.1.1 Distribution of small and large piece debris not blown to upper containment ENR-2007-002743-20-02

Attachment E Page 37 of 49 Initial distribution for debns washed down refueling canal drains Initial distribution for debris washed down outside secondary shield wall 6,367 t Initial distribution for debris washed down Inside RC$ loop bays 2,311 W Figure 3.e. 1.1 Distribution of debris washed down from upper containment ENR-2007-002743-20-02 Attachment E Page 37 of49

'ridal distribution for debris washed down refueling canal drains Inltl aI dlstrlbutl on for debris washed down outside secondary shieldwaJl 6,367 ft2 Initial distribution fOf" debris washed down Inside ReS loop bays 2,311 ft2 Figure 3.e.1.1 Distribution of debris washed down from upper containment ENR -2007 -0027 4 3 02

Attachment E Page 38 of 49 Figure 3.e.1.2-1 Northwest isometric view lower containment CAD model ENR-2007-002743-20-02 Attachment E Page 38 of49 Figure 3.e.1.2-1 Northwest isometric view lower containment CAD model ENR -2007 -0027 4 3-20-02

Attachment E Page 39 of 49 Case 2: Loop 2 Break

~

Case 6: MSLB In

,,Coolina Unit Area Case 4b: Loop 4 Cold Leg Break Case 4a: Loop 4 Crossover Leg g Break Case 4c: Loop 4 Hot Leg Break Case 4d: Loop 4 Surge Line Break Case 8:

Letdown Line Break r Case lb: Loop I Cold Leg Break Case la: Loop I Crossover Leg Break 4

1 Case 7: SG Case 5: MSLB in Blowdown Line Penetration Area Break Figure 3.e.1.2-2 Postulated Break Locations ENR-2007-002743-20-02 Attachment E Page 39 of49 Case 3: Loop 3 Break Case 4b: Loop 4 Cold Leg Break Case 4a: Loop 4' Crossover Leg Break Case 4c: Loop 4 Hot Leg Break Case 4d: Loop 4 Surge Line Break Case9: FWLB in Loop4 Case 5: MSLB in Penetration Area Case 2: Loop 2 Break Case 6: MSLB in Cooling Unit Area Case 8:

Letdown Line Break Case 1 b: Loop 1 I.

Cold Leg Break Case 1 a: Loop 1 Crossover Leg Break Case 1 c: Loop 1 Hot Leg Break Case 7: SG Blowdown Line Break Figure 3.e.1.2-2 Postulated Break Locations ENR-2007-002743-20-02

Attachment E Page 40 of 49 Modeled Perimeter Modeled Equipment Drain Spray Drainage Modeled East G"

/

Refueling Canal Drai 2 $..

//fi Modeled 4" Refueling Canal Drains Modeled WestV6" Refueling Canal Drair4\\

Modeled Floor Drain Spray Drainage Case 4: Modeled Break \\1\\

Location Modeed umpModeled Sump Modeled Sm ri Train B Train A Modeled Region D Modeled Hydrogen Spray Flow on Sump VentFlow on Sump Train A Train B Figure 3.e.1.2-3 Diagram of significant features modeled ENR-2007-002743-20-02 Attachment E Page 40 of49 Modeled Perimeter A Region 1 Spray Drainage /;~

Modeled Equipment Drain Spray Drainage Modeled East 6"

/

Refueling Canal Orai /,

Modeled 4" Refueling ll-J.--i----1=~:u Canal Drains Modeled West6" Refueling Canal Orai Modeled Floor Drain Spray Drainage Case 4: Modeled Break Location Modeled Sump Train B Modeled Hydrogen Vent Flow on Sump Train B Modeled Perimeter Region 2 Spray ralnage Case2: Modeled Break Location Modeled Modeled Perimeter Region 3 Spray Drainage

"'='--\\'r Modeled SE Stair Spray Drainage I;---f--H_' Modeled H2 Vent Spray Flow Modeled Region 0 Spray Flow Modeled Sump Train A Modeled Region 0 Spray Flow on Sum p Train A Figure 3.e.1.2-3 Diagram of significant features modeled ENR-2007-002743-20-02

Attachment E Page 41 of 49 Figure 3.e.1.2-4 Illustration of distinct floor levels ENR-2007-002743-20-02 Attachment E Page 41 of 49 Figure 3.e.1.2-4 Illustration of distinct floor levels ENR-2007-002743-20-02

Attachment E Page 42 of 49 Refueling cavity drains

,, Equipment hatch L

drain area Inactive sump Figure 3.e.1.2-5 Streamlines showing water origination areas for each sump (Loop 4 LBLOCA, two trains)

ENR-2007-002743-20-02 Attachment E Page 42 of49 Refueling cavity drains Equipment hatch drain area Figure 3.e.1.2-5 Streamlines showing water origination areas for each sump (Loop 4 LBLOCA, two trains)

Inactive sump ENR-2007-002743-20-02

Attachment E Page 43 of 49 Velocity (ift/s)

  • 1.00 0.75 0.50 0.25 LOJ00 Figure 3.e.1.2-6 Vectors showing pool flow direction (Loop 4 LBLOCA Single Train Sump A)

ENR-2007-002743-20-02 Attachment E Page 430[49 UOII_Vi!ctors_over_combined bmp 200i* 10*~ 5 CPSES C as~ 4*EF Velocity (ft/s) 1.00 0.75 0.50 0.25 0.00 Figure 3.e.1.2-6 Vectors showing pool flow direction (Loop 4 LBLOCA Single Train Sump A)

ENR-2007-002743-20-02

Attachment E Page 44 of 49 Figure 3.e.1.2-7 Loop 4 LBLOCA Single Train Sump B ENR-2007-002743-20-02 Attachment E Page 44 of49 unit_vectors_over_combined.bmp 2007-1 O-::~3 CPSES Case 4-EF-6 Figure 3.e.1.2-7 Loop 4 LBLOCA Single Train Sump B ENR-2007-002743-20-02

Attachment E Page 45 of 49

/

Figure 3.e.1.2-8 Loop 4 LBLOCA Single Train Sump A ENR-2007-002743-20-02 Attachment E Page 45 of 49 uniCvectors_over_combined.bmp 2007-10-25 CPSES Case 4-EF Figure 3.e.1.2-8 Loop 4 LBLOCA Single Train Sump A ENR-2007-002743-20-02

Attachment E Page 46 of 49 Figure 3.f-1 Cutting Planes for Test Flume Modeling ENR-2007-002743-20-02 Attachment E Page 46 of49 North Approach 1 to 30 Figure 3.f-1 Cutting Planes for Test Flume Modeling ENR-2007-002743-20-02

Attachment E Page 47 of 49 Figure 3.f-2 Cutting Planes for Test Flume Modeling ENR-2007-002743-20-02 Attachment E Page 47 of 49 Sump A South pproach Planes 1 to 1

Plane 21

(

Figure 3.f-2 Cutting Planes for Test Flume Modeling ENR-2007-002743-20-02

Attachment E Page 48 of 49 Figure 3.f-3 Prepared Large LDFG (Nukon) - Dry ENR-2007-002743-20-02 Attachment E Page 48 of 49 Figure 3.f-3 Prepared Large LDFG (Nukon) - Dry ENR-2007-002743-20-02

Attachment E Page 49 of 49r L

Figure 3.f-4 Prepared Large LDFG (Nukon) - Wet ENIR-2007-002743-20-02 Attachment E Page 49 of 49 Figure 3.f-4 Prepared Large LDFG (Nukon) - Wet ENR-2007-002743-20-02

Attachment F Page 1 of 24 NRC Public Meeting 7/9/2009 7-

/

L,

/*J; ENR-2007-002743-20-02

        • --**-----.. 1

\\.

i*

i I

i I

I I

L J

I NRC Public Meeting 7/9/2009 ALDEN*'*

Solving flow protllerris since 1894 ENR-2007-002743-20-02

Attachment F Page 2 of 24 Recla~p

'0 of~i * -- 1

" Turbulence and flow are related Literature treats suspension in terms of shear velocity Literature would indicate that at most pieces smaller than 1"x1" could transport. All others cannot.

Experimental values for TKE required for suspension are much higher-than analytical values.

" TKE comparison between flume and containment Containment point sources of turbulence lead to higher levels of TKE in containment vs. flume Containment TKE levels were reported on the flume approach, not the prototypical approach path.

Turbulent kinetic energy levels are low relative to what can reasonably expected to affect transport.

0 Random velocity fluctuations are small relative to mean.

ENR-2007-002743-20-02 r-----

I

j.

"-~-----l I

t

  • Turbulence and flow are related Literature treats suspension in terms of shear velocity Literature-would indicate that at most pieces smaller than 1 "x1" could transport. All others cannot.

Experimental values for TKE required for suspension are much higher-than analytical values.

J

'. TKE comparison between flume and containment i

I

~/..-'~

/1' i

t I' ("\\

\\.

. /

Containment point sources of turbulence lead to higher levels of TKE in containment vs.flume Containment TKE levelS were reported on the flume approach, not the prototypical approach path.

Turbulent kinetic energy levels are low relative to what can reasonably expected to affect transport.

  • Random velocity fluctuations are small relative to mean.

ALDEN

---~ ':'."

_ " -Solvin!fflow problems since 1894'

--. -~.. -" -

_ - _ =- >.-.,

ENR-2007-002743-20-02

Attachment F Page 3 of 24 Containment Turbulent Kinetic Energy One Train Operation (A) 3 ft Above Floor Start of Approach FLUME APPROACH #2 TKE (ft2/s 2X 0.050 0.040 0.030 0.020 i0.010 0.000 Start of Approach FLUME APPROACH #1 End of Approach 44 ft diameter circles centered on array of strainers.

ENR-2007-002743-20-02 ALDEN 3 ft Above Floor Start of Approach FLUME APPROACH #2 TKE (ft2/s2 0.050 0.040 0.030 0.020 0.010 0.000 Solving flow problems since 1894 Containment Turbulent Kinetic Energy One Train Operation (A)

End of Approach Start of Approach FLUME APPROACH #1 End of Approach

~ 44 ft diameter circles

~

centered on array of strainers.

ENR -2007 -002 743 02

Attachment F Page 4 of4 Prototypical single strainer approach 1 Look at four approaches to central strainers ENR-2007-002743-20-02 Prototypical single strainer approac

  • Look at four approaches to central strainers ALDEN Solving flow problems since 1894 ENR-2007-002743-20-02

Attachment F Page 5 of 24 Turbulence Approach TKE Typical approach turbulence velocity is slightly lower 0.16 x

cc

.0 0.14 0.12 0.1 0.08 0.06 E Single Train Sump A

  • Single Train Sump A X Flume (effective)
  • _._.... - r -
  • -.W x

U Ex.

-W 0.04 X

X xxxxxxxxxxxxxxx 0.02 0i 0

5 10 15 20 25 1-ft increments back from Strainer Module / Test Strainer ENR-2007-002743-20-02 Turbulence Approach TKE

  • Typical approach turbulence velocity is slightly lower 0.16 x

0.14 0.12

  • Single Train Sump A VI

~

a:

0.1 X Flume (effective)

'0 0

Qj 0.08 c:

CII "3

.c 0.06

~

I

~

X

  • x
  • II

.~....

0.04 X

XXxXXXXXXXXXXXXX 0.02 o

o 5

10 15 20 25 1-ft increments back from Strainer Module / Test Strainer ALDEN Solving flow problems since 1894 ENR-2007-002743-20-02

Attachment F Page 6 of 24 Typical Approach Velocity

  • Flume approach is VERY conservative relative to containment IA 0

0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

1111111100 I

"rnI n

rnnr p~ fr r

+II~r S-Single Train Sump A Approach Avg

-M

,w i

0 5

10 15 20 25 Distance (ft)

ENR-2007-002743-20-02 ALDEN Typical Approach Velocity

  • Flume approach is VERY conservative relative to containment 0.7 0.6 0.5 ~o::-----I---l -

Flume Approach Velocity u

cu en

........ 0.4

~

1------- Single Train Sump AApproach Avg

.... *u

.2 0.3 cu > 0.2 0.1 0

0 5

10 15 20 25 Distance (ft)

Solving flow problems since 1894 ENR-2007-002743-20-02

Attachment F Page 7 of 24 Conclusiob.ns C

  • Flume turbulence is lower Importance is very questionable Magnitudes of random velocity fluctuations are low relative to mean
  • The key to transport is BULK VELOCITY Flume velocity is DOUBLE relative to typical containment approach velocity for singletrain sump A operation.

-i-7 ALDE ENR-2007-002743 02

  • Flume turbulence is lower

,;PC Importance is very questionable Magnitudes of random velocity fluctuations are low relative to mean

, Ii.

The key to transport is BULK VELOCITY i

I L.

. ___________...... ___.J r

Flume velocity is DOUBLE relative to typical containment approach velocity for singl~/ train sump A operation.

ALDEN -- -,

_ _ Solving 'flow problems since 1894

-- - - '~~:"

ENR-2007-002743-20-02

Attachment F Page 8 of 24 General Overview I

L1

  • Discussion of conservative representation of containment approach velocities in test flume
  • Discussion of relevant physics of turbulence Role of turbulence in debris suspension 9 NEI 04/07 9 Open Literature
  • Overview of CFD predicted containment turbulence
  • Overview of CFD predicted flume turbulence
  • Discussion ENR-2007-002743-20-02 i

___________ ----1 i

\\'

General Overview

  • Discussion of conservative representation of containment approach velocities in test flume
  • Discussion of relevant physics of turbulence Role of turbulence in debris suspension
  • NEI04/07
  • Open Literature
  • Overview of CFD predicted containment turbulence
  • Overview of CFD predicted flume turbulence
  • Discussion ALDEN

-~ --..--

_ ~

Solving -flow problems since 1894.. -

ENR-2007-002743-20-02

Attachment F Page 9 of 24 RAI lO& 11 Are flume flow turbulence conditions prototypical of conditions in containment ?

-~1

  • Are point sources of turbulence near modeled areas of containment accounted for in the flume ?

ALDE

  • Sovn flo proles sic 1

ENR-2007-002743-20-02

\\.

RAI: 1:0 & 1:1)

  • Are flume flow turbulence conditions prototypical of conditions in containment?

1--

--" --, ------1 I,

I. Are point sources of turbulence near modeled areas of containment accounted for in the flume?

i I

I I

I I

L

~ __, ______ ~ _~ ___ J

--'./:~Y

<::e:~

ALDEN

,~

- Solving flow problems since 1894 ENR-2007-002743-20-02

Attachment F Page 10 of 24 Containment Average Approach Velocity Representation in Test Flume At each 1 ft increment back from each strainer array along the water approach path to the strainers, calculate the weighted average of the velocity along a vertical plane:

L N The weighted average at each increment is weighted by twice the fastest velocity at the increment under consideration.

Low velocities in wake regions behind obstacles were ignored Only velocity vectors pointing towards the strainer array were considered Low velocities in the near wall regions were ignored ENR-2007-002743-20-02 i

j'--'--

'. ---.---.. - '-'---1 I

I C~~'".

,t-j'

"~ _...,

. '. \\.

Containment Average Approach Velocity

. Representation in Test Flume

  • At each 1 ft increment back from each strainer array along the water approach path to the strainers, calculate the weighted average of the velocity along a vertical plane:

The weighted average at each increment is weighted by twice the fastest velocity at the increment under consideration.

Low velocities in wake regions behind obstacles were ignored Only velocity vectors pointing towards the strainer array were considered Low velocities in the near wall regions were ignored ALDEN.. *

'-.'.~' --.

. -Solvin~rtlow problem'i"since 1894

"'". _'.'.'_:' ~ --. '.".'

ENR-2007-002743-20-02

Attachment F Page I11 of 24 Physics of Turbulence Turbulent vs. Laminar Flow Turbulent (Re > 2000) vs. Laminar Flow (Re < 2000)

Re = URh/v > 2000 for open channel flow [1]

  • U

= Characteristic Velocity Rh

= Characteristic Length Scale = Hydraulic Radius v

=Kinematic Viscosity

-. Calculation for Containment and Flume Flume Containment Min Max Min Max Velocity (ft/sec) 0.4 0.5 0.4 0.5 Width (ft) 0.3 0.45 Depth (ft) 4.17 4.17 Kinematic viscosity (ftA2/sec) 8E-06 3E-06 Hydraulic Radius (ft) 0.14 I0.21 4.17 Re 7240 13343 556000 695000

==

Conclusion:==

Flow in Flume is Turbulent

[1 Flo thog opncanls,-,KG..

c rw-il 91 ALDE Soligfo prblm sic 1894 ENR-2007-002743-20-02 I

Physics of Turbulence Turbulent vs. Laminar Flow

  • Turbulent (Re > 2000) VS. Laminar Flow (Re < 2000)

Re = URh/v > 2000 for open channel flow [1]

  • U

= Characteristic Velocity

  • Rh

= Characteristic Length Scale = Hydraulic Radius v

= Kinematic Viscosity Calculation for Containment and Flume L __.~ _______._" _____.,

Flume Containment Min Max Min Max Velocity (ft/secl 0.4 0.5 0.4 0.5 Width (ftl 0.3 0.45 Depth (ftl 4.17 4.17 Kinematic viscosity (ftJ\\2/secl BE-06 3E-06 Hydraulic Radius (ftl 0.14 v 0.21 4.17

\\

Re 7240 13343

.556000 695000

==

Conclusion:==

Flow in Flume is Turbulent A L DEN

_ _ [1] "Flow through open channels", RaJu, K G.R, McGraw-Hili, 1981, Solving-flow proble-ms since 1894

~

ENR-2007-002743-20-02

Attachment F Page 12 of 24 Physics of Turbulence "Magnitude" of Turbulence Turbulence Level is a function of Shear Velocity [2]

i L

J !

By Definition [2]: U*

S8 f - Darcy-Weisbach friction factor u*- shear velocity Magnitude of Turbulent Velocity Fluctuation:

u' = u* (2.3 exp (-y/h)) for y/h < 0.1 [3]

u' = u* (1.27 exp (-y/h)) for y/h => 0.1 [3]

Where:

u' = Turbulent Fluctuating Velocity u* = Shear velocity y

= Vertical Length Scale h = Depth of Flow Note:

fcontainment" fflume Ycontainment = Yflurme and hcontainment = hflume

° Expected flow turbulence levels in the flume due to flowing water are of the same order as containment A L E

[3 Neu I an Azra R.

'Truec Chrceitc an Ineacto bewe Patce ENR-2007-002743 02

---*-------1 I

i L ___. _______. ____.J 1-*-.... ).

._-c fc;. '"\\

'~ \\

Physics of Turbulence "Magnitude" of Turbulence Turbulence Level is a function of Shear Velocity [2]

f - Darcy-Weisbach friction factor F¥ 0 U2 By Definition [2]: U =

8 u*- shear velocity Magnitude of Turbulent Velocity Fluctuation:

u' = u* ( 2.3 exp (-y/h) ) for y/h < 0.1 [3]

u' = u* ( 1.27 exp (-y/h) ) for y/h => 0.1 [3]

Note:

Where:

u' = Turbulent Fluctuating Velocity u* = Shear velocity y = Vertical Length Scale h = Depth of Flow fcontainment -

fflume Y containment = Yflume and hcontainment = hflume

  • Expected flow turbulence levels in the flume due to flowing water are of the same order as containment

[2] The Hydraulics of Open Channel Flow. Chanson, H., Arnold, 1999.

A L DEN

[3] ~ezu, I and Azuma, R, 'Turbulence Charactenstics and Interaction betw~en Particles and Fluid in Particle-Laden Open Channel Flows", Journal of Hydraulic Engineering,

-Solvingllow*problems since 1894 c

~ __

.?ctober~OQ4.

ENR-2007-002743-20-02

Attachment F Page 13 of 24 Role of Turbulence in Suspension 9 Turbulence studies have shown that the fluid shear velocity is directly related to turbulence level [3]

  • Onset of debris suspension is expected to occur when the magnitude of the turbulent velocity fluctuation is greater by some margin than the settling velocity of the debris as defined by the following expression:

> critical value WO wo - settling velocity N

/

Open literature brackets the range of critical values: 0.2 to 2.0 [2]

Minimum Shear velocity, U* (Flume and Containment) - 0.031 ft/s Range of settling velocity susceptible to suspension:

  • Material with settling velocity < 0.15 ft/sec (c.v. = 0.2)
  • Material with settling velocity < 0.06 ft/sec (c.v. = 2)

ENR-2007-002743-20-02 1-

.. -...---------1 I',

1

. 'I I

i J

f

, __. _____._ -.:~ __ - I I.

'::'-..J.v"

-;~~~

.-.* ;f

',J

\\

Role of Turbulence in Suspension

  • Turbulence studies have shown that the fluid shear velocity is directly related to turbulence level [3]

Onset of debris suspension is expected to occur when the magnitude of the turbulent velocity fluctuation is greater by some margin than the settling velocity of the debris as defined by the following expression:

~

> critical value Wo Wo - settling velocity Open literature brackets the range of critical values: 0.2 to 2.0 [2]

Minimum Shear velocity, U*(Flume and Containment) = 0.031 ftls Range of settling velocity susceptible to suspension:

  • Material with settling velocity < 0.15 ftlsec (c.v. = 0.2)
  • Material with settling velocity < 0.06 ft/sec (c.v. = 2)

ALDEN

" ',Solving 'flow problemssi'nce 1894 ENR-2007-002743-20-02

Attachment F Page 14 of 24 Role of Turbulence in Suspension 6°

  • Table 4-2, NEI 04/07 Only loose fibers easily suspended by turbulence (w0<O. 15 ft/s)

Only 1/4" x 1/4" clump turbulence requirements verified experimentally (Analytical TKE levels questionable as indicated in SER)

Experimental value tends much higher than analytical value Termninl TKE Settling Required to Density Velocity

. Suspend Debris Category/Type Size (Ibinlft3)

(fWsec)

(ft /sec)

A. Fibrous Insulation

1. Fiberglass - Generic
2. Fiberglass -
a. 6"
a. 2.4
a. 0.41
a. 0.084 Nsikon
b. 4"
b. 2.4
b. 0.40
b. 0,080

,c. 1"

c. 2.4
c. 0.15 C. 0.011
d. 1/4"x
d. 2.4
d. 0.175
d. 0.14 1/4" Clumps

'e 175

e. 0.008
e. 3E-05
e. loose fibers ENR-2007-002743-20-02 r-------

I 1-


l Role of Turbulence in Suspension Table 4-2, NEI 04/07 Only loose fibers easily suspended by turbulence (wo <0.15 ft/s)

Only %" x %" clump turbulence requirements verified experimentally (Analytical TKE levels questionable as indicated in SER)

Experimental value tends much higher than analytical value

\\

De-bl"is Ca'('gol~'/Typ('

A. Fibl'ous Insulation

1. Fiberglass - Generic
2. Fibergl~ss -

Nukoll Size 11_ 6"

b. 4"
c. 1"
d. 1/4"x 1/4" clumps
e. loose fibers Minimum THmllllll TKE Settling Rl'qllil'ed 10 Densit,*

Velocit~-

SIl~pelld (lbIB/C'~)

(C,/sl'e)

(C':/5('c 2)

II. 2.4 II. 0.41

a. 0.084
b. 2.4 b.O.40
b. 0.080
c. 2.4
c. O.IS
c. 0.011
d. 2.4
d. O.liS
d. 0.14 e.1iS
e. 0.008
e. 3E-05 ALDEN

_,,' Solvirigllow -problems since 189*:f --'-

-~ --

.... ~. '-.-__ ',

_~:-

ENR-2007-002743-20-02

Attachment F Page 15 of 24 Containment Turbulent Kinetic Energy Two Train Operation 0.5 ft Above Floor Start of Approach APPROACH #2 F Start of Approach APPROACH #1 End of Approach End of Approach 44 ft diameter circles centered on array of strainers.

ALDE ENR-2007-002743-20-02 ALDEN Containment Turbulent Kinetic Energy Two Train Operation 0.5 ft Above Floor Start of Approach APPROACH #2 TKE (ft2/S2) 0.050 0.040 0.030 0.020 0.010 0.000 End of Approach Start of Approach APPROACH #1 End of Approach

___ ~ _______ ~ 44 ft diameter circles

~

centered on array of strainers.

Solving flow problems since 1894 ENR-2007-002743-20-02

Attachment F Page 16 of 24 Containment Turbulent Kinetic Energy Two Train Operation 3 ft Above Floor Start of Approach APPROACH #2

' Start of Approach APPROACH #1 I

End of Approach 44 ft diameter circles centered on array of strainers.

ENR,-2007-002743-20-02 ALDEN Containment Turbulent Kinetic Energy Two Train Operation 3 ft Above Floor Start of Approach TKE 0.050 0.040 0.030 0.020 0.010 0.000 End of Approach Start of Approach APPROACH #1 End of Approach

~ 44 ft diameter circles


~

centered on array of strainers.

Solving flow problems since 1894 ENR-2007-002743-20-02

Attachment F Page 17 of 24 Containment Turbulent Kinetic Energy One Train Operation (A) 0.5 ft Above Floor Start of Approach APPROACH #2 Start of Approach APPROACH #1 End of Approach 44 ft diameter circles centered on array of strainers.

TKE gT2/s2) 0 040 o 030 0,o020 U00108 ENR-2007-002 743-20-02 ALDEN Containment Turbulent Kinetic Energy One Train Operation (A) 0.5 ft Above Floor Start of Approach APPROACH #2 TKE (ft2/s2),

O.OSO 0.040 0.030 0.020 0.010 0.0:10 End of Approach Start of Approach APPROACH #1 End of Approach

~ 44 ft diameter circles

~

centered on array of strainers.

Solving flow problems since 1894 ENR-2007-002743-20-02

Attachment F Page 18 of 24 Containment Turbulent Kinetic Energy One Train Operation (A) 3 ft Above Floor APPROACH #2 Start of Approach TKE (ft2/s2),

  • 00050 0.040 0.030 0.020 U0.000 F

Start of Approach APPROACH #1 End of Anoroach 44 ft diameter circles centered on array of strainers.

ENR-2007-002743-20-02 ALDEN 3 ft Above Floor APPROACH #2 Start of Approach TKE (ft2/S2),

0.050 0.040 0.030 0.020 0.010 0.000 Solving flow problems since 1894

--- ~---------------------

Containment Turbulent Kinetic Energy One Train Operation (A)

End of Approach Start of Approach APPROACH #1 End of Approach

~ 44 ft diameter circles

~

centered on array of strainers.

ENR-2007-002743-20-02

Attachment F Page 19 of 24 Test Flume Turbulent Kinetic Energy CFD Geometry Curb Test Module

/

Inflow Pipe ENR-2007-002743-20-02 Inflow Pipe tALDEN I

Solving flow problems since 1894 Test Flume Turbulent Kinetic Energy CFD Geometry Test Module ENR-2007-002743-20-02

Attachment F Page 20 of 24 I

Test Flume Turbulent Kinetic Energy 0.5 ft above floor Ii

  • .lh*,0J8

!.l*-,

3 ft above floor 231e-13 3A6~'U3 4.52u-13 1

S.fD31.92e-03 5.36.-f 9.230-03 1.US.-02 ENR-2007-002743-20-02 Test Flume Turbulent Kinetic Energy 0.5 ft above floor O.Ue.. n Z.3le-Q3 8.920-03 8.08e-03 9.23111-0l l.aOe-02 3 ft above floor ALDEN Solving flow problems since 1894 ENR-2007-002743-20-02

Attachment F Page 21 of 24 Turbulent Kinetic Energy Profiles Area averaged quantities for planes back from sump I strainer 0.035000 x

0.030000 E Two Train Sump A Two Train Sump B 0.025000 3

mm

  • Single Train Sump A X Flume S0.020000u m

0.010000 0.005000

!+

xx XXXXxxx xxxXXx 0.000000 0

5 10 15 20 25 1-ft increments back from Strainer Module / Test Strainer ALDEN ENR-2007-002743-20-02 ALDEN Turbulent Kinetic Energy Profiles

  • Area averaged quantities for planes back from sump / strainer 0.035000 X

0.030000 * ***

  • Two Train Sump A 0.025000 Two Train Sump B
  • Single Train Sump A N

X Flume 0.020000 N

E.

UI 0.015000

~

X 0.010000 0.005000

i(;~)l 0.000000 0

5 10 15 20 25 1-ft increments back from Strainer Module I Test Strainer Solving flow problems since 1894 ENR-2007-002743-20-02

Attachment F Page 22 of 24 Summary of Comparison C,

-C,

  • Flume turbulence levels on par with Approach #2 to strainers in containment for both one and two train operation.
  • For one train operation, turbulence level in the flume is on the order of that in the plant over most of Approach #1.
  • The flume turbulence level near the test strainer is similar to the higher turbulence in the field at the upstream end of the array.

" For areas where flume turbulence is lower than containment:

Greatest part of turbulent kinetic energy is below estimated required level for suspension of 1" smalls based on settling velocities Fines are suspended by both flume and containment turbulence levels Debris > 4" is not able to be suspended by either containment or flume turbulence levels

--- C, 2/

ENR,-2007-002743 02 o

Summary of Comparison

  • Flume turbulence levels on par with Approach #2 to strainers in containment for both one and two train operation.
  • For one train operation, turbulence level in the flume is on the order of that in the plant over most of Approach #1.

1

  • The flume turbulence level near the test strainer is similar to r----.

I I'

r,

  • I

(",

I l __________

~.

~_. ___ _

r--............

! L '\\,

\\

l...,

.~ *

/.~)

~:~~-..

/,:","")/

-,,/

),

i :

the higher turbulence in the field at the upstream end of the array.

  • . For areas where flume turbulence is lower than containment:

Greatest part of turbulent kinetic energy is below estimated required level for suspension of 1" smalls based on settling velocities Fines are suspended by both flume and containment turbulence levels Debris> 4" is not able to be suspended by either containment or flume turbulence levels ALDEN*

_.Solving-flowproblemssincef894---*~------*-:"~.:..

~

. ______.. -._~. -_-..

ENR-2007-002743-20-02

Attachment F Page 23 of 24 Summary of Comparison (cont'd)

Settling velocity is -proportional to the inverse of viscosity Between flume (120F) and containment (-200F) viscosity is half Effective turbulence level in the flume is double due to lower settling velocity in flume

'IV ENR-2007-002743-20-02 i--

I I I

i

\\-

-~ --~-.- - -----_. -

J

-~'-.

.( :7

-:::~~~

r' Summary of Comparison (cont'd)

Settling velocity is 'proportional to the inverse of viscosity

  • Between flume (120F) and containment (-200F) viscosity is half Effective turbulence level in the flume is double due to lower settling velocity in flume ALDEN
  • Solving flow problems since 1894 ENR-2007-002743-20-02

Attachment F Page 24 of 24 RAI Response, Summary Flume flow conditions are turbulent and are representative of flow generated turbulence.

Turbulence levels observed are in general not sufficient to keep smalls above 1" suspended in containment or flume.

  • Near strainer turbulence levels are higher in the flume compared to containment calculated values.

" Point sources of turbulence from jetting located further away from the strainers are not modeled in the flume.

However, blocking of debris by the flow structures existing in this area is also not considered.

Point sources of turbulence are generally located outside the mean radius of travel modeled in the flume.

F->

ENR-2007-002743-20-02 R* *"AI: *R** jes'po' n' *s*e*. S~* "U' *m** (m r 'a' 'ry(' ;

t

~.

f'

,i' f

)" -

j: i

! 1 1.-

i J

Y

_/

i

_,.~

_:/..-

.'..*..1

.1 i

.. !V

  • Flume flow conditions are turbulent and are

~

representative of flow generated turbulence.

~<'

Turbulence levels observed are in general not sufficient to keep smalls above 1 " suspended in containment or r-'--

-..,.------1 fl u me.

)0 I

\\'

I,'

Near strainer turbulence levels are higher in the flume

- -"~,

I i

compared to containment calculated values.

L. ----;:=l--r=-~_~-~J. Point sources of turbulence from jetting located further J/

,~:.

~-..,

r /<' -" '" '.

away from the strainers are not modeled in the flume.

However, blocking of debris by the flow structures existing in this area is also not considered.

  • Point sources of turbulence are generally located outside the mean radius of travel modeled in the flume.

ALDEN

,~--

-~-

~

, -Solving flow problems since fS94

_ ~

ENR-2007-002743-20-02