ML13018A103: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(One intermediate revision by the same user not shown)
Line 2: Line 2:
| number = ML13018A103
| number = ML13018A103
| issue date = 01/26/2009
| issue date = 01/26/2009
| title = Drift Study for Abb ITE-62 Timers
| title = Drift Study for ABB ITE-62 Timers
| author name = Castor A
| author name = Castor A
| author affiliation = Entergy Operations, Inc
| author affiliation = Entergy Operations, Inc
Line 20: Line 20:


=Text=
=Text=
{{#Wiki_filter:ANO-1                 ANO-2                 GGNS               IP-2             IP-3             PLP JAF                   PNPS                   RBS                 VY               W3 (1)                                               (2)
{{#Wiki_filter:ANO-1 ANO-2 GGNS IP-2 IP-3 PLP JAF PNPS RBS VY W3 CALCULATION COVER PAGE (1) EC #
CALCULATION                    EC #                      11753                  Page 1 of   45 COVER PAGE (3) Design Basis Calc.       YES       NO         (4)     CALCULATION               EC Markup (5 )                                                                                     (6)
11753 (2)Page 1 of 45 (3) Design Basis Calc.
Calculation No: G13.18.6.3-009                                                         Revision: 0 (7)
YES NO (4)
CALCULATION EC Markup (5 ) Calculation No: G13.18.6.3-009 (6) Revision: 0 (7)


==Title:==
==Title:==
Drift Study for ABB ITE-62 Timers (8)                                             (9)
Drift Study for ABB ITE-62 Timers (8) System(s): 302 (9) Review Org (Department): NSBE3 (I&C Design)
System(s): 302                                 Review Org (Department): NSBE3 (I&C Design)
(10) Safety Class:
(10)                                             (11)
Safety / Quality Related Augmented Quality Program Non-Safety Related (11) Component/Equipment/Structure Type/Number:
Safety Class:                                  Component/Equipment/Structure Type/Number:
ENS-SWG1A-62-1 ENS-SWG1A-62-2 ENS-SWG1A-62-6 ENS-SWG1B-62-1 ENS-SWG1B-62-2 ENS-SWG1B-62-6 (12) Document Type: F43.02 (13)
Safety / Quality Related                  ENS-SWG1A-62-1               ENS-SWG1A-62-2 Augmented Quality Program Non-Safety Related                        ENS-SWG1A-62-6               ENS-SWG1B-62-1 ENS-SWG1B-62-2               ENS-SWG1B-62-6 (12)
Keywords (Description / Topical Codes): Drift  
Document Type: F43.02 (13)
Keywords (Description / Topical Codes): Drift
    
    
REVIEWS (14)                                 (15)                              (16)
REVIEWS (14) Name/Signature/Date
Name/Signature/Date                 Name/Signature/Date                Name/Signature/Date
_Aaron Castor /
_Aaron Castor /                      R.J. Hannigan /
/ 1-26-09 (15) Name/Signature/Date R.J. Hannigan /  
See AS for electronic signature
/ 1-26-09 (16) Name/Signature/Date See AS for electronic signature Responsible Engineer Design Verifier Supervisor/Approval Reviewer Comments Attached Comments Attached
                      / 1-26-09                               / 1-26-09 Responsible Engineer               Design Verifier                       Supervisor/Approval Reviewer Comments Attached                       Comments Attached


DRIFT ANALYSIS                                               G13.18.6.3-009 ENGINEERING DEPARTMENT                                           Revision 0 RIVER BEND STATION                                           PAGE 2 OF 14 CALCULATION               CALCULATION NO:   G13.18.6.3-009 REFERENCE SHEET            REVISION:   0 I. EC Markups Incorporated None II. Relationships:         Sht Rev   Input Output   Impact   Tracking Doc  Doc        Y/N     No.
DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 2 OF 14 CALCULATION REFERENCE SHEET CALCULATION NO:
: 1. 350911                       NA     !    "          N
G13.18.6.3-009 REVISION:
: 2. 350912                       NA     !    "          N
0 I. EC Markups Incorporated None II. Relationships:
: 3. 350917                       NA     !    "          N
Sht Rev Input Doc Output Doc Impact Y/N Tracking No.
: 4. 350918                       NA     !    "          N
: 1. 350911 NA N
: 5. 358908                       NA     !    "          N
: 2. 350912 NA N
: 6. 358909                       NA     !    "          N
: 3. 350917 NA N
: 7. 364930                       NA     !    "          N
: 4. 350918 NA N
: 8. 364931                       NA     !    "          N
: 5. 358908 NA N
: 9. 364932                       NA     !    "          N
: 6. 358909 NA N
: 10. 364935                       NA     !    "          N
: 7. 364930 NA N
: 11. ECH-NE-08-00015             000     !    "          N
: 8. 364931 NA N
: 12. G13.18.6.2-ENS-006       0   000     "    !          Y     11753
: 9. 364932 NA N
: 13. STP-302-1600             1   11     !    "          N
: 10. 364935 NA N
: 14. STP-302-1600             1   12     !    "          N
: 11. ECH-NE-08-00015 000 N
: 15. STP-302-1600             1   13     !    "          N
: 12. G13.18.6.2-ENS-006 0
: 16. STP-302-1601             1   10     !    "          N
000 Y
: 17. STP-302-1601             1   11     !    "          N
11753
: 18. STP-302-1601             1   12     !    "          N
: 13. STP-302-1600 1
: 19. STP-302-1602             1   11     !    "          N
11 N
: 20. STP-302-1602             1   12     !    "          N
: 14. STP-302-1600 1
: 21. STP-302-1602             1   13     !    "          N
12 N
: 22. STP-302-1603             1   11     !    "          N
: 15. STP-302-1600 1
: 23. STP-302-1603             1   12     !    "          N
13 N
: 24. STP-302-1603             1   13     !    "          N
: 16. STP-302-1601 1
: 25. WO-00053890                   0     !    "          N
10 N
: 26. WO-50688142                   0     !    "          N
: 17. STP-302-1601 1
: 27. WO-50688143                   0     !    "          N
11 N
: 28. WO-50688144                   0     !    "          N
: 18. STP-302-1601 1
: 29. WO-50688145                   0     !    "          N
12 N
: 30. WO-50994404                   0     !    "          N
: 19. STP-302-1602 1
: 31. WO-50994405                   0     !    "          N
11 N
: 32. WO-50994516                   0     !    "          N
: 20. STP-302-1602 1
: 33. WO-50994517                   0     !    "          N
12 N
: 34. WO-51041195                   0     !    "          N
: 21. STP-302-1602 1
13 N
: 22. STP-302-1603 1
11 N
: 23. STP-302-1603 1
12 N
: 24. STP-302-1603 1
13 N
: 25. WO-00053890 0
N
: 26. WO-50688142 0
N
: 27. WO-50688143 0
N
: 28. WO-50688144 0
N
: 29. WO-50688145 0
N
: 30. WO-50994404 0
N
: 31. WO-50994405 0
N
: 32. WO-50994516 0
N
: 33. WO-50994517 0
N
: 34. WO-51041195 0
N


DRIFT ANALYSIS                                                                     G13.18.6.3-009 ENGINEERING DEPARTMENT                                                                 Revision 0 RIVER BEND STATION                                                                 PAGE 3 OF 14 CALCULATION                       CALCULATION NO:                 G13.18.6.3-009 REFERENCE SHEET                    REVISION:         0 II. Relationships:                 Sht   Rev       Input       Output     Impact   Tracking Doc          Doc        Y/N     No.
DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 3 OF 14 CALCULATION REFERENCE SHEET CALCULATION NO:
: 35. WO-51041196                             0           !            "          N
G13.18.6.3-009 REVISION:
: 36. WO-51041842                             0           !            "          N
0 II. Relationships:
: 37. WO-51041843                             0           !            "          N III. CROSS  
Sht Rev Input Doc Output Doc Impact Y/N Tracking No.
: 35. WO-51041196 0
N
: 36. WO-51041842 0
N
: 37. WO-51041843 0
N III.
CROSS  


==REFERENCES:==
==REFERENCES:==
Line 88: Line 120:
: 6. NRC Generic Letter 91-04, Changes in Technical Specification Surveillance Requirements to Accommodate a 24 Month Fuel Cycle, April 2, 1991
: 6. NRC Generic Letter 91-04, Changes in Technical Specification Surveillance Requirements to Accommodate a 24 Month Fuel Cycle, April 2, 1991
: 7. VTD-B455-0147, Brown Boveri (Now ABB Power T&D Company) Instructions for ITE Solid-State Timing Relays, Pub # IB 18.7.7-16, Revision 0
: 7. VTD-B455-0147, Brown Boveri (Now ABB Power T&D Company) Instructions for ITE Solid-State Timing Relays, Pub # IB 18.7.7-16, Revision 0
: 8. VTD-B455-0157, Brown Boveri (Now ABB Power T&D Company) Instructions for ITE Solid-State Time Delay Relay ITE-62L Surface Mounted, Pub. # IB 18.7.7-48, Revision 0 IV.     SOFTWARE USED:
: 8. VTD-B455-0157, Brown Boveri (Now ABB Power T&D Company) Instructions for ITE Solid-State Time Delay Relay ITE-62L Surface Mounted, Pub. # IB 18.7.7-48, Revision 0 IV.
SOFTWARE USED:


==Title:==
==Title:==
N/A                   Version/Release:               Disk/CD No.
N/A Version/Release:
V.       DISK/CDS INCLUDED:
Disk/CD No.
V.
DISK/CDS INCLUDED:


==Title:==
==Title:==
N/A                   Version/Release                 Disk/CD No.
N/A Version/Release Disk/CD No.
VI.     OTHER CHANGES:
VI.
OTHER CHANGES:


DRIFT ANALYSIS                             G13.18.6.3-009 ENGINEERING DEPARTMENT                         Revision 0 RIVER BEND STATION                         PAGE 4 OF 14 Revision                 Record of Revision Initial issue.
DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 4 OF 14 Revision Record of Revision 0
0
Initial issue.  


DRIFT ANALYSIS                                                                                                                       G13.18.6.3-009 ENGINEERING DEPARTMENT                                                                                                                         Revision 0 RIVER BEND STATION                                                                                                                     PAGE 5 OF 14 TABLE OF CONTENTS 1 Purpose!.................................................................................................................................................!6 2 Conclusions!...........................................................................................................................................!7 3 Design!Inputs!.........................................................................................................................................!7 4 References!.............................................................................................................................................!7 5 Assumptions!..........................................................................................................................................!8 6 Method!of!Analysis................................................................................................................................!8 7 Analysis!................................................................................................................................................!10 8 Atttachments!.......................................................................................................................................!14 Attachment 1 - Drift Analysis Supporting Information (Excel Spreadsheet) - 23 pages Attachment 2 - DVR Forms with comments - 8 pages
DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 5 OF 14 TABLE OF CONTENTS 1
Purpose!.................................................................................................................................................!6 2
Conclusions!...........................................................................................................................................!7 3
Design!Inputs!.........................................................................................................................................!7 4
References!.............................................................................................................................................!7 5
Assumptions!..........................................................................................................................................!8 6
Method!of!Analysis................................................................................................................................!8 7
Analysis!................................................................................................................................................!10 8
Atttachments!.......................................................................................................................................!14
- Drift Analysis Supporting Information (Excel Spreadsheet) - 23 pages  
- DVR Forms with comments - 8 pages  


DRIFT ANALYSIS                                                                       G13.18.6.3-009 ENGINEERING DEPARTMENT                                                                   Revision 0 RIVER BEND STATION                                                                   PAGE 6 OF 14 1     Purpose 1.1   The purpose of this analysis is to establish more realistic drift values and characteristics to be used by instrument uncertainty calculations for determination of setpoints and allowable values for the subject instrumentation. The drift values are determined by historical As Found / As Left data analysis.
DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 6 OF 14 1
1.2   Specifically, this analysis addresses Asea Brown Boveri Model (ABB) ITE-62 Undervoltage Timers with tag numbers as shown in Table 1.2-1 below. Also shown in the table are the calibration procedure numbers, device functions, and applicable Technical Specification (TS) sections. The results of this analysis can be conservatively applied to any ABB Model ITE-62 Undervoltage Timers used at River Bend Station that meets the criteria listed in Section 3.5.3 of Reference 4.1.3, Considerations When Combining Instruments Into a Single Group.
Purpose 1.1 The purpose of this analysis is to establish more realistic drift values and characteristics to be used by instrument uncertainty calculations for determination of setpoints and allowable values for the subject instrumentation. The drift values are determined by historical As Found / As Left data analysis.
TABLE 1.2-1 COMPONENT LIST PROCEDURE NO.               TAG NO.                       FUNCTION                 TS SECTION Loss of Power (LOP) Instrumentation STP-302-1600         ENS-SWG1A-62-1       Divisions 1 and 2 - 4.16 kV Emergency 3.3.8.1.3-1.b STP-302-1601          ENS-SWG1B-62-1                  Bus Undervoltage Loss of Voltage - Time Delay Loss of Power (LOP) Instrumentation Divisions 1 and 2 - 4.16 kV Emergency STP-302-1602          ENS-SWG1A-62-2 Bus Undervoltage           3.3.8.1.3-1.d STP-302-1603         ENS-SWG1B-62-2 Degraded Voltage - Time Delay (No LOCA)
1.2 Specifically, this analysis addresses Asea Brown Boveri Model (ABB) ITE-62 Undervoltage Timers with tag numbers as shown in Table 1.2-1 below. Also shown in the table are the calibration procedure numbers, device functions, and applicable Technical Specification (TS) sections. The results of this analysis can be conservatively applied to any ABB Model ITE-62 Undervoltage Timers used at River Bend Station that meets the criteria listed in Section 3.5.3 of Reference 4.1.3, Considerations When Combining Instruments Into a Single Group.
Loss of Power (LOP) Instrumentation Divisions 1 and 2 - 4.16 kV Emergency STP-302-1602          ENS-SWG1A-62-6 Bus Undervoltage           3.3.8.1.3-1.e STP-302-1603          ENS-SWG1B-62-6 Degraded Voltage - Time Delay (LOCA)
TABLE 1.2-1 COMPONENT LIST PROCEDURE NO.
TAG NO.
FUNCTION TS SECTION STP-302-1600 STP-302-1601 ENS-SWG1A-62-1 ENS-SWG1B-62-1 Loss of Power (LOP) Instrumentation Divisions 1 and 2 - 4.16 kV Emergency Bus Undervoltage Loss of Voltage - Time Delay 3.3.8.1.3-1.b STP-302-1602 STP-302-1603 ENS-SWG1A-62-2 ENS-SWG1B-62-2 Loss of Power (LOP) Instrumentation Divisions 1 and 2 - 4.16 kV Emergency Bus Undervoltage Degraded Voltage - Time Delay (No LOCA) 3.3.8.1.3-1.d STP-302-1602 STP-302-1603 ENS-SWG1A-62-6 ENS-SWG1B-62-6 Loss of Power (LOP) Instrumentation Divisions 1 and 2 - 4.16 kV Emergency Bus Undervoltage Degraded Voltage - Time Delay (LOCA) 3.3.8.1.3-1.e


DRIFT ANALYSIS                                                                   G13.18.6.3-009 ENGINEERING DEPARTMENT                                                                 Revision 0 RIVER BEND STATION                                                                 PAGE 7 OF 14 2     Conclusions 2.1   The bounding Analyzed Drift (DA) for the ITE-62 Time Delay Relays (See Table 1.2-1) has been determined to be ! 2.072 % Setpoint for a 30 month (24 months + 25%)
DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 7 OF 14 2
Conclusions 2.1 The bounding Analyzed Drift (DA) for the ITE-62 Time Delay Relays (See Table 1.2-1) has been determined to be ! 2.072 % Setpoint for a 30 month (24 months + 25%)
calibration interval, with no significant bias. The Analyzed Drift should be treated as a normally distributed, 2" value for uncertainty analysis.
calibration interval, with no significant bias. The Analyzed Drift should be treated as a normally distributed, 2" value for uncertainty analysis.
2.2   The results of this analysis can be conservatively applied to all of the Undervoltage Timers in Table 1.2-1 and to any ABB Model ITE-62 Undervoltage Timers used at River Bend Station, which meets the criteria listed in Section 3.5.3 of Reference 4.1.3, Considerations When Combining Instruments Into a Single Group.
2.2 The results of this analysis can be conservatively applied to all of the Undervoltage Timers in Table 1.2-1 and to any ABB Model ITE-62 Undervoltage Timers used at River Bend Station, which meets the criteria listed in Section 3.5.3 of Reference 4.1.3, Considerations When Combining Instruments Into a Single Group.
3     Design Inputs 3.1   Pages 1 through 3 of Attachment 1 provide a listing of the historical As Left (AL) and As Found (AF) data, as obtained from Reference 4.2.1, with any data exclusions or modifications noted. All dates of calibration are also entered to provide time intervals between calibrations.
3 Design Inputs 3.1 Pages 1 through 3 of Attachment 1 provide a listing of the historical As Left (AL) and As Found (AF) data, as obtained from Reference 4.2.1, with any data exclusions or modifications noted. All dates of calibration are also entered to provide time intervals between calibrations.
4     References 4.1   METHODOLOGY 4.1.1     ANSI/ISA-S67.04-Part I-2000, Setpoints for Nuclear Safety Related Instrumentation 4.1.2     ISA-RP67.04-Part II-2000, "Methodologies for the Determination of Setpoints for Nuclear Safety-Related Instrumentation," Second Printing, June 12, 1995 4.1.3     ECH-NE-08-00015, Instrument Drift Analysis Design Guide," Rev. 0, Generated by EXCEL Services Corporation, July 2008 4.1.4     EPRI TR-103335R1, "Statistical Analysis of Instrument Calibration Data; Guidelines for Instrument Calibration Extension / Reduction Programs," October, 1998 4.1.5     DOE Research and Development Report No. WAPD-TM-1292, "Statistics for Nuclear Engineers and Scientists Part 1: Basic Statistical Inference," February 1981 4.1.6     NRC Generic Letter 91-04, "Changes in Technical Specification Surveillance Requirements to Accommodate a 24 Month Fuel Cycle," April 2, 1991 4.1.7     American National Standard N15.15-1974, "Assessment of the Assumption of Normality (Employing Individual Observed Values)"
4 References 4.1 METHODOLOGY 4.1.1 ANSI/ISA-S67.04-Part I-2000, Setpoints for Nuclear Safety Related Instrumentation 4.1.2 ISA-RP67.04-Part II-2000, "Methodologies for the Determination of Setpoints for Nuclear Safety-Related Instrumentation," Second Printing, June 12, 1995 4.1.3 ECH-NE-08-00015, Instrument Drift Analysis Design Guide," Rev. 0, Generated by EXCEL Services Corporation, July 2008 4.1.4 EPRI TR-103335R1, "Statistical Analysis of Instrument Calibration Data; Guidelines for Instrument Calibration Extension / Reduction Programs," October, 1998 4.1.5 DOE Research and Development Report No. WAPD-TM-1292, "Statistics for Nuclear Engineers and Scientists Part 1: Basic Statistical Inference," February 1981 4.1.6 NRC Generic Letter 91-04, "Changes in Technical Specification Surveillance Requirements to Accommodate a 24 Month Fuel Cycle," April 2, 1991 4.1.7 American National Standard N15.15-1974, "Assessment of the Assumption of Normality (Employing Individual Observed Values)"
4.2   PROCEDURES 4.2.1     Historical Calibration Records from RBS Surveillance Test Procedure Results for STP-302-1600, 1601, 1602, and 1603
4.2 PROCEDURES 4.2.1 Historical Calibration Records from RBS Surveillance Test Procedure Results for STP-302-1600, 1601, 1602, and 1603  


DRIFT ANALYSIS                                                                       G13.18.6.3-009 ENGINEERING DEPARTMENT                                                                   Revision 0 RIVER BEND STATION                                                                   PAGE 8 OF 14 4.3   MISCELLANEOUS REFERENCES 4.3.1     VTD-B455-0147, Brown Boveri (Now ABB Power T&D Company) Instructions for ITE Solid-State Timing Relays, Pub # IB 18.7.7-16, Revision 0 4.3.2     VTD-B455-0157, Brown Boveri (Now ABB Power T&D Company) Instructions for ITE Solid-State Time Delay Relay ITE-62L Surface Mounted, Pub. # IB 18.7.7-48, Revision 0 5     Assumptions 5.1   This drift report employs those assumptions customarily used for standard statistical analyses, as directed by Reference 4.1.3, such as the assumption that a distribution is normal and the use of statistical tests to confirm this hypothesis.
DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 8 OF 14 4.3 MISCELLANEOUS REFERENCES 4.3.1 VTD-B455-0147, Brown Boveri (Now ABB Power T&D Company) Instructions for ITE Solid-State Timing Relays, Pub # IB 18.7.7-16, Revision 0 4.3.2 VTD-B455-0157, Brown Boveri (Now ABB Power T&D Company) Instructions for ITE Solid-State Time Delay Relay ITE-62L Surface Mounted, Pub. # IB 18.7.7-48, Revision 0 5
5.2   This drift report is based on analysis of historical As Found and As Left data from calibration records for the devices listed in Table 1.2-1. The results of this analysis can also apply to any ABB Model ITE-62 Undervoltage Timers used at RBS, but care must be taken when applying these results. Specifically, in order to apply the results of this analysis to other similar devices, the devices must meet the criteria listed in Section 3.5.3 of Reference 4.1.3, Considerations When Combining Instruments Into a Single Group.
Assumptions 5.1 This drift report employs those assumptions customarily used for standard statistical analyses, as directed by Reference 4.1.3, such as the assumption that a distribution is normal and the use of statistical tests to confirm this hypothesis.
6     Method of Analysis 6.1   The methodology used for this analysis is Reference 4.1.3, which is written in accordance with Reference 4.1.4, using References 4.1.1, 4.1.2 and 4.1.7 to supplement. An overview of the methodology is given herein, and any deviation from Reference 4.1.3 or any supplemental methods used herein are described.
5.2 This drift report is based on analysis of historical As Found and As Left data from calibration records for the devices listed in Table 1.2-1. The results of this analysis can also apply to any ABB Model ITE-62 Undervoltage Timers used at RBS, but care must be taken when applying these results. Specifically, in order to apply the results of this analysis to other similar devices, the devices must meet the criteria listed in Section 3.5.3 of Reference 4.1.3, Considerations When Combining Instruments Into a Single Group.
6.2   This analysis determines the drift values for the subject instrumentation by analysis of historical As Found / As Left data from calibration records. Drift for a given device for a calibration period is determined by subtracting the previous As Left setting from a more recent As Found setting. The time interval for that calibration period is determined by subtracting the previous date from the more recent date, in units of days. All retrievable As Left and As Found data is collected for each calibration performed on each device covered by this report, for the study period. From this information, the drift and calibration interval is generated for each possible instance. Per Section 3.4.2 of Reference 4.1.3, "The goal is to collect enough data for the instrument or group to make a statistically valid pool." It goes on to explain that there is no hard fast number.
6 Method of Analysis 6.1 The methodology used for this analysis is Reference 4.1.3, which is written in accordance with Reference 4.1.4, using References 4.1.1, 4.1.2 and 4.1.7 to supplement. An overview of the methodology is given herein, and any deviation from Reference 4.1.3 or any supplemental methods used herein are described.
However sufficient data should be collected to yield at least 30 valid drift values for analysis, or at least 20 under justifiable circumstances. Also, as noted in Section 3.4.2.4 of Reference 4.1.3, "For each selected component in the sample, enough historic calibration data should be provided to ensure that the component's performance over time is understood." The devices covered by this report are currently calibrated on an 18 Month basis, and the proposed extension is for a 24 Month nominal calibration interval. Therefore, a study period of 10 years represents more than six of the present calibration cycles, and five of the proposed calibration cycles, which is adequate to understand the component's performance over time. Also, a sufficient number of valid drift values are provided as a result of the selected study period to make a statistically
6.2 This analysis determines the drift values for the subject instrumentation by analysis of historical As Found / As Left data from calibration records. Drift for a given device for a calibration period is determined by subtracting the previous As Left setting from a more recent As Found setting. The time interval for that calibration period is determined by subtracting the previous date from the more recent date, in units of days. All retrievable As Left and As Found data is collected for each calibration performed on each device covered by this report, for the study period. From this information, the drift and calibration interval is generated for each possible instance. Per Section 3.4.2 of Reference 4.1.3, "The goal is to collect enough data for the instrument or group to make a statistically valid pool." It goes on to explain that there is no hard fast number.
However sufficient data should be collected to yield at least 30 valid drift values for analysis, or at least 20 under justifiable circumstances. Also, as noted in Section 3.4.2.4 of Reference 4.1.3, "For each selected component in the sample, enough historic calibration data should be provided to ensure that the component's performance over time is understood." The devices covered by this report are currently calibrated on an 18 Month basis, and the proposed extension is for a 24 Month nominal calibration interval. Therefore, a study period of 10 years represents more than six of the present calibration cycles, and five of the proposed calibration cycles, which is adequate to understand the component's performance over time. Also, a sufficient number of valid drift values are provided as a result of the selected study period to make a statistically  


DRIFT ANALYSIS                                                                       G13.18.6.3-009 ENGINEERING DEPARTMENT                                                                   Revision 0 RIVER BEND STATION                                                                   PAGE 9 OF 14 valid pool. Therefore, As Found and As Left Data values are entered from calibrations occurring for approximately the last 10 years.
DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 9 OF 14 valid pool. Therefore, As Found and As Left Data values are entered from calibrations occurring for approximately the last 10 years.
6.3   Determination of the Analyzed Drift is generally accomplished through the following steps.
6.3 Determination of the Analyzed Drift is generally accomplished through the following steps.
6.3.1     Gather and Generate Raw Drift Data: In addition to gathering the As Found and As Left data, and computing the drift values and time intervals, this step also involves an investigation into whether all of the devices should be analyzed together, or whether they should be separated into smaller analysis groups. Additionally, this step involves careful screening of the input data for errors or other situations that would not allow proper determination of drift. Finally, this step involves careful screening of the input data for errors or other situations that could disrupt the proper determination of drift.
6.3.1 Gather and Generate Raw Drift Data: In addition to gathering the As Found and As Left data, and computing the drift values and time intervals, this step also involves an investigation into whether all of the devices should be analyzed together, or whether they should be separated into smaller analysis groups. Additionally, this step involves careful screening of the input data for errors or other situations that would not allow proper determination of drift. Finally, this step involves careful screening of the input data for errors or other situations that could disrupt the proper determination of drift.
6.3.2     Determination of Outliers and Statistical Summary: In order to properly model the drift characteristics for a device, it could be proper to remove up to one more data value, which obviously does not conform to the vast majority of the data. A t-Test is performed on the data to detect any outliers, and remove up to one if appropriate, per the guidelines of Reference 4.1.3. Additionally, the basic statistical values which describe the group of drift data are derived in this step, including such parameters as Mean, Standard Deviation, Count, Median, Minimum, Maximum, etc.
6.3.2 Determination of Outliers and Statistical Summary: In order to properly model the drift characteristics for a device, it could be proper to remove up to one more data value, which obviously does not conform to the vast majority of the data. A t-Test is performed on the data to detect any outliers, and remove up to one if appropriate, per the guidelines of Reference 4.1.3. Additionally, the basic statistical values which describe the group of drift data are derived in this step, including such parameters as Mean, Standard Deviation, Count, Median, Minimum, Maximum, etc.
6.3.3     Tests for Normality: Per Reference 4.1.3, a statistical test (W or D-Prime, depending on sample size) is performed on the drift data to support the hypothesis that the data conforms to a normal distribution. If this test is unable to support that hypothesis, then a Coverage Analysis is performed to ensure that the data can be conservatively modeled by a normal distribution and to provide an adjustment to the standard deviation of the drift model, if necessary to conservatively envelop the observed data population.
6.3.3 Tests for Normality: Per Reference 4.1.3, a statistical test (W or D-Prime, depending on sample size) is performed on the drift data to support the hypothesis that the data conforms to a normal distribution. If this test is unable to support that hypothesis, then a Coverage Analysis is performed to ensure that the data can be conservatively modeled by a normal distribution and to provide an adjustment to the standard deviation of the drift model, if necessary to conservatively envelop the observed data population.  


====6.3.4 Time-Dependency====
====6.3.4 Time-Dependency====
Per Reference 4.1.3, Scatter Plots and a time-based Binning Analysis are developed for the data to establish the time-dependency of the drift. If enough drift data exists for significantly different time intervals, regression analysis is performed to aid in the determination of time-dependency. The drift data is determined to be strongly time dependent or moderately time dependent, for the purpose of extrapolation.
Per Reference 4.1.3, Scatter Plots and a time-based Binning Analysis are developed for the data to establish the time-dependency of the drift. If enough drift data exists for significantly different time intervals, regression analysis is performed to aid in the determination of time-dependency. The drift data is determined to be strongly time dependent or moderately time dependent, for the purpose of extrapolation.
6.3.5     Analyzed Drift Derivation and Characterization: The drift values are determined for the current calibration interval. These values are conservatively extrapolated to the desired calibration interval, based on the methods prescribed in Reference 4.1.3, depending on the degree of time-dependency derived for the drift data.
6.3.5 Analyzed Drift Derivation and Characterization: The drift values are determined for the current calibration interval. These values are conservatively extrapolated to the desired calibration interval, based on the methods prescribed in Reference 4.1.3, depending on the degree of time-dependency derived for the drift data.  


DRIFT ANALYSIS                                                                       G13.18.6.3-009 ENGINEERING DEPARTMENT                                                                   Revision 0 RIVER BEND STATION                                                                 PAGE 10 OF 14 6.4   The mathematical computations of the statistical analysis are performed within an Excel spreadsheet. Supporting information from the spreadsheet is printed out as Attachment 1 to this analysis. Microsoft Excel spreadsheets generally compute values to an approximate 15 decimal resolution, which is well beyond any required rounding for engineering analyses. However, for printing and display purposes, most values are displayed to lesser resolution. It is possible that hand computations will produce slightly different results, because of using rounded numbers in initial and intermediate steps, but the Excel computed values are considered highly accurate in comparison.
DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 10 OF 14 6.4 The mathematical computations of the statistical analysis are performed within an Excel spreadsheet. Supporting information from the spreadsheet is printed out as Attachment 1 to this analysis. Microsoft Excel spreadsheets generally compute values to an approximate 15 decimal resolution, which is well beyond any required rounding for engineering analyses. However, for printing and display purposes, most values are displayed to lesser resolution. It is possible that hand computations will produce slightly different results, because of using rounded numbers in initial and intermediate steps, but the Excel computed values are considered highly accurate in comparison.
6.5   Acceptance Criteria: Since the purpose of the analysis is to generate a value and description of the characteristics of the drift of the evaluated make/model, there are no specific acceptance criteria.
6.5 Acceptance Criteria: Since the purpose of the analysis is to generate a value and description of the characteristics of the drift of the evaluated make/model, there are no specific acceptance criteria.
7     Analysis 7.1   Gather and Generate Raw Error Data 7.1.1     Specifically, this analysis addresses ABB Model ITE-62 Undervoltage Timers, with the tag numbers as shown in Table 1.2-1 of this analysis. These relays have the same manufacturer and very similar model numbers. All are ABB ITE-62 series time delay relays, but some are model ITE-62K and others are ITE-62L. Per References 4.3.1 and 4.3.2, these relays have somewhat similar specifications, and are of the same manufacturer and series. It is postulated that these two models will perform similarly. Additionally, these relays have some differences in setpoints.
7 Analysis 7.1 Gather and Generate Raw Error Data 7.1.1 Specifically, this analysis addresses ABB Model ITE-62 Undervoltage Timers, with the tag numbers as shown in Table 1.2-1 of this analysis. These relays have the same manufacturer and very similar model numbers. All are ABB ITE-62 series time delay relays, but some are model ITE-62K and others are ITE-62L. Per References 4.3.1 and 4.3.2, these relays have somewhat similar specifications, and are of the same manufacturer and series. It is postulated that these two models will perform similarly. Additionally, these relays have some differences in setpoints.
Therefore, pooling tests are required to group the data for analysis.
Therefore, pooling tests are required to group the data for analysis.
7.1.2     Pages 1 through 3 of Attachment 1 provide a listing of the initial As Found and As Left data from available historical plant calibration records for the subject Undervoltage Timers. Note that the calibration dates are also recorded, and notes are provided to clarify the activities performed or to provide additional information about the data, as appropriate. This data was entered into an Excel spreadsheet for computation of the drift values, time intervals between calibrations and statistical analysis.
7.1.2 Pages 1 through 3 of Attachment 1 provide a listing of the initial As Found and As Left data from available historical plant calibration records for the subject Undervoltage Timers. Note that the calibration dates are also recorded, and notes are provided to clarify the activities performed or to provide additional information about the data, as appropriate. This data was entered into an Excel spreadsheet for computation of the drift values, time intervals between calibrations and statistical analysis.
7.1.3     A screening of the initial input data from pages 1 through 3 of Attachment 1 was performed. To help identify erroneous data, an informal critical T-test was performed, with the Critical T values reduced incrementally until approximately 10%
7.1.3 A screening of the initial input data from pages 1 through 3 of Attachment 1 was performed. To help identify erroneous data, an informal critical T-test was performed, with the Critical T values reduced incrementally until approximately 10%
of the data population was identified as outliers. Those outliers were researched, and no data errors were revealed. The specific informal T-tests performed are not documented, as they are only used as tools to identify potentially erroneous data and do not contribute to the analysis of the valid data.
of the data population was identified as outliers. Those outliers were researched, and no data errors were revealed. The specific informal T-tests performed are not documented, as they are only used as tools to identify potentially erroneous data and do not contribute to the analysis of the valid data.  


DRIFT ANALYSIS                                                                           G13.18.6.3-009 ENGINEERING DEPARTMENT                                                                         Revision 0 RIVER BEND STATION                                                                     PAGE 11 OF 14 7.1.4     Data not entered into the analysis is listed in the table below, showing the reasoning used in not entering the data.
DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 11 OF 14 7.1.4 Data not entered into the analysis is listed in the table below, showing the reasoning used in not entering the data.
Table 7.4.2-1 Data Not Entered in the Drift Analysis Procedure           Tag Number         Surveillance           Comments/Disposition Number                                    Date(s)
Table 7.4.2-1 Data Not Entered in the Drift Analysis Procedure Number Tag Number Surveillance Date(s)
Relay failed calibration and was replaced STP-302-1602       ENS-SWG1A-62-6         09/19/1997 per CR 97-1494 and MAI 313634 7.1.5     Per the methodology of Section 4.1.1.11 of Reference 4.1.3, drift is computed by subtracting the As Left data of one calibration from the As Found data of the next calibration, as documented in pages 7 through 9 of Attachment 1. These pages also document the time interval between calibrations (in the number of days and months) by subtracting the As Left date of one calibration from the As Found date of the next calibration, per Section 4.1.1.10 of Reference 4.1.3. Pages 7 through 9 of Attachment 1 import the Sequence ID, the Tag No., the AF / AL flags, the dates of calibration and the As Found and As Left data from pages 1 through 3 of the Addendum and computes the interval between calibrations. Pages 7 and 8 of Attachment 1 compute the drift values and summarize the time intervals computed.
Comments/Disposition STP-302-1602 ENS-SWG1A-62-6 09/19/1997 Relay failed calibration and was replaced per CR 97-1494 and MAI 313634 7.1.5 Per the methodology of Section 4.1.1.11 of Reference 4.1.3, drift is computed by subtracting the As Left data of one calibration from the As Found data of the next calibration, as documented in pages 7 through 9 of Attachment 1. These pages also document the time interval between calibrations (in the number of days and months) by subtracting the As Left date of one calibration from the As Found date of the next calibration, per Section 4.1.1.10 of Reference 4.1.3. Pages 7 through 9 of import the Sequence ID, the Tag No., the AF / AL flags, the dates of calibration and the As Found and As Left data from pages 1 through 3 of the Addendum and computes the interval between calibrations. Pages 7 and 8 of compute the drift values and summarize the time intervals computed.
As an example of the equations used, the first drift value and time interval are computed as follows. The rest of the values are computed identically.
As an example of the equations used, the first drift value and time interval are computed as follows. The rest of the values are computed identically.
Drift (Seq 1)         = AF (02/17/08) - AL (05/08/06) [For Tag ENS-SWG1A-62-1]
Drift (Seq 1)  
                                = 97.167 (From Seq. 1 on Left) - 97.833 (From Seq. 4 on Left)
= AF (02/17/08) - AL (05/08/06) [For Tag ENS-SWG1A-62-1]
                                = -0.6667 % Setpoint Cal Interval (Seq 1) = 02/17/08 - 05/08/06
= 97.167 (From Seq. 1 on Left) - 97.833 (From Seq. 4 on Left)  
                                = 650 Days Cal Interval (Mo.)   = Cal Interval (Days) x 12 Months / 365.25 Days
= -0.6667 % Setpoint Cal Interval (Seq 1) = 02/17/08 - 05/08/06  
                                = 21.4 Months 7.1.6     Specific pooling tests are performed on the data as documented on page 12 of Attachment 1. The data is split into three groups by setpoint and model number.
= 650 Days Cal Interval (Mo.) = Cal Interval (Days) x 12 Months / 365.25 Days  
= 21.4 Months 7.1.6 Specific pooling tests are performed on the data as documented on page 12 of. The data is split into three groups by setpoint and model number.
The specific groups analyzed are as follows:
The specific groups analyzed are as follows:
: 1)     ENS-SWG1(A-B)-62-1 relays with a setpoint of 3 seconds (Model ITE-62K)
: 1)
: 2)     ENS-SWG1(A-B)-62-6 relays with a setpoint of 3 seconds (Model ITE-62L)
ENS-SWG1(A-B)-62-1 relays with a setpoint of 3 seconds (Model ITE-62K)
: 3)     ENS-SWG1(A-B)-62-2 relays with a setpoint of 57.8 and 60 seconds (Model ITE-62K)
: 2)
The pooling tests determine the acceptability of combining the data from the different model numbers and setpoints into one data set for analysis. First, to test for the difference in model numbers, group 1 is tested versus group 2. These groups have identical setpoints, and this test should isolate the difference to the model number. The second test is performed for the data from groups 1 and 2 versus group 3, to test for the difference in setpoints. In each case, a t Test is
ENS-SWG1(A-B)-62-6 relays with a setpoint of 3 seconds (Model ITE-62L)
: 3)
ENS-SWG1(A-B)-62-2 relays with a setpoint of 57.8 and 60 seconds (Model ITE-62K)
The pooling tests determine the acceptability of combining the data from the different model numbers and setpoints into one data set for analysis. First, to test for the difference in model numbers, group 1 is tested versus group 2. These groups have identical setpoints, and this test should isolate the difference to the model number. The second test is performed for the data from groups 1 and 2 versus group 3, to test for the difference in setpoints. In each case, a t Test is  


DRIFT ANALYSIS                                                                       G13.18.6.3-009 ENGINEERING DEPARTMENT                                                                   Revision 0 RIVER BEND STATION                                                                 PAGE 12 OF 14 performed per Section 3.5.4 of Reference 4.1.3, to determine acceptability for pooling, between the groups on page 12 of Attachment 1. For both tests, the t Statistic is less than the t Critical two-tail value, indicating that combination of the groups for analysis is appropriate. The means and standard deviations are reasonably similar. From an engineering standpoint, all data should combine appropriately in units of % Setpoint, and the t Tests confirm this hypothesis.
DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 12 OF 14 performed per Section 3.5.4 of Reference 4.1.3, to determine acceptability for pooling, between the groups on page 12 of Attachment 1. For both tests, the t Statistic is less than the t Critical two-tail value, indicating that combination of the groups for analysis is appropriate. The means and standard deviations are reasonably similar. From an engineering standpoint, all data should combine appropriately in units of % Setpoint, and the t Tests confirm this hypothesis.
Therefore, all of the data is combined for analysis in units of % Setpoint.
Therefore, all of the data is combined for analysis in units of % Setpoint.
7.2   Determination of Outliers and Statistical Summary 7.2.1   The outlier analysis is recorded on pages 10 and 11 of Attachment 1 to this drift analysis. This page displays the Sequence No., Tag No., Drift, and Calibration Interval (in units of Days). The critical T value used in the outlier analysis comes directly from Table 2 of Reference 4.1.3. As shown on page 10 of Attachment 1, no outliers are detected. The Final Data Set (FDS) for this analysis is documented on pages 10 and 11 of Attachment 1 and is identical to the original data set.
7.2 Determination of Outliers and Statistical Summary 7.2.1 The outlier analysis is recorded on pages 10 and 11 of Attachment 1 to this drift analysis. This page displays the Sequence No., Tag No., Drift, and Calibration Interval (in units of Days). The critical T value used in the outlier analysis comes directly from Table 2 of Reference 4.1.3. As shown on page 10 of Attachment 1, no outliers are detected. The Final Data Set (FDS) for this analysis is documented on pages 10 and 11 of Attachment 1 and is identical to the original data set.
7.2.2   A summary of the required statistical values for the Final Data Set, per Section 4.2 of Reference 4.1.3, is developed on page 10 of Attachment 1. Cell formulas for the determinations of statistical quantities are used directly from Section 4.2 of Reference 4.1.3.
7.2.2 A summary of the required statistical values for the Final Data Set, per Section 4.2 of Reference 4.1.3, is developed on page 10 of Attachment 1. Cell formulas for the determinations of statistical quantities are used directly from Section 4.2 of Reference 4.1.3.
7.3   Tests for Normality 7.3.1   Since the FDS contains less than 50 samples, the W Test is performed on the data to test for normality, as shown on page 13 of Attachment 1. Per the methodology of Section 3.7.2 of Reference 4.1.3, the details of the W Test methodology are shown in Reference 4.1.7. Equations used are listed on page 13 of Attachment 1. Since the calculated W statistic (0.9576) is greater than the critical value for W (0.9420),
7.3 Tests for Normality 7.3.1 Since the FDS contains less than 50 samples, the W Test is performed on the data to test for normality, as shown on page 13 of Attachment 1. Per the methodology of Section 3.7.2 of Reference 4.1.3, the details of the W Test methodology are shown in Reference 4.1.7. Equations used are listed on page 13 of Attachment 1. Since the calculated W statistic (0.9576) is greater than the critical value for W (0.9420),
this test does not reject the assumption of normality for this data set. Therefore, the data is established as normally distributed, and no coverage analysis is necessary.
this test does not reject the assumption of normality for this data set. Therefore, the data is established as normally distributed, and no coverage analysis is necessary.
7.3.2   Since the W Test did not reject the assumption of normality, a Coverage Analysis is not necessary, but a Histogram is developed for information only. The Histogram is developed and documented on pages 14 and 15 of Attachment 1, per Sections 3.7.5 and 4.4 of Reference 4.1.3. To generate the Histogram data, the drift values are categorized into 12 bins, in relation to the mean and standard deviation. These bins are generated in multiples of 1/2 Standard Deviation increments, and the bin maximum values are derived in accordance with the methods given in Section 19 of Reference 4.1.4. (See page 14 of Attachment 1 for specific formulas used for the maximums.)
7.3.2 Since the W Test did not reject the assumption of normality, a Coverage Analysis is not necessary, but a Histogram is developed for information only. The Histogram is developed and documented on pages 14 and 15 of Attachment 1, per Sections 3.7.5 and 4.4 of Reference 4.1.3. To generate the Histogram data, the drift values are categorized into 12 bins, in relation to the mean and standard deviation. These bins are generated in multiples of 1/2 Standard Deviation increments, and the bin maximum values are derived in accordance with the methods given in Section 19 of Reference 4.1.4. (See page 14 of Attachment 1 for specific formulas used for the maximums.)
The expected populations within each bin are developed from normal distribution percentages, as shown on page 14 of Attachment 1. The data passes normality test and the results are displayed in the Histogram on page 15 of Attachment 1.
The expected populations within each bin are developed from normal distribution percentages, as shown on page 14 of Attachment 1. The data passes normality test and the results are displayed in the Histogram on page 15 of Attachment 1.


DRIFT ANALYSIS                                                                     G13.18.6.3-009 ENGINEERING DEPARTMENT                                                                   Revision 0 RIVER BEND STATION                                                                 PAGE 13 OF 14 7.4   Time-Dependency 7.4.1   In order to determine time-dependency of the drift data, the data is first plotted as a scatter plot on page 16 of Attachment 1, in accordance with the methodology of Section 4.5.1 of Reference 4.1.3. The trend line within this scatter plot starts at a small negative value and crosses zero near the end of the analysis period. The data scatter appears to increase over time. The trend line and the associated equation are noted on the scatter plot on page 16 of Attachment 1.
DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 13 OF 14 7.4 Time-Dependency 7.4.1 In order to determine time-dependency of the drift data, the data is first plotted as a scatter plot on page 16 of Attachment 1, in accordance with the methodology of Section 4.5.1 of Reference 4.1.3. The trend line within this scatter plot starts at a small negative value and crosses zero near the end of the analysis period. The data scatter appears to increase over time. The trend line and the associated equation are noted on the scatter plot on page 16 of Attachment 1.
7.4.2   The binning analysis is performed on pages 17 and 18 of Attachment 1. The drift and time interval data are divided into bins, based on the intervals between calibrations as defined in Section 3.8.3.1 of Reference 4.1.3. Statistical summaries for each bin, including count, mean, standard deviation, mean time interval and maximum observed time interval are computed. Excel functions are used to determine the statistical summary values for each bin, and are used explicitly from Sections 4.2.1, 4.2.2, 4.2.3 and 4.2.7 of Reference 4.1.3. This information is presented on page 17 of Attachment 1. Per Section 3.8.3.4 of Reference 4.1.3, after removing those bins with 5 or less data points and those with less than or equal to 10% of total population, only Bins 4 and 5 remain.
7.4.2 The binning analysis is performed on pages 17 and 18 of Attachment 1. The drift and time interval data are divided into bins, based on the intervals between calibrations as defined in Section 3.8.3.1 of Reference 4.1.3. Statistical summaries for each bin, including count, mean, standard deviation, mean time interval and maximum observed time interval are computed. Excel functions are used to determine the statistical summary values for each bin, and are used explicitly from Sections 4.2.1, 4.2.2, 4.2.3 and 4.2.7 of Reference 4.1.3. This information is presented on page 17 of Attachment 1. Per Section 3.8.3.4 of Reference 4.1.3, after removing those bins with 5 or less data points and those with less than or equal to 10% of total population, only Bins 4 and 5 remain.
Page 18 of Attachment 1 displays a plot of the mean and standard deviations of the drift data versus the average time interval between calibrations for the subject bins, in accordance with Section 4.5.2 of Reference 4.1.3. It also provides all of the binning parameters and statistics that are a part of the binning analysis. The mean value of the data starts from a negative value in Bin 4 and barely crosses zero for Bin 5. This represents a decrease in the magnitude of the mean which is not indicative of time dependency. Also, from this plot, the standard deviation increases from Bin 4 to Bin 5. In addition, the ratio of the variances (Bin 5 / Bin 4) is compared to the F critical value, as directed by Section 4.5.2 of Reference 4.1.3. Only the standard deviation plot could be indicative of potential time dependency, but strong time dependency is not indicated from the variance test (Sections 3.8.3.4 and 4.5.2 of Reference 4.1.3).
Page 18 of Attachment 1 displays a plot of the mean and standard deviations of the drift data versus the average time interval between calibrations for the subject bins, in accordance with Section 4.5.2 of Reference 4.1.3. It also provides all of the binning parameters and statistics that are a part of the binning analysis. The mean value of the data starts from a negative value in Bin 4 and barely crosses zero for Bin 5. This represents a decrease in the magnitude of the mean which is not indicative of time dependency. Also, from this plot, the standard deviation increases from Bin 4 to Bin 5. In addition, the ratio of the variances (Bin 5 / Bin 4) is compared to the F critical value, as directed by Section 4.5.2 of Reference 4.1.3. Only the standard deviation plot could be indicative of potential time dependency, but strong time dependency is not indicated from the variance test (Sections 3.8.3.4 and 4.5.2 of Reference 4.1.3).
7.4.3   Per Section 3.8.4 of Reference 4.1.3, a drift regression analysis is performed within pages 19 and 20 of Attachment 1. The equations and functions used by Excel are taken specifically from Section 3.8.4 of Reference 4.1.3. The regression analysis output shows an R Squared Value (0.002014) less than 0.09, a P Value greater than 0.05 (0.777790) and F Value (0.080720) less than F Critical (3.231727).
7.4.3 Per Section 3.8.4 of Reference 4.1.3, a drift regression analysis is performed within pages 19 and 20 of Attachment 1. The equations and functions used by Excel are taken specifically from Section 3.8.4 of Reference 4.1.3. The regression analysis output shows an R Squared Value (0.002014) less than 0.09, a P Value greater than 0.05 (0.777790) and F Value (0.080720) less than F Critical (3.231727).
These results all indicate that the bias portion of the drift is not time dependent. The regression line crosses zero within the analysis period, which per the last paragraph of Section 3.8.4 of Reference 4.1.3, is not expected and is an improper model of the drift-versus-time characteristic of the device. The fact that this is an improper model of the drift-versus-time characteristic of the device would override any conclusions based on the three statistical tests. The bias portion of drift is conservatively treated as moderately time dependent for the purpose of extrapolation.
These results all indicate that the bias portion of the drift is not time dependent. The regression line crosses zero within the analysis period, which per the last paragraph of Section 3.8.4 of Reference 4.1.3, is not expected and is an improper model of the drift-versus-time characteristic of the device. The fact that this is an improper model of the drift-versus-time characteristic of the device would override any conclusions based on the three statistical tests. The bias portion of drift is conservatively treated as moderately time dependent for the purpose of extrapolation.
7.4.4   Per Section 3.8.4 of Reference 4.1.3, an absolute value drift regression analysis is performed within pages 21 and 22 of Attachment 1. The drift data is converted into absolute value via the Excel ABS function for each drift data value. The equations and functions used by Excel for the Regression analysis are taken specifically from Section 3.8.4 of Reference 4.1.3. This regression analysis output shows an R Squared Value (0.004453) less than 0.09, a P Value (0.674582) greater than 0.05,
7.4.4 Per Section 3.8.4 of Reference 4.1.3, an absolute value drift regression analysis is performed within pages 21 and 22 of Attachment 1. The drift data is converted into absolute value via the Excel ABS function for each drift data value. The equations and functions used by Excel for the Regression analysis are taken specifically from Section 3.8.4 of Reference 4.1.3. This regression analysis output shows an R Squared Value (0.004453) less than 0.09, a P Value (0.674582) greater than 0.05,  


DRIFT ANALYSIS                                                                     G13.18.6.3-009 ENGINEERING DEPARTMENT                                                                   Revision 0 RIVER BEND STATION                                                                 PAGE 14 OF 14 and an F Value (0.178904) less than F Critical (3.231727). These results all indicate a random portion of drift that is not time-dependent. The absolute value drift regression line increases over time, and the binning plot shows an increasing standard deviation over time. Based on these results, per Section 3.8.4 of Reference 4.1.3, the random portion of drift is conservatively treated as moderately time-dependent for the purpose of extrapolation.
DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 14 OF 14 and an F Value (0.178904) less than F Critical (3.231727). These results all indicate a random portion of drift that is not time-dependent. The absolute value drift regression line increases over time, and the binning plot shows an increasing standard deviation over time. Based on these results, per Section 3.8.4 of Reference 4.1.3, the random portion of drift is conservatively treated as moderately time-dependent for the purpose of extrapolation.
7.5   Analyzed Drift (DA) Derivation and Characterization 7.5.1     As shown on page 23 of Attachment 1, per Section 3.11 of Reference 4.1.3, the drift bias error is evaluated for significance. The critical value for significance of the bias term is computed and shown therein. The bias is determined to be negligible.
7.5 Analyzed Drift (DA) Derivation and Characterization 7.5.1 As shown on page 23 of Attachment 1, per Section 3.11 of Reference 4.1.3, the drift bias error is evaluated for significance. The critical value for significance of the bias term is computed and shown therein. The bias is determined to be negligible.
Therefore, the computed Analyzed Drift Bias term (DAbias) is negligible.
Therefore, the computed Analyzed Drift Bias term (DAbias) is negligible.
7.5.2     Per Section 4.6.6 of Reference 4.1.3, the random portion of the Analyzed Drift is determined from multiplying the standard deviation of Bin 5 by the Tolerance Interval Factor (TIF) and extrapolating as required to a calibration interval of 30 months. No normality adjustment is required per section 6.3.1. The random portion of drift has been determined to be moderately time-dependent for the purpose of extrapolation. For conservatism, the standard deviation of Bin 5 is used with the average observed time interval from Bin 5 on page 17 of Attachment 1 as the starting point. The TIF is obtained from Table 1 of Reference 4.1.3 as 2.445 for a 95/95 significance. The computation of this value is shown on page 23 of Attachment 1 to result in a DArandom (extrap) term of ! 2.072 % Setpoint for a 30 month (24 months + 25%) calibration interval.
7.5.2 Per Section 4.6.6 of Reference 4.1.3, the random portion of the Analyzed Drift is determined from multiplying the standard deviation of Bin 5 by the Tolerance Interval Factor (TIF) and extrapolating as required to a calibration interval of 30 months. No normality adjustment is required per section 6.3.1. The random portion of drift has been determined to be moderately time-dependent for the purpose of extrapolation. For conservatism, the standard deviation of Bin 5 is used with the average observed time interval from Bin 5 on page 17 of Attachment 1 as the starting point. The TIF is obtained from Table 1 of Reference 4.1.3 as 2.445 for a 95/95 significance. The computation of this value is shown on page 23 of to result in a DArandom (extrap) term of ! 2.072 % Setpoint for a 30 month (24 months + 25%) calibration interval.
8     Attachments Attachment 1 - Analysis Spreadsheet (23 pages)
8 Attachments - Analysis Spreadsheet (23 pages)
Spreadsheet Contents:
Spreadsheet Contents:
Pages Input Data                                                                         1-3 Data Conversion                                                                   4-6 AF-AL Data                                                                         7-9 Outliers & Summary                                                               10-11 Pooling Tests                                                                     12 W Test                                                                             13 Histogram                                                                         14-15 Scatter Plot                                                                       16 Binning Analysis                                                                 17-18 Regression - Drift                                                               19-20 Regression - AV of Drift                                                         21-22 Analyzed Drift (DA)                                                               23 Attachment 2 - DVR Form (8 pages)
Pages Input Data 1-3 Data Conversion 4-6 AF-AL Data 7-9 Outliers & Summary 10-11 Pooling Tests 12 W Test 13 Histogram 14-15 Scatter Plot 16 Binning Analysis 17-18 Regression - Drift 19-20 Regression - AV of Drift 21-22 Analyzed Drift (DA) 23 - DVR Form (8 pages)


DRIFT ANALYSIS                                   ABB Model ITE-62 Time Delay Relays                                       G13.18.6.3-009 Rev. 0 RIVER BEND STATION                                            Input Data                                                            Attachment 1 Page 1 of 23 Seq. ID     Tag ID         Date   Procedure   Make/Model AF/ AL   Setpt AF / AL Data Units                       Comments 1   ENS-SWG1A-62-1 2/17/2008 STP-302-1600 ABB ITE-62K   AF       3.0     2.9150   sec 2   ENS-SWG1A-62-1 2/17/2008 STP-302-1600 ABB ITE-62K   AL       3.0     2.9160   sec 3   ENS-SWG1A-62-1 5/8/2006 STP-302-1600 ABB ITE-62K   AF       3.0     2.9300   sec 4   ENS-SWG1A-62-1 5/8/2006 STP-302-1600 ABB ITE-62K   AL       3.0     2.9350   sec 5   ENS-SWG1A-62-1 11/11/2004 STP-302-1600 ABB ITE-62K   AF       3.0     2.9200   sec 6   ENS-SWG1A-62-1 11/11/2004 STP-302-1600 ABB ITE-62K   AL       3.0     2.9300   sec 7   ENS-SWG1A-62-1 3/29/2003 STP-302-1600 ABB ITE-62K   AF       3.0     2.9200   sec 8   ENS-SWG1A-62-1 3/29/2003 STP-302-1600 ABB ITE-62K   AL       3.0     2.9200   sec 9   ENS-SWG1A-62-1 9/27/2001 STP-302-1600 ABB ITE-62K   AF       3.0     2.9200   sec 10   ENS-SWG1A-62-1 9/27/2001 STP-302-1600 ABB ITE-62K   AL     3.0       2.9200   sec 11   ENS-SWG1A-62-1 3/10/2000 STP-302-1600 ABB ITE-62K   AF       3.0     2.9300   sec 12   ENS-SWG1A-62-1 3/10/2000 STP-302-1600 ABB ITE-62K   AL     3.0       2.9300   sec 13   ENS-SWG1A-62-1 4/21/1999 STP-302-1600 ABB ITE-62K   AF       3.0     2.9400   sec 14   ENS-SWG1A-62-1 4/21/1999 STP-302-1600 ABB ITE-62K   AL     3.0       2.9400   sec 15   ENS-SWG1A-62-1 9/19/1997 STP-302-1600 ABB ITE-62K   AF       3.0     2.9400   sec 16   ENS-SWG1A-62-1 9/19/1997 STP-302-1600 ABB ITE-62K   AL     3.0       2.9400   sec 17   ENS-SWG1A-62-2 2/17/2008 STP-302-1602 ABB ITE-62K   AF     57.8     59.1040   sec 18   ENS-SWG1A-62-2 2/17/2008 STP-302-1602 ABB ITE-62K   AL     57.8     59.0850   sec 19   ENS-SWG1A-62-2   5/8/2006 STP-302-1602 ABB ITE-62K   AF     57.8     59.2000   sec 20   ENS-SWG1A-62-2   5/8/2006 STP-302-1602 ABB ITE-62K   AL     57.8     59.0800   sec 21   ENS-SWG1A-62-2 11/11/2004 STP-302-1602 ABB ITE-62K   AF     57.8     58.9400   sec 22   ENS-SWG1A-62-2 11/11/2004 STP-302-1602 ABB ITE-62K   AL     57.8     58.9400   sec Setpoint set halfway between MIN and MAX. Setpoint 23   ENS-SWG1A-62-2 3/28/2003 STP-302-1602 ABB ITE-62K   AF     60.0     59.2900   sec changed from 60 sec to 57.8 sec.
DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Input Data G13.18.6.3-009 Rev. 0 Page 1 of 23 Seq. ID Tag ID Date Procedure Make/Model AF/ AL Setpt AF / AL Data Units Comments 1
24   ENS-SWG1A-62-2 3/28/2003 STP-302-1602 ABB ITE-62K   AL     57.8     59.2600   sec 25   ENS-SWG1A-62-2 9/27/2001 STP-302-1602 ABB ITE-62K   AF     60.0     59.1700   sec Setpoint set halfway between MIN and MAX.
ENS-SWG1A-62-1 2/17/2008 STP-302-1600 ABB ITE-62K AF 3.0 2.9150 sec 2
26   ENS-SWG1A-62-2 9/27/2001 STP-302-1602 ABB ITE-62K   AL     60.0     59.2500   sec 27   ENS-SWG1A-62-2 3/10/2000 STP-302-1602 ABB ITE-62K   AF     60.0     59.5000   sec Setpoint set halfway between MIN and MAX.
ENS-SWG1A-62-1 2/17/2008 STP-302-1600 ABB ITE-62K AL 3.0 2.9160 sec 3
28   ENS-SWG1A-62-2 3/10/2000 STP-302-1602 ABB ITE-62K   AL     60.0     59.5000   sec 29   ENS-SWG1A-62-2 4/21/1999 STP-302-1602 ABB ITE-62K   AF     60.0     59.6500   sec Setpoint set halfway between MIN and MAX.
ENS-SWG1A-62-1 5/8/2006 STP-302-1600 ABB ITE-62K AF 3.0 2.9300 sec 4
30   ENS-SWG1A-62-2 4/21/1999 STP-302-1602 ABB ITE-62K   AL     60.0     59.7300   sec 31   ENS-SWG1A-62-2 9/19/1997 STP-302-1602 ABB ITE-62K   AF     60.0     59.8300   sec Setpoint set halfway between MIN and MAX.
ENS-SWG1A-62-1 5/8/2006 STP-302-1600 ABB ITE-62K AL 3.0 2.9350 sec 5
32   ENS-SWG1A-62-2 9/19/1997 STP-302-1602 ABB ITE-62K   AL     60.0     59.8800   sec 33   ENS-SWG1A-62-6 2/17/2008 STP-302-1602 ABB ITE-62L   AF       3.0     2.9700   sec 34   ENS-SWG1A-62-6 2/17/2008 STP-302-1602 ABB ITE-62L   AL       3.0     2.9700   sec 35   ENS-SWG1A-62-6   5/8/2006 STP-302-1602 ABB ITE-62L   AF       3.0     2.9900   sec 36   ENS-SWG1A-62-6   5/8/2006 STP-302-1602 ABB ITE-62L   AL       3.0     2.9900   sec 37   ENS-SWG1A-62-6 11/11/2004 STP-302-1602 ABB ITE-62L   AF       3.0     3.0100   sec
ENS-SWG1A-62-1 11/11/2004 STP-302-1600 ABB ITE-62K AF 3.0 2.9200 sec 6
ENS-SWG1A-62-1 11/11/2004 STP-302-1600 ABB ITE-62K AL 3.0 2.9300 sec 7
ENS-SWG1A-62-1 3/29/2003 STP-302-1600 ABB ITE-62K AF 3.0 2.9200 sec 8
ENS-SWG1A-62-1 3/29/2003 STP-302-1600 ABB ITE-62K AL 3.0 2.9200 sec 9
ENS-SWG1A-62-1 9/27/2001 STP-302-1600 ABB ITE-62K AF 3.0 2.9200 sec 10 ENS-SWG1A-62-1 9/27/2001 STP-302-1600 ABB ITE-62K AL 3.0 2.9200 sec 11 ENS-SWG1A-62-1 3/10/2000 STP-302-1600 ABB ITE-62K AF 3.0 2.9300 sec 12 ENS-SWG1A-62-1 3/10/2000 STP-302-1600 ABB ITE-62K AL 3.0 2.9300 sec 13 ENS-SWG1A-62-1 4/21/1999 STP-302-1600 ABB ITE-62K AF 3.0 2.9400 sec 14 ENS-SWG1A-62-1 4/21/1999 STP-302-1600 ABB ITE-62K AL 3.0 2.9400 sec 15 ENS-SWG1A-62-1 9/19/1997 STP-302-1600 ABB ITE-62K AF 3.0 2.9400 sec 16 ENS-SWG1A-62-1 9/19/1997 STP-302-1600 ABB ITE-62K AL 3.0 2.9400 sec 17 ENS-SWG1A-62-2 2/17/2008 STP-302-1602 ABB ITE-62K AF 57.8 59.1040 sec 18 ENS-SWG1A-62-2 2/17/2008 STP-302-1602 ABB ITE-62K AL 57.8 59.0850 sec 19 ENS-SWG1A-62-2 5/8/2006 STP-302-1602 ABB ITE-62K AF 57.8 59.2000 sec 20 ENS-SWG1A-62-2 5/8/2006 STP-302-1602 ABB ITE-62K AL 57.8 59.0800 sec 21 ENS-SWG1A-62-2 11/11/2004 STP-302-1602 ABB ITE-62K AF 57.8 58.9400 sec 22 ENS-SWG1A-62-2 11/11/2004 STP-302-1602 ABB ITE-62K AL 57.8 58.9400 sec 23 ENS-SWG1A-62-2 3/28/2003 STP-302-1602 ABB ITE-62K AF 60.0 59.2900 sec Setpoint set halfway between MIN and MAX. Setpoint changed from 60 sec to 57.8 sec.
24 ENS-SWG1A-62-2 3/28/2003 STP-302-1602 ABB ITE-62K AL 57.8 59.2600 sec 25 ENS-SWG1A-62-2 9/27/2001 STP-302-1602 ABB ITE-62K AF 60.0 59.1700 sec Setpoint set halfway between MIN and MAX.
26 ENS-SWG1A-62-2 9/27/2001 STP-302-1602 ABB ITE-62K AL 60.0 59.2500 sec 27 ENS-SWG1A-62-2 3/10/2000 STP-302-1602 ABB ITE-62K AF 60.0 59.5000 sec Setpoint set halfway between MIN and MAX.
28 ENS-SWG1A-62-2 3/10/2000 STP-302-1602 ABB ITE-62K AL 60.0 59.5000 sec 29 ENS-SWG1A-62-2 4/21/1999 STP-302-1602 ABB ITE-62K AF 60.0 59.6500 sec Setpoint set halfway between MIN and MAX.
30 ENS-SWG1A-62-2 4/21/1999 STP-302-1602 ABB ITE-62K AL 60.0 59.7300 sec 31 ENS-SWG1A-62-2 9/19/1997 STP-302-1602 ABB ITE-62K AF 60.0 59.8300 sec Setpoint set halfway between MIN and MAX.
32 ENS-SWG1A-62-2 9/19/1997 STP-302-1602 ABB ITE-62K AL 60.0 59.8800 sec 33 ENS-SWG1A-62-6 2/17/2008 STP-302-1602 ABB ITE-62L AF 3.0 2.9700 sec 34 ENS-SWG1A-62-6 2/17/2008 STP-302-1602 ABB ITE-62L AL 3.0 2.9700 sec 35 ENS-SWG1A-62-6 5/8/2006 STP-302-1602 ABB ITE-62L AF 3.0 2.9900 sec 36 ENS-SWG1A-62-6 5/8/2006 STP-302-1602 ABB ITE-62L AL 3.0 2.9900 sec 37 ENS-SWG1A-62-6 11/11/2004 STP-302-1602 ABB ITE-62L AF 3.0 3.0100 sec


DRIFT ANALYSIS                                   ABB Model ITE-62 Time Delay Relays                                         G13.18.6.3-009 Rev. 0 RIVER BEND STATION                                            Input Data                                                              Attachment 1 Page 2 of 23 Seq. ID     Tag ID         Date   Procedure   Make/Model AF/ AL   Setpt AF / AL Data Units                         Comments 38   ENS-SWG1A-62-6 11/11/2004 STP-302-1602 ABB ITE-62L   AL     3.0       3.0100   sec 39   ENS-SWG1A-62-6 3/28/2003 STP-302-1602 ABB ITE-62L   AF     3.0       2.9900   sec 40   ENS-SWG1A-62-6 3/28/2003 STP-302-1602 ABB ITE-62L   AL     3.0       2.9800   sec 41   ENS-SWG1A-62-6 9/27/2001 STP-302-1602 ABB ITE-62L   AF     3.0       2.9800   sec 42   ENS-SWG1A-62-6 9/27/2001 STP-302-1602 ABB ITE-62L   AL     3.0       2.9800   sec 43   ENS-SWG1A-62-6 3/10/2000 STP-302-1602 ABB ITE-62L   AF     3.0       2.9800   sec 44   ENS-SWG1A-62-6 3/10/2000 STP-302-1602 ABB ITE-62L   AL     3.0       2.9800   sec 45   ENS-SWG1A-62-6 4/21/1999 STP-302-1602 ABB ITE-62L   AF     3.0       2.9600   sec 46   ENS-SWG1A-62-6 4/21/1999 STP-302-1602 ABB ITE-62L   AL     3.0       2.9600   sec Relay failed calibration and was replaced per CR 97-1494 47   ENS-SWG1A-62-6 9/19/1997 STP-302-1602 ABB ITE-62L   AF     3.0       FAIL     sec and MAI 313634.
DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Input Data G13.18.6.3-009 Rev. 0 Page 2 of 23 Seq. ID Tag ID Date Procedure Make/Model AF/ AL Setpt AF / AL Data Units Comments 38 ENS-SWG1A-62-6 11/11/2004 STP-302-1602 ABB ITE-62L AL 3.0 3.0100 sec 39 ENS-SWG1A-62-6 3/28/2003 STP-302-1602 ABB ITE-62L AF 3.0 2.9900 sec 40 ENS-SWG1A-62-6 3/28/2003 STP-302-1602 ABB ITE-62L AL 3.0 2.9800 sec 41 ENS-SWG1A-62-6 9/27/2001 STP-302-1602 ABB ITE-62L AF 3.0 2.9800 sec 42 ENS-SWG1A-62-6 9/27/2001 STP-302-1602 ABB ITE-62L AL 3.0 2.9800 sec 43 ENS-SWG1A-62-6 3/10/2000 STP-302-1602 ABB ITE-62L AF 3.0 2.9800 sec 44 ENS-SWG1A-62-6 3/10/2000 STP-302-1602 ABB ITE-62L AL 3.0 2.9800 sec 45 ENS-SWG1A-62-6 4/21/1999 STP-302-1602 ABB ITE-62L AF 3.0 2.9600 sec 46 ENS-SWG1A-62-6 4/21/1999 STP-302-1602 ABB ITE-62L AL 3.0 2.9600 sec 47 ENS-SWG1A-62-6 9/19/1997 STP-302-1602 ABB ITE-62L AF 3.0 FAIL sec Relay failed calibration and was replaced per CR 97-1494 and MAI 313634.
48   ENS-SWG1A-62-6 9/19/1997 STP-302-1602 ABB ITE-62L   AL     3.0       2.9990   sec 49   ENS-SWG1B-62-1   2/1/2008 STP-302-1601 ABB ITE-62K   AF       3.0     2.9900   sec 50   ENS-SWG1B-62-1   2/1/2008 STP-302-1601 ABB ITE-62K   AL       3.0     2.9900   sec 51   ENS-SWG1B-62-1 4/29/2006 STP-302-1601 ABB ITE-62K   AF       3.0     2.9900   sec 52   ENS-SWG1B-62-1 4/29/2006 STP-302-1601 ABB ITE-62K   AL       3.0     2.9900   sec 53   ENS-SWG1B-62-1 10/31/2004 STP-302-1601 ABB ITE-62K   AF     3.0       2.9500   sec 54   ENS-SWG1B-62-1 10/31/2004 STP-302-1601 ABB ITE-62K   AL     3.0       2.9400   sec 55   ENS-SWG1B-62-1 3/20/2003 STP-302-1601 ABB ITE-62K   AF       3.0     2.9100   sec 56   ENS-SWG1B-62-1 3/20/2003 STP-302-1601 ABB ITE-62K   AL       3.0     2.9200   sec 57   ENS-SWG1B-62-1 10/6/2001 STP-302-1601 ABB ITE-62K   AF       3.0     2.9500   sec 58   ENS-SWG1B-62-1 10/6/2001 STP-302-1601 ABB ITE-62K   AL       3.0     2.9300   sec 59   ENS-SWG1B-62-1 3/25/2000 STP-302-1601 ABB ITE-62K   AF       3.0     2.9190   sec 60   ENS-SWG1B-62-1 3/25/2000 STP-302-1601 ABB ITE-62K   AL       3.0     2.9180   sec 61   ENS-SWG1B-62-1 4/30/1999 STP-302-1601 ABB ITE-62K   AF       3.0     2.9400   sec 62   ENS-SWG1B-62-1 4/30/1999 STP-302-1601 ABB ITE-62K   AL       3.0     2.9400   sec 63   ENS-SWG1B-62-1 10/4/1997 STP-302-1601 ABB ITE-62K   AF       3.0     2.9660   sec 64   ENS-SWG1B-62-1 10/4/1997 STP-302-1601 ABB ITE-62K   AL       3.0     2.9400   sec 65   ENS-SWG1B-62-2   2/1/2008 STP-302-1603 ABB ITE-62K   AF     57.8     59.3100   sec 66   ENS-SWG1B-62-2   2/1/2008 STP-302-1603 ABB ITE-62K   AL     57.8     59.2700   sec 67   ENS-SWG1B-62-2 4/29/2006 STP-302-1603 ABB ITE-62K   AF     57.8     58.6700   sec 68   ENS-SWG1B-62-2 4/29/2006 STP-302-1603 ABB ITE-62K   AL     57.8     59.0600   sec 69   ENS-SWG1B-62-2 10/31/2004 STP-302-1603 ABB ITE-62K   AF     57.8     59.2100   sec 70   ENS-SWG1B-62-2 10/31/2004 STP-302-1603 ABB ITE-62K   AL     57.8     59.1400   sec 71   ENS-SWG1B-62-2 3/21/2003 STP-302-1603 ABB ITE-62K   AF     60.0     60.9700   sec Setpoint changed from 60.0 sec to 57.8 sec.
48 ENS-SWG1A-62-6 9/19/1997 STP-302-1602 ABB ITE-62L AL 3.0 2.9990 sec 49 ENS-SWG1B-62-1 2/1/2008 STP-302-1601 ABB ITE-62K AF 3.0 2.9900 sec 50 ENS-SWG1B-62-1 2/1/2008 STP-302-1601 ABB ITE-62K AL 3.0 2.9900 sec 51 ENS-SWG1B-62-1 4/29/2006 STP-302-1601 ABB ITE-62K AF 3.0 2.9900 sec 52 ENS-SWG1B-62-1 4/29/2006 STP-302-1601 ABB ITE-62K AL 3.0 2.9900 sec 53 ENS-SWG1B-62-1 10/31/2004 STP-302-1601 ABB ITE-62K AF 3.0 2.9500 sec 54 ENS-SWG1B-62-1 10/31/2004 STP-302-1601 ABB ITE-62K AL 3.0 2.9400 sec 55 ENS-SWG1B-62-1 3/20/2003 STP-302-1601 ABB ITE-62K AF 3.0 2.9100 sec 56 ENS-SWG1B-62-1 3/20/2003 STP-302-1601 ABB ITE-62K AL 3.0 2.9200 sec 57 ENS-SWG1B-62-1 10/6/2001 STP-302-1601 ABB ITE-62K AF 3.0 2.9500 sec 58 ENS-SWG1B-62-1 10/6/2001 STP-302-1601 ABB ITE-62K AL 3.0 2.9300 sec 59 ENS-SWG1B-62-1 3/25/2000 STP-302-1601 ABB ITE-62K AF 3.0 2.9190 sec 60 ENS-SWG1B-62-1 3/25/2000 STP-302-1601 ABB ITE-62K AL 3.0 2.9180 sec 61 ENS-SWG1B-62-1 4/30/1999 STP-302-1601 ABB ITE-62K AF 3.0 2.9400 sec 62 ENS-SWG1B-62-1 4/30/1999 STP-302-1601 ABB ITE-62K AL 3.0 2.9400 sec 63 ENS-SWG1B-62-1 10/4/1997 STP-302-1601 ABB ITE-62K AF 3.0 2.9660 sec 64 ENS-SWG1B-62-1 10/4/1997 STP-302-1601 ABB ITE-62K AL 3.0 2.9400 sec 65 ENS-SWG1B-62-2 2/1/2008 STP-302-1603 ABB ITE-62K AF 57.8 59.3100 sec 66 ENS-SWG1B-62-2 2/1/2008 STP-302-1603 ABB ITE-62K AL 57.8 59.2700 sec 67 ENS-SWG1B-62-2 4/29/2006 STP-302-1603 ABB ITE-62K AF 57.8 58.6700 sec 68 ENS-SWG1B-62-2 4/29/2006 STP-302-1603 ABB ITE-62K AL 57.8 59.0600 sec 69 ENS-SWG1B-62-2 10/31/2004 STP-302-1603 ABB ITE-62K AF 57.8 59.2100 sec 70 ENS-SWG1B-62-2 10/31/2004 STP-302-1603 ABB ITE-62K AL 57.8 59.1400 sec 71 ENS-SWG1B-62-2 3/21/2003 STP-302-1603 ABB ITE-62K AF 60.0 60.9700 sec Setpoint changed from 60.0 sec to 57.8 sec.
72   ENS-SWG1B-62-2 3/21/2003 STP-302-1603 ABB ITE-62K   AL     57.8     58.5900   sec 73   ENS-SWG1B-62-2 10/6/2001 STP-302-1603 ABB ITE-62K   AF     60.0     60.9200   sec Setpoint set halfway between MIN and MAX.
72 ENS-SWG1B-62-2 3/21/2003 STP-302-1603 ABB ITE-62K AL 57.8 58.5900 sec 73 ENS-SWG1B-62-2 10/6/2001 STP-302-1603 ABB ITE-62K AF 60.0 60.9200 sec Setpoint set halfway between MIN and MAX.
74   ENS-SWG1B-62-2 10/6/2001 STP-302-1603 ABB ITE-62K   AL     60.0     60.9300   sec
74 ENS-SWG1B-62-2 10/6/2001 STP-302-1603 ABB ITE-62K AL 60.0 60.9300 sec


DRIFT ANALYSIS                                   ABB Model ITE-62 Time Delay Relays                                       G13.18.6.3-009 Rev. 0 RIVER BEND STATION                                            Input Data                                                            Attachment 1 Page 3 of 23 Seq. ID     Tag ID       Date     Procedure   Make/Model AF/ AL   Setpt AF / AL Data Units                       Comments 75   ENS-SWG1B-62-2 3/25/2000 STP-302-1603 ABB ITE-62K   AF     60.0     60.9100   sec Setpoint set halfway between MIN and MAX.
DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Input Data G13.18.6.3-009 Rev. 0 Page 3 of 23 Seq. ID Tag ID Date Procedure Make/Model AF/ AL Setpt AF / AL Data Units Comments 75 ENS-SWG1B-62-2 3/25/2000 STP-302-1603 ABB ITE-62K AF 60.0 60.9100 sec Setpoint set halfway between MIN and MAX.
76   ENS-SWG1B-62-2 3/25/2000 STP-302-1603 ABB ITE-62K   AL     60.0     60.6400   sec 77   ENS-SWG1B-62-2 4/30/1999 STP-302-1603 ABB ITE-62K   AF     60.0     61.1000   sec Setpoint set halfway between MIN and MAX.
76 ENS-SWG1B-62-2 3/25/2000 STP-302-1603 ABB ITE-62K AL 60.0 60.6400 sec 77 ENS-SWG1B-62-2 4/30/1999 STP-302-1603 ABB ITE-62K AF 60.0 61.1000 sec Setpoint set halfway between MIN and MAX.
78   ENS-SWG1B-62-2 4/30/1999 STP-302-1603 ABB ITE-62K   AL     60.0     60.8400   sec 79   ENS-SWG1B-62-2 10/4/1997 STP-302-1603 ABB ITE-62K   AF     60.0     66.7200   sec Setpoint set halfway between MIN and MAX.
78 ENS-SWG1B-62-2 4/30/1999 STP-302-1603 ABB ITE-62K AL 60.0 60.8400 sec 79 ENS-SWG1B-62-2 10/4/1997 STP-302-1603 ABB ITE-62K AF 60.0 66.7200 sec Setpoint set halfway between MIN and MAX.
80   ENS-SWG1B-62-2 10/4/1997 STP-302-1603 ABB ITE-62K   AL     60.0     60.4000   sec 81   ENS-SWG1B-62-6 2/1/2008 STP-302-1603 ABB ITE-62L   AF       3.0     3.0300   sec 82   ENS-SWG1B-62-6 2/1/2008 STP-302-1603 ABB ITE-62L   AL       3.0     3.0300   sec 83   ENS-SWG1B-62-6 4/29/2006 STP-302-1603 ABB ITE-62L   AF       3.0     3.0300   sec 84   ENS-SWG1B-62-6 4/29/2006 STP-302-1603 ABB ITE-62L   AL       3.0     3.0300   sec 85   ENS-SWG1B-62-6 10/31/2004 STP-302-1603 ABB ITE-62L   AF       3.0     3.0100   sec 86   ENS-SWG1B-62-6 10/31/2004 STP-302-1603 ABB ITE-62L   AL     3.0       3.0200   sec 87   ENS-SWG1B-62-6 3/21/2003 STP-302-1603 ABB ITE-62L   AF       3.0     3.0100   sec 88   ENS-SWG1B-62-6 3/21/2003 STP-302-1603 ABB ITE-62L   AL       3.0     3.0200   sec 89   ENS-SWG1B-62-6 10/6/2001 STP-302-1603 ABB ITE-62L   AF       3.0     3.0200   sec 90   ENS-SWG1B-62-6 10/6/2001 STP-302-1603 ABB ITE-62L   AL       3.0     3.0300   sec 91   ENS-SWG1B-62-6 3/25/2000 STP-302-1603 ABB ITE-62L   AF       3.0     3.0200   sec 92   ENS-SWG1B-62-6 3/25/2000 STP-302-1603 ABB ITE-62L   AL       3.0     3.0250   sec 93   ENS-SWG1B-62-6 4/30/1999 STP-302-1603 ABB ITE-62L   AF       3.0     2.8800   sec 94   ENS-SWG1B-62-6 4/30/1999 STP-302-1603 ABB ITE-62L   AL       3.0     3.0200   sec 95   ENS-SWG1B-62-6 10/4/1997 STP-302-1603 ABB ITE-62L   AF       3.0     2.9100   sec 96   ENS-SWG1B-62-6 10/4/1997 STP-302-1603 ABB ITE-62L   AL       3.0     2.9100   sec
80 ENS-SWG1B-62-2 10/4/1997 STP-302-1603 ABB ITE-62K AL 60.0 60.4000 sec 81 ENS-SWG1B-62-6 2/1/2008 STP-302-1603 ABB ITE-62L AF 3.0 3.0300 sec 82 ENS-SWG1B-62-6 2/1/2008 STP-302-1603 ABB ITE-62L AL 3.0 3.0300 sec 83 ENS-SWG1B-62-6 4/29/2006 STP-302-1603 ABB ITE-62L AF 3.0 3.0300 sec 84 ENS-SWG1B-62-6 4/29/2006 STP-302-1603 ABB ITE-62L AL 3.0 3.0300 sec 85 ENS-SWG1B-62-6 10/31/2004 STP-302-1603 ABB ITE-62L AF 3.0 3.0100 sec 86 ENS-SWG1B-62-6 10/31/2004 STP-302-1603 ABB ITE-62L AL 3.0 3.0200 sec 87 ENS-SWG1B-62-6 3/21/2003 STP-302-1603 ABB ITE-62L AF 3.0 3.0100 sec 88 ENS-SWG1B-62-6 3/21/2003 STP-302-1603 ABB ITE-62L AL 3.0 3.0200 sec 89 ENS-SWG1B-62-6 10/6/2001 STP-302-1603 ABB ITE-62L AF 3.0 3.0200 sec 90 ENS-SWG1B-62-6 10/6/2001 STP-302-1603 ABB ITE-62L AL 3.0 3.0300 sec 91 ENS-SWG1B-62-6 3/25/2000 STP-302-1603 ABB ITE-62L AF 3.0 3.0200 sec 92 ENS-SWG1B-62-6 3/25/2000 STP-302-1603 ABB ITE-62L AL 3.0 3.0250 sec 93 ENS-SWG1B-62-6 4/30/1999 STP-302-1603 ABB ITE-62L AF 3.0 2.8800 sec 94 ENS-SWG1B-62-6 4/30/1999 STP-302-1603 ABB ITE-62L AL 3.0 3.0200 sec 95 ENS-SWG1B-62-6 10/4/1997 STP-302-1603 ABB ITE-62L AF 3.0 2.9100 sec 96 ENS-SWG1B-62-6 10/4/1997 STP-302-1603 ABB ITE-62L AL 3.0 2.9100 sec


DRIFT ANALYSIS                                   ABB Model ITE-62 Time Delay Relays                                   G13.18.6.3-009 Rev. 0 RIVER BEND STATION                                        Data Conversion                                                    Attachment 1 Page 4 of 23 AF / AL Data Setpoint AF / AL Data   (% Setpoint)
DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Data Conversion G13.18.6.3-009 Rev. 0 Page 4 of 23 Seq. ID Tag ID Date AF/ AL Setpoint (Seconds)
Seq. ID    Tag ID        Date  AF/ AL (Seconds) (Seconds) [(AF AL)/SP
AF / AL Data (Seconds)
* 100]                       Notes 1   ENS-SWG1A-62-1 2/17/08 AF       3.00     2.915           97.167 2   ENS-SWG1A-62-1 2/17/08 AL       3.00     2.916           97.200 3   ENS-SWG1A-62-1 5/8/06   AF       3.00     2.930           97.667 4   ENS-SWG1A-62-1 5/8/06   AL       3.00     2.935           97.833 5   ENS-SWG1A-62-1 11/11/04 AF       3.00     2.920           97.333 6   ENS-SWG1A-62-1 11/11/04 AL       3.00     2.930           97.667 7   ENS-SWG1A-62-1 3/29/03 AF       3.00     2.920           97.333 8   ENS-SWG1A-62-1 3/29/03 AL       3.00     2.920           97.333 9   ENS-SWG1A-62-1 9/27/01 AF       3.00     2.920           97.333 10   ENS-SWG1A-62-1 9/27/01 AL       3.00     2.920           97.333 11   ENS-SWG1A-62-1 3/10/00 AF       3.00     2.930           97.667 12   ENS-SWG1A-62-1 3/10/00 AL       3.00     2.930           97.667 13   ENS-SWG1A-62-1 4/21/99 AF       3.00     2.940           98.000 14   ENS-SWG1A-62-1 4/21/99 AL       3.00     2.940           98.000 15   ENS-SWG1A-62-1 9/19/97 AF       3.00     2.940           98.000 16   ENS-SWG1A-62-1 9/19/97 AL       3.00     2.940           98.000 17   ENS-SWG1A-62-2 2/17/08 AF     57.80     59.104         102.256 18   ENS-SWG1A-62-2 2/17/08 AL     57.80     59.085         102.223 19   ENS-SWG1A-62-2   5/8/06 AF     57.80     59.200         102.422 20   ENS-SWG1A-62-2   5/8/06 AL     57.80     59.080         102.215 21   ENS-SWG1A-62-2 11/11/04 AF     57.80     58.940         101.972 22   ENS-SWG1A-62-2 11/11/04 AL     57.80     58.940         101.972 Setpoint set halfway between MIN and MAX.
AF / AL Data
23   ENS-SWG1A-62-2 3/28/03 AF     60.00     59.290           98.817 Setpoint changed from 60 sec to 57.8 sec.
(% Setpoint)
24   ENS-SWG1A-62-2 3/28/03 AL     57.80     59.260         102.526 25   ENS-SWG1A-62-2 9/27/01 AF     60.00     59.170           98.617     Setpoint set halfway between MIN and MAX.
[(AF AL)/SP
26   ENS-SWG1A-62-2 9/27/01 AL     60.00     59.250           98.750 27   ENS-SWG1A-62-2 3/10/00 AF     60.00     59.500           99.167     Setpoint set halfway between MIN and MAX.
* 100]
28   ENS-SWG1A-62-2 3/10/00 AL     60.00     59.500           99.167 29   ENS-SWG1A-62-2 4/21/99 AF     60.00     59.650           99.417     Setpoint set halfway between MIN and MAX.
Notes 1
30   ENS-SWG1A-62-2 4/21/99 AL     60.00     59.730           99.550
ENS-SWG1A-62-1 2/17/08 AF 3.00 2.915 97.167 2
ENS-SWG1A-62-1 2/17/08 AL 3.00 2.916 97.200 3
ENS-SWG1A-62-1 5/8/06 AF 3.00 2.930 97.667 4
ENS-SWG1A-62-1 5/8/06 AL 3.00 2.935 97.833 5
ENS-SWG1A-62-1 11/11/04 AF 3.00 2.920 97.333 6
ENS-SWG1A-62-1 11/11/04 AL 3.00 2.930 97.667 7
ENS-SWG1A-62-1 3/29/03 AF 3.00 2.920 97.333 8
ENS-SWG1A-62-1 3/29/03 AL 3.00 2.920 97.333 9
ENS-SWG1A-62-1 9/27/01 AF 3.00 2.920 97.333 10 ENS-SWG1A-62-1 9/27/01 AL 3.00 2.920 97.333 11 ENS-SWG1A-62-1 3/10/00 AF 3.00 2.930 97.667 12 ENS-SWG1A-62-1 3/10/00 AL 3.00 2.930 97.667 13 ENS-SWG1A-62-1 4/21/99 AF 3.00 2.940 98.000 14 ENS-SWG1A-62-1 4/21/99 AL 3.00 2.940 98.000 15 ENS-SWG1A-62-1 9/19/97 AF 3.00 2.940 98.000 16 ENS-SWG1A-62-1 9/19/97 AL 3.00 2.940 98.000 17 ENS-SWG1A-62-2 2/17/08 AF 57.80 59.104 102.256 18 ENS-SWG1A-62-2 2/17/08 AL 57.80 59.085 102.223 19 ENS-SWG1A-62-2 5/8/06 AF 57.80 59.200 102.422 20 ENS-SWG1A-62-2 5/8/06 AL 57.80 59.080 102.215 21 ENS-SWG1A-62-2 11/11/04 AF 57.80 58.940 101.972 22 ENS-SWG1A-62-2 11/11/04 AL 57.80 58.940 101.972 23 ENS-SWG1A-62-2 3/28/03 AF 60.00 59.290 98.817 Setpoint set halfway between MIN and MAX.
Setpoint changed from 60 sec to 57.8 sec.
24 ENS-SWG1A-62-2 3/28/03 AL 57.80 59.260 102.526 25 ENS-SWG1A-62-2 9/27/01 AF 60.00 59.170 98.617 Setpoint set halfway between MIN and MAX.
26 ENS-SWG1A-62-2 9/27/01 AL 60.00 59.250 98.750 27 ENS-SWG1A-62-2 3/10/00 AF 60.00 59.500 99.167 Setpoint set halfway between MIN and MAX.
28 ENS-SWG1A-62-2 3/10/00 AL 60.00 59.500 99.167 29 ENS-SWG1A-62-2 4/21/99 AF 60.00 59.650 99.417 Setpoint set halfway between MIN and MAX.
30 ENS-SWG1A-62-2 4/21/99 AL 60.00 59.730 99.550


DRIFT ANALYSIS                                   ABB Model ITE-62 Time Delay Relays                                     G13.18.6.3-009 Rev. 0 RIVER BEND STATION                                        Data Conversion                                                      Attachment 1 Page 5 of 23 AF / AL Data Setpoint AF / AL Data   (% Setpoint)
DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Data Conversion G13.18.6.3-009 Rev. 0 Page 5 of 23 Seq. ID Tag ID Date AF/ AL Setpoint (Seconds)
Seq. ID    Tag ID      Date  AF/ AL (Seconds) (Seconds) [(AF AL)/SP
AF / AL Data (Seconds)
* 100]                         Notes 31   ENS-SWG1A-62-2 9/19/97   AF     60.00     59.830           99.717     Setpoint set halfway between MIN and MAX.
AF / AL Data
32   ENS-SWG1A-62-2 9/19/97   AL     60.00     59.880           99.800 33   ENS-SWG1A-62-6 2/17/08   AF       3.00     2.970           99.000 34   ENS-SWG1A-62-6 2/17/08   AL       3.00     2.970           99.000 35   ENS-SWG1A-62-6 5/8/06   AF       3.00     2.990           99.667 36   ENS-SWG1A-62-6 5/8/06   AL       3.00     2.990           99.667 37   ENS-SWG1A-62-6 11/11/04 AF       3.00     3.010         100.333 38   ENS-SWG1A-62-6 11/11/04 AL       3.00     3.010         100.333 39   ENS-SWG1A-62-6 3/28/03   AF       3.00     2.990           99.667 40   ENS-SWG1A-62-6 3/28/03   AL       3.00     2.980           99.333 41   ENS-SWG1A-62-6 9/27/01   AF       3.00     2.980           99.333 42   ENS-SWG1A-62-6 9/27/01   AL       3.00     2.980           99.333 43   ENS-SWG1A-62-6 3/10/00   AF       3.00     2.980           99.333 44   ENS-SWG1A-62-6 3/10/00   AL       3.00     2.980           99.333 45   ENS-SWG1A-62-6 4/21/99   AF       3.00     2.960           98.667 46   ENS-SWG1A-62-6 4/21/99   AL       3.00     2.960           98.667 Relay failed calibration and was replaced per 47   ENS-SWG1A-62-6 9/19/97   AF       3.00       FAIL           FAIL CR 97-1494 and MAI 313634.
(% Setpoint)
48   ENS-SWG1A-62-6 9/19/97   AL       3.00     2.999           99.967 49   ENS-SWG1B-62-1 2/1/08   AF       3.00     2.990           99.667 50   ENS-SWG1B-62-1 2/1/08   AL       3.00     2.990           99.667 51   ENS-SWG1B-62-1 4/29/06   AF       3.00     2.990           99.667 52   ENS-SWG1B-62-1 4/29/06   AL       3.00     2.990           99.667 53   ENS-SWG1B-62-1 10/31/04 AF       3.00     2.950           98.333 54   ENS-SWG1B-62-1 10/31/04 AL       3.00     2.940           98.000 55   ENS-SWG1B-62-1 3/20/03   AF       3.00     2.910           97.000 56   ENS-SWG1B-62-1 3/20/03   AL       3.00     2.920           97.333 57   ENS-SWG1B-62-1 10/6/01   AF       3.00     2.950           98.333 58   ENS-SWG1B-62-1 10/6/01   AL       3.00     2.930           97.667 59   ENS-SWG1B-62-1 3/25/00   AF       3.00     2.919           97.300 60   ENS-SWG1B-62-1 3/25/00   AL       3.00     2.918           97.267 61   ENS-SWG1B-62-1 4/30/99   AF       3.00     2.940           98.000 62   ENS-SWG1B-62-1 4/30/99   AL       3.00     2.940           98.000 63   ENS-SWG1B-62-1 10/4/97   AF       3.00     2.966           98.867 64   ENS-SWG1B-62-1 10/4/97   AL       3.00     2.940           98.000 65   ENS-SWG1B-62-2 2/1/08   AF     57.80     59.310         102.612
[(AF AL)/SP
* 100]
Notes 31 ENS-SWG1A-62-2 9/19/97 AF 60.00 59.830 99.717 Setpoint set halfway between MIN and MAX.
32 ENS-SWG1A-62-2 9/19/97 AL 60.00 59.880 99.800 33 ENS-SWG1A-62-6 2/17/08 AF 3.00 2.970 99.000 34 ENS-SWG1A-62-6 2/17/08 AL 3.00 2.970 99.000 35 ENS-SWG1A-62-6 5/8/06 AF 3.00 2.990 99.667 36 ENS-SWG1A-62-6 5/8/06 AL 3.00 2.990 99.667 37 ENS-SWG1A-62-6 11/11/04 AF 3.00 3.010 100.333 38 ENS-SWG1A-62-6 11/11/04 AL 3.00 3.010 100.333 39 ENS-SWG1A-62-6 3/28/03 AF 3.00 2.990 99.667 40 ENS-SWG1A-62-6 3/28/03 AL 3.00 2.980 99.333 41 ENS-SWG1A-62-6 9/27/01 AF 3.00 2.980 99.333 42 ENS-SWG1A-62-6 9/27/01 AL 3.00 2.980 99.333 43 ENS-SWG1A-62-6 3/10/00 AF 3.00 2.980 99.333 44 ENS-SWG1A-62-6 3/10/00 AL 3.00 2.980 99.333 45 ENS-SWG1A-62-6 4/21/99 AF 3.00 2.960 98.667 46 ENS-SWG1A-62-6 4/21/99 AL 3.00 2.960 98.667 47 ENS-SWG1A-62-6 9/19/97 AF 3.00 FAIL FAIL Relay failed calibration and was replaced per CR 97-1494 and MAI 313634.
48 ENS-SWG1A-62-6 9/19/97 AL 3.00 2.999 99.967 49 ENS-SWG1B-62-1 2/1/08 AF 3.00 2.990 99.667 50 ENS-SWG1B-62-1 2/1/08 AL 3.00 2.990 99.667 51 ENS-SWG1B-62-1 4/29/06 AF 3.00 2.990 99.667 52 ENS-SWG1B-62-1 4/29/06 AL 3.00 2.990 99.667 53 ENS-SWG1B-62-1 10/31/04 AF 3.00 2.950 98.333 54 ENS-SWG1B-62-1 10/31/04 AL 3.00 2.940 98.000 55 ENS-SWG1B-62-1 3/20/03 AF 3.00 2.910 97.000 56 ENS-SWG1B-62-1 3/20/03 AL 3.00 2.920 97.333 57 ENS-SWG1B-62-1 10/6/01 AF 3.00 2.950 98.333 58 ENS-SWG1B-62-1 10/6/01 AL 3.00 2.930 97.667 59 ENS-SWG1B-62-1 3/25/00 AF 3.00 2.919 97.300 60 ENS-SWG1B-62-1 3/25/00 AL 3.00 2.918 97.267 61 ENS-SWG1B-62-1 4/30/99 AF 3.00 2.940 98.000 62 ENS-SWG1B-62-1 4/30/99 AL 3.00 2.940 98.000 63 ENS-SWG1B-62-1 10/4/97 AF 3.00 2.966 98.867 64 ENS-SWG1B-62-1 10/4/97 AL 3.00 2.940 98.000 65 ENS-SWG1B-62-2 2/1/08 AF 57.80 59.310 102.612


DRIFT ANALYSIS                                   ABB Model ITE-62 Time Delay Relays                                   G13.18.6.3-009 Rev. 0 RIVER BEND STATION                                        Data Conversion                                                    Attachment 1 Page 6 of 23 AF / AL Data Setpoint AF / AL Data   (% Setpoint)
DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Data Conversion G13.18.6.3-009 Rev. 0 Page 6 of 23 Seq. ID Tag ID Date AF/ AL Setpoint (Seconds)
Seq. ID    Tag ID        Date  AF/ AL (Seconds) (Seconds) [(AF AL)/SP
AF / AL Data (Seconds)
* 100]                       Notes 66   ENS-SWG1B-62-2   2/1/08 AL     57.80     59.270         102.543 67   ENS-SWG1B-62-2 4/29/06 AF     57.80     58.670         101.505 68   ENS-SWG1B-62-2 4/29/06 AL     57.80     59.060         102.180 69   ENS-SWG1B-62-2 10/31/04 AF     57.80     59.210         102.439 70   ENS-SWG1B-62-2 10/31/04 AL     57.80     59.140         102.318 71   ENS-SWG1B-62-2 3/21/03 AF     60.00     60.970         101.617     Setpoint changed from 60.0 sec to 57.8 sec.
AF / AL Data
72   ENS-SWG1B-62-2 3/21/03 AL     57.80     58.590         101.367 73   ENS-SWG1B-62-2 10/6/01 AF     60.00     60.920         101.533     Setpoint set halfway between MIN and MAX.
(% Setpoint)
74   ENS-SWG1B-62-2 10/6/01 AL     60.00     60.930         101.550 75   ENS-SWG1B-62-2 3/25/00 AF     60.00     60.910         101.517     Setpoint set halfway between MIN and MAX.
[(AF AL)/SP
76   ENS-SWG1B-62-2 3/25/00 AL     60.00     60.640         101.067 77   ENS-SWG1B-62-2 4/30/99 AF     60.00     61.100         101.833     Setpoint set halfway between MIN and MAX.
* 100]
78   ENS-SWG1B-62-2 4/30/99 AL     60.00     60.840         101.400 79   ENS-SWG1B-62-2 10/4/97 AF     60.00     66.720         111.200     Setpoint set halfway between MIN and MAX.
Notes 66 ENS-SWG1B-62-2 2/1/08 AL 57.80 59.270 102.543 67 ENS-SWG1B-62-2 4/29/06 AF 57.80 58.670 101.505 68 ENS-SWG1B-62-2 4/29/06 AL 57.80 59.060 102.180 69 ENS-SWG1B-62-2 10/31/04 AF 57.80 59.210 102.439 70 ENS-SWG1B-62-2 10/31/04 AL 57.80 59.140 102.318 71 ENS-SWG1B-62-2 3/21/03 AF 60.00 60.970 101.617 Setpoint changed from 60.0 sec to 57.8 sec.
80   ENS-SWG1B-62-2 10/4/97 AL     60.00     60.400         100.667 81   ENS-SWG1B-62-6   2/1/08 AF       3.00     3.030         101.000 82   ENS-SWG1B-62-6   2/1/08 AL       3.00     3.030         101.000 83   ENS-SWG1B-62-6 4/29/06   AF       3.00     3.030         101.000 84   ENS-SWG1B-62-6 4/29/06   AL       3.00     3.030         101.000 85   ENS-SWG1B-62-6 10/31/04 AF       3.00     3.010         100.333 86   ENS-SWG1B-62-6 10/31/04 AL       3.00     3.020         100.667 87   ENS-SWG1B-62-6 3/21/03 AF       3.00     3.010         100.333 88   ENS-SWG1B-62-6 3/21/03 AL       3.00     3.020         100.667 89   ENS-SWG1B-62-6 10/6/01 AF       3.00     3.020         100.667 90   ENS-SWG1B-62-6 10/6/01 AL       3.00     3.030         101.000 91   ENS-SWG1B-62-6 3/25/00 AF       3.00     3.020         100.667 92   ENS-SWG1B-62-6 3/25/00 AL       3.00     3.025         100.833 93   ENS-SWG1B-62-6 4/30/99 AF       3.00     2.880           96.000 94   ENS-SWG1B-62-6 4/30/99 AL       3.00     3.020         100.667 95   ENS-SWG1B-62-6 10/4/97 AF       3.00     2.910           97.000 96   ENS-SWG1B-62-6 10/4/97 AL       3.00     2.910           97.000
72 ENS-SWG1B-62-2 3/21/03 AL 57.80 58.590 101.367 73 ENS-SWG1B-62-2 10/6/01 AF 60.00 60.920 101.533 Setpoint set halfway between MIN and MAX.
74 ENS-SWG1B-62-2 10/6/01 AL 60.00 60.930 101.550 75 ENS-SWG1B-62-2 3/25/00 AF 60.00 60.910 101.517 Setpoint set halfway between MIN and MAX.
76 ENS-SWG1B-62-2 3/25/00 AL 60.00 60.640 101.067 77 ENS-SWG1B-62-2 4/30/99 AF 60.00 61.100 101.833 Setpoint set halfway between MIN and MAX.
78 ENS-SWG1B-62-2 4/30/99 AL 60.00 60.840 101.400 79 ENS-SWG1B-62-2 10/4/97 AF 60.00 66.720 111.200 Setpoint set halfway between MIN and MAX.
80 ENS-SWG1B-62-2 10/4/97 AL 60.00 60.400 100.667 81 ENS-SWG1B-62-6 2/1/08 AF 3.00 3.030 101.000 82 ENS-SWG1B-62-6 2/1/08 AL 3.00 3.030 101.000 83 ENS-SWG1B-62-6 4/29/06 AF 3.00 3.030 101.000 84 ENS-SWG1B-62-6 4/29/06 AL 3.00 3.030 101.000 85 ENS-SWG1B-62-6 10/31/04 AF 3.00 3.010 100.333 86 ENS-SWG1B-62-6 10/31/04 AL 3.00 3.020 100.667 87 ENS-SWG1B-62-6 3/21/03 AF 3.00 3.010 100.333 88 ENS-SWG1B-62-6 3/21/03 AL 3.00 3.020 100.667 89 ENS-SWG1B-62-6 10/6/01 AF 3.00 3.020 100.667 90 ENS-SWG1B-62-6 10/6/01 AL 3.00 3.030 101.000 91 ENS-SWG1B-62-6 3/25/00 AF 3.00 3.020 100.667 92 ENS-SWG1B-62-6 3/25/00 AL 3.00 3.025 100.833 93 ENS-SWG1B-62-6 4/30/99 AF 3.00 2.880 96.000 94 ENS-SWG1B-62-6 4/30/99 AL 3.00 3.020 100.667 95 ENS-SWG1B-62-6 10/4/97 AF 3.00 2.910 97.000 96 ENS-SWG1B-62-6 10/4/97 AL 3.00 2.910 97.000


DRIFT ANALYSIS                                     ABB Model ITE-62 Time Delay Relays                             G13.18.6.3-009 Rev. 0 RIVER BEND STATION                                                AF-AL Data                                                    Attachment 1 Page 7 of 23 CAL INTERVAL =                      DRIFT = (Current  CAL INTERVAL =
DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays AF-AL Data G13.18.6.3-009 Rev. 0 Page 7 of 23 Seq.
AF/AL DATA   OUTLIERS Seq.                                   CAL DATE  AF/AL                          (Current Date - Seq.                  Cal AF Data -    (Current Date -
CAL DATE AF/AL AF/AL DATA VALUE OUTLIERS COMMENTS Seq.
VALUE      COMMENTS Previous Date)                      Prev Cal AL Data)  Previous Date)
DRIFT = (Current Cal AF Data -
ID   Make/Model Number     Tag ID     mm/dd/yy Status (% Setpoint)           Days     Months ID     Tag ID       (% Setpoint)     Days     Months 1     ABB ITE-62K   ENS-SWG1A-62-1 02/17/08   AF     97.167               650       21.4   1 ENS-SWG1A-62-1     -0.6667         650     21.4 2     ABB ITE-62K   ENS-SWG1A-62-1 02/17/08   AL     97.200                                 3 ENS-SWG1A-62-1       0.0000         543     17.8 3     ABB ITE-62K   ENS-SWG1A-62-1 05/08/06   AF     97.667               543       17.8   5 ENS-SWG1A-62-1       0.0000         593     19.5 4     ABB ITE-62K   ENS-SWG1A-62-1 05/08/06   AL     97.833                                 7 ENS-SWG1A-62-1       0.0000         548     18.0 5     ABB ITE-62K   ENS-SWG1A-62-1 11/11/04   AF     97.333               593       19.5   9 ENS-SWG1A-62-1     -0.3333         566     18.6 6     ABB ITE-62K   ENS-SWG1A-62-1 11/11/04   AL     97.667                               11 ENS-SWG1A-62-1     -0.3333         324     10.6 7     ABB ITE-62K   ENS-SWG1A-62-1 03/29/03   AF     97.333               548       18.0   13 ENS-SWG1A-62-1       0.0000         579     19.0 8     ABB ITE-62K   ENS-SWG1A-62-1 03/29/03   AL     97.333 9     ABB ITE-62K   ENS-SWG1A-62-1 09/27/01   AF     97.333               566       18.6   17 ENS-SWG1A-62-2       0.0415         650     21.4 10     ABB ITE-62K   ENS-SWG1A-62-1 09/27/01   AL     97.333                               19 ENS-SWG1A-62-2       0.4498         543     17.8 11     ABB ITE-62K   ENS-SWG1A-62-1 03/10/00   AF     97.667               324       10.6   21 ENS-SWG1A-62-2     -0.5536         594     19.5 12     ABB ITE-62K   ENS-SWG1A-62-1 03/10/00   AL     97.667                               23 ENS-SWG1A-62-2       0.0667         547     18.0 13     ABB ITE-62K   ENS-SWG1A-62-1 04/21/99   AF     98.000               579       19.0   25 ENS-SWG1A-62-2     -0.5500         566     18.6 14     ABB ITE-62K   ENS-SWG1A-62-1 04/21/99   AL     98.000                               27 ENS-SWG1A-62-2     -0.3833         324     10.6 15     ABB ITE-62K   ENS-SWG1A-62-1 09/19/97   AF     98.000                               29 ENS-SWG1A-62-2     -0.3833         579     19.0 16     ABB ITE-62K   ENS-SWG1A-62-1 09/19/97   AL     98.000 17     ABB ITE-62K   ENS-SWG1A-62-2 02/17/08   AF     102.256               650       21.4   33 ENS-SWG1A-62-6     -0.6667         650     21.4 18     ABB ITE-62K   ENS-SWG1A-62-2 02/17/08   AL     102.223                               35 ENS-SWG1A-62-6     -0.6667         543     17.8 19     ABB ITE-62K   ENS-SWG1A-62-2 05/08/06   AF     102.422               543       17.8   37 ENS-SWG1A-62-6       1.0000         594     19.5 20     ABB ITE-62K   ENS-SWG1A-62-2 05/08/06   AL     102.215                               39 ENS-SWG1A-62-6       0.3333         547     18.0 21     ABB ITE-62K   ENS-SWG1A-62-2 11/11/04   AF     101.972               594       19.5   41 ENS-SWG1A-62-6       0.0000         566     18.6 22     ABB ITE-62K   ENS-SWG1A-62-2 11/11/04   AL     101.972                               43 ENS-SWG1A-62-6       0.6667         324     10.6 23     ABB ITE-62K   ENS-SWG1A-62-2 03/28/03   AF     98.817               547       18.0   45 ENS-SWG1A-62-6     -1.3000         579     19.0 24     ABB ITE-62K   ENS-SWG1A-62-2 03/28/03   AL     102.526 25     ABB ITE-62K   ENS-SWG1A-62-2 09/27/01   AF     98.617               566       18.6   49 ENS-SWG1B-62-1       0.0000         643     21.1 26     ABB ITE-62K   ENS-SWG1A-62-2 09/27/01   AL     98.750                               51 ENS-SWG1B-62-1       1.6667         545     17.9 27     ABB ITE-62K   ENS-SWG1A-62-2 03/10/00   AF     99.167               324       10.6   53 ENS-SWG1B-62-1       1.0000         591     19.4 28     ABB ITE-62K   ENS-SWG1A-62-2 03/10/00   AL     99.167                               55 ENS-SWG1B-62-1     -0.6667         530     17.4 29     ABB ITE-62K   ENS-SWG1A-62-2 04/21/99   AF     99.417               579       19.0   57 ENS-SWG1B-62-1       1.0667         560     18.4 30     ABB ITE-62K   ENS-SWG1A-62-2 04/21/99   AL     99.550                               59 ENS-SWG1B-62-1     -0.7000         330     10.8 31     ABB ITE-62K   ENS-SWG1A-62-2 09/19/97   AF     99.717                               61 ENS-SWG1B-62-1       0.0000         573     18.8 32     ABB ITE-62K   ENS-SWG1A-62-2 09/19/97   AL     99.800 33     ABB ITE-62L   ENS-SWG1A-62-6 02/17/08   AF     99.000               650       21.4   65 ENS-SWG1B-62-2       0.4325         643     21.1 34     ABB ITE-62L   ENS-SWG1A-62-6 02/17/08   AL     99.000                               67 ENS-SWG1B-62-2     -0.8131         545     17.9
Prev Cal AL Data)
ID Make/Model Number Tag ID mm/dd/yy Status
(% Setpoint)
Days Months ID Tag ID
(% Setpoint)
Days Months 1
ABB ITE-62K ENS-SWG1A-62-1 02/17/08 AF 97.167 650 21.4 1
ENS-SWG1A-62-1
-0.6667 650 21.4 2
ABB ITE-62K ENS-SWG1A-62-1 02/17/08 AL 97.200 3
ENS-SWG1A-62-1 0.0000 543 17.8 3
ABB ITE-62K ENS-SWG1A-62-1 05/08/06 AF 97.667 543 17.8 5
ENS-SWG1A-62-1 0.0000 593 19.5 4
ABB ITE-62K ENS-SWG1A-62-1 05/08/06 AL 97.833 7
ENS-SWG1A-62-1 0.0000 548 18.0 5
ABB ITE-62K ENS-SWG1A-62-1 11/11/04 AF 97.333 593 19.5 9
ENS-SWG1A-62-1
-0.3333 566 18.6 6
ABB ITE-62K ENS-SWG1A-62-1 11/11/04 AL 97.667 11 ENS-SWG1A-62-1
-0.3333 324 10.6 7
ABB ITE-62K ENS-SWG1A-62-1 03/29/03 AF 97.333 548 18.0 13 ENS-SWG1A-62-1 0.0000 579 19.0 8
ABB ITE-62K ENS-SWG1A-62-1 03/29/03 AL 97.333 9
ABB ITE-62K ENS-SWG1A-62-1 09/27/01 AF 97.333 566 18.6 17 ENS-SWG1A-62-2 0.0415 650 21.4 10 ABB ITE-62K ENS-SWG1A-62-1 09/27/01 AL 97.333 19 ENS-SWG1A-62-2 0.4498 543 17.8 11 ABB ITE-62K ENS-SWG1A-62-1 03/10/00 AF 97.667 324 10.6 21 ENS-SWG1A-62-2
-0.5536 594 19.5 12 ABB ITE-62K ENS-SWG1A-62-1 03/10/00 AL 97.667 23 ENS-SWG1A-62-2 0.0667 547 18.0 13 ABB ITE-62K ENS-SWG1A-62-1 04/21/99 AF 98.000 579 19.0 25 ENS-SWG1A-62-2
-0.5500 566 18.6 14 ABB ITE-62K ENS-SWG1A-62-1 04/21/99 AL 98.000 27 ENS-SWG1A-62-2
-0.3833 324 10.6 15 ABB ITE-62K ENS-SWG1A-62-1 09/19/97 AF 98.000 29 ENS-SWG1A-62-2
-0.3833 579 19.0 16 ABB ITE-62K ENS-SWG1A-62-1 09/19/97 AL 98.000 17 ABB ITE-62K ENS-SWG1A-62-2 02/17/08 AF 102.256 650 21.4 33 ENS-SWG1A-62-6
-0.6667 650 21.4 18 ABB ITE-62K ENS-SWG1A-62-2 02/17/08 AL 102.223 35 ENS-SWG1A-62-6
-0.6667 543 17.8 19 ABB ITE-62K ENS-SWG1A-62-2 05/08/06 AF 102.422 543 17.8 37 ENS-SWG1A-62-6 1.0000 594 19.5 20 ABB ITE-62K ENS-SWG1A-62-2 05/08/06 AL 102.215 39 ENS-SWG1A-62-6 0.3333 547 18.0 21 ABB ITE-62K ENS-SWG1A-62-2 11/11/04 AF 101.972 594 19.5 41 ENS-SWG1A-62-6 0.0000 566 18.6 22 ABB ITE-62K ENS-SWG1A-62-2 11/11/04 AL 101.972 43 ENS-SWG1A-62-6 0.6667 324 10.6 23 ABB ITE-62K ENS-SWG1A-62-2 03/28/03 AF 98.817 547 18.0 45 ENS-SWG1A-62-6
-1.3000 579 19.0 24 ABB ITE-62K ENS-SWG1A-62-2 03/28/03 AL 102.526 25 ABB ITE-62K ENS-SWG1A-62-2 09/27/01 AF 98.617 566 18.6 49 ENS-SWG1B-62-1 0.0000 643 21.1 26 ABB ITE-62K ENS-SWG1A-62-2 09/27/01 AL 98.750 51 ENS-SWG1B-62-1 1.6667 545 17.9 27 ABB ITE-62K ENS-SWG1A-62-2 03/10/00 AF 99.167 324 10.6 53 ENS-SWG1B-62-1 1.0000 591 19.4 28 ABB ITE-62K ENS-SWG1A-62-2 03/10/00 AL 99.167 55 ENS-SWG1B-62-1
-0.6667 530 17.4 29 ABB ITE-62K ENS-SWG1A-62-2 04/21/99 AF 99.417 579 19.0 57 ENS-SWG1B-62-1 1.0667 560 18.4 30 ABB ITE-62K ENS-SWG1A-62-2 04/21/99 AL 99.550 59 ENS-SWG1B-62-1
-0.7000 330 10.8 31 ABB ITE-62K ENS-SWG1A-62-2 09/19/97 AF 99.717 61 ENS-SWG1B-62-1 0.0000 573 18.8 32 ABB ITE-62K ENS-SWG1A-62-2 09/19/97 AL 99.800 33 ABB ITE-62L ENS-SWG1A-62-6 02/17/08 AF 99.000 650 21.4 65 ENS-SWG1B-62-2 0.4325 643 21.1 34 ABB ITE-62L ENS-SWG1A-62-6 02/17/08 AL 99.000 67 ENS-SWG1B-62-2
-0.8131 545 17.9 CAL INTERVAL =
(Current Date -
Previous Date)
CAL INTERVAL =
(Current Date -
Previous Date)


DRIFT ANALYSIS                                     ABB Model ITE-62 Time Delay Relays                             G13.18.6.3-009 Rev. 0 RIVER BEND STATION                                                AF-AL Data                                                    Attachment 1 Page 8 of 23 CAL INTERVAL =                      DRIFT = (Current  CAL INTERVAL =
DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays AF-AL Data G13.18.6.3-009 Rev. 0 Page 8 of 23 Seq.
AF/AL DATA   OUTLIERS Seq.                                   CAL DATE  AF/AL                          (Current Date - Seq.                  Cal AF Data -    (Current Date -
CAL DATE AF/AL AF/AL DATA VALUE OUTLIERS COMMENTS Seq.
VALUE      COMMENTS Previous Date)                      Prev Cal AL Data)  Previous Date)
DRIFT = (Current Cal AF Data -
ID   Make/Model Number     Tag ID     mm/dd/yy Status (% Setpoint)           Days     Months ID     Tag ID       (% Setpoint)     Days     Months 35     ABB ITE-62L   ENS-SWG1A-62-6 05/08/06   AF     99.667               543       17.8   69 ENS-SWG1B-62-2       1.0727         590     19.4 36     ABB ITE-62L   ENS-SWG1A-62-6 05/08/06   AL     99.667                               71 ENS-SWG1B-62-2       0.0667         531     17.4 37     ABB ITE-62L   ENS-SWG1A-62-6 11/11/04   AF     100.333               594       19.5   73 ENS-SWG1B-62-2       0.4667         560     18.4 38     ABB ITE-62L   ENS-SWG1A-62-6 11/11/04   AL     100.333                               75 ENS-SWG1B-62-2       0.1167         330     10.8 39     ABB ITE-62L   ENS-SWG1A-62-6 03/28/03   AF     99.667               547       18.0   77 ENS-SWG1B-62-2       1.1667         573     18.8 40     ABB ITE-62L   ENS-SWG1A-62-6 03/28/03   AL     99.333 41     ABB ITE-62L   ENS-SWG1A-62-6 09/27/01   AF     99.333               566       18.6   81 ENS-SWG1B-62-6       0.0000         643     21.1 42     ABB ITE-62L   ENS-SWG1A-62-6 09/27/01   AL     99.333                               83 ENS-SWG1B-62-6       0.3333         545     17.9 43     ABB ITE-62L   ENS-SWG1A-62-6 03/10/00   AF     99.333               324       10.6   85 ENS-SWG1B-62-6     -0.3333         590     19.4 44     ABB ITE-62L   ENS-SWG1A-62-6 03/10/00   AL     99.333                               87 ENS-SWG1B-62-6     -0.6667         531     17.4 45     ABB ITE-62L   ENS-SWG1A-62-6 04/21/99   AF     98.667               579       19.0   89 ENS-SWG1B-62-6     -0.1667         560     18.4 46     ABB ITE-62L   ENS-SWG1A-62-6 04/21/99   AL     98.667                               91 ENS-SWG1B-62-6       0.0000         330     10.8 47     ABB ITE-62L   ENS-SWG1A-62-6 09/19/97   AF       FAIL                                 93 ENS-SWG1B-62-6     -1.0000         573     18.8 48     ABB ITE-62L   ENS-SWG1A-62-6 09/19/97   AL     99.967 49     ABB ITE-62K   ENS-SWG1B-62-1 02/01/08   AF     99.667               643       21.1 50     ABB ITE-62K   ENS-SWG1B-62-1 02/01/08   AL     99.667 51     ABB ITE-62K   ENS-SWG1B-62-1 04/29/06   AF     99.667               545       17.9 52     ABB ITE-62K   ENS-SWG1B-62-1 04/29/06   AL     99.667 53     ABB ITE-62K   ENS-SWG1B-62-1 10/31/04   AF     98.333               591       19.4 54     ABB ITE-62K   ENS-SWG1B-62-1 10/31/04   AL     98.000 55     ABB ITE-62K   ENS-SWG1B-62-1 03/20/03   AF     97.000               530       17.4 56     ABB ITE-62K   ENS-SWG1B-62-1 03/20/03   AL     97.333 57     ABB ITE-62K   ENS-SWG1B-62-1 10/06/01   AF     98.333               560       18.4 58     ABB ITE-62K   ENS-SWG1B-62-1 10/06/01   AL     97.667 59     ABB ITE-62K   ENS-SWG1B-62-1 03/25/00   AF     97.300               330       10.8 60     ABB ITE-62K   ENS-SWG1B-62-1 03/25/00   AL     97.267 61     ABB ITE-62K   ENS-SWG1B-62-1 04/30/99   AF     98.000               573       18.8 62     ABB ITE-62K   ENS-SWG1B-62-1 04/30/99   AL     98.000 63     ABB ITE-62K   ENS-SWG1B-62-1 10/04/97   AF     98.867 64     ABB ITE-62K   ENS-SWG1B-62-1 10/04/97   AL     98.000 65     ABB ITE-62K   ENS-SWG1B-62-2 02/01/08   AF     102.612               643       21.1 66     ABB ITE-62K   ENS-SWG1B-62-2 02/01/08   AL     102.543 67     ABB ITE-62K   ENS-SWG1B-62-2 04/29/06   AF     101.505               545       17.9 68     ABB ITE-62K   ENS-SWG1B-62-2 04/29/06   AL     102.180
Prev Cal AL Data)
ID Make/Model Number Tag ID mm/dd/yy Status
(% Setpoint)
Days Months ID Tag ID
(% Setpoint)
Days Months CAL INTERVAL =
(Current Date -
Previous Date)
CAL INTERVAL =
(Current Date -
Previous Date) 35 ABB ITE-62L ENS-SWG1A-62-6 05/08/06 AF 99.667 543 17.8 69 ENS-SWG1B-62-2 1.0727 590 19.4 36 ABB ITE-62L ENS-SWG1A-62-6 05/08/06 AL 99.667 71 ENS-SWG1B-62-2 0.0667 531 17.4 37 ABB ITE-62L ENS-SWG1A-62-6 11/11/04 AF 100.333 594 19.5 73 ENS-SWG1B-62-2 0.4667 560 18.4 38 ABB ITE-62L ENS-SWG1A-62-6 11/11/04 AL 100.333 75 ENS-SWG1B-62-2 0.1167 330 10.8 39 ABB ITE-62L ENS-SWG1A-62-6 03/28/03 AF 99.667 547 18.0 77 ENS-SWG1B-62-2 1.1667 573 18.8 40 ABB ITE-62L ENS-SWG1A-62-6 03/28/03 AL 99.333 41 ABB ITE-62L ENS-SWG1A-62-6 09/27/01 AF 99.333 566 18.6 81 ENS-SWG1B-62-6 0.0000 643 21.1 42 ABB ITE-62L ENS-SWG1A-62-6 09/27/01 AL 99.333 83 ENS-SWG1B-62-6 0.3333 545 17.9 43 ABB ITE-62L ENS-SWG1A-62-6 03/10/00 AF 99.333 324 10.6 85 ENS-SWG1B-62-6
-0.3333 590 19.4 44 ABB ITE-62L ENS-SWG1A-62-6 03/10/00 AL 99.333 87 ENS-SWG1B-62-6
-0.6667 531 17.4 45 ABB ITE-62L ENS-SWG1A-62-6 04/21/99 AF 98.667 579 19.0 89 ENS-SWG1B-62-6
-0.1667 560 18.4 46 ABB ITE-62L ENS-SWG1A-62-6 04/21/99 AL 98.667 91 ENS-SWG1B-62-6 0.0000 330 10.8 47 ABB ITE-62L ENS-SWG1A-62-6 09/19/97 AF FAIL 93 ENS-SWG1B-62-6
-1.0000 573 18.8 48 ABB ITE-62L ENS-SWG1A-62-6 09/19/97 AL 99.967 49 ABB ITE-62K ENS-SWG1B-62-1 02/01/08 AF 99.667 643 21.1 50 ABB ITE-62K ENS-SWG1B-62-1 02/01/08 AL 99.667 51 ABB ITE-62K ENS-SWG1B-62-1 04/29/06 AF 99.667 545 17.9 52 ABB ITE-62K ENS-SWG1B-62-1 04/29/06 AL 99.667 53 ABB ITE-62K ENS-SWG1B-62-1 10/31/04 AF 98.333 591 19.4 54 ABB ITE-62K ENS-SWG1B-62-1 10/31/04 AL 98.000 55 ABB ITE-62K ENS-SWG1B-62-1 03/20/03 AF 97.000 530 17.4 56 ABB ITE-62K ENS-SWG1B-62-1 03/20/03 AL 97.333 57 ABB ITE-62K ENS-SWG1B-62-1 10/06/01 AF 98.333 560 18.4 58 ABB ITE-62K ENS-SWG1B-62-1 10/06/01 AL 97.667 59 ABB ITE-62K ENS-SWG1B-62-1 03/25/00 AF 97.300 330 10.8 60 ABB ITE-62K ENS-SWG1B-62-1 03/25/00 AL 97.267 61 ABB ITE-62K ENS-SWG1B-62-1 04/30/99 AF 98.000 573 18.8 62 ABB ITE-62K ENS-SWG1B-62-1 04/30/99 AL 98.000 63 ABB ITE-62K ENS-SWG1B-62-1 10/04/97 AF 98.867 64 ABB ITE-62K ENS-SWG1B-62-1 10/04/97 AL 98.000 65 ABB ITE-62K ENS-SWG1B-62-2 02/01/08 AF 102.612 643 21.1 66 ABB ITE-62K ENS-SWG1B-62-2 02/01/08 AL 102.543 67 ABB ITE-62K ENS-SWG1B-62-2 04/29/06 AF 101.505 545 17.9 68 ABB ITE-62K ENS-SWG1B-62-2 04/29/06 AL 102.180


DRIFT ANALYSIS                                     ABB Model ITE-62 Time Delay Relays                     G13.18.6.3-009 Rev. 0 RIVER BEND STATION                                                AF-AL Data                                            Attachment 1 Page 9 of 23 CAL INTERVAL =              DRIFT = (Current  CAL INTERVAL =
DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays AF-AL Data G13.18.6.3-009 Rev. 0 Page 9 of 23 Seq.
AF/AL DATA   OUTLIERS Seq.                                   CAL DATE  AF/AL                          (Current Date - Seq.          Cal AF Data -    (Current Date -
CAL DATE AF/AL AF/AL DATA VALUE OUTLIERS COMMENTS Seq.
VALUE      COMMENTS Previous Date)              Prev Cal AL Data)  Previous Date)
DRIFT = (Current Cal AF Data -
ID   Make/Model Number     Tag ID     mm/dd/yy Status (% Setpoint)           Days     Months ID Tag ID   (% Setpoint)     Days     Months 69     ABB ITE-62K   ENS-SWG1B-62-2 10/31/04   AF     102.439               590       19.4 70     ABB ITE-62K   ENS-SWG1B-62-2 10/31/04   AL     102.318 71     ABB ITE-62K   ENS-SWG1B-62-2 03/21/03   AF     101.617               531       17.4 72     ABB ITE-62K   ENS-SWG1B-62-2 03/21/03   AL     101.367 73     ABB ITE-62K   ENS-SWG1B-62-2 10/06/01   AF     101.533               560       18.4 74     ABB ITE-62K   ENS-SWG1B-62-2 10/06/01   AL     101.550 75     ABB ITE-62K   ENS-SWG1B-62-2 03/25/00   AF     101.517               330       10.8 76     ABB ITE-62K   ENS-SWG1B-62-2 03/25/00   AL     101.067 77     ABB ITE-62K   ENS-SWG1B-62-2 04/30/99   AF     101.833               573       18.8 78     ABB ITE-62K   ENS-SWG1B-62-2 04/30/99   AL     101.400 79     ABB ITE-62K   ENS-SWG1B-62-2 10/04/97   AF     111.200 80     ABB ITE-62K   ENS-SWG1B-62-2 10/04/97   AL     100.667 81     ABB ITE-62L   ENS-SWG1B-62-6 02/01/08   AF     101.000               643       21.1 82     ABB ITE-62L   ENS-SWG1B-62-6 02/01/08   AL     101.000 83     ABB ITE-62L   ENS-SWG1B-62-6 04/29/06   AF     101.000               545       17.9 84     ABB ITE-62L   ENS-SWG1B-62-6 04/29/06   AL     101.000 85     ABB ITE-62L   ENS-SWG1B-62-6 10/31/04   AF     100.333               590       19.4 86     ABB ITE-62L   ENS-SWG1B-62-6 10/31/04   AL     100.667 87     ABB ITE-62L   ENS-SWG1B-62-6 03/21/03   AF     100.333               531       17.4 88     ABB ITE-62L   ENS-SWG1B-62-6 03/21/03   AL     100.667 89     ABB ITE-62L   ENS-SWG1B-62-6 10/06/01   AF     100.667               560       18.4 90     ABB ITE-62L   ENS-SWG1B-62-6 10/06/01   AL     101.000 91     ABB ITE-62L   ENS-SWG1B-62-6 03/25/00   AF     100.667               330       10.8 92     ABB ITE-62L   ENS-SWG1B-62-6 03/25/00   AL     100.833 93     ABB ITE-62L   ENS-SWG1B-62-6 04/30/99   AF     96.000               573       18.8 94     ABB ITE-62L   ENS-SWG1B-62-6 04/30/99   AL     100.667 95     ABB ITE-62L   ENS-SWG1B-62-6 10/04/97   AF     97.000 96     ABB ITE-62L   ENS-SWG1B-62-6 10/04/97   AL     97.000
Prev Cal AL Data)
ID Make/Model Number Tag ID mm/dd/yy Status
(% Setpoint)
Days Months ID Tag ID
(% Setpoint)
Days Months CAL INTERVAL =
(Current Date -
Previous Date)
CAL INTERVAL =
(Current Date -
Previous Date) 69 ABB ITE-62K ENS-SWG1B-62-2 10/31/04 AF 102.439 590 19.4 70 ABB ITE-62K ENS-SWG1B-62-2 10/31/04 AL 102.318 71 ABB ITE-62K ENS-SWG1B-62-2 03/21/03 AF 101.617 531 17.4 72 ABB ITE-62K ENS-SWG1B-62-2 03/21/03 AL 101.367 73 ABB ITE-62K ENS-SWG1B-62-2 10/06/01 AF 101.533 560 18.4 74 ABB ITE-62K ENS-SWG1B-62-2 10/06/01 AL 101.550 75 ABB ITE-62K ENS-SWG1B-62-2 03/25/00 AF 101.517 330 10.8 76 ABB ITE-62K ENS-SWG1B-62-2 03/25/00 AL 101.067 77 ABB ITE-62K ENS-SWG1B-62-2 04/30/99 AF 101.833 573 18.8 78 ABB ITE-62K ENS-SWG1B-62-2 04/30/99 AL 101.400 79 ABB ITE-62K ENS-SWG1B-62-2 10/04/97 AF 111.200 80 ABB ITE-62K ENS-SWG1B-62-2 10/04/97 AL 100.667 81 ABB ITE-62L ENS-SWG1B-62-6 02/01/08 AF 101.000 643 21.1 82 ABB ITE-62L ENS-SWG1B-62-6 02/01/08 AL 101.000 83 ABB ITE-62L ENS-SWG1B-62-6 04/29/06 AF 101.000 545 17.9 84 ABB ITE-62L ENS-SWG1B-62-6 04/29/06 AL 101.000 85 ABB ITE-62L ENS-SWG1B-62-6 10/31/04 AF 100.333 590 19.4 86 ABB ITE-62L ENS-SWG1B-62-6 10/31/04 AL 100.667 87 ABB ITE-62L ENS-SWG1B-62-6 03/21/03 AF 100.333 531 17.4 88 ABB ITE-62L ENS-SWG1B-62-6 03/21/03 AL 100.667 89 ABB ITE-62L ENS-SWG1B-62-6 10/06/01 AF 100.667 560 18.4 90 ABB ITE-62L ENS-SWG1B-62-6 10/06/01 AL 101.000 91 ABB ITE-62L ENS-SWG1B-62-6 03/25/00 AF 100.667 330 10.8 92 ABB ITE-62L ENS-SWG1B-62-6 03/25/00 AL 100.833 93 ABB ITE-62L ENS-SWG1B-62-6 04/30/99 AF 96.000 573 18.8 94 ABB ITE-62L ENS-SWG1B-62-6 04/30/99 AL 100.667 95 ABB ITE-62L ENS-SWG1B-62-6 10/04/97 AF 97.000 96 ABB ITE-62L ENS-SWG1B-62-6 10/04/97 AL 97.000


DRIFT ANALYSIS                                 ABB Model ITE-62 Time Delay Relays                                                 G13.18.6.3-009 Rev. 0 RIVER BEND STATION                                        Outliers & Summary                                                                  Attachment 1 Page 10 of 23 Extreme                                                                          Final Drift Drift (% Cal Interval                                                                                                    Cal Interval Seq. ID     Tag ID                             Studentized                                                                        Data Set (%
DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Outliers & Summary G13.18.6.3-009 Rev. 0 Page 10 of 23 Seq. ID Tag ID Drift (%
Setpoint)   (Days)                                                                                                          (Days)
Setpoint)
Deviate (T)                                                                         Setpoint) 1   ENS-SWG1A-62-1 -0.6667     650           1.025                                                                             -0.6667         650 3   ENS-SWG1A-62-1 0.0000       543           0.009                 Raw Drift Data Statistics Summary                          0.0000         543 5   ENS-SWG1A-62-1 0.0000       593           0.009                             (Initial Data Set)                              0.0000         593 7   ENS-SWG1A-62-1 0.0000       548           0.009       Mean (Average)                                 -0.0056               0.0000         548 9   ENS-SWG1A-62-1 -0.3333     566           0.508       Variance                                         0.416             -0.3333         566 11   ENS-SWG1A-62-1 -0.3333     324           0.508       Std. Dev.                                       0.6449             -0.3333         324 13   ENS-SWG1A-62-1 0.0000       579           0.009       Sample Size (Count)                                 42               0.0000         579 Maximum                                           1.67 17   ENS-SWG1A-62-2 0.0415       650           0.073       Median                                             0.00               0.0415         650 19   ENS-SWG1A-62-2 0.4498       543           0.706       Minimum                                           -1.30               0.4498         543 21   ENS-SWG1A-62-2 -0.5536     594           0.850       Range                                             2.97             -0.5536         594 23   ENS-SWG1A-62-2 0.0667       547           0.112       Sum                                             -0.237               0.0667         547 25   ENS-SWG1A-62-2 -0.5500     566           0.844       Kurtosis                                         0.104             -0.5500         566 27   ENS-SWG1A-62-2 -0.3833     324           0.586       Skewness                                         0.523             -0.3833         324 29   ENS-SWG1A-62-2 -0.3833     579           0.586                                                                             -0.3833         579 Critical T-Value (Upper 5% Signif.)               2.92 33   ENS-SWG1A-62-6 -0.6667     650           1.025                                                                             -0.6667         650 35   ENS-SWG1A-62-6 -0.6667     543           1.025       Equation for Each Studentized Deviate: T= lDrift-Meanl/Std. Dev.     -0.6667         543 37   ENS-SWG1A-62-6 1.0000       594           1.559       Crit T Value Lookup Value from Ref. 4.1.3 Table 2, per sample         1.0000         594 39   ENS-SWG1A-62-6 0.3333       547           0.526       size. See Sections 3.6.1 and 3.6.2 of Reference 4.1.3.               0.3333         547 41   ENS-SWG1A-62-6 0.0000       566           0.009       Outliers will be Denoted as such in "Final Data Set" column.         0.0000         566 43   ENS-SWG1A-62-6 0.6667       324           1.043       No Outliers Detected.                                                 0.6667         324 45   ENS-SWG1A-62-6 -1.3000     579           2.007                                                                             -1.3000         579 Drift Data Statistics Summary 49   ENS-SWG1B-62-1 0.0000       643           0.009                             (Final Data Set)                                0.0000         643 51   ENS-SWG1B-62-1 1.6667       545           2.593       Mean (Average)                                 -0.0056               1.6667         545 53   ENS-SWG1B-62-1 1.0000       591           1.559       Variance                                         0.416               1.0000         591 55   ENS-SWG1B-62-1 -0.6667     530           1.025       Std. Dev.                                       0.6449             -0.6667         530 57   ENS-SWG1B-62-1 1.0667       560           1.663       Sample Size (Count)                                 42               1.0667         560 59   ENS-SWG1B-62-1 -0.7000     330           1.077       Maximum                                           1.67             -0.7000         330 61   ENS-SWG1B-62-1 0.0000       573           0.009       Median                                             0.00               0.0000         573 Minimum                                           -1.30 65   ENS-SWG1B-62-2 0.4325       643           0.679       Range                                             2.97               0.4325         643 67   ENS-SWG1B-62-2 -0.8131     545           1.252       Sum                                             -0.237             -0.8131         545 69   ENS-SWG1B-62-2 1.0727       590           1.672       Kurtosis                                         0.104               1.0727         590 71   ENS-SWG1B-62-2 0.0667       531           0.112       Skewness                                         0.523               0.0667         531 73   ENS-SWG1B-62-2 0.4667       560           0.732                                                                             0.4667         560 75   ENS-SWG1B-62-2 0.1167       330           0.190                                                                             0.1167         330 77   ENS-SWG1B-62-2 1.1667       573           1.818                                                                             1.1667         573 81   ENS-SWG1B-62-6 0.0000       643           0.009                                                                             0.0000         643
Cal Interval (Days)
Extreme Studentized Deviate (T)
Final Drift Data Set (%
Setpoint)
Cal Interval (Days) 1 ENS-SWG1A-62-1
-0.6667 650 1.025
-0.6667 650 3
ENS-SWG1A-62-1 0.0000 543 0.009 0.0000 543 5
ENS-SWG1A-62-1 0.0000 593 0.009 0.0000 593 7
ENS-SWG1A-62-1 0.0000 548 0.009 Mean (Average)
-0.0056 0.0000 548 9
ENS-SWG1A-62-1
-0.3333 566 0.508 Variance 0.416
-0.3333 566 11 ENS-SWG1A-62-1
-0.3333 324 0.508 Std. Dev.
0.6449
-0.3333 324 13 ENS-SWG1A-62-1 0.0000 579 0.009 Sample Size (Count) 42 0.0000 579 Maximum 1.67 17 ENS-SWG1A-62-2 0.0415 650 0.073 Median 0.00 0.0415 650 19 ENS-SWG1A-62-2 0.4498 543 0.706 Minimum
-1.30 0.4498 543 21 ENS-SWG1A-62-2
-0.5536 594 0.850 Range 2.97
-0.5536 594 23 ENS-SWG1A-62-2 0.0667 547 0.112 Sum
-0.237 0.0667 547 25 ENS-SWG1A-62-2
-0.5500 566 0.844 Kurtosis 0.104
-0.5500 566 27 ENS-SWG1A-62-2
-0.3833 324 0.586 Skewness 0.523
-0.3833 324 29 ENS-SWG1A-62-2
-0.3833 579 0.586
-0.3833 579 Critical T-Value (Upper 5% Signif.)
2.92 33 ENS-SWG1A-62-6
-0.6667 650 1.025
-0.6667 650 35 ENS-SWG1A-62-6
-0.6667 543 1.025 Equation for Each Studentized Deviate: T= lDrift-Meanl/Std. Dev.  
-0.6667 543 37 ENS-SWG1A-62-6 1.0000 594 1.559 Crit T Value Lookup Value from Ref. 4.1.3 Table 2, per sample 1.0000 594 39 ENS-SWG1A-62-6 0.3333 547 0.526 size. See Sections 3.6.1 and 3.6.2 of Reference 4.1.3.
0.3333 547 41 ENS-SWG1A-62-6 0.0000 566 0.009 Outliers will be Denoted as such in "Final Data Set" column.
0.0000 566 43 ENS-SWG1A-62-6 0.6667 324 1.043 No Outliers Detected.
0.6667 324 45 ENS-SWG1A-62-6
-1.3000 579 2.007
-1.3000 579 49 ENS-SWG1B-62-1 0.0000 643 0.009 0.0000 643 51 ENS-SWG1B-62-1 1.6667 545 2.593 Mean (Average)
-0.0056 1.6667 545 53 ENS-SWG1B-62-1 1.0000 591 1.559 Variance 0.416 1.0000 591 55 ENS-SWG1B-62-1
-0.6667 530 1.025 Std. Dev.
0.6449
-0.6667 530 57 ENS-SWG1B-62-1 1.0667 560 1.663 Sample Size (Count) 42 1.0667 560 59 ENS-SWG1B-62-1
-0.7000 330 1.077 Maximum 1.67
-0.7000 330 61 ENS-SWG1B-62-1 0.0000 573 0.009 Median 0.00 0.0000 573 Minimum
-1.30 65 ENS-SWG1B-62-2 0.4325 643 0.679 Range 2.97 0.4325 643 67 ENS-SWG1B-62-2
-0.8131 545 1.252 Sum
-0.237
-0.8131 545 69 ENS-SWG1B-62-2 1.0727 590 1.672 Kurtosis 0.104 1.0727 590 71 ENS-SWG1B-62-2 0.0667 531 0.112 Skewness 0.523 0.0667 531 73 ENS-SWG1B-62-2 0.4667 560 0.732 0.4667 560 75 ENS-SWG1B-62-2 0.1167 330 0.190 0.1167 330 77 ENS-SWG1B-62-2 1.1667 573 1.818 1.1667 573 81 ENS-SWG1B-62-6 0.0000 643 0.009 0.0000 643 (Final Data Set)
Drift Data Statistics Summary (Initial Data Set)
Raw Drift Data Statistics Summary


DRIFT ANALYSIS                                 ABB Model ITE-62 Time Delay Relays G13.18.6.3-009 Rev. 0 RIVER BEND STATION                                        Outliers & Summary                  Attachment 1 Page 11 of 23 Extreme                          Final Drift Drift (% Cal Interval                                                    Cal Interval Seq. ID     Tag ID                             Studentized                        Data Set (%
DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Outliers & Summary G13.18.6.3-009 Rev. 0 Page 11 of 23 Seq. ID Tag ID Drift (%
Setpoint)   (Days)                                                          (Days)
Setpoint)
Deviate (T)                         Setpoint) 83   ENS-SWG1B-62-6 0.3333       545           0.526                             0.3333         545 85   ENS-SWG1B-62-6 -0.3333     590           0.508                             -0.3333         590 87   ENS-SWG1B-62-6 -0.6667     531           1.025                             -0.6667         531 89   ENS-SWG1B-62-6 -0.1667     560           0.250                             -0.1667         560 91   ENS-SWG1B-62-6 0.0000       330           0.009                             0.0000         330 93   ENS-SWG1B-62-6 -1.0000     573           1.542                             -1.0000         573
Cal Interval (Days)
Extreme Studentized Deviate (T)
Final Drift Data Set (%
Setpoint)
Cal Interval (Days) 83 ENS-SWG1B-62-6 0.3333 545 0.526 0.3333 545 85 ENS-SWG1B-62-6
-0.3333 590 0.508
-0.3333 590 87 ENS-SWG1B-62-6
-0.6667 531 1.025
-0.6667 531 89 ENS-SWG1B-62-6
-0.1667 560 0.250
-0.1667 560 91 ENS-SWG1B-62-6 0.0000 330 0.009 0.0000 330 93 ENS-SWG1B-62-6
-1.0000 573 1.542
-1.0000 573


DRIFT ANALYSIS                                                           ABB Model ITE-62 Time Delay Relays                                                       G13.18.6.3-009 Rev. 0 RIVER BEND STATION                                                                  Pooling Tests                                                                            Attachment 1 Page 12 of 23 Group 1: ENS-SWG1(A,B)-62-1 relays [Setpoint = 3 seconds] Model = ITE-62K Group 2: ENS-SWG1(A,B)-62-6 relays [Setpoint = 3 seconds] Model = ITE-62L Group 3: ENS-SWG1(A, B)-62-2 relays [Setpoint = 57.8 and 60 seconds] Model = ITE-62K Model Group 1: ITE-62K                                                                               Setpoint Group 1, 2: 3 Sec Model Group 2: ITE-62L                                                                               Setpoint Group 3: 60 sec. or 57.8 sec.
DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Pooling Tests G13.18.6.3-009 Rev. 0 Page 12 of 23 Group 1: ENS-SWG1(A,B)-62-1 relays [Setpoint = 3 seconds] Model = ITE-62K Group 2: ENS-SWG1(A,B)-62-6 relays [Setpoint = 3 seconds] Model = ITE-62L Group 3: ENS-SWG1(A, B)-62-2 relays [Setpoint = 57.8 and 60 seconds] Model = ITE-62K Model Group 1: ITE-62K Setpoint Group 1, 2: 3 Sec Model Group 2: ITE-62L Setpoint Group 3: 60 sec. or 57.8 sec.
t-Test: Two-Sample Assuming Unequal Variances                                                       t-Test: Two-Sample Assuming Unequal Variances Group 1           Group 2                                                                     Group 1,2   Group 3 Mean                                         0.073809524 -0.17619                                   Mean                                   -0.05119   0.085459 Variance                                       0.49541514 0.414945                                 Variance                               0.454525   0.354231 Observations                                             14       14                               Observations                                   28       14 Hypothesized Mean Difference                               0                                       Hypothesized Mean Difference                     0 df                                                       26                                         df                                             29 t Stat                                       0.980386667                                             t Stat                                   -0.6705 P(T<=t) one-tail                             0.167965223                                             P(T<=t) one-tail                       0.253922 t Critical one-tail                         1.705617901                                             t Critical one-tail                   1.699127 P(T<=t) two-tail                             0.335930445                                             P(T<=t) two-tail                       0.507844 t Critical two-tail                         2.055529418                                             t Critical two-tail                     2.04523 StDev                                           0.70385733 0.644162                                 StDev                                 0.674185   0.595173 t Stat < t Critical two-tail? TRUE                                                       t Stat < t Critical two-tail? TRUE Sample Means from same pool? TRUE                                                         Sample Means from same pool?         TRUE
t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances Group 1 Group 2 Group 1,2 Group 3 Mean 0.073809524
-0.17619 Mean
-0.05119 0.085459 Variance 0.49541514 0.414945 Variance 0.454525 0.354231 Observations 14 14 Observations 28 14 Hypothesized Mean Difference 0
Hypothesized Mean Difference 0
df 26 df 29 t Stat 0.980386667 t Stat
-0.6705 P(T<=t) one-tail 0.167965223 P(T<=t) one-tail 0.253922 t Critical one-tail 1.705617901 t Critical one-tail 1.699127 P(T<=t) two-tail 0.335930445 P(T<=t) two-tail 0.507844 t Critical two-tail 2.055529418 t Critical two-tail 2.04523 StDev 0.70385733 0.644162 StDev 0.674185 0.595173 t Stat < t Critical two-tail?
TRUE t Stat < t Critical two-tail?
TRUE Sample Means from same pool?
TRUE Sample Means from same pool?
TRUE


==
==
Conclusion:==
Conclusion:==
==
Conclusion:==
The t Statistic is less than the t Critical two-tail value, indicating that combination The t Statistic is less than the t Critical two-tail value, indicating that combination of the groups for analysis is appropriate. The means and standard deviations of the groups for analysis is appropriate. The means and standard deviations deviations are reasonably similar among groups. From an engineering standpoint, deviations are reasonably similar among groups. From an engineering standpoint, all data should combine appropriately in units of % Setpoint, and the t Tests confirm this all data should combine appropriately in units of % Setpoint, and the t Tests confirm this hypothesis. Therefore, all of the data is combined for analysis in units of % Setpoint.
hypothesis. Therefore, all of the data is combined for analysis in units of % Setpoint.


== Conclusion:==
DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays W Test G13.18.6.3-009 Rev. 0 Page 13 of 23 Drift Values "i"
 
an-i+1 bi (Per Step 4)
The t Statistic is less than the t Critical two-tail value, indicating that combination              The t Statistic is less than the t Critical two-tail value, indicating that combination of the groups for analysis is appropriate. The means and standard deviations                        of the groups for analysis is appropriate. The means and standard deviations deviations are reasonably similar among groups. From an engineering standpoint,                      deviations are reasonably similar among groups. From an engineering standpoint, all data should combine appropriately in units of % Setpoint, and the t Tests confirm this          all data should combine appropriately in units of % Setpoint, and the t Tests confirm this hypothesis. Therefore, all of the data is combined for analysis in units of % Setpoint.              hypothesis. Therefore, all of the data is combined for analysis in units of % Setpoint.
-1.3000 1
 
0.3917 1.1620 Specific W Normality Test Methodology from Reference 4.1.7 and Section 19 of Reference 4.1.4
DRIFT ANALYSIS                                             ABB Model ITE-62 Time Delay Relays                                                                       G13.18.6.3-009 Rev. 0 RIVER BEND STATION                                                                W Test                                                                                      Attachment 1 Page 13 of 23 Drift
-1.0000 2
* bi (Per Values   "i"     an-i+1 Step 4)
0.2701 0.5852
                  -1.3000   1     0.3917         1.1620       Specific W Normality Test Methodology from Reference 4.1.7 and Section 19 of Reference 4.1.4
-0.8131 3
                  -1.0000   2     0.2701         0.5852
0.2345 0.4422 Steps to Perform:
                  -0.8131   3     0.2345         0.4422       Steps to Perform:
-0.7000 4
                  -0.7000   4     0.2085         0.3684   1. Paste all final drift data into column 1.
0.2085 0.3684
                  -0.6667   5     0.1874         0.3123   2. Sort in ascending order.
: 1. Paste all final drift data into column 1.
                  -0.6667   6     0.1694         0.2823   3. Calculate S2 taking the variance of the drift data adjusted by (Count-1)
-0.6667 5
                  -0.6667   7     0.1535         0.2047
0.1874 0.3123
                  -0.6667   8     0.1392         0.1578                     S2 = (n-1)(Variance (Drift))
: 2. Sort in ascending order.
                  -0.6667   9     0.1259         0.1406
-0.6667 6
                  -0.5536   10     0.1136         0.1120                   where: n = Count
0.1694 0.2823
                  -0.5500   11     0.1020         0.0901
: 3. Calculate S2 taking the variance of the drift data adjusted by (Count-1)
                  -0.3833   12     0.0909         0.0651   4. Calculate the Quantity b:
-0.6667 7
                  -0.3833   13     0.0804         0.0402
0.1535 0.2047
                  -0.3333   14     0.0701         0.0280       b = Sum[(an-i+1)(xn-i+1 - xi)]
-0.6667 8
                  -0.3333   15     0.0602         0.0241
0.1392 0.1578 S2 = (n-1)(Variance (Drift))
                  -0.3333   16     0.0506         0.0190                   where: i = 1 to k
-0.6667 9
                  -0.1667   17     0.0411         0.0068                           k = (n)/2 0.0000   18     0.0318         0.0000                           xi = Drift value at point number i 0.0000   19     0.0227         0.0000                           an-i+1 values are taken from Table 1 of Reference 4.1.7 0.0000   20     0.0136         0.0000   5. Calculate b2.
0.1259 0.1406
0.0000   21     0.0045         0.0000   6. Compute the W Statistic and compare to the critical value at the 5% confidence 0.0000                                       level. The table of critical values is given as Table 2 on page 9 of Reference 4.1.7.
-0.5536 10 0.1136 0.1120 where: n = Count
0.0000               b=       4.0409 0.0000                     (Per Step 4) 0.0000
-0.5500 11 0.1020 0.0901
* From Table 1 of Ref. 4.1.7 2 2 0.0000                                                   W = b /S                          Results:
-0.3833 12 0.0909 0.0651
0.0415                                                                                     Since the W statistic, 0.9576, is greater than the 0.0667                                       Computed Values                               critical value for W, 0.9420, this test does not 0.0667                                                     S2 =       17.0515               reject the assumption of normality for this data set.
: 4. Calculate the Quantity b:
0.1167                                                     b=       4.0409 0.3333                                                     b2 =       16.3289 0.3333                                               Count (n):         42 0.4325                                             W = b2/S2 =       0.9576 0.4498                                           W Critical =       0.9420     5% Significance From Table 2 of Reference 4.1.7.
-0.3833 13 0.0804 0.0402
-0.3333 14 0.0701 0.0280 b = Sum[(an-i+1)(xn-i+1 - xi)]
-0.3333 15 0.0602 0.0241
-0.3333 16 0.0506 0.0190 where: i = 1 to k
-0.1667 17 0.0411 0.0068 k = (n)/2 0.0000 18 0.0318 0.0000 xi = Drift value at point number i 0.0000 19 0.0227 0.0000 an-i+1 values are taken from Table 1 of Reference 4.1.7 0.0000 20 0.0136 0.0000
: 5. Calculate b2.
0.0000 21 0.0045 0.0000
: 6. Compute the W Statistic and compare to the critical value at the 5% confidence 0.0000 level. The table of critical values is given as Table 2 on page 9 of Reference 4.1.7.
0.0000 b =
4.0409 0.0000 (Per Step 4) 0.0000
* From Table 1 of Ref. 4.1.7 0.0000 W = b2/S2 Results:
0.0415 Since the W statistic, 0.9576, is greater than the 0.0667 Computed Values critical value for W, 0.9420, this test does not 0.0667 S2 =
17.0515 reject the assumption of normality for this data set.
0.1167 b =
4.0409 0.3333 b2 = 16.3289 0.3333 Count (n):
42 0.4325 W = b2/S2 =
0.9576 0.4498 W Critical =
0.9420 5% Significance From Table 2 of Reference 4.1.7.
0.4667 0.6667 1.0000 1.0000 1.0667 1.0727 1.1667 1.6667
0.4667 0.6667 1.0000 1.0000 1.0667 1.0727 1.1667 1.6667


DRIFT ANALYSIS                                                             ABB Model ITE-62 Time Delay Relays                                                           G13.18.6.3-009 Rev. 0 RIVER BEND STATION                                                                          Histogram                                                                          Attachment 1 Page 14 of 23 Normal Cumulative                                      Expected Bin                                                       No. StDev        Bin Maximums =          Observed                                      Distribution Bin Descriptions                                                                                 Probability (CPi)                                Frequency No.                                                           (NS)         Mean + (NS*StDev)       Frequency                                       Probability (Table 18-2 Ref 4.1.4)                            (Ei = Pnorm*N)
DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Histogram G13.18.6.3-009 Rev. 0 Page 14 of 23 Bin No.
(Pnorm = CPi-CPi-1) 1       Up to - 2.5 Standard Deviations from Mean             -2.5               -1.618                 0                   0.0062                 0.0062                   0.2604 2       -2.5 to -2.0 Standard Deviations from Mean           -2.0               -1.295                 1                   0.0228                 0.0166                   0.6951 3       -2.0 to -1.5 Standard Deviations from Mean           -1.5               -0.973                 1                   0.0668                 0.0441                   1.8501 4       -1.5 to -1.0 Standard Deviations from Mean           -1.0               -0.651                 7                   0.1587                 0.0919                   3.8577 5       -1.0 to -0.5 Standard Deviations from Mean           -0.5               -0.328                 7                   0.3086                 0.1499                   6.2958 6     -0.5 Standard Deviations from Mean to Mean             0.0               -0.006                 1                   0.5000                 0.1915                   8.0409 7     Mean to +0.5 Standard Deviations from Mean               0.5               0.317                 13                   0.6915                 0.1915                   8.0409 8     +0.5 to +1.0 Standard Deviations from Mean             1.0               0.639                 5                   0.8414                 0.1499                   6.2958 9     +1.0 to +1.5 Standard Deviations from Mean             1.5               0.962                 1                   0.9332                 0.0919                   3.8577 10     +1.5 to +2.0 Standard Deviations from Mean             2.0               1.284                 5                   0.9773                 0.0441                   1.8501 11     +2.0 to +2.5 Standard Deviations from Mean             2.5               1.607                 0                   0.9938                 0.0166                   0.6951 12       More than Mean + 2.5 Standard Deviations             More                 More                 1                   1.0000                 0.0062                   0.2604 Totals       42                                                                       42 Percentage for Observed            Observed
Bin Descriptions No. StDev (NS)
                            +/- Sigma Bounds                                                               Normal Drift Values         Percentages Distribution 2.5 (Bins 2-11)                       41               97.62%                                                               Mean                   -0.0056 2 (Bins 3-10)                       40               95.24%               95.45%                                       Std. Dev.                 0.6449 1.5 (Bins 4-9)                       34               80.95%                                                           Sample Size                   42 1 (Bins 5-8)                         26               61.90%               68.27%
Bin Maximums =
0.5 (Bins 6-7)                       14               33.33%
Mean + (NS*StDev)
Observed Frequency Cumulative Probability (CPi)
(Table 18-2 Ref 4.1.4)
Normal Distribution Probability (Pnorm = CPi-CPi-1)
Expected Frequency (Ei = Pnorm*N) 1 Up to - 2.5 Standard Deviations from Mean
-2.5
-1.618 0
0.0062 0.0062 0.2604 2
-2.5 to -2.0 Standard Deviations from Mean
-2.0
-1.295 1
0.0228 0.0166 0.6951 3
-2.0 to -1.5 Standard Deviations from Mean
-1.5
-0.973 1
0.0668 0.0441 1.8501 4
-1.5 to -1.0 Standard Deviations from Mean
-1.0
-0.651 7
0.1587 0.0919 3.8577 5
-1.0 to -0.5 Standard Deviations from Mean
-0.5
-0.328 7
0.3086 0.1499 6.2958 6
-0.5 Standard Deviations from Mean to Mean 0.0
-0.006 1
0.5000 0.1915 8.0409 7
Mean to +0.5 Standard Deviations from Mean 0.5 0.317 13 0.6915 0.1915 8.0409 8
+0.5 to +1.0 Standard Deviations from Mean 1.0 0.639 5
0.8414 0.1499 6.2958 9
+1.0 to +1.5 Standard Deviations from Mean 1.5 0.962 1
0.9332 0.0919 3.8577 10
+1.5 to +2.0 Standard Deviations from Mean 2.0 1.284 5
0.9773 0.0441 1.8501 11
+2.0 to +2.5 Standard Deviations from Mean 2.5 1.607 0
0.9938 0.0166 0.6951 12 More than Mean + 2.5 Standard Deviations More More 1
1.0000 0.0062 0.2604 Totals 42 42
+/- Sigma Bounds Observed Drift Values Observed Percentages Percentage for Normal Distribution 2.5 (Bins 2-11) 41 97.62%
Mean
-0.0056 2 (Bins 3-10) 40 95.24%
95.45%
Std. Dev.
0.6449 1.5 (Bins 4-9) 34 80.95%
Sample Size 42 1 (Bins 5-8) 26 61.90%
68.27%
0.5 (Bins 6-7) 14 33.33%
Methodology for Histogram Taken from Section 19 of Reference 4.1.4 and Section 3.7.5 of Reference 4.1.3
Methodology for Histogram Taken from Section 19 of Reference 4.1.4 and Section 3.7.5 of Reference 4.1.3
: 1. Order the drift data in ascending order.
: 1. Order the drift data in ascending order.
Line 289: Line 569:
: 5. Manually compute the number of observed drift data points within each bin, and list under observed frequency.
: 5. Manually compute the number of observed drift data points within each bin, and list under observed frequency.
: 6. Plot the Expected Frequency and the Observed Frequency Data on the Histogram for comparison to each other.
: 6. Plot the Expected Frequency and the Observed Frequency Data on the Histogram for comparison to each other.
Results: Since the data passed the W Test for normality, a Coverage Analysis is not necessary. The Histogram shows that the data conforms closely to a normal distribution.
Results: Since the data passed the W Test for normality, a Coverage Analysis is not necessary. The Histogram shows that the data conforms closely to a normal distribution.  


DRIFT ANALYSIS                                                     ABB Model ITE-62 Time Delay Relays                                           G13.18.6.3-009 Rev. 0 RIVER BEND STATION                                                              Histogram                                                                Attachment 1 Page 15 of 23 Histogram of Drift - River Bend Station ABB ITE-62 Time Delay Relays 14 12 Observed Frequency Normal 10                                                                                              Distribution Population 8
DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Histogram G13.18.6.3-009 Rev. 0 Page 15 of 23 0
6 4
2 4
2 0
6 8
                              -1.618   -1.295   -0.973   -0.651     -0.328     -0.006   0.317   0.639   0.962   1.284           1.607   More Drift (% Setpoint)
10 12 14
-1.618
-1.295
-0.973
-0.651
-0.328
-0.006 0.317 0.639 0.962 1.284 1.607 More Population Drift (% Setpoint)
Histogram of Drift - River Bend Station ABB ITE-62 Time Delay Relays Observed Frequency Normal Distribution


DRIFT ANALYSIS                                                   ABB Model ITE-62 Time Delay Relays                                               G13.18.6.3-009 Rev. 0 RIVER BEND STATION                                                            Scatter Plot                                                                  Attachment 1 Page 16 of 23 Scatter Plot - River Bend Station ABB ITE-62 Time Delay Relays 2.0 y = 0.0003x - 0.1709 1.5 Linear (Drift)
DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Scatter Plot G13.18.6.3-009 Rev. 0 Page 16 of 23 Note: Equation on Scatter Plot is computer generated, based on the associated trend line.
Drift (% Setpoint) 1.0 0.5 0.0
y = 0.0003x - 0.1709
                                      -0.5
-1.5
                                      -1.0
-1.0
                                      -1.5 200     250       300           350     400       450       500       550       600   650   700 Time (Days)
-0.5 0.0 0.5 1.0 1.5 2.0 200 250 300 350 400 450 500 550 600 650 700 Drift (% Setpoint)
Note: Equation on Scatter Plot is computer generated, based on the associated trend line.
Time (Days)
Scatter Plot - River Bend Station ABB ITE-62 Time Delay Relays Linear (Drift)


DRIFT ANALYSIS                             ABB Model ITE-62 Time Delay Relays                           G13.18.6.3-009 Rev. 0 RIVER BEND STATION                                      Binning Analysis                                        Attachment 1 Page 17 of 23 Bin Statistics Bin 1       Bin 2         Bin 3     Bin 4     Bin 5 Bin 6 Bin 7 Count                                                         6       36 Standard Dev.                                               0.4773   0.6728 Mean                                                       -0.1056   0.0110 Mean Interval                                               327.00   576.75 Max Interval                                                 330       650 Bin Definition and Selection Bin Hi                                 Valid Limit         Bin       Population   Bins Bins           (Days)       Count       Percentage Included 1             45             0           0.0%
DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Binning Analysis G13.18.6.3-009 Rev. 0 Page 17 of 23 Bin Statistics Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Count 6
2             135             0           0.0%
36 Standard Dev.
3             230             0           0.0%
0.4773 0.6728 Mean
4             460             6         14.3%         4 5             690           36         85.7%         5 6             915             0           0.0%
-0.1056 0.0110 Mean Interval 327.00 576.75 Max Interval 330 650 Bin Definition and Selection Bin Hi Valid Limit Bin Population Bins Bins (Days)
7             Over           0           0.0%
Count Percentage Included 1
Total Count:                         42         100%
45 0
0.0%
2 135 0
0.0%
3 230 0
0.0%
4 460 6
14.3%
4 5
690 36 85.7%
5 6
915 0
0.0%
7 Over 0
0.0%
Total Count:
42 100%
See Section 3.8.3 of Reference 4.1.3 for Binning Analysis Methodology.
See Section 3.8.3 of Reference 4.1.3 for Binning Analysis Methodology.


DRIFT ANALYSIS                                                 ABB Model ITE-62 Time Delay Relays                                   G13.18.6.3-009 Rev. 0 RIVER BEND STATION                                                      Binning Analysis                                                      Attachment 1 Page 18 of 23 Graph Summary                                                                           Test of Variances F Critical        4.478 Bin                   Time       Std Dev     Mean               Variance Ratio    1.987 4                   327.00     0.4773     -0.1056             Potential Strong No 5                   576.75     0.6728     0.0110             TD of Random Binning Analysis - River Bend Station ABB ITE-62 Time Delay Relays 0.8 0.7 0.6 Drift (% Setpoint) 0.5 0.4 0.3 0.2 0.1 std dev 0.0
DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Binning Analysis G13.18.6.3-009 Rev. 0 Page 18 of 23 Graph Summary 4.478 Bin Time Std Dev Mean 1.987 4
                                          -0.1                                                                            mean
327.00 0.4773
                                          -0.2 200             300         400           500               600 Time (Days)
-0.1056 5
576.75 0.6728 0.0110 Test of Variances F Critical Variance Ratio Potential Strong TD of Random No
-0.2
-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 200 300 400 500 600 Drift (% Setpoint)
Time (Days)
Binning Analysis - River Bend Station ABB ITE-62 Time Delay Relays std dev mean


DRIFT ANALYSIS                                         ABB Model ITE-62 Time Delay Relays                           G13.18.6.3-009 Rev. 0 RIVER BEND STATION                                                Regression - Drift                                            Attachment 1 Page 19 of 23 Regression Analysis - Drift REGRESSION ANALYSIS
DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Regression - Drift G13.18.6.3-009 Rev. 0 Page 19 of 23 Regression Analysis - Drift REGRESSION ANALYSIS


==SUMMARY==
==SUMMARY==
OUTPUT                                               F Critical 3.231727 Regression Statistics Multiple R               0.044877 R Square                 0.002014 Adjusted R Square       -0.022936 Standard Error           0.652249 Observations               42 ANOVA df           SS             MS       F     Significance F Regression                   1       0.0343406     0.0343406 0.080720     0.777790 Residual                   40     17.0171331     0.4254283 Total                       41     17.0514737 Coefficients Standard Error     t Stat   P-value   Lower 95%     Upper 95% Lower 95.0% Upper 95.0%
OUTPUT F Critical 3.231727 Regression Statistics Multiple R 0.044877 R Square 0.002014 Adjusted R Square
Intercept               -0.170887     0.590267     -0.289508 0.773688     -1.363861     1.022087 -1.363861   1.0220869 X Variable 1           0.000305     0.001075     0.284113 0.777790     -0.001867     0.002478 -0.001867   0.0024780 Refer to Section 3.8.4 of Reference 4.1.3 for Methodology for Regression Analysis.
-0.022936 Standard Error 0.652249 Observations 42 ANOVA df SS MS F
Significance F Regression 1
0.0343406 0.0343406 0.080720 0.777790 Residual 40 17.0171331 0.4254283 Total 41 17.0514737 Coefficients Standard Error t Stat P-value Lower 95%
Upper 95%
Lower 95.0%
Upper 95.0%
Intercept
-0.170887 0.590267
-0.289508 0.773688
-1.363861 1.022087
-1.363861 1.0220869 X Variable 1 0.000305 0.001075 0.284113 0.777790
-0.001867 0.002478
-0.001867 0.0024780 Refer to Section 3.8.4 of Reference 4.1.3 for Methodology for Regression Analysis.


DRIFT ANALYSIS                                   ABB Model ITE-62 Time Delay Relays           G13.18.6.3-009 Rev. 0 RIVER BEND STATION                                        Regression - Drift                            Attachment 1 Page 20 of 23 Drift Regression Line Fit Plot 2.0 Drift (% Setpoint) 1.5 1.0 0.5                                                       Drift 0.0                                                       Predicted Drift
DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Regression - Drift G13.18.6.3-009 Rev. 0 Page 20 of 23
                            -0.5
-1.5
                            -1.0
-1.0
                            -1.5 200   300     400       500       600       700 Time (Days)
-0.5 0.0 0.5 1.0 1.5 2.0 200 300 400 500 600 700 Drift (% Setpoint)
Time (Days)
Drift Regression Line Fit Plot Drift Predicted Drift


DRIFT ANALYSIS                                       ABB Model ITE-62 Time Delay Relays                                     G13.18.6.3-009 Rev. 0 RIVER BEND STATION                                              Regression - AV of Drift                                                Attachment 1 Page 21 of 23 Regression Analysis - AV of Drift ABSOLUTE VALUE REGRESSION ANALYSIS
DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Regression - AV of Drift G13.18.6.3-009 Rev. 0 Page 21 of 23 Regression Analysis - AV of Drift ABSOLUTE VALUE REGRESSION ANALYSIS


==SUMMARY==
==SUMMARY==
OUTPUT                                                     F Critical 3.231727 Regression Statistics Multiple R                   0.066729 R Square                   0.004453 Adjusted R Square           -0.020436 Standard Error               0.429297 Observations                       42 ANOVA df           SS             MS         F     Significance F Regression                           1       0.0329713   0.0329713   0.178904       0.674582 Residual                           40       7.3718283   0.1842957 Total                               41       7.4047996 Coefficients   Standard Error     t Stat   P-value   Lower 95%     Upper 95%   Lower 95.0% Upper 95.0%
OUTPUT F Critical 3.231727 Regression Statistics Multiple R 0.066729 R Square 0.004453 Adjusted R Square
Intercept                     0.317367       0.388502   0.816899   0.418825       -0.467824   1.102558   -0.467824     1.102558 X Variable 1                 0.000299       0.000708   0.422971   0.674582       -0.001131   0.001729   -0.001131     0.001729 Refer to Section 3.8.4 of Reference 4.1.3 for Methodology for Regression Analysis.
-0.020436 Standard Error 0.429297 Observations 42 ANOVA df SS MS F
Significance F Regression 1
0.0329713 0.0329713 0.178904 0.674582 Residual 40 7.3718283 0.1842957 Total 41 7.4047996 Coefficients Standard Error t Stat P-value Lower 95%
Upper 95%
Lower 95.0%
Upper 95.0%
Intercept 0.317367 0.388502 0.816899 0.418825
-0.467824 1.102558
-0.467824 1.102558 X Variable 1 0.000299 0.000708 0.422971 0.674582
-0.001131 0.001729
-0.001131 0.001729 Refer to Section 3.8.4 of Reference 4.1.3 for Methodology for Regression Analysis.


DRIFT ANALYSIS                                         ABB Model ITE-62 Time Delay Relays                       G13.18.6.3-009 Rev. 0 RIVER BEND STATION                                          Regression - AV of Drift                                    Attachment 1 Page 22 of 23 AV of Drift Regression Line Fit Plot 1.8 1.6 AV of Drift (% Setpoint) 1.4 1.2 1.0                                                    AV of Drift 0.8                                                     Predicted AV of Drift 0.6 0.4 0.2 0.0 200   300     400       500   600       700 Time (Days)
DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Regression - AV of Drift G13.18.6.3-009 Rev. 0 Page 22 of 23 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 200 300 400 500 600 700 AV of Drift (% Setpoint)
Time (Days)
AV of Drift Regression Line Fit Plot AV of Drift Predicted AV of Drift


DRIFT ANALYSIS                                           ABB Model ITE-62 Time Delay Relays                                       G13.18.6.3-009 Rev. 0 RIVER BEND STATION                                                    Analyzed Drift (DA)                                                      Attachment 1 Page 23 of 23 Drift Bias Determination First, the bias term is evaluated for significance per Section 3.10 of Reference 4.1.3.
DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Analyzed Drift (DA)
Per Outlier Statistical Summary, Count (N)                                                     42 Drift Data Points Drift Bias Term (Mean)                                   -0.0056 % Setpoint Standard Deviation (Stdev)                               0.6449 % Setpoint t for Count = 42 Data Points                               2.000                   (Ref. 4.1.3, Table 4)
G13.18.6.3-009 Rev. 0 Page 23 of 23 Drift Bias Determination First, the bias term is evaluated for significance per Section 3.10 of Reference 4.1.3.
Per Outlier Statistical Summary, Count (N) 42 Drift Data Points Drift Bias Term (Mean)
-0.0056 % Setpoint Standard Deviation (Stdev) 0.6449 % Setpoint t for Count = 42 Data Points 2.000 (Ref. 4.1.3, Table 4)
[Bias (Crit) = t
[Bias (Crit) = t
* Stdev / (N)^0.5]
* Stdev / (N)^0.5]
Signficant Bias Critical Value                             0.199 % SP Therefore, the bias value for this drift data set is not signficant, since the magnitude of the Bias is less than the Critical Bias Value.
Signficant Bias Critical Value 0.199 % SP Therefore, the bias value for this drift data set is not signficant, since the magnitude of the Bias is less than the Critical Bias Value.
DAbias = Negligible Random Drift Determination Time Dependency                                       Moderate Count (N)                                                     42 Drift Data Points Bin 5 Standard Deviation (Stdev)                         0.6728 % Setpoint Mean Bin 5 Time Interval                                     577 Days Maximum Required Cal Interval                                 915 Days Tolerance Interval Factor (TIF)                             2.445                   (Ref. 4.1.3, Table 1)
DAbias = Negligible Random Drift Determination Time Dependency Moderate Count (N) 42 Drift Data Points Bin 5 Standard Deviation (Stdev) 0.6728 % Setpoint Mean Bin 5 Time Interval 577 Days Maximum Required Cal Interval 915 Days Tolerance Interval Factor (TIF) 2.445 (Ref. 4.1.3, Table 1)
[Current Interval Drift = Stdev
[Current Interval Drift = Stdev
* TIF]
* TIF]
DArandom (current) = +/-       1.645 % Setpoint
DArandom (current) = +/-
1.645 % Setpoint
[Extrap Drift = DArandom (current) * (Required Cal Interval / Mean Bin 5 Cal Interval)1/2]
[Extrap Drift = DArandom (current) * (Required Cal Interval / Mean Bin 5 Cal Interval)1/2]
DArandom (extrap) = +/-       2.072 % Setpoint for up to 915 Days
DArandom (extrap) = +/-
2.072 % Setpoint for up to 915 Days


G13.18.6.3-009 Attachment 2 Page 1 of 8 DESIGN VERIFICATION COVER PAGE ANO-1         ANO-2             IP-2           IP-3             JAF         PLP PNPS           VY               GGNS           RBS               W3           NP Document No.           G13.18.6.3-009                     Revision No. Page 1 of 0
G13.18.6.3-009 Page 1 of 8 DESIGN VERIFICATION COVER PAGE ANO-1 ANO-2 IP-2 IP-3 JAF PLP PNPS VY GGNS RBS W3 NP Document No.
G13.18.6.3-009 Revision No.
0 Page 1 of


==Title:==
==Title:==
Drift Study for ABB ITE-62 Timers Quality Related         Augmented Quality Related DV Method:         Design Review           Alternate Calculation         Qualification Testing VERIFICATION REQUIRED                 DISCIPLINE                 VERIFICATION COMPLETE AND COMMENTS RESOLVED (DV print, sign, and date)
Drift Study for ABB ITE-62 Timers Quality Related Augmented Quality Related DV Method:
Electrical Mechanical Richard J. Hannigan /
Design Review Alternate Calculation Qualification Testing VERIFICATION REQUIRED DISCIPLINE VERIFICATION COMPLETE AND COMMENTS RESOLVED (DV print, sign, and date)
Instrument and Control
Electrical Mechanical Instrument and Control Richard J. Hannigan /  
                                                                                          / 1-26-09 Civil/Structural Nuclear Originator:
/ 1-26-09 Civil/Structural Nuclear Originator:
Aaron Castor /                 / 1-26-09 Print/Sign/Date After Comments Have Been Resolved
Aaron Castor /  
/ 1-26-09 Print/Sign/Date After Comments Have Been Resolved  


G13.18.6.3-009 Attachment 2 Page 2 of 8 DESIGN VERIFICATION CHECKLIST                                             SHEET 1 OF 3 IDENTIFICATION:                                                                                     DISCIPLINE:
G13.18.6.3-009 Page 2 of 8 DESIGN VERIFICATION CHECKLIST SHEET 1 OF 3 IDENTIFICATION:
Document
DISCIPLINE:
Civil/Structural Electrical I & C Mechanical Nuclear Other Document


==Title:==
==Title:==
Drift Study for ABB ITE-62 Timers                                       Civil/Structural Electrical Doc. No.:G13.18.6.3-009                                           Rev. 0   QA Cat. 1                 I&C Mechanical Richard J. Hannigan                                   1-26-09             Nuclear Print                   Sign                 Date             Other Verifier:
Drift Study for ABB ITE-62 Timers Doc. No.:G13.18.6.3-009 Rev. 0 QA Cat. 1 Verifier:
Manager authorization for supervisor performing Verification.
Richard J. Hannigan 1-26-09 Print Sign Date Manager authorization for supervisor performing Verification.
N/A
N/A Print Sign Date METHOD OF VERIFICATION:
_ _________________ ____________
Design Review Alternate Calculations Qualification Test The following basic questions are addressed as applicable, during the performance of any design verification. These questions are based on the requirements of ANSI N45.2.11 - 1974.
Print                 Sign         Date METHOD OF VERIFICATION:
NOTE The reviewer can use the Comments/Continuation sheet at the end for entering any comment/resolution along with the appropriate question number. Additional items with new question numbers can also be entered.
Design Review                                   Alternate Calculations                     Qualification Test The following basic questions are addressed as applicable, during the performance of any design verification. These questions are based on the requirements of ANSI N45.2.11 - 1974.
: 1.
NOTE           The reviewer can use the Comments/Continuation sheet at the end for entering any comment/resolution along with the appropriate question number. Additional items with new question numbers can also be entered.
Design Inputs - Were the inputs correctly selected and incorporated into the design?
: 1.       Design Inputs - Were the inputs correctly selected and incorporated into the design?
(Design inputs include design bases, plant operational conditions, performance requirements, regulatory requirements and commitments, codes, standards, field data, etc.
(Design inputs include design bases, plant operational conditions, performance requirements, regulatory requirements and commitments, codes, standards, field data, etc.
All information used as design inputs should have been reviewed and approved by the responsible design organization, as applicable.
All information used as design inputs should have been reviewed and approved by the responsible design organization, as applicable.
All inputs need to be retrievable or excerpts of documents used should be attached.
All inputs need to be retrievable or excerpts of documents used should be attached.
See site specific design input procedures for guidance in identifying inputs.)
See site specific design input procedures for guidance in identifying inputs.)
Yes                 No                 N/A
Yes No N/A
: 2.       Assumptions - Are assumptions necessary to perform the design activity adequately described and reasonable? Where necessary, are assumptions identified for subsequent re-verification when the detailed activities are completed? Are the latest applicable revisions of design documents utilized?
: 2.
Yes                 No                 N/A
Assumptions - Are assumptions necessary to perform the design activity adequately described and reasonable? Where necessary, are assumptions identified for subsequent re-verification when the detailed activities are completed? Are the latest applicable revisions of design documents utilized?
: 3.       Quality Assurance - Are the appropriate quality and quality assurance requirements specified?
Yes No N/A
Yes                 No                 N/A
: 3.
Quality Assurance - Are the appropriate quality and quality assurance requirements specified?
Yes No N/A  


G13.18.6.3-009 Attachment 2 Page 3 of 8 DESIGN VERIFICATION CHECKLIST                                           SHEET 2 OF 3
G13.18.6.3-009 Page 3 of 8 DESIGN VERIFICATION CHECKLIST SHEET 2 OF 3
: 4. Codes, Standards and Regulatory Requirements - Are the applicable codes, standards and regulatory requirements, including issue and addenda properly identified and are their requirements for design met?
: 4.
Yes               No                 N/A
Codes, Standards and Regulatory Requirements - Are the applicable codes, standards and regulatory requirements, including issue and addenda properly identified and are their requirements for design met?
: 5. Construction and Operating Experience - Have applicable construction and operating experience been considered?
Yes No N/A
Yes               No                 N/A
: 5.
: 6. Interfaces - Have the design interface requirements been satisfied and documented?
Construction and Operating Experience - Have applicable construction and operating experience been considered?
Yes               No                 N/A
Yes No N/A
: 7. Methods - Was an appropriate design or analytical (for calculations) method used?
: 6.
Yes               No                 N/A
Interfaces - Have the design interface requirements been satisfied and documented?
: 8. Design Outputs - Is the output reasonable compared to the inputs?
Yes No N/A
Yes               No                 N/A
: 7.
: 9. Parts, Equipment and Processes - Are the specified parts, equipment, and processes suitable for the required application?
Methods - Was an appropriate design or analytical (for calculations) method used?
Yes               No                 N/A
Yes No N/A
: 10. Materials Compatibility - Are the specified materials compatible with each other and the design environmental conditions to which the material will be exposed?
: 8.
Yes               No                 N/A
Design Outputs - Is the output reasonable compared to the inputs?
: 11. Maintenance requirements - Have adequate maintenance features and requirements been specified?
Yes No N/A
Yes               No                 N/A
: 9.
: 12. Accessibility for Maintenance - Are accessibility and other design provisions adequate for performance of needed maintenance and repair?
Parts, Equipment and Processes - Are the specified parts, equipment, and processes suitable for the required application?
Yes               No                 N/A
Yes No N/A
: 13. Accessibility for In-service Inspection - Has adequate accessibility been provided to perform the in-service inspection expected to be required during the plant life?
: 10.
Yes               No                 N/A
Materials Compatibility - Are the specified materials compatible with each other and the design environmental conditions to which the material will be exposed?
: 14. Radiation Exposure - Has the design properly considered radiation exposure to the public and plant personnel?
Yes No N/A
Yes               No                 N/A
: 11.
: 15. Acceptance Criteria - Are the acceptance criteria incorporated in the design documents sufficient to allow verification that design requirements have been satisfactorily accomplished?
Maintenance requirements - Have adequate maintenance features and requirements been specified?
Yes               No                 N/A
Yes No N/A
: 16. Test Requirements - Have adequate pre-operational and subsequent periodic test requirements been appropriately specified?
: 12.
Yes               No                 N/A
Accessibility for Maintenance - Are accessibility and other design provisions adequate for performance of needed maintenance and repair?
Yes No N/A
: 13.
Accessibility for In-service Inspection - Has adequate accessibility been provided to perform the in-service inspection expected to be required during the plant life?
Yes No N/A
: 14.
Radiation Exposure - Has the design properly considered radiation exposure to the public and plant personnel?
Yes No N/A
: 15.
Acceptance Criteria - Are the acceptance criteria incorporated in the design documents sufficient to allow verification that design requirements have been satisfactorily accomplished?
Yes No N/A
: 16.
Test Requirements - Have adequate pre-operational and subsequent periodic test requirements been appropriately specified?
Yes No N/A  


G13.18.6.3-009 Attachment 2 Page 4 of 8 DESIGN VERIFICATION CHECKLIST                                         SHEET 3 OF 3
G13.18.6.3-009 Page 4 of 8 DESIGN VERIFICATION CHECKLIST SHEET 3 OF 3
: 17. Handling, Storage, Cleaning and Shipping - Are adequate handling, storage, cleaning and shipping requirements specified?
: 17.
Yes                 No               N/A
Handling, Storage, Cleaning and Shipping - Are adequate handling, storage, cleaning and shipping requirements specified?
: 18. Identification Requirements - Are adequate identification requirements specified?
Yes No N/A
Yes                 No               N/A
: 18.
: 19. Records and Documentation - Are requirements for record preparation, review, approval, retention, etc., adequately specified? Are all documents prepared in a clear legible manner suitable for microfilming and/or other documentation storage method? Have all impacted documents been identified for update as necessary?
Identification Requirements - Are adequate identification requirements specified?
Yes                 No               N/A
Yes No N/A
: 20. Software Quality Assurance- ENN sites: For a calculation that utilized software applications (e.g., GOTHIC, SYMCORD), was it properly verified and validated in accordance with EN- IT-104 or previous site SQA Program?
: 19.
Records and Documentation - Are requirements for record preparation, review, approval, retention, etc., adequately specified? Are all documents prepared in a clear legible manner suitable for microfilming and/or other documentation storage method? Have all impacted documents been identified for update as necessary?
Yes No N/A
: 20.
Software Quality Assurance-ENN sites: For a calculation that utilized software applications (e.g., GOTHIC, SYMCORD), was it properly verified and validated in accordance with EN-IT-104 or previous site SQA Program?
ENS sites: This is an EN-IT-104 task. However, per ENS-DC-126, for exempt software, was it verified in the calculation?
ENS sites: This is an EN-IT-104 task. However, per ENS-DC-126, for exempt software, was it verified in the calculation?
Yes                 No               N/A
Yes No N/A 21.
: 21. Has adverse impact on peripheral components and systems, outside the boundary of the document being verified, been considered?
Has adverse impact on peripheral components and systems, outside the boundary of the document being verified, been considered?
Yes                 No               N/A
Yes No N/A  


G13.18.6.3-009 Attachment 2 Page 5 of 8 DESIGN VERIFICATION COMMENT SHEET                                   SHEET 1 OF 1 Comments / Continuation Sheet Question               Comments                         Resolution             Initial/Date
G13.18.6.3-009 Page 5 of 8 DESIGN VERIFICATION COMMENT SHEET SHEET 1 OF 1 Comments / Continuation Sheet Question Comments Resolution Initial/Date NONE
    #
NONE


G13.18.6.3-009 Attachment 2 Page 6 of 8 During the independent review of calculation G13.18.6.3-009, alternate applications Lotus 1-2-3 and Quattro Pro were used to validate the results generated by MS Excel in the calculation. The reviewer independently generated the G13.18.6.3-009 results. In the table below the results of the validation for the G13.18.6.3-009 values and the values produced by Lotus 1-2-3 and Quattro Pro are illustrated.
G13.18.6.3-009 Page 6 of 8 During the independent review of calculation G13.18.6.3-009, alternate applications Lotus 1-2-3 and Quattro Pro were used to validate the results generated by MS Excel in the calculation. The reviewer independently generated the G13.18.6.3-009 results. In the table below the results of the validation for the G13.18.6.3-009 values and the values produced by Lotus 1-2-3 and Quattro Pro are illustrated.
Since there were not any outliers the Initial Data Set and the Final Data Set are the same. The results from Lotus 1-2-3 and Quattro Pro validated the calculation G13.18.6.3-009 results generated by MS Excel. Minor differences in the values between the MS Excel generated results and the Lotus 1-2-3 and Quattro Pro generated results were reviewed and can be attributed to rounding and conversion between applications. Below is a partial listing of some of the values from G13.18.6.3-009 that were validated:
Since there were not any outliers the Initial Data Set and the Final Data Set are the same. The results from Lotus 1-2-3 and Quattro Pro validated the calculation G13.18.6.3-009 results generated by MS Excel. Minor differences in the values between the MS Excel generated results and the Lotus 1-2-3 and Quattro Pro generated results were reviewed and can be attributed to rounding and conversion between applications. Below is a partial listing of some of the values from G13.18.6.3-009 that were validated:
G13.18.6.3-009                 Validation         Validation Parameter                Value                      Value            Application   Valid?
Parameter G13.18.6.3-009 Value Validation Value Validation Application Valid?
Mean                 -0.0056                     -0.0056           Lotus 1-2-3     Yes Variance               0.416                       0.416           Lotus 1-2-3     Yes Standard               0.6449                     0.6449           Lotus 1-2-3     Yes Deviation Count                   42                         42             Lotus 1-2-3     Yes Max                   1.67                       1.67           Lotus 1-2-3     Yes Median                 0.00                       0.00           Lotus 1-2-3     Yes Min                   -1.30                       -1.30           Lotus 1-2-3     Yes Range                 2.97                       2.97           Lotus 1-2-3     Yes Sum                 -0.237                     -0.237           Lotus 1-2-3     Yes Kurtosis               0.104                       0.104           Lotus 1-2-3     Yes Skewness                 0.523                       0.523           Lotus 1-2-3     Yes Outliers               None                       None           Lotus 1-2-3     Yes Visual inspection Drift scatter plot           N/A                 shows agreement       Lotus 1-2-3     Yes with trend line                                between the scatter plots and trend lines Drift scatter plot trend line     Y = 0.0003x - 0.1709       Y = 0.000305x - 0.171     Lotus 1-2-3     Yes 0.9576 (does not reject     0.9576 (does not reject W Test Value          assumption of               assumption of        Lotus 1-2-3     Yes normality)                  normality)
Mean
Visual inspection Histogram                 N/A                 shows agreement       Lotus 1-2-3     Yes between the two histograms
-0.0056
-0.0056 Lotus 1-2-3 Yes Variance 0.416 0.416 Lotus 1-2-3 Yes Standard Deviation 0.6449 0.6449 Lotus 1-2-3 Yes Count 42 42 Lotus 1-2-3 Yes Max 1.67 1.67 Lotus 1-2-3 Yes Median 0.00 0.00 Lotus 1-2-3 Yes Min
-1.30
-1.30 Lotus 1-2-3 Yes Range 2.97 2.97 Lotus 1-2-3 Yes Sum
-0.237
-0.237 Lotus 1-2-3 Yes Kurtosis 0.104 0.104 Lotus 1-2-3 Yes Skewness 0.523 0.523 Lotus 1-2-3 Yes Outliers None None Lotus 1-2-3 Yes Drift scatter plot with trend line N/A Visual inspection shows agreement between the scatter plots and trend lines Lotus 1-2-3 Yes Drift scatter plot trend line Y = 0.0003x - 0.1709 Y = 0.000305x - 0.171 Lotus 1-2-3 Yes W Test Value 0.9576 (does not reject assumption of normality) 0.9576 (does not reject assumption of normality)
Lotus 1-2-3 Yes Histogram N/A Visual inspection shows agreement between the two histograms Lotus 1-2-3 Yes


G13.18.6.3-009 Attachment 2 Page 7 of 8 G13.18.6.3-009 Validation Validation Parameter        Value        Value    Application   Valid?
G13.18.6.3-009 Page 7 of 8 Parameter G13.18.6.3-009 Value Validation Value Validation Application Valid?
Data within 0.5 Standard           14           14     Lotus 1-2-3   Yes Deviations Data within 1.0 Standard           26           26     Lotus 1-2-3   Yes Deviation Data within 1.5 Standard           34           34     Lotus 1-2-3   Yes Deviations Data within 2.0 Standard           40           40     Lotus 1-2-3   Yes Deviations Data within 2.5 Standard           41           41     Lotus 1-2-3   Yes Deviations Bin 4 count         6           6     Lotus 1-2-3   Yes Bin 4 drift                           Lotus 1-2-3   Yes Standard        0.4773      0.4773 Deviation Bin 4 drift mean   -0.1056     -0.1056   Lotus 1-2-3   Yes Bin 4 interval   327.00       327.00   Lotus 1-2-3   Yes mean Bin 4 interval                           Lotus 1-2-3   Yes maximum          330          330 Bin 5 count         36           36     Lotus 1-2-3   Yes Bin 5 drift                           Lotus 1-2-3   Yes Standard        0.6728      0.6728 Deviation Bin 5 drift mean   0.0110       0.0110   Lotus 1-2-3   Yes Bin 5 interval   576.75       576.75   Lotus 1-2-3   Yes mean Bin 5 interval                           Lotus 1-2-3   Yes maximum          650          650 Binning Analysis Ratio of       1.987       1.987   Lotus 1-2-3   Yes Variances Binning Analysis 4.478       4.478   Quattro Pro   Yes F Critical
Data within 0.5 Standard Deviations 14 14 Lotus 1-2-3 Yes Data within 1.0 Standard Deviation 26 26 Lotus 1-2-3 Yes Data within 1.5 Standard Deviations 34 34 Lotus 1-2-3 Yes Data within 2.0 Standard Deviations 40 40 Lotus 1-2-3 Yes Data within 2.5 Standard Deviations 41 41 Lotus 1-2-3 Yes Bin 4 count 6
6 Lotus 1-2-3 Yes Bin 4 drift Standard Deviation 0.4773 0.4773 Lotus 1-2-3 Yes Bin 4 drift mean  
-0.1056
-0.1056 Lotus 1-2-3 Yes Bin 4 interval mean 327.00 327.00 Lotus 1-2-3 Yes Bin 4 interval maximum 330 330 Lotus 1-2-3 Yes Bin 5 count 36 36 Lotus 1-2-3 Yes Bin 5 drift Standard Deviation 0.6728 0.6728 Lotus 1-2-3 Yes Bin 5 drift mean 0.0110 0.0110 Lotus 1-2-3 Yes Bin 5 interval mean 576.75 576.75 Lotus 1-2-3 Yes Bin 5 interval maximum 650 650 Lotus 1-2-3 Yes Binning Analysis Ratio of Variances 1.987 1.987 Lotus 1-2-3 Yes Binning Analysis F Critical 4.478 4.478 Quattro Pro Yes


G13.18.6.3-009 Attachment 2 Page 8 of 8 G13.18.6.3-009           Validation       Validation Parameter                  Value                Value          Application   Valid?
G13.18.6.3-009 Page 8 of 8 Parameter G13.18.6.3-009 Value Validation Value Validation Application Valid?
Visual inspection Drift Regression               NA             shows agreement     Lotus 1-2-3    Yes Scatter Plot                                between the two scatter plots and trend lines.
Drift Regression Scatter Plot NA Visual inspection shows agreement between the two scatter plots and trend lines.
Drift Regression Scatter Plot Trend       Y = 0.000305x         Y = 0.000305x     Quattro Pro    Yes Line                -0.170887              -0.170836 Drift Regression R Square Value             0.002014             0.002013         Quattro Pro     Yes Drift Regression                                                   Quattro Pro    Yes F Value               0.080720             0.080673 F Crit Value             3.231727             3.231727         Quattro Pro     Yes Drift Regression P-Value               0.777790             0.777817         Quattro Pro     Yes Visual inspection AV Drift Regression             NA             shows agreement     Lotus 1-2-3    Yes Scatter Plot                                between the two scatter plots and trend lines.
Lotus 1-2-3 Yes Drift Regression Scatter Plot Trend Line Y = 0.000305x
AV Drift Regression       Y = 0.000299x         Y = 0.000299x Scatter Plot Trend          +0.317367              +0.317369       Quattro Pro     Yes Line AV Drift Regression R Square Value             0.004453             0.004453         Quattro Pro     Yes AV Drift Regression F Value               0.178904             0.178900         Quattro Pro     Yes F Crit Value             3.231727             3.231727         Quattro Pro     Yes AV Drift Regression P-Value               0.674582             0.674531         Quattro Pro     Yes Other values, including those based on the above parameters, were checked using hand calculations.}}
-0.170887 Y = 0.000305x
-0.170836 Quattro Pro Yes Drift Regression R Square Value 0.002014 0.002013 Quattro Pro Yes Drift Regression F Value 0.080720 0.080673 Quattro Pro Yes F Crit Value 3.231727 3.231727 Quattro Pro Yes Drift Regression P-Value 0.777790 0.777817 Quattro Pro Yes AV Drift Regression Scatter Plot NA Visual inspection shows agreement between the two scatter plots and trend lines.
Lotus 1-2-3 Yes AV Drift Regression Scatter Plot Trend Line Y = 0.000299x  
+0.317367 Y = 0.000299x  
+0.317369 Quattro Pro Yes AV Drift Regression R Square Value 0.004453 0.004453 Quattro Pro Yes AV Drift Regression F Value 0.178904 0.178900 Quattro Pro Yes F Crit Value 3.231727 3.231727 Quattro Pro Yes AV Drift Regression P-Value 0.674582 0.674531 Quattro Pro Yes Other values, including those based on the above parameters, were checked using hand calculations.}}

Latest revision as of 19:07, 11 January 2025

Drift Study for ABB ITE-62 Timers
ML13018A103
Person / Time
Site: River Bend Entergy icon.png
Issue date: 01/26/2009
From: Castor A
Entergy Operations
To: Wang A
Plant Licensing Branch IV
Wang A
Shared Package
ML13018A081 List:
References
TAC ME7767 G13.18.6.3-009
Download: ML13018A103 (45)


Text

ANO-1 ANO-2 GGNS IP-2 IP-3 PLP JAF PNPS RBS VY W3 CALCULATION COVER PAGE (1) EC # 11753 (2)Page 1 of 45 (3) Design Basis Calc.

YES NO (4)

CALCULATION EC Markup (5 ) Calculation No: G13.18.6.3-009 (6) Revision: 0 (7)

Title:

Drift Study for ABB ITE-62 Timers (8) System(s): 302 (9) Review Org (Department): NSBE3 (I&C Design)

(10) Safety Class:

Safety / Quality Related Augmented Quality Program Non-Safety Related (11) Component/Equipment/Structure Type/Number:

ENS-SWG1A-62-1 ENS-SWG1A-62-2 ENS-SWG1A-62-6 ENS-SWG1B-62-1 ENS-SWG1B-62-2 ENS-SWG1B-62-6 (12) Document Type: F43.02 (13)

Keywords (Description / Topical Codes): Drift

    

REVIEWS (14) Name/Signature/Date

_Aaron Castor /

/ 1-26-09 (15) Name/Signature/Date R.J. Hannigan /

/ 1-26-09 (16) Name/Signature/Date See AS for electronic signature Responsible Engineer Design Verifier Supervisor/Approval Reviewer Comments Attached Comments Attached

DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 2 OF 14 CALCULATION REFERENCE SHEET CALCULATION NO:

G13.18.6.3-009 REVISION:

0 I. EC Markups Incorporated None II. Relationships:

Sht Rev Input Doc Output Doc Impact Y/N Tracking No.

1. 350911 NA N
2. 350912 NA N
3. 350917 NA N
4. 350918 NA N
5. 358908 NA N
6. 358909 NA N
7. 364930 NA N
8. 364931 NA N
9. 364932 NA N
10. 364935 NA N
11. ECH-NE-08-00015 000 N
12. G13.18.6.2-ENS-006 0

000 Y

11753

13. STP-302-1600 1

11 N

14. STP-302-1600 1

12 N

15. STP-302-1600 1

13 N

16. STP-302-1601 1

10 N

17. STP-302-1601 1

11 N

18. STP-302-1601 1

12 N

19. STP-302-1602 1

11 N

20. STP-302-1602 1

12 N

21. STP-302-1602 1

13 N

22. STP-302-1603 1

11 N

23. STP-302-1603 1

12 N

24. STP-302-1603 1

13 N

25. WO-00053890 0

N

26. WO-50688142 0

N

27. WO-50688143 0

N

28. WO-50688144 0

N

29. WO-50688145 0

N

30. WO-50994404 0

N

31. WO-50994405 0

N

32. WO-50994516 0

N

33. WO-50994517 0

N

34. WO-51041195 0

N

DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 3 OF 14 CALCULATION REFERENCE SHEET CALCULATION NO:

G13.18.6.3-009 REVISION:

0 II. Relationships:

Sht Rev Input Doc Output Doc Impact Y/N Tracking No.

35. WO-51041196 0

N

36. WO-51041842 0

N

37. WO-51041843 0

N III.

CROSS

REFERENCES:

1. American National Standard N15.15-1974, Assessment of the Assumption of Normality (Employing Individual Observed Values)
2. ANSI/ISA-S67.04-Part I-2000, Setpoints for Nuclear Safety Related Instrumentation
3. DOE Research and Development Report No. WAPD-TM-1292, Statistics for Nuclear Engineers and Scientists Part 1: Basic Statistical Inference, February 1981
4. EPRI TR-103335R1, Statistical Analysis of Instrument Calibration Data; Guidelines for Instrument Calibration Extension / Reduction Programs, October 1998
5. ISA-RP67.04-Part II-2000, Methodologies for the Determination of Setpoints for Nuclear Safety-Related Instrumentation, Second Printing, June 12, 1995
6. NRC Generic Letter 91-04, Changes in Technical Specification Surveillance Requirements to Accommodate a 24 Month Fuel Cycle, April 2, 1991
7. VTD-B455-0147, Brown Boveri (Now ABB Power T&D Company) Instructions for ITE Solid-State Timing Relays, Pub # IB 18.7.7-16, Revision 0
8. VTD-B455-0157, Brown Boveri (Now ABB Power T&D Company) Instructions for ITE Solid-State Time Delay Relay ITE-62L Surface Mounted, Pub. # IB 18.7.7-48, Revision 0 IV.

SOFTWARE USED:

Title:

N/A Version/Release:

Disk/CD No.

V.

DISK/CDS INCLUDED:

Title:

N/A Version/Release Disk/CD No.

VI.

OTHER CHANGES:

DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 4 OF 14 Revision Record of Revision 0

Initial issue.

DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 5 OF 14 TABLE OF CONTENTS 1

Purpose!.................................................................................................................................................!6 2

Conclusions!...........................................................................................................................................!7 3

Design!Inputs!.........................................................................................................................................!7 4

References!.............................................................................................................................................!7 5

Assumptions!..........................................................................................................................................!8 6

Method!of!Analysis................................................................................................................................!8 7

Analysis!................................................................................................................................................!10 8

Atttachments!.......................................................................................................................................!14

- Drift Analysis Supporting Information (Excel Spreadsheet) - 23 pages

- DVR Forms with comments - 8 pages

DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 6 OF 14 1

Purpose 1.1 The purpose of this analysis is to establish more realistic drift values and characteristics to be used by instrument uncertainty calculations for determination of setpoints and allowable values for the subject instrumentation. The drift values are determined by historical As Found / As Left data analysis.

1.2 Specifically, this analysis addresses Asea Brown Boveri Model (ABB) ITE-62 Undervoltage Timers with tag numbers as shown in Table 1.2-1 below. Also shown in the table are the calibration procedure numbers, device functions, and applicable Technical Specification (TS) sections. The results of this analysis can be conservatively applied to any ABB Model ITE-62 Undervoltage Timers used at River Bend Station that meets the criteria listed in Section 3.5.3 of Reference 4.1.3, Considerations When Combining Instruments Into a Single Group.

TABLE 1.2-1 COMPONENT LIST PROCEDURE NO.

TAG NO.

FUNCTION TS SECTION STP-302-1600 STP-302-1601 ENS-SWG1A-62-1 ENS-SWG1B-62-1 Loss of Power (LOP) Instrumentation Divisions 1 and 2 - 4.16 kV Emergency Bus Undervoltage Loss of Voltage - Time Delay 3.3.8.1.3-1.b STP-302-1602 STP-302-1603 ENS-SWG1A-62-2 ENS-SWG1B-62-2 Loss of Power (LOP) Instrumentation Divisions 1 and 2 - 4.16 kV Emergency Bus Undervoltage Degraded Voltage - Time Delay (No LOCA) 3.3.8.1.3-1.d STP-302-1602 STP-302-1603 ENS-SWG1A-62-6 ENS-SWG1B-62-6 Loss of Power (LOP) Instrumentation Divisions 1 and 2 - 4.16 kV Emergency Bus Undervoltage Degraded Voltage - Time Delay (LOCA) 3.3.8.1.3-1.e

DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 7 OF 14 2

Conclusions 2.1 The bounding Analyzed Drift (DA) for the ITE-62 Time Delay Relays (See Table 1.2-1) has been determined to be ! 2.072 % Setpoint for a 30 month (24 months + 25%)

calibration interval, with no significant bias. The Analyzed Drift should be treated as a normally distributed, 2" value for uncertainty analysis.

2.2 The results of this analysis can be conservatively applied to all of the Undervoltage Timers in Table 1.2-1 and to any ABB Model ITE-62 Undervoltage Timers used at River Bend Station, which meets the criteria listed in Section 3.5.3 of Reference 4.1.3, Considerations When Combining Instruments Into a Single Group.

3 Design Inputs 3.1 Pages 1 through 3 of Attachment 1 provide a listing of the historical As Left (AL) and As Found (AF) data, as obtained from Reference 4.2.1, with any data exclusions or modifications noted. All dates of calibration are also entered to provide time intervals between calibrations.

4 References 4.1 METHODOLOGY 4.1.1 ANSI/ISA-S67.04-Part I-2000, Setpoints for Nuclear Safety Related Instrumentation 4.1.2 ISA-RP67.04-Part II-2000, "Methodologies for the Determination of Setpoints for Nuclear Safety-Related Instrumentation," Second Printing, June 12, 1995 4.1.3 ECH-NE-08-00015, Instrument Drift Analysis Design Guide," Rev. 0, Generated by EXCEL Services Corporation, July 2008 4.1.4 EPRI TR-103335R1, "Statistical Analysis of Instrument Calibration Data; Guidelines for Instrument Calibration Extension / Reduction Programs," October, 1998 4.1.5 DOE Research and Development Report No. WAPD-TM-1292, "Statistics for Nuclear Engineers and Scientists Part 1: Basic Statistical Inference," February 1981 4.1.6 NRC Generic Letter 91-04, "Changes in Technical Specification Surveillance Requirements to Accommodate a 24 Month Fuel Cycle," April 2, 1991 4.1.7 American National Standard N15.15-1974, "Assessment of the Assumption of Normality (Employing Individual Observed Values)"

4.2 PROCEDURES 4.2.1 Historical Calibration Records from RBS Surveillance Test Procedure Results for STP-302-1600, 1601, 1602, and 1603

DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 8 OF 14 4.3 MISCELLANEOUS REFERENCES 4.3.1 VTD-B455-0147, Brown Boveri (Now ABB Power T&D Company) Instructions for ITE Solid-State Timing Relays, Pub # IB 18.7.7-16, Revision 0 4.3.2 VTD-B455-0157, Brown Boveri (Now ABB Power T&D Company) Instructions for ITE Solid-State Time Delay Relay ITE-62L Surface Mounted, Pub. # IB 18.7.7-48, Revision 0 5

Assumptions 5.1 This drift report employs those assumptions customarily used for standard statistical analyses, as directed by Reference 4.1.3, such as the assumption that a distribution is normal and the use of statistical tests to confirm this hypothesis.

5.2 This drift report is based on analysis of historical As Found and As Left data from calibration records for the devices listed in Table 1.2-1. The results of this analysis can also apply to any ABB Model ITE-62 Undervoltage Timers used at RBS, but care must be taken when applying these results. Specifically, in order to apply the results of this analysis to other similar devices, the devices must meet the criteria listed in Section 3.5.3 of Reference 4.1.3, Considerations When Combining Instruments Into a Single Group.

6 Method of Analysis 6.1 The methodology used for this analysis is Reference 4.1.3, which is written in accordance with Reference 4.1.4, using References 4.1.1, 4.1.2 and 4.1.7 to supplement. An overview of the methodology is given herein, and any deviation from Reference 4.1.3 or any supplemental methods used herein are described.

6.2 This analysis determines the drift values for the subject instrumentation by analysis of historical As Found / As Left data from calibration records. Drift for a given device for a calibration period is determined by subtracting the previous As Left setting from a more recent As Found setting. The time interval for that calibration period is determined by subtracting the previous date from the more recent date, in units of days. All retrievable As Left and As Found data is collected for each calibration performed on each device covered by this report, for the study period. From this information, the drift and calibration interval is generated for each possible instance. Per Section 3.4.2 of Reference 4.1.3, "The goal is to collect enough data for the instrument or group to make a statistically valid pool." It goes on to explain that there is no hard fast number.

However sufficient data should be collected to yield at least 30 valid drift values for analysis, or at least 20 under justifiable circumstances. Also, as noted in Section 3.4.2.4 of Reference 4.1.3, "For each selected component in the sample, enough historic calibration data should be provided to ensure that the component's performance over time is understood." The devices covered by this report are currently calibrated on an 18 Month basis, and the proposed extension is for a 24 Month nominal calibration interval. Therefore, a study period of 10 years represents more than six of the present calibration cycles, and five of the proposed calibration cycles, which is adequate to understand the component's performance over time. Also, a sufficient number of valid drift values are provided as a result of the selected study period to make a statistically

DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 9 OF 14 valid pool. Therefore, As Found and As Left Data values are entered from calibrations occurring for approximately the last 10 years.

6.3 Determination of the Analyzed Drift is generally accomplished through the following steps.

6.3.1 Gather and Generate Raw Drift Data: In addition to gathering the As Found and As Left data, and computing the drift values and time intervals, this step also involves an investigation into whether all of the devices should be analyzed together, or whether they should be separated into smaller analysis groups. Additionally, this step involves careful screening of the input data for errors or other situations that would not allow proper determination of drift. Finally, this step involves careful screening of the input data for errors or other situations that could disrupt the proper determination of drift.

6.3.2 Determination of Outliers and Statistical Summary: In order to properly model the drift characteristics for a device, it could be proper to remove up to one more data value, which obviously does not conform to the vast majority of the data. A t-Test is performed on the data to detect any outliers, and remove up to one if appropriate, per the guidelines of Reference 4.1.3. Additionally, the basic statistical values which describe the group of drift data are derived in this step, including such parameters as Mean, Standard Deviation, Count, Median, Minimum, Maximum, etc.

6.3.3 Tests for Normality: Per Reference 4.1.3, a statistical test (W or D-Prime, depending on sample size) is performed on the drift data to support the hypothesis that the data conforms to a normal distribution. If this test is unable to support that hypothesis, then a Coverage Analysis is performed to ensure that the data can be conservatively modeled by a normal distribution and to provide an adjustment to the standard deviation of the drift model, if necessary to conservatively envelop the observed data population.

6.3.4 Time-Dependency

Per Reference 4.1.3, Scatter Plots and a time-based Binning Analysis are developed for the data to establish the time-dependency of the drift. If enough drift data exists for significantly different time intervals, regression analysis is performed to aid in the determination of time-dependency. The drift data is determined to be strongly time dependent or moderately time dependent, for the purpose of extrapolation.

6.3.5 Analyzed Drift Derivation and Characterization: The drift values are determined for the current calibration interval. These values are conservatively extrapolated to the desired calibration interval, based on the methods prescribed in Reference 4.1.3, depending on the degree of time-dependency derived for the drift data.

DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 10 OF 14 6.4 The mathematical computations of the statistical analysis are performed within an Excel spreadsheet. Supporting information from the spreadsheet is printed out as Attachment 1 to this analysis. Microsoft Excel spreadsheets generally compute values to an approximate 15 decimal resolution, which is well beyond any required rounding for engineering analyses. However, for printing and display purposes, most values are displayed to lesser resolution. It is possible that hand computations will produce slightly different results, because of using rounded numbers in initial and intermediate steps, but the Excel computed values are considered highly accurate in comparison.

6.5 Acceptance Criteria: Since the purpose of the analysis is to generate a value and description of the characteristics of the drift of the evaluated make/model, there are no specific acceptance criteria.

7 Analysis 7.1 Gather and Generate Raw Error Data 7.1.1 Specifically, this analysis addresses ABB Model ITE-62 Undervoltage Timers, with the tag numbers as shown in Table 1.2-1 of this analysis. These relays have the same manufacturer and very similar model numbers. All are ABB ITE-62 series time delay relays, but some are model ITE-62K and others are ITE-62L. Per References 4.3.1 and 4.3.2, these relays have somewhat similar specifications, and are of the same manufacturer and series. It is postulated that these two models will perform similarly. Additionally, these relays have some differences in setpoints.

Therefore, pooling tests are required to group the data for analysis.

7.1.2 Pages 1 through 3 of Attachment 1 provide a listing of the initial As Found and As Left data from available historical plant calibration records for the subject Undervoltage Timers. Note that the calibration dates are also recorded, and notes are provided to clarify the activities performed or to provide additional information about the data, as appropriate. This data was entered into an Excel spreadsheet for computation of the drift values, time intervals between calibrations and statistical analysis.

7.1.3 A screening of the initial input data from pages 1 through 3 of Attachment 1 was performed. To help identify erroneous data, an informal critical T-test was performed, with the Critical T values reduced incrementally until approximately 10%

of the data population was identified as outliers. Those outliers were researched, and no data errors were revealed. The specific informal T-tests performed are not documented, as they are only used as tools to identify potentially erroneous data and do not contribute to the analysis of the valid data.

DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 11 OF 14 7.1.4 Data not entered into the analysis is listed in the table below, showing the reasoning used in not entering the data.

Table 7.4.2-1 Data Not Entered in the Drift Analysis Procedure Number Tag Number Surveillance Date(s)

Comments/Disposition STP-302-1602 ENS-SWG1A-62-6 09/19/1997 Relay failed calibration and was replaced per CR 97-1494 and MAI 313634 7.1.5 Per the methodology of Section 4.1.1.11 of Reference 4.1.3, drift is computed by subtracting the As Left data of one calibration from the As Found data of the next calibration, as documented in pages 7 through 9 of Attachment 1. These pages also document the time interval between calibrations (in the number of days and months) by subtracting the As Left date of one calibration from the As Found date of the next calibration, per Section 4.1.1.10 of Reference 4.1.3. Pages 7 through 9 of import the Sequence ID, the Tag No., the AF / AL flags, the dates of calibration and the As Found and As Left data from pages 1 through 3 of the Addendum and computes the interval between calibrations. Pages 7 and 8 of compute the drift values and summarize the time intervals computed.

As an example of the equations used, the first drift value and time interval are computed as follows. The rest of the values are computed identically.

Drift (Seq 1)

= AF (02/17/08) - AL (05/08/06) [For Tag ENS-SWG1A-62-1]

= 97.167 (From Seq. 1 on Left) - 97.833 (From Seq. 4 on Left)

= -0.6667 % Setpoint Cal Interval (Seq 1) = 02/17/08 - 05/08/06

= 650 Days Cal Interval (Mo.) = Cal Interval (Days) x 12 Months / 365.25 Days

= 21.4 Months 7.1.6 Specific pooling tests are performed on the data as documented on page 12 of. The data is split into three groups by setpoint and model number.

The specific groups analyzed are as follows:

1)

ENS-SWG1(A-B)-62-1 relays with a setpoint of 3 seconds (Model ITE-62K)

2)

ENS-SWG1(A-B)-62-6 relays with a setpoint of 3 seconds (Model ITE-62L)

3)

ENS-SWG1(A-B)-62-2 relays with a setpoint of 57.8 and 60 seconds (Model ITE-62K)

The pooling tests determine the acceptability of combining the data from the different model numbers and setpoints into one data set for analysis. First, to test for the difference in model numbers, group 1 is tested versus group 2. These groups have identical setpoints, and this test should isolate the difference to the model number. The second test is performed for the data from groups 1 and 2 versus group 3, to test for the difference in setpoints. In each case, a t Test is

DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 12 OF 14 performed per Section 3.5.4 of Reference 4.1.3, to determine acceptability for pooling, between the groups on page 12 of Attachment 1. For both tests, the t Statistic is less than the t Critical two-tail value, indicating that combination of the groups for analysis is appropriate. The means and standard deviations are reasonably similar. From an engineering standpoint, all data should combine appropriately in units of % Setpoint, and the t Tests confirm this hypothesis.

Therefore, all of the data is combined for analysis in units of % Setpoint.

7.2 Determination of Outliers and Statistical Summary 7.2.1 The outlier analysis is recorded on pages 10 and 11 of Attachment 1 to this drift analysis. This page displays the Sequence No., Tag No., Drift, and Calibration Interval (in units of Days). The critical T value used in the outlier analysis comes directly from Table 2 of Reference 4.1.3. As shown on page 10 of Attachment 1, no outliers are detected. The Final Data Set (FDS) for this analysis is documented on pages 10 and 11 of Attachment 1 and is identical to the original data set.

7.2.2 A summary of the required statistical values for the Final Data Set, per Section 4.2 of Reference 4.1.3, is developed on page 10 of Attachment 1. Cell formulas for the determinations of statistical quantities are used directly from Section 4.2 of Reference 4.1.3.

7.3 Tests for Normality 7.3.1 Since the FDS contains less than 50 samples, the W Test is performed on the data to test for normality, as shown on page 13 of Attachment 1. Per the methodology of Section 3.7.2 of Reference 4.1.3, the details of the W Test methodology are shown in Reference 4.1.7. Equations used are listed on page 13 of Attachment 1. Since the calculated W statistic (0.9576) is greater than the critical value for W (0.9420),

this test does not reject the assumption of normality for this data set. Therefore, the data is established as normally distributed, and no coverage analysis is necessary.

7.3.2 Since the W Test did not reject the assumption of normality, a Coverage Analysis is not necessary, but a Histogram is developed for information only. The Histogram is developed and documented on pages 14 and 15 of Attachment 1, per Sections 3.7.5 and 4.4 of Reference 4.1.3. To generate the Histogram data, the drift values are categorized into 12 bins, in relation to the mean and standard deviation. These bins are generated in multiples of 1/2 Standard Deviation increments, and the bin maximum values are derived in accordance with the methods given in Section 19 of Reference 4.1.4. (See page 14 of Attachment 1 for specific formulas used for the maximums.)

The expected populations within each bin are developed from normal distribution percentages, as shown on page 14 of Attachment 1. The data passes normality test and the results are displayed in the Histogram on page 15 of Attachment 1.

DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 13 OF 14 7.4 Time-Dependency 7.4.1 In order to determine time-dependency of the drift data, the data is first plotted as a scatter plot on page 16 of Attachment 1, in accordance with the methodology of Section 4.5.1 of Reference 4.1.3. The trend line within this scatter plot starts at a small negative value and crosses zero near the end of the analysis period. The data scatter appears to increase over time. The trend line and the associated equation are noted on the scatter plot on page 16 of Attachment 1.

7.4.2 The binning analysis is performed on pages 17 and 18 of Attachment 1. The drift and time interval data are divided into bins, based on the intervals between calibrations as defined in Section 3.8.3.1 of Reference 4.1.3. Statistical summaries for each bin, including count, mean, standard deviation, mean time interval and maximum observed time interval are computed. Excel functions are used to determine the statistical summary values for each bin, and are used explicitly from Sections 4.2.1, 4.2.2, 4.2.3 and 4.2.7 of Reference 4.1.3. This information is presented on page 17 of Attachment 1. Per Section 3.8.3.4 of Reference 4.1.3, after removing those bins with 5 or less data points and those with less than or equal to 10% of total population, only Bins 4 and 5 remain.

Page 18 of Attachment 1 displays a plot of the mean and standard deviations of the drift data versus the average time interval between calibrations for the subject bins, in accordance with Section 4.5.2 of Reference 4.1.3. It also provides all of the binning parameters and statistics that are a part of the binning analysis. The mean value of the data starts from a negative value in Bin 4 and barely crosses zero for Bin 5. This represents a decrease in the magnitude of the mean which is not indicative of time dependency. Also, from this plot, the standard deviation increases from Bin 4 to Bin 5. In addition, the ratio of the variances (Bin 5 / Bin 4) is compared to the F critical value, as directed by Section 4.5.2 of Reference 4.1.3. Only the standard deviation plot could be indicative of potential time dependency, but strong time dependency is not indicated from the variance test (Sections 3.8.3.4 and 4.5.2 of Reference 4.1.3).

7.4.3 Per Section 3.8.4 of Reference 4.1.3, a drift regression analysis is performed within pages 19 and 20 of Attachment 1. The equations and functions used by Excel are taken specifically from Section 3.8.4 of Reference 4.1.3. The regression analysis output shows an R Squared Value (0.002014) less than 0.09, a P Value greater than 0.05 (0.777790) and F Value (0.080720) less than F Critical (3.231727).

These results all indicate that the bias portion of the drift is not time dependent. The regression line crosses zero within the analysis period, which per the last paragraph of Section 3.8.4 of Reference 4.1.3, is not expected and is an improper model of the drift-versus-time characteristic of the device. The fact that this is an improper model of the drift-versus-time characteristic of the device would override any conclusions based on the three statistical tests. The bias portion of drift is conservatively treated as moderately time dependent for the purpose of extrapolation.

7.4.4 Per Section 3.8.4 of Reference 4.1.3, an absolute value drift regression analysis is performed within pages 21 and 22 of Attachment 1. The drift data is converted into absolute value via the Excel ABS function for each drift data value. The equations and functions used by Excel for the Regression analysis are taken specifically from Section 3.8.4 of Reference 4.1.3. This regression analysis output shows an R Squared Value (0.004453) less than 0.09, a P Value (0.674582) greater than 0.05,

DRIFT ANALYSIS G13.18.6.3-009 ENGINEERING DEPARTMENT Revision 0 RIVER BEND STATION PAGE 14 OF 14 and an F Value (0.178904) less than F Critical (3.231727). These results all indicate a random portion of drift that is not time-dependent. The absolute value drift regression line increases over time, and the binning plot shows an increasing standard deviation over time. Based on these results, per Section 3.8.4 of Reference 4.1.3, the random portion of drift is conservatively treated as moderately time-dependent for the purpose of extrapolation.

7.5 Analyzed Drift (DA) Derivation and Characterization 7.5.1 As shown on page 23 of Attachment 1, per Section 3.11 of Reference 4.1.3, the drift bias error is evaluated for significance. The critical value for significance of the bias term is computed and shown therein. The bias is determined to be negligible.

Therefore, the computed Analyzed Drift Bias term (DAbias) is negligible.

7.5.2 Per Section 4.6.6 of Reference 4.1.3, the random portion of the Analyzed Drift is determined from multiplying the standard deviation of Bin 5 by the Tolerance Interval Factor (TIF) and extrapolating as required to a calibration interval of 30 months. No normality adjustment is required per section 6.3.1. The random portion of drift has been determined to be moderately time-dependent for the purpose of extrapolation. For conservatism, the standard deviation of Bin 5 is used with the average observed time interval from Bin 5 on page 17 of Attachment 1 as the starting point. The TIF is obtained from Table 1 of Reference 4.1.3 as 2.445 for a 95/95 significance. The computation of this value is shown on page 23 of to result in a DArandom (extrap) term of ! 2.072 % Setpoint for a 30 month (24 months + 25%) calibration interval.

8 Attachments - Analysis Spreadsheet (23 pages)

Spreadsheet Contents:

Pages Input Data 1-3 Data Conversion 4-6 AF-AL Data 7-9 Outliers & Summary 10-11 Pooling Tests 12 W Test 13 Histogram 14-15 Scatter Plot 16 Binning Analysis 17-18 Regression - Drift 19-20 Regression - AV of Drift 21-22 Analyzed Drift (DA) 23 - DVR Form (8 pages)

DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Input Data G13.18.6.3-009 Rev. 0 Page 1 of 23 Seq. ID Tag ID Date Procedure Make/Model AF/ AL Setpt AF / AL Data Units Comments 1

ENS-SWG1A-62-1 2/17/2008 STP-302-1600 ABB ITE-62K AF 3.0 2.9150 sec 2

ENS-SWG1A-62-1 2/17/2008 STP-302-1600 ABB ITE-62K AL 3.0 2.9160 sec 3

ENS-SWG1A-62-1 5/8/2006 STP-302-1600 ABB ITE-62K AF 3.0 2.9300 sec 4

ENS-SWG1A-62-1 5/8/2006 STP-302-1600 ABB ITE-62K AL 3.0 2.9350 sec 5

ENS-SWG1A-62-1 11/11/2004 STP-302-1600 ABB ITE-62K AF 3.0 2.9200 sec 6

ENS-SWG1A-62-1 11/11/2004 STP-302-1600 ABB ITE-62K AL 3.0 2.9300 sec 7

ENS-SWG1A-62-1 3/29/2003 STP-302-1600 ABB ITE-62K AF 3.0 2.9200 sec 8

ENS-SWG1A-62-1 3/29/2003 STP-302-1600 ABB ITE-62K AL 3.0 2.9200 sec 9

ENS-SWG1A-62-1 9/27/2001 STP-302-1600 ABB ITE-62K AF 3.0 2.9200 sec 10 ENS-SWG1A-62-1 9/27/2001 STP-302-1600 ABB ITE-62K AL 3.0 2.9200 sec 11 ENS-SWG1A-62-1 3/10/2000 STP-302-1600 ABB ITE-62K AF 3.0 2.9300 sec 12 ENS-SWG1A-62-1 3/10/2000 STP-302-1600 ABB ITE-62K AL 3.0 2.9300 sec 13 ENS-SWG1A-62-1 4/21/1999 STP-302-1600 ABB ITE-62K AF 3.0 2.9400 sec 14 ENS-SWG1A-62-1 4/21/1999 STP-302-1600 ABB ITE-62K AL 3.0 2.9400 sec 15 ENS-SWG1A-62-1 9/19/1997 STP-302-1600 ABB ITE-62K AF 3.0 2.9400 sec 16 ENS-SWG1A-62-1 9/19/1997 STP-302-1600 ABB ITE-62K AL 3.0 2.9400 sec 17 ENS-SWG1A-62-2 2/17/2008 STP-302-1602 ABB ITE-62K AF 57.8 59.1040 sec 18 ENS-SWG1A-62-2 2/17/2008 STP-302-1602 ABB ITE-62K AL 57.8 59.0850 sec 19 ENS-SWG1A-62-2 5/8/2006 STP-302-1602 ABB ITE-62K AF 57.8 59.2000 sec 20 ENS-SWG1A-62-2 5/8/2006 STP-302-1602 ABB ITE-62K AL 57.8 59.0800 sec 21 ENS-SWG1A-62-2 11/11/2004 STP-302-1602 ABB ITE-62K AF 57.8 58.9400 sec 22 ENS-SWG1A-62-2 11/11/2004 STP-302-1602 ABB ITE-62K AL 57.8 58.9400 sec 23 ENS-SWG1A-62-2 3/28/2003 STP-302-1602 ABB ITE-62K AF 60.0 59.2900 sec Setpoint set halfway between MIN and MAX. Setpoint changed from 60 sec to 57.8 sec.

24 ENS-SWG1A-62-2 3/28/2003 STP-302-1602 ABB ITE-62K AL 57.8 59.2600 sec 25 ENS-SWG1A-62-2 9/27/2001 STP-302-1602 ABB ITE-62K AF 60.0 59.1700 sec Setpoint set halfway between MIN and MAX.

26 ENS-SWG1A-62-2 9/27/2001 STP-302-1602 ABB ITE-62K AL 60.0 59.2500 sec 27 ENS-SWG1A-62-2 3/10/2000 STP-302-1602 ABB ITE-62K AF 60.0 59.5000 sec Setpoint set halfway between MIN and MAX.

28 ENS-SWG1A-62-2 3/10/2000 STP-302-1602 ABB ITE-62K AL 60.0 59.5000 sec 29 ENS-SWG1A-62-2 4/21/1999 STP-302-1602 ABB ITE-62K AF 60.0 59.6500 sec Setpoint set halfway between MIN and MAX.

30 ENS-SWG1A-62-2 4/21/1999 STP-302-1602 ABB ITE-62K AL 60.0 59.7300 sec 31 ENS-SWG1A-62-2 9/19/1997 STP-302-1602 ABB ITE-62K AF 60.0 59.8300 sec Setpoint set halfway between MIN and MAX.

32 ENS-SWG1A-62-2 9/19/1997 STP-302-1602 ABB ITE-62K AL 60.0 59.8800 sec 33 ENS-SWG1A-62-6 2/17/2008 STP-302-1602 ABB ITE-62L AF 3.0 2.9700 sec 34 ENS-SWG1A-62-6 2/17/2008 STP-302-1602 ABB ITE-62L AL 3.0 2.9700 sec 35 ENS-SWG1A-62-6 5/8/2006 STP-302-1602 ABB ITE-62L AF 3.0 2.9900 sec 36 ENS-SWG1A-62-6 5/8/2006 STP-302-1602 ABB ITE-62L AL 3.0 2.9900 sec 37 ENS-SWG1A-62-6 11/11/2004 STP-302-1602 ABB ITE-62L AF 3.0 3.0100 sec

DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Input Data G13.18.6.3-009 Rev. 0 Page 2 of 23 Seq. ID Tag ID Date Procedure Make/Model AF/ AL Setpt AF / AL Data Units Comments 38 ENS-SWG1A-62-6 11/11/2004 STP-302-1602 ABB ITE-62L AL 3.0 3.0100 sec 39 ENS-SWG1A-62-6 3/28/2003 STP-302-1602 ABB ITE-62L AF 3.0 2.9900 sec 40 ENS-SWG1A-62-6 3/28/2003 STP-302-1602 ABB ITE-62L AL 3.0 2.9800 sec 41 ENS-SWG1A-62-6 9/27/2001 STP-302-1602 ABB ITE-62L AF 3.0 2.9800 sec 42 ENS-SWG1A-62-6 9/27/2001 STP-302-1602 ABB ITE-62L AL 3.0 2.9800 sec 43 ENS-SWG1A-62-6 3/10/2000 STP-302-1602 ABB ITE-62L AF 3.0 2.9800 sec 44 ENS-SWG1A-62-6 3/10/2000 STP-302-1602 ABB ITE-62L AL 3.0 2.9800 sec 45 ENS-SWG1A-62-6 4/21/1999 STP-302-1602 ABB ITE-62L AF 3.0 2.9600 sec 46 ENS-SWG1A-62-6 4/21/1999 STP-302-1602 ABB ITE-62L AL 3.0 2.9600 sec 47 ENS-SWG1A-62-6 9/19/1997 STP-302-1602 ABB ITE-62L AF 3.0 FAIL sec Relay failed calibration and was replaced per CR 97-1494 and MAI 313634.

48 ENS-SWG1A-62-6 9/19/1997 STP-302-1602 ABB ITE-62L AL 3.0 2.9990 sec 49 ENS-SWG1B-62-1 2/1/2008 STP-302-1601 ABB ITE-62K AF 3.0 2.9900 sec 50 ENS-SWG1B-62-1 2/1/2008 STP-302-1601 ABB ITE-62K AL 3.0 2.9900 sec 51 ENS-SWG1B-62-1 4/29/2006 STP-302-1601 ABB ITE-62K AF 3.0 2.9900 sec 52 ENS-SWG1B-62-1 4/29/2006 STP-302-1601 ABB ITE-62K AL 3.0 2.9900 sec 53 ENS-SWG1B-62-1 10/31/2004 STP-302-1601 ABB ITE-62K AF 3.0 2.9500 sec 54 ENS-SWG1B-62-1 10/31/2004 STP-302-1601 ABB ITE-62K AL 3.0 2.9400 sec 55 ENS-SWG1B-62-1 3/20/2003 STP-302-1601 ABB ITE-62K AF 3.0 2.9100 sec 56 ENS-SWG1B-62-1 3/20/2003 STP-302-1601 ABB ITE-62K AL 3.0 2.9200 sec 57 ENS-SWG1B-62-1 10/6/2001 STP-302-1601 ABB ITE-62K AF 3.0 2.9500 sec 58 ENS-SWG1B-62-1 10/6/2001 STP-302-1601 ABB ITE-62K AL 3.0 2.9300 sec 59 ENS-SWG1B-62-1 3/25/2000 STP-302-1601 ABB ITE-62K AF 3.0 2.9190 sec 60 ENS-SWG1B-62-1 3/25/2000 STP-302-1601 ABB ITE-62K AL 3.0 2.9180 sec 61 ENS-SWG1B-62-1 4/30/1999 STP-302-1601 ABB ITE-62K AF 3.0 2.9400 sec 62 ENS-SWG1B-62-1 4/30/1999 STP-302-1601 ABB ITE-62K AL 3.0 2.9400 sec 63 ENS-SWG1B-62-1 10/4/1997 STP-302-1601 ABB ITE-62K AF 3.0 2.9660 sec 64 ENS-SWG1B-62-1 10/4/1997 STP-302-1601 ABB ITE-62K AL 3.0 2.9400 sec 65 ENS-SWG1B-62-2 2/1/2008 STP-302-1603 ABB ITE-62K AF 57.8 59.3100 sec 66 ENS-SWG1B-62-2 2/1/2008 STP-302-1603 ABB ITE-62K AL 57.8 59.2700 sec 67 ENS-SWG1B-62-2 4/29/2006 STP-302-1603 ABB ITE-62K AF 57.8 58.6700 sec 68 ENS-SWG1B-62-2 4/29/2006 STP-302-1603 ABB ITE-62K AL 57.8 59.0600 sec 69 ENS-SWG1B-62-2 10/31/2004 STP-302-1603 ABB ITE-62K AF 57.8 59.2100 sec 70 ENS-SWG1B-62-2 10/31/2004 STP-302-1603 ABB ITE-62K AL 57.8 59.1400 sec 71 ENS-SWG1B-62-2 3/21/2003 STP-302-1603 ABB ITE-62K AF 60.0 60.9700 sec Setpoint changed from 60.0 sec to 57.8 sec.

72 ENS-SWG1B-62-2 3/21/2003 STP-302-1603 ABB ITE-62K AL 57.8 58.5900 sec 73 ENS-SWG1B-62-2 10/6/2001 STP-302-1603 ABB ITE-62K AF 60.0 60.9200 sec Setpoint set halfway between MIN and MAX.

74 ENS-SWG1B-62-2 10/6/2001 STP-302-1603 ABB ITE-62K AL 60.0 60.9300 sec

DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Input Data G13.18.6.3-009 Rev. 0 Page 3 of 23 Seq. ID Tag ID Date Procedure Make/Model AF/ AL Setpt AF / AL Data Units Comments 75 ENS-SWG1B-62-2 3/25/2000 STP-302-1603 ABB ITE-62K AF 60.0 60.9100 sec Setpoint set halfway between MIN and MAX.

76 ENS-SWG1B-62-2 3/25/2000 STP-302-1603 ABB ITE-62K AL 60.0 60.6400 sec 77 ENS-SWG1B-62-2 4/30/1999 STP-302-1603 ABB ITE-62K AF 60.0 61.1000 sec Setpoint set halfway between MIN and MAX.

78 ENS-SWG1B-62-2 4/30/1999 STP-302-1603 ABB ITE-62K AL 60.0 60.8400 sec 79 ENS-SWG1B-62-2 10/4/1997 STP-302-1603 ABB ITE-62K AF 60.0 66.7200 sec Setpoint set halfway between MIN and MAX.

80 ENS-SWG1B-62-2 10/4/1997 STP-302-1603 ABB ITE-62K AL 60.0 60.4000 sec 81 ENS-SWG1B-62-6 2/1/2008 STP-302-1603 ABB ITE-62L AF 3.0 3.0300 sec 82 ENS-SWG1B-62-6 2/1/2008 STP-302-1603 ABB ITE-62L AL 3.0 3.0300 sec 83 ENS-SWG1B-62-6 4/29/2006 STP-302-1603 ABB ITE-62L AF 3.0 3.0300 sec 84 ENS-SWG1B-62-6 4/29/2006 STP-302-1603 ABB ITE-62L AL 3.0 3.0300 sec 85 ENS-SWG1B-62-6 10/31/2004 STP-302-1603 ABB ITE-62L AF 3.0 3.0100 sec 86 ENS-SWG1B-62-6 10/31/2004 STP-302-1603 ABB ITE-62L AL 3.0 3.0200 sec 87 ENS-SWG1B-62-6 3/21/2003 STP-302-1603 ABB ITE-62L AF 3.0 3.0100 sec 88 ENS-SWG1B-62-6 3/21/2003 STP-302-1603 ABB ITE-62L AL 3.0 3.0200 sec 89 ENS-SWG1B-62-6 10/6/2001 STP-302-1603 ABB ITE-62L AF 3.0 3.0200 sec 90 ENS-SWG1B-62-6 10/6/2001 STP-302-1603 ABB ITE-62L AL 3.0 3.0300 sec 91 ENS-SWG1B-62-6 3/25/2000 STP-302-1603 ABB ITE-62L AF 3.0 3.0200 sec 92 ENS-SWG1B-62-6 3/25/2000 STP-302-1603 ABB ITE-62L AL 3.0 3.0250 sec 93 ENS-SWG1B-62-6 4/30/1999 STP-302-1603 ABB ITE-62L AF 3.0 2.8800 sec 94 ENS-SWG1B-62-6 4/30/1999 STP-302-1603 ABB ITE-62L AL 3.0 3.0200 sec 95 ENS-SWG1B-62-6 10/4/1997 STP-302-1603 ABB ITE-62L AF 3.0 2.9100 sec 96 ENS-SWG1B-62-6 10/4/1997 STP-302-1603 ABB ITE-62L AL 3.0 2.9100 sec

DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Data Conversion G13.18.6.3-009 Rev. 0 Page 4 of 23 Seq. ID Tag ID Date AF/ AL Setpoint (Seconds)

AF / AL Data (Seconds)

AF / AL Data

(% Setpoint)

[(AF AL)/SP

  • 100]

Notes 1

ENS-SWG1A-62-1 2/17/08 AF 3.00 2.915 97.167 2

ENS-SWG1A-62-1 2/17/08 AL 3.00 2.916 97.200 3

ENS-SWG1A-62-1 5/8/06 AF 3.00 2.930 97.667 4

ENS-SWG1A-62-1 5/8/06 AL 3.00 2.935 97.833 5

ENS-SWG1A-62-1 11/11/04 AF 3.00 2.920 97.333 6

ENS-SWG1A-62-1 11/11/04 AL 3.00 2.930 97.667 7

ENS-SWG1A-62-1 3/29/03 AF 3.00 2.920 97.333 8

ENS-SWG1A-62-1 3/29/03 AL 3.00 2.920 97.333 9

ENS-SWG1A-62-1 9/27/01 AF 3.00 2.920 97.333 10 ENS-SWG1A-62-1 9/27/01 AL 3.00 2.920 97.333 11 ENS-SWG1A-62-1 3/10/00 AF 3.00 2.930 97.667 12 ENS-SWG1A-62-1 3/10/00 AL 3.00 2.930 97.667 13 ENS-SWG1A-62-1 4/21/99 AF 3.00 2.940 98.000 14 ENS-SWG1A-62-1 4/21/99 AL 3.00 2.940 98.000 15 ENS-SWG1A-62-1 9/19/97 AF 3.00 2.940 98.000 16 ENS-SWG1A-62-1 9/19/97 AL 3.00 2.940 98.000 17 ENS-SWG1A-62-2 2/17/08 AF 57.80 59.104 102.256 18 ENS-SWG1A-62-2 2/17/08 AL 57.80 59.085 102.223 19 ENS-SWG1A-62-2 5/8/06 AF 57.80 59.200 102.422 20 ENS-SWG1A-62-2 5/8/06 AL 57.80 59.080 102.215 21 ENS-SWG1A-62-2 11/11/04 AF 57.80 58.940 101.972 22 ENS-SWG1A-62-2 11/11/04 AL 57.80 58.940 101.972 23 ENS-SWG1A-62-2 3/28/03 AF 60.00 59.290 98.817 Setpoint set halfway between MIN and MAX.

Setpoint changed from 60 sec to 57.8 sec.

24 ENS-SWG1A-62-2 3/28/03 AL 57.80 59.260 102.526 25 ENS-SWG1A-62-2 9/27/01 AF 60.00 59.170 98.617 Setpoint set halfway between MIN and MAX.

26 ENS-SWG1A-62-2 9/27/01 AL 60.00 59.250 98.750 27 ENS-SWG1A-62-2 3/10/00 AF 60.00 59.500 99.167 Setpoint set halfway between MIN and MAX.

28 ENS-SWG1A-62-2 3/10/00 AL 60.00 59.500 99.167 29 ENS-SWG1A-62-2 4/21/99 AF 60.00 59.650 99.417 Setpoint set halfway between MIN and MAX.

30 ENS-SWG1A-62-2 4/21/99 AL 60.00 59.730 99.550

DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Data Conversion G13.18.6.3-009 Rev. 0 Page 5 of 23 Seq. ID Tag ID Date AF/ AL Setpoint (Seconds)

AF / AL Data (Seconds)

AF / AL Data

(% Setpoint)

[(AF AL)/SP

  • 100]

Notes 31 ENS-SWG1A-62-2 9/19/97 AF 60.00 59.830 99.717 Setpoint set halfway between MIN and MAX.

32 ENS-SWG1A-62-2 9/19/97 AL 60.00 59.880 99.800 33 ENS-SWG1A-62-6 2/17/08 AF 3.00 2.970 99.000 34 ENS-SWG1A-62-6 2/17/08 AL 3.00 2.970 99.000 35 ENS-SWG1A-62-6 5/8/06 AF 3.00 2.990 99.667 36 ENS-SWG1A-62-6 5/8/06 AL 3.00 2.990 99.667 37 ENS-SWG1A-62-6 11/11/04 AF 3.00 3.010 100.333 38 ENS-SWG1A-62-6 11/11/04 AL 3.00 3.010 100.333 39 ENS-SWG1A-62-6 3/28/03 AF 3.00 2.990 99.667 40 ENS-SWG1A-62-6 3/28/03 AL 3.00 2.980 99.333 41 ENS-SWG1A-62-6 9/27/01 AF 3.00 2.980 99.333 42 ENS-SWG1A-62-6 9/27/01 AL 3.00 2.980 99.333 43 ENS-SWG1A-62-6 3/10/00 AF 3.00 2.980 99.333 44 ENS-SWG1A-62-6 3/10/00 AL 3.00 2.980 99.333 45 ENS-SWG1A-62-6 4/21/99 AF 3.00 2.960 98.667 46 ENS-SWG1A-62-6 4/21/99 AL 3.00 2.960 98.667 47 ENS-SWG1A-62-6 9/19/97 AF 3.00 FAIL FAIL Relay failed calibration and was replaced per CR 97-1494 and MAI 313634.

48 ENS-SWG1A-62-6 9/19/97 AL 3.00 2.999 99.967 49 ENS-SWG1B-62-1 2/1/08 AF 3.00 2.990 99.667 50 ENS-SWG1B-62-1 2/1/08 AL 3.00 2.990 99.667 51 ENS-SWG1B-62-1 4/29/06 AF 3.00 2.990 99.667 52 ENS-SWG1B-62-1 4/29/06 AL 3.00 2.990 99.667 53 ENS-SWG1B-62-1 10/31/04 AF 3.00 2.950 98.333 54 ENS-SWG1B-62-1 10/31/04 AL 3.00 2.940 98.000 55 ENS-SWG1B-62-1 3/20/03 AF 3.00 2.910 97.000 56 ENS-SWG1B-62-1 3/20/03 AL 3.00 2.920 97.333 57 ENS-SWG1B-62-1 10/6/01 AF 3.00 2.950 98.333 58 ENS-SWG1B-62-1 10/6/01 AL 3.00 2.930 97.667 59 ENS-SWG1B-62-1 3/25/00 AF 3.00 2.919 97.300 60 ENS-SWG1B-62-1 3/25/00 AL 3.00 2.918 97.267 61 ENS-SWG1B-62-1 4/30/99 AF 3.00 2.940 98.000 62 ENS-SWG1B-62-1 4/30/99 AL 3.00 2.940 98.000 63 ENS-SWG1B-62-1 10/4/97 AF 3.00 2.966 98.867 64 ENS-SWG1B-62-1 10/4/97 AL 3.00 2.940 98.000 65 ENS-SWG1B-62-2 2/1/08 AF 57.80 59.310 102.612

DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Data Conversion G13.18.6.3-009 Rev. 0 Page 6 of 23 Seq. ID Tag ID Date AF/ AL Setpoint (Seconds)

AF / AL Data (Seconds)

AF / AL Data

(% Setpoint)

[(AF AL)/SP

  • 100]

Notes 66 ENS-SWG1B-62-2 2/1/08 AL 57.80 59.270 102.543 67 ENS-SWG1B-62-2 4/29/06 AF 57.80 58.670 101.505 68 ENS-SWG1B-62-2 4/29/06 AL 57.80 59.060 102.180 69 ENS-SWG1B-62-2 10/31/04 AF 57.80 59.210 102.439 70 ENS-SWG1B-62-2 10/31/04 AL 57.80 59.140 102.318 71 ENS-SWG1B-62-2 3/21/03 AF 60.00 60.970 101.617 Setpoint changed from 60.0 sec to 57.8 sec.

72 ENS-SWG1B-62-2 3/21/03 AL 57.80 58.590 101.367 73 ENS-SWG1B-62-2 10/6/01 AF 60.00 60.920 101.533 Setpoint set halfway between MIN and MAX.

74 ENS-SWG1B-62-2 10/6/01 AL 60.00 60.930 101.550 75 ENS-SWG1B-62-2 3/25/00 AF 60.00 60.910 101.517 Setpoint set halfway between MIN and MAX.

76 ENS-SWG1B-62-2 3/25/00 AL 60.00 60.640 101.067 77 ENS-SWG1B-62-2 4/30/99 AF 60.00 61.100 101.833 Setpoint set halfway between MIN and MAX.

78 ENS-SWG1B-62-2 4/30/99 AL 60.00 60.840 101.400 79 ENS-SWG1B-62-2 10/4/97 AF 60.00 66.720 111.200 Setpoint set halfway between MIN and MAX.

80 ENS-SWG1B-62-2 10/4/97 AL 60.00 60.400 100.667 81 ENS-SWG1B-62-6 2/1/08 AF 3.00 3.030 101.000 82 ENS-SWG1B-62-6 2/1/08 AL 3.00 3.030 101.000 83 ENS-SWG1B-62-6 4/29/06 AF 3.00 3.030 101.000 84 ENS-SWG1B-62-6 4/29/06 AL 3.00 3.030 101.000 85 ENS-SWG1B-62-6 10/31/04 AF 3.00 3.010 100.333 86 ENS-SWG1B-62-6 10/31/04 AL 3.00 3.020 100.667 87 ENS-SWG1B-62-6 3/21/03 AF 3.00 3.010 100.333 88 ENS-SWG1B-62-6 3/21/03 AL 3.00 3.020 100.667 89 ENS-SWG1B-62-6 10/6/01 AF 3.00 3.020 100.667 90 ENS-SWG1B-62-6 10/6/01 AL 3.00 3.030 101.000 91 ENS-SWG1B-62-6 3/25/00 AF 3.00 3.020 100.667 92 ENS-SWG1B-62-6 3/25/00 AL 3.00 3.025 100.833 93 ENS-SWG1B-62-6 4/30/99 AF 3.00 2.880 96.000 94 ENS-SWG1B-62-6 4/30/99 AL 3.00 3.020 100.667 95 ENS-SWG1B-62-6 10/4/97 AF 3.00 2.910 97.000 96 ENS-SWG1B-62-6 10/4/97 AL 3.00 2.910 97.000

DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays AF-AL Data G13.18.6.3-009 Rev. 0 Page 7 of 23 Seq.

CAL DATE AF/AL AF/AL DATA VALUE OUTLIERS COMMENTS Seq.

DRIFT = (Current Cal AF Data -

Prev Cal AL Data)

ID Make/Model Number Tag ID mm/dd/yy Status

(% Setpoint)

Days Months ID Tag ID

(% Setpoint)

Days Months 1

ABB ITE-62K ENS-SWG1A-62-1 02/17/08 AF 97.167 650 21.4 1

ENS-SWG1A-62-1

-0.6667 650 21.4 2

ABB ITE-62K ENS-SWG1A-62-1 02/17/08 AL 97.200 3

ENS-SWG1A-62-1 0.0000 543 17.8 3

ABB ITE-62K ENS-SWG1A-62-1 05/08/06 AF 97.667 543 17.8 5

ENS-SWG1A-62-1 0.0000 593 19.5 4

ABB ITE-62K ENS-SWG1A-62-1 05/08/06 AL 97.833 7

ENS-SWG1A-62-1 0.0000 548 18.0 5

ABB ITE-62K ENS-SWG1A-62-1 11/11/04 AF 97.333 593 19.5 9

ENS-SWG1A-62-1

-0.3333 566 18.6 6

ABB ITE-62K ENS-SWG1A-62-1 11/11/04 AL 97.667 11 ENS-SWG1A-62-1

-0.3333 324 10.6 7

ABB ITE-62K ENS-SWG1A-62-1 03/29/03 AF 97.333 548 18.0 13 ENS-SWG1A-62-1 0.0000 579 19.0 8

ABB ITE-62K ENS-SWG1A-62-1 03/29/03 AL 97.333 9

ABB ITE-62K ENS-SWG1A-62-1 09/27/01 AF 97.333 566 18.6 17 ENS-SWG1A-62-2 0.0415 650 21.4 10 ABB ITE-62K ENS-SWG1A-62-1 09/27/01 AL 97.333 19 ENS-SWG1A-62-2 0.4498 543 17.8 11 ABB ITE-62K ENS-SWG1A-62-1 03/10/00 AF 97.667 324 10.6 21 ENS-SWG1A-62-2

-0.5536 594 19.5 12 ABB ITE-62K ENS-SWG1A-62-1 03/10/00 AL 97.667 23 ENS-SWG1A-62-2 0.0667 547 18.0 13 ABB ITE-62K ENS-SWG1A-62-1 04/21/99 AF 98.000 579 19.0 25 ENS-SWG1A-62-2

-0.5500 566 18.6 14 ABB ITE-62K ENS-SWG1A-62-1 04/21/99 AL 98.000 27 ENS-SWG1A-62-2

-0.3833 324 10.6 15 ABB ITE-62K ENS-SWG1A-62-1 09/19/97 AF 98.000 29 ENS-SWG1A-62-2

-0.3833 579 19.0 16 ABB ITE-62K ENS-SWG1A-62-1 09/19/97 AL 98.000 17 ABB ITE-62K ENS-SWG1A-62-2 02/17/08 AF 102.256 650 21.4 33 ENS-SWG1A-62-6

-0.6667 650 21.4 18 ABB ITE-62K ENS-SWG1A-62-2 02/17/08 AL 102.223 35 ENS-SWG1A-62-6

-0.6667 543 17.8 19 ABB ITE-62K ENS-SWG1A-62-2 05/08/06 AF 102.422 543 17.8 37 ENS-SWG1A-62-6 1.0000 594 19.5 20 ABB ITE-62K ENS-SWG1A-62-2 05/08/06 AL 102.215 39 ENS-SWG1A-62-6 0.3333 547 18.0 21 ABB ITE-62K ENS-SWG1A-62-2 11/11/04 AF 101.972 594 19.5 41 ENS-SWG1A-62-6 0.0000 566 18.6 22 ABB ITE-62K ENS-SWG1A-62-2 11/11/04 AL 101.972 43 ENS-SWG1A-62-6 0.6667 324 10.6 23 ABB ITE-62K ENS-SWG1A-62-2 03/28/03 AF 98.817 547 18.0 45 ENS-SWG1A-62-6

-1.3000 579 19.0 24 ABB ITE-62K ENS-SWG1A-62-2 03/28/03 AL 102.526 25 ABB ITE-62K ENS-SWG1A-62-2 09/27/01 AF 98.617 566 18.6 49 ENS-SWG1B-62-1 0.0000 643 21.1 26 ABB ITE-62K ENS-SWG1A-62-2 09/27/01 AL 98.750 51 ENS-SWG1B-62-1 1.6667 545 17.9 27 ABB ITE-62K ENS-SWG1A-62-2 03/10/00 AF 99.167 324 10.6 53 ENS-SWG1B-62-1 1.0000 591 19.4 28 ABB ITE-62K ENS-SWG1A-62-2 03/10/00 AL 99.167 55 ENS-SWG1B-62-1

-0.6667 530 17.4 29 ABB ITE-62K ENS-SWG1A-62-2 04/21/99 AF 99.417 579 19.0 57 ENS-SWG1B-62-1 1.0667 560 18.4 30 ABB ITE-62K ENS-SWG1A-62-2 04/21/99 AL 99.550 59 ENS-SWG1B-62-1

-0.7000 330 10.8 31 ABB ITE-62K ENS-SWG1A-62-2 09/19/97 AF 99.717 61 ENS-SWG1B-62-1 0.0000 573 18.8 32 ABB ITE-62K ENS-SWG1A-62-2 09/19/97 AL 99.800 33 ABB ITE-62L ENS-SWG1A-62-6 02/17/08 AF 99.000 650 21.4 65 ENS-SWG1B-62-2 0.4325 643 21.1 34 ABB ITE-62L ENS-SWG1A-62-6 02/17/08 AL 99.000 67 ENS-SWG1B-62-2

-0.8131 545 17.9 CAL INTERVAL =

(Current Date -

Previous Date)

CAL INTERVAL =

(Current Date -

Previous Date)

DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays AF-AL Data G13.18.6.3-009 Rev. 0 Page 8 of 23 Seq.

CAL DATE AF/AL AF/AL DATA VALUE OUTLIERS COMMENTS Seq.

DRIFT = (Current Cal AF Data -

Prev Cal AL Data)

ID Make/Model Number Tag ID mm/dd/yy Status

(% Setpoint)

Days Months ID Tag ID

(% Setpoint)

Days Months CAL INTERVAL =

(Current Date -

Previous Date)

CAL INTERVAL =

(Current Date -

Previous Date) 35 ABB ITE-62L ENS-SWG1A-62-6 05/08/06 AF 99.667 543 17.8 69 ENS-SWG1B-62-2 1.0727 590 19.4 36 ABB ITE-62L ENS-SWG1A-62-6 05/08/06 AL 99.667 71 ENS-SWG1B-62-2 0.0667 531 17.4 37 ABB ITE-62L ENS-SWG1A-62-6 11/11/04 AF 100.333 594 19.5 73 ENS-SWG1B-62-2 0.4667 560 18.4 38 ABB ITE-62L ENS-SWG1A-62-6 11/11/04 AL 100.333 75 ENS-SWG1B-62-2 0.1167 330 10.8 39 ABB ITE-62L ENS-SWG1A-62-6 03/28/03 AF 99.667 547 18.0 77 ENS-SWG1B-62-2 1.1667 573 18.8 40 ABB ITE-62L ENS-SWG1A-62-6 03/28/03 AL 99.333 41 ABB ITE-62L ENS-SWG1A-62-6 09/27/01 AF 99.333 566 18.6 81 ENS-SWG1B-62-6 0.0000 643 21.1 42 ABB ITE-62L ENS-SWG1A-62-6 09/27/01 AL 99.333 83 ENS-SWG1B-62-6 0.3333 545 17.9 43 ABB ITE-62L ENS-SWG1A-62-6 03/10/00 AF 99.333 324 10.6 85 ENS-SWG1B-62-6

-0.3333 590 19.4 44 ABB ITE-62L ENS-SWG1A-62-6 03/10/00 AL 99.333 87 ENS-SWG1B-62-6

-0.6667 531 17.4 45 ABB ITE-62L ENS-SWG1A-62-6 04/21/99 AF 98.667 579 19.0 89 ENS-SWG1B-62-6

-0.1667 560 18.4 46 ABB ITE-62L ENS-SWG1A-62-6 04/21/99 AL 98.667 91 ENS-SWG1B-62-6 0.0000 330 10.8 47 ABB ITE-62L ENS-SWG1A-62-6 09/19/97 AF FAIL 93 ENS-SWG1B-62-6

-1.0000 573 18.8 48 ABB ITE-62L ENS-SWG1A-62-6 09/19/97 AL 99.967 49 ABB ITE-62K ENS-SWG1B-62-1 02/01/08 AF 99.667 643 21.1 50 ABB ITE-62K ENS-SWG1B-62-1 02/01/08 AL 99.667 51 ABB ITE-62K ENS-SWG1B-62-1 04/29/06 AF 99.667 545 17.9 52 ABB ITE-62K ENS-SWG1B-62-1 04/29/06 AL 99.667 53 ABB ITE-62K ENS-SWG1B-62-1 10/31/04 AF 98.333 591 19.4 54 ABB ITE-62K ENS-SWG1B-62-1 10/31/04 AL 98.000 55 ABB ITE-62K ENS-SWG1B-62-1 03/20/03 AF 97.000 530 17.4 56 ABB ITE-62K ENS-SWG1B-62-1 03/20/03 AL 97.333 57 ABB ITE-62K ENS-SWG1B-62-1 10/06/01 AF 98.333 560 18.4 58 ABB ITE-62K ENS-SWG1B-62-1 10/06/01 AL 97.667 59 ABB ITE-62K ENS-SWG1B-62-1 03/25/00 AF 97.300 330 10.8 60 ABB ITE-62K ENS-SWG1B-62-1 03/25/00 AL 97.267 61 ABB ITE-62K ENS-SWG1B-62-1 04/30/99 AF 98.000 573 18.8 62 ABB ITE-62K ENS-SWG1B-62-1 04/30/99 AL 98.000 63 ABB ITE-62K ENS-SWG1B-62-1 10/04/97 AF 98.867 64 ABB ITE-62K ENS-SWG1B-62-1 10/04/97 AL 98.000 65 ABB ITE-62K ENS-SWG1B-62-2 02/01/08 AF 102.612 643 21.1 66 ABB ITE-62K ENS-SWG1B-62-2 02/01/08 AL 102.543 67 ABB ITE-62K ENS-SWG1B-62-2 04/29/06 AF 101.505 545 17.9 68 ABB ITE-62K ENS-SWG1B-62-2 04/29/06 AL 102.180

DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays AF-AL Data G13.18.6.3-009 Rev. 0 Page 9 of 23 Seq.

CAL DATE AF/AL AF/AL DATA VALUE OUTLIERS COMMENTS Seq.

DRIFT = (Current Cal AF Data -

Prev Cal AL Data)

ID Make/Model Number Tag ID mm/dd/yy Status

(% Setpoint)

Days Months ID Tag ID

(% Setpoint)

Days Months CAL INTERVAL =

(Current Date -

Previous Date)

CAL INTERVAL =

(Current Date -

Previous Date) 69 ABB ITE-62K ENS-SWG1B-62-2 10/31/04 AF 102.439 590 19.4 70 ABB ITE-62K ENS-SWG1B-62-2 10/31/04 AL 102.318 71 ABB ITE-62K ENS-SWG1B-62-2 03/21/03 AF 101.617 531 17.4 72 ABB ITE-62K ENS-SWG1B-62-2 03/21/03 AL 101.367 73 ABB ITE-62K ENS-SWG1B-62-2 10/06/01 AF 101.533 560 18.4 74 ABB ITE-62K ENS-SWG1B-62-2 10/06/01 AL 101.550 75 ABB ITE-62K ENS-SWG1B-62-2 03/25/00 AF 101.517 330 10.8 76 ABB ITE-62K ENS-SWG1B-62-2 03/25/00 AL 101.067 77 ABB ITE-62K ENS-SWG1B-62-2 04/30/99 AF 101.833 573 18.8 78 ABB ITE-62K ENS-SWG1B-62-2 04/30/99 AL 101.400 79 ABB ITE-62K ENS-SWG1B-62-2 10/04/97 AF 111.200 80 ABB ITE-62K ENS-SWG1B-62-2 10/04/97 AL 100.667 81 ABB ITE-62L ENS-SWG1B-62-6 02/01/08 AF 101.000 643 21.1 82 ABB ITE-62L ENS-SWG1B-62-6 02/01/08 AL 101.000 83 ABB ITE-62L ENS-SWG1B-62-6 04/29/06 AF 101.000 545 17.9 84 ABB ITE-62L ENS-SWG1B-62-6 04/29/06 AL 101.000 85 ABB ITE-62L ENS-SWG1B-62-6 10/31/04 AF 100.333 590 19.4 86 ABB ITE-62L ENS-SWG1B-62-6 10/31/04 AL 100.667 87 ABB ITE-62L ENS-SWG1B-62-6 03/21/03 AF 100.333 531 17.4 88 ABB ITE-62L ENS-SWG1B-62-6 03/21/03 AL 100.667 89 ABB ITE-62L ENS-SWG1B-62-6 10/06/01 AF 100.667 560 18.4 90 ABB ITE-62L ENS-SWG1B-62-6 10/06/01 AL 101.000 91 ABB ITE-62L ENS-SWG1B-62-6 03/25/00 AF 100.667 330 10.8 92 ABB ITE-62L ENS-SWG1B-62-6 03/25/00 AL 100.833 93 ABB ITE-62L ENS-SWG1B-62-6 04/30/99 AF 96.000 573 18.8 94 ABB ITE-62L ENS-SWG1B-62-6 04/30/99 AL 100.667 95 ABB ITE-62L ENS-SWG1B-62-6 10/04/97 AF 97.000 96 ABB ITE-62L ENS-SWG1B-62-6 10/04/97 AL 97.000

DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Outliers & Summary G13.18.6.3-009 Rev. 0 Page 10 of 23 Seq. ID Tag ID Drift (%

Setpoint)

Cal Interval (Days)

Extreme Studentized Deviate (T)

Final Drift Data Set (%

Setpoint)

Cal Interval (Days) 1 ENS-SWG1A-62-1

-0.6667 650 1.025

-0.6667 650 3

ENS-SWG1A-62-1 0.0000 543 0.009 0.0000 543 5

ENS-SWG1A-62-1 0.0000 593 0.009 0.0000 593 7

ENS-SWG1A-62-1 0.0000 548 0.009 Mean (Average)

-0.0056 0.0000 548 9

ENS-SWG1A-62-1

-0.3333 566 0.508 Variance 0.416

-0.3333 566 11 ENS-SWG1A-62-1

-0.3333 324 0.508 Std. Dev.

0.6449

-0.3333 324 13 ENS-SWG1A-62-1 0.0000 579 0.009 Sample Size (Count) 42 0.0000 579 Maximum 1.67 17 ENS-SWG1A-62-2 0.0415 650 0.073 Median 0.00 0.0415 650 19 ENS-SWG1A-62-2 0.4498 543 0.706 Minimum

-1.30 0.4498 543 21 ENS-SWG1A-62-2

-0.5536 594 0.850 Range 2.97

-0.5536 594 23 ENS-SWG1A-62-2 0.0667 547 0.112 Sum

-0.237 0.0667 547 25 ENS-SWG1A-62-2

-0.5500 566 0.844 Kurtosis 0.104

-0.5500 566 27 ENS-SWG1A-62-2

-0.3833 324 0.586 Skewness 0.523

-0.3833 324 29 ENS-SWG1A-62-2

-0.3833 579 0.586

-0.3833 579 Critical T-Value (Upper 5% Signif.)

2.92 33 ENS-SWG1A-62-6

-0.6667 650 1.025

-0.6667 650 35 ENS-SWG1A-62-6

-0.6667 543 1.025 Equation for Each Studentized Deviate: T= lDrift-Meanl/Std. Dev.

-0.6667 543 37 ENS-SWG1A-62-6 1.0000 594 1.559 Crit T Value Lookup Value from Ref. 4.1.3 Table 2, per sample 1.0000 594 39 ENS-SWG1A-62-6 0.3333 547 0.526 size. See Sections 3.6.1 and 3.6.2 of Reference 4.1.3.

0.3333 547 41 ENS-SWG1A-62-6 0.0000 566 0.009 Outliers will be Denoted as such in "Final Data Set" column.

0.0000 566 43 ENS-SWG1A-62-6 0.6667 324 1.043 No Outliers Detected.

0.6667 324 45 ENS-SWG1A-62-6

-1.3000 579 2.007

-1.3000 579 49 ENS-SWG1B-62-1 0.0000 643 0.009 0.0000 643 51 ENS-SWG1B-62-1 1.6667 545 2.593 Mean (Average)

-0.0056 1.6667 545 53 ENS-SWG1B-62-1 1.0000 591 1.559 Variance 0.416 1.0000 591 55 ENS-SWG1B-62-1

-0.6667 530 1.025 Std. Dev.

0.6449

-0.6667 530 57 ENS-SWG1B-62-1 1.0667 560 1.663 Sample Size (Count) 42 1.0667 560 59 ENS-SWG1B-62-1

-0.7000 330 1.077 Maximum 1.67

-0.7000 330 61 ENS-SWG1B-62-1 0.0000 573 0.009 Median 0.00 0.0000 573 Minimum

-1.30 65 ENS-SWG1B-62-2 0.4325 643 0.679 Range 2.97 0.4325 643 67 ENS-SWG1B-62-2

-0.8131 545 1.252 Sum

-0.237

-0.8131 545 69 ENS-SWG1B-62-2 1.0727 590 1.672 Kurtosis 0.104 1.0727 590 71 ENS-SWG1B-62-2 0.0667 531 0.112 Skewness 0.523 0.0667 531 73 ENS-SWG1B-62-2 0.4667 560 0.732 0.4667 560 75 ENS-SWG1B-62-2 0.1167 330 0.190 0.1167 330 77 ENS-SWG1B-62-2 1.1667 573 1.818 1.1667 573 81 ENS-SWG1B-62-6 0.0000 643 0.009 0.0000 643 (Final Data Set)

Drift Data Statistics Summary (Initial Data Set)

Raw Drift Data Statistics Summary

DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Outliers & Summary G13.18.6.3-009 Rev. 0 Page 11 of 23 Seq. ID Tag ID Drift (%

Setpoint)

Cal Interval (Days)

Extreme Studentized Deviate (T)

Final Drift Data Set (%

Setpoint)

Cal Interval (Days) 83 ENS-SWG1B-62-6 0.3333 545 0.526 0.3333 545 85 ENS-SWG1B-62-6

-0.3333 590 0.508

-0.3333 590 87 ENS-SWG1B-62-6

-0.6667 531 1.025

-0.6667 531 89 ENS-SWG1B-62-6

-0.1667 560 0.250

-0.1667 560 91 ENS-SWG1B-62-6 0.0000 330 0.009 0.0000 330 93 ENS-SWG1B-62-6

-1.0000 573 1.542

-1.0000 573

DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Pooling Tests G13.18.6.3-009 Rev. 0 Page 12 of 23 Group 1: ENS-SWG1(A,B)-62-1 relays [Setpoint = 3 seconds] Model = ITE-62K Group 2: ENS-SWG1(A,B)-62-6 relays [Setpoint = 3 seconds] Model = ITE-62L Group 3: ENS-SWG1(A, B)-62-2 relays [Setpoint = 57.8 and 60 seconds] Model = ITE-62K Model Group 1: ITE-62K Setpoint Group 1, 2: 3 Sec Model Group 2: ITE-62L Setpoint Group 3: 60 sec. or 57.8 sec.

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances Group 1 Group 2 Group 1,2 Group 3 Mean 0.073809524

-0.17619 Mean

-0.05119 0.085459 Variance 0.49541514 0.414945 Variance 0.454525 0.354231 Observations 14 14 Observations 28 14 Hypothesized Mean Difference 0

Hypothesized Mean Difference 0

df 26 df 29 t Stat 0.980386667 t Stat

-0.6705 P(T<=t) one-tail 0.167965223 P(T<=t) one-tail 0.253922 t Critical one-tail 1.705617901 t Critical one-tail 1.699127 P(T<=t) two-tail 0.335930445 P(T<=t) two-tail 0.507844 t Critical two-tail 2.055529418 t Critical two-tail 2.04523 StDev 0.70385733 0.644162 StDev 0.674185 0.595173 t Stat < t Critical two-tail?

TRUE t Stat < t Critical two-tail?

TRUE Sample Means from same pool?

TRUE Sample Means from same pool?

TRUE

==

Conclusion:==

==

Conclusion:==

The t Statistic is less than the t Critical two-tail value, indicating that combination The t Statistic is less than the t Critical two-tail value, indicating that combination of the groups for analysis is appropriate. The means and standard deviations of the groups for analysis is appropriate. The means and standard deviations deviations are reasonably similar among groups. From an engineering standpoint, deviations are reasonably similar among groups. From an engineering standpoint, all data should combine appropriately in units of % Setpoint, and the t Tests confirm this all data should combine appropriately in units of % Setpoint, and the t Tests confirm this hypothesis. Therefore, all of the data is combined for analysis in units of % Setpoint.

hypothesis. Therefore, all of the data is combined for analysis in units of % Setpoint.

DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays W Test G13.18.6.3-009 Rev. 0 Page 13 of 23 Drift Values "i"

an-i+1 bi (Per Step 4)

-1.3000 1

0.3917 1.1620 Specific W Normality Test Methodology from Reference 4.1.7 and Section 19 of Reference 4.1.4

-1.0000 2

0.2701 0.5852

-0.8131 3

0.2345 0.4422 Steps to Perform:

-0.7000 4

0.2085 0.3684

1. Paste all final drift data into column 1.

-0.6667 5

0.1874 0.3123

2. Sort in ascending order.

-0.6667 6

0.1694 0.2823

3. Calculate S2 taking the variance of the drift data adjusted by (Count-1)

-0.6667 7

0.1535 0.2047

-0.6667 8

0.1392 0.1578 S2 = (n-1)(Variance (Drift))

-0.6667 9

0.1259 0.1406

-0.5536 10 0.1136 0.1120 where: n = Count

-0.5500 11 0.1020 0.0901

-0.3833 12 0.0909 0.0651

4. Calculate the Quantity b:

-0.3833 13 0.0804 0.0402

-0.3333 14 0.0701 0.0280 b = Sum[(an-i+1)(xn-i+1 - xi)]

-0.3333 15 0.0602 0.0241

-0.3333 16 0.0506 0.0190 where: i = 1 to k

-0.1667 17 0.0411 0.0068 k = (n)/2 0.0000 18 0.0318 0.0000 xi = Drift value at point number i 0.0000 19 0.0227 0.0000 an-i+1 values are taken from Table 1 of Reference 4.1.7 0.0000 20 0.0136 0.0000

5. Calculate b2.

0.0000 21 0.0045 0.0000

6. Compute the W Statistic and compare to the critical value at the 5% confidence 0.0000 level. The table of critical values is given as Table 2 on page 9 of Reference 4.1.7.

0.0000 b =

4.0409 0.0000 (Per Step 4) 0.0000

  • From Table 1 of Ref. 4.1.7 0.0000 W = b2/S2 Results:

0.0415 Since the W statistic, 0.9576, is greater than the 0.0667 Computed Values critical value for W, 0.9420, this test does not 0.0667 S2 =

17.0515 reject the assumption of normality for this data set.

0.1167 b =

4.0409 0.3333 b2 = 16.3289 0.3333 Count (n):

42 0.4325 W = b2/S2 =

0.9576 0.4498 W Critical =

0.9420 5% Significance From Table 2 of Reference 4.1.7.

0.4667 0.6667 1.0000 1.0000 1.0667 1.0727 1.1667 1.6667

DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Histogram G13.18.6.3-009 Rev. 0 Page 14 of 23 Bin No.

Bin Descriptions No. StDev (NS)

Bin Maximums =

Mean + (NS*StDev)

Observed Frequency Cumulative Probability (CPi)

(Table 18-2 Ref 4.1.4)

Normal Distribution Probability (Pnorm = CPi-CPi-1)

Expected Frequency (Ei = Pnorm*N) 1 Up to - 2.5 Standard Deviations from Mean

-2.5

-1.618 0

0.0062 0.0062 0.2604 2

-2.5 to -2.0 Standard Deviations from Mean

-2.0

-1.295 1

0.0228 0.0166 0.6951 3

-2.0 to -1.5 Standard Deviations from Mean

-1.5

-0.973 1

0.0668 0.0441 1.8501 4

-1.5 to -1.0 Standard Deviations from Mean

-1.0

-0.651 7

0.1587 0.0919 3.8577 5

-1.0 to -0.5 Standard Deviations from Mean

-0.5

-0.328 7

0.3086 0.1499 6.2958 6

-0.5 Standard Deviations from Mean to Mean 0.0

-0.006 1

0.5000 0.1915 8.0409 7

Mean to +0.5 Standard Deviations from Mean 0.5 0.317 13 0.6915 0.1915 8.0409 8

+0.5 to +1.0 Standard Deviations from Mean 1.0 0.639 5

0.8414 0.1499 6.2958 9

+1.0 to +1.5 Standard Deviations from Mean 1.5 0.962 1

0.9332 0.0919 3.8577 10

+1.5 to +2.0 Standard Deviations from Mean 2.0 1.284 5

0.9773 0.0441 1.8501 11

+2.0 to +2.5 Standard Deviations from Mean 2.5 1.607 0

0.9938 0.0166 0.6951 12 More than Mean + 2.5 Standard Deviations More More 1

1.0000 0.0062 0.2604 Totals 42 42

+/- Sigma Bounds Observed Drift Values Observed Percentages Percentage for Normal Distribution 2.5 (Bins 2-11) 41 97.62%

Mean

-0.0056 2 (Bins 3-10) 40 95.24%

95.45%

Std. Dev.

0.6449 1.5 (Bins 4-9) 34 80.95%

Sample Size 42 1 (Bins 5-8) 26 61.90%

68.27%

0.5 (Bins 6-7) 14 33.33%

Methodology for Histogram Taken from Section 19 of Reference 4.1.4 and Section 3.7.5 of Reference 4.1.3

1. Order the drift data in ascending order.
2. Obtain mean, standard deviation, and sample size.
3. Establishing bins in 1/2 sigma increments from the mean to 2.5 sigma in both directions, derive the upper bin limits, in units of drift, based on the values of the mean and standard deviation.
4. Obtain expected frequency for a normal distribution in each bin.
5. Manually compute the number of observed drift data points within each bin, and list under observed frequency.
6. Plot the Expected Frequency and the Observed Frequency Data on the Histogram for comparison to each other.

Results: Since the data passed the W Test for normality, a Coverage Analysis is not necessary. The Histogram shows that the data conforms closely to a normal distribution.

DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Histogram G13.18.6.3-009 Rev. 0 Page 15 of 23 0

2 4

6 8

10 12 14

-1.618

-1.295

-0.973

-0.651

-0.328

-0.006 0.317 0.639 0.962 1.284 1.607 More Population Drift (% Setpoint)

Histogram of Drift - River Bend Station ABB ITE-62 Time Delay Relays Observed Frequency Normal Distribution

DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Scatter Plot G13.18.6.3-009 Rev. 0 Page 16 of 23 Note: Equation on Scatter Plot is computer generated, based on the associated trend line.

y = 0.0003x - 0.1709

-1.5

-1.0

-0.5 0.0 0.5 1.0 1.5 2.0 200 250 300 350 400 450 500 550 600 650 700 Drift (% Setpoint)

Time (Days)

Scatter Plot - River Bend Station ABB ITE-62 Time Delay Relays Linear (Drift)

DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Binning Analysis G13.18.6.3-009 Rev. 0 Page 17 of 23 Bin Statistics Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Count 6

36 Standard Dev.

0.4773 0.6728 Mean

-0.1056 0.0110 Mean Interval 327.00 576.75 Max Interval 330 650 Bin Definition and Selection Bin Hi Valid Limit Bin Population Bins Bins (Days)

Count Percentage Included 1

45 0

0.0%

2 135 0

0.0%

3 230 0

0.0%

4 460 6

14.3%

4 5

690 36 85.7%

5 6

915 0

0.0%

7 Over 0

0.0%

Total Count:

42 100%

See Section 3.8.3 of Reference 4.1.3 for Binning Analysis Methodology.

DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Binning Analysis G13.18.6.3-009 Rev. 0 Page 18 of 23 Graph Summary 4.478 Bin Time Std Dev Mean 1.987 4

327.00 0.4773

-0.1056 5

576.75 0.6728 0.0110 Test of Variances F Critical Variance Ratio Potential Strong TD of Random No

-0.2

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 200 300 400 500 600 Drift (% Setpoint)

Time (Days)

Binning Analysis - River Bend Station ABB ITE-62 Time Delay Relays std dev mean

DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Regression - Drift G13.18.6.3-009 Rev. 0 Page 19 of 23 Regression Analysis - Drift REGRESSION ANALYSIS

SUMMARY

OUTPUT F Critical 3.231727 Regression Statistics Multiple R 0.044877 R Square 0.002014 Adjusted R Square

-0.022936 Standard Error 0.652249 Observations 42 ANOVA df SS MS F

Significance F Regression 1

0.0343406 0.0343406 0.080720 0.777790 Residual 40 17.0171331 0.4254283 Total 41 17.0514737 Coefficients Standard Error t Stat P-value Lower 95%

Upper 95%

Lower 95.0%

Upper 95.0%

Intercept

-0.170887 0.590267

-0.289508 0.773688

-1.363861 1.022087

-1.363861 1.0220869 X Variable 1 0.000305 0.001075 0.284113 0.777790

-0.001867 0.002478

-0.001867 0.0024780 Refer to Section 3.8.4 of Reference 4.1.3 for Methodology for Regression Analysis.

DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Regression - Drift G13.18.6.3-009 Rev. 0 Page 20 of 23

-1.5

-1.0

-0.5 0.0 0.5 1.0 1.5 2.0 200 300 400 500 600 700 Drift (% Setpoint)

Time (Days)

Drift Regression Line Fit Plot Drift Predicted Drift

DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Regression - AV of Drift G13.18.6.3-009 Rev. 0 Page 21 of 23 Regression Analysis - AV of Drift ABSOLUTE VALUE REGRESSION ANALYSIS

SUMMARY

OUTPUT F Critical 3.231727 Regression Statistics Multiple R 0.066729 R Square 0.004453 Adjusted R Square

-0.020436 Standard Error 0.429297 Observations 42 ANOVA df SS MS F

Significance F Regression 1

0.0329713 0.0329713 0.178904 0.674582 Residual 40 7.3718283 0.1842957 Total 41 7.4047996 Coefficients Standard Error t Stat P-value Lower 95%

Upper 95%

Lower 95.0%

Upper 95.0%

Intercept 0.317367 0.388502 0.816899 0.418825

-0.467824 1.102558

-0.467824 1.102558 X Variable 1 0.000299 0.000708 0.422971 0.674582

-0.001131 0.001729

-0.001131 0.001729 Refer to Section 3.8.4 of Reference 4.1.3 for Methodology for Regression Analysis.

DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Regression - AV of Drift G13.18.6.3-009 Rev. 0 Page 22 of 23 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 200 300 400 500 600 700 AV of Drift (% Setpoint)

Time (Days)

AV of Drift Regression Line Fit Plot AV of Drift Predicted AV of Drift

DRIFT ANALYSIS RIVER BEND STATION ABB Model ITE-62 Time Delay Relays Analyzed Drift (DA)

G13.18.6.3-009 Rev. 0 Page 23 of 23 Drift Bias Determination First, the bias term is evaluated for significance per Section 3.10 of Reference 4.1.3.

Per Outlier Statistical Summary, Count (N) 42 Drift Data Points Drift Bias Term (Mean)

-0.0056 % Setpoint Standard Deviation (Stdev) 0.6449 % Setpoint t for Count = 42 Data Points 2.000 (Ref. 4.1.3, Table 4)

[Bias (Crit) = t

  • Stdev / (N)^0.5]

Signficant Bias Critical Value 0.199 % SP Therefore, the bias value for this drift data set is not signficant, since the magnitude of the Bias is less than the Critical Bias Value.

DAbias = Negligible Random Drift Determination Time Dependency Moderate Count (N) 42 Drift Data Points Bin 5 Standard Deviation (Stdev) 0.6728 % Setpoint Mean Bin 5 Time Interval 577 Days Maximum Required Cal Interval 915 Days Tolerance Interval Factor (TIF) 2.445 (Ref. 4.1.3, Table 1)

[Current Interval Drift = Stdev

  • TIF]

DArandom (current) = +/-

1.645 % Setpoint

[Extrap Drift = DArandom (current) * (Required Cal Interval / Mean Bin 5 Cal Interval)1/2]

DArandom (extrap) = +/-

2.072 % Setpoint for up to 915 Days

G13.18.6.3-009 Page 1 of 8 DESIGN VERIFICATION COVER PAGE ANO-1 ANO-2 IP-2 IP-3 JAF PLP PNPS VY GGNS RBS W3 NP Document No.

G13.18.6.3-009 Revision No.

0 Page 1 of

Title:

Drift Study for ABB ITE-62 Timers Quality Related Augmented Quality Related DV Method:

Design Review Alternate Calculation Qualification Testing VERIFICATION REQUIRED DISCIPLINE VERIFICATION COMPLETE AND COMMENTS RESOLVED (DV print, sign, and date)

Electrical Mechanical Instrument and Control Richard J. Hannigan /

/ 1-26-09 Civil/Structural Nuclear Originator:

Aaron Castor /

/ 1-26-09 Print/Sign/Date After Comments Have Been Resolved

G13.18.6.3-009 Page 2 of 8 DESIGN VERIFICATION CHECKLIST SHEET 1 OF 3 IDENTIFICATION:

DISCIPLINE:

Civil/Structural Electrical I & C Mechanical Nuclear Other Document

Title:

Drift Study for ABB ITE-62 Timers Doc. No.:G13.18.6.3-009 Rev. 0 QA Cat. 1 Verifier:

Richard J. Hannigan 1-26-09 Print Sign Date Manager authorization for supervisor performing Verification.

N/A Print Sign Date METHOD OF VERIFICATION:

Design Review Alternate Calculations Qualification Test The following basic questions are addressed as applicable, during the performance of any design verification. These questions are based on the requirements of ANSI N45.2.11 - 1974.

NOTE The reviewer can use the Comments/Continuation sheet at the end for entering any comment/resolution along with the appropriate question number. Additional items with new question numbers can also be entered.

1.

Design Inputs - Were the inputs correctly selected and incorporated into the design?

(Design inputs include design bases, plant operational conditions, performance requirements, regulatory requirements and commitments, codes, standards, field data, etc.

All information used as design inputs should have been reviewed and approved by the responsible design organization, as applicable.

All inputs need to be retrievable or excerpts of documents used should be attached.

See site specific design input procedures for guidance in identifying inputs.)

Yes No N/A

2.

Assumptions - Are assumptions necessary to perform the design activity adequately described and reasonable? Where necessary, are assumptions identified for subsequent re-verification when the detailed activities are completed? Are the latest applicable revisions of design documents utilized?

Yes No N/A

3.

Quality Assurance - Are the appropriate quality and quality assurance requirements specified?

Yes No N/A

G13.18.6.3-009 Page 3 of 8 DESIGN VERIFICATION CHECKLIST SHEET 2 OF 3

4.

Codes, Standards and Regulatory Requirements - Are the applicable codes, standards and regulatory requirements, including issue and addenda properly identified and are their requirements for design met?

Yes No N/A

5.

Construction and Operating Experience - Have applicable construction and operating experience been considered?

Yes No N/A

6.

Interfaces - Have the design interface requirements been satisfied and documented?

Yes No N/A

7.

Methods - Was an appropriate design or analytical (for calculations) method used?

Yes No N/A

8.

Design Outputs - Is the output reasonable compared to the inputs?

Yes No N/A

9.

Parts, Equipment and Processes - Are the specified parts, equipment, and processes suitable for the required application?

Yes No N/A

10.

Materials Compatibility - Are the specified materials compatible with each other and the design environmental conditions to which the material will be exposed?

Yes No N/A

11.

Maintenance requirements - Have adequate maintenance features and requirements been specified?

Yes No N/A

12.

Accessibility for Maintenance - Are accessibility and other design provisions adequate for performance of needed maintenance and repair?

Yes No N/A

13.

Accessibility for In-service Inspection - Has adequate accessibility been provided to perform the in-service inspection expected to be required during the plant life?

Yes No N/A

14.

Radiation Exposure - Has the design properly considered radiation exposure to the public and plant personnel?

Yes No N/A

15.

Acceptance Criteria - Are the acceptance criteria incorporated in the design documents sufficient to allow verification that design requirements have been satisfactorily accomplished?

Yes No N/A

16.

Test Requirements - Have adequate pre-operational and subsequent periodic test requirements been appropriately specified?

Yes No N/A

G13.18.6.3-009 Page 4 of 8 DESIGN VERIFICATION CHECKLIST SHEET 3 OF 3

17.

Handling, Storage, Cleaning and Shipping - Are adequate handling, storage, cleaning and shipping requirements specified?

Yes No N/A

18.

Identification Requirements - Are adequate identification requirements specified?

Yes No N/A

19.

Records and Documentation - Are requirements for record preparation, review, approval, retention, etc., adequately specified? Are all documents prepared in a clear legible manner suitable for microfilming and/or other documentation storage method? Have all impacted documents been identified for update as necessary?

Yes No N/A

20.

Software Quality Assurance-ENN sites: For a calculation that utilized software applications (e.g., GOTHIC, SYMCORD), was it properly verified and validated in accordance with EN-IT-104 or previous site SQA Program?

ENS sites: This is an EN-IT-104 task. However, per ENS-DC-126, for exempt software, was it verified in the calculation?

Yes No N/A 21.

Has adverse impact on peripheral components and systems, outside the boundary of the document being verified, been considered?

Yes No N/A

G13.18.6.3-009 Page 5 of 8 DESIGN VERIFICATION COMMENT SHEET SHEET 1 OF 1 Comments / Continuation Sheet Question Comments Resolution Initial/Date NONE

G13.18.6.3-009 Page 6 of 8 During the independent review of calculation G13.18.6.3-009, alternate applications Lotus 1-2-3 and Quattro Pro were used to validate the results generated by MS Excel in the calculation. The reviewer independently generated the G13.18.6.3-009 results. In the table below the results of the validation for the G13.18.6.3-009 values and the values produced by Lotus 1-2-3 and Quattro Pro are illustrated.

Since there were not any outliers the Initial Data Set and the Final Data Set are the same. The results from Lotus 1-2-3 and Quattro Pro validated the calculation G13.18.6.3-009 results generated by MS Excel. Minor differences in the values between the MS Excel generated results and the Lotus 1-2-3 and Quattro Pro generated results were reviewed and can be attributed to rounding and conversion between applications. Below is a partial listing of some of the values from G13.18.6.3-009 that were validated:

Parameter G13.18.6.3-009 Value Validation Value Validation Application Valid?

Mean

-0.0056

-0.0056 Lotus 1-2-3 Yes Variance 0.416 0.416 Lotus 1-2-3 Yes Standard Deviation 0.6449 0.6449 Lotus 1-2-3 Yes Count 42 42 Lotus 1-2-3 Yes Max 1.67 1.67 Lotus 1-2-3 Yes Median 0.00 0.00 Lotus 1-2-3 Yes Min

-1.30

-1.30 Lotus 1-2-3 Yes Range 2.97 2.97 Lotus 1-2-3 Yes Sum

-0.237

-0.237 Lotus 1-2-3 Yes Kurtosis 0.104 0.104 Lotus 1-2-3 Yes Skewness 0.523 0.523 Lotus 1-2-3 Yes Outliers None None Lotus 1-2-3 Yes Drift scatter plot with trend line N/A Visual inspection shows agreement between the scatter plots and trend lines Lotus 1-2-3 Yes Drift scatter plot trend line Y = 0.0003x - 0.1709 Y = 0.000305x - 0.171 Lotus 1-2-3 Yes W Test Value 0.9576 (does not reject assumption of normality) 0.9576 (does not reject assumption of normality)

Lotus 1-2-3 Yes Histogram N/A Visual inspection shows agreement between the two histograms Lotus 1-2-3 Yes

G13.18.6.3-009 Page 7 of 8 Parameter G13.18.6.3-009 Value Validation Value Validation Application Valid?

Data within 0.5 Standard Deviations 14 14 Lotus 1-2-3 Yes Data within 1.0 Standard Deviation 26 26 Lotus 1-2-3 Yes Data within 1.5 Standard Deviations 34 34 Lotus 1-2-3 Yes Data within 2.0 Standard Deviations 40 40 Lotus 1-2-3 Yes Data within 2.5 Standard Deviations 41 41 Lotus 1-2-3 Yes Bin 4 count 6

6 Lotus 1-2-3 Yes Bin 4 drift Standard Deviation 0.4773 0.4773 Lotus 1-2-3 Yes Bin 4 drift mean

-0.1056

-0.1056 Lotus 1-2-3 Yes Bin 4 interval mean 327.00 327.00 Lotus 1-2-3 Yes Bin 4 interval maximum 330 330 Lotus 1-2-3 Yes Bin 5 count 36 36 Lotus 1-2-3 Yes Bin 5 drift Standard Deviation 0.6728 0.6728 Lotus 1-2-3 Yes Bin 5 drift mean 0.0110 0.0110 Lotus 1-2-3 Yes Bin 5 interval mean 576.75 576.75 Lotus 1-2-3 Yes Bin 5 interval maximum 650 650 Lotus 1-2-3 Yes Binning Analysis Ratio of Variances 1.987 1.987 Lotus 1-2-3 Yes Binning Analysis F Critical 4.478 4.478 Quattro Pro Yes

G13.18.6.3-009 Page 8 of 8 Parameter G13.18.6.3-009 Value Validation Value Validation Application Valid?

Drift Regression Scatter Plot NA Visual inspection shows agreement between the two scatter plots and trend lines.

Lotus 1-2-3 Yes Drift Regression Scatter Plot Trend Line Y = 0.000305x

-0.170887 Y = 0.000305x

-0.170836 Quattro Pro Yes Drift Regression R Square Value 0.002014 0.002013 Quattro Pro Yes Drift Regression F Value 0.080720 0.080673 Quattro Pro Yes F Crit Value 3.231727 3.231727 Quattro Pro Yes Drift Regression P-Value 0.777790 0.777817 Quattro Pro Yes AV Drift Regression Scatter Plot NA Visual inspection shows agreement between the two scatter plots and trend lines.

Lotus 1-2-3 Yes AV Drift Regression Scatter Plot Trend Line Y = 0.000299x

+0.317367 Y = 0.000299x

+0.317369 Quattro Pro Yes AV Drift Regression R Square Value 0.004453 0.004453 Quattro Pro Yes AV Drift Regression F Value 0.178904 0.178900 Quattro Pro Yes F Crit Value 3.231727 3.231727 Quattro Pro Yes AV Drift Regression P-Value 0.674582 0.674531 Quattro Pro Yes Other values, including those based on the above parameters, were checked using hand calculations.