ML19323B927: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(2 intermediate revisions by the same user not shown)
Line 2: Line 2:
| number = ML19323B927
| number = ML19323B927
| issue date = 05/06/1980
| issue date = 05/06/1980
| title = Special Test Number 9A, Forced Circulation Cooldown.
| title = Special Test Number 9A, Forced Circulation Cooldown
| author name = Ballentine J, Lagergran W, Maehr S
| author name = Ballentine J, Lagergran W, Maehr S
| author affiliation = TENNESSEE VALLEY AUTHORITY
| author affiliation = TENNESSEE VALLEY AUTHORITY
Line 18: Line 18:
=Text=
=Text=
{{#Wiki_filter:-
{{#Wiki_filter:-
Sc.iuoyah ::uclear v tant                                     DISTRInUTIO:j 8 005140 %
DISTRInUTIO:j 8 005140 %
1C     Plant Master File
Sc.iuoyah ::uclear v tant 1C Plant Master File Superintendent
                                                                                                              ~
~
Superintendent jy_ Assist. ant Superintendent (Oper.)
jy_ Assist. ant Superintendent (Oper.)
9                                                                 Assistant Superintendent (Maint.)
9 Assistant Superintendent (Maint.)
Ad:ainistrative Supervisor Maintenance Supervisor (M)
Ad:ainistrative Supervisor Maintenance Supervisor (M)
_. _ As';istant Maintenance Supervisor (M)
_. _ As';istant Maintenance Supervisor (M)
                                                                            !!aintenance Supervisor (E)
!!aintenance Supervisor (E)
                                                                          ~ Assistant Maintenance Supervisor (E)
~ Assistant Maintenance Supervisor (E)
SPECIAL TEST NO. 9A                                 1U     Maintenance Supervisor (I)
SPECIAL TEST NO. 9A 1U Maintenance Supervisor (I)
_j/g_ Results Supervisor FORCED CIRCULATION COOLDOUN                         __l_flc Operations Supervisor lu     Quality Assurance Supervisor lleal th Phys i.cs Supervisor Public Safety Services Supv.
_j/g_ Results Supervisor FORCED CIRCULATION COOLDOUN
__l_flc Operations Supervisor lu Quality Assurance Supervisor lleal th Phys i.cs Supervisor Public Safety Services Supv.
__ Chie f Storekeeper
__ Chie f Storekeeper
_ _ Preop Test Program Coordinator
_ _ Preop Test Program Coordinator
Line 38: Line 39:
Mechanical Engineer (Results)
Mechanical Engineer (Results)
Sta ff ]ndustrial Engineer (Plt Sys)
Sta ff ]ndustrial Engineer (Plt Sys)
Training Center Coordinator
Training Center Coordinator Prepared Hy:
                                                                        ~~- PSO - Chickamauga Engrg Unit - SNP Prepared Hy:          U. R. Larvergran                              Public Safety Services - SNP
U.
                                                                    / (.' Shi f t. Engineer's Of fice Revised Dy:           S. R. Machr
R. Larvergran
_ & Unit Control Room QA&A Rep. - SNP Submitted By: j                         y ,+0           _
~~- PSO - Chickamauga Engrg Unit - SNP Public Safety Services - SNP
Health Physics Laboratary y     Su p e rv'i s o r                 lu     Nuclr Document Control Unit, 606 EB-C 1U     S upe rin t en dent. , WUNP PORC Review:           J - k$p                                     Superintendent, EFNP
/ (.'
                      \     \ Date                                       Superintendent, BENP h                               ~         1U     NCB, W9C174C-K A
Shi f t. Engineer's Of fice Revised Dy:
                                \              C7M      "
S. R. Machr
Supv., NPHPS ROB, MS Approved By: ,_fhy,te_ g                       [b   RQ               NRC-IE:II Super nCendent                           Power Security ifficer, 620 CST 2-C g                                           Nuclr Materials Coord. - 1410 CUBB-C L.i                                             Manager, OP-QA&A Staff Date Approved:
_ & Unit Control Room QA&A Rep. - SNP Submitted By: j y,+0 Health Physics Laboratary y
O_ f (a_h  !  1 ac Resident NRC Inspector - SNP 1c_ NSRS, 249A HUB-K Technical Support. Center t l S h s i -f       Te cd.n ic!*/ PAvec' Rev. No.         Date                   Pevised Pa;1eg Rev       No.       Date           Revised Pages 0             ./                   M1
Su p e rv'i s o r lu Nuclr Document Control Unit, 606 EB-C 1U S upe rin t en dent., WUNP PORC Review:
                    .5hp?).-
J - k$p Superintendent, EFNP
                                    .e=M>e
\\
\\ Date Superintendent, BENP h
A
\\
C7M
~
1U NCB, W9C174C-K Supv., NPHPS ROB, MS Approved By:,_fhy,te_ g
[b RQ NRC-IE:II Super nCendent Power Security ifficer, 620 CST 2-C g
Nuclr Materials Coord. - 1410 CUBB-C Date Approved:
O_ f (a_h L.i Manager, OP-QA&A Staff ac Resident NRC Inspector - SNP 1
1c_ NSRS, 249A HUB-K Technical Support. Center t l S h s i -f Te cd.n ic!*/ PAvec' Rev. No.
Date Pevised Pa;1eg Rev No.
Date Revised Pages 0
./
M1
.5hp?).-
.e=M>e
{
{


M-=<6ase- 4 J 2- Si a 7 ~M a b   -*E-A 4E.AA       MA-AA. .-- s-.haa- -A44_4.4   u_aL4._.-ha---uA.       __  43 4a mw&->4'4. - - .AA .e.X=.id4A4 - A-* -de 4-A-eE-- --w,4   **- - -4M m     a m- *Am-4<- e- A d
M-=<6ase-4 J 2-Si a 7
1-u 2                                                                                                                                                                                                                         i I                                   a
~M a b
(                   1                                                                                                                                                                                                     :
-*E-A 4E.AA MA-AA.
i                                                                                                                                                                                                                        i 4
s-.haa-
i-                                                                                                                                                                                                                         .
-A44_4.4 u_aL4._.-ha---uA.
t
43 4a mw&->4'4. - -.AA
.e.X=.id4A4 A-*
-de 4-A-eE--
--w,4
**- - -4M m
a m-
*Am-4<-
e-A d
1-u 2
i I
a
(
1 i
i 4i-t
.}
.}
1,
1,
,t J
,t J
e
e 1
* 1 i
i 1
1
[
[
4 s
4 s
>                                                                                                                                                                                                                            r I                                                                                                                                                                                                                        .-
r I
I
}
}
,                                                                                                                                                                                                                            t l                                                                                                                                                                                                                           l l
I t
2                                                                                                                                                                                                                           <
l l
l t'
l 2
j                                                                                                         SPECIAL TEST NO. 9A a
t' l
4 j                                                                                         FORCED CIRCULATION C00LDOWN r
j SPECIAL TEST NO. 9A a
4 j
FORCED CIRCULATION C00LDOWN r
J I
J I
;
1 i
1 i
e 4                                                                                                                                                                                                                             i d
e 4
i d
I
I
                                                                                                                                                                                                                          'f f,
'f f,
O 1
O 1
I, I
I, I
i i                           .,
i i
i L
i L
i e
i e
Line 88: Line 118:
I i
I i
f.
f.
__ .                u.
u.
                                                    . - . . - . - .. . .-            .a. - . -.. - - . - - - --- - . ~ .- - .. - - ------ - ... w - - - - - -.. - -
.a. -. -.. - -. - - - --- -. ~.- -.. - - ------ -... w - - - - - -.. - -


SQNP a
SQNP a
SPECIAL TEST 9A Page 1 of 1 Rev. 0 FORCED CIRCULATION C00LDOWN Table of Contents Page Special Operator Instruction                                             1 Test Description                                                         2 1.0 OBJECTIVES                                                           3 2.0   PREREQUISITES                                                     3 3.0   PRECAUTIONS                                                       8 4.0   SPECIAL TEST EQUIPMENT                                             9 5.0   INSTRUCTIONS                                                     9 DATA SIIEETS                                                           15 CALCULATION SHEET                                                       17 APPENDIX B - Deficiencies                                               18 APPENDIX C - Power Measurement Technique                                 19             l APPENDIX D - AT Correction Determination                                 30 APPENDIX E - SafeEuard Blocking _ Procedure                             33
SPECIAL TEST 9A Page 1 of 1 Rev. 0 FORCED CIRCULATION C00LDOWN Table of Contents Page Special Operator Instruction 1
,      APPENDIX F - Technical Specifications Exceptions                         46 TABLE 1 - Loop Flow and Core AT for Various Power Levels and Isolation Configurations                         47 l
Test Description 2
l l
1.0 OBJECTIVES 3
2.0 PREREQUISITES 3
3.0 PRECAUTIONS 8
4.0 SPECIAL TEST EQUIPMENT 9
5.0 INSTRUCTIONS 9
DATA SIIEETS 15 CALCULATION SHEET 17 APPENDIX B - Deficiencies 18 APPENDIX C - Power Measurement Technique 19 APPENDIX D - AT Correction Determination 30 APPENDIX E - SafeEuard Blocking _ Procedure 33 APPENDIX F - Technical Specifications Exceptions 46 TABLE 1 - Loop Flow and Core AT for Various Power Levels and Isolation Configurations 47 l
l l
l l
l
l
                                        . , - .  -    -  -      , . . . - + -      -  - , -
- + -


SQNP SPECIAL TEST 9A 5
SQNP SPECIAL TEST 9A 5
Page 1 of 1 Rev. O SPECIAL OPERATOR INSTRUCTION
Page 1 of 1 Rev. O SPECIAL OPERATOR INSTRUCTION
        *An o'pei tor initiated safety injection should be performed only for one or more of the following conditions:
*An o'pei tor initiated safety injection should be performed only for one or more of the following conditions:
Reactor Coolant System Subcooling                 5 10 Sudden Unexplained Decrease in Pressurizer Level of                                             10%
Reactor Coolant System Subcooling 5 10 Sudden Unexplained Decrease in Pressurizer Level of 10%
or to an Indicated Level of                       5 10%
or to an Indicated Level of 5 10%
Sudden Unexplained Decrease in Any S/G Level to                                         6 76% Wide Range 5 0% Narrow Range Unexplained Pressurizer Pressure Drop             2 200 PSI Containment Pressure Hi - (1.54 psig)             Annunciator XA-55-6B Window 6 initiates An operator initiated reactor trip should be performed for any of the following conditions:
Sudden Unexplained Decrease in Any S/G Level to 6 76% Wide Range 5 0% Narrow Range Unexplained Pressurizer Pressure Drop 2 200 PSI Containment Pressure Hi - (1.54 psig)
Reactor Coolant System Subcooling                 5 15 Sudden Unexplained Decrease in Pressurizer Level of                                           5%
Annunciator XA-55-6B Window 6 initiates An operator initiated reactor trip should be performed for any of the following conditions:
or to an Indicated Level of                     5 17%
Reactor Coolant System Subcooling 5 15 Sudden Unexplained Decrease in Pressurizer Level of 5%
1/3 Excores                                       2 10%
or to an Indicated Level of 5 17%
Any Loop A T                                     > 65 F Tavn                                               > 578 F Core Fxit Temperature (Highest)                   > 610 F Any Uncontrolled Rod Movement
1/3 Excores 2 10%
      *SI termination should be in accordance with plant EMERGENCY OPERATING PROCEDURES.
Any Loop A T
1 i       .
> 65 F Tavn
> 578 F Core Fxit Temperature (Highest)
> 610 F Any Uncontrolled Rod Movement
*SI termination should be in accordance with plant EMERGENCY OPERATING PROCEDURES.
1 i


a                         -          -> -      -                    4 a   &
a 4
SQNP o
a SQNP o
S SPECIAL TEST 9A Page 1 of 1 4
SPECIAL TEST 9A S
Rev. 0     -
Page 1 of 1 Rev. 0 4
I FORCED CIRCULATION C00LDOWN Test Description This test will generate a correction factor which will be applied to the excore detector outputs in order to compensate for PV downcomer
I FORCED CIRCULATION C00LDOWN Test Description This test will generate a correction factor which will be applied to the excore detector outputs in order to compensate for PV downcomer shadowing during a cooldown from ~ 550 F to ~ 450 F.
,            shadowing during a cooldown from ~ 550 F to ~ 450 F.
The RCS will initially be ~ 3% power, in forced circulation. p cooldown via steam dumps will be initiated and continue until avg is approximately 450 F.
The RCS will initially be ~ 3% power, in forced circulation. p cooldown via steam dumps will be initiated and continue until avg is approximately 450 F.
During the cooldown primary side ca'arimetrics will be performed,
During the cooldown primary side ca'arimetrics will be performed, movabic detector integral power calculations performed, and excore detector data obtained simultaneously.
;
Power should be maintained as. constant as possible using the results 4
movabic detector integral power calculations performed, and excore detector data obtained simultaneously.
of the primary side calorimetric and integral power calculations.
4 Power should be maintained as. constant as possible using the results of the primary side calorimetric and integral power calculations.
Data reduction will be on a continuous basis.
Data reduction will be on a continuous basis.
Af ter reaching ~ 450 F the plant will be allowet' to heat up and additional data will be obtained.
Af ter reaching ~ 450 F the plant will be allowet' to heat up and additional data will be obtained.
Line 129: Line 166:
l e
l e
e L
e L
* m         -m:
m
* M w
-m:
                      .,m p         p #  -
M w
y-.-, -@g
.,m p
p y-.-,
-@g


SQNP SPECIAL TEST 9A Page 1 of 12 Rev. 0 1.0 OBJECTIVES Determine an excore detector indicated power correction factor as a function of the average cold leg temperature.
SQNP SPECIAL TEST 9A Page 1 of 12 Rev. 0 1.0 OBJECTIVES Determine an excore detector indicated power correction factor as a function of the average cold leg temperature.
2.0 PREREQUISITES 2.1 The following initial conditions exist:
2.0 PREREQUISITES 2.1 The following initial conditions exist:
2.1.1   Reactor power is at approximately 3% RTP.
2.1.1 Reactor power is at approximately 3% RTP.
                                                                  /
/
2.1.2   Forced circulation on all four loops is established.
2.1.2 Forced circulation on all four loops is established.
                                                                  /
/
2.1.3   Steam generators are being fed by the auxiliary feed water system. Level is being maintained at approximately 33%.
2.1.3 Steam generators are being fed by the auxiliary feed water system.
                                                                /
Level is being maintained at approximately 33%.
2.1.4   Steam gene rators are steaming via the condenser or atmos-pheric steam dumps.   (Preferred is to condenser for SG pressure equilization).
/
                                                                /
2.1.4 Steam gene rators are steaming via the condenser or atmos-pheric steam dumps.
2.1.5   Pressurizer pressure control in automatic and maintaining normal operating pressures.
(Preferred is to condenser for SG pressure equilization).
                                                                /
/
2.1.5 Pressurizer pressure control in automatic and maintaining normal operating pressures.
/
2.1.6 RCS temperature is approximately 550 F.
2.1.6 RCS temperature is approximately 550 F.
                                                                /         _ _ _ _
/
2.1.7   Shutdown banks are fully withdrawn and control banks are above their insertion limit. Rod control system is in manual.
2.1.7 Shutdown banks are fully withdrawn and control banks are above their insertion limit.
Rod control system is in manual.
Control bank D is at ~ 160 steps or as determined by the test director.
Control bank D is at ~ 160 steps or as determined by the test director.
                                                                /
/
3
3


SQNP SPECIAL TEST 9A Page 2 of 12 Rev. 0 2.0   PREREQUISITES (Continued) 2.1.8   Pressurizer level control in manua. maintaining approxi-mately 55% level.
SQNP SPECIAL TEST 9A Page 2 of 12 Rev. 0 2.0 PREREQUISITES (Continued) 2.1.8 Pressurizer level control in manua. maintaining approxi-mately 55% level.
                                                                /
/
2.2 The RCS and pressurizer boron concentrations are within 20 ppm.
2.2 The RCS and pressurizer boron concentrations are within 20 ppm.
                                                                /
/
2.3 Sufficient water is available to provide makeup for the expected cooldown to 450 F.
2.3 Sufficient water is available to provide makeup for the expected cooldown to 450 F.
                                                                /
/
2.4 Set up the following test signals on brush recorders.
2.4 Set up the following test signals on brush recorders.
NOTE: Exact recorder / channel / parameter matching is not necessary.
NOTE: Exact recorder / channel / parameter matching is not necessary.
2.4.1 Recorder No. 1 Channel     Parameter           Test Point           Rack 1       Przr Pressure         PP/455B             R1
2.4.1 Recorder No. 1 Channel Parameter Test Point Rack 1
                            ?       Przr Level             LP/459B             R1 3       Lp 1 HL Temp           TP/413E             R2 4       Lp 2 HL Temp           TP/423E             R2 5       Lp 3 HL Temp           TP/433E             R2 6       Lp 4 HL Temp           TP/443E             R2
Przr Pressure PP/455B R1
                                                                /
?
2.4.2 Recorder No. 2 Channel     Pa ramete r         Test Point           Rack 1       LP 1 CL Temp           TP/413F             R6 2         LP 2 CL Temp           TP/423F             R6 3         LP 3 CL Temp           TP/433F             R6 4         LP 4 CL Temp           TP/443F             R6 5         LP 1 Flow             FP/414B             R1 6         LP 2 Flow             FP/424B             R1
Przr Level LP/459B R1 3
                                                                /
Lp 1 HL Temp TP/413E R2 4
Lp 2 HL Temp TP/423E R2 5
Lp 3 HL Temp TP/433E R2 6
Lp 4 HL Temp TP/443E R2
/
2.4.2 Recorder No. 2 Channel Pa ramete r Test Point Rack 1
LP 1 CL Temp TP/413F R6 2
LP 2 CL Temp TP/423F R6 3
LP 3 CL Temp TP/433F R6 4
LP 4 CL Temp TP/443F R6 5
LP 1 Flow FP/414B R1 6
LP 2 Flow FP/424B R1
/
4
4


SQNP SPECIAL TEST 9A Page 3 of 12 Rev. 0 2.0 PHEREQUISITES (Continued) 2.4.3 Recorder No. 3 Channel     Pa rame te r         Test Point           Rack 1       LP 3 Flow               FP/434B           R1 5
SQNP SPECIAL TEST 9A Page 3 of 12 Rev. 0 2.0 PHEREQUISITES (Continued) 2.4.3 Recorder No. 3 Channel Pa rame te r Test Point Rack 1
2       LP 4 Flow               FP/444B           R1 3       LP 1 SG Level           LP/519B           R5 4       LP 2 SG Level           LP/529B           R1 5       LP 3 SG Level           LP/539B           R1 6       LP 4 SG Level           LP/549B           R5
LP 3 Flow FP/434B R1 5
                                                              /
2 LP 4 Flow FP/444B R1 3
2.4.4 Recorder No. 4 Channel     Pa ramete r           Test Point           Rack 1       LP 1 SG Press           PP/516B           R12 2       LP 2 SG Press           PP/526B           Rll 3       LP 3 SG P)               PP/536B           Rll 4       LP 4 SG Preos           PP/546B           R12
LP 1 SG Level LP/519B R5 4
                                                              /
LP 2 SG Level LP/529B R1 5
2.4.5 Recorder No. 5 Channel           Parameter           Test Point       Rack 1       Aux Fd Flow to SG #1         TP-13         1-L-11B 2       Aux Fd Flow to SG #2         TP-13         1-L-11A 3       Aux Fd Flow to SG #3         TP-12         1-L-11B 4       Au-e Fd Flow to SG #4       TP-12         1-L-11A 2.4.6 Record the following parameters on the reactivity computer recorders.
LP 3 SG Level LP/539B R1 6
(a) Flux (b) Average wide rangeTTcold (c) Average wide range hot (d) Average steam generator pressure (c) Reactivity 5
LP 4 SG Level LP/549B R5
/
2.4.4 Recorder No. 4 Channel Pa ramete r Test Point Rack 1
LP 1 SG Press PP/516B R12 2
LP 2 SG Press PP/526B Rll 3
LP 3 SG P)
PP/536B Rll 4
LP 4 SG Preos PP/546B R12
/
2.4.5 Recorder No. 5 Channel Parameter Test Point Rack 1
Aux Fd Flow to SG #1 TP-13 1-L-11B 2
Aux Fd Flow to SG #2 TP-13 1-L-11A 3
Aux Fd Flow to SG #3 TP-12 1-L-11B 4
Au-e Fd Flow to SG #4 TP-12 1-L-11A 2.4.6 Record the following parameters on the reactivity computer recorders.
(a) Flux T
(b) Average wide range cold T
(c) Average wide range hot (d) Average steam generator pressure (c) Reactivity 5
-~


  . - _ _        -. ...                -          -.          -- .          = .- -                 . -        .    ...          - . - - . - .        .        _ _ .
=.- -
SQNP SPECIAL TEST 9A I
SQNP SPECIAL TEST 9A I
Page 4 of 12                   ;
Page 4 of 12 Rev. 0 l
Rev. 0                         ,
l 2.0 PREREQUISITES (Continued) 1 i
l 1
2.5 Trend the following parameters on the process computer at ~ 5-minute intervals.
l                             2.0 PREREQUISITES (Continued) i 2.5 Trend the following parameters on the process computer at ~ 5-minute 2
2 Wide range cold legs T0406A T0426A T0446A T0466A l
intervals.
Wide range hot legs T0419A
Wide range cold legs                       T0406A T0426A T0446A
!l T0439A T0459A l
:                                                                                                                    T0466A l                                                                       Wide range hot legs                         T0419A                                                     -
T0479A Steam generator levels LO403A 1
T0439A
!l                                                                                                                   T0459A l                                                                                                                   T0479A
,                                                                        Steam generator levels                     LO403A 1
LO423A
LO423A
}                                                                                                                     LO443A i                                                                                                                     LO463A l                                                                         Loop Flow                                   F0400A
}
;                                                                                                                    F0420A 4                                                                                                                     F0440A F0460A 1
LO443A LO463A i
!                                                                                                                            /
l Loop Flow F0400A F0420A 4
j                                       2.6 Obtain the wide' range AT correction factors using Appendix D.
F0440A F0460A 1
/
j 2.6 Obtain the wide' range AT correction factors using Appendix D.
i
i
;                                                                                                                            /
/
!1 j                                     2.7         Perform the reference (REF) portion of the primary calorimetric
1 j
;                                                  Appendix C and a M/D trace simultaneously, Appendix C, Part B.
2.7 Perform the reference (REF) portion of the primary calorimetric Appendix C and a M/D trace simultaneously, Appendix C, Part B.
j                                                   Use the output of the primary calorimetric to set the M/D Power j-                                                 Monitor Program.
j Use the output of the primary calorimetric to set the M/D Power j-Monitor Program.
1 i                                                                                                                           /
1 i
;
/
2.8 Verify the automatic actuation of safety injection has been blocked
2.8 Verify the automatic actuation of safety injection has been blocked
                                                                                            ~
~
in accordance.with Appendix E.
in accordance.with Appendix E.
t
t
                                                                                                                            /
/
i 2.9 Verify the input logic of' safety injection on high steam line AP                                                                     i has been blocked in accordance with Appendix E.
2.9 Verify the input logic of' safety injection on high steam line AP i
                                                                                                                            /
i has been blocked in accordance with Appendix E.
6                                                   -
/
      ---rr-   -.              ,--.a.     . , , ,      + , ,,e.-     -  .,v.--          -
6
                                                                                                ,,-n.._     - , ,.            _- , .          ..v.     -
---rr-
w -~,-, w       .-.-
,--.a.
+,
,,e.-
.,v.--
,,-n.._
..v.
w
-~,-, w


SQNP SPECIAL TEST 9A Page 5 of 12 Rev. 0 2.0 PREREQUISITES (Continued)
SQNP SPECIAL TEST 9A Page 5 of 12 Rev. 0 2.0 PREREQUISITES (Continued) 2.10 Verify tge high steam flow coincident with low S/G pressure or low-low avg input to safety injection has been medified in accordance with Appendix E.
:                  2.10 Verify tge high steam flow coincident with low S/G pressure or low-low avg input to safety injection has been medified in accordance with Appendix E.
/
                                                                              /
2.11 Verify the following U.11.I. isolation valves are gagged.
;                  2.11 Verify the following U.11.I. isolation valves are gagged.
l FCV-87-21
l FCV-87-21                                 /
/
FCV-87-22                               /
FCV-87-22
FCV-87-23                               /
/
i FCV-87-24                               /
FCV-87-23
i 2.12 Recalibrate the bistables supplying the low pressure signal to the high steam flow S.I. logic in accordance with Appendix E.
/
                                                                              /
FCV-87-24
l                 2.13 Intermediate and power range high level reactor trip setpoints have been set to 7% in accordance with Appendix C and D of SU-8.5.2.
/
Power Raage                                         /
i i
Intermediate Range                                 /
2.12 Recalibrate the bistables supplying the low pressure signal to the high steam flow S.I. logic in accordance with Appendix E.
4                  2.14 CVCS is aligned to supply auto makeup.
/
                                                                              /
l 2.13 Intermediate and power range high level reactor trip setpoints have been set to 7% in accordance with Appendix C and D of SU-8.5.2.
Power Raage
/
Intermediate Range
/
2.14 CVCS is aligned to supply auto makeup.
4
/
l
l
                                                                                    -v.
-v.
l L
l L


SQNP SPECIAL TEST 9A Page 6 of 12 Rev. 0 3.0   PRECAUTIONS, LIMITATIONS, AND ACTIONS 3.1 Do not exceed 5% RTP.     Caution should be used in maintaining the desired power level because of flux shadowing of the excore detec-tors. Don't depend on the excore detectors. Use as many methods as possible to determine actual core power.
SQNP SPECIAL TEST 9A Page 6 of 12 Rev. 0 3.0 PRECAUTIONS, LIMITATIONS, AND ACTIONS 3.1 Do not exceed 5% RTP.
3.2 During the cooldown the isothermal temperature coefficient.will be small but may be of either polarity. Care should be taken when changing reactivity using control rods or boron concentration because at some point the temperature cofficient polarity could change.
Caution should be used in maintaining the desired power level because of flux shadowing of the excore detec-tors. Don't depend on the excore detectors. Use as many methods as possible to determine actual core power.
3.2 During the cooldown the isothermal temperature coefficient.will be small but may be of either polarity.
Care should be taken when changing reactivity using control rods or boron concentration because at some point the temperature cofficient polarity could change.
4 3.3 Maintain control bank D at ~ 160 steps if possible. This same suggested minimum limit will be used during the natural circula-tion test. This height will minimize the effect of rod shadewing of the excore detectors and insure uniformity between forced and natural circulation test.
4 3.3 Maintain control bank D at ~ 160 steps if possible. This same suggested minimum limit will be used during the natural circula-tion test. This height will minimize the effect of rod shadewing of the excore detectors and insure uniformity between forced and natural circulation test.
3.4 When operating below 525 F, ensure control bank D position remains at 2 100 steps. Should this limit be reached during the cooldown boron concentration will have to be increased.
3.4 When operating below 525 F, ensure control bank D position remains at 2 100 steps.
Should this limit be reached during the cooldown boron concentration will have to be increased.
3.5 When testing with the reactor coolant in the low temperature range of 450 F to 500 F, maintain the lithic concentration at 2.0 to 2.2 ppm, the upper part or the specified lithic range.
3.5 When testing with the reactor coolant in the low temperature range of 450 F to 500 F, maintain the lithic concentration at 2.0 to 2.2 ppm, the upper part or the specified lithic range.
i                  This is especially necessary if high boric acid concentrations
This is especially necessary if high boric acid concentrations i
(~ 1000 ppm) are also being used.
(~ 1000 ppm) are also being used.
3.6 Ensure the differential pressure across the steam generators remains below 1600 psig.
3.6 Ensure the differential pressure across the steam generators remains below 1600 psig.
8
8


SQNP S
SQNP SPECIAL TEST 9A S
SPECIAL TEST 9A Page 7 of 12 Rev. 0 4.0 SPECIAL TEST EQUIPMENT IDENTIFICATION   CALIBRATION INSTRUMENT               SPECIFICATION       IM!BER       VERIFICATION Reactivity Computer     Westinghouse and Associated Equipment (4) 6-channel recorders Brush 260 or Equivalent (2) DVM's               Fluke (1) Recorder             HP 71008 or Equivalent If test instruments are changed during this test, the instrument infor-mation must be recorded here and an' entry made in the chronological log book explaining this change.
Page 7 of 12 Rev. 0 4.0 SPECIAL TEST EQUIPMENT IDENTIFICATION CALIBRATION INSTRUMENT SPECIFICATION IM!BER VERIFICATION Reactivity Computer Westinghouse and Associated Equipment (4) 6-channel recorders Brush 260 or Equivalent (2) DVM's Fluke (1) Recorder HP 71008 or Equivalent If test instruments are changed during this test, the instrument infor-mation must be recorded here and an' entry made in the chronological log book explaining this change.
                                          '9
'9


_                      . - _ _ . .              ..                                          ~ _
~
J SQNP SPECIAL TEST 9A Page 8 of 12 Rev. O i
J SQNP SPECIAL TEST 9A Page 8 of 12 Rev. O i
;                  5.0   INSTRUCTIONS
5.0 INSTRUCTIONS NOTE: Perform SI-38, SI-48, and SI-127 periodically during the cooldown, i
:                        NOTE: Perform SI-38, SI-48, and SI-127 periodically during the cooldown, i
5.1 Cooldown i
i 5.1 Cooldown
NOTE: Depending on rod position and the magnitude and polarity of the isothermal temperature coefficient dilution and/or boration may be required.
;                        NOTE: Depending on rod position and the magnitude and polarity of the isothermal temperature coefficient dilution and/or boration may be required.
b l
l b
l 5.1.1 Verify that the system is in equilibrium with respect to power, RCS temperature, pressure and boron concentration.
l                             5.1.1     Verify that the system is in equilibrium with respect to power, RCS temperature, pressure and boron concentration.
Pressurizer pressure ~ 2235 + 50 psig i
Pressurizer pressure ~ 2235 + 50 psig i                                               S/G pressure                   ~ 1005 psig
S/G pressure
,                                              RCS-PRZR boron concentration within 20 ppm j                                               Successive boron sample concentration within 10 ppm J
~ 1005 psig RCS-PRZR boron concentration within 20 ppm j
Reactivity is approximately zero and constant i
Successive boron sample concentration within 10 ppm J
                                                                                              /
Reactivity is approximately zero and constant
d 5.1.2     Start the test recorders on slow speed (5mm/ min).                             Record
/
;                                        on the charts, the date, time, recorder ID, parameters 2
i d
measured, measurement range, test being performed and name
5.1.2 Start the test recorders on slow speed (5mm/ min).
:                                        of person recording data.
Record on the charts, the date, time, recorder ID, parameters 2
:                                                                                            /
measured, measurement range, test being performed and name of person recording data.
5.1.3     Start process computer trend block.
/
l                                                                                             /
5.1.3 Start process computer trend block.
l 5.1.4 Obtain a thermocouple map and repeat every 10 F during 4
l
cooldown.
/
;
l 5.1.4 Obtain a thermocouple map and repeat every 10 F during cooldown.
          ~
4
                                                                                              /
/
i 5.1.5     Record excore detector data on Data Sheet 1 and repeat every 10"F. One of the P.R. channels is connected to e
i
the reactivity computer so, record the Keithley amplifier
~
;                                        output for that particular channel on Data Sheet 1.
5.1.5 Record excore detector data on Data Sheet 1 and repeat every 10"F.
i.
One of the P.R. channels is connected to the reactivity computer so, record the Keithley amplifier e
NOTE: Mark out "N-               " and write in "KA."
output for that particular channel on Data Sheet 1.
.,!                                                                                            /                                 ;
i NOTE: Mark out "N-
                                                                                                                                \
" and write in "KA."
10
/
                                                                                                                            .-  i
\\
10 i


SQNP SPECIAL TEST 9A Page 9 of 12 Rev. 0   ~~-
SQNP SPECIAL TEST 9A Page 9 of 12 Rev. 0
5.0 INSTRUCTIONS (Continued) 5.1.6   Initiate the program for obtaining M/D trace data and re-cord on Data Sheet 2. Repeat every 10 F during cooldown.
~~-
5.0 INSTRUCTIONS (Continued) 5.1.6 Initiate the program for obtaining M/D trace data and re-cord on Data Sheet 2.
Repeat every 10 F during cooldown.
Use applicable portions of Appendix C.
Use applicable portions of Appendix C.
                                                                        /
/
5.1.7 _ Initiate the primary side calorimetric and repeat every 10 F.
5.1.7 _ Initiate the primary side calorimetric and repeat every 10 F.
Use applicable portions of Appendix C.
Use applicable portions of Appendix C.
                                                                        /
/
;
5.1.S Initiate a cooldown by slowly increasing the rate of steam dump and proceed to approximately 450 F core inlet tempera-ture.
5.1.S   Initiate a cooldown by slowly increasing the rate of steam dump and proceed to approximately 450 F core inlet tempera-ture. The rate should be approximately 30 F per hour with stabilized plateaus approximately every 10 F during cooldown.
The rate should be approximately 30 F per hour with stabilized plateaus approximately every 10 F during cooldown.
.                                                                      /
/
l NOTE:   Reduce RCS pressure during the cooldown to maintain steam generator AP below 1600 psig.
l NOTE:
5.1.9     Use the control rods and soluable boron as necessary to maintain core power approximately constant. Core power
Reduce RCS pressure during the cooldown to maintain steam generator AP below 1600 psig.
  ,                            is determined by-the primary side calorimetric and the M/D trace data. Refer to Appendix C, Parts A and B.
5.1.9 Use the control rods and soluable boron as necessary to maintain core power approximately constant.
NOTE:   Control bank D should be maintained at approximately 160
Core power is determined by-the primary side calorimetric and the M/D trace data. Refer to Appendix C, Parts A and B.
,                        steps if possib'e.
NOTE:
Control bank D should be maintained at approximately 160 steps if possib'e.
5.1.10 Upon reaching approximately 450 F terminate the cooldown and allow the RCS to come to an equilibrium condition.
5.1.10 Upon reaching approximately 450 F terminate the cooldown and allow the RCS to come to an equilibrium condition.
Continue to obtain data.
Continue to obtain data.
                                                                      /
/
5.2 Heatup 5.2.1   Allow the RCS to heatup at the same rate indicated above.           '
5.2 Heatup 5.2.1 Allow the RCS to heatup at the same rate indicated above.
Obtain the same data at the same temperature plateaus.
Obtain the same data at the same temperature plateaus.
                                                                      /
/
                    -5.2.2   Upon reaching approximately 550 F terminate the heatup and
-5.2.2 Upon reaching approximately 550 F terminate the heatup and
                              . allow the.RCS to come to:an' equilibrium c'ondition.. Aft <r
. allow the.RCS to come to:an' equilibrium c'ondition.. Aft <r one set of data has been obtained at ~ 550 F the test is
                                                            ~
~
i one set of data has been obtained at ~ 550 F the test is over. Attach ALL data to this test.
i over. Attach ALL data to this test.
i l
i l
11
11 L
;
L


SQNP SPECIAL TEST 9A Page 10 of 12 Rev. 0   --
SQNP SPECIAL TEST 9A Page 10 of 12 Rev. 0 5.0 INSTRUCTIONS (Continued)
5.0 INSTRUCTIONS (Continued)
.5.2.3 Return the bistables supplying the low pressure signal to the high steam flow S.I. logic to their original setpoints in accordance with Appendix E unless the next test to be performed requires this modification to be made.
                .5.2.3 Return the bistables supplying the low pressure signal to the high steam flow S.I. logic to their original setpoints in accordance with Appendix E unless the next test to be performed requires this modification to be made.     If this is the case, disregard this step, place N/A in the signa-ture line, and initial.
If this is the case, disregard this step, place N/A in the signa-ture line, and initial.
5.2.4 Restore the high ste9m flow coincident with low S/G pressure or low-low avg input to safety injection in accordance with Appendix E unless the next test to be performed requires this modification to be made.     If-this is the case, disregard this step, place N/A in the signature line and initial.
5.2.4 Restore the high ste9m flow coincident with low S/G pressure or low-low avg input to safety injection in accordance with Appendix E unless the next test to be performed requires this modification to be made.
                                                                /
If-this is the case, disregard this step, place N/A in the signature line and initial.
5.2.5 Remove the block of the input logic of safety injection on high steam line AP in accordance with Appendix E unless the next test to be performed requires the block to be installed. If this is the case, disregard .nis step, place N/A in the signature line, and initial.
/
                                                                /
5.2.5 Remove the block of the input logic of safety injection on high steam line AP in accordance with Appendix E unless the next test to be performed requires the block to be installed.
5.2.6 Remove the block of automatic actuation of safety injec-tion in accordance with Appendix E unless the next test to be performed requires the block to be installed.       If this is the case, disregard this step, place N/A in the signature line, and initial.
If this is the case, disregard.nis step, place N/A in the signature line, and initial.
                                                                /
/
    ~
5.2.6 Remove the block of automatic actuation of safety injec-tion in accordance with Appendix E unless the next test to be performed requires the block to be installed.
5.2.7 Remove the gags from the following U.H.I. isolation valves unless the valves are_ required to be' gagged for the next test. If this is the case, disregard this step, place N/A in the signature line, and initial.
If this is the case, disregard this step, place N/A in the signature line, and initial.
FCV-87-21                           /
/
FCV-87-22                           /
~
FCV-87-23                           /'
5.2.7 Remove the gags from the following U.H.I. isolation valves unless the valves are_ required to be' gagged for the next test.
FCV-87-24                           /
If this is the case, disregard this step, place N/A in the signature line, and initial.
FCV-87-21
/
FCV-87-22
/
FCV-87-23
/'
FCV-87-24
/
12 e
12 e


SQNP SPECIAL TEST 9A Page 11 of 12 Rev. 0     -
SQNP SPECIAL TEST 9A Page 11 of 12 Rev. 0 5.0 INSTRUCTIONS (Continued) 5.2.8 Reset the intermediate and power range high level reactor trip setpoints as indicated by the test engineer in accord-ance with Appendix C and D of SU-8.5.2 unless the next test to be performed requires this adjustment.
5.0   INSTRUCTIONS (Continued) 5.2.8     Reset the intermediate and power range high level reactor trip setpoints as indicated by the test engineer in accord-ance with Appendix C and D of SU-8.5.2 unless the next test to be performed requires this adjustment. If this is the case, disregard this step, place N/A in the signature line, and initial.
If this is the case, disregard this step, place N/A in the signature line, and initial.
Power Rapre                                         /
Power Rapre
Intermediate Range                                   /
/
Intermediate Range
/
5.3 Data Reduction NOTE: This reduction must be performed and an excore detector indi-cated power correction factor as a function of temperature determined before proceeding to the NC ccoldown portion of this test.
5.3 Data Reduction NOTE: This reduction must be performed and an excore detector indi-cated power correction factor as a function of temperature determined before proceeding to the NC ccoldown portion of this test.
5.3.1   Use both the cooldown and heatup data.       If for some reason the data was not obtained at exactly the required tempera-ture plateaus mark through that temperature and record the actual measurement temperature.
5.3.1 Use both the cooldown and heatup data.
Excore Data:     Sum the top and bottom currents for the 3 (Data Sheet 1) channels in service and enter under sum.
If for some reason the data was not obtained at exactly the required tempera-ture plateaus mark through that temperature and record the actual measurement temperature.
Excore Data:
Sum the top and bottom currents for the 3 (Data Sheet 1) channels in service and enter under sum.
The Keithley amp output should be in sum column. Transfer the data to the Calcula-tion Sheet.
The Keithley amp output should be in sum column. Transfer the data to the Calcula-tion Sheet.
M/D Data:       Transfer the calculated power level to the (Data Sheet 2) Calculation Sheet.
M/D Data:
Primary Calor. : Transfer the power level obtained from the (Appendix C)     primary calorimetric to the Calculation Sheet.
Transfer the calculated power level to the (Data Sheet 2) Calculation Sheet.
Average Power: Using the incore data and primary calori-(Calculation metric data determine the actual core power                 l Sheet)     at each emperature plateau. A straight average should be used unless one method or the other proves unreliable.                               ,
Primary Calor. : Transfer the power level obtained from the (Appendix C) primary calorimetric to the Calculation Sheet.
l Power Normalization: Divide the average power obtained at to REF Average Power each temperature plateau by the aver-(Calculation Sheet) age power obtained at the reference (REF) condition, 550 F. This. factor will in turn be used to correct the                 i excore outputs.                                     )
Average Power: Using the incore data and primary calori-(Calculation metric data determine the actual core power l
l l
Sheet) at each emperature plateau. A straight average should be used unless one method or the other proves unreliable.
Power Normalization: Divide the average power obtained at to REF Average Power each temperature plateau by the aver-(Calculation Sheet) age power obtained at the reference (REF) condition, 550 F.
This. factor will in turn be used to correct the i
excore outputs.
13
13


SQNP SPECIAL TEST 9A Page 12 of 12 Rev. O     ~
SQNP SPECIAL TEST 9A Page 12 of 12 Rev. O
5.0   INSTRUCTIONS (Continued)
~
Power Corrected: Divide the measured excore detector cur-Excore Currents & rents by the power normalization factor.
5.0 INSTRUCTIONS (Continued)
                      & Keithley Amp   This in effect corrects all data for Output           fluctuations on core power. The resulting currents then will only be a function of the cold leg temperature.
Power Corrected:
Excore Current:   Divide the power corrected excore cur-
Divide the measured excore detector cur-Excore Currents & rents by the power normalization factor.
                      ?!ultiplier as a rents obtained at each temperature Function of Cold plateau into the excore current ob-Leg Temperature: tained at the REF condition. NOTE: the
& Keithley Amp This in effect corrects all data for Output fluctuations on core power. The resulting currents then will only be a function of the cold leg temperature.
,                                      factors should increase as Tcdecreases.
Excore Current:
Plot the correction factors as a function of T for each detector. The plots will be uEed in the natural circulation cool-down phase of this test.
Divide the power corrected excore cur-
?!ultiplier as a rents obtained at each temperature Function of Cold plateau into the excore current ob-Leg Temperature:
tained at the REF condition.
NOTE:
the factors should increase as T decreases.
c Plot the correction factors as a function of T for each detector. The plots will be uEed in the natural circulation cool-down phase of this test.
4 1
4 1
l d
l d
a 14
a 14


SQNP           ,
SQNP SPECIAL TEST 9A Page 1 of 1 Rev. 0 DATA SHEET 1 EXCORE DATA SHEET Map No.
SPECIAL TEST 9A Page 1 of 1 Rev. 0           .
Shutdown Bank Position:
DATA SHEET 1 EXCORE DATA SHEET Map No.                         Shutdown Bank Position:     A       B     C         D       E Date                             Control Bank Position:     A       B     C         D       E Power                   _
A B
RCCA                   Position N-41                 N-42                     N-43                 N-44 Time / Temp Top _ Bottom Sum   Top   Bottom   Sum     Top   Bottom Sum     Top   Bottom   Sum
C D
                /550
E Date Control Bank Position:
                /540
A B
        .H
C D
          "      /530
E Power RCCA Position N-41 N-42 N-43 N-44 Time / Temp Top
                /520
_ Bottom Sum Top Bottom Sum Top Bottom Sum Top Bottom Sum
                /510
/550
                /500
/540
                /490
.H
                /480
/530
                /470
/520
                /460
/510
                /450 Cocunent:
/500
Data Taken By:               /                           Reviewed by:                     /
/490
/480
/470
/460
/450 Cocunent:
Data Taken By:
/
Reviewed by:
/


                                                                                                                                                                                  \
\\
SQNP                   .
SQNP SPECIAL TEST 9A Page 1 of 1 DATA SIEET 2 Rev. 0 LOW POWER MOVABLE DETECTOR FLUX HAP DATA Initial Final RCC Bank /RCCA Positions (steps) il3P No.:
                                                                                ,                                                                      SPECIAL TEST 9A Page 1 of 1 DATA SIEET 2                                   Rev. 0                   -
RCS T
LOW POWER MOVABLE DETECTOR FLUX HAP DATA Initial Final             RCC Bank /RCCA Positions (steps) il3P No.:                                                                             RCS T   ( F):                             SDA   SDB     SDC       SDD Date:                                                                                 IR-35 (amps):   _
( F):
CA     CB       CC         CD Unit:                                                                                 IR-36 (amps):                                         RCCA (     )
SDA SDB SDC SDD Date:
IR-35 (amps):
CA CB CC CD Unit:
IR-36 (amps):
RCCA (
)
Controlling RCCA/RCC Bank:
Controlling RCCA/RCC Bank:
Calculated               Control RCCA
Calculated Control RCCA
                                                      . Time                                                                               Power     P-250       RCC Bank of     Detector - Core Location                   Detector - Range             Level     UO906       Posi. tion RECORD   A B             C     D     E   F   A     B     C     D   E   F 550 540 3,       530 520 510 500
. Time Power P-250 RCC Bank of Detector - Core Location Detector - Range Level UO906 Posi. tion RECORD A
    .490 480
B C
:470 460 450 Detector                                               A B             C     D     E     F           Remarks:
D E
F A
B C
D E
F 550 540 3,
530 520 510 500
.490 480
:470 460 450 Detector A
B C
D E
F Remarks:
Detector Voltage Recorder Pot.
Detector Voltage Recorder Pot.
    -Data Taken By:                                                                                             Data Checked By:
-Data Taken By:
* SQNP SPECIAL TEST 9A Page 1 of 1 Rev. O CALCULATION SHEET APPR0XIMATE AVERAGE COLD LEG TEMPERATURES ( F)
Data Checked By:
 
SQNP SPECIAL TEST 9A Page 1 of 1 Rev. O CALCULATION SHEET APPR0XIMATE AVERAGE COLD LEG TEMPERATURES ( F)
REF.
REF.
Item #     Parameters           550 540 530   520   510 500 490 480 470   460 450 Movable Detector 1       (% RTP)
Item #
Primary Calorimetric 2       (% RTP)
Parameters 550 540 530 520 510 500 490 480 470 460 450 Movable Detector 1
Average Power 3       (% RTP)
(% RTP)
Power Normalization 4       to REF condition     1.00 Excore Currents N-5       and             N-Keithley Amp     N-Output         KA Power Corrected N-3 Excore Currents N-6       Keithly Amp     N-Output           KA N-   1.00 Corrections
Primary Calorimetric 2
                                                                ~~
(% RTP)
7                        N-   1.00 Factors         N-   1.00 KA   1.00 Remarks:
Average Power 3
(% RTP)
Power Normalization 4
to REF condition 1.00 Excore Currents N-5 and N-Keithley Amp N-Output KA Power Corrected N-Excore Currents N-3 6
Keithly Amp N-Output KA N-1.00 7
Corrections N-1.00
~~
Factors N-1.00 KA 1.00 Remarks:
Calculated by:
Calculated by:
Reviewed by:
Reviewed by:
i 17 1
i 17 1
* SQNP
 
                  ,                                                                              SPECIAL TEST 9A Page 1 of 1 Rev. O APPENDIX B Test Deficiencies #
SQNP SPECIAL TEST 9A Page 1 of 1 Rev. O APPENDIX B Test Deficiencies #
;
Test Deficiency j
;
Recommended Resolution 1
Test Deficiency
;
j Recommended Resolution 1
1 1
1 1
I l
I l
1 Final Resolution Originator                                                     /
1 Final Resolution Originator
Signature                             Date PORC Review of Final Resolution Date Approval of Final Resolution                                   /
/
Plant Superintendent       Date 18
Signature Date PORC Review of Final Resolution Date Approval of Final Resolution
/
Plant Superintendent Date 18


SQNP SPECIAL TEST 9A Page 1 of 11 Rev. 0         -
SQNP SPECIAL TEST 9A Page 1 of 11 Rev. 0 APPENDIX C Outline I.
APPENDIX C Outline I. Core Power Determination l
Core Power Determination l
A. Primary Side Calorimetric (Forced Circulation Only)
A.
,                  1. Reference (~ 550 F) Calorimetric (Defore NC test) i                                   ~
Primary Side Calorimetric (Forced Circulation Only) 1.
Reference (~ 550 F) Calorimetric (Defore NC test) i
~
a) Output used to adjust M/D Power Monitor Program's power conversion constant.
a) Output used to adjust M/D Power Monitor Program's power conversion constant.
: 2. Non-reference Temperature Calorimetric (Cooldown) a) Output used at every temperature plateau as a continuous core power monitoring scheme.
2.
Non-reference Temperature Calorimetric (Cooldown) a) Output used at every temperature plateau as a continuous core power monitoring scheme.
b) Output is used in conjunction with the ouput of the M/D Power Monitor Program to assign a best estimate core power at each temperature plateau. The powers are used to nor-malize the excore detector outputs which in turn are plotted as a function of che core inlet temperature.
b) Output is used in conjunction with the ouput of the M/D Power Monitor Program to assign a best estimate core power at each temperature plateau. The powers are used to nor-malize the excore detector outputs which in turn are plotted as a function of che core inlet temperature.
B. M/D Power Monitor Program
B.
: 1. Power Conversion Constant Adjustment.
M/D Power Monitor Program 1.
Power Conversion Constant Adjustment.
a) The output of the REF primary calorimetric will give a percent power output; this output must be input to the M/D Power-Monitor Program so tnat the program output will be in percent power and equal to the primary calorimetric output.
a) The output of the REF primary calorimetric will give a percent power output; this output must be input to the M/D Power-Monitor Program so tnat the program output will be in percent power and equal to the primary calorimetric output.
: 2. Power Monitoring
2.
_            a) The M/D Power Monitor Program will calculate the integral power as seen by one pass of 5 or 6 detectors. After the output has been calibrated to be equal to the REF primary calorimetric it will be rerun up to once every 2 minutes or as necessary to continuously monitor core power.
Power Monitoring a) The M/D Power Monitor Program will calculate the integral power as seen by one pass of 5 or 6 detectors. After the output has been calibrated to be equal to the REF primary calorimetric it will be rerun up to once every 2 minutes or as necessary to continuously monitor core power.
b 19 I
b 19 i
i
.l
                                                                                                .l


SQNP o-SPECIAL TEST 9A-Page 2 of 11
SQNP o -
                                                                                    ~-
SPECIAL TEST 9A-Page 2 of 11 Rev. 0
Rev. 0 APPENDIX C i
~-
l                                 CORE POWER DETERMINATION PART A: Primary side calorimetric - Data Sheet C.1 (Forced Circulation)
APPENDIX C i
l CORE POWER DETERMINATION PART A:
Primary side calorimetric - Data Sheet C.1 (Forced Circulation)
C.1 Use two DVMs and measure the voltage at the test points specified for each loop as rapid as possible.
C.1 Use two DVMs and measure the voltage at the test points specified for each loop as rapid as possible.
C.2 Calculate the AT; multiply that AT by the specific heat and i
C.2 Calculate the AT; multiply that AT by the specific heat and the Westinghouse best estimate flow rate of the core average i
the Westinghouse best estimate flow rate of the core average
i temperature (Table C-1).
* i                     temperature (Table C-1).   (Special Test No. 9 uses wide range AT so a correction factor is required to compensate for pump heating, refer to Appendix D of ST-9A).
(Special Test No. 9 uses wide range AT so a correction factor is required to compensate for pump heating, refer to Appendix D of ST-9A).
C.3 Sum the loop heat rates and convert to a percent reactor power.
C.3 Sum the loop heat rates and convert to a percent reactor power.
;                    The output is used in Part B and on the Calculation Sheet.
The output is used in Part B and on the Calculation Sheet.
i l
i l
I                                                                                             I i
I I
i
i i
      ~
~
l l
l l
i l
i l
i l
i l
l 20
20


SQNP
SQNP SPECIAL TEST 9A Page 3 of 11 Rev. O APPENDIX C Core Power Determination PART B: M/D Power Monitor Program 1.
  ,                                                                    SPECIAL TEST 9A Page 3 of 11 Rev. O APPENDIX C Core Power Determination PART B: M/D Power Monitor Program
Set up the movable detector system for a 1 pass partial core flux map as per TI-53.
: 1. Set up the movable detector system for a 1 pass partial core flux map as per TI-53. Select flux thimbles as per the table below for the flux map.
Select flux thimbles as per the table below for the flux map.
Drive         10-Path Position         Core Location A                   10                   L-5 B                   10                   L-11 C                   10                   E-5 D                   10                   E-11 E                     6                   J-8 F                     8                   P-9 These positions may be altered by the test engineer, based upon low power physics testing results and previous special testing experience.
Drive 10-Path Position Core Location A
: 2. Determine the detector normalization constants and enter them into the P-250 as follows:
10 L-5 B
a) Enter a value of 1.0 into the P-250 for the addresses shown         i in the table below.                                                 j b) With all 5 path selector switches set to normal, run a flux trace.
10 L-11 C
10 E-5 D
10 E-11 E
6 J-8 F
8 P-9 These positions may be altered by the test engineer, based upon low power physics testing results and previous special testing experience.
2.
Determine the detector normalization constants and enter them into the P-250 as follows:
a) Enter a value of 1.0 into the P-250 for the addresses shown i
in the table below.
j b) With all 5 path selector switches set to normal, run a flux trace.
c) With all 5 path selector switches set to Emergency, run a second flux trace.
c) With all 5 path selector switches set to Emergency, run a second flux trace.
d) Determine the detector normalization constants from Data Sheet C.2.
d) Determine the detector normalization constants from Data Sheet C.2.
e) Enter these detector nonnalization constants into the P-250 as shown in the table below.                                       l 21
e) Enter these detector nonnalization constants into the P-250 as shown in the table below.
21


SQNP SPECIAL TEST 9A Page 4 of 11 Rev. O APPENDIX'C Core Power Determination PART B: (Continued)
SQNP SPECIAL TEST 9A Page 4 of 11 Rev. O APPENDIX'C Core Power Determination PART B:
Drive                     P-250 Address A                         KO908 B                         K0909 C                         K0910             __
(Continued)
D                        K0911 E                         K0912               .
Drive P-250 Address A
F                        K0913
KO908 B
: 3. Verify that the P-250 parameters listed in the following table have the proper value and that the P-250 time and date are current.
K0909 C
K0910 D
K0911 E
K0912 F
K0913 3.
Verify that the P-250 parameters listed in the following table have the proper value and that the P-250 time and date are current.
Update as required.
Update as required.
Address             Value                       Function Set the power normalization K0901                 1           factor Selects the modified " Flux K5525                 1         Map Print" program K0900                 0           Initiated Pass Number Calibration Constant for K0864             Variable (1)     for M/D Power Monitor (1) Variable: The value entered is a ratio of the Primary Calorimetric Indicated Power (Item 8 on Data Sheet C.1) to the M/D calculated power (UO906) times the current value entered in (K0864).
Address Value Function Set the power normalization K0901 1
factor Selects the modified " Flux K5525 1
Map Print" program K0900 0
Initiated Pass Number Calibration Constant for K0864 Variable (1) for M/D Power Monitor (1) Variable: The value entered is a ratio of the Primary Calorimetric Indicated Power (Item 8 on Data Sheet C.1) to the M/D calculated power (UO906) times the current value entered in (K0864).
If no value has been entered into (K0864) enter 0.25.
If no value has been entered into (K0864) enter 0.25.
Item f/8 Data Sheet C.1 New (K0864) = Current (K0864) x           (UO906)
Item f/8 Data Sheet C.1 New (K0864) = Current (K0864) x (UO906) 4.
: 4. For power determination, obtain a partia] core flux map as per TI-53. The M/D's need not be withdrawn between passes, and passes may be repeated as often as a po'wer determination is required.
For power determination, obtain a partia] core flux map as per TI-53.
The M/D's need not be withdrawn between passes, and passes may be repeated as often as a po'wer determination is required.
N9TE: The calculated power (UO906) is printed after each pass and may be trended by the P-250 if desired. The individual detec-tor normalized integrals are also printed.
N9TE: The calculated power (UO906) is printed after each pass and may be trended by the P-250 if desired. The individual detec-tor normalized integrals are also printed.
                                        -22
-22
* SQNP SPECIAL TEST 9A Page 5 of 11
 
;
SQNP SPECIAL TEST 9A Page 5 of 11 Rev. O APPENDIX C PRIMARY SIDE CALORIMETRIC 3
Rev. O APPENDIX C 3                                          PRIMARY SIDE CALORIMETRIC l
l DATA SifEET C.1 Loop 1
DATA SifEET C.1 Loop 1
#1
              #1           #2       #3           #4               #5                 #6           #7         #8 Approx.                 IIL       CL           AT                               L P              L PFlow LoopRxPwr RCS Temp                                     #2-#3     #4+c.f.(2)               #5xCp(3)                   #gx#7 F     R2/TP-41{{)
#2
Volts F     R6/TP-41{{
#3
Volts F                                                           f4) a F               F               Btu /lb       10 lb/hr 10 Btu /hr 550(REF) 540 530 520 5_10 500_
#4
'. 490 3
#5
#6
#7
#8 Approx.
IIL CL AT RCS Temp R2/TP-41(() R6/TP-41((
#2-#3
#4+c.f.(2)
#5xCp(3)
L P L PFlow LoopRxPwr f4)
#gx#7 F
Volts F Volts F F
F Btu /lb 10 lb/hr 10 Btu /hr a
550(REF) 540 530 520 5_10 500 490 3
480 470 460 450 460 i
480 470 460 450 460 i
470 480 490 500
470 480 490 500 I
                                                                                                                              ;
510 520 530 540 550 l
510 520 530                                                                                                                       ,
j i
540 l
From appropriate scaling document.
550                                                                                                                        l j
.,                                                                                                                            i From appropriate scaling document.
(3)From Appendix D.
(3)From Appendix D.
Remarks:
g)mCg from Table C-1 Remarks:
g)mCgfrom      fromTable TableC-1 C-1 1
from Table C-1 1
Data by:                                   /
Data by:
l   Checked by:                               /
/
                                                        . l           .                                                                                                      -
l Checked by:
/
. l
-i
-i


SQNP SPECIAL TEST 9A Page 6 of 11 Rev. O APPENDIX C PRIMARY SIDE CALORIMETRIC DATA SHEET C.1 Loop 2
SQNP SPECIAL TEST 9A Page 6 of 11 Rev. O APPENDIX C PRIMARY SIDE CALORIMETRIC DATA SHEET C.1 Loop 2
        #9         #10       #11         #12         #13       //14   #15       #16 Approx.           HL         CL         AT                           LoopFlow  LoopRxPwr LoopAJ)
#9
RCS Temp R2/TP-42{r) R6/TP-42]'}
#10
                                      #10-#11     #12+c.f.(2) #13xCp f4)     #g4x#15 E     Volts F     Volts F         F           F       Btu /lb 10 lb/hr 10 Btu /hr 550(REF) 540 530 520 510                                                                           l 500 490 480 4_7_0 460       '
#11
450 460 470 480 490 500 510 520 530 540 550 Remarks.
#12
Data by:                             /
#13
C;iccked by:                         /
//14
#15
#16 Approx.
HL CL AT RCS Temp R2/TP-42{r) R6/TP-42]'} #10-#11
#12+c.f.(2)
LoopAJ)
LoopFlow LoopRxPwr
#13xCp f4)
#g4x#15 E
Volts F Volts F F
F Btu /lb 10 lb/hr 10 Btu /hr 550(REF) 540 530 520 510 l
500 490 480 4_7_0 460 450 460 470 480 490 500 510 520 530 540 550 Remarks.
Data by:
/
C;iccked by:
/
24
24
* SQNP SPECIAL TEST 9A Page 7 of 11 Rev. O APPENDIX C.
 
SQNP SPECIAL TEST 9A Page 7 of 11 Rev. O APPENDIX C.
PRIMARY SIDE CALORIMETRIC DATA SIIEET C.1 Loop 3
PRIMARY SIDE CALORIMETRIC DATA SIIEET C.1 Loop 3
      #17       #18         #19         #20         #21       #22         #23       #24 A Pprox.         IIL         CL         AT                   L pO      LoopFlow      LoopRxPwr RCS Temp                               #18-#19     #20+c.f.(2) #21xCp(g)               #g3x#24 R2/TP-43{{)  R6/TP-43{{)                                        f4)
#17
Volts F       Volts F         F           F       Btu /lb   10 lb/hr     10 Btu /hr 550(REF) 540 530 520 510 500 490 480 470 460 450 460 470 480
#18
#19
#20
#21
#22
#23
#24 A prox.
IIL CL AT RCS Temp R2/TP-43(() R6/TP-43(() #18-#19
#20+c.f.(2)
#21xCp(g)
P L pO LoopFlow LoopRxPwr f4)
#g3x#24 F
Volts F Volts F F
F Btu /lb 10 lb/hr 10 Btu /hr 550(REF) 540 530 520 510 500 490 480 470 460 450 460 470 480
/_90 E 'o 5io 520 530 540 550 Remarks:
Data by:
/
Checked by:
/
/
_90 E 'o 5io 520 530 540 550 Remarks:
Data by:                              /
Checked by:                            /
25
25


_ - . _                  ~         -          . -              . _
~
SQNP.
SQNP.
* SPECIAL TEST 9A Page 8 of 11 Rev. 0         --
SPECIAL TEST 9A Page 8 of 11 Rev. 0 APPENDIX C PRIMARY SIDE CALORIMETRIC t
APPENDIX C PRIMARY SIDE CALORIMETRIC t
DATA SIEET C.1 Loop 4
DATA SIEET C.1 Loop 4
          #25       #26       #27             #28               #29         #30         #31             #32 Approx.         liL       CL             AT                           LPO          L PFlow   LoopRxPwr RCS Temp                                 #26-#27           #28+c.f.(2)   #29xCp(lh                   #g0x#31
#25
,          F   R2/TP-44{{}
#26
Volts F     R6/TP-44{{
#27
Volts F                 F                                       f4)
#28
F         Btu /lb     10 lb/hr   10 Btu /hr 550(REF) 540 530 520 510 500 490
#29
    $_80 470 460 450 460 l
#30
#31
#32 Approx.
liL CL AT L P O L PFlow LoopRxPwr RCS Temp R2/TP-44((} R6/TP-44((
#26-#27
#28+c.f.(2)
#29xCp(lh f4)
#g0x#31 F
Volts F Volts F F
F Btu /lb 10 lb/hr 10 Btu /hr 550(REF) 540 530 520 510 500 490
$_80 470 460 450 460 l
470 480 490 500 i
470 480 490 500 i
510                                                                                                           ~
510
520 5~30 540 j   550 1
~
520 5~30 540 j
550 1
Remarks:
Remarks:
Data by:                               /
Data by:
Checked by:                             /
/
                                                        '26 f                                                                                                               -
Checked by:
                              ,-~--,,-         , , -    __,            - ,  -      .,  -.e. e
/
* SQNP SPECIAL TEST 9A Page 9 of 11 Rev. O APPENDIX C PRIMARY SIDE   SLORIMETRIC DATA SIIEET C.1 Total
'26 f
        #33             #34                       #35               #36 Approx. Total Reactor Power         Reactor Power     % Reactor Power RCS Temp.   #8+g16+#24+#32               #34 x 0.29307     #35 x 0.02932 F         10 Bru/hr                     MWt                 %
, - ~ - -,, -
;
-.e.
550(REF) 540 530
e
:    520 5_1_0 500 490 480 470 460 450 460 470 480 490 500 510 520 530 540 550 Remarks:
 
Data by:                       /
SQNP SPECIAL TEST 9A Page 9 of 11 Rev. O APPENDIX C PRIMARY SIDE SLORIMETRIC DATA SIIEET C.1 Total
Checked by:                     /
#33
#34
#35
#36 Approx.
Total Reactor Power Reactor Power
% Reactor Power RCS Temp.
#8+g16+#24+#32
#34 x 0.29307
#35 x 0.02932 F
10 Bru/hr MWt 550(REF) 540 530 520 5_1_0 500 490 480 470 460 450 460 470 480 490 500 510 520 530 540 550 Remarks:
Data by:
/
Checked by:
/
i s
i s
27
27


      +
+
* SQNP SPECIAL TEST 9A Page 10 of- 11 Rev. O APPENDIX C PRIMARY SIDE CALORIMETRIC Table C-1 Temp.               Cp(1)               S F               Btu /lb. F           #m/hr 560               1.270           3.6239 x 10 7 550(REF)         1.246           3.6765 x 10 7 540               1.221           3.7254 v.10 7 530               1.202           3.7729 x 10 520               1.183           3.8179 x 10 7 510               1.168           3.8621 x 10 7 3.9044 x 10 7 1
SQNP SPECIAL TEST 9A Page 10 of-11 Rev. O APPENDIX C PRIMARY SIDE CALORIMETRIC Table C-1 Temp.
500              1,152 490               1.140           3.9436 x 10 7 480               1.127           3.9837.x 10 7 470               1.117           4.0215 x 10 7 460               1.107           4.0589 x 10 7 450               1.098           4.0949 x 10 7 440               1.089           4.1294 x 10 7
Cp(1)
S F
Btu /lb. F
#m/hr 7
560 1.270 3.6239 x 10 7
550(REF) 1.246 3.6765 x 10 7
540 1.221 3.7254 v.10 530 1.202 3.7729 x 10 7
520 1.183 3.8179 x 10 7
510 1.168 3.8621 x 10 7
1 500 1,152 3.9044 x 10 7
490 1.140 3.9436 x 10 7
480 1.127 3.9837.x 10 7
470 1.117 4.0215 x 10 7
460 1.107 4.0589 x 10 7
450 1.098 4.0949 x 10 7
440 1.089 4.1294 x 10
( )These values are from the 1967 ASME Steam Tables.Valuer. are for a pressure of 2250 psia.
( )These values are from the 1967 ASME Steam Tables.Valuer. are for a pressure of 2250 psia.
28
28


                                                                                                    ;
SQNP SPECIAL TEST 9A Page 11 of 11 Rev. 0 APPENDIX C AN=
SQNP
BN=
* SPECIAL TEST 9A Page 11 of 11 Rev. 0 APPENDIX C A            B                  C                        E *              =
CN N=
N=           N=                 N          N=             N           N A                                                           E
E *
* E           E                   E         E             E           E N3 = 1.00 N
=
N N
A E
E E
E E
E E
N3 = 1.00 N
^
B
B
                    *     ^
*N DN NC=
* D
B C
            *N              N N                    B C=                C N             N A           N N       N     =     CE     =
N N
D=DN              D N
A N
E N             N A
N N
Ng =         =   *EE       =
=
N             N Definitions:
CE
A,B,C,D'   'y
=
                                            = Normalized integral from summary map Z,r each N  N            N  N'    N detector in a normal path in the first 1 ass A'N' E   E     E'     E,E' E      E
D=D D
                                            = Normalized integral from summary map for each detector in an emergency path 2.n the second pass tiA' "B' 'C'       D'   E'     F
N N
                                            = Detector normalization factor for each detector Remarks:
E N
Data By:                                                   Date 29
N A
N =
=
*EE
=
g N
N Definitions:
A,B,C,D' N
N
'y N
N' N
Normalized integral from summary map Z,r each
=
detector in a normal path in the first 1 ass A'N' E
E E'
E,E' E
Normalized integral from summary map for each
=
E detector in an emergency path 2.n the second pass ti ' "B' 'C' D'
E' F
A Detector normalization factor for each detector
=
Remarks:
Data By:
Date 29


SQNP
SQNP SPECIAL TEST 9A Page 1 of 3 Rev. 0 APPENDIX D WIDE RANGE AT CORRECTION D.1 Use two DVM's and measure the voltage at the test points specified for each loop as rapidly as possible.
* SPECIAL TEST 9A Page 1 of 3 Rev. 0     -
APPENDIX D WIDE RANGE AT CORRECTION D.1 Use two DVM's and measure the voltage at the test points specified for each loop as rapidly as possible.
D.2 Use the appropriate scaling to convert the DV voltages to F.
D.2 Use the appropriate scaling to convert the DV voltages to F.
D.3 The correction factor (c.f.) determined in item 5 is used on Data Sheet C.1 to correct the calculated wide range AT for the AT across the core gener-I ated by the Reactor Coolant Pumps.
D.3 The correction factor (c.f.) determined in item 5 is used on Data Sheet C.1 to correct the calculated wide range AT for the AT across the core gener-ated by the Reactor Coolant Pumps.
J 1
I J
1 i
i l
1 1
1 1
i i
l 1
:30
:30


SQNP
SQNP SPECIAL TEST 9A Page 2 of 3 Rev. O APPENDIX D WIDE RANGE AT CORRECTION LOOP 1 Item Pa rameter Location Reading Parameter
* SPECIAL TEST 9A Page 2 of 3 Rev. O APPENDIX D WIDE RANGE AT CORRECTION LOOP 1 Item       Pa rameter         Location         Reading   Parameter
_ _No.
_ _No .                   Rack / Test Point       Volts     F Loop 1 1         Ilot '.c,g     R2/TP-413E           (b Loop 1 2         Cold Leg       R6/TP-413F           (1)
Rack / Test Point Volts F
Loop 1 3         W.R. AT         Item 1-Item 2 Loop 1 4         N.R. AT         R2/TP-411G           (
Loop 1 (b
W.R. AT 5     CorrectionFactor   Item 4-Item 3                   c.f.=
1 Ilot
LOOP 2 Loop 2 1         llot Leg       R2/TP-423E           (I Loop 2 2       Cold Leg         R6/TP-423F           (1)
'.c,g R2/TP-413E Loop 1 (1) 2 Cold Leg R6/TP-413F Loop 1 3
Loop 2 3       W.R. AT           Item 1-Item 2 Loop 2 4       N.R. AT           R6/TP-421G           (1)
W.R. AT Item 1-Item 2 Loop 1
W.R. AT 5     CorrectionFactor   Item 4-Item 3                   c.f.=
(
4 N.R. AT R2/TP-411G W.R. AT 5
CorrectionFactor Item 4-Item 3 c.f.=
LOOP 2 Loop 2 1
llot Leg R2/TP-423E (I
Loop 2 2
Cold Leg R6/TP-423F (1)
Loop 2 3
W.R. AT Item 1-Item 2 Loop 2 4
N.R. AT R6/TP-421G (1)
W.R. AT 5
CorrectionFactor Item 4-Item 3 c.f.=
( ) Scaling Document.
( ) Scaling Document.
l 31
l 31


SQNP SPECIAL TEST 9A Page 3 of 3 Rev. O APPENDIX D WIDE RANGE AT CORRECTION
SQNP SPECIAL TEST 9A Page 3 of 3 Rev. O APPENDIX D WIDE RANGE AT CORRECTION LOOP 3 Item Parameter Location Reading Parameter i
* LOOP 3 Item       Parameter         Location           Reading       Parameter i                 No.                     Rack / Test Point       Volts           F Loop 3 1       Hot Leg                               (y)
No.
R2/TP-433E Loop 3 2       Cold Leg       R6/TP-433F             (1)
Rack / Test Point Volts F
Loop 3 3       W.R. AT         Item 1-Item 2 Loop 3 4       N.R. AT                                 (y)
Loop 3 (y) 1 Hot Leg R2/TP-433E Loop 3 (1) 2 Cold Leg R6/TP-433F Loop 3 3
R10/TP-431G W.R. AT 5   CorrectionFactor   Item 4-Item 3                         c.f.=
W.R. AT Item 1-Item 2 Loop 3 (y) 4 N.R. AT R10/TP-431G W.R. AT 5
LOOP 4 Loop 4 1       Hot Leg         R2/TP-443E             (}
CorrectionFactor Item 4-Item 3 c.f.=
Loop 4 2       Cold Leg         R6/TP-443F             (1)
LOOP 4 Loop 4 1
Loop 4 3       W.R. AT         Item 1-Item 2 Loop 4 4       N.R. AT           R13/TP-441G             (1)
Hot Leg R2/TP-443E
W.R. AT 5     CorrectionFactor   Item 4-Item 3                         c.f.=
(}
Loop 4 2
Cold Leg R6/TP-443F (1)
Loop 4 3
W.R. AT Item 1-Item 2 Loop 4 (1) 4 N.R. AT R13/TP-441G W.R. AT 5
CorrectionFactor Item 4-Item 3 c.f.=
( } Scaling Document.
( } Scaling Document.
l
l I
,                                                                                             I 32 w   w         --*9
32 aw.,
w w
--*9 7


SQNP
SQNP SPECIAL TEST 9A Page 1 of 13 Rev. 0 APPENDIX E Safeguard Blocking Procedure The 'first step blocks automatic initiation of a safety injection. The safety injection alarm, manual S.I handswitch, and the reactor trip portion of the protection logic will remain in operation.
'                                                                    SPECIAL TEST 9A Page 1 of 13 Rev. 0 APPENDIX E Safeguard Blocking Procedure The 'first step blocks automatic initiation of a safety injection. The safety injection alarm, manual S.I handswitch, and the reactor trip portion of the protection logic will remain in operation.       If conditions exist that would normally initiate a safety injection; (1) the safety injection alarm will initiate telling the operator that the condition exists and what the problem is.   (2) a reactor trip will take place automatically. (3) a safety injection can be initiated manually from the switch in the control room if conditions warrant.
If conditions exist that would normally initiate a safety injection; (1) the safety injection alarm will initiate telling the operator that the condition exists and what the problem is.
: 1. Install temporary jumpers and temporary alteration control tags to logic cards A216, test point 1, to the logic ground on the logic test panels in R-47 and R-50.
(2) a reactor trip will take place automatically.
(3) a safety injection can be initiated manually from the switch in the control room if conditions warrant.
1.
Install temporary jumpers and temporary alteration control tags to logic cards A216, test point 1, to the logic ground on the logic test panels in R-47 and R-50.
NOTE: These jumpers will be specially made for this purpose and installed by an instrument mechanic.
NOTE: These jumpers will be specially made for this purpose and installed by an instrument mechanic.
R-47 Panel     Performed by:                             /
R-47 Panel Performed by:
Verified by:                             /
/
R-50 Panel     Performed by:                             /
Verified by:
Verified by:                             /
/
Procedure for blocking automatic actuation of a safecy injection on high steamline Delta-P. This block will prevent a reactor trip from occuring during the natural circulation tests from high AP caused by degraded test conditions.     (This block will also defeat all AP S.I. alarms.)
R-50 Panel Performed by:
: 2. Verify status lights 1-XX-55-6B/1, 2, 3, 4, 25, 26, 27, 28, 50, 51, 73, 76 are all clear prior to starting blocking procedure.
/
: 3. Move test trip switch PS-515A in 1-R-7 to the trip position and verify the amber light above the switch comes on.
Verified by:
Performed by:                             /
/
  ~
Procedure for blocking automatic actuation of a safecy injection on high steamline Delta-P.
Verified by:                             /
This block will prevent a reactor trip from occuring during the natural circulation tests from high AP caused by degraded test conditions.
CAUTION:   In the next step, and all following steps in which a voltage is being applied to the indicated terminals, ensure the applied voltage is of the same polarity as the terminals. This check should be.done for every step that a voltage' source is applied.
(This block will also defeat all AP S.I. alarms.)
Failure to apply the correct polarity will ground the rack power supply. (This problem can be avoided if only the hot wire from the voltage source in the rack is applied to the first terminal indicated in each step [the lower numbered terminal]. The 33
2.
Verify status lights 1-XX-55-6B/1, 2, 3, 4, 25, 26, 27, 28, 50, 51, 73, 76 are all clear prior to starting blocking procedure.
3.
Move test trip switch PS-515A in 1-R-7 to the trip position and verify the amber light above the switch comes on.
Performed by:
/
~
Verified by:
/
CAUTION:
In the next step, and all following steps in which a voltage is being applied to the indicated terminals, ensure the applied voltage is of the same polarity as the terminals. This check should be.done for every step that a voltage' source is applied.
Failure to apply the correct polarity will ground the rack power supply.
(This problem can be avoided if only the hot wire from the voltage source in the rack is applied to the first terminal indicated in each step [the lower numbered terminal]. The 33


SQNP
SQNP SPECIAL TEST 9A Page 2 of 13 Rev. 0 APPENDIX E ground will already be made up through the trip switch). The wire on the rack side of the terminal block must be lifted and taped for the terminal point where the jumper wire is connected.
  .                                                                  SPECIAL TEST 9A Page 2 of 13 Rev. 0         -
APPENDIX E ground will already be made up through the trip switch). The wire on the rack side of the terminal block must be lifted and taped for the terminal point where the jumper wire is connected.
The TACF tag will be attached to the bistable switch and the TACF must note the jumper and the lifted wire.
The TACF tag will be attached to the bistable switch and the TACF must note the jumper and the lifted wire.
NOTE: Orange "out of service" stickers should be placed on all status /
NOTE: Orange "out of service" stickers should be placed on all status /
alarm windows as the 120V source is connected.
alarm windows as the 120V source is connected.
: 4. Lift and tape the wire on the rack side of terminal L-9 in the rear of
4.
* 1-R-7. Apply a 120-VAC source to terminals L-9 and L-10 and verify 1-XX-55-6B/25 is clear.
Lift and tape the wire on the rack side of terminal L-9 in the rear of 1-R-7.
Performed by:                             /
Apply a 120-VAC source to terminals L-9 and L-10 and verify 1-XX-55-6B/25 is clear.
Verified by:                             /
Performed by:
: 5. Move test trip switch PS-515B in 1-R-7 to the trip position and verify the amber light above the switch comes on.
/
Performed by:                           /
Verified by:
Verified by:                             /
/
: 6. Lift and tape the wir on the rack side of terminal L-7 in the rear of 1-R-7. Apply a 120-VAC source to terminals L-7 and L-8 and verify 1-XX-55-6B/27 is clear.
5.
Performed by:                           /
Move test trip switch PS-515B in 1-R-7 to the trip position and verify the amber light above the switch comes on.
Verified by:                             /
Performed by:
i
/
: 7. Move test trip switch PS-516C in 1-R-12 to the trip position and verify       j the amber light above the switch comes on.                                   '
Verified by:
l Performed by:                           /
/
Verified by:                             /
6.
: 8. Lift and tape the wire'on the rack side of terminal L-5 in the rear of 1-R-12. Apply 120-VAC cource to terminals L-5 and L-6 and verify 1-XX-55-6B/73 is clear.                              .
Lift and tape the wir on the rack side of terminal L-7 in the rear of 1-R-7.
Performed by:                           /
Apply a 120-VAC source to terminals L-7 and L-8 and verify 1-XX-55-6B/27 is clear.
Verified by:                             /             .
Performed by:
34                                 -
/
L
Verified by:
/
i 7.
Move test trip switch PS-516C in 1-R-12 to the trip position and verify j
the amber light above the switch comes on.
Performed by:
/
Verified by:
/
8.
Lift and tape the wire'on the rack side of terminal L-5 in the rear of 1-R-12.
Apply 120-VAC cource to terminals L-5 and L-6 and verify 1-XX-55-6B/73 is clear.
Performed by:
/
Verified by:
/
34 L


SQNP
SQNP
      +
+
SPECIAL TEST 9A Page 3 of 13 Rev. 0         -
SPECIAL TEST 9A Page 3 of 13 Rev. 0 APPENDIX E 9.
APPENDIX E
Move test trip switch PS-516D in 1-R-12 to the trip position and verify
: 9. Move test trip switch PS-516D in 1-R-12 to the trip position and verify
~the amber light above the switch comes on.
              ~the amber light above the switch comes on.
Performed by:
Performed by:                             /
/
Verified by:                               /
Verified by:
: 10. Lif t and tape the wire on the rack side of terminal L-7 in the rear of 1-R-12. Apply 120-VAC source to terminals L-7 and L-8 and verify 1-XX-55-6B/76.
/
Performed by:                             /
10.
Verified by:                               /
Lif t and tape the wire on the rack side of terminal L-7 in the rear of 1-R-12.
: 11. Move test trip switch PS-525B in 1-R-8 to trip position and verify the amber light above the switch comes on.
Apply 120-VAC source to terminals L-7 and L-8 and verify 1-XX-55-6B/76.
Performed by:                             /
Performed by:
Verified by:                             /
/
: 12. Lift and tape the wire on the rack side of terminal L-7 in the rear of 1-R-8. Apply 120-VAC source to terminals L-7 and L-8 and verify 1-XX-55-6B/28 is clear.
Verified by:
Performed by:                             /
/
Verified by:                             /
11.
: 13. Move test trip switch PS-525A in 1-R-8 to the trip position and verify the amber light above the switch comes-on.
Move test trip switch PS-525B in 1-R-8 to trip position and verify the amber light above the switch comes on.
Performed by:                             /
Performed by:
Verified by:                               /
/
: 14. Lif t and tape the wire on the rack side of terminal L-9 in the rear of 1-R-8. Apply 120-VAC source to terminals L-9 and L-10 in the rear of 1-R-8 and verify that XX-55-6B/26 is clear.
Verified by:
Performed by:                             /
/
Verified by:                   -
12.
                                                                            /
Lift and tape the wire on the rack side of terminal L-7 in the rear of 1-R-8.
l t                         .
Apply 120-VAC source to terminals L-7 and L-8 and verify 1-XX-55-6B/28 is clear.
35
Performed by:
:-      =
/
g                                                            ,
Verified by:
/
13.
Move test trip switch PS-525A in 1-R-8 to the trip position and verify the amber light above the switch comes-on.
Performed by:
/
Verified by:
/
14.
Lif t and tape the wire on the rack side of terminal L-9 in the rear of 1-R-8.
Apply 120-VAC source to terminals L-9 and L-10 in the rear of 1-R-8 and verify that XX-55-6B/26 is clear.
Performed by:
/
Verified by:
/
l t
35 g
=


SQNP SPECIAL TEST 9A Page 4 of 13 Itev. O APPENDIX E
SQNP SPECIAL TEST 9A Page 4 of 13 Itev. O APPENDIX E 15.
: 15. Move test trip switch PS-526D in 1-R-11 to the' trip position and verify
Move test trip switch PS-526D in 1-R-11 to the' trip position and verify
            -the amber light above the switch comes on.
-the amber light above the switch comes on.
Performed by:                               /
Performed by:
Verified by:                                 /
/
: 16. Lift and tape the wire on .the rack side of terminal L-7 in the rear of 1-R-11. Apply 120-VAC source to terminals L-7 and L-8 in the rear of 1-R-11 and verify that XX-55-6B/51 is clear.
Verified by:
Performed by:                               /
/
Verified by:                               /
16.
: 17. Move test trip switch PS-526C in 1-R-11 to the trip position and verify the amber light above the switch comes on.
Lift and tape the wire on.the rack side of terminal L-7 in the rear of 1-R-11.
Performed by:                               /
Apply 120-VAC source to terminals L-7 and L-8 in the rear of 1-R-11 and verify that XX-55-6B/51 is clear.
Verified by:                               /
Performed by:
: 18. ' Lift and tape the wire on the rack side of terminal L-5 in the rear of 1-R-11. Apply a 120-VAC source to terminals L-5 and L-6 and verify 1-XX-55-6B/50 is clear.
/
Performed by:                               /
Verified by:
Verified by:                               /
/
Temporary Mgdificat. ion to High Steam Flow Coincident with Low S.G. Pressure or Low-Low avg Safety Injection
17.
: 19. Verify annunciators XA-55-6A/30 and XA-55-6A/31 are clear or can be cleared.
Move test trip switch PS-526C in 1-R-11 to the trip position and verify the amber light above the switch comes on.
Performed by:                               /
Performed by:
    ~
/
Verified by:                               /
Verified by:
NOTE:   If the alarms will not clear, do not proceed with this modifica-tion as a reactor trip may result. The input bistables should be checked and the source of the problem corrected.
/
: 18. ' Lift and tape the wire on the rack side of terminal L-5 in the rear of 1-R-11.
Apply a 120-VAC source to terminals L-5 and L-6 and verify 1-XX-55-6B/50 is clear.
Performed by:
/
Verified by:
/
Temporary Mgdificat. ion to High Steam Flow Coincident with Low S.G. Pressure or Low-Low avg Safety Injection 19.
Verify annunciators XA-55-6A/30 and XA-55-6A/31 are clear or can be cleared.
Performed by:
/
~
Verified by:
/
NOTE:
If the alarms will not clear, do not proceed with this modifica-tion as a reactor trip may result. The input bistables should be checked and the source of the problem corrected.
36
36
                                              ,7 4.-
,7 4.-


SQNP
SQNP SPECIAL TEST 9A Page 5 of 13 Rev. O APPENDIX E 20.
    ,                                                                    SPECIAL TEST 9A Page 5 of 13 Rev. O APPENDIX E
Move test trip switch TS412D in R-2 to the trip position and verify
: 20. Move test trip switch TS412D in R-2 to the trip position and verify
'the amber light above the switch comes on.
              'the amber light above the switch comes on.
Performed by:
Performed by:                             /
/
Verified by:                               /
Verified by:
: 21. Lift and tape the wire on the rack side of terminal M-3 in the rear of 1-R-2. Apply a 120-VAC source to terminals M-3 and M-4 and verify XA-55-6A/30 will clear.
/
Performed by:                             /
21.
Verified by:                             /
Lift and tape the wire on the rack side of terminal M-3 in the rear of 1-R-2.
: 22. Move test trip switch TS-422D in R-6 to the trip position and verify the amber light above the switch comes on.
Apply a 120-VAC source to terminals M-3 and M-4 and verify XA-55-6A/30 will clear.
Performed by:                             /       _
Performed by:
Verified by:                             /
/
: 23. Lift and tape the wire on the rack side of terminal M-3 in the rear of 1-R-6. Apply a 120-VAC source to terminals M-3 and M-4 and verify XA-55-6A/30 will clear.
Verified by:
Performed by:                             /
/
Verified by:                             /
22.
: 24. Move test trip switch TS432D in R-10 to the trip position and verify the amber light above the switch comes on.
Move test trip switch TS-422D in R-6 to the trip position and verify the amber light above the switch comes on.
Performed by:                             /
Performed by:
Verified by:                             /
/
: 25. Lift and tape the wire on the rack side of terminal M-3 in.the rear of 1-R-10. Apply a 120-VAC source to terminals M-3 and M-4 in R-10 and verify XA-55-6A/30 will clear.
Verified by:
Performed by:                             /
/
Verified by:                             /
23.
                                                                                        ;
Lift and tape the wire on the rack side of terminal M-3 in the rear of 1-R-6.
Apply a 120-VAC source to terminals M-3 and M-4 and verify XA-55-6A/30 will clear.
Performed by:
/
Verified by:
/
24.
Move test trip switch TS432D in R-10 to the trip position and verify the amber light above the switch comes on.
Performed by:
/
Verified by:
/
25.
Lift and tape the wire on the rack side of terminal M-3 in.the rear of 1-R-10.
Apply a 120-VAC source to terminals M-3 and M-4 in R-10 and verify XA-55-6A/30 will clear.
Performed by:
/
Verified by:
/
L i
L i
e 37
e 37


SQNP
SQNP SPECIAL TEST 9A Page 6 of 13 Rev. O APPENDIX E
    ,                                                                  SPECIAL TEST 9A Page 6 of 13 Rev. O APPENDIX E
: 26. Move test trip switch TS-442D in R-13 to th,e trip position and verify "the amber light above the switch comes on.
: 26. Move test trip switch TS-442D in R-13 to th,e trip position and verify "the amber light above the switch comes on.
Performed by:                               /
Performed by:
Verified by:                                 /
/
: 27. Lift and tape the wire on the rack side of terminal M-3 in the rear of 1-R-13. Apply a 120-VAC source to terminals M-3 and M-4 in R-13 and verify XA-55-6A/30 will clear.
Verified by:
Performed by:                               /
/
Verified by:                                 /
27.
NOTE: The avg inputs to the high steam flow S.I and steam dump interlock are now blocked, '..e next steps will trip the steam flow inputs to the high steam flow Safety Injection signal so that an S.I. signal will be initiated on low steam generator pressure alone (600 psig).     (This would result in a reactor trip, an S.I. alarm, but no S.I.
Lift and tape the wire on the rack side of terminal M-3 in the rear of 1-R-13.
Apply a 120-VAC source to terminals M-3 and M-4 in R-13 and verify XA-55-6A/30 will clear.
Performed by:
/
Verified by:
/
NOTE: The avg inputs to the high steam flow S.I and steam dump interlock are now blocked,
'..e next steps will trip the steam flow inputs to the high steam flow Safety Injection signal so that an S.I. signal will be initiated on low steam generator pressure alone (600 psig).
(This would result in a reactor trip, an S.I. alarm, but no S.I.
initiation).
initiation).
: 28. Move test trip switch FS512B in R-3 to the trip position and verify the amber light and annunciator XA-55-6B/2 come on.
28.
Performed by:                               /
Move test trip switch FS512B in R-3 to the trip position and verify the amber light and annunciator XA-55-6B/2 come on.
Verified by:                                 /
Performed by:
: 29. Move test trip switch FS522B in R-3 to the trip position and verify the amber light and annunciator XA-55-6B/9 come on.
/
Performed by:                               /
Verified by:
Verified by:                                 /
/
29.
Move test trip switch FS522B in R-3 to the trip position and verify the amber light and annunciator XA-55-6B/9 come on.
Performed by:
/
Verified by:
/
NOTE: These two trips will supply the 2 out of 4 logic required to get a Safety Injection Signal.
NOTE: These two trips will supply the 2 out of 4 logic required to get a Safety Injection Signal.
l l
l l
l l
l 38
l 38                                         ,
\\
                                                                                            \
                                                                                        ._j
(_ -
(_ -
._j


SQNP SPECIAL TEST 9A Page 7 of 13 Rev. 0       -
SQNP SPECIAL TEST 9A Page 7 of 13 Rev. 0 APPENDIX E
APPENDIX E
: 30. Apply Temporary Alteration Control Tags forms to all the above test trip switches to ensure that they remain in the trip position.
: 30. Apply Temporary Alteration Control Tags forms to all the above test trip switches to ensure that they remain in the trip position.
Damage to the bistable could occur if the switch is moved back to the normal position. Record the temporary alteration numbers below:
Damage to the bistable could occur if the switch is moved back to the normal position. Record the temporary alteration numbers below:
RACK     TEST SWITtil   TEMP ALT. NO.
RACK TEST SWITtil TEMP ALT. NO.
R-7         PSS15F                                   /
R-7 PSS15F
R-7         PS515B                                   /
/
R-12       PS516C                                 /
R-7 PS515B
R-12       PS516D                                 /
/
R-8       PS525B                                   /
R-12 PS516C
R-8       PS525A                                   /
/
R-11       PS526D                                   /                             !
R-12 PS516D
R-11       RS526C                                   /
/
P-2         TS412D                                   /
R-8 PS525B
R-6         TS422D                                   /
/
R-10       TS432D                                   /
R-8 PS525A
R-13       TS442D                                   /
/
R-3         FS512B                                   /
R-11 PS526D
R-3         FS522B                                   /
/
R-11 RS526C
/
P-2 TS412D
/
R-6 TS422D
/
R-10 TS432D
/
R-13 TS442D
/
R-3 FS512B
/
R-3 FS522B
/
The following step reduces thy setpoint of the S/G pressure input to S.I.
The following step reduces thy setpoint of the S/G pressure input to S.I.
to trip at 350 psig allowing avg to be reduced to 450 F.
to trip at 350 psig allowing avg to be reduced to 450 F.
: 31. Recalibrate the following bistables to the indicated setpoints and attach Temporary Alteration Control Tags.
31.
Panel         Bistable               Setpoint R-12       PS-1-5A (PB516A)     350 psig Decreasing (21.66 MA Loop Current)
Recalibrate the following bistables to the indicated setpoints and attach Temporary Alteration Control Tags.
Performed by:                                 /
Panel Bistable Setpoint R-12 PS-1-5A (PB516A) 350 psig Decreasing (21.66 MA Loop Current)
Verified by:                                 /
Performed by:
R-11       PS-1-12A (PB526A)     350 psig Decreasing (21.66 MA Loop Current)                       j Performed by:                                 /                   i Verified by:                                   /
/
Verified by:
/
R-11 PS-1-12A (PB526A) 350 psig Decreasing (21.66 MA Loop Current) j Performed by:
/
i Verified by:
/
i
i
                                                                                                          -l i
-l i
t
t
                                                      -39 L_ _
-39 L_ _


SQNP
SQNP SPECIAL TEST 9A Page 8 of 13 Rev. O
  .                                                                      SPECIAL TEST 9A Page 8 of 13 Rev. O         ~~
~~
APPENDIX E R-11       PS-1-23A (PB536A)     350 psig Decreasing (21.66 MA Loop Current)
APPENDIX E R-11 PS-1-23A (PB536A) 350 psig Decreasing (21.66 MA Loop Current)
Performed by:                               /
Performed by:
Verified by: ,                             /
/
R-12       PS-1-3GA (PB546A)     350 psig Decreasing (21.66 IM Loop Current)
Verified by:,
;                                    Performed by:                             /
/
Verified by:                               /
R-12 PS-1-3GA (PB546A) 350 psig Decreasing (21.66 IM Loop Current)
NOTE:   When calibrating bistables, approach the setpoint very slowly to reduce the effect of the lead / lag module in the loop.
Performed by:
j Calibrate one loop at a time and have all loop bistables tripped while calibrating. The same individuals may only calibrate 2 of these instruments. The remaining 2 instru-ments must be calibrated by 2 other individuals.
/
Verified by:
/
NOTE:
When calibrating bistables, approach the setpoint very slowly to reduce the effect of the lead / lag module in the loop.
j Calibrate one loop at a time and have all loop bistables tripped while calibrating.
The same individuals may only calibrate 2 of these instruments.
The remaining 2 instru-ments must be calibrated by 2 other individuals.
To return the steamline Delta-P S.I. to normal condition, the following steps should be followed, t
To return the steamline Delta-P S.I. to normal condition, the following steps should be followed, t
NOTE: The orange "out of service" stickers should be removed from the alarm / status window as each bistable is put back in service.
NOTE: The orange "out of service" stickers should be removed from the alarm / status window as each bistable is put back in service.
: 32. Remove the 120-VAC source from L-5 and L-6 in 1-R-11.       Reterminate wire on L-5.
32.
                                  ?
Remove the 120-VAC source from L-5 and L-6 in 1-R-11.
                                  '' Performed by:                             /
Reterminate wire on L-5.
Verified by:                               /
?
: 33. Move test trip switch PS-526C in 1-R-11 to the normal position and verify the amber light above the switch and 1-XX-55-6B/50 are clear.
'' Performed by:
Performed by:                             /~
/
Verified by:                               /
Verified by:
: 34. Remove the:120-VAC source from L-7 and L-8 in 1-R-11.       Reterminate wire on L-7.                  .
/
Performed by:                             /
33.
Verified by:                               /
Move test trip switch PS-526C in 1-R-11 to the normal position and verify the amber light above the switch and 1-XX-55-6B/50 are clear.
t 40'
Performed by:
                                                                                      ,m     v T'"
/~
Verified by:
/
34.
Remove the:120-VAC source from L-7 and L-8 in 1-R-11.
Reterminate wire on L-7.
Performed by:
/
Verified by:
/
t 40
,m v
T'"


SQNP SPECIAL TEST 9A Page 9 of 13 Rev. O APPENDIX E
SQNP SPECIAL TEST 9A Page 9 of 13 Rev. O APPENDIX E 35.
: 35. Move test trip switch PS-526D in 1-R-11 to the normal position and
Move test trip switch PS-526D in 1-R-11 to the normal position and
                      ' verify the amber light above the switch and 1-XX-55-6B/51 are clear.
' verify the amber light above the switch and 1-XX-55-6B/51 are clear.
Performed by:                             /
Performed by:
Verified by:                             /
/
: 36. Remove the 120-VAC source from L-9 and L-10 in 1-R-8. Reterminate wire on L-9.
Verified by:
l                                         Performed by:                             /
/
l Verified by:                             /
36.
i
Remove the 120-VAC source from L-9 and L-10 in 1-R-8.
: 37. Move test trip switch PS-525A in 1-R-8 to the normal position and verify the amber light and 1-XX-55-6B/26 are clear.
Reterminate wire on L-9.
Performed by:                             /
l Performed by:
1 Verified by:                               /
/
: 38. Remove the 120-VAC source from L-7 and L-8 in 1-R-8. Reterminate wire on L-7.
l Verified by:
i Performed by:                             /
/
Verified by:                               /
i 37.
: 39. Move test trip switch PS-525B in 1-R-8 to the normal position and verify the amber light above the switch and 1-XX-5-6B/28 are clear.             I i
Move test trip switch PS-525A in 1-R-8 to the normal position and verify the amber light and 1-XX-55-6B/26 are clear.
Performed by:                             /
Performed by:
Verified by:                               /
/
I i
1' Verified by:
: 40. Remove the 120-VAC source from terminals L-7 and L-8 in 1-R-12. -Retermi-nate wire on L-7.
/
Performed by:                             /
38.
Verified by:                             /         l l
Remove the 120-VAC source from L-7 and L-8 in 1-R-8.
: 41. Move test trip switch PS-516D in 1-R-12 to the normal position and verify the amber light. above the switch and 1-XX-55-6B/76 are cicar.
Reterminate wire on L-7.
Performed by:                             /
i Performed by:
Verified.by:                             '/
/
41                       .          l L -.
Verified by:
/
39.
Move test trip switch PS-525B in 1-R-8 to the normal position and verify the amber light above the switch and 1-XX-5-6B/28 are clear.
i Performed by:
/
Verified by:
/
40.
Remove the 120-VAC source from terminals L-7 and L-8 in 1-R-12. -Retermi-nate wire on L-7.
Performed by:
/
Verified by:
/
l 41.
Move test trip switch PS-516D in 1-R-12 to the normal position and verify the amber light. above the switch and 1-XX-55-6B/76 are cicar.
Performed by:
/
Verified.by:
'/
41 L -.


SQNP
SQNP SPECIAL TEST 9A Page 10 of 13 Rev. 0 APPENDIX E 42.
    .                                                                SPECIAL TEST 9A Page 10 of 13 Rev. 0           -
Remove the 120-VAC source from terminals L-5 and L-6 in 1-R-12.
APPENDIX E
Retermi-
: 42. Remove the 120-VAC source from terminals L-5 and L-6 in 1-R-12. Retermi-
'nate wire on L-5.
            'nate wire on L-5.
Performed by:
Performed by:                           /
/
Verified by:                             /
Verified by:
: 43. Move test trip switch PS-516C in 1-R-12 to the normal position and verify the amber light above the switch and 1-XX-55-6B/73 are clear.
/
Performed by:                           /
43.
Verified by:                             /
Move test trip switch PS-516C in 1-R-12 to the normal position and verify the amber light above the switch and 1-XX-55-6B/73 are clear.
: 44. Remove the 120-VAC source from terminals L-7 and L-8 in 1-R-7. Retermi-nate wire on L-7.
Performed by:
Performed by:                           /
/
Verified by:                             /
Verified by:
: 45. Move test trip switch PS-515B in 1-R-7 to the normal position and verify the amber light and 1-XX-55-6B/27 are clear.
/
Performed by:                           /
44.
Verified by:                             /
Remove the 120-VAC source from terminals L-7 and L-8 in 1-R-7.
: 46. Remove the 120-VAC source from terminals L-9 and L-10 in 1-R-7. Retermi-nate wire on L-9.
Retermi-nate wire on L-7.
Performed by:                           /
Performed by:
Verified by:                           /
/
: 47. !!ove test trip switch PS-515A to the normal position and verify the -
Verified by:
/
45.
Move test trip switch PS-515B in 1-R-7 to the normal position and verify the amber light and 1-XX-55-6B/27 are clear.
Performed by:
/
Verified by:
/
46.
Remove the 120-VAC source from terminals L-9 and L-10 in 1-R-7.
Retermi-nate wire on L-9.
Performed by:
/
Verified by:
/
47.
!!ove test trip switch PS-515A to the normal position and verify the -
amber light above the switch and 1-XX-55-6B/25 are clear.
amber light above the switch and 1-XX-55-6B/25 are clear.
Performed by:                           /
Performed by:
Verified by:                           /
/
Verified by:
/
NOTE: At this point the steamline Delta-P safety i,njection is in a normal operating mode.
NOTE: At this point the steamline Delta-P safety i,njection is in a normal operating mode.
To retur9 the high steain flow coincident .eith low steam generator pressure or low-low avg to normal, perform the following steps.
To retur9 the high steain flow coincident.eith low steam generator pressure or low-low avg to normal, perform the following steps.
42
42


SQNP SPECIAL TEST 9A Page 11 of 13 Rev. 0           -
SQNP SPECIAL TEST 9A Page 11 of 13 Rev. 0 APPENDIX E 48.
APPENDIX E
?!ove test trip switch FS522B in R-3 to the normal position and verify
: 48.   ?!ove test trip switch FS522B in R-3 to the normal position and verify
'the amber light goes out and XA-55-6B/9 will clear.
                            'the amber light goes out and XA-55-6B/9 will clear.
Performed by:
Performed by:               _ _ _        /
/
Verified by:                             /
Verified by:
1
/
: 49. Move test trip switch FSS12B in R-3 to the normal position and verify the amber light goes out and XA-55-6B/2 will clear.
1 49.
Performed by:                             /
Move test trip switch FSS12B in R-3 to the normal position and verify the amber light goes out and XA-55-6B/2 will clear.
Verified by:                             /
Performed by:
: 50. Remove the 120-VAC source from terminals M-3 and 11-4 in R-13. Retermi-nate wire on M-3.
/
Performed by:                             /
Verified by:
Verified by:                               /
/
: 51. Move test trip switch TS442D in R-13 to the normal position and verify the amber light goes out and XA-55-6A/30 will clear.
50.
Performed by:                             /
Remove the 120-VAC source from terminals M-3 and 11-4 in R-13.
Verified by:                             /
Retermi-nate wire on M-3.
: 52. Remove the 120-VAC source from terminals M-3 and M-4 in R-10.     Retermi-nate wire on M-3.
Performed by:
Performed by:                             /
/
Verified by:                             /
Verified by:
: 53. Hove test trip switch TS432D in R-10 to the normal position and verify the amber light goes out and XA-55-6A/30 will clear.
/
Performed by:                             /       _
51.
Verified by:                             /
Move test trip switch TS442D in R-13 to the normal position and verify the amber light goes out and XA-55-6A/30 will clear.
: 54. Remove the 120-VAC source from terminals M-3 and M-4 in R-6.     Retarmi-nate wire on M .3.
Performed by:
Performed by: ,                           /
/
Verified by:                             /
Verified by:
;                                                              43
/
;
52.
i k .   .___l__._________-____   -. _ -
Remove the 120-VAC source from terminals M-3 and M-4 in R-10.
* SQNP
Retermi-nate wire on M-3.
    " .                                                                SPECIAL TEST 9A Page 12 of 13 Rev. 0         -
Performed by:
APPENDIX E
/
Verified by:
/
53.
Hove test trip switch TS432D in R-10 to the normal position and verify the amber light goes out and XA-55-6A/30 will clear.
Performed by:
/
Verified by:
/
54.
Remove the 120-VAC source from terminals M-3 and M-4 in R-6.
Retarmi-nate wire on M.3.
Performed by:,
/
Verified by:
/
43 i
k.
.___l__._________-____
 
SQNP SPECIAL TEST 9A Page 12 of 13 Rev. 0 APPENDIX E
: 55. Move test trip switch TS442D in R-6 to the normal position and verify
: 55. Move test trip switch TS442D in R-6 to the normal position and verify
              'the amber light goes out and XA-55-6A/30 will clear.
'the amber light goes out and XA-55-6A/30 will clear.
Performed by:                           /
Performed by:
Verified by: _                         /
/
: 56. Remove the 120-VAC source from terminals M-3 and M-4 in R-2. Retermi-nate wire on M-3.
Verified by: _
Performed by:                           /
/
Verified by:                           /
56.
: 57. Move test trip switch TS412D ia R-2 to the trip position and verify the amber light comes on and XA-55-6A/30 will clear.
Remove the 120-VAC source from terminals M-3 and M-4 in R-2.
Performed by:                           /
Retermi-nate wire on M-3.
Verified by:                             /
Performed by:
: 58. Remove the Temporary Alteration Tage on the following test trip switches:
/
RACK   TEST SWITC11   TEMP ALT. NO.
Verified by:
R-7       PS515A                               /
/
R-7       PS515B                               /
57.
R-12       PSS16C                               /
Move test trip switch TS412D ia R-2 to the trip position and verify the amber light comes on and XA-55-6A/30 will clear.
R-12       PSS16D                               /
Performed by:
R-8       PS525B                               /
/
R-8       PS525A                               /
Verified by:
i R-11       PSS26D                               /
/
R-11     RSS26C                               /
58.
R-2       TS412D                               /
Remove the Temporary Alteration Tage on the following test trip switches:
R-6       TS422D                               /
RACK TEST SWITC11 TEMP ALT. NO.
R-10     TS432D                               /
R-7 PS515A
R-13       TS442D                             .
/
                                                                    /
R-7 PS515B
R-3       'S512B F                                     /
/
R-3       FSS22B                               /
R-12 PSS16C
/
R-12 PSS16D
/
R-8 PS525B
/
R-8 PS525A
/
i R-11 PSS26D
/
R-11 RSS26C
/
R-2 TS412D
/
R-6 TS422D
/
R-10 TS432D
/
R-13 TS442D
/
'S512B
/
R-3 F
R-3 FSS22B
/
44 L
44 L


SQNP
SQNP SPECIAL TEST 9A Page 13 of 13 Rev. 0 APPENDIX E 59.
  , ,,                                                                  SPECIAL TEST 9A Page 13 of 13 Rev. 0               -
Remove the jumpers and the Temporary Alteration Tags from logic cards
APPENDIX E
'A216, test point 1, to the logic ground on the logic test panels in R-47 and R-50.
: 59. Remove the jumpers and the Temporary Alteration Tags from logic cards
R-47 Panel Performed by:
              'A216, test point 1, to the logic ground on the logic test panels in R-47 and R-50.
/
!                  R-47 Panel     Performed by:                               /
Verified by:
Verified by:                               /
/
]                   R-50 Panel     Performed by:                               /
]
Verified by:                               /
R-50 Panel Performed by:
/
Verified by:
/
The following step should be carried out to return the calibration of the S/G low pressure S.I. bistables to normal.
The following step should be carried out to return the calibration of the S/G low pressure S.I. bistables to normal.
: 60. The following bistables should be returned to their normal setpoints indicated on the calibration card for the particular bistable. (30.0 + .2MA)
60.
The following bistables should be returned to their normal setpoints indicated on the calibration card for the particular bistable. (30.0 +.2MA)
Remove the temporary alteration control tags after the recalibration.
Remove the temporary alteration control tags after the recalibration.
NOTE: These calibrations require 2 IM's per calibration. The same individuals may only calibrate 2 of the instruments. The other instruments must be calibrated by other individuals.
NOTE: These calibrations require 2 IM's per calibration.
Panel         Bistable         Performed By/ Verified By R-12       PS-1-5A (PB516A)                     /
The same individuals may only calibrate 2 of the instruments. The other instruments must be calibrated by other individuals.
                                                                      /
Panel Bistable Performed By/ Verified By R-12 PS-1-5A (PB516A)
R-11       PS-1-12A (PB526A)                   /                             l
/
                                                                      /
/
R-11       PS-1-23A (PB536A)                   /
R-11 PS-1-12A (PB526A)
                                                                      /
/
    ~
l
R-12       PS-1-30A (PB546A)                   /
/
                                                                      /
R-11 PS-1-23A (PB536A)
/
/
~
R-12 PS-1-30A (PB546A)
/
/
NOTE: All reactor safeguard systems modified for the special startup tests are back in a normal configuration at jthis time.
NOTE: All reactor safeguard systems modified for the special startup tests are back in a normal configuration at jthis time.
45
45


SQNP
SQNP o
        ,  o                                                                  SPECIAL TEST 9A l                                                                             Page 1 of 1 Rev. O APPENDIX F Technical Specifications Exceptions The t'able below identifies those technical specification items which are temporarily bypassed or require special test exceptions to the limiting conditions for operation during the performance of this and all other special tests.
SPECIAL TEST 9A l
o a     .ae Mew E%*
Page 1 of 1 Rev. O APPENDIX F Technical Specifications Exceptions The t'able below identifies those technical specification items which are temporarily bypassed or require special test exceptions to the limiting conditions for operation during the performance of this and all other special tests.
u          e bnB                   a  9 88*$8!
o a
.ae Me E%
w
* e u
bnB 9
88*$8!
8e a
: "4at:
: "4at:
8e ss 33*""5               o   8e B%aaae               n*w .5 a Ot: a3aS           e B mo o      $ .d*
ss 33*""5 8e o
YYYYYMo E                 e n   UUNW%% y8
B%aaae n*w a t: a3aS e
                                                                  $E$$$$M$
B
m a a m m o m w           o o N m TECIINICAL SPECIFICATION                         1 2 3 4 5 6 7 8 9A 9B Containment III Pressure SI (3.3.2.1)             X X X X X X X X           X   X Safety Limits (2.1.1)                             X X X X X X X X               X Ol%T (3.3.1) Inoperable because of low flow       X X X X X         X X   X   X OTAT (3.3.1) Inoperable because of low flow       X X X X X         X X   X   X Minimum temperature (3.1.1.4)                             X             X   X   X Moderator temperature coefficient (3.1.1.3)               X             X   X   X Steamline AP SI (3.3.2.1) bypassed                 X X X X X X X X           X   X liigh Steamflow coincident 91 w/ low steamline pressure or low-low avg SI Reset flow to 07,and ' avg blocked           X X X X X X X X           X   X Reset low steamline pressure                         X                 X   X Low pressurizer pressure SI (3.3.2.1)             X X X X X X X X           X   X SG level low AFW start reset.(3.3.2.1)               X               X Pressurizer (3.4.4)                                     X     X     X UlII (3.5.1.2)                                     X X X X X X X X           X   X AFW (3.7.1.2)                                         X               X Diesel Gens. (3.8.1.1)                               X               X A.C. Electrical Boards (3.8.2.1)                     X               X
.5 O
;              Batteries (3.8.2.3)                                 X               X RCS Flowrate (3.2.3)                               X X X X X         X X         X i Control Rod Insertion Limits (3.1.3.6)             X X X X X         X X Reactor Coolant Loops Normal Operation (3.4.1.2)                                 X X X X X           X X         X 46                                         I L___________________-__       _                    _      -
$.d mo o YYYYYMo E e
n UUNW%%
y8
$E$$$$M$
o o
m a a m m o m w N m TECIINICAL SPECIFICATION 1 2 3 4 5 6 7 8 9A 9B Containment III Pressure SI (3.3.2.1)
X X X X X X X X X
X Safety Limits (2.1.1)
X X X X X X X X X
Ol%T (3.3.1) Inoperable because of low flow X X X X X X X X
X OTAT (3.3.1) Inoperable because of low flow X X X X X X X X
X Minimum temperature (3.1.1.4)
X X
X X
Moderator temperature coefficient (3.1.1.3)
X X
X X
Steamline AP SI (3.3.2.1) bypassed X X X X X X X X X
X liigh Steamflow coincident 9 w/ low steamline 1
pressure or low-low avg SI Reset flow to 07,and ' avg blocked X X X X X X X X X
X Reset low steamline pressure X
X X
Low pressurizer pressure SI (3.3.2.1)
X X X X X X X X X
X SG level low AFW start reset.(3.3.2.1)
X X
Pressurizer (3.4.4)
X X
X UlII (3.5.1.2)
X X X X X X X X X
X AFW (3.7.1.2)
X X
Diesel Gens. (3.8.1.1)
X X
A.C. Electrical Boards (3.8.2.1)
X X
Batteries (3.8.2.3)
X X
RCS Flowrate (3.2.3)
X X X X X X X X
i Control Rod Insertion Limits (3.1.3.6)
X X X X X X X Reactor Coolant Loops Normal Operation (3.4.1.2)
X X X X X X X X
46 L___________________-__


SQNP
SQNP SPECIAL TEST 9A Page 1 of 1 Rev. O TABLE 1 Loop Flow and Core AT for Various Power Levels and Isolation Configurations (Computer Estimates)
  , . .                                                            SPECIAL TEST 9A Page 1 of 1 Rev. O TABLE 1 Loop Flow and Core AT for Various Power Levels and Isolation Configurations (Computer Estimates)
No. of Loops Operating (Nat. Circ.)
No. of Loops Operating (Nat. Circ.)
Power Level           4             3           2         1
Power Level 4
                .5%           L= 3.7       L= 3.6     L= 4.1   L= 5.2 AT = 10.3   AT = 12.5   AT = 16.4 AT = 26
3 2
                .75%         L= 3.7       L= 4.1     "L = 4.7   L= 5.9 AT = 13.5   AT = 16.3   AT = 21.4 AT = 34 1%             L= 4.1       L= 4.5     L= 5.2   L= 6.5 AT = 16.3   AT = 19.8   AT = 26   AT = 41 1.5%           L= 4.7       L= 5.2     L= 5.9   L= 7.5 AT = 21.4   AT = 26     AT = 34   AT = 54 2%             L= 5.2       L= 5.7       L= 6.5   L= 8.2 AT = 26     AT = 31.4   AT = 41   AT = 65.4 2.5%           L= 5.6       L= 6.2       L= 7.1   L= 8.9 AT = 30.1   AT = 36.5   AT = 47.1 AT = 75.9 3%             L= 5.9       L= 6.5       L= 7.5   L= 9.7 AT = 34     AT = 41.2   AT = 54   AT = 85.7 NOTE:     L is % of 97,000 gpm flow through operable loop.
1
AT = Loop AT in   F.
.5%
L=
3.7 L=
3.6 L=
4.1 L=
5.2 AT = 10.3 AT = 12.5 AT = 16.4 AT = 26
.75%
L=
3.7 L=
4.1 "L = 4.7 L=
5.9 AT = 13.5 AT = 16.3 AT = 21.4 AT = 34 1%
L=
4.1 L=
4.5 L=
5.2 L=
6.5 AT = 16.3 AT = 19.8 AT = 26 AT = 41 1.5%
L=
4.7 L=
5.2 L=
5.9 L=
7.5 AT = 21.4 AT = 26 AT = 34 AT = 54 2%
L=
5.2 L=
5.7 L=
6.5 L=
8.2 AT = 26 AT = 31.4 AT = 41 AT = 65.4 2.5%
L=
5.6 L=
6.2 L=
7.1 L=
8.9 AT = 30.1 AT = 36.5 AT = 47.1 AT = 75.9 3%
L=
5.9 L=
6.5 L=
7.5 L=
9.7 AT = 34 AT = 41.2 AT = 54 AT = 85.7 NOTE:
L is % of 97,000 gpm flow through operable loop.
AT = Loop AT in F.
47}}
47}}

Latest revision as of 23:06, 31 December 2024

Special Test Number 9A, Forced Circulation Cooldown
ML19323B927
Person / Time
Site: Sequoyah Tennessee Valley Authority icon.png
Issue date: 05/06/1980
From: Ballentine J, Lagergran W, Maehr S
TENNESSEE VALLEY AUTHORITY
To:
Shared Package
ML19323B910 List:
References
PROC-800506-02, NUDOCS 8005140427
Download: ML19323B927 (50)


Text

-

DISTRInUTIO:j 8 005140 %

Sc.iuoyah ::uclear v tant 1C Plant Master File Superintendent

~

jy_ Assist. ant Superintendent (Oper.)

9 Assistant Superintendent (Maint.)

Ad:ainistrative Supervisor Maintenance Supervisor (M)

_. _ As';istant Maintenance Supervisor (M)

!!aintenance Supervisor (E)

~ Assistant Maintenance Supervisor (E)

SPECIAL TEST NO. 9A 1U Maintenance Supervisor (I)

_j/g_ Results Supervisor FORCED CIRCULATION COOLDOUN

__l_flc Operations Supervisor lu Quality Assurance Supervisor lleal th Phys i.cs Supervisor Public Safety Services Supv.

__ Chie f Storekeeper

_ _ Preop Test Program Coordinator

_ ___ Outage Director Chemical Engineer (Results)

Radiochem Laboratory

__ Instrument Shop

_./ C React.or Engineer (Resuits)

Instrinaent Engineer (Maint. I)

Mechanical Engineer (Results)

Sta ff ]ndustrial Engineer (Plt Sys)

Training Center Coordinator Prepared Hy:

U.

R. Larvergran

~~- PSO - Chickamauga Engrg Unit - SNP Public Safety Services - SNP

/ (.'

Shi f t. Engineer's Of fice Revised Dy:

S. R. Machr

_ & Unit Control Room QA&A Rep. - SNP Submitted By: j y,+0 Health Physics Laboratary y

Su p e rv'i s o r lu Nuclr Document Control Unit, 606 EB-C 1U S upe rin t en dent., WUNP PORC Review:

J - k$p Superintendent, EFNP

\\

\\ Date Superintendent, BENP h

A

\\

C7M

~

1U NCB, W9C174C-K Supv., NPHPS ROB, MS Approved By:,_fhy,te_ g

[b RQ NRC-IE:II Super nCendent Power Security ifficer, 620 CST 2-C g

Nuclr Materials Coord. - 1410 CUBB-C Date Approved:

O_ f (a_h L.i Manager, OP-QA&A Staff ac Resident NRC Inspector - SNP 1

1c_ NSRS, 249A HUB-K Technical Support. Center t l S h s i -f Te cd.n ic!*/ PAvec' Rev. No.

Date Pevised Pa;1eg Rev No.

Date Revised Pages 0

./

M1

.5hp?).-

.e=M>e

{

M-=<6ase-4 J 2-Si a 7

~M a b

-*E-A 4E.AA MA-AA.

s-.haa-

-A44_4.4 u_aL4._.-ha---uA.

43 4a mw&->4'4. - -.AA

.e.X=.id4A4 A-*

-de 4-A-eE--

--w,4

    • - - -4M m

a m-

  • Am-4<-

e-A d

1-u 2

i I

a

(

1 i

i 4i-t

.}

1,

,t J

e 1

i 1

[

4 s

r I

}

I t

l l

l 2

t' l

j SPECIAL TEST NO. 9A a

4 j

FORCED CIRCULATION C00LDOWN r

J I

1 i

e 4

i d

I

'f f,

O 1

I, I

i i

i L

i e

f i

i k

I i

f.

u.

.a. -. -.. - -. - - - --- -. ~.- -.. - - ------ -... w - - - - - -.. - -

SQNP a

SPECIAL TEST 9A Page 1 of 1 Rev. 0 FORCED CIRCULATION C00LDOWN Table of Contents Page Special Operator Instruction 1

Test Description 2

1.0 OBJECTIVES 3

2.0 PREREQUISITES 3

3.0 PRECAUTIONS 8

4.0 SPECIAL TEST EQUIPMENT 9

5.0 INSTRUCTIONS 9

DATA SIIEETS 15 CALCULATION SHEET 17 APPENDIX B - Deficiencies 18 APPENDIX C - Power Measurement Technique 19 APPENDIX D - AT Correction Determination 30 APPENDIX E - SafeEuard Blocking _ Procedure 33 APPENDIX F - Technical Specifications Exceptions 46 TABLE 1 - Loop Flow and Core AT for Various Power Levels and Isolation Configurations 47 l

l l

l

- + -

SQNP SPECIAL TEST 9A 5

Page 1 of 1 Rev. O SPECIAL OPERATOR INSTRUCTION

  • An o'pei tor initiated safety injection should be performed only for one or more of the following conditions:

Reactor Coolant System Subcooling 5 10 Sudden Unexplained Decrease in Pressurizer Level of 10%

or to an Indicated Level of 5 10%

Sudden Unexplained Decrease in Any S/G Level to 6 76% Wide Range 5 0% Narrow Range Unexplained Pressurizer Pressure Drop 2 200 PSI Containment Pressure Hi - (1.54 psig)

Annunciator XA-55-6B Window 6 initiates An operator initiated reactor trip should be performed for any of the following conditions:

Reactor Coolant System Subcooling 5 15 Sudden Unexplained Decrease in Pressurizer Level of 5%

or to an Indicated Level of 5 17%

1/3 Excores 2 10%

Any Loop A T

> 65 F Tavn

> 578 F Core Fxit Temperature (Highest)

> 610 F Any Uncontrolled Rod Movement

  • SI termination should be in accordance with plant EMERGENCY OPERATING PROCEDURES.

1 i

a 4

a SQNP o

SPECIAL TEST 9A S

Page 1 of 1 Rev. 0 4

I FORCED CIRCULATION C00LDOWN Test Description This test will generate a correction factor which will be applied to the excore detector outputs in order to compensate for PV downcomer shadowing during a cooldown from ~ 550 F to ~ 450 F.

The RCS will initially be ~ 3% power, in forced circulation. p cooldown via steam dumps will be initiated and continue until avg is approximately 450 F.

During the cooldown primary side ca'arimetrics will be performed, movabic detector integral power calculations performed, and excore detector data obtained simultaneously.

Power should be maintained as. constant as possible using the results 4

of the primary side calorimetric and integral power calculations.

Data reduction will be on a continuous basis.

Af ter reaching ~ 450 F the plant will be allowet' to heat up and additional data will be obtained.

i Data reduction will average the cooldown and heatup data and generate an excore detector indicated power correction factor as a function of the average cold leg temperature.

i i

l e

e L

m

-m:

M w

.,m p

p y-.-,

-@g

SQNP SPECIAL TEST 9A Page 1 of 12 Rev. 0 1.0 OBJECTIVES Determine an excore detector indicated power correction factor as a function of the average cold leg temperature.

2.0 PREREQUISITES 2.1 The following initial conditions exist:

2.1.1 Reactor power is at approximately 3% RTP.

/

2.1.2 Forced circulation on all four loops is established.

/

2.1.3 Steam generators are being fed by the auxiliary feed water system.

Level is being maintained at approximately 33%.

/

2.1.4 Steam gene rators are steaming via the condenser or atmos-pheric steam dumps.

(Preferred is to condenser for SG pressure equilization).

/

2.1.5 Pressurizer pressure control in automatic and maintaining normal operating pressures.

/

2.1.6 RCS temperature is approximately 550 F.

/

2.1.7 Shutdown banks are fully withdrawn and control banks are above their insertion limit.

Rod control system is in manual.

Control bank D is at ~ 160 steps or as determined by the test director.

/

3

SQNP SPECIAL TEST 9A Page 2 of 12 Rev. 0 2.0 PREREQUISITES (Continued) 2.1.8 Pressurizer level control in manua. maintaining approxi-mately 55% level.

/

2.2 The RCS and pressurizer boron concentrations are within 20 ppm.

/

2.3 Sufficient water is available to provide makeup for the expected cooldown to 450 F.

/

2.4 Set up the following test signals on brush recorders.

NOTE: Exact recorder / channel / parameter matching is not necessary.

2.4.1 Recorder No. 1 Channel Parameter Test Point Rack 1

Przr Pressure PP/455B R1

?

Przr Level LP/459B R1 3

Lp 1 HL Temp TP/413E R2 4

Lp 2 HL Temp TP/423E R2 5

Lp 3 HL Temp TP/433E R2 6

Lp 4 HL Temp TP/443E R2

/

2.4.2 Recorder No. 2 Channel Pa ramete r Test Point Rack 1

LP 1 CL Temp TP/413F R6 2

LP 2 CL Temp TP/423F R6 3

LP 3 CL Temp TP/433F R6 4

LP 4 CL Temp TP/443F R6 5

LP 1 Flow FP/414B R1 6

LP 2 Flow FP/424B R1

/

4

SQNP SPECIAL TEST 9A Page 3 of 12 Rev. 0 2.0 PHEREQUISITES (Continued) 2.4.3 Recorder No. 3 Channel Pa rame te r Test Point Rack 1

LP 3 Flow FP/434B R1 5

2 LP 4 Flow FP/444B R1 3

LP 1 SG Level LP/519B R5 4

LP 2 SG Level LP/529B R1 5

LP 3 SG Level LP/539B R1 6

LP 4 SG Level LP/549B R5

/

2.4.4 Recorder No. 4 Channel Pa ramete r Test Point Rack 1

LP 1 SG Press PP/516B R12 2

LP 2 SG Press PP/526B Rll 3

LP 3 SG P)

PP/536B Rll 4

LP 4 SG Preos PP/546B R12

/

2.4.5 Recorder No. 5 Channel Parameter Test Point Rack 1

Aux Fd Flow to SG #1 TP-13 1-L-11B 2

Aux Fd Flow to SG #2 TP-13 1-L-11A 3

Aux Fd Flow to SG #3 TP-12 1-L-11B 4

Au-e Fd Flow to SG #4 TP-12 1-L-11A 2.4.6 Record the following parameters on the reactivity computer recorders.

(a) Flux T

(b) Average wide range cold T

(c) Average wide range hot (d) Average steam generator pressure (c) Reactivity 5

-~

=.- -

SQNP SPECIAL TEST 9A I

Page 4 of 12 Rev. 0 l

l 2.0 PREREQUISITES (Continued) 1 i

2.5 Trend the following parameters on the process computer at ~ 5-minute intervals.

2 Wide range cold legs T0406A T0426A T0446A T0466A l

Wide range hot legs T0419A

!l T0439A T0459A l

T0479A Steam generator levels LO403A 1

LO423A

}

LO443A LO463A i

l Loop Flow F0400A F0420A 4

F0440A F0460A 1

/

j 2.6 Obtain the wide' range AT correction factors using Appendix D.

i

/

1 j

2.7 Perform the reference (REF) portion of the primary calorimetric Appendix C and a M/D trace simultaneously, Appendix C, Part B.

j Use the output of the primary calorimetric to set the M/D Power j-Monitor Program.

1 i

/

2.8 Verify the automatic actuation of safety injection has been blocked

~

in accordance.with Appendix E.

t

/

2.9 Verify the input logic of' safety injection on high steam line AP i

i has been blocked in accordance with Appendix E.

/

6

---rr-

,--.a.

+,

,,e.-

.,v.--

,,-n.._

..v.

w

-~,-, w

SQNP SPECIAL TEST 9A Page 5 of 12 Rev. 0 2.0 PREREQUISITES (Continued) 2.10 Verify tge high steam flow coincident with low S/G pressure or low-low avg input to safety injection has been medified in accordance with Appendix E.

/

2.11 Verify the following U.11.I. isolation valves are gagged.

l FCV-87-21

/

FCV-87-22

/

FCV-87-23

/

FCV-87-24

/

i i

2.12 Recalibrate the bistables supplying the low pressure signal to the high steam flow S.I. logic in accordance with Appendix E.

/

l 2.13 Intermediate and power range high level reactor trip setpoints have been set to 7% in accordance with Appendix C and D of SU-8.5.2.

Power Raage

/

Intermediate Range

/

2.14 CVCS is aligned to supply auto makeup.

4

/

l

-v.

l L

SQNP SPECIAL TEST 9A Page 6 of 12 Rev. 0 3.0 PRECAUTIONS, LIMITATIONS, AND ACTIONS 3.1 Do not exceed 5% RTP.

Caution should be used in maintaining the desired power level because of flux shadowing of the excore detec-tors. Don't depend on the excore detectors. Use as many methods as possible to determine actual core power.

3.2 During the cooldown the isothermal temperature coefficient.will be small but may be of either polarity.

Care should be taken when changing reactivity using control rods or boron concentration because at some point the temperature cofficient polarity could change.

4 3.3 Maintain control bank D at ~ 160 steps if possible. This same suggested minimum limit will be used during the natural circula-tion test. This height will minimize the effect of rod shadewing of the excore detectors and insure uniformity between forced and natural circulation test.

3.4 When operating below 525 F, ensure control bank D position remains at 2 100 steps.

Should this limit be reached during the cooldown boron concentration will have to be increased.

3.5 When testing with the reactor coolant in the low temperature range of 450 F to 500 F, maintain the lithic concentration at 2.0 to 2.2 ppm, the upper part or the specified lithic range.

This is especially necessary if high boric acid concentrations i

(~ 1000 ppm) are also being used.

3.6 Ensure the differential pressure across the steam generators remains below 1600 psig.

8

SQNP SPECIAL TEST 9A S

Page 7 of 12 Rev. 0 4.0 SPECIAL TEST EQUIPMENT IDENTIFICATION CALIBRATION INSTRUMENT SPECIFICATION IM!BER VERIFICATION Reactivity Computer Westinghouse and Associated Equipment (4) 6-channel recorders Brush 260 or Equivalent (2) DVM's Fluke (1) Recorder HP 71008 or Equivalent If test instruments are changed during this test, the instrument infor-mation must be recorded here and an' entry made in the chronological log book explaining this change.

'9

~

J SQNP SPECIAL TEST 9A Page 8 of 12 Rev. O i

5.0 INSTRUCTIONS NOTE: Perform SI-38, SI-48, and SI-127 periodically during the cooldown, i

5.1 Cooldown i

NOTE: Depending on rod position and the magnitude and polarity of the isothermal temperature coefficient dilution and/or boration may be required.

b l

l 5.1.1 Verify that the system is in equilibrium with respect to power, RCS temperature, pressure and boron concentration.

Pressurizer pressure ~ 2235 + 50 psig i

S/G pressure

~ 1005 psig RCS-PRZR boron concentration within 20 ppm j

Successive boron sample concentration within 10 ppm J

Reactivity is approximately zero and constant

/

i d

5.1.2 Start the test recorders on slow speed (5mm/ min).

Record on the charts, the date, time, recorder ID, parameters 2

measured, measurement range, test being performed and name of person recording data.

/

5.1.3 Start process computer trend block.

l

/

l 5.1.4 Obtain a thermocouple map and repeat every 10 F during cooldown.

4

/

i

~

5.1.5 Record excore detector data on Data Sheet 1 and repeat every 10"F.

One of the P.R. channels is connected to the reactivity computer so, record the Keithley amplifier e

output for that particular channel on Data Sheet 1.

i NOTE: Mark out "N-

" and write in "KA."

/

\\

10 i

SQNP SPECIAL TEST 9A Page 9 of 12 Rev. 0

~~-

5.0 INSTRUCTIONS (Continued) 5.1.6 Initiate the program for obtaining M/D trace data and re-cord on Data Sheet 2.

Repeat every 10 F during cooldown.

Use applicable portions of Appendix C.

/

5.1.7 _ Initiate the primary side calorimetric and repeat every 10 F.

Use applicable portions of Appendix C.

/

5.1.S Initiate a cooldown by slowly increasing the rate of steam dump and proceed to approximately 450 F core inlet tempera-ture.

The rate should be approximately 30 F per hour with stabilized plateaus approximately every 10 F during cooldown.

/

l NOTE:

Reduce RCS pressure during the cooldown to maintain steam generator AP below 1600 psig.

5.1.9 Use the control rods and soluable boron as necessary to maintain core power approximately constant.

Core power is determined by-the primary side calorimetric and the M/D trace data. Refer to Appendix C, Parts A and B.

NOTE:

Control bank D should be maintained at approximately 160 steps if possib'e.

5.1.10 Upon reaching approximately 450 F terminate the cooldown and allow the RCS to come to an equilibrium condition.

Continue to obtain data.

/

5.2 Heatup 5.2.1 Allow the RCS to heatup at the same rate indicated above.

Obtain the same data at the same temperature plateaus.

/

-5.2.2 Upon reaching approximately 550 F terminate the heatup and

. allow the.RCS to come to:an' equilibrium c'ondition.. Aft <r one set of data has been obtained at ~ 550 F the test is

~

i over. Attach ALL data to this test.

i l

11 L

SQNP SPECIAL TEST 9A Page 10 of 12 Rev. 0 5.0 INSTRUCTIONS (Continued)

.5.2.3 Return the bistables supplying the low pressure signal to the high steam flow S.I. logic to their original setpoints in accordance with Appendix E unless the next test to be performed requires this modification to be made.

If this is the case, disregard this step, place N/A in the signa-ture line, and initial.

5.2.4 Restore the high ste9m flow coincident with low S/G pressure or low-low avg input to safety injection in accordance with Appendix E unless the next test to be performed requires this modification to be made.

If-this is the case, disregard this step, place N/A in the signature line and initial.

/

5.2.5 Remove the block of the input logic of safety injection on high steam line AP in accordance with Appendix E unless the next test to be performed requires the block to be installed.

If this is the case, disregard.nis step, place N/A in the signature line, and initial.

/

5.2.6 Remove the block of automatic actuation of safety injec-tion in accordance with Appendix E unless the next test to be performed requires the block to be installed.

If this is the case, disregard this step, place N/A in the signature line, and initial.

/

~

5.2.7 Remove the gags from the following U.H.I. isolation valves unless the valves are_ required to be' gagged for the next test.

If this is the case, disregard this step, place N/A in the signature line, and initial.

FCV-87-21

/

FCV-87-22

/

FCV-87-23

/'

FCV-87-24

/

12 e

SQNP SPECIAL TEST 9A Page 11 of 12 Rev. 0 5.0 INSTRUCTIONS (Continued) 5.2.8 Reset the intermediate and power range high level reactor trip setpoints as indicated by the test engineer in accord-ance with Appendix C and D of SU-8.5.2 unless the next test to be performed requires this adjustment.

If this is the case, disregard this step, place N/A in the signature line, and initial.

Power Rapre

/

Intermediate Range

/

5.3 Data Reduction NOTE: This reduction must be performed and an excore detector indi-cated power correction factor as a function of temperature determined before proceeding to the NC ccoldown portion of this test.

5.3.1 Use both the cooldown and heatup data.

If for some reason the data was not obtained at exactly the required tempera-ture plateaus mark through that temperature and record the actual measurement temperature.

Excore Data:

Sum the top and bottom currents for the 3 (Data Sheet 1) channels in service and enter under sum.

The Keithley amp output should be in sum column. Transfer the data to the Calcula-tion Sheet.

M/D Data:

Transfer the calculated power level to the (Data Sheet 2) Calculation Sheet.

Primary Calor. : Transfer the power level obtained from the (Appendix C) primary calorimetric to the Calculation Sheet.

Average Power: Using the incore data and primary calori-(Calculation metric data determine the actual core power l

Sheet) at each emperature plateau. A straight average should be used unless one method or the other proves unreliable.

Power Normalization: Divide the average power obtained at to REF Average Power each temperature plateau by the aver-(Calculation Sheet) age power obtained at the reference (REF) condition, 550 F.

This. factor will in turn be used to correct the i

excore outputs.

13

SQNP SPECIAL TEST 9A Page 12 of 12 Rev. O

~

5.0 INSTRUCTIONS (Continued)

Power Corrected:

Divide the measured excore detector cur-Excore Currents & rents by the power normalization factor.

& Keithley Amp This in effect corrects all data for Output fluctuations on core power. The resulting currents then will only be a function of the cold leg temperature.

Excore Current:

Divide the power corrected excore cur-

?!ultiplier as a rents obtained at each temperature Function of Cold plateau into the excore current ob-Leg Temperature:

tained at the REF condition.

NOTE:

the factors should increase as T decreases.

c Plot the correction factors as a function of T for each detector. The plots will be uEed in the natural circulation cool-down phase of this test.

4 1

l d

a 14

SQNP SPECIAL TEST 9A Page 1 of 1 Rev. 0 DATA SHEET 1 EXCORE DATA SHEET Map No.

Shutdown Bank Position:

A B

C D

E Date Control Bank Position:

A B

C D

E Power RCCA Position N-41 N-42 N-43 N-44 Time / Temp Top

_ Bottom Sum Top Bottom Sum Top Bottom Sum Top Bottom Sum

/550

/540

.H

/530

/520

/510

/500

/490

/480

/470

/460

/450 Cocunent:

Data Taken By:

/

Reviewed by:

/

\\

SQNP SPECIAL TEST 9A Page 1 of 1 DATA SIEET 2 Rev. 0 LOW POWER MOVABLE DETECTOR FLUX HAP DATA Initial Final RCC Bank /RCCA Positions (steps) il3P No.:

RCS T

( F):

SDA SDB SDC SDD Date:

IR-35 (amps):

CA CB CC CD Unit:

IR-36 (amps):

RCCA (

)

Controlling RCCA/RCC Bank:

Calculated Control RCCA

. Time Power P-250 RCC Bank of Detector - Core Location Detector - Range Level UO906 Posi. tion RECORD A

B C

D E

F A

B C

D E

F 550 540 3,

530 520 510 500

.490 480

470 460 450 Detector A

B C

D E

F Remarks:

Detector Voltage Recorder Pot.

-Data Taken By:

Data Checked By:

SQNP SPECIAL TEST 9A Page 1 of 1 Rev. O CALCULATION SHEET APPR0XIMATE AVERAGE COLD LEG TEMPERATURES ( F)

REF.

Item #

Parameters 550 540 530 520 510 500 490 480 470 460 450 Movable Detector 1

(% RTP)

Primary Calorimetric 2

(% RTP)

Average Power 3

(% RTP)

Power Normalization 4

to REF condition 1.00 Excore Currents N-5 and N-Keithley Amp N-Output KA Power Corrected N-Excore Currents N-3 6

Keithly Amp N-Output KA N-1.00 7

Corrections N-1.00

~~

Factors N-1.00 KA 1.00 Remarks:

Calculated by:

Reviewed by:

i 17 1

SQNP SPECIAL TEST 9A Page 1 of 1 Rev. O APPENDIX B Test Deficiencies #

Test Deficiency j

Recommended Resolution 1

1 1

I l

1 Final Resolution Originator

/

Signature Date PORC Review of Final Resolution Date Approval of Final Resolution

/

Plant Superintendent Date 18

SQNP SPECIAL TEST 9A Page 1 of 11 Rev. 0 APPENDIX C Outline I.

Core Power Determination l

A.

Primary Side Calorimetric (Forced Circulation Only) 1.

Reference (~ 550 F) Calorimetric (Defore NC test) i

~

a) Output used to adjust M/D Power Monitor Program's power conversion constant.

2.

Non-reference Temperature Calorimetric (Cooldown) a) Output used at every temperature plateau as a continuous core power monitoring scheme.

b) Output is used in conjunction with the ouput of the M/D Power Monitor Program to assign a best estimate core power at each temperature plateau. The powers are used to nor-malize the excore detector outputs which in turn are plotted as a function of che core inlet temperature.

B.

M/D Power Monitor Program 1.

Power Conversion Constant Adjustment.

a) The output of the REF primary calorimetric will give a percent power output; this output must be input to the M/D Power-Monitor Program so tnat the program output will be in percent power and equal to the primary calorimetric output.

2.

Power Monitoring a) The M/D Power Monitor Program will calculate the integral power as seen by one pass of 5 or 6 detectors. After the output has been calibrated to be equal to the REF primary calorimetric it will be rerun up to once every 2 minutes or as necessary to continuously monitor core power.

b 19 i

.l

SQNP o -

SPECIAL TEST 9A-Page 2 of 11 Rev. 0

~-

APPENDIX C i

l CORE POWER DETERMINATION PART A:

Primary side calorimetric - Data Sheet C.1 (Forced Circulation)

C.1 Use two DVMs and measure the voltage at the test points specified for each loop as rapid as possible.

C.2 Calculate the AT; multiply that AT by the specific heat and the Westinghouse best estimate flow rate of the core average i

i temperature (Table C-1).

(Special Test No. 9 uses wide range AT so a correction factor is required to compensate for pump heating, refer to Appendix D of ST-9A).

C.3 Sum the loop heat rates and convert to a percent reactor power.

The output is used in Part B and on the Calculation Sheet.

i l

I I

i i

~

l l

i l

i l

20

SQNP SPECIAL TEST 9A Page 3 of 11 Rev. O APPENDIX C Core Power Determination PART B: M/D Power Monitor Program 1.

Set up the movable detector system for a 1 pass partial core flux map as per TI-53.

Select flux thimbles as per the table below for the flux map.

Drive 10-Path Position Core Location A

10 L-5 B

10 L-11 C

10 E-5 D

10 E-11 E

6 J-8 F

8 P-9 These positions may be altered by the test engineer, based upon low power physics testing results and previous special testing experience.

2.

Determine the detector normalization constants and enter them into the P-250 as follows:

a) Enter a value of 1.0 into the P-250 for the addresses shown i

in the table below.

j b) With all 5 path selector switches set to normal, run a flux trace.

c) With all 5 path selector switches set to Emergency, run a second flux trace.

d) Determine the detector normalization constants from Data Sheet C.2.

e) Enter these detector nonnalization constants into the P-250 as shown in the table below.

21

SQNP SPECIAL TEST 9A Page 4 of 11 Rev. O APPENDIX'C Core Power Determination PART B:

(Continued)

Drive P-250 Address A

KO908 B

K0909 C

K0910 D

K0911 E

K0912 F

K0913 3.

Verify that the P-250 parameters listed in the following table have the proper value and that the P-250 time and date are current.

Update as required.

Address Value Function Set the power normalization K0901 1

factor Selects the modified " Flux K5525 1

Map Print" program K0900 0

Initiated Pass Number Calibration Constant for K0864 Variable (1) for M/D Power Monitor (1) Variable: The value entered is a ratio of the Primary Calorimetric Indicated Power (Item 8 on Data Sheet C.1) to the M/D calculated power (UO906) times the current value entered in (K0864).

If no value has been entered into (K0864) enter 0.25.

Item f/8 Data Sheet C.1 New (K0864) = Current (K0864) x (UO906) 4.

For power determination, obtain a partia] core flux map as per TI-53.

The M/D's need not be withdrawn between passes, and passes may be repeated as often as a po'wer determination is required.

N9TE: The calculated power (UO906) is printed after each pass and may be trended by the P-250 if desired. The individual detec-tor normalized integrals are also printed.

-22

SQNP SPECIAL TEST 9A Page 5 of 11 Rev. O APPENDIX C PRIMARY SIDE CALORIMETRIC 3

l DATA SifEET C.1 Loop 1

  1. 1
  1. 2
  1. 3
  1. 4
  1. 5
  1. 6
  1. 7
  1. 8 Approx.

IIL CL AT RCS Temp R2/TP-41(() R6/TP-41((

  1. 2-#3
  1. 4+c.f.(2)
  1. 5xCp(3)

L P L PFlow LoopRxPwr f4)

  1. gx#7 F

Volts F Volts F F

F Btu /lb 10 lb/hr 10 Btu /hr a

550(REF) 540 530 520 5_10 500 490 3

480 470 460 450 460 i

470 480 490 500 I

510 520 530 540 550 l

j i

From appropriate scaling document.

(3)From Appendix D.

g)mCg from Table C-1 Remarks:

from Table C-1 1

Data by:

/

l Checked by:

/

. l

-i

SQNP SPECIAL TEST 9A Page 6 of 11 Rev. O APPENDIX C PRIMARY SIDE CALORIMETRIC DATA SHEET C.1 Loop 2

  1. 9
  1. 10
  1. 11
  1. 12
  1. 13

//14

  1. 15
  1. 16 Approx.

HL CL AT RCS Temp R2/TP-42{r) R6/TP-42]'} #10-#11

  1. 12+c.f.(2)

LoopAJ)

LoopFlow LoopRxPwr

  1. 13xCp f4)
  1. g4x#15 E

Volts F Volts F F

F Btu /lb 10 lb/hr 10 Btu /hr 550(REF) 540 530 520 510 l

500 490 480 4_7_0 460 450 460 470 480 490 500 510 520 530 540 550 Remarks.

Data by:

/

C;iccked by:

/

24

SQNP SPECIAL TEST 9A Page 7 of 11 Rev. O APPENDIX C.

PRIMARY SIDE CALORIMETRIC DATA SIIEET C.1 Loop 3

  1. 17
  1. 18
  1. 19
  1. 20
  1. 21
  1. 22
  1. 23
  1. 24 A prox.

IIL CL AT RCS Temp R2/TP-43(() R6/TP-43(() #18-#19

  1. 20+c.f.(2)
  1. 21xCp(g)

P L pO LoopFlow LoopRxPwr f4)

  1. g3x#24 F

Volts F Volts F F

F Btu /lb 10 lb/hr 10 Btu /hr 550(REF) 540 530 520 510 500 490 480 470 460 450 460 470 480

/_90 E 'o 5io 520 530 540 550 Remarks:

Data by:

/

Checked by:

/

25

~

SQNP.

SPECIAL TEST 9A Page 8 of 11 Rev. 0 APPENDIX C PRIMARY SIDE CALORIMETRIC t

DATA SIEET C.1 Loop 4

  1. 25
  1. 26
  1. 27
  1. 28
  1. 29
  1. 30
  1. 31
  1. 32 Approx.

liL CL AT L P O L PFlow LoopRxPwr RCS Temp R2/TP-44((} R6/TP-44((

  1. 26-#27
  1. 28+c.f.(2)
  1. 29xCp(lh f4)
  1. g0x#31 F

Volts F Volts F F

F Btu /lb 10 lb/hr 10 Btu /hr 550(REF) 540 530 520 510 500 490

$_80 470 460 450 460 l

470 480 490 500 i

510

~

520 5~30 540 j

550 1

Remarks:

Data by:

/

Checked by:

/

'26 f

, - ~ - -,, -

-.e.

e

SQNP SPECIAL TEST 9A Page 9 of 11 Rev. O APPENDIX C PRIMARY SIDE SLORIMETRIC DATA SIIEET C.1 Total

  1. 33
  1. 34
  1. 35
  1. 36 Approx.

Total Reactor Power Reactor Power

% Reactor Power RCS Temp.

  1. 8+g16+#24+#32
  1. 34 x 0.29307
  1. 35 x 0.02932 F

10 Bru/hr MWt 550(REF) 540 530 520 5_1_0 500 490 480 470 460 450 460 470 480 490 500 510 520 530 540 550 Remarks:

Data by:

/

Checked by:

/

i s

27

+

SQNP SPECIAL TEST 9A Page 10 of-11 Rev. O APPENDIX C PRIMARY SIDE CALORIMETRIC Table C-1 Temp.

Cp(1)

S F

Btu /lb. F

  1. m/hr 7

560 1.270 3.6239 x 10 7

550(REF) 1.246 3.6765 x 10 7

540 1.221 3.7254 v.10 530 1.202 3.7729 x 10 7

520 1.183 3.8179 x 10 7

510 1.168 3.8621 x 10 7

1 500 1,152 3.9044 x 10 7

490 1.140 3.9436 x 10 7

480 1.127 3.9837.x 10 7

470 1.117 4.0215 x 10 7

460 1.107 4.0589 x 10 7

450 1.098 4.0949 x 10 7

440 1.089 4.1294 x 10

( )These values are from the 1967 ASME Steam Tables.Valuer. are for a pressure of 2250 psia.

28

SQNP SPECIAL TEST 9A Page 11 of 11 Rev. 0 APPENDIX C AN=

BN=

CN N=

E *

=

N N

A E

E E

E E

E E

N3 = 1.00 N

^

B

  • N DN NC=

B C

N N

A N

N N

=

CE

=

D=D D

N N

E N

N A

N =

=

  • EE

=

g N

N Definitions:

A,B,C,D' N

N

'y N

N' N

Normalized integral from summary map Z,r each

=

detector in a normal path in the first 1 ass A'N' E

E E'

E,E' E

Normalized integral from summary map for each

=

E detector in an emergency path 2.n the second pass ti ' "B' 'C' D'

E' F

A Detector normalization factor for each detector

=

Remarks:

Data By:

Date 29

SQNP SPECIAL TEST 9A Page 1 of 3 Rev. 0 APPENDIX D WIDE RANGE AT CORRECTION D.1 Use two DVM's and measure the voltage at the test points specified for each loop as rapidly as possible.

D.2 Use the appropriate scaling to convert the DV voltages to F.

D.3 The correction factor (c.f.) determined in item 5 is used on Data Sheet C.1 to correct the calculated wide range AT for the AT across the core gener-ated by the Reactor Coolant Pumps.

I J

1 1

i i

l 1

30

SQNP SPECIAL TEST 9A Page 2 of 3 Rev. O APPENDIX D WIDE RANGE AT CORRECTION LOOP 1 Item Pa rameter Location Reading Parameter

_ _No.

Rack / Test Point Volts F

Loop 1 (b

1 Ilot

'.c,g R2/TP-413E Loop 1 (1) 2 Cold Leg R6/TP-413F Loop 1 3

W.R. AT Item 1-Item 2 Loop 1

(

4 N.R. AT R2/TP-411G W.R. AT 5

CorrectionFactor Item 4-Item 3 c.f.=

LOOP 2 Loop 2 1

llot Leg R2/TP-423E (I

Loop 2 2

Cold Leg R6/TP-423F (1)

Loop 2 3

W.R. AT Item 1-Item 2 Loop 2 4

N.R. AT R6/TP-421G (1)

W.R. AT 5

CorrectionFactor Item 4-Item 3 c.f.=

( ) Scaling Document.

l 31

SQNP SPECIAL TEST 9A Page 3 of 3 Rev. O APPENDIX D WIDE RANGE AT CORRECTION LOOP 3 Item Parameter Location Reading Parameter i

No.

Rack / Test Point Volts F

Loop 3 (y) 1 Hot Leg R2/TP-433E Loop 3 (1) 2 Cold Leg R6/TP-433F Loop 3 3

W.R. AT Item 1-Item 2 Loop 3 (y) 4 N.R. AT R10/TP-431G W.R. AT 5

CorrectionFactor Item 4-Item 3 c.f.=

LOOP 4 Loop 4 1

Hot Leg R2/TP-443E

(}

Loop 4 2

Cold Leg R6/TP-443F (1)

Loop 4 3

W.R. AT Item 1-Item 2 Loop 4 (1) 4 N.R. AT R13/TP-441G W.R. AT 5

CorrectionFactor Item 4-Item 3 c.f.=

( } Scaling Document.

l I

32 aw.,

w w

--*9 7

SQNP SPECIAL TEST 9A Page 1 of 13 Rev. 0 APPENDIX E Safeguard Blocking Procedure The 'first step blocks automatic initiation of a safety injection. The safety injection alarm, manual S.I handswitch, and the reactor trip portion of the protection logic will remain in operation.

If conditions exist that would normally initiate a safety injection; (1) the safety injection alarm will initiate telling the operator that the condition exists and what the problem is.

(2) a reactor trip will take place automatically.

(3) a safety injection can be initiated manually from the switch in the control room if conditions warrant.

1.

Install temporary jumpers and temporary alteration control tags to logic cards A216, test point 1, to the logic ground on the logic test panels in R-47 and R-50.

NOTE: These jumpers will be specially made for this purpose and installed by an instrument mechanic.

R-47 Panel Performed by:

/

Verified by:

/

R-50 Panel Performed by:

/

Verified by:

/

Procedure for blocking automatic actuation of a safecy injection on high steamline Delta-P.

This block will prevent a reactor trip from occuring during the natural circulation tests from high AP caused by degraded test conditions.

(This block will also defeat all AP S.I. alarms.)

2.

Verify status lights 1-XX-55-6B/1, 2, 3, 4, 25, 26, 27, 28, 50, 51, 73, 76 are all clear prior to starting blocking procedure.

3.

Move test trip switch PS-515A in 1-R-7 to the trip position and verify the amber light above the switch comes on.

Performed by:

/

~

Verified by:

/

CAUTION:

In the next step, and all following steps in which a voltage is being applied to the indicated terminals, ensure the applied voltage is of the same polarity as the terminals. This check should be.done for every step that a voltage' source is applied.

Failure to apply the correct polarity will ground the rack power supply.

(This problem can be avoided if only the hot wire from the voltage source in the rack is applied to the first terminal indicated in each step [the lower numbered terminal]. The 33

SQNP SPECIAL TEST 9A Page 2 of 13 Rev. 0 APPENDIX E ground will already be made up through the trip switch). The wire on the rack side of the terminal block must be lifted and taped for the terminal point where the jumper wire is connected.

The TACF tag will be attached to the bistable switch and the TACF must note the jumper and the lifted wire.

NOTE: Orange "out of service" stickers should be placed on all status /

alarm windows as the 120V source is connected.

4.

Lift and tape the wire on the rack side of terminal L-9 in the rear of 1-R-7.

Apply a 120-VAC source to terminals L-9 and L-10 and verify 1-XX-55-6B/25 is clear.

Performed by:

/

Verified by:

/

5.

Move test trip switch PS-515B in 1-R-7 to the trip position and verify the amber light above the switch comes on.

Performed by:

/

Verified by:

/

6.

Lift and tape the wir on the rack side of terminal L-7 in the rear of 1-R-7.

Apply a 120-VAC source to terminals L-7 and L-8 and verify 1-XX-55-6B/27 is clear.

Performed by:

/

Verified by:

/

i 7.

Move test trip switch PS-516C in 1-R-12 to the trip position and verify j

the amber light above the switch comes on.

Performed by:

/

Verified by:

/

8.

Lift and tape the wire'on the rack side of terminal L-5 in the rear of 1-R-12.

Apply 120-VAC cource to terminals L-5 and L-6 and verify 1-XX-55-6B/73 is clear.

Performed by:

/

Verified by:

/

34 L

SQNP

+

SPECIAL TEST 9A Page 3 of 13 Rev. 0 APPENDIX E 9.

Move test trip switch PS-516D in 1-R-12 to the trip position and verify

~the amber light above the switch comes on.

Performed by:

/

Verified by:

/

10.

Lif t and tape the wire on the rack side of terminal L-7 in the rear of 1-R-12.

Apply 120-VAC source to terminals L-7 and L-8 and verify 1-XX-55-6B/76.

Performed by:

/

Verified by:

/

11.

Move test trip switch PS-525B in 1-R-8 to trip position and verify the amber light above the switch comes on.

Performed by:

/

Verified by:

/

12.

Lift and tape the wire on the rack side of terminal L-7 in the rear of 1-R-8.

Apply 120-VAC source to terminals L-7 and L-8 and verify 1-XX-55-6B/28 is clear.

Performed by:

/

Verified by:

/

13.

Move test trip switch PS-525A in 1-R-8 to the trip position and verify the amber light above the switch comes-on.

Performed by:

/

Verified by:

/

14.

Lif t and tape the wire on the rack side of terminal L-9 in the rear of 1-R-8.

Apply 120-VAC source to terminals L-9 and L-10 in the rear of 1-R-8 and verify that XX-55-6B/26 is clear.

Performed by:

/

Verified by:

/

l t

35 g

=

SQNP SPECIAL TEST 9A Page 4 of 13 Itev. O APPENDIX E 15.

Move test trip switch PS-526D in 1-R-11 to the' trip position and verify

-the amber light above the switch comes on.

Performed by:

/

Verified by:

/

16.

Lift and tape the wire on.the rack side of terminal L-7 in the rear of 1-R-11.

Apply 120-VAC source to terminals L-7 and L-8 in the rear of 1-R-11 and verify that XX-55-6B/51 is clear.

Performed by:

/

Verified by:

/

17.

Move test trip switch PS-526C in 1-R-11 to the trip position and verify the amber light above the switch comes on.

Performed by:

/

Verified by:

/

18. ' Lift and tape the wire on the rack side of terminal L-5 in the rear of 1-R-11.

Apply a 120-VAC source to terminals L-5 and L-6 and verify 1-XX-55-6B/50 is clear.

Performed by:

/

Verified by:

/

Temporary Mgdificat. ion to High Steam Flow Coincident with Low S.G. Pressure or Low-Low avg Safety Injection 19.

Verify annunciators XA-55-6A/30 and XA-55-6A/31 are clear or can be cleared.

Performed by:

/

~

Verified by:

/

NOTE:

If the alarms will not clear, do not proceed with this modifica-tion as a reactor trip may result. The input bistables should be checked and the source of the problem corrected.

36

,7 4.-

SQNP SPECIAL TEST 9A Page 5 of 13 Rev. O APPENDIX E 20.

Move test trip switch TS412D in R-2 to the trip position and verify

'the amber light above the switch comes on.

Performed by:

/

Verified by:

/

21.

Lift and tape the wire on the rack side of terminal M-3 in the rear of 1-R-2.

Apply a 120-VAC source to terminals M-3 and M-4 and verify XA-55-6A/30 will clear.

Performed by:

/

Verified by:

/

22.

Move test trip switch TS-422D in R-6 to the trip position and verify the amber light above the switch comes on.

Performed by:

/

Verified by:

/

23.

Lift and tape the wire on the rack side of terminal M-3 in the rear of 1-R-6.

Apply a 120-VAC source to terminals M-3 and M-4 and verify XA-55-6A/30 will clear.

Performed by:

/

Verified by:

/

24.

Move test trip switch TS432D in R-10 to the trip position and verify the amber light above the switch comes on.

Performed by:

/

Verified by:

/

25.

Lift and tape the wire on the rack side of terminal M-3 in.the rear of 1-R-10.

Apply a 120-VAC source to terminals M-3 and M-4 in R-10 and verify XA-55-6A/30 will clear.

Performed by:

/

Verified by:

/

L i

e 37

SQNP SPECIAL TEST 9A Page 6 of 13 Rev. O APPENDIX E

26. Move test trip switch TS-442D in R-13 to th,e trip position and verify "the amber light above the switch comes on.

Performed by:

/

Verified by:

/

27.

Lift and tape the wire on the rack side of terminal M-3 in the rear of 1-R-13.

Apply a 120-VAC source to terminals M-3 and M-4 in R-13 and verify XA-55-6A/30 will clear.

Performed by:

/

Verified by:

/

NOTE: The avg inputs to the high steam flow S.I and steam dump interlock are now blocked,

'..e next steps will trip the steam flow inputs to the high steam flow Safety Injection signal so that an S.I. signal will be initiated on low steam generator pressure alone (600 psig).

(This would result in a reactor trip, an S.I. alarm, but no S.I.

initiation).

28.

Move test trip switch FS512B in R-3 to the trip position and verify the amber light and annunciator XA-55-6B/2 come on.

Performed by:

/

Verified by:

/

29.

Move test trip switch FS522B in R-3 to the trip position and verify the amber light and annunciator XA-55-6B/9 come on.

Performed by:

/

Verified by:

/

NOTE: These two trips will supply the 2 out of 4 logic required to get a Safety Injection Signal.

l l

l 38

\\

(_ -

._j

SQNP SPECIAL TEST 9A Page 7 of 13 Rev. 0 APPENDIX E

30. Apply Temporary Alteration Control Tags forms to all the above test trip switches to ensure that they remain in the trip position.

Damage to the bistable could occur if the switch is moved back to the normal position. Record the temporary alteration numbers below:

RACK TEST SWITtil TEMP ALT. NO.

R-7 PSS15F

/

R-7 PS515B

/

R-12 PS516C

/

R-12 PS516D

/

R-8 PS525B

/

R-8 PS525A

/

R-11 PS526D

/

R-11 RS526C

/

P-2 TS412D

/

R-6 TS422D

/

R-10 TS432D

/

R-13 TS442D

/

R-3 FS512B

/

R-3 FS522B

/

The following step reduces thy setpoint of the S/G pressure input to S.I.

to trip at 350 psig allowing avg to be reduced to 450 F.

31.

Recalibrate the following bistables to the indicated setpoints and attach Temporary Alteration Control Tags.

Panel Bistable Setpoint R-12 PS-1-5A (PB516A) 350 psig Decreasing (21.66 MA Loop Current)

Performed by:

/

Verified by:

/

R-11 PS-1-12A (PB526A) 350 psig Decreasing (21.66 MA Loop Current) j Performed by:

/

i Verified by:

/

i

-l i

t

-39 L_ _

SQNP SPECIAL TEST 9A Page 8 of 13 Rev. O

~~

APPENDIX E R-11 PS-1-23A (PB536A) 350 psig Decreasing (21.66 MA Loop Current)

Performed by:

/

Verified by:,

/

R-12 PS-1-3GA (PB546A) 350 psig Decreasing (21.66 IM Loop Current)

Performed by:

/

Verified by:

/

NOTE:

When calibrating bistables, approach the setpoint very slowly to reduce the effect of the lead / lag module in the loop.

j Calibrate one loop at a time and have all loop bistables tripped while calibrating.

The same individuals may only calibrate 2 of these instruments.

The remaining 2 instru-ments must be calibrated by 2 other individuals.

To return the steamline Delta-P S.I. to normal condition, the following steps should be followed, t

NOTE: The orange "out of service" stickers should be removed from the alarm / status window as each bistable is put back in service.

32.

Remove the 120-VAC source from L-5 and L-6 in 1-R-11.

Reterminate wire on L-5.

?

Performed by:

/

Verified by:

/

33.

Move test trip switch PS-526C in 1-R-11 to the normal position and verify the amber light above the switch and 1-XX-55-6B/50 are clear.

Performed by:

/~

Verified by:

/

34.

Remove the:120-VAC source from L-7 and L-8 in 1-R-11.

Reterminate wire on L-7.

Performed by:

/

Verified by:

/

t 40

,m v

T'"

SQNP SPECIAL TEST 9A Page 9 of 13 Rev. O APPENDIX E 35.

Move test trip switch PS-526D in 1-R-11 to the normal position and

' verify the amber light above the switch and 1-XX-55-6B/51 are clear.

Performed by:

/

Verified by:

/

36.

Remove the 120-VAC source from L-9 and L-10 in 1-R-8.

Reterminate wire on L-9.

l Performed by:

/

l Verified by:

/

i 37.

Move test trip switch PS-525A in 1-R-8 to the normal position and verify the amber light and 1-XX-55-6B/26 are clear.

Performed by:

/

1' Verified by:

/

38.

Remove the 120-VAC source from L-7 and L-8 in 1-R-8.

Reterminate wire on L-7.

i Performed by:

/

Verified by:

/

39.

Move test trip switch PS-525B in 1-R-8 to the normal position and verify the amber light above the switch and 1-XX-5-6B/28 are clear.

i Performed by:

/

Verified by:

/

40.

Remove the 120-VAC source from terminals L-7 and L-8 in 1-R-12. -Retermi-nate wire on L-7.

Performed by:

/

Verified by:

/

l 41.

Move test trip switch PS-516D in 1-R-12 to the normal position and verify the amber light. above the switch and 1-XX-55-6B/76 are cicar.

Performed by:

/

Verified.by:

'/

41 L -.

SQNP SPECIAL TEST 9A Page 10 of 13 Rev. 0 APPENDIX E 42.

Remove the 120-VAC source from terminals L-5 and L-6 in 1-R-12.

Retermi-

'nate wire on L-5.

Performed by:

/

Verified by:

/

43.

Move test trip switch PS-516C in 1-R-12 to the normal position and verify the amber light above the switch and 1-XX-55-6B/73 are clear.

Performed by:

/

Verified by:

/

44.

Remove the 120-VAC source from terminals L-7 and L-8 in 1-R-7.

Retermi-nate wire on L-7.

Performed by:

/

Verified by:

/

45.

Move test trip switch PS-515B in 1-R-7 to the normal position and verify the amber light and 1-XX-55-6B/27 are clear.

Performed by:

/

Verified by:

/

46.

Remove the 120-VAC source from terminals L-9 and L-10 in 1-R-7.

Retermi-nate wire on L-9.

Performed by:

/

Verified by:

/

47.

!!ove test trip switch PS-515A to the normal position and verify the -

amber light above the switch and 1-XX-55-6B/25 are clear.

Performed by:

/

Verified by:

/

NOTE: At this point the steamline Delta-P safety i,njection is in a normal operating mode.

To retur9 the high steain flow coincident.eith low steam generator pressure or low-low avg to normal, perform the following steps.

42

SQNP SPECIAL TEST 9A Page 11 of 13 Rev. 0 APPENDIX E 48.

?!ove test trip switch FS522B in R-3 to the normal position and verify

'the amber light goes out and XA-55-6B/9 will clear.

Performed by:

/

Verified by:

/

1 49.

Move test trip switch FSS12B in R-3 to the normal position and verify the amber light goes out and XA-55-6B/2 will clear.

Performed by:

/

Verified by:

/

50.

Remove the 120-VAC source from terminals M-3 and 11-4 in R-13.

Retermi-nate wire on M-3.

Performed by:

/

Verified by:

/

51.

Move test trip switch TS442D in R-13 to the normal position and verify the amber light goes out and XA-55-6A/30 will clear.

Performed by:

/

Verified by:

/

52.

Remove the 120-VAC source from terminals M-3 and M-4 in R-10.

Retermi-nate wire on M-3.

Performed by:

/

Verified by:

/

53.

Hove test trip switch TS432D in R-10 to the normal position and verify the amber light goes out and XA-55-6A/30 will clear.

Performed by:

/

Verified by:

/

54.

Remove the 120-VAC source from terminals M-3 and M-4 in R-6.

Retarmi-nate wire on M.3.

Performed by:,

/

Verified by:

/

43 i

k.

.___l__._________-____

SQNP SPECIAL TEST 9A Page 12 of 13 Rev. 0 APPENDIX E

55. Move test trip switch TS442D in R-6 to the normal position and verify

'the amber light goes out and XA-55-6A/30 will clear.

Performed by:

/

Verified by: _

/

56.

Remove the 120-VAC source from terminals M-3 and M-4 in R-2.

Retermi-nate wire on M-3.

Performed by:

/

Verified by:

/

57.

Move test trip switch TS412D ia R-2 to the trip position and verify the amber light comes on and XA-55-6A/30 will clear.

Performed by:

/

Verified by:

/

58.

Remove the Temporary Alteration Tage on the following test trip switches:

RACK TEST SWITC11 TEMP ALT. NO.

R-7 PS515A

/

R-7 PS515B

/

R-12 PSS16C

/

R-12 PSS16D

/

R-8 PS525B

/

R-8 PS525A

/

i R-11 PSS26D

/

R-11 RSS26C

/

R-2 TS412D

/

R-6 TS422D

/

R-10 TS432D

/

R-13 TS442D

/

'S512B

/

R-3 F

R-3 FSS22B

/

44 L

SQNP SPECIAL TEST 9A Page 13 of 13 Rev. 0 APPENDIX E 59.

Remove the jumpers and the Temporary Alteration Tags from logic cards

'A216, test point 1, to the logic ground on the logic test panels in R-47 and R-50.

R-47 Panel Performed by:

/

Verified by:

/

]

R-50 Panel Performed by:

/

Verified by:

/

The following step should be carried out to return the calibration of the S/G low pressure S.I. bistables to normal.

60.

The following bistables should be returned to their normal setpoints indicated on the calibration card for the particular bistable. (30.0 +.2MA)

Remove the temporary alteration control tags after the recalibration.

NOTE: These calibrations require 2 IM's per calibration.

The same individuals may only calibrate 2 of the instruments. The other instruments must be calibrated by other individuals.

Panel Bistable Performed By/ Verified By R-12 PS-1-5A (PB516A)

/

/

R-11 PS-1-12A (PB526A)

/

l

/

R-11 PS-1-23A (PB536A)

/

/

~

R-12 PS-1-30A (PB546A)

/

/

NOTE: All reactor safeguard systems modified for the special startup tests are back in a normal configuration at jthis time.

45

SQNP o

SPECIAL TEST 9A l

Page 1 of 1 Rev. O APPENDIX F Technical Specifications Exceptions The t'able below identifies those technical specification items which are temporarily bypassed or require special test exceptions to the limiting conditions for operation during the performance of this and all other special tests.

o a

.ae Me E%

w

  • e u

bnB 9

88*$8!

8e a

"4at:

ss 33*""5 8e o

B%aaae n*w a t: a3aS e

B

.5 O

$.d mo o YYYYYMo E e

n UUNW%%

y8

$E$$$$M$

o o

m a a m m o m w N m TECIINICAL SPECIFICATION 1 2 3 4 5 6 7 8 9A 9B Containment III Pressure SI (3.3.2.1)

X X X X X X X X X

X Safety Limits (2.1.1)

X X X X X X X X X

Ol%T (3.3.1) Inoperable because of low flow X X X X X X X X

X OTAT (3.3.1) Inoperable because of low flow X X X X X X X X

X Minimum temperature (3.1.1.4)

X X

X X

Moderator temperature coefficient (3.1.1.3)

X X

X X

Steamline AP SI (3.3.2.1) bypassed X X X X X X X X X

X liigh Steamflow coincident 9 w/ low steamline 1

pressure or low-low avg SI Reset flow to 07,and ' avg blocked X X X X X X X X X

X Reset low steamline pressure X

X X

Low pressurizer pressure SI (3.3.2.1)

X X X X X X X X X

X SG level low AFW start reset.(3.3.2.1)

X X

Pressurizer (3.4.4)

X X

X UlII (3.5.1.2)

X X X X X X X X X

X AFW (3.7.1.2)

X X

Diesel Gens. (3.8.1.1)

X X

A.C. Electrical Boards (3.8.2.1)

X X

Batteries (3.8.2.3)

X X

RCS Flowrate (3.2.3)

X X X X X X X X

i Control Rod Insertion Limits (3.1.3.6)

X X X X X X X Reactor Coolant Loops Normal Operation (3.4.1.2)

X X X X X X X X

46 L___________________-__

SQNP SPECIAL TEST 9A Page 1 of 1 Rev. O TABLE 1 Loop Flow and Core AT for Various Power Levels and Isolation Configurations (Computer Estimates)

No. of Loops Operating (Nat. Circ.)

Power Level 4

3 2

1

.5%

L=

3.7 L=

3.6 L=

4.1 L=

5.2 AT = 10.3 AT = 12.5 AT = 16.4 AT = 26

.75%

L=

3.7 L=

4.1 "L = 4.7 L=

5.9 AT = 13.5 AT = 16.3 AT = 21.4 AT = 34 1%

L=

4.1 L=

4.5 L=

5.2 L=

6.5 AT = 16.3 AT = 19.8 AT = 26 AT = 41 1.5%

L=

4.7 L=

5.2 L=

5.9 L=

7.5 AT = 21.4 AT = 26 AT = 34 AT = 54 2%

L=

5.2 L=

5.7 L=

6.5 L=

8.2 AT = 26 AT = 31.4 AT = 41 AT = 65.4 2.5%

L=

5.6 L=

6.2 L=

7.1 L=

8.9 AT = 30.1 AT = 36.5 AT = 47.1 AT = 75.9 3%

L=

5.9 L=

6.5 L=

7.5 L=

9.7 AT = 34 AT = 41.2 AT = 54 AT = 85.7 NOTE:

L is % of 97,000 gpm flow through operable loop.

AT = Loop AT in F.

47