ML20126E619: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
(One intermediate revision by the same user not shown)
Line 2: Line 2:
| number = ML20126E619
| number = ML20126E619
| issue date = 10/30/1992
| issue date = 10/30/1992
| title = Amend K to Cessar - Design Certification. W/50 Oversize Encls
| title = Amend K to CESSAR - Design Certification. W/50 Oversize Encls
| author name =  
| author name =  
| author affiliation = ASEA BROWN BOVERI, INC.
| author affiliation = ASEA BROWN BOVERI, INC.
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:- _.                            .      ._ _              _ _      ._ __              .        ___                      _ __ .. .
{{#Wiki_filter:}}
L i
CESSAR inac mu s'
1-                    .
s
                                                                                                                                                            ?
LISTING OF AMENDNENTS i.
[                      Amendment No.                                                                                      Date i
i                                    'A                                                                          September =11,_ 1987-i B                                                                        March 31, 1988-
!                                    C                                                                        June 30, 1988-l                                      D                                                                        September 30,-1988'    _
s-
[                                      E                                                                        December- 30,__1988
.                                      F                                                                        December 15, 1989 1
i i                                      C                                                                        April 30, 1990 l                                      H                                                                      August'31, 1990
.t j-                                      I                                                                        December 21,.1990 j-                                      J                                                                      cApril 30, 1992
$                                      K                                                                        October 30, 1992' o-l i
i<
i-1-
l l-t i
i
:i '          q 4 -.
i, Amendment-K L                                                                                                                      October 30, 1992-9212290224 921221
                ~PDR- ADOCK'05200002
  ,              ;A .                          PDR
      - , _ _          . _ , _ .  . .        .-... -_. _-. a-~,._--    .,_,2...._.,.u.-.......    .. ~ ..    .._..c.._..        _ . _ ___.___-_. -
 
CESSARinL mg                                          (Shoot:5 of 5):
EFFECTIVE PAGE LISTING (Cont'd)_
CHAPTER 1                                      _
Tables (Cont'd)-              Amendment -
1.8-5 (Sheet 6)                          J 1.8-5 (Sheet 7)                          J-1.8-5 (Sheet 8)                          .J 1.8-5 (Sheet -_9 )                        J 1.9-1                                    J-Figures                      Amendment-1.2-1                                    K' 1.2-2                                    K 1.2-3                                    K 1.2-4                                    K 1.2-5A                                    K 1,2-5B                                    K 1.2-6                                    K O    1.2-7 1.2-8 1.2-9 K
K
                                              -K 1.2-10                                    K 1.2-11                                    K 1.2-12                                    K 1.7-1                                    -J 1.7-2 (Sheet 1)                            J l'.7-2  (Sheet 2)                        J S
Amendment K October'30, 1992
:              CESSAR E!!Nficui.x a
1 LIST OF TABLES 1
CHAPTER 1 Table                                                          Subject                                              E 1.3-1                  Comparison of Reactor Characteristics A
1.3                  Docket. Listings For C-E-Recent Reactor Designs 4
C    .
1.4                  C-E Pressurized Water Reactor Plants-t i
2 1.5-1                  Summary of Development Programs to Demonstrate
* System 80 Design Conservatism 1.7-1                  Safety Related Electrical, Instrumentation and I                                        Control Drawings 1.7-2                  Valve List Identifiers--                                                                  lC.  -
I
: 1. 7                CESSAR-DC Flow Diagram Matrix' 1.8-1                  Regulatory Guides                                                                          h
!'I              1.8-2                  Generic Letters Applicability Analysis to System 80+
l 1
l
                '1.8-3                  IE. Bulletins ApplicabilityLAnalysis.to System 80+
J l                1.8-4                  Deviations from the U.S. NRC Standard ReviewLPlan j                1.8-5                  Standard Review Plan-Compliance Comments
;                1.9-1                  Index of System,; Structure or-Component Interface Requirements for System 80+"
~
1 l
i, 1
l-
!  k Amendment J.
vii        April 30, 1992 i
s
    . _ . _ _            _ _        ._    ~_  .. _ , _.._.__ ....-..,._ .~._                  _, _ - ... - . _ . . - _ _ _ _
 
CESSAR E%"lCATION O
LIST OF FIGURES CHAPTER 1 Figure                      Subject 1.2-1      Reference Plant Site Arrangement, Single Unit 1.2-2      Nuclear Island General Arrangement Section B-B 1.2-3      Nuclear Island General Arrangement Section A-A 1.2-4      Nuclear Island General Arrangement Annex Plan et Elevation 50+0 J
1.2-5A    Nuclear Island General Arrangement Plan at Elevation 70+0                                            ;
1.2-LB    Nuclear Island General Arrangement Plan at Elevation 81+0 1.2-6      Nuclear Island General Arrangement Plan at Elevation 91+9 lK 1.2-7      Nuclear Island General Arrangement Plan at Elevation 115+6 1.2-8      Nuclear Island General Arrangement Plan at Elevation 130+6 1.2-9      Nuclear Island General Arrangement Plan at Elevation 146+0 (Operating Floor)
J 1.2-10    Nuclear Island Generh) Arrangement Plan at Elevation 170+0 1.2-11    Nuclear Island General Arrangement Miscellaneous Sections 1.2-12    Nuclear Island General Arrangement Plan of Dish 1.7-1      Piping and Instrumentation Diagram Symbols            E
: 1. ~, - 2  Flow Diagram Symbols and Legends J
O Amendment K viii                October 30, 1992-t
 
1-f                                e ge e A D Dell?N                                      .-
(Sheet 1 sf 2)~
W [m G G M K1. CERTIFIC ATION .
e i: O
~
V
>                                                                                  EFFECTIVE PAGE LISTING CHAPTER 2 i
i                                                                                                                                                                                                                                .
l                                                          Table of Contents
!                                    Page                                                                                                                  Amendment t                                                                                                                                                                                                                                ,
i                                    1                                                                                                                                    -H l                                    11                                                                                                                                      H I                                    lii                                                                                                                                      I
!                                    iv                                                                                                                                      I i~                                  v                                                                                                                                        I
(-                                    vi                                                                                                                                      H i-                                    vii.                                                                                                                                    I                                                  '
4 viii                                                                                                                                    I Text
(.                                    Page                                                                                                                Amendment-l  b
  \
2.0-1 2.1-1 H
a                                                                                                                                                                          :H 1                                    2.1-2                                                                                                                                  D i                                    2.2-1                                                                                                                                  J
:                                    2.2-2                                                                                                                                  H
!                                    2.3-1                                                                                                                                  H j                                      2.3-2                                                                                                                                  K i                                      2.3-3                                                                                                                                  H 2.3                                                                                                                                H 2.4-1                                                                                                                                .H
;-                                    2.5-1                                                                                                                                  I 2.5-2                                                                                                                                  I s                                      2.5-3                                                                                                                                  I 2.5-4                                                                                                                                  I 2'.5-5                                                                                                                                  I i                                    .2.5-6                                                                                                                                    I
!                                      2.5-7                                                                                                                                  I
<                                      2.5                                                                                                                                  I' 2.5-9                                                                                                                                  I 4
2.5-10                                                                                                                                .I
                                                        ~ Tables
                                                                                                                                                          ' Amendment 2.0-1 (Sheet 1)
{(                                  2.0-1 (Sheet 2)
J J
Amendment K October 30, 1992
 
CESSAR n.%ncuian                                  (Sheet 2 of 2)
O EFFECTIVE PAGE LISTING (Cont'd)
CllAPTER 2 Tables (Cont'd)                        Amendment 2.0-1 (Sheet 3)                                  J 2.3-1                                            K 1
Figures                                Amendment 2.5-1                                            I 2.5-2                                            J 2.5-3                                            I 2.5-4                                            I 2.5-5                                            I 2.5-6                                            I 2.5-7                                            I 2.5-8                                            I 2.5-9                                            I 2.5-10                                            I 2.5-11                                            I
,  2.5-12                                            I 2.5-13                                            I 2.5-14                                            I 2.5-15                                            I 2.5-16                                            I 2.5-17                                            I 4
2.5-18                                            I 2.5-19                                            I 2.5-20                                            I 2.5-21                                            I 2.5-22                                            I 2.5-23                                            I 2.5-24                                            I 2.5-25                                            I 2.5-26                                            I 2.5-27                                            I l
O Amendment K October 30, 1992
 
d CESSAR Mncuia g
V
      - 2. 3            METEOROIDGY 2.3.1              REGIONAL CLIMATOLOGY As specified in Table 2.0-1.
D 2.3.1.1              Low Temperature Effects The effects on the plant from . low temperatures events, such as frost, snow fall', and ice cover, are considered in the design process.          Structures are designed to withstand loadings in excess of the loads generated from combinations of snow, ice, and rain.
.      Ventilation paths are designed-and reviewed to verify that they are free from snow blockage.
2.3.2              LOCAL METEOROLOGY No specific assumptions were employed in the evaluation of the-
,      system 80+ standard-Design other than the assumptions in sections 2.3.4          and  2.3.5        that      establish    the  values                  of relative concentrations for the accident analyses in, Chapter 15.
I As indicated in Table 2.0-1, pressure effects and missile spectra associated with the design tornado are- considered                                          to  be      II controlling.          The site operator will perform an evaluation to assure that this assumption is not violated for the specific site selected or will perform additional analysis for any potential hazards that are more limiting than the parameters'given in Table 2.0-1.          The results of this evaluation and any required analyses will be included in the site-specific SAR.
4 2.3.2.1              Drought The ultimate heat sink is designed for low water or lack of water conditions and will be operational for -a lengthy period of time without requiring external makeup.
2.3.2.2              Fog                                                                                      .
Fog-related _ accidents of aircraft,                    bargo, or, vehicles are - the only effects fog has on-the plant.                      Site selection will be such
,      that fog-related accidents will not affect plant design.
1 A
a  1
  .&l Amendment H 2.3-1                August 31, 1990
                              . . , . -c.  , , . ,              m    .u    - . . , . - - .            .-- .    -
 
CESSAR HS%ma                                                        ._
II O
2.3.2.3        Tornados Tornado characteristics are as specified in Table 2.0-1.              lK Tornado-generated missiles are considered        in the  System  80+
Standard Design (See Section 3.5).
Structures housing safety-related equipment are designed to              H withstand    the    loadings    generated    by  330    mph  winds.
l  Safety-related equipment is not located in the turbine building, l  which is not designed to withstand as high a wind loading.
lK Tornados that occur at the plant site, causing extensive demage to the switchyard and a prolonged lose of offsite power, are            H quantitatively evaluated.
Section 3.3 provides additional information regarding 6.esign for tornado loading.                                                        K 2.3.2.4        Lightning There is no specific design consideration fo,        the effects of lightning.
2.3.2.5        Meteorites There  is    no  specific    siting,  design,  or    construction    n l  consideration for meteorites.
1 2.3.2.6        Sandstorm l  System 80+ plants are assumed not to be located in close proximity to large sand deposits.      For plants near such areas, ventilation systems will be designed to handle the increased
  -filtration requirements,    and switchyards will be designed - to maintain their functions.
2.3.3        ONSITE METEOROIDGICAL MEASURIMENTS PROGRAMS l
No  specific assumptions were employed in the evaluation of the lD System 80+ Standard Design.                                            l l
O Amendment K 2.3-2                October 30, 1992
 
CESSAR?! % m,.
TABLE 2.3-1 RADIOLOGICAL DILUTION FACTORS (r/Q) 11 Dilution Factor Distance
* Time Period-                  .(sec/ cubic meter)
EAB                    0-2 hours                    1.00 x-10 ~3        lK-LPZ                    0-8 hours                              -5 2.70 x 10 LPZ                    8-24 hours                  1.70 x 10 -5 LPZ                  4 days                    6.40 x 10[6 LPZ                    4-30 days                    1.80 x 10 11 l
t For calculating these-estimates of dilution factors, the EAB is selected as 500 meters and the LPZ as 3000 meters.
O Amendment K October 30, 1992
 
6 L
i CESSAR !!nLmo                                                                                                ,-(Shaat 2 tor ii) i.
F l                                                                                                                                                                                                          '
EFFECTIVE PAGE LISTING CHAPTER 3 t
1 Table of Contents 4
: l.                              Page                                                                                                      Amendment
!'                              i                                                                                                            D
!                                11 111                                                                                                        K.
l                                iv                                                                                                          D i
V                                                                                                            D 1
vi                                                                                                          K i                                vii                                                                                                          K
!                                Viii                                                                                                      -E-1                                ix                                                                                                          K l                                x                                                                                                          I                                                            "
;                                xi                                                                                                          I xil                                                                                                        I
!                                xiii                                                                                                        I
!                                xiv                                                                                                        I
;                                xv                                                                                                          I.
xvi                                                                                                        I
;                                xvii                                                                                                        K i                                xviii                                                                                                      K l                                xix                                                                                                        K l-                                xx                                                                                                          E' L                                xxi                                                                                                      .E
!                                xxii                                                                                                        K i                                xxiii                                                                                                      I-i                                xxiv                                                                                                        I xxv                                                                                                      _I xxvi-                                                                                                        I
; --                              xxvii                                                                                                        I
: j.                                xxviii                                                                                                      .I i
xxviv                                                                                                        I l                                            Text-s
,                                Pagn                                                                                                    Amendment'
: i. :                              3.1-1                                                                                                      D l                                -3.1-2                                                                                                    'D 3 ,~ 1_3                                                                                                    g 3.1                                                                                                      D.
!                                  3.1-5                                                                                                      D 3.1-6                                                                                                      D.
' .\  -
3.1-7                                                                                                    .D
.                                  3.1-8                                                                                                      D 4
Amendment K October: 30,-1992 i
g + tty---+ apar+-p g p-  -- -*+q      F.- wgMw        eg g gy.- s ig ,p ga--pr-gp++gdy, prey 4              ways y *gy g-              d'1h"eme at pr""5 O $ 5 ty %g iag -t w wP ,- rw eg e a
 
i CESSAR Eininem:n                                                                                                        (Sht:t 2 of 11) l 9
EFFECTIVE PAGE LISTING (Cont'd)
CHAPTER 3 l        Text (Cont'd)
Page                                                                                                                Amendm ont 3.1-9                                                                                                                  D 3.1-10                                                                                                                D 3.1-11                                                                                                                D 3.1-12                                                                                                                K 3.1-13                                                                                                                D 3.1-14                                                                                                                D 3.1-15                                                                                                                D 3.1-16                                                                                                                D 3.1-17                                                                                                                D 3.1-18                                                                                                                D 3.1-19 3.1-20                                                                                                                D 3.1-21                                                                                                                D 3.1-22                                                                                                                I 3.1-23                                                                                                                K 3.1-24                                                                                                                K 3.1-25                                                                                                                D 3.1-26                                                                                                                D 3.1-27                                                                                                                K 3.1-28                                                                                                                D 3.1-29                                                                                                                K 3.1-30                                                                                                                D 3.1-31                                                                                                                K 3.1-32                                                                                                                K 3.1-33                                                                                                                I 3.1-34                                                                                                                D 3.1-35                                                                                                                K 3.1'-36                                                                                                                D 3.1-37                                                                                                                D 3.1-38                                                                                                                K 3.1-39                                                                                                                  I 3.1-40                                                                                                                K 3.1-41                                                                                                                  I 3.1-42                                                                                                                  I 3.2-1                                                                                                                  K 3.2-2                                                                                                                  K 3.1-3                                                                                                                  K 3.2-4                                                                                                                  K 3.2-5                                                                                                                  0 3.3-1                                                                                                                  K 3.3-2                                                                                                                  I 3.3-3                                                                                                                  K 3.4-1                                                                                                                  K Amendment K October 30, 1992
 
CESSAR E!''rificari:n                                *"      'W        l lA\
  \. /
l j
EFFECTIVE PAGE LISTING (Cont'd)
CIIAPTKR 3 Text (Cont'd)
Page                                            Amendment 3.4-2                                              K 3.4-3                                              D 3.5-1                                              I 3.5-2                                              I 3.5-3                                              K 3.5-4                                              K 3.5-5                                              I 3.5-6                                              D 3.5-7                                              K 3.5-8                                              D 3.6-1                                              K 3.6-2                                              K 3.6-3                                              K 3.6-4                                              I 3.6-5                                              K
  /  T 3.6-6                                              J h    3.6-7 3.6-8                                .
K K
3.6-9                                              K 3.6-10                                              J 3.6-11                                              J i        3.6-12                                              J 3.6-13                                              J 3.6-14                                              K l        3.6-15                                              K 3.6-16                                              K 3.6-17                                              K 3.6-18                                              K 3.6-19                                              J 3.6-20                                              E 3.6-21                                              J l        3.6-22                                              K 3.6-23                                              J 3.6-24                                              J 3.6-25                                              J 3.6-26                                              K
!        3.6-27                                              K l        3.6-28                                              K 3.6-29                                              K 3.6-30                                              K fy    3.6-31                                              J
      ) 3.7-1                                              I k s/  3.7-2                                              I Amendment K October 30, 1992
 
CESSAR naUicciou                                    (sneet 4 or 11)
O EFFECTIVE PAGE LISTING (Cont'd)
CHAI"TER 3 Text (Cont'd)
Page                                            Amendment l
3.7-3                                              I 3.7-4                                              I                  l 3.7-5                                              I                  l 3.7-6                                              I                  I 3.7-7                                              I                  l 3.7-8                                              I 3.7-9                                              I 3.7-10                                            I 3.7-11                                            I                  1 3.7-12                                            I 3.7-13                                            I 3.7-14                                            I 3.7-15                                            I 3.7-16                                            I 3.7-17                                            I 3.7-18                                            I 3.7-19                                            I 3.7-20                                            I 3.7 21                                            I 3.7-22                                            I 3.7-23                                            I 3.7-24                                            I 3.7-25                                            I 3.7-26                                            I 3.7-27                                            I 3.7-28                                            I 3.7-29                                            I 3.7-30                                            I 3.7-31                                            I 3.7-32                                            I 3.7-33                                            I 3.7-34                                            I 3.8-1                                              K 3.8-2                                              K 3.8-3                                              K 3.8-4                                              K 3.8-4a                                            K 3.8-4b                                            K 3.8-5                                              K 3.8-6                                              K 3.8-7                                              I 3.8-8                                              K 3.8-9                                              K Amendment K October 30, 1992
 
i l
CESSAR En?!?ienix                                  (Sh**t 5 or 1r
'OV EFFECTIVE PAGE LISTING-(Cont'd)
CHAPTER 3 Text (Cont'd)
Page                                            Amendment 3.8-10                                            I 3.8-11                                            I 3.8-12                                            I 3.8-13                                            K 3.8-14                                            I 3.8-15                                            I 3.B-16                                            I 3.8-17                                            I 3.8-18                                            I 3.8-19                                            -I 3.8-20                                            -I 3.8-21                                            I 3.8-22                                            -I 3.8-23                                            K 3.9-1                                            -K O      3.9-2 3.9-3 3.9-4 K
K K
3.9-5                                              K 3.9-6                                            K 3.9-7                                            E 3.9-8                                            E 3.9-9                                            K 3.9-10                                            K 3.9-10a                                          K 3.9-10b                                            E 3.9-11 3.9-12 3.9-13 3.9-14' 3.9          3.9-16                                            K 3.9-17                                            E 3.9-18                                            K' 3.9-19                                            K 3.9                                            K 3.9-21                                            K 3.9-22                                            K.
3.9-23.                                            K:
  .. ..  .3.9  []
(
Nj 3.9          3.9-26                                            K 3.9-27._                                          K Amendment K-October: 30,-1992
 
CESSAR Eniincm3s                                    (Shoot 6 of 11)
EFFECTIVE PAGE LISTING (Cont'd)
.                              CIIAPTE31 3 Text (Cont'd)
Page                                            Amendment 1
3.9-28                                            K 3.9-29                                            K 3.9-30                                            E 3.9-31                                            K 3.9-32                                            K 3.9-32a                                            K 3.9-32b                                            I 3.9-33                                            I 3.9-34                                            K 3.9-35                                            K 3.9-36                                            K 3.9-37                                            K 3.9-38                                            K 3.9-39                                            K 3.9-40                                            K 3.9-40a                                            K 3.9-40b                                            K 3.9-41                                            K 3.9-42                                            K 3.9-43                                            K 3.9-44                                            K 3.9-45                                            K 3.9-46                                            K 3.9-47                                            K 3.9-48                                            K 3.9-48a                                          E 3.9-48b                                          K 3.9-49                                            E 3.9-50                                            K 3.9-51                                            K 3.9-52                                            E 3.9-53                                            K 3.9-54                                            K 3.9-55                                            E 3.9-56                                            E 3.9-57                                            K 3.9-58                                            K 3.9-59                                            K 3.9-60                                            K 3.9-61 3.9-62                                            K 3.9-63                                            K 3.9-63a                                          K Amendment K October 30, 1992
 
    .  .-          .              . ....        ...      ~. . -.... . . .                                                .      . _ . - . ~              - . . -                  .    . . - .      . -
4                                                                                                                                                                                                              i l          CESSARinfincari3g                                                                                                                            (Shoot' Y- of - 11)--
j l
i
                                              - EFFECTIVE PAGE~ LISTING (Cont'd)-
CHAPTER 3-A 1
Text (Cont'd)                                                                                                          Amendment 4
,            3.9-63b                                                                                                                                  K
:            3.9-64                                                                                                                                    K 3.9-64a                                                                                                                                  K 3.9-64b                                                                                                                                  K 3.9-65                                                                                                                                    E
+
3.9-66                                                                                                                                    E-
!            3.9-67                                                                                                                                    E t            3.9-68                                                                                                                                    K l            3.10-1                                                                                                                                    K.
..          3.10-2                                                                                                                                    K
!            3.10-3                                                                                                                                  K j            3.10-4                                                                                                                                  K 3.10-5                                                                                                                                    D l            3.10-6                                                                                                                                  K-i            3.11-1                                                                                                                                    I 3.11-2                                                                                                                                    I i            3.11-3                                                                                                                                    I-
!      \    3.11-4                                                                                                                                    I j            3.11-5                                                                                                                                    I-3.11-6                                                                                                                                  I
.,_          3.11-7                                                                                                                                  I i            3.11-8                                                                                                                                  I
:            3.11-9                                                                                                                                  I j-          3.11-10                                                                                                                                  I Tables                                                                                                                  Amendment
,'          3.2-1 (Sheet 1).                                                                                                                        K 3.2-1-(Sheet-2)                                                                                                                          K-3.2-1-(Sheet!3)                                                                                                                        :K 3.2-1 (Sheet ~4)                                                                                                                      -K' 3.2-1-(Sheet 5)                                                                                                                          K 3.2-1.(Sheet 6);                                                                                                                        K' 3.2-1-(Sheet:7)                                                                                                                          K-1 3.2-1.(Sheet 8)                                                                                                                          K.
3 '. 2-1.: ( Sh e et19 )                                                                                                              -K-1 3.2-1-(Sheet 10)                                                                                                                        K
            -3.2-1-(Sheet 11)                                                                                                                      TK 3.2-11(Sheet:12)                                                                                                                      .K 3.2-1 (Shcat.13)                                                                                                                        K 3.2-1'(Sheet-14)                                                                                                                        K L            3.2-1.(Sheet 15)
                                                                                                                                                  -K t    3.2-1 (Sheet 16)                                                                                                                      -K-3.2-1-(Sheet 17).                                                                                                                        K Amendment K
                                                                                                                                                  -October- 30, 1992l W      +Ne.we-w        **        Pr9 -    34Yt T 9r % ** jy M W yg ' p -Mgh ip+ tergr eg-tW Tg W q' qW Wep -w              g-  ( M 7 P*rYM M
* M'h"A6'FMMWT-.aP r gr71 pq - q&(My    a +-
 
. CESSAR MEincues                                        (Sheet 8 or 11)
~
O EFFECTIVE PAGE LISTING (Cont'd)
CIIAPTER 3 l
Tables (Cont'd)                          Amendment 3.2-1 (Sheet 18)                                    K 3.2-1 (Sheet 19)                                    K 3.2-1 (Sheet 20)                                    K                  i 3.2-1 (Sheet 21)                                    K                  l 3.2-1 (Sheet 22)                                    K                  l 3.2-1 (Sheet 23)                                    K                  l 3.2-1 (Sheet 24)                                    K                  l 3.2-1 (Sheet 25)                                    K 3.2-1 (Sheet 26)                                    K                  l 3.2-1 (Sheet 27)                                    K 3.2-2 (Sheet 1)                                    'I 3.2-2 (Sheet 2)                                      I 3.2-2 (Sheet 3)                                      K 3.2-2 (Sheet 4)                                      K 3.2-2 (Sheet 5)                                      K 3.2-2 (Sheet 6)                                      K 3.2-2 (Sheet 7)                                      K 3.2-2 (Sheet 8)                                      K 3.2-2 (Sheet 9)                                      K 3.2-2 (Sheet 10)                                    K 3.2-2 (Sheet 11)                                    K 3.2-2 (Sheet 12)                                    K 3.2-2 (Sheet 13)                                    I 3.2-2 (Sheet 14)                                    I 3.2-2 (Sheet 15)                                    I 3.2-3                                                I 3.2-4                                                I 3.5-1 (Sheet 1)                                      K 3.5-1 (Sheet 2)                                      K 3.5-2                                                K 3.6-1 (Sheet 1)                                      K 3.6-1 (Sheet 2)                                      J 3.6-2                                                K 3.6-3 (Sheet 1)                                      K 3.6-3 (Sheet 2)                                      K 3.6-3 (Sheet 3)                                      J 3.6-3 (Sheet 4)                                      J 3.6-3 (Sheet 5)                                      J 3.6-3 (Sheet 6)                                      J 3.6-3 (Sheet 7)                                      J 3.6-3 (Sheet 8)                                      K 3.6-3 (Sheet 9)                                      J 3.6-3 (Sheet 10)                                    K 3.6-3 (Sheet 11)                                    K Amendment K October 30,-1992
_            . . -        __                  ~
 
    - ~, ..-                    - ~-                            -_        - . - - - , - - - . .
                                                                                                .~. -      -    .-. -  . . .      -
0 CESSAR1!nincaris.                                                              (Sheet 9._of_11) r i
R 4
EFFECTIVE ~PAGE LISTING (Cont'd)-                                                ?
CHAPTER 3 Tables (Cont'd)                                            Amendment 3.6-4 (Sheet 1)                                                              J 3.6-4 (Sheet 2)                                                              I-
,                        3.6-4-(Sheet 3)                                                              J 3.6-4 (Sheet 4)                                                              J 3.6-4 (Sheet _5)                                                              J 3.6-4.(Sheet 6)                                                              J 3.7-1                                                                      .I
+
3.8-1 (Sheet 1)                                                              I 3.8-1 (Sheet 2)                                                            -I 3.8-2 (Sheet 1)                                                              K 3.8-2 (Sheet 2)                                                            -I 3.8-3_-(Sheet 1)                                                            I'
,                          3.8-3 (Sheet 2)                                                              I 3.8-3_(Sheet 3)                                                              I-3.8-4                                                                        I                              ,
3.8-5 (Sheet 1)                                                              I 3.8-5 (Sheet 2)                                                              I
                        '3.8-5      (Sheet 3)                                                        I 3.8-5 (Sheet 4)                                                              K 3.8-5 (Sheet 5)                                                              I 3.8-5 (Sheet 6)                                                              I l                          3.8-5 (Sheet 7)                                                              I 3.8-5 (Sheet 8)
I 3.8-5 (Sheet 9)                                                              I 3.8-5 (Sheet 10)                                                            I~
3.9-1 (Sheet 1)                                                              K 3.9-1 (Sheet'2)                                                              K-3.9-1 (Sheet >3)-                                                            K-
                          -3.9-1      (Sheet 4)                                                        K:
3.9-1 (Sheet 5)                                                              K:
3.9-1 (Sheet 6)                                                              K
                          -3.9-2                                                                        E
                          .3.9                                                                      -E 3.9-4 (SheetL1)                                                              I 3.9-4 (Sheet 2)                                                            lI; 3.9-4: (Sheet 13)-                                                            I 3.9-4 (Sheet 4).                                                            I 3.9-4'(Sheet 5)                                                              K-3.9-4 (Sheet 6)'                                                            K
                          .3.9-41(Sheet 7)                                                              K I
3.9-4 (Sheet-8)                                                              I
    -(
(''                  3.9-5 3.9-6_-
K E
3.9-_7-                                                                    .E Amendment K October- 30,11992-
  . -.      -.-.---_a..~-u._.s.----,..-.._-a...._.-.._;__~.u..~..._._-_..___--._..                                    _ ...-_._ _ _
 
CESSAR EKicmIn                                    (Shoot 10 of 11)
O EFFECTIVE PAGE LISTING (Cont'd)
CllAPTER 3                                ,
1 3.9 s (Shoot 1)                                  I 3.9    (Shoot 2)                                  I 3.9-9                                            K 3.9-10                                            E                  i 3.9-11                                            E                  l 3.9-12                                            E 3.9-13                                            E                  i 3.9-14                                            E                  l 3.9-15                                            K 3.9-16                                            K 3.11-1                                            I l
Figures                                  Amendment 3.3-1                                            1 3.6-1                                            E 3.7-1                                            I 3.7-2                                            I 3.7-3                                            I 3.7-4                                            I 3.7-5                                            I 3.7-6                                            I 3.7-7                                            I 3.7-8                                            I 3.7-9                                            I 3.7-10                                            I 3.7-11                                            I 3.7-12                                            I 3.7-13                                            I 3.7-14                                            I 3.7-15                                            I 3.7-16                                            I 3.7-17                                            I 3.7-18                                            I 3.7-19                                            I 3.7-20                                            1 3.7-21                                            I 3.7-22                                            I 3.7-23                                            I 3.7-24                                            I 3.7-25                                            I 3.7-26                                            I 3.7-27                                            I 3.7-28                                            I Amendment K October 30, 1992 l
 
  . _ . . _ . _ . _ . . _ . . - - . _ . _ - - . . _ _ . . _ . . . _ . . . - _ _ _ _ _ . _ . _ _ _ _ _ _ _ _ . . ~ . . _                                                                                    .              .. m._        _ .  .
L t
CESSAR nninema                                                                                                                                        (Shoot si or 11)                                            '
t EFFECTIVE PAGE LISTING (Cont'd)
CHAPTER 3 Flqures (Cont'd)                                                                                                Amendment                                                              ;
3.7-29                                                                                                                                            I 3.7-30                                                                                                                                            1 3.7-31                                                                                                                                            I 3.7-32                                                                                                                                            I 3.7-33                                                                                                                                          I 3.7-34                                                                                                                                          I 3.7-35                                                                                                                                          I 3.7-36                                                                                                                                          I-                                                          ,
3.7-38                                                                                                                                          I 3.7-39                                                                                                                                          I 3.7-40                                                                                                                                          I 3.7-41                                                                                                                                          I                                                            .
3.8-1 (Sheet 1)-                                                                                                                                I                                                            ,
3.8-1 (Sheet 2)                                                                                                                                  I                                                            l 3.8-1 (Sheet 3)-                                                                                                                                  I 3.8-2 (Sheot 1)                                                                                                                                .I 3.8-2 (Sheet 2)'                                                                                                                                I 3.8-2 (Sheet 3)                                                                                                                                  I 3.8-2 (Sheet 4)                                                                                                                                  I
* 3.8-2 (Sheet 5)                                                                                                                                _I 3.8-2 (Sheet 6)                                                                                                                                  I 3.8-2 (Sheet 7)-                                                                                                                              -I 3.8-3                                                                                                                                            I 3.8-4                                                                                                                                            I 3.9-1 l                                    _3.9-2
,                                    _3.9-3 l                                      3.9-4 3.9-5 3.9-6                                                                                                                                                                                                          s 3.9-7 3.9-8 3.9-9 3.9-10 3.9-11 3.9-12 3.9-13 l-                                      3.9                                                                                                                                          E
                                      -3.9-15--                                                                                                                                          E I
Amendment-J April._30, 1992 T  r=7ywm qt 7'99 y evaw-y t-r jy - My -iyg gy-t ww w vasymyr eyr"W9 er'WW'*V W W W WWrT fvve-C FY 'tv      F- @ v '7 h ThW Tf *'F 'W1-M*" T9W("f'r 'w'W-4""U9*'Y**T1rNY 9''4"''DT**T v% ttT t" t' -d  t*T-' * - 'wrw'- we Tt r 4TVWyTWw1
 
CESSAR E!!&icui:=
4 7
1 1                                                                              TABLE OF CONTENTS CHAPTER 3 i
Sectiors                                                  Subject                                                                Page No 1
3.0                    DESIGN OF STRUCTURES, COMPONENTS,                                                                        3.1-1 EQUIPMENT AND SYSTEMS i
!                                  3.1                    CONFORMANCE WITH NRC GENERAL DESIGN                                                                      3.1-1
(                                                          CRITERIA j                                  3.1.1                  CRITERION 1                  - QUALITY STANDARDS AND                                                    3.1-1 j                                                                                              RECORDS                                                                                          <
3.1.2                  CRITERION 2                  - DESIGN BASES FOR-                                                        3.1-2 PROTECTION AGAINST NATURAL PHENOMENA
                                                                                                                                                                                                ~
i                                                                    .        -
3.1.3                  CRITERION 3                  - FIRE PROTECTION                                                          3.1-2                      [
l
;                                  3.1.4                  CRITERION 4                  - ENVIRONMENTAL AND                                                          3.1-3 i
MISSILE DESIGN BASES-4 l                                  3.1.5                  CRITERION 5                  - SHARING OF STRUCTURES,                                                    3.1-4
;                                                                                              SYSTEMS, AND COMPONENTS 3.1.6                  CRITERION 10 - REACTOR DESIGN                                                                            3.1-4 i                                  3.1.7                  CRITERION 11 - REACTOR INHERENT'                                                                          3.1-5 PROTECTION 3.1.8                  CRITERION 12 - SUPPRESSION OF REACTOR                                                                  ' 3.1-5
,                                                                                              POWER OSCILLATIONS 3.1.9                  CRITERION 13 - INSTRUMENTATION AND                                                                      3.1-6 CONTROL 3.1.10                  CRITERION 14 - REACTOR COOLANT PRESSURE'                                                                3.1-8
;-                                                                                            -BOUNDARY-3.1.11                  CRITERION 15 - REACTOR' COOLANT SYSTEM                                                                  3.1-9 4
DESIGN 3.1.12                  CRITERION 16 - CONTAINMENT DESIGN ~                                                                      3.1-9
,                                  3.1.13                  CRITERION 17 - ELECTRICAL POWER                                                                        ' 3.1-10.
SYSTEMS J
Amondment D i                                    - September.30, 1988
    ..,,,-,.4,,        --y n ,n n -r.,an  ---.,.n,            .r,.,  ,-- ,9-,,n,,~,        .,,.r.,w.,,,,,,- . . . , , - , , , , . , . , ,
                                                                                                                                            -s -r -,v.,.w=--.n,,-    g~,.-, ,na.,...<_ - , . , .
 
CESSAR !!'!ha 1
0' TABLE OF CONTENTS (Cont'd)
CHAPTER 3 Section                Subject              Pago No.
3.1.14  CRITERION 18 - INSPECTION AND TESTING 3.1-11 OF ELECTRICAL POWER SYSTEMS 3.1.15  CRITERION 19 - CONTROL ROOM          3.1-12 3.1.16  CRITERION 20 - PROTECTION SYSTEM      3.1-13 FUNCTIONS 3.1.17  CRITERION 21 - PROTECTION SYSTEM      3.1-14 RELIABILITY AND TESTABILITY 3.1.18  CRITERION 22 - PROTECTION SYSTEM      3.1-15 INDEPENDENCE 3.1.19  CRITERION 23 - PROTECTION SYSTEM      3.1-16 FAILURE MODES 3.1.20  CRITERION 24 - SEPARATION OF          3.1-17 PROTECTION AND CONTROL SYSTEMS 3.1.21  CRITERION 25 - PROTECTION SYSTEM      3.1-18 REQUIREMENTS FOR REACTIVITY CONTROL MALFUNCTIONS 3.1.22  CRITERION 26 - REACTIVITY CONTROL    3.1-18 SYSTEM REDUNDANCY AND CAPABILITY 3.1.23  CRITERION 27 - COMBINED REACTIVITY    3.1-19 CONTROL SYSTEMS CAPABILITY 3.1.24 CRITERION 28 - REACTIVITY LIMITS      3.1-19 3.1.25 CRITERION 29 - PROTECTION AGAINST    3.1-20 ANTICIPATED OPERA-TIONAL OCCURRENCES O
11
 
v l                    CESSAR !! Mica,.                                                                                                                :
4 i
2 i                                                                                                                                                  i 1
1                                                                                                                                                  :
j                                        TABLE OF CONTENTS (Cont'd) i CHAPTER 3                                                                    '
i i
;                    Section                                              Subject                                          Page Mo.
,                    3.1.26        CRITERION 30 - QUALITY OF REACTOR                                                      3.1-21                >
j                                                                            -COOLANT-PRESSURE                                                      i BOUNDARY
;                      3.1.27        CRITERION 31 - FRACTURE PREVENTION                                                      3.1-21
!                                                                              OF REACTOR COOLANT PRESSURE BOUNDARY-                                                  '
i
,                    3.1.28        CRITERION 32 - INSPECTION OF REACTOR-                                                _.3.1-23
!                                                                              COOLANT PRESSURE l                                                                              BOUNDARY-1                                                                                                                                                  ,
r                      3.1.29        CRITERION 33 - REACTOR COOLANT MAKEUP                                                  3.1-24                ;
3.1.30        CRITERION RESIDUAL HEAT REMOVAL                                                    3.1-25 l                      3.1.31        CRITERION ~35 - EMERGENCY-CORE COOLING-
                                                                      -                                                      3.1                                                                                                                                                    t 3.1.32        CRITERION 36 - INSPECTION OF EMERGENCY                                                ~3.1-27 i
CORE COOLING SYSTEM i                    3.1.33        CRITERION 37 - TESTINGLOF EMERGENCY                                                    '3.1-28                '
CORE COOLING SYSTEM l                      3.1.34        CRITERION 38 - CONTAINMENT HEAT                                                        3.1-28 4                                                                              REMOVAL                                                          ->
1                                                                                                                                      c.w
  .                    3.1.35        CRITERION 39 --INSPECTION OF                                                            3.1-29 l                                                                              CONTAINMENT HEAT j                                                                              REMOVAL SYSTEM i                      3.1.36        CRITERION 40 - TESTING 10F CONTAINMENT-                                                3.1-29 l                                                                              HEAT REMOVAL SYSTEM                                                  ,
i                                                                                      .  -    -
3.1.37        CRITERION 41 - CONTAINMENT ATMOSPHERE                                                  3.1-30
: CLEANUP 1 ti 3.1.38.      CRITERION 42 - INSPECTION OFL                                                          3.1-31 LCONTAINMENT ATMOSPHERE ~                                            ,
CLEANUP SYSTEMS
!                      3.1.39        CRITERION 43 - TESTING OF CONTAINMENT                                                  -3.1-31 ATMOSPHERE CLEANUP SYSTEMS                                  K 1
l                                                                                                        Amendment K
[                                                                                'lii                    October 30, 1992 1
        -.=.u.._,.-..- _.- - - -                                                        --.    . - . . - . . - . . - . = .    . - . + . . . . . -
 
    @fGSAREnMem O
TADLE OF CONTI0iTS (Cont'd)
CIIAl"fER 3 t
Section                    Subject                          Pago No.
3.1.40      CRITERION 44 - COOLING WATER                    3.1-32 3.1.41      CRITERION 45 - INSPECTION OF COOLING            3.1-33 WATER SYSTEM 3.1.42      CRITERION 46 - TESTING OF COOLING                3.1-33 WATER SYSTEM 3.1.43      CRITERION 50 - CONTAINMENT DESIGN                3.1-34 BASIS 3.1.44      CRITERION 51 - FRACTURE PREVENTION              3.1-34 OF CONTAINMENT PRESSURE BOUNDARY 3.1.45      CRITERION 52 - CAPABILITY FOR                    3.1-35 CONTAINMENT LEAKAGE RATE TESTING 3.1.46      CRITERION 53 - PROVISIONS FOR                    3.1-35 CONTAINMENT TESTING AND INSPECTION 3.1.47      CRITERION 54 - PIPING SYSTEMS                    3.1-36 PENETRATING CONTAINMENT 3.1.48      CRITERION 55 - REACTOR COOLANT                  3.1-37 PRESSURE BOUNDARY PENETRATING CONTAINMENT 3.1.49      CRITERION 56 - PRIMARY CONTAINMENT              3.1-38 ISOLATION 3.1.50      CRITERION 57 - CLOSED SYSTEM                    3.1-39 ISOLATION VALVES 3.1.51      CRITERION 60 - CONTROL OF RELEASES OF            3.1-39 RADIOACTIVE MATERIAL TO THE ENVIRONMENT O
Amendment D iv                September 30, 1988
 
CESSAR 2nGncui3.
TABLE OF CONTENTS (Cont'd)
CHAP 1'ER 3 Section                  Subject                                                  Page No.
3.1.52  CRITERION 61 - FUEL STORAGE AND                                          3.1-40 ItANDLING AND RADIO-ACTIVITY CONTROL 3.1.53  CRITERION 62 - PREVENTION OF                                              3.1-40 CRITICALITY IN FUEL STORAGE AND HANDLING 3.1.54  CRITER10N 63.- MONITORING FUEL AND                                        3.1-41 WASTE STORAGE 3.1.55  CRITERION 64 - MONITORING RADIO-                                          3.1-41 ACTIVITY RELEASES 3.2      CLASSIFICATION OF STRUCTURES,-                                            3.2-1 COMPONENTS, AND SYSTEMS O    3.2.1    SEISMIC CLASSIFICATION                                                    3.2-1 3.2.2    SYSTEM QUALITY GROUP CLASSIFICATIONS                                      3.2-3 (SAFETY CLASS) 3.3      WIND AND TORNADO LOADINGS                                                  3.3-1 3.3.1    WIND LOADINGS                                                              3.3-1 3.3.1.1      Design Wind Velocity-                                                3.3-1 3.3.1.2        Determination of Applied Forces                                      3.3      3.3.2    TORNADO LOADINGS                                                          3.3-1 3.3.2.1      Applicable-Design Parameters                                          3.3-1 3.3.2.2        Determination of Forces on-Structures                                3.3-2 3.3.2.3        Effect of-Failure of Structures'or'                                -3.3-2 Components-not-Designed-for Tornado Loads 3.4      WATER LEVEL (FLOOD) DESIGN                                                3.4-1 s  -3.4.1    FLOOD ELEVATIONS                                                            3.4-1 Amendment D v--                September 30, 1988
 
CESSAR 9AMeucu O:
TABLE OF CONTFNTS (Cont'd)
CHAPTER 3 noction                  Subject                      Pago No.
3.4.2    PHENOMENA CONSIDERED IN DESIGN                3.4-1      ,
LOAD CALCULATION                                          l i
3.4.3    FLOOD FORCE APPLICATION                      3.4-1      1 3.4.4    FLOOD PROTECTION                              3.4-1 3.4.4.1        Flood Protection Measures for Soismic    3.4-1 Category I Structures 3.4.5    ANALYTICAL AND TEST PROCEDURES                3.4-2 3.5      MISSILE PROTECTION                            3.5-1 3.5.1    MISSILE SELECTION AND DESCRIPTION            3.5-1 3.5.1.1        Internally Generated Missilos          3.5-2 (Outsido containment) 3.5.1.1.1      Auxiliary Pumps and Motors              3.5-2 3.5.1.1.2      Emergency Foodwater Pump Turbines      3.5-3    lK 3.5.1.1.3      Valves                                  3.5-3 3.5.1.1.4      Pressure Vossols                        3.5-3 3.5.1.2        Internally Generated Missilos          3.5-4 (Insido Containment) 3.5.1.3        Turbino Missiles                        3.5-4 3.5.1.4        Missilos Generated by Natural          3.5-5 Phenomena 3.5.1.5        Missiles Generated by Events            3.5-5 No,ar the Site 3.5.1.6        Aircraft Hazards                        3.5-5 3.S.2    STRUCTURES, SYSTEMS, AND COMPONENTS TO        3.5-5 BE PROTECTED FROM EXTERNALLY GENERATED MISSILES O
Amendment K vi              October 30, 1992 w
 
i CESSARinQcamn                                                                                                                                  !
i i
  !                                                                                                                                                                            I j
TABLE OF CONTENTS (Cont'd)                                                                                      ;
l                                                                                CHAPTER 3                                                                                    i a
i i                              Section                                            Subject                                                              Page No.
3.5.3                    BARRIER DESIGN PROCEDURES                                                                    3.5-5 a
j                                3.5.3.1                          Local Damage Prediction.                                                              3.5-6 i
3.5.3.1.1                        Concrete Structures and Barriers                                                      3.5-6 j                              3.5.3.1.2                        Steel Structures and Barriers                                                        3.5-6 3.5.3.2                          Overall Damage Prediction                                                            3.5-6 i
3.5.4                    GENERAL DESIGN BASES                                                                          3.5-7      lK          ;
4                                3.6                      PROTECTION AGAINST DYNAMIC EFFECTS                                                            3.6-1                  a i                                                        ASSOCIATED WITH THE POSTULATED                                                                                      I
,                                                        RUPTURE OF PIPING l                                3.6.1                    POSTULATED PIPING FAILURES IN                                                                3.6-1
!                                                        . FLUID SYSTEMS.
j                                3.6.1.1                          Design Basis                                                                          3.6-1
!                                3.6.1.1.1                        High-Energy Piping Systems                                                            3.6-2 l                                3.6.1.1.2                        Moderate-Energy Piping Systems                                                        3.6                '
i
;                                3.6.1.2                          Description                                                                          3.6-4 l                                3.6.1.3                          Safety Evaluation                                                                    3.6-8
!                                3.6.2                    DETERMINATION OF BREAK LOCATIONS-AND.                                                        3.6-12 DYNAMIC-EFFECTS-ASSOCIATED WITH THE POSTULATED RUPTURE-OF PIPING                                                                                        '
I                                3.6.2.1                          Criteria Used to Define Break and                                                    3.6-12                .
l                                                                  Crack Locations and Configurations
;                                3.6.2.1.1                        General Requirements.                                                                3.6-12
;-                              3.6.2.1.2                        Postulated Rupture Descriptions-                                                    .3.6-13
:~                              3.6.2.1.3-                        Piping Evaluated for. Leak--                                                        3.6-14 Before-Break 3.6.2.1.4-                        Piping Other Than Piping Evaluated                                                    3.6-14:
for Leak-Before-Break l                                3.6.2.1.4.1-                                  Postulated Rupture. Locations-                                            3.6-14 Ly                              3.6s.2.1.4.2                                  Postulated' Rupture Configurations 13.6-19
.                    --w7
!=                        4'
                              .                                                                                                              Amendment K
,                                                                                        vii                                                  October 30, 1992-l
 
CESSAR 8!5!%ucu O
TABLE OF CONTF2rFS (Cont'd)
CHAPTER 3 Section                    Subject                        Pago No.
4 3.6.2.1.5        Details of Containment Penetrations      3.6-19 3.6.2.2          Analytical Methods to Defino Forcing    3.6-20    l Functions and Responso Modols 3.6.2.2.1        Piping Evaluated for Leak-Before-Break  3.6-20 3.6.2.2.2        Analytical Methods to Define Forcing    3.6-20    l l
Functions and Response Models for Piping Excluding That Evaluated for Leak-Bofore-Broak i
3.6.2.2.2.1            Determination of Pipo Thrust      3.6-20 and Jet Loads 3.6.2.2.2.2            Methods for the Dynamic Analysis  3.6-21 of Pipe Whip 3.6.2.2.2.3            Method of Dynamic Analysis of      3.6-22 Unrestricted Pipes 3.6.2.3          Dynamic Analysis Methods to Verify      3.6-23 Integrity and Operability 3.6.2.3.1        Pipe Whip Restraints and Jet            3.6-23 Deflectors for Piping Evaluated for Leak-Beforo-Dreak 4
3.6.2.3.2        Pipo Whip Rostraints and Jet            3.6-23 Deflectors for Piping Other than that Evaluated for Loak-Before-Break 3.6.2.3.2.1            General Description of Pipo        3.6-23 Whip Restraints 3.6.2.3.2.2            Pipo Whip Restraint Componenta    3.6-23 3.6.2.3.2.3            Design Loads                      3.6-24 3.6.2.3.2.4            Allowable Stresses                3.6-24 3.6.2.3.2.5            Design Criteria                    3.6-25 3.6.2.3.2.6            Materials                          3.6-25 3.6.2.3.2.7            Jet Impingement Shields            3.6-25 3.6.2.4          Guard Pipo Assembly Design Criteria      3.6-25 3.6.3      LEAK-BEFORE-BREAK EVALUATION PROCEDURE        3.6-26 3.6.3.1          Applicability of LBB                    3.6-26 Amendment E viii              December 30, 1988
 
CESSAR 2lMicui:.
P TABLE OF CONTk3fTS (Cont'd)
CHAPTER 3 Section                    Subject                        Page No.
3.6.3.2          Leakage Crack Location                  3.6-26 3.6.3.3          Leak Detection                          3.6-26 3.6.3.3.1      -Leak Detection System                    3.6-26 3.6.3.3.2        Flow Rate Correlation                    3.6-27 3.6.3.4          Screening of Leakage Crack Sizes        3.6-27 Using EPRI/GE Estimation Scheme 3.6.3.5          Material Properties                      3.6-28 3.6.3.6          Leakage Crack Size Determination        3.6-28 3.6.3.7          Computation of J-Integral-Values        3.6-29 I  3.6.3.7.1        Range of Crack Sizes                    3.6-29 k  3.6.3.7.2        J-Integral                              3.6-29 3.6.3.8          Stability Evaluation'                    3.6-29 3.6.3.9          Results                                  3.6-30
                                                                        \"
3.7      SEISMIC DESIGN                                3.7-1 3.7.1    SEISMIC INPUT                                  3.7-1 3.7.1.1        Seismic Input Spectra                    3.7-1 3.7.1.2=        Design Time History                      3.7-1 3.7.1.3          Critical Damping Values                  3.7-1 3.7.1.4          Supporting Media for Seismic.
Category I Structures                    3.7-2 3.7.1.4.1        Soil Structure Interaction.(SSI)        3.7-2 Amendment KL ix                October 30, 1992
 
CESSAR !!%ncua O
,                    TABLE OF CONTENTS (Cont'd)
CllAP1'lUI 3 Section                        Subject                        Pago No.
3.7.2          SEISMIC SYSTEM ANALYSIS                      3.7-2 3.7.2.1            Seismic Analysis Method                  3.7-2 3.7.2.1.1          Seismic Category I Structures,          3.7-2 Systems, and components Other Than NSSS 3.7.2.1.1.1              Response Spectrum Method          3.7-3 of Analysis 3.7.2.1.1.2              Time History Method                3.7-4 3.7.2.1.2          Seismic Analysis Method for the NSSS    3.7-5 3.7.2.1.2.1              Introduction                      3.7-5 3.7.2.1.2.2              Mathematical Models                3.7-6 3.7.2.1.2.3              Analysis                          3.7-8 3.7.2.2            Natural Frequencies and Response Loads  3.7-9 3.7.2.3            Procedure Used For Analytical Modeling  3.7-9 3.7.2.3.1          Modeling of the NSSS and BOP            3.7-9 3.7.2.3.2          Designation of Systems Versus            3.7-9 Subsystems 3.7.2.3.3          Decoupling Criteria for Subsystems      3.7-9 3.7.2.3.4          Lumped Mass Considerations              3.7-10 3.7.2.3.4.1              Model for Horizontal Excitation    3.7-10 3.7.2.3.4.1.1            Development of FEM and Stick      3.7-11 Models of the Internal Structure 3.7.2.3.4.1.2            Development of FEM and Stick      3.7-12 Models of the Shield Building 3.7.2.3.4.1.3            FEM of Steel Containment Vessel    3.7-12 3.7.2.3.4.1.4            Combined Model of Power            3.7-12 Generation Complex Structures 3.7.2.3.4.2              Model for Vertical Excitation      3.7-12 3.7.2.3.5          Modeling for Three Component Input      3.7-12 Motions Amendment I x                December 21, 1990-
 
l CESSAR 2lL"lCAMN i
1 TABLE OF CO'afTIOfTS (Cont'd) i i                                                                                          CHAPTER 3                                                                          '
i Section                                                                    Subject                                                Page No._                ,
4 3.7.2.4                                                          Soil / Structure Interaction (SSI)                                3.7-13 3.7.2.5                                                        Development of Floor Responso Spectra                              3.7-13 i                3.7.2.6                                                        Three Components of Earth, quake Motion                            3.7-13
)                3.7.2.6.1                                                      Seismic Category I Structures,                                    3.7-13 Systems, and Components Other
,                                                                              Than NSSS 3.7.2.6.2                                                      Nuclear Steam Supply System                                        3.7-13 7
3.7.2.7                                                          Combination of Modal Responses                                    3.7-14 3.7.2.7.1                                                        Seismic Category I Structures, Systems                            3.7                                                                                  and components Other Than NSSS
,              3.7.2.7.2                                                      Nuclear Steam Supply System                                        3.7-14 i
;              3.7.2.8                                                          Interaction of Non-Safety-Related                                  3.7-15 Structures with Safety-Related Structures 3              3.7.2.9                                                        Effects of Parameter Variations on                                  3.7-15 Floor Response Spectra 1
4 3.7.2.10                                                        Use of Constant Vertical Static Factors 3.7-15
,              3.7.2.11                                                        Methods Used to Account for Torsional                              3.7-16 Effects 3.7.2.12                                                        Comparison of Responses                                            3.7-16 3.7.2.13                                                        Methods for Seismic ~ Analysis of Dams
                                                                                                                              ~
3.7-16 1
3.7.2.14                                                        Determination of Safety-Related.                                  3.7-16 Structure Overturning Moments Analysis Procedure'for-Damping 3.7.2.15                                                                                                                          3.7-16 3.7.3                                      SEISMIC SUBSYSTEM ANALYSIS                                                            3.7 ;              3.7.3.1                                                          Seismic Analysis Methods                                          '3.7-17
< . p Amendment I.
i                                                                                              Xi                        December 21, 1990
 
CESSARENMcucu O
TAllLE OF CONTFNTS (Cont'd)
CllLPTER 3 Section                Subject                        Page No.
3.7.3.2      Determination of Number of Earthquake    3.7-18 Cycles 3.7.3.3      Procedure Used for Modeling              3.7-18 3.7.3.4      Basis for Selection of Frequencies        3.7-19 3.7.3.5      Use of Equivalent Static Load Method      3.7-20 of Analysis 3.7.3.6      Three Components of Earthquake Motion    3.7-20 3.7.3.7      Combination of Modal Response            3.7-20 3.7.3.8      Analytical Procedures for Piping          3.7-20 3.7.3.8.1    Dynamic Analysis                          3.7-20 3.7.3.8.2    Allowable Stresses                        3.7-21 3.7.3.9      Multiple Supported Equipment Components 3.7-21 With Distinct Inputs 3.7.3.10      Use of Constant Vertical Load Factors    3.7-21 3.7.3.11      Torsional Effects of Eccentric Masses    3.7-21 3.7.3.12      Piping Outside Containment Structure      3.7-22 3.7$3.12.1    Buried Piping                            3.7-22 3.7.3.12.2    Above Ground Piping                      3.7-22 3.7.3.13      Interaction of Other Piping With          3.7-22 Category I Piping 3.7.3.14      Seismic Analysis of Reactor Internals,    3.7-23 Core and CEDMs 3.7.3.14.1    Reactor Inte'rnals and Core              3.7-23 3.7.3.14.1.1        Mathematical Models                3.7-24 3.7.3.14.1.2        Analytical Techniques              3.7-26 3.7.3.14.1.3        Analysis Procedures for Damping    3.7-29 3.7.3.14.1.4        Results                            3.7-29 Amendment I Xii                December 21, 1990
 
_ _ _ _ _ _ - _ _ _ _ _ _ .._ _ _. . _ _ _ _ . - ~-__... __ _. _ . _ .__ _ _ _ _ _ _ ._                                          __    . _ _ _ . - . _
l 4:1 !5!iAllt !!.Kricari:n                                                                                              .
l
        \
TABLE OF CONTENTS (Cont'd)
CHAPTER 3 Sectjon                                                          Subject                        Page No.
3.7.3.14.2                                              Control Element Drive Mechanisms        3.7-29 (CEDM) 3.7.3.14.2.1                                                Input Excitation Data              3.7-30 3.7.3.14.2.2                                                Analysis                          3.7-30 3.7.3.14.2.3                                                Functional Test                    3.7-30 3.7.3.15                                              Analysis Procedures for Damping          3.7-30 3.7.1.15.1                                            Subsystems Other Than NSSS              3.7-30 3 . *.          .15.2                                Nuclear Steam Supply System              3.7-30 3.7.4                                            SEISMIC INSTRUMENTATION                      3.7-31 3.7.4.1                                                Comparison with Regulatory Guide 1.12    3.7-31 3.7.4.2                                                Location and Description of_            '3.7-31 Instrumentation 3.7.4.2.1                                              Active Instruments                      3.7-31 3.7.4.2.2                                              Passive' Instruments-                    3.7-32 3.7.4.3                                                Control Room Operator Notification      3.7-32 3.7.4.4                                                Comparison of Measured and Predictod. 3.7-33
:                                                                                              Responses-
: 3. 8'                                            DESIGN OF CATEGORY I STRUCTURES              3.8-1 3.8.1                                          -CONCRETE CONTAINMENT                          3.0-1 i                                        3.8.2                                            STEEL CONTAINMENT-                            3.8-1 3.8.2.1                                              Description of the Containment          3.8-1 3.8.2.1.1                                            General                                  3.8-1 3.8.2.1.2-                                            Anchorage Region      _
3.8-1 3.8.2.1.3                                              Containment Penetrations                3.8-2 3.8.2.1.3.1                                            Equipment Hatch ~                      _3.8-2 3.8.2.1.3.2                                            Personnel Locks                          3.8-2
                                        .3.8.2.1.3.3                                            Fuel Transfer Penetration 1              3.8-3 O\-                              3.d.2.1.3.4 3.8.2.1.3.5 Mechanical Penetrations Electrical Penetrations 3.8-3 3.8-3            j Amendment I:
xiii"              December 21, 1990
 
C E S S A R E E "icuiou O
TAllLE OF CONTENTS (Cont'd)
CHAPTER 3 Section                      Subject                          Page No.
3.8.2.2            Applicable Codes, Standards, and          3.8-4 Specifications 3.8.2.3            Loads and Loading Combinations            3.8-4b 3.8.2.4            Design and Analysis Procedures            3.8-5 3.8.2.5            Structural Acceptance Crj #'eria          3.8-7 3.8.2.6            Materials, Quality Control, and            3.8-8 Special Construction Techniques 3.8.2.6.1          Materials                                  3.8-8 3.8.2.6.2          Quality Control                            3.8-8 3.8.2.6.3          Special Construction Techniques            3.8-8 3.8.2.7            Testing and In-service Surveillance        3.8-9 Requirements 3.8.3        CONCRETE AND STRUCTURAL STEEL INTERNAL          3.8-9 STRUCTURES 3.8.3.1            Description of the Internal Structures    3.8-9 3.8.3.2            Applicable Codes, Standards, And Specification,s                            3.8-11 3.8.3.3            Loads and Loading Combinations            3.8-11 3.8.3.4            Design and Analysis Procedures            3.8-12 ll 3.8.3.5            Structural Acceptance Criteria            3.8-12 3.8.3.6            Materials, Quality Control, and
                              ~
3.8-12 Special Construction Techniques 3.8.3.7            Testing and In-service Surveillance        3.8-12 Requirements 3.8.4        OTHER CATEGORY I STRUCTURES                      3.8-12 3.8.4.1            Description of the Structures              3.8-12 Amendment I xiv                  December 21, 1990
 
CESSAR !!Micam+
T@ LE OF CONTENTS (Cont'd)
CHAPTER 3 Section                      Subject                              Page No.
3.8.4.1.1      Containment Shield Building                      3.8-12 3.8.4.1.2      Nuclear System Annex              .            -3.8-13 3.8.4.1.3      Station Service-Water System Structure- 3.8-13 3.8.4.2        Applicable codes, Standards, and                  3.8-13 Specifications 3.8.4.3        Loads and Loading Combinations                    3.8-14 3.8.4.4        Design and Analysis Proceuures                    3.8-15 3.8.4.5        Structural Acceptance Criteria-                  3.8-16 3.8.4.6        Material, Quality Control, and                    3.8-17 special construction Technigi'qg 3.8.4.6.1      Material                                          3.8-17 3.8.4.6.1.1          Concrete                                    3.8-17 3.8.4.6.1.2          Reinforcing Steel                          3.8-18 3.8.4.6.1.3          Structural Steel                            3.8-19 3.8.4.6.2      Quality Control =                                3.8-19 3.8.4.6.3      Special Construction Techniques-                3.8-20 3.8.4.7        Testing and-In-service Surveillance-            3.8-20 Requirements 3.8.5      FOUNDATIONS                                            3.8-20 3.8.5.1        Description of the Foundation                    3.8-20 13.8.5.2        Applicable Codes, Standards, and                  3.8-20 Specifications 3.8.5.3        -Loads and' Loading Combinations                  3.8-20 3.8.5.4-        Design and Analysis Procedures i
3.8-20 3.8.5.5        Structural AcceptableJCriteria                  -3.8-21 3.8.5.6        . Material, Quality Control,-and~                  3.8-21
{                  Special Construction Techniques-Amendment I xv                      December' 21,-1990'
 
CESSAR !!!Mem:n O
TAllLE OF CONTFRTS (Cont'd)
CIIAPTER 3 Section                      Subject                        Pago No.
3.8.5.7            Testing and In-servico Surveillance        3.8-21 Requirements 3.9          MECilANICAL SYSTEMS AND COMPONENTS              3.9-1 3.9.1        SPECIAL TOPICS FOR MECllANICAL COMPONENTS        3.9-1 3.9.1.1            Design Transients                          3.9-1 3.9.1.2            Computer Programs Used in Stress Analysis-                                  3.9-3 3.9.1.2.1          Roactor Coolant System                    3.9-3 3.9.1.2.1.1              MDC STRUDL                          3.9-3 3.9.1.2.1.2              C-E MARC                            3.9-4 3.9.1.2.1.3              JEST                                3.9-4 3.9.1.2.1.4              SUPERPIPE                            3.9-5 3.9.1.2.1.5              DFORCE                              3.9-5 3.9.1.2.1.6              SG LINK                              3.9-6 3.9.1.2.1.7              CEDAGS                              3.9-6 3.9.1.2.1.8              CE177, lload Ponotration            3.9-6 Reinforcement Program 3.9.1.2.1.9              CE102, Flango Fatiguo Program        3.9-7
:  3.9.1.2.1.10            CE105, Nozzlo Fatigue Program        3.9-7 3.9.1.2.1.11            CEC 26, Edge Coefficients Program    3.9-7 3.9.1.2.1.12            CE124, Generalized 4 x 4 Program    3.9-7 3.9.1.2.1.13            SEC 11                              3.9-8 3.9.1.2.1.14            ANSYS                                3.9-8 3.9.1.2.1.15            CE301, The Structural Analysis      3.9-8 for Partial Ponotration Nozzles, lloater Tube Plug Wolds, and the Water Lovel Boundary of the Prosaurizer Shell Program 3.9.1.2.1.16            CE223, Primary Structuro            3.9-8 Interaction Program 3.9.1.2.1.17            CE362, Tubo-To-Tuboshoot Wold        3.9-9 Program 3.9.1.2.1.18            CE286, Support Skirt Loading        3.9-9 Program 3.9.1.2.1.19            CE210, Principal Strots Program      3.9-9 3.9.1.2.1.20            CE211, Nozzlo Load Resolution        3.9-9 Program Amendment I xvi                December 21, 1990
 
CESSAR SEncue,.
l 1
i TABLE OF CONTENTS (Cont'd.)
i                                                                                                                                                                i CHAl*rER 3                                                                  t Section                                                          subject                                          Page No.
3 9.1.2.1.21                                          KINI2100 Program                                          3.9-9                      -
3.9.1.2.1.22                                          CEFLASH-4A                                                3.9-10                    l 3.9.1.2.1.23                                          CRIBE                                                      3.9-10                    I 3.9.1.2.1.24                                          SASSI                                                      3.9-10                lg 1.9.1.2.2                              Code Class CS Internals, Fuel and CEDMs 3.9-10b 3.9.1.2.2.1                                            MRI/STARDYNE                                              3.9-10b                    ,
3.9.1.2.2.2                                            ANSYS                                                      3.9-11 3.9.1.2.2.3                                            ASHSD                                                      3.9-12                  .
3.9.1.2.2.4                                            CESHOCK                                                    3.9-12                    .
                  -3.9.1.2.2.5                                            SAMMSOR/DYNASOR                                            3.9-13 3.9.1.2.2.6                                          MODSK                                                      3.9-14 3.9.1.2.2.7                                          SAPIV          _
3.9-15 3.9.1.2.2.8                                          CEFLASH-4B                                                3.9-16 3.9.1.2.2.9                                          LOAD                                                      3.9-16                  ,
l 3.9.1.2.3                            Non-NSSS Structures and Components                                        3.9-16 3.9.1.3                                Experimental Stress Analyses                                              3.9-17 3.9.1.4                                Considerations for the Evaluation of                                      3.9-17 the Faulted Condition 3.9.1.4.1                              Seismic Category I RCS Items                                              3.9-17 3.9.1.4.1.1                                            Reactor Internals and CEDMs                              3.9-18 3.9.1.4.1.2                                            Non-Code Items                                            3.9-18 3.9.'1.4.2                            Seismic Category I Non-NSSS Items                                        3.9-18 3.9.2                          DYNAMIC SYSTEM ANALYSIS AND TESTING                                              3.9-19 l                      3.9.2.1                              Piping Vibrations, Thermal Expansion                                      3.9-19 and Dynamic Effects i
3.9.2.1.1                            !!teady-State ' Vibration                                                3.9-19 3.9.2.1.2                            Transient. Vibration                                                      3.C-20 3.9.2.1.3-                            Thermal Expansion                                                        3.9-20
                                                                                                                - Amendment K-xvii-                      October 30, 1992J                            .
 
CESSAR E!!Lu:~
O TABLE OF CONTEICS (Cont'd)
C11 APTER 3 Gection                Subject                        Pago No.
3.9.2.2      Suismic Qualification of Mechanical      3.9-21  y' Equiptent 2,4m2.2.1    Nuclear Steam Supply System              3.9-21 3.9.d.2.2    Non-NSSS Items                            3.9-21 3.9.2.2.2./.        Seismic Testing and Analysis        3.9-21 3.9.2.2.2.2        Seismic Analysis                    3.9-22 3.9.2.2.2.3        Basis for Test Input ifotion        3.9-22 3.9.2.2.2.4        Rsndom Vibration Inpot              3.9-22 3.9.2.2.2.5        Input Motion                        3.9-22 3.9.2s2.2.6        Fixture Design                      3.9-23 3.9.2.2.2.7        Equipment Testing                  3.9-23 3.9.2.3      Dynamic System Analysis Methods for      3.9-23 Reactor Vessel Core Support and Internal Structures 3.9.2.3.1    Introduction                              3.9-23 3.9.2.3.2    Periodic Forcing Function                3.9-24 3.9.2.3.2.1        Core Support Barrel Assembly        3.9-24 3.9.2.3.2.2        Upper Guide Structure              3.9-24 3.9.2.3.2.3        Lower Support Structure            3.9-24 Assembly 3.9.2.3.3    Random Forcing Funct ion                  3.9-25 3.9.2.3.3.1        Core Support Barrel Assembly        3.9-25 3.9.2.3.3.2        Upper Guide Structure              3.9-25 3.9.2.3.3.3        Lower Support Structure            3.9-26 Assembly 3.9.2.3.4    Mathematical Models                      3.9-26 3.9.2.3.5    Response Analysis                        3.9-27 3.9.2.3.5.1        Deterministic Response              3.9-27 3.9.2.3.5.2        Random Response                    3.9-27 1.9.2.4      Comprehensive Vibration Assessment        3.9-28 Program (CVAP)
O Amendment K xviii              October 30, 1992
 
,                                                                                                                                                                        t i                      CESSAR MEncamu j
i                                                                                                                                                                      '
I 7
1
~
TABLE OF CONTENTS (Cont'd)                                                                                    ;
1                                                                                                                                                                      i
!                                                                      CHAPTER 3                                                                                      i i
i                      Section                                            Subject                                                              Page No.
l                      3.9.2.5                              Dynamic System Analysis of the Reactor                                              3.9-29 and CEDMs Under Faulted Conditions lK 3.9.3                    ASME CODE CLASS 1, 2 and 3 COMPONENTS,                                                        3.9-30                  '
COMPONENT SUPPORTS AND CLASS CS CORE SUPPORT STRUCTURES 1
{                      3.9.3.1                            Loading Combinations, Design                                                        3.9-30
}                                                          Transients and Stress Limits                                                                                e
!l 3.9.3.1.1                          ASME Code Class 1 Components and                                                    3.9-31
{-                                                          Supports 3.9.3.1.2                          Core Support Structures (Class CS)                                                  3.9-31 and Internal ~_ Structures (Class IS)
+
j                      3.9.3.1.3                          ASME Code Class 2 and-3 Components                                                  3.9-32                  '
i                                                          and Supports                                                                                                >
I                T j                      3.9.3.1.3.1                                Tanks, Heat Exchangers, and                                                3.9-32 i                                                                  Filters
!                      3.9.3.1.3.2                                _ Valves                                                                    3.9-32a j                      3.9.3.1.3.3                                Pumps                                                                      -3.9-33                  ,
e i                      3.9.3.1.4                          Piping and Piping Supports                                                          ?.9-35
,                      3.9.3.1.4.1-                                ASME Code Class 1                        _
:3.9-35
}                      3.9.3.1.4.2                                AS!!E Code Class 2 and 3                                                    3.9-35 1
)                      3.9.3.2                            Pump and Valve Operability Assurance'-                                              3.9 t 3.9.3.2.1                          Active ASME Code Class 2 and-3                                                      3.9                                                            Pumps and Class 1, 2 and 3                                                                                  ,
Valves Furnished-with the NSSS:
3.9.3.2.1.1-                        Operability Assurance Program                                                    :3.9-36 3.9.3.2.1.2                        Operability Assurance Program Results                                              '3. 9 [                            _                            forTActive--Pumps F                      3.9.3.2.1.3                        Operability Assurance Program for-                                                  3.9-37                J Active Valves                                                            _ _ _ _
1 y:
J Amendment K 4
xix                                        Octobe r.-- . 3 0,        1992
  . . . , . . _ . , -      _ --. _ . . . . _ . . , . _ . _ , - -        .. ,_,. ...~-  a,. ..... . ..,.-. , _ . _                        . _- .,,m      .. u_ ._ ~
 
CESSAR n%"icucu O
TAllLE OF CONTENTS (Cont'd)
CIIAPTER 3 Section                        Subject                        Page No.
3.9.3.2.1.3.1              Pneumatically Operated Valves      3.9-40 3.9.3.2.1.3.2              Motor Operated Valves              3.9-40 3.9.3.2.1.3.3              Pressurizor Safety Valves          3.9-41 3.9.3.2.1.3.4              Chock Valvon                        3.9-42 3.9.3.2.2            Hon-NSSS Active ASME Code Class          3.9-43 2 and 3 Pumps and Class 1, 2 and 3 Valves 3.9.3.2.2.1                Pumps                              3.9-43 3.9.3.2.2.2                Valvos                              3.9-45 3.9.3.3              Design and Installation Details for      3.9-47 Mounting of Pressuro Rolief Devices 3.9.3.4              Component Supports                        3.9-47 3.9.4          CONTROL ELEMENT DRIVE MECHANISMS              3.9-48a 3.9.4.1              Descriptive Information of CEDM          3.9-48a 3.9.4.1.1            Control Element Drive Mechanism          3.9-49 Design Description 3.9.4.1.1.1                CEDM Pressure !!ousing              3.9 3.9.4.1.1.2                Motor Assembly                      3.9-E0 3.9.4.1.1.3                Coil Stack Assembly                3.9-00 3.9.4.1.1.4                Reed Switch Assembly                3 . 9-!il 3.9.4.1.1.5                Extension Shaft Assembly            3.9-51 3.9.4.1.2            Description of the CEDM Motor            3.9-51 Operation 3.9.4.1.2.1                Operating Sequence for the          3.9-51 Double Stepping Mechanism 3.9.4.2              Applicable. CEDM Design Specifications    3.9-53 3.9.4.3              Design Loads, Stress Limits and          3.9-53 Allowablo Deformations O
Amendment E xx                December 30, 1988
 
CESSAR 8%ncuia o
V) l TABLE OF CONTFXTS (Cont'd)
CllAPTIUt 3 Section                    Subject                        Page No.
3.9.4.4          CEDM Performance Assuranen Program        3.9-55 3.9.4.4.1        CEDM Testing                              3.9-55 3.9.4.4.1.1            Prototype Accelerated Life Tests    3.9-55 3.9.4.4.1.2            First Production Test              3.9-56 3.9.4.4.1.3            Operating Experience at the Palo    3.9-57 Verde Nuclear Generating Station 3.9.5      REACTOR VESSEL CORE SUPPORT AND INTERNALS      3.9-57 STRUCTURES 3.9.5.1          Design Arrangements                      3.9-57 3.9.5.1.1        Core Support Structure                    3.9-57 fN-3.9.5.1.1.1 3.9.5.1.1.2 Core Support Barrel Lower Support Structure and 3.9-58 3.9-58 Instrument Nozzle Assembly 3.9.5.1.1.3            Core Shroud                        3.9-59 3.9.5.1.2        Upper Guide Structure Assembly            3.9-59 3.9.5.1.3        Flow Skirt                                3.9-60 l      3.9.5.1.4        In-Core Instrumentation Support          3.9-61
;                        System 3.9.5.2          Design Loading Conditions                3.9-62 l
3.9.5.3          Design Loading Categories                3.9-62 3.9.5.3.1        Level A and Level B Service Loadings      3.9-62 3.9.5.3.2        Level D Service Loadings                  3.9-63
,      3.9.5.4          Design Bases for Reactor Internals        3.9-63
{
3.9.6      IN-SERVICE TESTING OF PUMPS AND VALVES        3.9-64 l
3.9.6.1          In-Service Testing of Pumps              3.9-64 l      3.9.6.2          In-Service Testing of Valves            3.9-64a l
n (V)
Amendment E XXi                December 30, 1988
 
CESSAR ;lnacucu O
TABLE OF CONTENTS (Cont'd)
CHAPTER 3 Section                  Subject                        Pago No.
3.10    SEISMIC AND DYNAMIC QUALIFICATION OF          3.10-1    g MECHANICAL AllD ELECTRICAL EQUIPMENT 3.10.1  SEISMIC QUALIFICATION CRITERIA                3.10-1 3.10.2  METilODS AND PROCEDURES FOR QUALIFYING        3.10-1 SEISMIC CATEGORY I ELECTRICAL EQUIPMENT                lK AND INSTRUMENTATION 3.10.3  METHODS AND PROCEDURES OF ANALYSIS OR          3.10-3 TESTING OF SUPPORTS OF ELECTRICAL EQUIPMENT AND INSTRUMENTATION 3.11    ENVIRONMENTAL DESIGN OF MECitANICAL AND        3.11-1 ELECTRICAL EQUIPMEllT 3.11.1    EQUIPMENT IDENTIFICATION AND ENVIRONMENTAL    3.11-2 CONDITIONS 3.11.2  QUALIFICATION TESTS AND ANALYSES              3.11-2 3.11.2.1      Mechanical and Electrical Component      3.11-2 Environmental Design and Qualification for Normal Operation 3.11.2.2      Mechanical and Electrical Component      3.11-3 Environmental Design and Qualification for Operation During and After a Design Basis Accident 3.11.3    QUALIFICATION TEST RESULTS                    3.11-6 3.11.3.1      Instrumentation and Electrical          3.11-6 Equipment 3.11.3.2      Mechanical Equipment                    3.11-6 3.11.4    CLASS 1E INSTRUMENTATION LOSS OF              3.11-6 VENTILATION EFFECTS O
Amendment K xxii                October 30, 1992
 
I CESSAR ENO.c.m.                                                                                                                              l l
l 1
3
}
j                                                                                  TABLE OF CONTENTS (Cont'd)
{                                                                                            CHAPTER 3 i
!                          Section                                                            Subject                                            Paqa No.
l                          3.11.5                                          CHEMICAL SPRAY, RADIATION, HUMIDITY,                                    3.11-0            I 1
SUBMERGENCE AND POWER SUPPLY VOLTAGE AND                                                  l 1
FREQUENCY VARIATION 4
3.11.5.1                                                Chemical Environment                                          3.11-0            ;
)                          3.11.5.2                                                Radiation Environment                                          3.11 l j                          3.11.5.3                                                Humiditj                                                      3.11-9 I-                          3.11.5.5                                                Submergence-                                                  3.11-9 l                          3.11.5.6                                                Power Supply Voltage and Frequency                            3.11-9.
Variation 5
l                          APPENDIX                                        TYPICAL ENVIRONMENTAL CONDITIONS AND TEST-                            3.11A-1 3.11A                                        PROFILES FOR STRUCTURES AND COMPONENTS
}l (
APPENDIX                                        IDENTIFICATION, LOCATION AND TYPICAL                                  3.118-1 1
3.11B                                        ENVIRONMENTAL CONDITIONS OF EQUIPMENT i
}
}
I a
-                                                                                                                                                                    1 i
s i
a
)
1                                                                                                                                    .
Amendment I XXiii                            December 21,. 1990-
  , _ . . . _ _ _ . . . , . . . . , - . _ _ _ _ _ . . . _ _ _ . . . , . . - - - ,_        _,,_.,,.,_.,.,.....-_.,._...__._._._..;m._,._. _ , , , .  ._%_._, . _
 
CESSAR UL"icucu O
LIST Ol' TABLES C11APTim 3 Tablo                    Subject 3.2-1    Classificat.'an of Structures, Systems, and              l Components 3.2-2    Safety Class 1, 2 and 3 Valves 3.2-3    Relationship of Safety Class to Code Class 3.2-4    Summary of Critoria - Structures 3.5-1    Kinetic Energy of Potential Missiles 3.5-2    Design Basis Tornado Missiles and Their Impact Velocities 3.6-1    liigh- and Moderate-Energy Fluid Systems 3.6-2    Systems Required for Safe Shutdown and/or to Mitigate the consequences of a Design-Basis Accident 3.6-3    High-Energy Lines Within containment 3.6-4    High-Energy Lines Outside Containment 3.7-1    Damping Values 3.8-1    Design Loadings for Steel Containment 3.8-2    Loading Combinations for Steel Containment 3.8-3    Stress Intensity Limits for Steel Containments 3.8-4    Codes and Specifications for Design of Category I Structures 3.8-5    Load Combinations for Category I Structures 3.9-1    Transients Used in Stress Analysis of Code Class 1 Components 3.9-2    Loading combinations ASME Code Class 1,  2, and 3 Components Amendment I xxiv                December 21, 1990
 
g______________________
k CESSAR !!Miricamn
[                                                                                                  ,
4 i
j                                                      LIST OF TABLES (Cont'd)
I                                                                  CHAPTER 3 i                                                                                                                        .
i                                                                                                                        I
{                Table                                              Subject i
!                3.9-3                  Stress Limits for ASME Code Class 1 3
Components, Piping, and Component Supports                                      ,
3.9-4                  Seismio I Active Valves                                                        '
i                3.9-5                  Stress Criteria for Safety-Related ASME Class 2 j                                      and Class 3 Vessels
}                3.9-6                  Stress-Criteria for ASME Code Class 2 and Class 3 Inactive Pumps and Pump Supports l                3.9-7                  Design Criteria'for Active Pumps and Pump
]                                      Supports j                3.9-8                  Stress Criteria for Safety-Related ASME Code Class 2 and Class 3 Inactive Valves j                3.9-9                  Stress Criteria for Class 12 and Class 3 Active
,                                      Valves l                3.9-10                Loading Combinations for ASME Section III Class 1
!                                      Piping
?
l                3.9-11                Load Combinations and Acceptance Criteria for i                                      Pressurizer Safety Valve Piping and Supports ASME l
Class 1 Portion                                                                ;
!                3.9-12                Loading Combinations for ASME Section III Classes 2 and 3 Piping
]
3.9-13                Load Combinations for Safety Valve Piping ASME l-                                      Class 2 and-3 Piping i
!                3.9-14                Design Loading Combinations for ASME Code, Class
[
1,    2,      and 3 Piping-Supports j                3.9-15                Stress Limits for CEDM Pressure Housings
;                3.9-16                Stress: Limits.for. Design and' Service Loads
!                3.11-1                Ventilation Areas
)
i                                                                                                                      '
:                                                                                      Amendment I xxv            December 21, 1990              ;
;;                                                                                                                      i
  -,...--,-.,;w    ,  . . _ , , ,_.e.    - . - , , ,  ,,;,.~:-,.-.:-,,_,--,-,..,,...c
                                                                    -                          . . . . ,;-..,.-,-~.,,--
 
CESSAR E%",cucu O
LIST OF FIGUltF.S CilAPTIGt 3 Figures                  Subject 3.3-1    Wind Pressure Distribution Coefficients (Cp) 3.6-1    Variation of J-Integral with Loads for a Typical Case 3.7-1    Calculated florizontal & Vertical Spectra at Ground Surface for Case A-1 3.7-2    Calculated florizontal & Vertical Spectra at Foundation Level for Case A-1 3.7-3    Calculated Horizontal & Vertical Spectra at Ground Surface for Case B-1 3.7-4    Calculated florizontal & Vertical Spectra at Foundation Level for Case B-1 3.7-5    Calculated florizontal & Vertical Spectra at Ground Surface for Case B-2 3.7-6    Calculated llorizontal & Vertical Spectra at Foundation Level for Case B-2 3.7-7    Calculated llorizontal & Vertical Spectra at Ground Surface for Case B-3 3.7-8    Calculated 11orizontal & Vertical Spectra at Foundation Level for Case B-3 3.7-9    Calculated llorizontal & Vertical Spectra at Ground Surface for Case B-4 3.7-10    Calculated llorizontal & Vertical Spectra at Foundation Level for Case B-4 3.7-11    Calculated Horizontal & Vertical Spectra at Ground Surface for Case C-1 3.7-12    Calculated Horizontal & Vertical Spectra at Foundation Level for Case C-1 3.7-13    Calculated Horizontal & Vertical Spectra at Ground Surface for Case C-2 Amendment I xxvi              December 21, 1990
 
I
~
i CESSAR1lnLua i
                                          -LIST OF FIGURES-(Cont'd) f CHAPTER 3-j            Figures                                    Subject
{              3.7-14              Calculated Horizontal & Vertical Spectra at i                                  Foundation Level for Case C-2 3.7-15              Calculated Horizontal & Vertical Spectra at Ground Surface-for Case C-3' 2              3.7-16              Calculated Horizontal-&-Vertical Spectra at i                                  Foundation Level for Case C-3 1              3.7-17              Calculated Horizontal & Vertical Spectra at Ground i
Surface for Case D-1 3.7-18              Calculated Horizontal & Vertical Spectra at.
,                                Foundation Level for Case D i
:              3.7-19              Calculated Horizontal &-Vertical Spectra at Ground Surface for Case-D-1.5
:        i 3.7-20              Calculated Horizontal & Vertical Spectra at
* Foundation Levelufor'Caso B-1.5 l
4              3.7-21              Calculated Horizontal &-Vertical Spectra at Ground Surface for Case B-3.5
,            3.7            -Calculated Horizontal.& Vertical' Spectra at 1
;                                Foundation Level for Case B-3.5 l'
3.7-23              Calculated HorizontalI& Vertical Spectra at Ground Surface for Case 1C-1.5 3.7-24              Calculated Horizontal & Vertical- Spectra at-l Foundation: Level =for Case C-1.5 l              3.7-25            . Selected Smooth Spectrum and Spectrum for
[l                                Synthetic Time' History-H1-3'.7-26            Selected Smooth Spectrum and-spectrum _for Synthetic Time History-H2 3.7            Selected Smooth Spectrum and Spectrum for Vertical-Synthetic Time History V a
Amendment I xxvii-                December 21,11990:
 
CESSAR H.5Hicuen O
LIST OF FIGURES (Cont'd)
CHAPTER 3 Figures                Subject 3.7-28  Stick Model of Internal Structure (For Horizontal Analysis) 3.7-29  Stick Model of Shield Building 3.7-30  Finite Element Model of Steel Containment Vessel (For SSI Analysis) 3.7-31  Schematic Representation of Combined Structural Model of RB (SSI Analyses; Floor Eccentricities Not Shown) 3.7-32  Reactor Coolant System Seismic Analysis Model 3.7-33  Pressurizer Seismic Analysis Model 3.7-34  Surge Line Seismic Analysis Model 3.7-35  Reactor Internals Horizontal Seismic Analysis Model 3.7-36  Reactor Internals Nonlinear Horizontal Seismic Model 3.7-37  Core Seismic Model One Row of 15 Fuel Assemblies 3.7-38  Reactor Internals Linear Vertical Seismic Model 3.7-39  Reactor Internals Nonlinear Vertical Seismic Model 3.7-40  Core-Support Barrel Upper Flange Finite-Element Model 3.7-41  Damping Value for Seismic Analysis of Piping 3.8-1    Containment Details 3.8-2    Category I Structures - Typical Penetrations 3.8-3    Three-Dimensional ANSYS Containment Model O
Amendment I xxviii              December 21, 1990
 
                                                                                                                                                                                                      .m._ - . _ ,
4
;            CESSAR n!?ificari3.
!O LIST OF FIGURES (Cont'd)
:                                                                                      CHAPTER 3 t-                                                                                                ..
j              Figures                                                                  . Subject 4
3.8-4                                      Axisymmetric-ANSYS Containment Model 3.9-1                                      Reactor Coolant System Supports Diagram
!'              3.9-2                                      Summary of Analytical Methodology
,                3.9-3                                      ASHSD Finite' Element-Model of the CSB System-3.9-4                                      Control Element Shroud Tube' Finite Element Model
;                3.9-5                                      Lower Support Structure Instrument: Nozzle Assembly _
Finite Element Model-3.9-6                                      ICI Support Tube; Outer Position Finite Element Model l                3.9-7                                      Skewed Beam Support Columns Finite Element Model 3.9-8                                      Control Element Drive Mechanism (Magnetic Jack) 3.9-9                                      Reactor        Vertical Arrangement 3.9-10                                    Core Support-Barrel Assembly =
3.9-11                                    Reactor Vessel Core Support Barrel Snubber Assembly 3.9-12                                      In-core _ Instrument. Support Structure 3.9                                    Core Shroud; Assembly i                3.9-14                                    Upper Guide Structure Assembly i
3.9-15                                    In-core Instrument System                                                                                                                              .
4 4
J
      \
Amendment-I xxix                                                                      December 21,'1990          -
    -  -  . _ . . . . - - - _ . _ . - .                  _.  ,,        , . . _ , , . .      . , _ . . , . - , , - _ . . . _ _ . - . . _ . . _ - _ - , . _ . . , _ . . , _ . . . _ _ . . _ . ~ -
 
w    m  a  s-  -    w-an,s.a m. sa,-,omm      w=-naz.aa am_a,s.aa                        -    w        w  - - m1e asi.ma u. -
esa-    a  r,,..  ,a    a,s a  mans.,cxmm.,        s.,s..+4,e.as x.maaw.--mue..wa,-sn..w h
i
)
i i,
G O
i                                                                                                                                                                                                                                                    9 E
i l
i l
l l
l l
t i
i l
i 4
I i
5
(
l i
9 r
I t
l I
i i
t t
e 4
i i
1 4
L 1
l l
9 1
e i
1 4
l
  - , - ~ . - . - , - - . - . _ , .      . - . . _ . . . - - - - - - , ~ - - . . - - . - , ..--.-,- ..-.~. . - ~ ~ - __~~ -.                  --w.-_.__      _ ._. _ . - _ .-_ _ _ _ _ _ - - - -.--__ _ _ _ _
 
E u+44J---a              h      4dr-,                  4A 4-A + , - -. 4          Ar                      Ni ri ><    NAN -.?<-'JW8L80'A              -                _La
                                                                                                                                                                                            -        2--A.* J '
s CESSARHSL .
l        3.0                                    DESIGN OF-STRUCTURES, COMPONENTS, EQUIPMENT, AND i                                                SYSTEMS l
i        3.1                                    CONFORMANCE WITH NRC CENERAL DESIGN CRITERIA
!        In this section, brief discussions are presented in response to 4        the current General Design Criteria for Nuclear Power Plants, Appendix A to_10.CFR 50.                                                                These discussions summarize the manner
;        in whicn the principal design features meet the individual i        criteria and include references to sections of the safety j        analysis report where more detailed.information in given.
i
!        3.1.1                                          CRITERION 1 - QUALITY STANDARDS AND RECORDS j        Structures, systems, and components important-to safety.shall be designed, fabricated, erected, and tested to' quality standards-commensurate with the importance of the safety functions-to be performed.                                        Where generally - recognized codes and standards ure used, they shall be identified and evaluated to determine their applicability, adequacy, and sufficiency and shall be supple-
!        mented or modified as necessary to assure _ a -quality product in j        keeping with the required safety function. A quality assurance l ,-      program shall be~ established and' implemented in order to provide
;  (      adequate assurance that'these structures, systems, and compe ants i        will satisfactorily perform-their safety-functions.                                            -
Appropc: late
;        records of the design', fabrication,- erection, and testing of
;        structures, systems, and components important to safety shall be
;        maintained by or under the control of the nuclear power unit licensee throughout the life of the unit.
 
===RESPONSE===
The structures, systems, and components described in CESSAR are classified according to their importance .in the prevention and mitigation of accidents using the classification system described i          in ANSI /ANS _51.1.                                                      Each safety-related component -is - given ' a D
.          safety class designation.                                                                          The codes, standards, -and quality control applicable .to each component- and its safety class
;        _ designation are identified in Section 3.2.                                                                                                        Where applicable, D design and fabrication are in accordance with the codes required in 10 - CFR 50.55a. The quality -assurance program conforms with
* the requirements of 10 - CFR 50, Appendix B, " Quality-- Assurance Criteria - for Nuclear Power Plants," and is_ presented inxChapter j-        17. _ Chapter 14 describes initial. tests and-operations to assure performance                                            of          installed                          equipment commensurate- with- .the importance of the safety function.
The design, fabrication, and-quality programs for components not included..in the ANSI classification system are governed by Amendment D 3.1-1                                            September 30, 1988-I
    . -                . . _ - _ . - . . . . _ . , . - _ - _ , -                      - . _ _ . ~ . - , . . . . _ -              _.              . _ . . _ _ _ _ - - . ~ . _ _ . . . _ . _ _ . ,
 
CESSAR EL"lCATl:N O
industry  codes  appropriate    to  the    application. Details  of conformance to those codes are found in the appropriate CESSAR sections.
3.1.2        CRITERION 2 - DESIGN BASES FOR PROTECTION AGAINST NATURAL PHENOMENA Structures, systems, and components important to safety shall be designed to withstand the effects of natural phenomena such as earthquakes, tornadoes, hurricanes, floods, tsunami, and seiches without loss of capability to perform their safety functions.
The design bases for these structures, systems, and components shall reflect:    (1) appropriate consideration of the most severe of the natural phenomena that have been historically reported for the site and surrounding area, with sufficient margin for the limited accuracy, quantity, and period of time in which the historical    data    have    been    accumulated;    (2) appropriate combinations of the effects of normal and accident conditions with  the  effects  of  the  natural    phenomena;  and,  (3)  the importance of the safety functions to be performed.
 
===RESPONSE===
The structures,    systems,    and components designated Seismic Category I are desigt.ed to withstand, without loss of function, the effects of any one of the most severe natural phenomena,            D including flooding, hurricanes, tornadoes, and the Safe Shutdown Earthquake (SSE) (refer to Chapter 2).        Design criteria for wind and tornado, flood and earthquake are discussed in Sections 3.3, 3.4, and 3.7, respectively.
The seismic design of safety-related structures,          systems,  and components is consistent with conservative structural envelopes.
These " envelopes" have been selected based on the design basis earthquakes at the majority of potential plant sites in the continental U.S., using current containment structure designs.
In the design stage, normal operating and accident loads are appropriately combined with the seismic loads and allowable stress limits and deformations are defined so that safety functions are not jeopardized.
3.1.3        CRITERION 3 - FIRE PROTECTION Structures, systems, and components important to safety shall be designed and located to minimize, consistent with other safety requirements, the probability and effect of fires and explosions.
Noncombustible and heat resistant materials shall be used wherever practical throughout the unit, particularly in locations O
Amendment D 3.1-2                September 30, 1988
 
o CESSARHnLmn O
such as the containment and control room.                                                    Fire detection and fighting systems of appropriate capacity-and capability shall be provided and designed to minimize the adverse effects of fires-on structures,-    systems,                                        and        components- important                  to  safety.
Firefighting systems shall be designed. to assure that their rupture or inadvertent operation does not significantly impair the    safety    capability                                            of  these    structures,                systems,    and components.
 
===RESPONSE===
All pressure boundary components and structures and the attendant auxiliary systems in System 80+ design scope are ~ designed to minimize ~ the probability and effects of fires and explosions.
High grade noncombustible and fire resistant materials are used for  components      located                                          in  the  containment,                components of engineered safety feature systems, and throughout the unit wherever practical.                                A detailed - functional description of the, Fire Protection System is provided in'Section 9.5.1.                                                                            D 3.1.4        CRITERION 4 - ENVIRONMENTAL AND MISSILE DESIGN BASES                                                                  I Structures, systems and components important to safety shall be O  designed to accommodate the effects of and to be compatible with the environmental conditions associated . with normal operation, maintenance, testing, and postulated accidents, including loss of coolant accidents.                            These structures, systems, and components shall    be appropriately protected against dynamic                                                                    effects, including the effects of missiles, pipe whipping, and discharging fluids, that may result from equipment failures and from events and conditions outside the nuclear power unit.- However, dynamic effects associated with postulated pipe ruptures in nuclear power units may be excluded from the design basis _ when analyses                                                                      o reviewed and approved by the Commission demonstrate that -the-probability of fluid system piping rupture is extremely' low under conditions consistent.with the design basis for the piping.
 
===RESPONSE===
Structures,    systems, -and components important to safety -are lK designed to accommodate-the effects of and to be compatible with the environmental conditions associated with normal operation, maintenance,    testing,                                            and -postulated      accidents,                including loss-of-coolant-accidents (see Section 3.11).
Where    appropriate,                          Standardized                      Functional  Descriptions                will  D include design requirements to ensure that these structures, systems, and components will be appropriately protected against dynamic O
effects-                (including                              the    effects  of                missiles,  pipe Amendment K 3.1-3                              October 30, 1992
 
CESSAR EL"icari:n O
whipping, aM discharge of fluids) that may result from equipment failures, postulated accidents, and from events and conditions outside the nuclear power unit.
The reactor building is capable of withstanding the effects        of missiles originating outside the containment such that            no D credible missile can result in a LOCA.          The control room  is designed to withstand such missiles as may be directed toward      it and still maintain the capability of controlling the plant.
3.1.5        CRITERION 5 - SIIARING OF STRUCTURES, SYSTEMS, AND COMPONENTS Structures, systems, and components important to safety shall not be shared among nuclear power units unless it can be shown that such sharing will not significantly impair their ability to perform their safety functions, including, in the event of an accident in one unit, an orderly shutdown and cooldown of the remaining units.
 
===RESPONSE===
The System 80+ design is based on non-shared systems.
3.1.6        CRITERION 10 - REACTOR DESIGN The reactor core and associated coolant, control and protection systems shall be designed with appropriate margin to assure that specified acceptable fuel design limits are not exceeded during any condition of normal operation, including the effects of anticipated operational occurrences.
 
===RESPONSE===
Specified Acceptable Fuel Design Limits (SAFDLs) are stated in Section 4.4.1. Operation within the operating limits (Limiting Conditions    for    Operation)    specified    by  the  Technical Specifications will keep the reactor fuel within the SAFDLs for normal    operation    and  during  any  Anticipated  Operational o Occurrence.
The plant is designed such that operation within Limiting Conditions for Operation with safety system settings not less conservative than the Limiting Safety System Settings prescribed in the Technical Specifications results in confidence that SAFDLs will not be exceeded as a result of any Anticipated Operational        D occurrence. Operator action, aided by the control systems and monitored by plant instrumentation, maintains the plant within Limiting Conditions for Operation during normal operation.
Amendment D 3.1-4                September 30, 1988
 
1 f                  -CESSAR8!.h .
.n
,. V
;                        See the following sections for additional information:
A.      Fuel System Design, Section 4.2 L.                      B.      Reactor Coolant System, Chapter 5 I                                                                    -
D C.      Shutdown Cooling System, Section 5.4.7
!                        D.      Reactor Protective System, Section 7.2 J
E.      Analysis of Anticipated Operational Occurrences, Chapter 1 j                        F.      Technical Specifications,' Chapter 16 i                        3.1.7              CRITERION 11 - RFACTOR INHERENT PROTECTION l                        The reactor core and associated coolant systems shall be designed v                        so that in the power operating range the net effect of the prompt.
i                        inherent nuclear' feedback characteristics tends to compensate for j                        a rapid increase in reactivity.
J
 
===RESPONSE===
In the power operating range, the combined response of the fuel temperature coefficient, the moderator- temperature coefficient, the moderator void coefficient,                                                    and' the ' moderator. pressure coefficient to an' increase in reactor power will be a decrease in reactivity; i.e., the inherent nuclear feedbmck ch:rdcteristica l                        will not be positive ~.
The reactivity coefficients for this reactor . are ' discussed in l                        detail in.Section 4.3.
l-i-                        3.1.8              CRITERION 12 - SUPPRESSION OF RFACTOR POWER OSCILLATIONS 1
!                        The reactor core and associated coolant, control, and protection-l                        systems shall be designed to assure-that power oscillations which 4                        can result in conditions' exceeding specified acceptable fuel
,                        design limits are not possible or can be reliably and readily
;                        detected and suppressed.
 
===RESPONSE===
d Power level' oscillations                              do not -occur.                        The effect of the negative. power Ecoef ficient of reactivity '( s e e . G D C 11, - 'Section 3.1.7), together with the coolant temperature program' maintained 4
by control of' regulating rodst and soluble boron, provides-
: f                      fundamental - mode                  stability.                                . Power --level          is      continuously.
!= \                      monitored by neutron. flux detectors (Chapter 7).
i-
,                                                                                                                                    Amendment'D
;                                                                                              3.1-5                                September 30, 19881
      ~..._ ..-._m.u      .- ,    -,___a-.    , , ~ , . .        , - , , - . . . - . . ~ . _ . . - .        .  ,          ...-..--.~.,..;_,...._,,,_,....,_,,.  -
 
CESSAR RL"icari:n O
Power distribution oscillations are detected by neutron flux detectors. Axial mode oscillations are suppressed by means of part-strength or full-strength neutron absorber rods.          All other modes of oscillation are expected to be convergent.            Monitoring lD and protective requirements imposed by Criteria 10 and 20 are discussed in Sections 3.1.6, 3.1.16 and in Chapter 4.
3.1.9        CRITERION 13 - INSTRUMENTATION AND CONTROL Instrumentation shall be provided to monitor variables and systems over their anticipated ranges for normal operation, for Anticipated Operational Occurrence, and for accident conditions as appropriate to assure adequate              safety,  including those variables and systems that can affect the fission process, the integrity of the reactor core, the reactor coolant pressure boundary,    and the containment and its associated systems.
Appropriate controls shall          be  provided to maintain        these variables and systems within prescribed operating ranges.
 
===RESPONSE===
Instrumentation is provided to monitor significant process variables which can affect the fission process, the integrity of the reactor core, the Reactor Coolant Pressure Boundary (RCPB) and their associated systems.          Controls are provided for the purpose of maintaining        these variablos      within the      limits prescribed    for  safe    operation.      Instrumentation    for    the containment and its associated systems can be              found in the appropriate CESSAR chapters and in the site-specific SAR.
principal process variables to be monitored and controlled are:The lD A. Neutron flux level (reactor power)
B. CEA positions C. Neutron flux distribution (at various axial positions)
D. Reactor coolant temperature and pressure E. Reactor coolant pump speed F. Pressurizer level G. Steam generator level and pressure In addition, Departure from Nucleate Bolling Ratio (DNBR) margin and  Local  Power  Density    (LPD)  margin,  in  kW/ft,  are  also monitored.
O Amendment D 3.1-6            -  September 30, 1988
 
[            CESSAR nutricaricu-
.          The Plant Protection System ~ (PPS) consists of _the Reactor and the Engineered Safety Features Protective System- (RPS)
>            Actuation System (ESFAS). _ The RPS is' _ designed to monitor NSSS operating conditions and to_ initiate reliable and rapid reactor shutdown if . monitored variables or combinations of monitored
.            variables deviate from -the permissible _ operating -range to a degree'that a safety limit may.be reached.
The ESFAS is designed to monitor -plant' variables and to actuate Engineered Safety Feature (ESF) systems during a _ design basis-1 event.
The following are provided to monitor and maintain control over the fission process during transient and ' steady state periods over the lifetime of the core:
A. Redundant channels of ex-core nuclear instrumentation, which constitute the primary means of monitoring the fission process for protection, control and low power operation.                                                      D B. Redundant and diverse CEA position indicating systems - for each CEA.
: h.        C. Manual and automatic control of teactor_ power . by means of h              CEAs.
D. Manual regulation of coolant boron concentration.
E. A Boronometer, which determines the boron concentration in the reactor coolant by neutron absorption, provided as a backup to the primary method of determining soluble poison concentration by routine sampling and analysis . of reactor coolant.
F. In-core instrumentation, provided'to supplement information on core power distribution and; to enable calibration of-ex-core flux detectors.
The non-nuclear instrumentation measures; temperatures, pressures, flows and levels in the Reactor Coolant System:and main steam and auxiliary systems and is used to_ maintain these-variables within
,            the prescrioed limits.            The instrumentation and ' control systems are described in . detail in Chapter 7.                                            The Boronometer is discussed  in Sections 7.7.1.1.7 and 9.3.2 while the process radiation monitor is discussed.in-Section 9.3.2.                                                        '
D When-it is required that a variable be monitored during and after a Design Basis Event (DBE) ,- in ' addition to normal operation, the v
Amendment D 3.1-7                                    September 30, 1988
                                  ,m-m  .,,,,.--m.,,...e,.      -m,,-..--e        ,-,--,,,-m.m.,.m-
                                                                                                      ~ , - , m n - - w- % .yo. p -
 
CESSARMNnce results of analysis of the course of the event are used to ensure e
that the instruments provided will cover the range anticipated for the event conditions.
3.1.10        CRITERION 14 - REACTOR COOLANT PRESSURE BOUNDARY The reactor coolant pressure boundary shall be designed, fabricated, erected, and tested so as to have an extremely low probability of abnormal leakage, of rapidly propagating failure, and of gress rupture.
 
===RESPONSE===
The reactor coolant pressure boundary is defined in accordance with 10 CFR 50.2(v) and ANSI /ANS 51.1 (see response to GDC 55,                  D Section 3.1.48).
Reactor Coolant    System components are designed to meet the requirements of the ASME Code,          Section III.      To establish operating pressure and temperature limitations during startup and shutdown of the Reactor Coolant System, the fracture toughness rules defined in the ASME Code, Section III, are followed.
Quality control,      inspection,    and testing are performed as required    by  ASME    Section    III    and  allowable    reactor pressure-temperature operations are specified            to  ensure  the integrity of the Reactor Coolant System.
The reactor coolant pressure boundary is designed to accommodate the system pressures and temperatures attained under all expected modes of unit operation including all anticipated transients, and maintain the stresses within applicable limits.
Piping and equipment pressure parts of the reactor coolant pressure boundary are assembled and erected by welding unless applicable codes permit flanged or screwed            joints. Welding procedures are employed which produce welds of complete fusion and free of unacceptable defects.            All welding procedures, welders,    and welding machine operators are qualified                  in accordance with the requirements of Section IX of the ASME Boiler and Pressure Vessel Code for the materials to be welded.
Qualification records, including the results of the precedure and performance qualification tests          and  identification    symbols assigned to each welder are maintained.
The pressure boundary has provisions for in-service inspection in accordance with Section XI of the ASME Boiler and Pressure Vessel Code, to ensure continuance of the structural and leak-tight integrity of the boundary (see response to GDC 32, Section 3.1.28). For the reactor vessel, a material surveillance program conforming with the requirements of Appendix H to 10 CFR 50 is provided.
Amendment D 3.1-8                September 30, 1988
 
d CESSAR M& -
3-3.1.11          CRITERION 15 - REACTOR-COOLANT SYSTEM DESIGN
!                      The Reactor Coolant System (RCS) and ~ associated- auxiliary, control, and protection systems shall be designed with sufficient margin to assure' that the design' conditions of the reactor coolant pressure boundary are not exceeded during any condition
;                        of normal operational occurrences.
I
 
===RESPONSE===
The design criteria and bases for the reactor -coolant pressure
;                        boundary.are described in the response to Criterion 14.
The operating conditions for normal steady state and transient plant      operations        are                      established        conservatively.                      Normal i
operating limits are selected so that an adequate margin' exists between them:and the design -limits.                                      The plant control- systems are designed to ensure that plant variables are maintained well within the established operating limits.                                            The- plant transient response      characteristics                                  and'  pressure        and  . temperature distributions during normal operations ~ are . considered in the design as well as the accuracy and response of'.the instruments-
!    f                  and controls. These design techniques ensure that a-satisfactory I
margin is-maintained between the plant's normal operating condi-tions, including design transients, and the design limits-for the reactor coolant pressure boundary.
Plant control systems function to minimize the deviations from normal operating limits in the event of most Anticipated
;                        Operational Occurrences. Where control systems-response would be inadequate or fail upon demand, the Plant Protection- System functions to mitigate the consequences of such events.
,                        The      Plant    Protection                          System        functions        to  mitigate                      the consequences in ' the event of accidents.                                        Analyses show that the design limits for the reactor coolant pressure boundary are not exceeded in the event of any ANSI /ANS 51.1. conditions.                                                                              D 3.1.12          CRITERION 16 - CONTAINMENT DESIGN Reactor containment'and associated systems shall be provided .to establish      an  essentially- leak-tight                                    barrier    against' the-uncontrolled release of radioactivity to the environment and to D assure-that the containment design conditions important to safety are not exceeded for as'long as postulated accident conditions require.-
i
(
    \
Amendment D 3.1-9                    September 30, 1988
 
CESSAREnecm O
 
===RESPONSE===
The containment system is designed to protect the public from the consequences of a LOCA, based on the equivalent energy release of a postulated break of reactor coolant piping up to and including a double-ended break of the largest reactor coolant pipe.
The containment vessel,      shield building, and the associated D Engineered    Safety Feature    systems are    designed to safely withstand all internal and external environmental conditions that may reasonably be expected to occur during the life of the plant, including both short- and long-term effects following a LOCA.
Leak-tightness of the containment system and short- and long-term performance following a LOCA are analyzed in Section 6.2.
3.1.13        CRITERION 17 - ELECTRICAL POWER SYSTEMS An onsite electric power system shall be provided to permit functioning of structures, systems and components important to safety. The safety function for each system (assuming the other system is not functioning)        shall be to provide sufficient capacity and capability to assure that (1) specified - acceptable fuel design limits and design conditions of the reactor coolant pressure boundary are not exceeded as a result of Anticipated Operational    Occurrences  and    (2) the    core  is  cooled  and containment integrity and other vital functions are maintained in the event of postulated accidents.
The onsits electric power supplies, including batteries, and the onsite electric distribution system,          shall have sufficient independence, redundancy and testability to perform their safety functions assuming a single failure.
Electrical power from the transmission network to the onsite electric distribution system shall be supplied by two physically independent circuits (not necessarily on separate right of ways) designed and located so as to minimize to the extent practical any likelihood of their simultaneous failure under operating and postulated accident and environmental conditions. A switchyard common to both circuits is acceptable.        Each of these circuits shall be designed to be available in sufficient time following a loss of all onsite alternating current power supplies and the other of fsite electric power circuit, to assure that specified acceptable fuel design limits and design conditions of the reactor coolant pressure boundary are not exceeded.        One of these circuits shall be designed to be available within a few seconds following a loss-of-coolant-accident to assure that the core cooling, containment integrity and other vital safety functions are maintained,                                                            i 1
Amendment D 3.1-10                  September 30, 1988 l
 
i CESSAR Ennr"icaricu-U Pro _ visions shall be. -included ' to minimize the probability - of losing electric _ power from any of the . remaining supplies as-a result of, or coincident with,-the loss of. power: generated by the' nuclear power unit,                          the loss of power : from the transmission
              -network or the loss _ of power. from -- the onsite electric - power-supplies.
 
===RESPONSE===
The System- 80+ Standard Des'ign is provided with an _onsite electric: power system and an of f site: electric power: system _to permit            functioning                of  structures ~,_  ' systems _ and. components
              -important to safety in full compliance with the requirements.of
              -this criterion as described in Chapter 8.-
The onsite electric power system consists of-separate,-red'undant and independent distribution; systems _and dedicated power supplies with sufficient capacity,-capability, and testability to-perform their safety functions assuming a single' failure.-
D The offsite electric power . system consists of .two _ physically independent. circuits from the-station? switchyard.                              Each circuit is          immediately available- .and                    has- sufficient capacity- and
(        capability to perform its safety function, s
Provisions are made to minimize the probability of losing electric power from any of the remaining supplies as a result of, or coincident with,.the loss of power generated _ by the nuclear power unit.
3.1.14                      CRITERION 18 - INSPECTION AND TESTING OF ELECTRICAL
                                          ' POWER SYSTEMS Electrical power systems important to safety shall be designed to permit appropriate-periodic. inspection and testing-of important areas _and features, such as wiring,l insulation, connections, and switchboards, to assess the continuity 7of the systems and the j              condition of their _ components. -                          Tho' systems . shall be ' designed with a capability to test periodically (1) the operability _and functional performance of :the : components- of. the _syste_m such'as i              onsite _-power sources, _ relays, switches, f and- buses t and - (2) the L              operability of7 the systems as a whole and, under conditions as.
l            close to_ design as practical, the full operation _ sequence _ that brings the system                            into    operation,    ' including- operation . of '
applicable portions.~of the protection system,.and the-transfer of power amongLthe nuclear power unit, the offsite power system and                          '
the onsite power system.
(
(
Amendment D 3.1-11                  September-30, 1988
,-    2.        , _ . . _ .        .-.._.,__.._.a-_.~_.,_,,.-a_,__._.                            ~ , , _ _ , _ , _ , , _
 
CESSAR8Ha ms O
 
===RESPONSE===
Electrical power systems important to safety are designed to permit appropriate periodic inspection and testing of important areas and features, such as wiring, insulation, connections, and switchboards, to assess the continuity of the systems and to detect deterioration, if any, of their components. Capability is provided to periodically test the operability and functional                D performance of the system components. The diesel generator sets will be started and loaded periodically on a routine basis, and relays, switches, and buses will be inspected and tested for operation and availability on an individual basis.
Transfer from normal to emergency sources of power will be made to check the operability of the systems and the full operational sequence that brings the systems into operation.
Refer to    Section  8.3.1,  8.3.2  and  16.11  for  more  detailed lK information.                                                              lD 3.1.15        CRITERION 19 - CONTROL ROOM A control room shall be provided from which actions can be taken to operate the nuclear unit safely under normal conditions and to maintain it in a safe condition under accident conditions, including      loss-of-coolant-accidents.        Adequate      radiation protection shall be provided to permit access and occupancy of the control room under accident conditions without personnel receiving radiation exposure in excess of 5 rem _whole body, or its equivalent to any part of the body, for the duration of the accident.
Equipment at appropriate locations outside the control room shall be provided (1) with a design capability for prompt hot shutdown of the reactor, including necessary instrumentation and controls to maintain the unit in a safe condition during hot shutdown.
(2) with a potential capability for subsequent cold shutdown of the reactor through the use of suitable procedures.
 
===RESPONSE===
All    control  stations,  switches,  controllers,  and  indicators necessary to operate or shut the unit down and maintain safe control of the facility are located in the control room.
D The design of the control room permits safe occupancy during abnormal conditions. The employment of non-combustible and fire retardant materials in the construction of the control room, the limitation of combustible supplies, the location of fire fighting equipment, and the continuous presence of a highly trained Amendment K 3.1-12                October 30, 1992
 
CESSAR innema operator will minimize the possibilit,                                    the control room will becomo      uninhabitable'.                      Shielding      e      asigned                to    maintain tolerable radiation exposure levc                                      slowing                design ' basis accidents. The control room _will t                                      ated from the outside atmosphere during the initial period                                    sing the occurrence of an accident.- The-Control Room Ventilation' System is designed to recirculate cool control room air as discussed in Sections 9.4.1 and    12.2.      Radiation                    detectors      and -alarms                  are    provided. D Emergency lighting is provided as discussed in Section 9.5.3.
Alternate    local          controls- and              instruments              are        available- for equipment required to bring the plant to and maintain a hot standby condition.                    It is also possible to attain a cold shutdown.
condition from locations outside of-the control room.through the use. cf suitable procedures.                          Refer to Section' 7.4.1.1.10.                            A discussion of the unit's                              control      room              is    provided        in Section 7.7.1.3            with' human                factors-      issues                discussed .in Chapter 18.
A discussion of the hot and cold shutdown capability is-provided in Section 7.4 for the. systems required for safe shutdown.
Discussion regarding adequate radiation-protection for the unit's control facilities is provided in Section 6.4 and in-Chapter 12.
3.1.16 f
,                          CRITERION 20 - PROTECTION SYSTEM FUNCTIONS-The    protection _ system                      shall  be    designed                (1)      to    initiate automatically the operation of appropriate systems including the reactivity control systems, to assure that specified acceptable fuel design limits are not exceeded as a .' result of anticipated operational occurrences and-(2) to sense-accident conditions and to initiate the operation of systems and components important to-safety.
 
===RESPONSE===
A    Plant Protection System -(PPS),- consisting- of . a Reactor Protective System                      (RPS)      and an Engineered > Safety- Features Actuation- System (ESFAS), is provided.                                  The RPS automatically initiates a reactor trip when any                                of the monitored. process            -
variables reach a- trip setpoint.                                _The ESFAS automatically actuates- Engineered Safety Feature                              '(ESP)          systems and their                D support systems when:any of the monitored process variables' reach i          a predetermined setpoint.
The trip setpoints of the RPS are selected to ensure that Design Basis Events- (DBEs) which are expected- to occur once or more during the life of the nuclear generating station do not cause I      N  the violation of SAFDLs.                            The reactor trips also help the ESF j  systems in mitigating the consequences'of DBEs which are expected Amendment-D 3.1-13                                  September 30, 1988-
= _ .                  _        _ - _ -.._ , _ ,_ _ . _                          ,.. _ . , , , . ,            .a -, _ -.      . . _ .
 
CESSAREMem 0
to occur once during the life of several plants as well as arbi-trary combinations of unplanned events and degraded systems that are never expected to occur,          to within acceptable limits.
Reactor trip is accomplished by de-energizing the Control Element Drive Mechanism (CEDM) coils through the interruption of the CEDM power supply either automatically or manually.          The CEDM power
, supply ir a pair of full capacity motor-generator sets. The path to the CEDMs      is  interrupted by opening the Reactor Trip Switchgear. With the CEDM coils de-energized, the CEAs are released to drop into the core by gravity, rapidly inserting negative reactivity to shut the reactor down.            The CEDMs are described in Section 4.2, the specific reactor trips used are described in Section 7.2.
The ESF systems are actuated to minimize the effects of incidents which could occur. Controls are provided for manual actuation of the ESF system.      The process variables which automatically lD actuate the ESF system and the circuitry arrangements for the ESFAS are discussed      in  Section  7.3. The  ESF  systems  are discussed in Chapter 6.
The SAFDL on linear heat rate and DNBR are intended to enforce the principal thermal hydraulic design basis given in Section 4.4.1 (i.e., the avoidance of thermally induced fuel damage during normal steady state operation and during Anticipated D Operational occurrences).
3.1.17        CRITERION 21 - PROTECTION SYSTEM RELIABILITY AND TESTABILITY The protection system shall be designed for high functional reliability and in-service testability commensurate with the safety functions to be performed.        Redundancy and independence designed into the protection system shall be sufficient to assure that (1) no single failure results in loss of the protection function and (2) rrmoval from service of any component or channel does not result in loss of the required minimum redundancy unless the acceptable reliability of protection system operation can be otherwise demonstrated.      The protection system shall be designed to permit periodic testing of its functioning when the reactor is in  operation,    including    a  capability    to  test    channels independently to determine failures and losses of redundancy that may have occurred.
 
===RESPONSE===
The PPS is designed to provide high functional reliability and in-service testability.      The protection system is designed to comply with the requirements of IEEE 279-1971,            " Criteria for Protection Systems for Nuclear Power Generating Stations," and          D Amendment D 3.1-14                September 30, 1988
 
l                  CESSAR1nnema                                                                                                                        ,
i                  IEEE = 603-1980,                              " Criteria ~ for Safety Systems for ' Nuclear- power i                  Generating Stations," and 'other standards as noted in Section                                                                D j                  7 .1. 2 . - No credible single- f ailure - Will result in loss of the protection function.                                            The~ protection channels are independent _                          ,
j                  with r e s p e c t ._ t o _ w i r e routing,                                      sensor mounting, and supply ' of -
power.
Each channel of the protection system, including the sensors, up                                                                    :
-                    to the Reactor Trip Switchgear System -(RTSS)' and ESFAS actuation
;                    devices, is capable of being checked during reactor operation.
i                    Process sensors of each channel in the _ protection systems are
!                    checked by comparison of the redundant process sensor values D'
:                    using the discrete indications and alarms on . the control room
!                    panels as described in=Section 7.7.1.3.1.- Discrepancies among redundant channel sensors beyond specified limits are alarmed as described in Section 7.7.1.4.3_and Chapter 18.
l                    The RTSS and ESFAS are described in Chapter 7.
To minimize inadvertent actuation. of                                                      an--ESF system or an
:                    inadvertent reactor trip,- the -protection systems utilize--a i
coincidence of two logics to gerate.. -In addition,. the channel being_ tested is bypassed so that the-protection-system converts l    g to a two-out-of-three logic-while maintaining the coincidence of two.      This allows periodic testing and? operation of the.Various protective functions without reducing the availability of the protection systems.
:                    3.1.18                            CRITERION 22 - PROTECTION SYSTEM INDEPENDENCE l
:                    The protection system shall .be- designed to assure that the f
effects              of              natural                  phenomena,            and  of _ normal        operating, 1
maintenance,                          testing --and postulated -accident-_ conditions on redundant channels do not result _ in                                                    loss of - . the protection
,                    function or shall be- demonstrated -to be acceptable on some; other 1                    defined basis.                                Design- techniques, such- as -_ functional diversity
:                    or diversity in component design ' and principles o f . o p e r a t i o n ,'      -
.                    shall be used to the extent- practical to prevant- loss - of . the p                    protection function.
RESPONSE:.
i                    The protection systems conform to the independence - requirements '
of  IEEE 279-1971.                                          Four : independent- measurement- channels,
.                    complete with sensors, sensor power-supplies,: signal, conditioning-units, -and Lbistable trip functions are--provided for -each protective _ parameter monitored by' the protection systems except i                      for the CEA position sensors which are two-fold redundant. The a
p                measurement channels are provided with a high- degree. of V'
e Amendment D'
;_                                                                                                3.1-15.                September 30, 1988-E      _ . _ ,      ,      , _ _ _ _ , _ _ _ . _ . . . _ _ , _ . _ - _ , _ - .                                            _ _ . - . .      _._._  _
 
CESSAR ESinem independence by separate connection of the channel sensors to the O
process systems.        Refer to Chapter 7 for a more detailed discussion of the protection systems, power to the protection system channe's                is    provided  by
, independent vital power supply buses. The power supply systems              D are discussed in Chapter 8.
Functional diversity is incorporated into the system design, to the extent practical, to prevent loss of the protective function.
Whenever an RPS trip function is required it is frequently backed up by other trip functions. The ESFAS actuation signals are used to actuate two independent ESF trains. Where it is practical, an ESFAS can be generated by more than one parameter.
The    Alternate Protection System augments reactor trip and                3 emergency    feedwater actuation by using separate and diverse non-1E trip logic from that used by the Plant Protection System.
The design goals are accomplished without excessive complexity by using only four channels for each parameter.            This _ allows for testing and maintenance of a channel without reducing the system to a    single channel for trip, which would make the system susceptible to spurious trip or actuation signals.
The protection systems are each functionally tested to ensure satisfactory    operation prior to installation in the plant.
Environmental    and seismic qualifications are also performed utilizing' type tests, specific equipment tests, appropriate analyses,    or    prior    operating    experience.      For    forther information, refer to Sections 3.10 and 3.11, 3.1.19        CRITERION 23 - PROTECTION SYSTEM FAILURE MODES The protection systen shall be designed to fail into a safe state or into a state demonstrated to be acceptable on some other defined basis if conditions such as disconnection of the system, loss of    energy    (e.g.,  electric power,    instrument air)      or postulated adverse environments (e.g., extreme heat or cold, fire, pressure, steam, water, and radiation) are experienced.
 
===RESPONSE===
The Plant Protection System trip channels are designed to fail              D into a safe state or into a state established as acceptable in the event of loss of oower supply. A failure is assumed to occur in only one channel (i.e., a single f ailure) .        This channel can be  placed    into    bypass  which  places  the  RPS/ESFAS    local  D coincidence logic into a two-out-of-three configuration which Amendment D 3.1-16                  September 30, 1988
 
L              CESSAR n'&"icatieu 4
I              retains the ~ coincidence of two for trip initiation. -Refer to Sections 7.2 and 7.3 for Failure Modes and Effects Analysis D information.
A loss of power to CEDM coils will cause the'CEAs.to insert into.
                                                                                                                              ~
the ' core.              Redundancy, channel independence and separationE are incorporated into the protection system design to minimize the possibility of the loss of a protective - function. _ The loss.of
.              offsite power will cause the standby diesel electric generators
;              to start and energize the ESF trains which have actuation signals i              present.
3.1.20                        CRITERION SEPARATION OP PROTECTION AND-CONTROL SYSTEMS
!              The protection system shall be separated from control; systems to i              the extent that failure of any single control system component or channel, or failure or removal                                        from service of- any single i              protection system component or channel which is common to the control and protection systems leaves intact a system satisfying all reliability, redundancy, and independence requirements of.the
:              protection system. _-Interconnection of the protection and control systems shall be limited so as to _ assure that safety -is not I              significantly impaired.
 
===RESPONSE===
I
!              Protection system components and control system components are-
'              electrically and functionally isolated                                        from each other.                    See        '
Sections 7.2, 7.3 and 7.7.1.1.13 for details.
l              The protection systems are designed so'that.they can sustain one
,              channel        in                a            tripped condition and one channel bypassed indefinitely and stil) provide their-safety function.
Where control and protection systems have.--identical sensor input requirements,                            redundant          Class  1E  sensors      that      are            used i              independently by .each channel of the protection system may also be used . by the - control -system.                                  For each. sensed parameter, the l              control. system monitors all four redundant: instrument channels, j'              which are interfaced to the _ control system via fiber-optic interfaces to ensure electrical independence.                                        Within.the control D system, signal validation logic is used to : detect bypassed or
,              failed sensors, - thereby ensuring that they cause- no - erroneous control systems actions.                                      The control system signal validation-logic is _ described in Section- 7.7.1.1.13                                          The design ens that with a-sensor or channel in bypass, a k er sensor can ures-                                                fail with no resulting control system action.                                        Therefore, with one channel in bypass, the protection system remains in'an effective
(            two-out-of-three configuration,                                      meeting  the_ required.            single failure criteria.
Amendment D 3.1-17                  September 30, 1988
 
CESSARM52cm O
3.1.21        CRITERION 25 - PROTECTION SYSTFM REQUIREMENTS FOR REACTIVITY CONTROL MALFUNCTIONS The protection system shall be desia.1ed to assure that specified acceptable fuel design limits are not exceeded for any single malfunction of the reactivity control systems such as accidental withdrawal (not ejection or dropout) of control rods.
 
===RESPONSE===
Shutdown of the reactor is accomplished by the opening of the RTSS circuit breakers which interrupts power to the CEDM coils.
  , Actuation of the circuit breakers is independent of any existing control signals.
The protection systems are designed such that SAFDLs are not exceeded for any single malfunction of the reactivity control systems,  including    the  withdrawal  of  a  single    full-  or D part-strength CEA.      Analyses of possible reactivity control system malfunctions are discussed in Chapter 15. The various CEA related DBEs for which the protection systems are designed are discussed in Section 7.2.
3.1.22        CRITERION 26 - REACTIVITY CONTROL SYSTEM REDUNDANCY AND CAPABILITY Two independent reactivity control systems of different design principles shall be provided.        One of the systems shall use control rods, preferably including a positive means for inserting the rods, and shall be capable of reliably controlling reactivity changes to assure that under conditions of normal operation, including    Anticipated      Operational    Occurrences,    and    with
,  appropriate margin for malfunctions such as stuck rods, specified acceptable fuel design limits are not exceeded.              The second reactivity    control    system    shall  be  capable  of    reliably controlling the rate of reactivity changes resulting from planned, normal power changes (including xenon burnout) to assure acceptable fuel design limits are not exceeded.            One of the systems shall be capable of holding the reactor core subcritical under cold conditions.
lD
 
===RESPONSE===
Two independent reactivity control systems of different design principles are provided. The first system, using Control Element Assemblies (CEAs),      includes a positive means        (gravity)    for inserting CEAs and is capable of reliably controlling reactivity changes to assure that under conditions of normal operation, including Anticipated Operational Occurrences, SAFDLs are not exceeded. The CEAs can be mechanically driven into the core.
Amendment D 3.1-18                September 30, 1988
 
i                          CESSARMMnc-O i                          3.1.28            CRITERION 32 - INSPECTION OF REACTOR COOIANT PRESSURE BOUNDARY components    which are part of -the                                                                reactor                  coolant  pressure
;                          boundary shall-be designed to permit                            -
A. Periodic _ inspection and _ testing of important areas and features        to      assess                          their                        structural                          and  leak-tight integrity; and
]
:                          B. An appropriate material surveillance program for the reactor-
;                              -pressure vessel.
RESPONSE:.
Provisions have been made in the design for inspection, testing, and surveillance of the Reactor Coolant f System boundary as-required by ASME Boiler and Pressure Vessel _ Code-Section XI. -C-E recommends a reactor vessel surveillance ' program' to the owner. 7 The reactor _ vessel surveillance program capability provided ~ to the owner conforms with ASTM-E-185-73, " practice for. Conducting lK 4                          Surveillance Tests for Light Water Cooled Nuclear Reactor j                          Vessels," as revised in 1982._ Sample pieces taken from the same D i
h d
material used in fabrication of the reactor vessel are installed between the core and the vessel inside wall.                                                                                  These samples will be removed and -tested by the owner at . intervals .during vessel lK a                          life to provide an indication of the extent of the neutron embrittlement of the vessel wall.                                                      Charpy tests-will be performed
,                          on the samples to develop a Charpy transition curve.                                                                                            By comparison of this curve with the Charpy_ curve and drop weight tests for specimens taken at the beginning -_ of the vessel life,
;                          the change _of RT              will be determined and operating _ procedures
,                          adjusted as requi Nd. See Chapter 5 for further details.
i                          The surveillance program capability -provided to -the owner has lK provisions which comply with the NRC regulation, " Reactor-Vessel Material Surveillance Program Requirements," 10 CFR 50, Appendix H,  published in the Federal Register in July 1983.                                                                                      The only execption between the recommended surveillance program and the requirements presented in Appendix H is the following:
I 4
O i                                                                                                                                                            Amendment K
'=
3.1-23                                                          October- 30, 1992-
  ,    . ... _ . .. _ . _          _    . . , _    , . _ , _ , . . . ...- _._._ . . _ , _ . _ . . . _ . _ . _ , . ~ . . . _ _ . . . . _ , . _ . , . _
 
CESSARn5 Gem O
A. Appendix H,    Section II.C.2    -
Attachments to the reactor vessel.
In adhering to the requirement of placing the surveillance specimens as close as possible to the reactor vessel wall, the capsule holders are attached to the cladding of the reactor vessel and are not major load-bearing _ components.
By such placement, temperature, flux spectra, and fluence differences between the surveillance specimens and the reactor vessel are minimized,        thereby permitting more accurate assessment of the changes in the reactor vessel properties.
3.1.29        CRITERION 33 - REACTOR COOLANT MAKEUP
;  A system to supply reactor coolant makeup for protection against small breaks in the reactor coolant pressure boundary shall be provided. The system safety function shall be to assure that specified acceptable fuel design limits are not exceeded as a result of reactor coolant loss due to leakage from the reactor coolant pressure boundary and rupture of small piping or other small components which are part of the boundary.            The system shall be designed to assure - that for onsite electrical power system operation (assuming offsite power is not available) and for offsite electrical power system operation (assuming onsite power is not available) the system safety function can be accomplished using the piping, pumps and valves used to maintain coolant inventory during normal reactor operation.
 
===RESPONSE===
Reactor coolant makeup during normal operation is provided the Chemical and Volume        Control    System  (CVCS). The  design incorporates a high degree of functional reliability by provision of redundant components and an alternate path for charging.          The charging pumps can be powered from either onsite or offsite power sources, including the alternate AC generator.          The system ,is lK described in Section 9.3.4.        The CVCS has the capability of p replacing the flow loss to the containment-due to leaks in small reactor coolant lines such as instrument and sample lines. These lines have- 7/32 inch diameter by 1 inch long flow restricting devices.
The CVCS is not required to perform any safety related function, such as accident mitigation, or required to perform a              safe lK shutdown. This does not, however, compromise the " defense in depth" provided by the system as the normal means of maintaining RCS inventory and primary water chemistry. In designing the CVCS D as non-safety grade, the following safety functions are performed by dedicated safety systems. Boration and makeup for design Amendment K 3.1-24                October 30, 1992
 
CESSARinnnena
^
  \
f l          basis events will be provided by the Safety - Inj ection System.
4 Pressure control will be provided by the-Safety Depressurization System.        The      Safety        Injection                                    System- and-        the    Safety Depressurization System are -described in further. detail in Sections 6.3 and 6.7, respectively.                                                    All portions of the CVCS          D outside of containment have-been designed as non-nuclear safety.
However, portions of the CVCS which are inside the containment will retain -their safety -class- designation to ensure the integrity of the reactor coolant pressure boundary.
3.1.30              CRITERION 34 - RESIDUAL HEAT REMOVAL A system to remove residual heat shall be-provided. The system safety function shall be to transfer fission product decay heat and other residual heat-from the reactor core at a rate such that specified acceptable fuel design limits and_the design conditions                            _
of the. reactor coolant pressure boundary are not exceeded.
Suitable redundancy in components and features,                                                          and suitable interconnections, leak detection and isolation capabilities shall be provided to assure that for onsite electrical- power system-operation -(assuming offsite - power is not available): and for offsite electrical power-system operation (assuming onsite power i  O      is not available) the system safety function can be accomplished, h      assuming a single failure,
,          RESPONSE:
Residual heat removal capability is provided by the Shutdown-Cooling System for reactor coolant temperatures less than 350*F.
For temperatures greater than 350*F, this function _is provided by
,          the steam generators.-              The                  Emergency Feedwater. (EFW) System
'          provides      a    dedicated,      independent, safety-related means of supplying      secondary        side,              quality                          feedwater      'to    the  steam D generator (s) for removal of heat and prevention of reactor _ core-
,          uncovery.          The    design          incorporates                                    sufficient- redundancy, interconnections, leak detection, and isolation _ capability to ensure that the residual heat removal function can be accomplished,          assuming        a              single                        active      failure-      Within appropriate design limits,                        either system- will remove fission product decay heat at a rate such that SAFDLs and the design conditions of the reactor coolant pressure boundary will not be 4
exceeded.-
The Shutdown Cooling System and the steam generator auxiliaries-are designed to operate either from offsite power or-from onsite power sources.
Further discussion is included in-Section 5.4.7 for the Shutdown Cooling System and              in  Chapter                            10            for    the    Steam    and  Power
!  V.    -Conversion Sy stem.
I Amendment D 3.1-25                                              September 30, 1988
                  ,  -.              -._ _      - _ _ . . _ . _ . _ . . - . _ _ _ _ _ . _ . _ ,                                    _.._a
 
CESSAR E%,-
O 3.1.31          CRITERION 35 - EMERGENCY CORE COOLING A system to provide abundant emergency core cooling shall be provided. The system safety function shall be to transfer heat from the reactor core following any loss of reactor coolant at a rate such that (1) fuel and clad damage that could interfere with continued effective core cooling is prevented and (2) clad metal-water reaction is limited to negligible amounts.
Suitable redundancy      in components and features, and suitable interconnections,    leak    detection,  isolation and    containment capabilities shall be        provided to assure that for onsite electrical power system operation (assuming offsite power is not available)    and for offsite electrical power system operation (assuming  onsite power is not available)        the system  safety function can be accomplished, assuming a single failure.
 
===RESPONSE===
Emergency core cooling is provided by the Safety Injection System (SIS) (described in Section 6.3).        The system is designed to provide cooling water to remove heat at a rate sufficient to maintain the fuel in a coolable geometry and to assure that zirconium-water reaction is limited to a negligible amount (less than  one percent).      Detailed analysis has been performed, utilizing models complying with 10 CFR 50, Appendix K, "ECCS Evaluation Models," to verify that the system performance is adequate to meet the intent of the " Acceptance Criteria for Emergency Core Cooling Systems for Light Water Nuclear power Reactors" of 10 CFR 50.46(b).
The system design includes provisions to assure that the required safety functions are accomplished with either onsite or offsite        ,
electrical power, assuming a single failure of any component (qualified as described below).        The single failure may be an      D active failure
* during the short-term cooling-phase of safety
* An  active failure is a malfunction,          excluding passive failure, of a component which relies on mechanical movement to complete its intended function upon demand. Check valves which receive regular exercise to ensure operability are treated as passive components.      Examples of active failures include the failure of a valve to move to its correct position, or the failure of a pump, fan, or diesel generator to    start. Spurious    action  of  a  powered  component originating within the actuation system or its supporting systems shall be regarded as an active- failure, unless specific design features or operating restrictions preclude such r,purious action.
Amendment D 3.1-26                September 30, 1988
 
:CESSARinL .                                                                            -
i 1
1-4 3
i                    injection-or~an active or limited leakage passive failuro* during the long-term cooling phase of safety _ injection.
Though _ the SIS is' ' designed _.to accommodate > a limited leakage                                        p
.                    passive failure'during the long-term-cooling. phase, it does not
!                    accommodate arbitrary large-leakage passive failures, such as the
!                    complete double-ended severance of piping, which~ are extremely                        -
:                    low probability events.                  The layout and arrangement will be such lK that .the limited leakage passive : failure .does not preclude minimum acceptable long-term cooling--capability.                                      Where building
                  -design is not relied upon to mitigate :and contain leakage' from D i                    the SIS passive                  failure,      suitable automatic. isolation and auxiliary equipment must be provided by the owner, as necessary. lg.
j'                    3.1.32              -CRITERION 36 - INSPECTION OF. EMERGENCY CORE COOLING
[                                          SYSTEM i
i                    The emergency core = cooling system shall _ be - designed to permit
:                      appropriate periodic inspection'of'important' components,.such as spray __ rings in the reactor pressure vessel,- water injection nozzles, and piping to assure the integrity and capability.of the j                      system.
 
===RESPONSE===
[                      The SIS is designed to facilitate access' to all critical lD components.          All pumps, heat exchangers, l                                                                                                  valves and piping external to the containment structure are readily accessible for i                      periodic inspection to ensure system leak-tight integrity.
:                      Valves, piping and tanks inside the containment may be inspected for leak-tightness. during plant ^ shutdowns                                  for      refueling _ and
;                      maintenance.
Reactor vessel internal _ structures, reactor coolant piping- and i                      water l injection nozzles:are designed _to permit visual- inspection-
!                      for    wear      due        to-  erosion,          corrosion            or_ . vibration,- .and nondestructive inspecticn techniques where: these-are applicable-i                      and desirable.
I                      Details of the inspection program . are described in - Chapters' 5,                                  -
i                      6, and-16.
I f
* A passive . failure is defined as the blockage of_a process
!-                            flow path or.a breach in the integrity of a _ component or i                              piping"(e.g., a piping failure).
! ' Q) 4 Amendment.K j                                                                    3.1-27                                October 30, 1992
        ,-. . _ , _ . _ _      . , _  _.._._.._.._,...--.,._...-._.._._..__.._._._-_--._.u_.-.__
 
CESSARE h e O
3.1.33        CRITERION 37 - TESTING OF EMERGENCY CORE COOLING SYSTEM The emergency core cooling system shall be designed to permit appropriate periodic pressure and functional testing to assure (1) the structural and leak-tight integrity of its components, (2) the operability and performance of the active components of the system, and (3) the operability of the system as a whole and, under conditions as close to design as practical, the performance of the full operational sequence that brings the system into operation, including operation of the applicable portions of the protection system, the transfer between normal and emergency power sources, and the operation of the associated cooling water system.
 
===RESPONSE===
The SIS is provided with testing capability to demonstrate system D and component operability.        Testing can be conducted during normal plant operation with the test facilities arranged not to interfere with the performance of the systems or              with the initiation of control circuits, as described in Section 6.3 and Chapter 14, 3.1.34        CRITERION 38 - CONTAINMDIT IIEAT REMOVAL A system to remove heat from the reactor containment shall be provided. The system function shall be to reduce rapidly, consistent with the functioning of other associated systems, the containment    pressure      and    temperature      following    any loss-of-coolant-accident and maintain them at acceptably low levels.
Suitable redundancy    in components and features, and suitable interconnections,    leak  detection,    isolation,  and containment capabilities shall be      provided    to  assure  that  for  onsite electrical power system operation (assuming offsite power is not available) and for oftsite electrical power system operation (assuming onsite power is not available) the system safety function can be accomplished, assuming a single failure.
 
===RESPONSE===
The  Containment spray      System    consists    of  two  completely independent subsystems. The heat removal capacity of the flow from either. containment spray subsystem is adequate to keep the containment pressure and temperature below design conditions for          D any size break in the RCS piping up to and including a double-ended break of the largest reactor coolant pipe, with an unobstructed discharge from both ends.
Amendment D 3.1-28                  September 30, 1988
 
4                      CESSAREnL ms
!                      Dorated water is sprayed downward by the system from the upper lD                                                                      ,
regions of the containment to cool the atmosphere.                                                              Cooling is l                      provided by the ultimato host sink via the containmont spray heat                                                              K        l
;                      exchangers.                    Cooling reducou the containment pressuro                                                and j                      temperature following a major loss-of-coolant-accident.
i                      Suitablo redundancy in components and featuros is designed into                                                                        -
J the  containment spray System to maintain the pressure and D temperaturo conditions below containment design oven in the ovent
+
of a single failuro, including the loss of onsito or offsito                                                                            '
electrical poWor.
3.1.35                    CRITERION 39 - INSPECTION OF CONTAINMIMP llPAT REMOVAL SYSTEM The containment heat removal system shall be designed to permit                                                                        '
appropriato periodic inspection of important components, such as the  torus,              sumps, spray nozzles, and                                          piping      to  assure    the j                      integrity and capability of the system.
i
 
===RESPONSE===
i All ossential equipment of the                                                        containment      Spray    System  is located outside the containment,                                                        except  for      spray  headars,    D j                nozzles, containment somp, In-containment Refueling Water Storago                                                            ,
Tank and associated piping.                                                          Thoue components include two              y
,                      containment spray pumps, two containment spray heat exchangers j
4 and indopondent containment spray headers.
I The detailed arrangement and layout of system pip;ng, pumps, heat                                                              D oxchangers, and valvos will provide the separation, availability, i                      and accessibility required for periodic inspection                                                                  Nozzlo 4
inspection capability will bo provided as well.
3.1.36                  CRITERION 40 - TESTING OF CONTAIMMlWP IIPAT REMOVAL j                                                SYSTEM
:                      The containment heat removal system shall be designed to pornit
)                      appropriato periodic pressure and functional testing to                                                                .ure (1) the structural and leak-tight integrity of its compt                                                              4te,
!                        (2) the operability and performance of the activo components of l                      the system, and (3) the operability of the syrtom as a wholo, 1
and, under conditions as close to the design as practical, tl.o --                                                                      '
performance of the full operational sequence that brings the j                      system into operation, including operation of applicablo portions of  the      protection                          system,                  the      transfor  betwoon      normal    and cmorgency power sources, and the operation of the associated j                      cooling water system.
i Amendment K 3.1-29                        October 30,.1992
 
CESSARMLbmu O
RESPONSEt system      piping,    valves,    pumps,    heat exchangers, and other components of the containment heat removal system are arranged so that each component can be tested periodically for operability.
Testing can be conducted during normal plant operation with the test facilition arranged not to interfere with the performance of the system or with the initiation of control circuits, as described in Section 6.2.
The performance testing of containment spray pumps is conducted at some time other than refueling.            The purnpa are aligned to take suction from and return flow to the In-containment Refueling                    D Water Storage Tanx (IRWST) .          Flow and head are recorded by the
>    installed instrumentation, llont exchanger operation may be verified during any operating mode by circulating water through the containment spray heat exchanger and back to the IRWST.
Actuator-operated valves can be cycled from the control room, and operation verified by observing control room indication.
Check valves will be tested to ensure that the valves operate properly.      These valves include the IRWST check valves and the valves on the inlets and outlets of the containment spray pumps.
3.1.37          CRITl3 TION 41 - CONTAINMENT ATMOSPilERE CLPANUP Systems to control fission products, hydrogen, oxygen, and other substances which may be released into the reactor containment shall be provided as necessary to reduce, consistent with the functioning of other associated systems, the concentration and quantity      of  fission    products    released    to  the  environment following postulated accidents, and to control the concentration of hydrogen or oxygen and other substances in the containment atmosphere      following    postulated      accidents  to  assure    that containment integrity is maintained.
Each system shall have suitable redundancy in components and features,      and    suitabic    interconnections,      leak    detection, isolation, and containment capabilities to assure that for onsite electric power system operation (assuming offsite power is not available) and for offsite electric power system operation (assuming onsite power is not available) its safety function can be accomplished, assuming a single failure.
O Amendment D 3.1-30                  September 30, 1988
 
i CESSAR Kncua                                                                                                                  -
 
===RESPONSE===
:      Two      systems,        namely the Containment Spray and containment                                                      !
l      Hydrogen Recombiner Systems, are provided to control fission                                                                !
!      products, hydrogon, oxygen, and other Substancos which may be                                                  y
,      released into the reactor containment.                              The containment Spray and i        Containment            Hydrogen      Recombinor                  Systems are designed with i      redundancy of vital components se that a single failure does not provent performance of the safety function coincident with a loss of offsito powor.
!      The systems are described in detail in Soccions 6.2.5 and 6.5.                                                ,K j        3.1.38                CRITERION 42 - INSPECTION OF CONTAINMENT ATMOSPffERE i                              CLEANUP SYSTEMS j        The containment atmosphora cicanup systems shall be designed to permit appropriato periodic inspection of important compononta, such as filter framos, ducts, and piping to assure the integrity and capability of the systems, i        RESPONSE:
;        The containmont atmosphoro cleanup systems are designed and located so that they can be inspected periodically as required.
Inspection of the Containment Spray System _ function 'rolative to iodino removal is treated in the responso to Critorion 39.                                                      y All      major components of                      the  Containment' Hydrogen                  Recombiner System are located outsido containment and are roadj.ly accessible for periodic inspection.                      Purge piping and valves located insido containment may be inspected during plant shutdown.
3.1.39                CRITERION 43 - TESTING OF CONTAINMENT ATMOSPIIERE                                                    ,
CLEANUP SYSTEMS lK The containment atmosphere cleanup systems shall be designed to permit appropriato periodic pressure and functional. testing to assure            (1)  the  structural              and        leak-tight  integrity              of- its components,            (2) the operability and performance of the active-components of the systems such as fans, filters, dampers, pumps,
        -and valves and (3) the operability of the systems as a whole and, under-conditions as close to design as practical, the performance of the full operational sequence that brings the systems - into operation,            including operation of applicable portions of the protection system, the- transfer betwoon normal and emergency
        -_ power sourcos, and the operation of associated' systems.
O Amendment K 3.1-31                                October 30, 1992
 
CESSARM' Dice O
RESI'OND E:
Testing of the Containment Spray System shall be conducted to accuro structural and loaktight integrity, and operability and performance                            in  accordance              with  criterion                            40.                  In                              addition, performanco testing will be conducted on all components of the Containment Spray System.                                            These tests are normally conducted while the plant is operating.                                          System design includes provisions                                                                          y I
which allow component testing with sufficient safeguards to provent accidental containment spray.                                                      Soo Sections 6.2.2 and 6.5 for details.
The Containment flydrogon Recombiner System is designed to permit periodic                          testing    for        structural                    and  Icaktight                                  integrity                            of components and                            for operability of                            the system and individual components.                            Testing    may              be  conducted during normal                                                                            plant operation or shutdown.                                  See Section 6.2.5 for details.
3.1.40                              CRITERION 44 - COOI,1HG WATER A  system to                          transfer heat                from              structures,                                systems,                                and components important to safety, to an ultimate heat sink shall bo provided.                        The system safety function shall be to transfer the combined heat load of these structures, systems, and components under normal operating and accident conditions.
Suitable redundancy                          in components and features, and suitable interconnections,                          Icak        detection,                    and isolation capabilitics shall bo provided to assure that for onsite electrical power system operation (assuming offsite power is not available) and for offsito electrical power system operation (assuming onsito power is not availabic) the system safety function can be accomplished, assuming a single failure.
 
===RESPONSE===
The cooling water systems which function to remove the combined heat load from structures, systems, and components important to safety under normal operating and accident conditions are the Component Cooling Water System and the Station Service Water D System.                        The Component Cooling Water System is a closed loop system which removes heat from nuclear safety related and potentially radioactive systems.                                                      The Station Service Water System removes heat from the Component transfers it to the atmosphere through Cooling                                              the Ultimato        Water llent                                    System    and lK Sink.
The Station Servico Water System is described in Section 9.2.1 and the Component Cooling Water System is described in Section D 9.2.2.
O Amendment K 3.1-32                                          October 30, 1992
 
CESSAR !!!Memu 3.1.41        CRITERION 45 - INSPECTION OF COOLING WATER SYSTEN The cooling water system shall be designed to permit appropriate                -
periodic inspection of important components,                such as heat exchangers and piping, to assure the integrity and capability of the system.
 
===RESPONSE===
The important components are located in accessible areas. These components have suitable manholes, handholes, inspection ports,                                a or other appropriate design and layout features to allow periodic inspection. See Sections 9.2.1 and'9.2.2 for details.
3.1.42        CRITERJON 46 - TESTING OF COOLING WATER SYSTEM The cooling water system shall be designed to permit appropriate periodic pressure and functional testing to assure structural and leak-tight integrity of its components (1)                                -the operability and the performance of the active componen,ts-of the                      (2)  the system, and (3) the operability of the system as a whole, and under conditions as close to design as practical, the performance of the full operational sequence that brings the syJtem into operation for reactor shutdown and for loss-of-coolant-accidents, including operation of applicable portions of _the _ protection system and    the    transfer betwoon    normal  and emergency                        power sources.
RESIONSE:
The the design provides_for periodic testing of active components of                                a cooling    water    systems  for    operability  and                        functional
  -performance.
preoperational performance tests of the components are required to be made by. the manufacturer.                                                                y An initial system flow = test demonstrates propor functioning          of the system.                          Thereafter, periodic tests ensure that components are functioning'proporly.
Cooling water _ system valves may be connected to the preferred power source at any timo during. reactor operation to demonstrate operability.      Many active components are- operated normally, thereby demonstrating operability. Romotely' operated valves                                are  D.
exercised and actuation circuits tested. The__ automatic actuation circuitry, valves,- and pump breakers also- may be checked when integrated system tests are performed during a planned cooldown of the Reactor Coolant System.          provisions have been made to' permit  periodic'    leakage  tests to verify. the continued leak-tight-integrity of the-systems.      Refer to Sections 9.2.1 and-9.2.2 for details.
Amendment I.
3.1-33                December 21, 1990
 
CESSAR R.'Jsem O
3.1.43          CRITER10N 50 - CONTAINMENT DESIGN DiSIS The reactor containment structure, including access openings, penetrations, and the containment heat removal system shall be designed so that the containment structure and its internal compartments can accommodato,        without excooding the design leakage rate and, with sufficient margin, the calculated pressure and temperaturo conditions resulting from any LOCA. This margin shall reflect consideration of (1) tho offects of potential energy sources which have not boon included in the datormination of the peak conditions, such as energy in steam generators and energy from metal-water and other chemical reactions that may result from degradation but not total failure of emergency coro cooling functioning, (2) the limited experience and experimontal data available for defining accident phenomena and containment renponses, and (3) the conservatism of the calculat)onal model and input paramotors.
 
===RESPONSE===
The    containment  structure,    including  access  openings  and penetrations, is designed to accommodato, without excooding the design leak rato, the transient peak pressure and temperature associated with a LOCA up to and including a doublo-onded rupture of the largest reactor coolant pipe.
The containment structuro and Engincored Safoty Feature systems have been ovaluated for various combinations of onergy release.
The analysis accounts for system thormal and chemical energy, and for nuclear decay heat.      The Safety Injection System is designed such that no single activo failure could result in significant metal-water reaction (sco Section 6.2.1).
a 3.1.44        CRITPRION 51 - FRACTURE PREVENTION OF CONTAINMENT PRESSURE DOUNDARY The    reactor  containment    boundary  shall  be  designed  with sufficient margin to assure that under operating, maintenance, testing, and postulated accident conditions (1)          its forritic materials behave in a nonbrittle manner, and (2) the probability of rapidly propagating fracture is minimized.        The design shall reflect    consideration of service temperatures and other conditions of the containment boundary material during operation, maintenanco, testing and postulated accident conditions, and the uncertainties    in  determining    (1)  material  proporties residual, steady-stato, and transient stresses, and (3) sizo (2)    of flaws.
O Amendment D 3.1-34                September 30, 1988
 
i                                                                                                              i l
:                CESSAR n!Meucu i
j j                  RESPONSEt The material selected for the containment vossol in SA-537 Class                          y'
: 2. The actual mechanical and chemical proportion of the material
;                  are within the limits of minimum ductality defined in the 1989 ASME Codo Material Specifications Part-A-SA-537/SA-537M.                                  3 F
The containment vossol is built to subsection NE of Section III of the ASME Boiler and Prosauro Vessel Codo.
i
]                  The design of the vessel reflects considoration of all ranges of temperature and loading conditionn _ which apply to the vessel during operation, maintenance, tonting and postulated accident I                  conditions.                                                                              D i
4                  All sean wolds in the vosnel aro 100 porcent radiographod, and
]                  the acceptance standards of the radiographs ensure that flaws in
,                  wolds do not excood the maximum allowed by the ASME Codo.
i Steady stato and transient stressos are calculated in accordance with accepted methods (soo Section 3.8).
!                  3.1.45                    CRITERION 52 - CAPABILITY FOR CONTAINNENT LEAKAGE RATE TESTING f
i                  The      reactor containment and other equipmont which may. bo j                  subjected to containment test conditions shall be designed so i                  that periodic integrated leakage rate testing can be conducted at
{                  containment design pressure.
D l                  RESIONSE:
The - containment vessol 'is designed so that integrated - leak rato testing can be performod-at design preasure after completion and l                    installation of ponotrations and equipmont in accordance with tho
;                  requirement of Appendix J of 10 CFR 50 (soo Section 6.2.6).
!                    3.1.46                    CRITERION 53 - PROVISIONS FOR CONTAINNENT TESTING AND INSPECTION The reactor containment                    shall          be designed to permit    (1) appropriato periodic inspection of all important areas, such as D
l                  penetrations, (2) - an appropriato surveillance program, and (3) periodic                testing      at containment design pressure of the leak-tightness of penetrations which have resiliont seals and expansion bollows.
I b
: 'd l
Amendment K        -
3.1-35                    October 30,-1992
 
CESSAR n%%m
 
===RESPONSE===
O The absence of        insulation on the containment vor' sol permits periodio inspection of the exposed surfaces of the vossol.            The lower portions of the containment vossol are totally oncased in concrote and will not be accessiblo for inspection.              It is contemplated that there        will  be  no    nood for  any  special in-sorvico survoillance program due to the rigorous design, fabrication,  inspection and pressure testing the containment            D vossol receives prior to oporation.
Provisions aro made to permit periodic testing at containment design prosauro of ponotrations which have resilient seals or expansion bollows to allow leak-tightness to be demonstrated (refer to Section 6.2.6).
3.1.47        CRITEG110N 54 - PIPING SYSTEM.9 PENI7fRATING CONTAINMEN'T Piping systems penetrating primary reactor containment shall be provided  with      leak  detection,    isolation,  and  containment capabilities having redundancy,        rollability,  and performance capabilities which reflect the importance to safety of isolating those piping systems. Such piping systems shall bo designed with a capability to test periodically the operability of the isola-tion valves and associated ap paratus and to datormine if valvo leakage is within acceptable 1:,mits.
 
===RESPONSE===
Piping systems described in CESSAR which penetrato containment are designed    to provide the required isolation and testing capabilities. Those piping systems are provided with test connections  to    allow periodic leak detection tests        to    be performed, in accordance with 10 CFR 50, Appendix J.
The  Engineered Safety Featurer Actuation System circuitry providos the means for testing isolation valvo operability.
For a discussion of ponotration design, refer to Section        6. 2.4,  o Containment Isolation System.
For additional related discussion, soo the responses to General Design Critoria 55, 56, and 57 (Sections 3.1.48 through 3.1.50).
O Amendment D 3.1-36                September 30, 1988
 
CESSAR E!L"icui:s F
\
3.1.48          CRITERION 55 - REACTOR COOLANT PRESSURE DOUNDARY PENETRATING CONTA1NMENT Each line that is part of the r6 actor coolant pressure boundary and that penotrates primary reactor containment shall be provided with containment isolation valves as follows, unless it can be demonstrated that the containteont isolation provisions for a specific class of lines, such as instrument lines, are acceptable on como other defined basis:
A. One locked closed isolation valvo inside and one locked closed isolation valve outsido containment; or B. One automatic isolation valvo inside and one locked closed isolation valvo outsido containment; or C. One locked closed isolation valvo inside and one automatic isolation valvo outsido containment.      A simplo check valvo may not be used as the automatic isolation valvo outsido containment; or D. One  automatic    isolation valve inside and one automatic isolation valvo outsido containment.      A simplo check valvo O
Q may not be used as the automatic isolation valvo outsido containment.
Isolation valves outsido containment shall be located as close to containment as practical and upon loss of actuating power, automatic isolation valvos shall be designed to take the position that providos greater safoty.
Other appropriate requirements to minimize the probability or consequences of an accidental rupture of these lines or of lines connected to them shall be provided as necessary to assuco adequato safety.      Determination of the appropriateness of those requirements, such as higher quality in design, fabrication, and testing,    additional    provisions    for  in-service    inspection, protection against more severo natural phenomena, and additional isolation valves and containment, shall include consideration of the population density and physical characteristics of the site environs.
 
===RESPONSE===
The reactor coolant system pressure boundary for CESSAR is defined in accordance with ANSI /ANS 51.1 and 10 CFR 50, Section
: 50. 2 (v) . All reactor coolant pressure boundary lines penotrating lD containment meet the isolation criteria of GDC 55 using the following basis for specific lines in addition to these noted T above.
b Amendment D 3.1-37              September 30, 1988
 
C E S S A R E! L b a A. Safoty injection linos,                        as shown on O
rigures 6.3.2-1A, g 6.3.2-1B,    and                    6.3.2-1C,    are            used    to    mitigate  the consequences of accidents and therefore do not receive anlD automatic closure signal and are not locked closed.
B. When in tho shutdown cooling modo of operation the Shutdown Cooling System is an extension of the reactor coolant pressure boundary.                      In this modo the system is isolated from the environment by two isolation valvos in serios.
C. The  charging                    and  seal  injection            lines  shown on    Figuro 9.3.4-1 have automatic valvos outside the containment whichlK do not receive a closure signal (CIAS). This is because it(D is desirable to maintain charging and seal injection flow as long as the charging pumps are in operation.                                                    i 3.1.49        CRITERION 56 - PRIMARY CONTAINMENT ISOIATION Each line that connects directly to the containment atmosphere and penetrates primary reactor containment shall be provided with containment isolation valves as follows, unless it can be demonstrated that the containment isolation provisions for a upocific class of linos, such as instrument lincs, are acceptable on some other defined basis:
A. One locked closed isolation valve inside and one locked closed isolation valve outsido containment;                                or B. One automatic isolation valve insido and one locked closed isolation valve outsido containment; or C. One locked closed isolation valve inside and one a"'.omatic isolation valvo outside containment. A simple check valve may not be used as the automatic isolation valve outsido containment, or D. One  automatic                    isolation valvo            inside  and one automatic isolation valve outsido containment.                                A simplo check valve may not be used as the automatic isolation valve outside containment.
Isolation valves outside containment shall be located as close to the containment as practical and upon loss of actuating power, automatic isolation valves shall be designed to take the position that provides greater safety.
O Amendment K 3.1-38                          October 30, 1992
 
                                                                                                                  ^
]              CESSARnuL m
              \
RESPONSE:                                                                                        ,
CESSAR fluid systems comply with the requirements of GDC 56 with i              the following exceptions:
1 i              Lines which connect directly to the containment atmosphere and                                  -
4              are used for mitigating the effects of accidents are connected to a closed piping system outside containment, which is isolated from the environment in accordance with the requiromants of GDC
: 55. In addition, the capability for remote double isolation at l                the containment boundary is provided in accordance with GDC 56.
$                3.1.50          CRITERION 57 - CLOSED SYSTEM ISOLATION VALVES i
j              Each line that penetrates primary rcactor containment and is.
j                neither part of the reactor coolant pressure boundary nor connected directly to the containment atmosphere . shill have at i                least one containment            isolation valve which shall be either j                automatic,    or        locked    closed,      or capable .of remote manual This valve shall be outsido containment and located operation.
as close to the containment as practical.                  A simple check valve may not'be used as the automatic isolation valve.
i
 
===RESPONSE===
The systems that fall into the category described in GDC 57 i
comply with containment isolation requirements as specified in                              D
]                the containment isolation system sections of CESSAR.
* i i
3.1.51          CRITERION 60 - CONTROL OF RELEASES OF RADIOACTIVE MATERIAL TO Tile ENVIRONMENT i
The nuclear power unit design shall include means to . control suitably the release of radioactive materials in gaseous and liquid-effluents and to handle radioactive solid wastes produced during    normal          reactor      operation,    including          Anticipated Cperational Occurrences.              Sufficient holdup capacity' shall be 4
provided for retention of gaseous and liquid effluents containing radioactive      materials,        particularly where            unfavorable        site 4
environmental          conditions can be expected to impose unusual operational limitations upon the release of such effluents to the environment.
 
===RESPONSE===
The sources and expected quantities 'of                  radioactive materials
,                produced during normal reactor operation, including- Anticipated -                          D
!                Operational. Occurrences,            is    presented in Chapter 11.                    The l                radioactive waste ' systems to suitably . control the release of s  j    these materials in gaseous and liquid effluents and ~to handle radioactive solid wastes'are described in Sections 11.2 through 11.4.
Amendment I
,                                                          3.1-39                    December 21, 1990
 
CESSARn.Mem O
3.1.52        CRITERION 61 - FUEL STORAGE AND llANDLING AND RADIOACTIVITY CONTROL The  fuel storage and handling, radioactive waste, and other systems which may contain radioactivity shall be designed to                '
assure adequate safety under normal and postulated accident conditions. These systems shall        be designed    (1) with a capability to permit appropriate periodic inspection and testing of components important to safety, (2) with suitable shielding for radiation protection,        (3) with appropriate containment,        l confinement, and filtering systems,        (4) with a residual heat        )
removal capability having reliability and testability that                  I reflects the importance to safety of decay heat and other                  l residual heat removal, and (5) to prevent significant reduction            l in fuel storage coolant inventory under accident conditions.              1
 
===RESPONSE===
~
Fuel storage and handling and fuel pool cooling are discussed in Section 9.1. Most of the components and systems in this category    y are in frequent use and no special testing is required.        Those systems and components important to safety that are not normally operating are tested periodically; e.g., the fuel handling equipment (prior to each refueling).
The spent fuel storage racks are located to provide aufficient shieldingwateroverstoredfuelassembliestolimitradiationatlK the surf ace of the water to no more than 2.5 mrom/hr during the storage period. The exposure time during refueling is limited no that the integrated dose to operating personnel does not exceed the limits of 10 CFR 20.      The accidental release of the maximum I
activity content of a gas decay tank will not result in doses in excess of 500 mrom whole body.      See Chapter 13 for details.
Cooling for the spent fuel pools is designed to prevent damage to fuel in the storage facilities that could result in radioactivity release to the plant operating areas or the plant environs.
3.1.53        CRITERION 62 - PREVENTION OF CRITICALITY IN FUEL STORACE AND llANDLING Criticality in the fuel storage and handling system shall be prevented by physical systems or proceeses, preferably by use of geometrically safe configurations.
 
===RESPONSE===
I Both new and spent fuel assemblies are stored in parallel rows designed  in  accordance    with ANSI /ANS 51.1. Normal procedures Amendment K 3.1-40              October 30, 1992
 
i CESSARHF6amn l                                                                                                                                              1 l                                                                                                                                              l j                        require that now fuel be stored in dry air or fully submerged in borated water, and that spent fuel be stored fully submerged in borated vatar.
:                                                                                                                                          I The fuel storage and handling system is described in Section 9.1.
l                        Design of the new and spent fuel racks assures ak                                          of less j                        than 0.98 for the now and 0.95 for the spent fuel assdddlios.
i                        3.1.54                          CRITERION 63 - MONITORING FUEL AND WASTE STORAGE i
!                        Appropriate _ systems                            shall be provided    in    fuel    storage - and                  ;
!                        radioactive                    wasto_ systems and associated            handling areas (1) to
:                        detect conditions that may result in                                  loss of residual heat
;                        removal capability and excessive radiation levels and                                      (2)    to initiato appropriato safety actions.
}                        RESPONSE:                                                                                                            *
!                        Instrumentation is-provided in;the Pool Cooling and-purification l                        System which will detect a loss of residual heat removal
;-                        capability. Appropriate safety actions are initiated by operator i                        responsos.                    The instrumentation and system relationships are i                        discussed in Section 9.1.                                                                                        I Refer to Section 9.1 for a discussion of Fuel- Storago- and Handling and to Chapter 11 for a discussion of the area and
;                        ventilation system radiation monitoring.
h                          3.1.55                        CRITERION 64 - MONITORING RADIOACTIVITY RELEASES Means shall be provided for monitoring lthe reactor containment atmosphere, spaces containing components for recirculation _ of
: l.                        loss-of-coolant-accident fluids, offluent discharge paths,_and the plant environs for radioactivity- that may _be released from j
2 normal operations, including Anticipated Operational Occurrences, and from postulated accidents.
l 1                        RESPONSE:
i Provisions are made for monitoring the containment atmosphere, the facility effluent discharge paths, the operating areas _within                                              I the plant and the. facility environs.for radioactivity that could bo-released from normal ; operation, from anticipated transients, and from an accident.
4 Amendment I 3.1-41                  De c embe r_ - 21, 1990
 
CESSAR HL"icuen some liquid and gaseous effluent will contain radioactive matter.
O The Waste Managertent System functions to remove radioactive material from these wastes by filtration and ion exchange prior to discharge.
Liquid wastes are sampled, and if the contained activity meets applicable limits, they may be released with continuous radiation monitoring to the plant dilution flow canal.
Gaseous vastes are processed through carbon absorbers to retain and delay radioactive fission gases prior to releanc. The gas is then monitored during telease through the plant vent.
The Condensor Air Removal            System discharge                is monitored  for gaseous              activity. The ventilation  system                discharges  are monitored for gaseous activity. Radioactive Waute management and monitoring as well as area monitoring are discussed in Chapter 11.
O O
Amendment I 3.1-42                            December 21, 1990
 
CESSAR nL"icarcu F')
LJ 3.2        c1ASSIFICATION OF STRUCTURES, COMPONipiTS, AND SYST1MS 3.2.1      SEISMIC CIASSIFICATION Structures, systems, and components whicn are important to safety and designed to remain functional in the event of a Safe Shutdown lK Earthquake (SSE) are designated as Seismic Category I.
Seismic Category I structures, syntems, and components are thot:0 necessary to ensure:
A. The integrity of the reactor coolant pressure boundary.
B. The capability to achieve safe shutdown of the reactor and keep it in a safe shutdown condition.
C. The capability to prevent or mitigate the consequences of accidents that could result in potential offsite exposures in excess of 10 CFR 100 guidelines.
The selection of Category I structures, systems, and components in in accordance with the definition above and the guidance provided by Regulatory Guide                              1.29.        Individual components in Category I systems are classified by reference to the safety s    classes assigned in accordance with ANSI /AMS 51.1 (see Section 3.2.2). All components in Safety Classes 1, 2, and 3 are Seismic                                    lD Category I.
Structures, systems and components which do not perform a nucicar safety related function and whose                                    continued function  is not required are classified Non-Nuclear Safety (NNS) (see Section 3.2.2). NNS structures, systems and components whose structural failure or interaction could degrade the functioning of a seismic Category I structure, system, or component to an unacceptabic safety level or could result in an incapacitating injury to an                                    D occupant of the control room are designated as Seismic Category II and are designed and constructe4 so that the SSE will not cause such failure in a manner th at would adversely affect a safety system.
Structures, systems, and equipment which have no enhanced coismic design requirements in addition to those imposed by building codes are designated Non-Seismic (NS).
ip\
V Amendment K 3.2-1                                  October 30, 1992
                          . . , . . . . . . _ _ - - _ _ _ - - _ - - - - -                                    A
 
CESSAR E!%nce The soismic category and safety and quality classification of h
structures,    systema,    and  components    within the System 80+      y Standard Design are        listed  in Table  3.2-1 and on the P& ids (Chaptors 5,    6,  and 9).      Soldmic  Category I includen all mechanical components within the safety class boundarios and extends to the first seismic restraint beyond the boundary. All fuel  racks    are also designated as Seismic Category I.
Structures, systems, or components whose failuro could reduco the performance of a safety function by a Soismic Category I                  1
                                                                                  )
component to an unacceptablo safety levol are designed to Scismic              '
Category II requirements for structural integrity only or are separated to the extent required to climinate that possibility.
NNS structurou, systems or components whose failure could cause flooding of safoty-related structures, systems or components are          K designed to Soismic Category I requiremonte.          This encuros that any structures, systems, or compo..cnts that could potentially I
have a disabling interaction with Seismic Category I structures,
,  systems, or components arc either prevented from doing so or are f
designed to moet Soismic Category I or II structural integrity D
requirements, depending on the function of the component Structural integrity requirements may bo demonstrated by dynamic or equivalent static analyses, testing, or a combination thereof. g Analycos of      Seismic Category II structures, systems, and components    are  in  accordance with      the  seismic  input  and methodology criteria described in Sections 3.7.2 and 3.7.3.
The listing of major electrical components is found in Section 3.11, which also includes safety and quality classifications.
Electrical structures, systems, and components not classified as Seismic Category I but whose failure could represent a hazard to the operator or could interfere with the performance of required safety    functions    of    electrical    structures,    systems  and components, are classified as Seismic Category II (Reference 1).
Any electrical system oc structure or component not in Seismic D Category I or II is considered Non-Scismic (sco Section 3.10).
The use of the Seismic Category II designation for electrical components is limited to non-safety control system components which are designed and documented to maintain structural integrity during an SSE.      Piping supports and component supporto    y' are of the same seismic category as the piping and components to which they apply.
For purposes of this discussion, the motors and solenoids used to provide motive power to mechanical components are treated as part of the mechanical component.
O Amendment K 3.2-2                October 30, 1992
 
CESSARMMem.
3.2.2        SYSTEM QUALITY GROUP CMSSIFICATIONS (SAFETY CLASS)
In general,      fluid system components      important to safety are classified in accordance with ANSI /ANS 51.1 (Reference 2).        For purposes of CESSAR, Safoty Class 1,      2, 3 and NNS of ANSI /ANS 51.11 are equivalent to Quality Groups A, B, C and D of Regulatory Guido 1.26. The criteria establish safety classon which are used as a guide to tho selection of codes, standards, and quality assurance provisions for the design. and construction of the components. The safety class designations are also used as a guido to those fluid system components to be classified as Seismic category I and II (see Section 3.2.1). The Safety class D durinitions in ANSI /ANS 51.1 are summari2cd as-follows:
A. Safoty Class 1 (SC-1) applies to pressure-rotaining portions and supports of mechanical equipment that form-part of the RCPB whose feilure could cause a loss of reactor coolant in excess of the reactor coolant normal makeup capability and whose requirements are within the scope of. the . ASME Boiler and pressure Vossol Code, Section III.
B. Safety class 2 (SC-2) applies to pressure-retaining portions and supports of primary containment and other mechanical equipment, requirements for which are within the scope of the ASME Boiler and Pressuro Vessel Codo, Section III, that      D are not included in SC-1 and are designed and relied upon to accomplish the nuclear safety functions defined in ANSI /ANS 51.1, Section 3.3.1.2.
C. Safety Class 3 (SC-3) applies to equipment, not included in SC-1 or -2, that is designed and relied upon to accomplish the nuclear safety _ functions defined in ANSI /ANS 51.1, Section 3.3.1.3.
D. Non-Nuclear Safety-(NNS) applies to equipment that is not in Safety Class 1, 2, or 3. This equipment is not relied upon to perform a nuclear safety function.
The safety classifications -of major components which are in the System 80+ design scopo are listed in Table 3.2-1.            Seismic    '
category ~ designations and quality assurance requirements are also g included. Safety classes and safety class changes. are shown on the system P& ids. Safety Class 1, 2, and 3~valvos are listed in Table 3.2-2.
All pressure containing components in Safety Classos-1, 2, and 3 are . designed, manufactured,  and tested in accordance with. the rules of the ASME Boiler and Pressure Vessel Code, Section III.-
Components designated NHS are designed and- constructed. With l0 appropriate    consideration  of    the  intended service using applicable industry codes and standards.            The relationship' Amendment K 3.2-3                October 30, 1992
 
CESSAR E!%Nm between safety class and code class is shown in Tablo 3.2-3.
9 A lK higher code class may be used for a component without changing the safety class or affecting the balance of the system in which it is located.
Fracture toughness requirements are        imposed on materials    for pressure retaining parts of ASME Claco 2 and 3 System 80+                y Standard Design components.          Test methods,  acceptanco,  and exemption critoria are in conformance with the ASME Code, Section III.
The safety classification system is also used to identify those components to which the requirements of 10 CFR 50, Appendix B, are applicable. Components in Safety Clacues 1, 2, and 3* are designed and manufactured under a rigorous quality assurance program reflecting the requirements of 10CFRSO, Appendix B and          K are designated with a Q under the Quality Assurance Requirement Category in Table 3.2-1.      Components which do not servo a safety-related function are not subject to the quality assurance requirements of 10CFR50, Appendix B and are designated with an H in Table 3.2-1. The Quality Assuranco Program is described in Chapter 17.
Piping supports and component supports are of the same safety          E class and have the        same  QA requirements  as the  piping  and components to which they apply.
The use of the above outlined safety and quality classification systems moots the intent of Regulatory Guido 1.26 and the requirements of 10 CFR 50.55a.
* With the following exceptioni the CVCS gas stripper is Safety Class 3, and is not subject to the quality assurance requirements of 10CFR50, Appendix B,          however, pressure retaining portions meet rules applicable to ASME Code Class 3 components. See Table 3.2-1.                                  3 Amendment K 3.2-4              October 30, 1992
 
CESSAR l'!Mi"icatieu                                                  _
  \
REFERENCES FOR SECTION 3.2
: 1.  "Scismic Qualification of C-E Instrumentation Equipment,"
Combustion Engineering, Inc., CENPD-182, Revision 1, May 1977.                                                            D
: 2.  " Nuclear Gafety Criteria for the Design of Stationary Pressurized Water Reactor Plants," ANSI /ANS 51.1, 1983.
1 l
1 i
i l
l O
Amendment D 3.2-5              September 30, 1988
 
i CESSAR HE"icui:n i                                                                                                                                      !
>s                                                                                                                                    ,
i IABLE 3.2-1 i
i (sheet 1 of 2T)
E1A}strlCAf tpsJ J.Leyttvje s. s7 situs._aststmimig13 cuellty Esfoty        Selselc                                Assuranc Cagyonent Identifitqttlen          __ phtL            [31ggery      ___ Location        ErgVjftetet
!        Reactor Coolant system Reactor Vessel                              1              1                  $$CV                    0 Steen Generators (primary / secondary)      1/2 (1)        I                  $1CV                    0 1          Pressurlier                                i              1                  $$CV                    0
$          Reactor Coolant Pumps (2) (3) (9)          1              1                  $$CV                    0 Piping within Reactor Coolant Pressure
]
goundary (5)                            1/2 (4)        I                  $$CV                    0 l
Control Element Drive Mechanisms            (6)            (6)                SSCV                    0 I
Core Support Structures and Internale Structures (?)                    3              1                  $$CV                    0 Fuel Assembtles (8)
{      Control itement Assemblles (8) 2 3
l                  $$CV
                                                                                          $$CV 0
0
(                                                                  1 Closure Mead Lift Rig                      kul            11 (10)            $$CV                    N Nested Junction thermocouple Probe Assembly                                  1/3 (12)      I                  $$CV                    0 NJ1C Pressure Housing                        1            I                  $$CV                    0 ICI Cable Troy support frame_
3              I                  tsCV                    0          };
ICI Holding frame                            NNS          NS                  $$CV                    N l          ICI Gulds tubes                              1              I                  slCV                    e ICI Culde Tube Supports                      1            l                  SSCV                    0 ICI test Housing                            i              !                  $$CV                    0
;          ICI test Table                              1              i                  $$CV                    e i          Piping (28)                                  1/2            1                  $$CV                    0 j          valves (28)                                  1/2            I                  ssCV                    0 i        in containment Water Storage $ystem 4
IRWST'                                      2              i                  SsCY                    0 Holdup Volume                                2              1                  $$CV                    0 Steam Rollef System Piping                                    1/2            I                  $$CV                    0 Valvet                                    1/2            I                  $5CV                    0
,              Spargers                                  2              1                  $$CV                    0 1
J.
Footnotes to this table are given at the end of the table.
Amendment K-October 30, 1992-
 
CESSAR USirico,2 01 1ABLL]ih,1 (Cont'd)
($heet 2 of 27)
CLa$ntiselle_s.pt 11?VEIV!1!.. U 11L E .6*tLE M Po#R IE ouality Safety        Sel6mic                    Assuranc EmmernLLdec111Lts11m                  fl!1L        Esitserr    _ Lets1Lm    Er9ultrarnt Cavity Flooding System Piping                                  2            1              $$CV            0 volves                                  2            1              $$CV            0
$sfety Depressurlittlen System Valves                                    1/2          1              $$CV            0 Piping                                    1/2          1              $$CV            0 Reactor Cootent Gas Vent $ystem valves                                    1/2          1              $$CV            0 Piping                                    1/2          1              $$CV            0 Safety injection system safety injection Pumps                  2              !                RXB            Q
  $af-ty injection Tanks                  2              1              $$CV            0 Plrfag (24) (28)                          1/2          I            RXB/S$CV          0 Valves (28)                              1/2          I            RX8/$$CV          0
$hutdown Cooling System shutdown Cooling Heat Exchangers          2/3 (1)      !                RXS            0 thutdown Cooling Pumps                    2            i                RXB            0 thutdown Cooling Minl Flow Heat          2/3 (1)      I                RXe            0 Exchanger Piping (28)                              1/2          1            RXB/$$CV          0 Velves (28)                              1/2          i            RXs/$$CV          0 Containment $ pray $ystem Contelnment $ prey Pumps                2              I                RXB            0 Containment Spray Hea luchangers        2/3 (1)        l                RXB            0 Containment spray Mint Flow Heat        2/3 (1)        l                RXB            Q fachanger
  $ pray hottles                          2              I              $$CV            0 Piping (28)                              2              1            RXB/$$CV          0 Valves (2R)                              2              I            RXB/$$CV          0 Amendmont K October 30, 1992
 
CESSAR !!L"icavi:n lA!11_L M (Cont'd)
(sheet 3 of 27) 51M11LIEM198_91 11!VEIV!L14 !I11t!!i_A*9_f9"f98ttil cuality Safety      selsele                                          Assurane g Cageggret _ldentI f Icet Itm          51a11.      Sfit22f.Y    L91311tm                        INAIreent Chemical and Volume Controt System Regenerative Heat Exchanger                2              1          $$CV                                0 Letdown Heat tachanger                      2/3 (1)        I          $$CV                                0 test injection Heat EAchanger              3              l          NA                                  0 Purification ton tachangers                3              1          WA                                  0 Deborating lon tachanger                    3              1          NA                                  0 Volume Control Tank-                        3              i          NA-                                0 Chemical Addition Package                  WW$            ks          NA                                  N Boric Acid Batching Tank                    NWS            N$          NA                                  N Charging Pumpa                              3                1          NA                                  0 Boric Acid Makeup Pumpa                    3                i          NA                                  o teactor Makeup Water Pumpa                  Nk$            NS          NA                                  N boric Acid Concentrator                    NN$            NS          NA                                  N Pre holdup lon Exchanger                    3              I          NA                                  0 Charging Pump Mini flow Heat Exchangers                              3                I          WA                                  Q goric Acid Condensate ton Exchanger        NWS            WS          NA                                  N N
Reactor Drain Pumpa                        3                1          NA                                  0 Holdup Pumpa                                WNS            N$          NA                                  N Reactor Drain Tenk                          NN$            NS        $$CV                                  N Hotdup fank                                kN1            NS          YD                                  N Equipment Drain Tank                        3                I          WA                                  0 Reactor Makeup Water Tank                  NWS              NS        YD                                  N Gas Stripper                                3                          NA                                  o Purification filters                        3                i        NA                                  o Reactor Orain filter                        3                i        NA                                  0 seat injection fitters                      3                I        WA                                  0 teactor Makeup filter                      NNS              NS        NA                                  N loric Acid filter                            3                I          WA                                  0 Letdown Strainer                            3                1          NA                                  0 Pre holdup Stralner                        3                i        NA'                                0 Boric Acid Condensate IX $tralner          NNS              k$-        NA                                  N lon Exchanger Drain Header Stralner        NNS              N$          NA                                  N Boric Acid Batching Stralner                NNS              N$          NA                                N Chemical Addition Strainer                  NN$              N$          NA                                N Boric Acid Storage Tank                    3                  1          TD                                0
\      soric Acid 8stching Eductor                  NWS '            N$          NA                                N Letdown Orifices                            2                1      $$CV                                  0 Amendment K October 30, 1992
 
CESSAR KPice O
IMll_M*.] (Cont'd)
($heet 4 of 27)
ELMU11[A.,ligL91 11 M IL*1 E ST$Tims, leg.im P m WTS ous.Lity Safety        Selasic                      Assuranc Component _Identiffretion              flatt.      [tigggty ,,,,_(gg 811 on    !mittmer,t Piping (28)                              1/2/3/NWs    I/NS        $$CV/NA/YD          0/N Velves (28)                              1/2/3/NN$    1/NS        $$CV/NA/YD          0/N Emergency feedwater System Cavitating venturt                        2            1              $$CV              0 Motor Driven Emergency f eedwater Pumps 3              I                RXg              0 Steam-Delven Emergency Feedwater Pumps 3              i                RX8              0 fmergency Feedwater Pump Turbines        3            1                  Rxg            o Emergency feedwater Storage Tenks        3            i                NA              0 Piping (28)                              2/3          I            P/g/$$CV/NA          0 Velves (28)                              2/3          1            Rxg/$$CV/NA          0 fuel Handling System Spent Fuel Pool                            -
I                WA              Q      K Refueling Machine                        kNS          11              $$CV              N Fuel Transfer System                    NN$          !!            $$CV/NA            N
: 1. Transfer Corriage                    WNS          11            $$CV/NA            N
: 2. Upending Machine                    NWS          !!            $$CV/kA            N
: 3. Hydraulic Power Unit                WNS          11            $$CV/WA            N Fuel Transfer Tube, Valve, Stand          WW$          ll              $$CV/NA            N CEA Change Platform                      NNS          11              $$CV              W Long and Short Fuel Handling Tools        NNS          NS              $$CV              N Upper Guide $tructure Lifting Rig        WNS          !! (11)          $$CV              N Core serrel Lif ting Rig                  kNS          11 (11)          $$CV              N Spent fuel Handling Machine              NWS          II                NA              N New Fuel Elevator                        NN$          ll                WA              N Underwater Television                    WWS          N$              $$CV              N Refueling Poot Seal                      NNI          k$              $$CV              N In Core Instrumentation end CEA Cutter NN$            NS              $$CV              W tatension Shaft Uncoupling Tool          NN$          N$              $$CV              N Fuel Transfer Tube Quick Closure          2            1                $$CV              Q CEA Handling Tools                        NNS          NS              $$CV              N ICI Insertion and Removat Toots          NN$        NS                $$CV              N Spent Fuel Racks                          NN$          1                  NA              N New Fuel Racks                            NNS          I                NA              N O
Amendment K October 30, 1992
 
CESSAR ML"icui:n                                                                                                                                            ;
I!sti: 3,l:1 (Cont'd)
($heet 5 of 27)                                                                                      ,
t ELA_111Lliel191.91 11M51V!L1 $TlitMdM f9!!!9tlN11 Guality Safety                    Selselc                              Asyuranc CegE9F*"t IdtD11111.fl19D - _-                    Eliff.                    f21299IY _ 1951119"              Ef$PAltf9'Dl _ .
Condensate and feedwater System                                                                                                                          ,
Condensate Pumpt                                        NNS                        NS                    IB                  N feedwater Pumps                                          NWS                        NS                    18                  N f eedwater Pump Contrat ters                            NNS                        NS                    18                  N Feedwater Booster Pumps                                  NNS                        NS                    it                  N Startup feedwater Pump                                  WNS                        N$                    18                  N Low Pressure feedwater Westers                          NN$                        N$                    TO                  N High Pressure feedwater Nesters                          NN$                        WS                    Tb                  N Deserator                                                NNS                        NS                    15                  N Piping (13)                                              2/NNS                      1/NS          fB/NA/$$CV/MSVN          0/N Valves (13)                                              2/NNS                      1/NS          18/NA/$$CV/M$VN          0/N 0-                Main Condenser System Hein Condenser                                          NN$                        W$                    10                  N N
Condensate Storage System Condensate Storage innks                                NNS                        NS                    YD                  N                        +
Condensate Storage innk Recycle Pumps                  NN$                        NS                    $XS                N Condensate Drain Tonks                                  NNS                        NS                    TB                  N Condensate Drain Tank Transfer Purnp                    WNS                        NS                    16                  W l                        Piping                                                  NN$                        N$                YD/$XB/10              N Valves                                                  NN$                        NS                TD/$XO/18              N Condensate Cleanup System Piping                                                  NN$                        NS                    TB                W Polishers /Demineraliters                              NNS                        NS                    18                N Resin Traps-                                            WW$                        NS                    1B                W Velves                                                  NN$                        N$                    TB                  W Main Condenser Evacuation System Enhaust $llencers                                      NN$-                        N$'                  ig                  N Gas Dryers -                                            WNS                        NS                    1B                  W Vacuum Pumps                                            hN$                        NS                    19                  N j            Steam Jet Air Ejectors                                  NN$                        N$                    TB                  N l'                        Ste6m Jet Air Ejector Condenser                          NWS                        NS                    IB                  N 1
l l                                                                                                                                        Amendment K October.-30, 1992 c -e,,w,,,~~--.,wwa    ,,-um--,,-,.  -,.,,,y    n    ,s---- e  r r-<,    w.    ,,y-., , , , , , - - -      ,,-  .-        e    , mr    - ,      .,n-w    .e  .-e-,-me,
 
CESSAR n.%"icui:n O
t IABLL1,t j (Cont'd)
(Sheet 6 of 21)
ELAS111 lim 19L91 11!1!f1V!II 11111M4_MEE*f9st!!1 Quality Safety      Selsmic                      Assuranc
    - I!,"T*0fnt f4rn11113!11 p                ((p33,      {girnty  ,,__1 pig 11pn    [rgultreggi Piping                                  NWS          N$                10                W Valves                                  kW$          NS                TB                N Dominerall ed Water Makeup System Deminerallier Makeup Water Pumps        NNS          NS              VD                  N Deminerall ers                          NNS          kl              VD                  N Vacuum Degasifier                        NN$          NS              VD                  N Deminerellaed Water Storage Tank        NWS          WS              TD                  N Vacuum Fumps                            NN$          NS              TD                  N filters                                  NN$        N$                TD                N Recycle Pump                            NNS          N$              YD                N Vacuum Degestfler fransfer Pumps        kN$        NS                YD                N Deminerallied Water fransfer Pumps        NN5        NS                YD                N Deminerellter Weste Tank                  WN$        NS                YD                N Piping (28)                              2/kN$        1/NS            ALL              0/N Velves (28)                              2/NNS        l/NS            1.L L            0/N  , }(
(* traction Steam System Plping                                    WW$        N$                18                N Valves                                    NNS        WS                10                W Hester Vents Piping                                    WW1        WS                1B                W Valves                                    NWS        NS              fB                  N furbine Generator System turbine Generator Nigh Pressure Turblne                NNS          NS              18                  N Low Pressure Turbines                kNS          WS              TB                  N Generator                            NNS          NS              TB                  N Molsture separators                  NN$          N$              TB                  W Steam Reheaters                      NWS          NS              TB                  N Stop Valves                          NN$          WS              TB                  W Control Velves                        NN$          WS              TB                  N Reheat Stop Valves                    NNS          N$              TB                  N Intercept Valves                      NN3          WS              TB                  N Amendment K October 30, 1992
 
CESSARnia mu C
s IMLLJ Id (rent 8d)
(Sheet 7 of FT) 11 AllIfIC8U98E IIMEH!Lla_1111L&_!80 ConPoslE}
eustIty Safety      Selsele                                    Assurancg7 C e t identification                .      IIML        Dit#2fY                location          13mdnent Velves, other                                NNS          WS                        TB                  N Piping                                        NNS          NS                        TB                  N furblne Bypass System Turbine Bypass Velves                        NNS          NS                        TB                  N Velves, other                                NWS          NS                        TB                  N Piping                                        NNS          NS                        18                  W                4 Turbine Ctand Setting System Gland Seal Condenser                          NWS          NS                        TB                  N i              Gland Seat Regulator                          NNS          NS                        TB                  N Piping                                        NNS          WS                        TB                  N Velves                                        NN'          NS                        TB                  N Turbine tube Oil System                                                                                                K
,              Pumps                                        NNS          NS                        18                  N l              Oll Tank                                      WNS          NS                        TB                  N Olt turbine                                  NNS          NS                        TB                  N 011 Coolers                                  NNS          NS                        TB                  N Olt filters                                  NWS          NS                        TB                  N Piping                                        NNS          NS                        TB                  N Velves                                        NWS          NS                        TB                  N l
Turbine Control System ENC Pumps                                    NNS          NS                        18                  N ENC Conters                                  NWS        .NS                        TB                  N ENC Sumps                                    Wh5          NS                        TB                  N Piping                                        NNS          WS                        TB                  W l              Valves                                        NNS          F$                        TB                  N Turbine Generator Cooling Systes.
Hydrogen Coolert                            NNS          NS                        TB                  W Piping                                        NNS          NS                        TB                  N x            valves                                        NNS          NS                        TB                  N Amendment K
,                                                                                                      October 30, 1992-
 
CESSAR nincul:u 4
O la!1LLL 1 (cont'd)
($heet 8 of 27)
ELA11RIEAil08 E 11tVEIV!IldUll"Id8P SOMPOW[ND oustity safety      selsele                  Assuranc Component _1 dent I tha t lon            Elges,      E!1rggry  Lggellim    Erg'llispent Llquid Waste Management System Weste Collection Tanks                      NNS          bl            RWF              N      I Weste Sample Tanks                          NN$          k$            RWF              W Process Pumps                              kNS          W$            RWF              N Process Domineraliters                      NN$          NS            RWF              F Process Filters                            NN$          N$            RWF              N Piping (28)                                2/NNS        1/NS      18/NA/RWF          0/W
                                                                        $$CV/Rxt Valves (28)                                2/NNS        1/NS    TB/NA/RWF          0/N
                                                                        $$CV/RKS Caseous Weste Management System Piping (28)                                2/NNS        NS      NA/RWF/$$CV          O/N Gas Dryers                                  NNS          NS            RWF              N Charcoal Beds                              NN$          WS          RWF              W  K Valves (28)                                2/WNS        NS      NA/RWF/$$CV          0/N Solid Weste Management System Pumps                                        NNS          N$        NA/RWF              N Spent Resin Tanks                            NN$          NS        NA/RWF              N WIC Fill / Dewatering Head                  WNS          WS          RWF              N Slurry Pump                                  NNS          NS          RWF              N Dry $olids Compactor                        NNS          NS          RWF              W Piping                                      NNS          WS        NA/RWF              N Valves                                      NNS          N$        NA/RWF              N Mester Drain System Piping                                      NN$          WS            TB              N Rehester Orsin Tanks                        kNS          NS            TB              N Molsture Separator Orsin Tanks              NNS          WS            TB              N Nester orain tank                          NN$          NS          to              N Hester Drain Pumps                          Nkt          NS          TO              N Valves                                      NNS          N$          TB                N O
Amendment K October 30, 1992
 
CESSAR nieenia
(
IARlLht.1 (Cont'd)                                        -
(theet 9 of 27)
RMHUCATION OF 11eociunts, untm_,y tonenmin!
ouality safety      seleale Cgueonent identif ttellon Assuraneg tig!1.      Egingsty ,,,,_L!sgilon    grguitynt Process end tffluent Radiation Monitoring trates Caseous Procesa and Effluent Monitors Unit Vent                              NNS        WS                NA            N Vaate Ces                              NNS        NS                kWF            N Unit Vent Post Accident                NNS        NS                NA            N Contelnment Purge tahaust              NN$        NS                NA            N Condenser Air (jector                  WWl        NS                TB            N Liquid Process and iffluent Monitors Component Cooling Water                NNS        N$                NA            N Liquid Weste Discharge                  NNS        NS                RWF            W g      Plant Discharge Line                    NNt        NS                RWF            N Station Service Water                  NNS        NB              CCVX            W Reactor Coolant Cross Activity          NNS          WS                NA            N furbine Building Dralna                NNS          NS                TB            N Steam Generator stowdown                NWS          NS                IB            N Airborne Radiation Monitors Containment Atmosphere                3            I                WA            o Nuclear Annex                          NNS          NS                NA            N Redweste Building                      NNS        WS                RWF            W Fuel Bullding                          WNS        NS                NA            N Ventilation Systems Muttlaampler        NNS        NS                NA            N Control Room Intake (Att)              3            i                NA            o Reactor Building AnnWlus                NNS        NS                NA            N Subsphere ventilation                  NNS        NS                NA            N Area Rndletion Monitors                    NNS        WS          $$CV/NA/RWF        N Special Purpose Area Monitors Maln Steam Line                        NN$          N$                NA            N Purification Filter                    NNS          NS                NA            N Containment Area Nigh Radiation        3            i              SSCV            o Primary foolant                        3            I              ssCV            o Containment Isolation System Piping                                    2            1          $$CV/RY3          o Valves                                    2            1            SSCV/RXB          o Amendment K october 30, 1992 .)
 
CESSAR E!Lbi:n 0
I!81LLZd (Conted)
(Sheet 10 of 2/)
E!!15111Ehl198 0F El!95193Llu!L51LMS A89 EMP08!8II Qut .ty Safety      Seismic                  Assurane g greement,_Ldrn,11111at im                Sign.      E!1rgory  iocat I m    tygultresn1 Component Cooling Water System (14)
Piping (28)                                2/3/NNS    1/WS    CCWX/YD/NA            N RXB/SSCV Neat Exchangers                            3            I          CCWX              Q Pumps                                      3            I            NA                Q Surge Tanks                                3            I            NA                Q Sump Pumps                                NNS          NS          NA                N Chemical Addition Tank                    NNS          NS          NA                N Neet Exchanger Building Sump Pumps        NNS          NS          CCWX              N valves                                    2/3/NWS      1/WS    CCWX/YD/NA/          Q/N RXB/SSCV Pool Cooling and Purification System Spent Fuel Pool Cooling System Pumps                                  3            i            NA                Q Exchangers                            3            i            WA                Q Piping                                3            i            NA                Q Valves                                3            i            NA                Q Pool Purification System e
Pumps                                    NNS        NS          NA                N Strainers                                NNS          NS          NA                N Demineraliters                          NNS          NS          NA                N Filters                                  NNS          NS          NA                N Skimmer                                  NNS          NS          NA                N Piping (28)                              7/NNS        1/NS      NA/SSCV            Q/N Valves (28)                              2/dN3        1/NS      NA/SSCV            Q/N Process Sampling System Primary Sampling System Pump                                    NNS          NS          NA                N Heat Exchangers                          NNS          NS          NA                N Sample vessets                          NNS          NS          NA                N
.      Piping (28)                              2/MNS        I/NS      NA/SSCV
'                                                                                          Q/N valves (28)                              2/hNS        1/NS      NA/SSCV            Q/N
        $1nk                                    -NNS          NS          NA                N
,      Boronometer                              NNS          NS          NA                N Process Radiation Monitor                NNS          NS          NA                N Amendment K October 30, 1992
 
    ...a,
                                  +              ,                                                    A CESSAR Enncucu 3
(Q TABLE 3.2-1 (Cont'd)
(Sheet 11 of 27)
ElASSIFICATios OF STRUCLURES. SYSTEMS. . AND COMPONFETS ouality Safety        Seismic                                    Assuranc Camponent Identification              Class _        Ca m ory _ __ _. L oc a t i on          Requiteyent Secondary Chemistry Controt System Heat Exchangers                        NNS            NS                  NA                        N Strainers                              NNS            NS                  NA                        N Monitors                              NNS            NS                  NA                        .N Piping (28)                            2/NNS          I/NS              NA/SSCV                    Q/N Valves (28)                            2/NNS          1/NS              NA/SSCV                    Q/N Station Service Water System Piping                                    3/NNS          1/NS            $$PS/CCWX                    Q/N Pumps                                    3              1                  SSPS                        Q p            Streiners                                3              1                  SSPS                        Q
(            Sump Pumps                                NNS            NS                  SSPS                        N
(            Traveling Screens                        3              i                    TD                        Q Valves                                    3/NNS          I/NS            SSPS/CCWX                    Q/N K
Turbine Building Service Water System
              'r-e-
              - -                                      NNS            NS                  T8                        N
              ,*ss.                                    NNS            WS                  T8                        N h%i                                      NNS            NS                  TB                        N S u ' . - t es                            NNS            NS-                  TB                        W Turbine Building Cooling Water System Piping'                                  NNS            NS                    fB                        N Valves                                    NNS            NS                    TB                        W Heat Exchangers                          NNS            NS                  TB                        N Pumps                                    NNS            NS                  TB                        N Surge Tonk                                NNS            NS                    TB                        N Chemical Addition Tank                    NNS            NS'                  T8                        N Chilled Water System Essentist Chilled Water Systen Refrigeration Units                    3-              I                    WA                        Q Pumps                                  3              !-                  NA                        0
[]j
( '
Compression Tanks Chemical Addition Tanks 3
NNS I'
NS NA NA Q
N Essentfal/ Normal Heat Exchangers      3/NNS (1)      I                    NA-                      Q/N              j l
Amendment K October 30, 1992                    l 1
          .                    ,                                            ,                          . . . - .      ~ ~ - - .  . .
 
CESSAR EE%"lCATION O
TAstt M -1 (cont'd)
(Sheet 12 of 27)
CtASSIflCATlou 0F STRUCTUt1S. SYSTEMS. AND C08EPOWENTS Quality Safety        Seitalc                    Assuranc Component Identification                Class        Category    Location    Requitement Piping (28)                              2/3/NNS      1/NS      NA/SSCV/RXB        0/N valves (28)                              2/3/NNS      I/WS      NA/SSCV/RXB        Q/N Strainers                                3/NNS        I/NS          NA              Q/N Normal Chtlted Water System (15)
Ref rigeration Units                      NNS          NS            NA                N Pumps                                      NNS          NS            NA                N Compression Tanks                          NNS          WS            NA                N Air Separators                            NNS          NS            NA                N Cheelcel Addition Tonks                    NNS          NS            NA                N Piping (28)                                2/NNS        1/NS        NA/SSCV          Q/N valves (28)                                2/hNS        1/NS        NA/SSCV          Q/N Strainers                                  NNS          NS            NA                N Condenser Circulating Water System Pumps                                      NNS          NS            YD                N Cooling Towers (mechancist portion)        NNS          NS            YD                N Piping                                    NNS          NS            YD/TB              N Valves                                    NNS          NS            YD/TB              N Strainers                                  NNS          NS            YD/TB              N Traveling Screens                          NNS          NS            YD                N Compressed Air Systems Instrument Air System Air Compressors                          NNS          NS            NA                N Piping (28)                              2/NNS        NS            ALL              Q/N valves (28)                              2/NWS        NS            ALL              0/N Air Receivers                            NNS          NS            NA                N Deslecant Air Dryers / Filters          NNS          NS            NA                N Station Air System Air Compressors                          NNS          NS              SXB              N Air Dryers / Filters                    NNS          NS              SXB              N Piping (28)                              2/NNS        NS            ALL              Q/N Air Receivers                            NNS          NS              SXB              N Valves (28)                              2/NNS          I/NS          ALL            Q/N Amendment K October 30, 1992
 
CESSAR HMiricari:n n
i
          /
D J
TABLE 3.2-1 (Cont'd)
(Sheet 13 of 27)
CLASSIFICATI0s_01
                                              }LRyglyeLS,_STSitMS. AND COMPOWINTS Quality Safety      Scisalc                              Assuranc Component identification                glass        gehory      location              Requirement Breathing Air System Air Compressors                          NNS          WS                SXB                    N Piping (28)                              2/NNS        I/NS              ALL                  0/N Valves (28)                              2/NNS        I/NS              ALL                  Q/N Air Receivers                            NNS          NS                SXB                    N Air Dryer / Filters'                      NNS          NS                SXB                    N Compressed Cas Systems Piping (26) (28)                            2/NNS        1/NS              ALL                  Q/N High Pressure Gas Cylinders                NNS          NS                YD                      N
[]
Pressure Regulators Leak Detection Systems WWS NNS NS
                                                                        -NS YD ALL N
N Liquid Nitrogen Evaporators                WWS          NS                YD                      N Valves (28)                                2/NWS        1/NS              ALL                  O s .4 Fire Protection System                                                                                      K Jockey Pump                                WNS          NS                FPH                    N-Surge Tank                                  NNS          I                NA                      Q Fire Pumps                                  WWS          NS                FPH                    N Storage Tanks                              NNS -        NS                FPH                    N Water Spray Systems (Deluge ar.d            2/NNS        1/NSS    TB/NA/SSCV/                  Q/N Sprinkter) Piping, Valves (16)(28)                              RXB/DGB/SXB Nose Systems / Standpipes (16) (28)        2/NNS        I/NS              ALL                  0/N Portable Fire Extinguishers (16)            NNS          NS                ALL'                    N Exterior Distribution System Piping                                  NNS          NS                YD                      N Valves                                  NNS          NS                YD                      N Stralners'                              NNS          WS                TD                      N Diesel Generator Systems DG Engine Fuel Olt System (17)
Fuel Oil Storage Tanks                  3            1                DFS                    Q
;                -Recirculation Pumps                      NNS          NS                DFS                    N Booster Pumps                            3 '.          I                DGB-                    Q
      \
Fuel'Olt Day Tanks                      3            I                DGB                    Q
    \              Fuel Oil Transfer Pumps                  3            3                -DGB                    Q l
Amendment K
                                                                                                . October 30, 1992 i
 
CESSAR E!?Reuia O
TABLE 3.?-1 (Cont'd)
(Cheet 14 of 27)
CLAS$lFICA ROM OF STRUCTURESd1Sl{3h__ AND__ CtmPOWENil Quality Safety        Seismic                      Assuranc Component identifiss11gn            Ela m        Esteggry      Location    5,egultroent Strainers                            3/NNS        I/NS          DGB/YD            0/N FfLters                              3/NNS        I/NS            DGB            Q/N Piping                                3/NNS        1/NS        DGB/DFS/YD          0/N Valves                                3/NNS          I/NS          DGB/DFS          0/N DG Engine Cooling Water System Circulation Pumps                    3              1              DGB              Q Keep Warm Pumps                      3              1              DGB              Q Jacket Water Coolers                  3              I              DGB              Q Jacket Water Standpipes              3              I              DGB              Q Chemical Pot Feeders                  3              1              DGB              Q Piping                                3              I              DGB              Q Valves                                3              I              DGB              Q DG Engine Starting Air System (18)
Compre6& ors                        NNS            NS              DGB              N Aftercoolers                        NNS            NS              DGB              N Moisture Separators                  NNS            NS              DGB              N Filter / Dryer Units                NNS            NS              DGB              N  K Air Receivers                        3              i              DGs              Q Strainers                            3/NNS          I/NS          DGB            0/N Traps                                NNS          NS              DGB              N Filters                              3/NNS          I/NS          DGB            Q/W Piping                                3/NNS          1/NS          DGB            Q/N Valves                                3/NWS          1/NS          DGB            Q/N DG Engine Lube oil System (19)
Lube Oil Sump Tanks                  3              I              DGB              Q Lube oil coolers                      3              1              DGB              Q Oil Transfer Pumps                    NNS          NS            DG8/YD              N Prelube Oil Pumps                    3              1              DGB              Q Clean and Used Lube Olt Storage Tanks                              NNS            NS              YD              N Filters                              3              I              DGB              Q Strainers                            3/NNS          1/NS          DGB            Q/N Piping                              3/NNS          1/NS        DGB/YD            Q/W Valves                              3/NNS          1/NS        DGB/YD            Q/N O
Amendment K October 30, 1992
 
CESSAR HE"icni:n O                                            TABLt 3,2 1 (Cont'd)
(Sheet 15 of 2T)
                                                ,CJA}RIFICATION OF SinUCTURES. . SYST[MS. Abo..ConPostuTS cuality safety        Selsaic                                          Assuranc Cossionent Idenlification              Class        Catesory                          Location    gegujiteent DG Engine Air Intake end Exhaust System Turbochargers                          3            1                                    DGB              Q Aftercoolers                            3            I                                    DGB              Q Sitencers and Air Filters              3            1                                    DGB              Q Piping            .                    3            1                                    DCB              Q Equipment and Floor Dralnege System teactor Building Subsphere Sump Pumps    3            I                                    RXB              Q Other Sump Pumps                          NNS          MS                                                    N Piping (28)                              2/3/NNS        I/NS                                ALL          - Q/N Valves (28)                              2/3/NNS        I/NS                                ALL            Q/N Diesel Generator Building Sump Pump System Sump Pumps                                3            I                                    DG8              Q Piping                                    3/NNS        1/NS                            DGB/NA/RWF          Q/N Valves                                    3/NNS        1/NS                            DGB/NA/RWF          0/N. K Control Building Ventilation System Main Control Room Air Handling System Air Handling Units w/ Filters          3              i                                    NA              Q Fens, Ductwork                          3              i                                    NA              Q Water cooling Colts                    3              I                                    NA-              Q Heating Colts                          3              i                                    NA              Q Dampers                                  3            i                                    NA              Q Technical Support Center Air Handling System Air HL.dling Units w/ Filters            NNS          NS                                  NA              N Fens, Ductwork                        .NNS            WS                                  NA                N Dampers                                  NWS          NS                                  WA                N Computer Room Air Handling System Air Handling units w/ Fitters            NNS            NS                                  NA                N fans, Ductwork                          NNS            NS                                  NA                N Dampers                                  NNS            NS                                  NA                N pl l  \
\_/
Amendment K-October 30, 1992
 
CESSAR E!Encm2 O
13Btr 3,M (Cont'd)
(Sheet 16 of 27)
CtASSIFICA3 05 OF stRuciuerS, STStrMS d ND 10MPOW(NTS Quality Safety      Selsalc                  Assuranc Component Identification                Class        Cate2o_ry Locallon    pecuirement vital Instrumentation and Equipment Rooms (inc. Battery Rooms)
Air Handling Units w/ Fitters            3            I          NA              Q Fans, Ductwork                          3            I          NA              Q Dampers                                  3            I          NA              Q Selance of Building Air Handling System Filters                                  NNS          NS          NA              N Water Cooling Colts                      NNS          NS          NA              N Fans, Ductwork                          NNS          NS          NA              N Dampers                                  NNS          NS          NA              N Fuel Building Ventitation System Cooling Coll                                NNS          NS          NA              N Neating Coll, Supply                        NNS          NS          NA              N      K Air Handling Unit w/ Filter                NNS          NS          NA              N Ductwork, Supply                            NNS          NS          NA              N Exhaust System Filter train                3            1          NA              Q Exhaust System Fans                        3            I          NA              Q Exhaust System Dampers                      3            1          NA              Q Ductwork, Exhaust                          3            1          NA              Q Dampers, Supply                            NWS          NS          NA              N Nuclear Annex Ventilation System (20)
Recirculation Units                        3            I          WA              Q Supply Air Handling Units                  NNS          NS          NA              N Ductwork, Supply                            NNS          NS          NA              N Cooling Colts                              NNS          NS          NA              N Particulate Exhaust Filter Units            NNS          NS          NA              N Fans, Ductwork                              NNS          NS          NA              N Dampers                                    NNS          NS          NA              N Room Recirculating Unit Cooling Colts      3            I          NA              0 Redweste Building Ventilation System Supply Air Handling Units                  NNS          NS          RWF              N Cooling Colts                              NNS          NS          RWF              N Amendment K October 30, 1992
 
s CESSAR ninneuer                                                                                                                              i 1
O.                                                                                                                                                ;
V IAtlE_3,2-1 (Cont'd) j                                                    (Sheet 17 of 27) i j                                                    $1ASSIFICAT10N OF SitucTuer$. SYSitus, AND coslPOWENt3 Quality Safety        Selsele                          Assuranc Couponent IdentifIgatIon              Class _      paiegory    Locellon        Requirement i
Exhaust Fitter Units                      NNS          WS              RWF                N-Fans                                      NNS          NS              RWF                N Ductwork                                  NNS          NS              RWF                W i            Dampers                                  NNS          NS              RWF                N l
Reactor Building Subsphere Ventitation l            System 4
(            Individual Cooling Units                  3/NNS        1/WS            RX8                Q/N Exhaust fans                              3            I                WA                  Q Cooling Colts and Nesting Colts          3            I                NA~                Q Exhaust System Filter Train              3            I                NA                  0 I
Ductwork, Exhaust                        3            1            NA/RX8                0 s      Supply Fans                              NNS          NS              NA                  N Supply Air Handling Units                NNS          NS              NA                  N
,            Ductwork, Supply                          NNS-          NS            NA/RXB                N
)            Dampers, Enhaust                          3            i                NA                  0        K Dampers, Supply                          NNS          NS              NA                  N 1
Diesel Building Ventilation System Space Heater                              3            i                DG8                Q Supply / Exhaust Fans                    3/NNS        1/NS            DC8                Q/N Ductwork                                  3/NNS        I/NS            DG8                0/N-
+
Dampers                                  3/NNS        1/NS            DG8                Q/N Filter, Normal Supply                    NWS          NS              DGB                N l
Annutus Ventitation System
,          Filter Trains                            3            I                NA                  Q Fans                                      3            I                NA                  Q Dampers                                  3            I                WA                  0 Ductwork                                  3            I            NA/RX8                Q Containment Purge Ventitation System Vater Cooling Coll                        NWS          h5              NA                  N
, ,Q Neating Coll                              NNS          NS              NA                  N
,  \v/
Amendment K
.                                                                                            October 30, 1992
                      .      ric e+  -~ v  -            --r-w- ,  , ,.        ,    ,,        +        , ey, . , . . . - - . . . . - - , _ - .
 
l 4
CESSAR Enecamu O
T ABt E 3.2-1 (Cont'd)
(Sheet 18 of 27)
{tASSIFICATION OF STRUCTURES, SYSTFMS, ANDJ 0MPONCNTS Quality Safety        Selsaic                    Assuranc Component Identification            Class _            r Category  Locatlon    "egul tesent Supply and Exhaust Fans                  NNS          NS          .kA                N Valves (28)                              2/NNS        1/NS        NA/SSCV            Q/N Fitter Trains                            NNS          NS            NA              N Ductuork (28)                            2/NNS        1/NS        NA/SSCV            Q/N Containment Cooling and Ventitation System Containment Cooling Subsystem            NNS          NS          $$CV              N
<    control Element Drive Mechanism Cooling Subsystem                              NNS        NS            SSCV              N Containment Air Cleanup System            NWS        NS            $$CV              N Cavity Cooling Subsystem                  NNS        NS            $$CV              N Ductwork                                  WNS        NS            $$CV              N Dampers                                    NNS        NS            SSCV              N Turbine Building Ventilation System                                                          K Fans                                      NNS        NS              TB              N Dampers                                    NNS        NS              18              N Exhausters                                NNS        NS              TB              N Ductwork                                  NNS        NS            TB              N Station Service Water Pump Structure Ventitation System Fans                                      3          i            SSPS              Q Dampers                                    3          I            SSPS              Q
<      Ductwork                                  3          1            ttPS              Q Main Steam Supply System Piping (21)
Steam Generator to MSIV's                  2          I          SSCV/MSVH            Q Other                                      NNS        NS        MSVH/NA/TB
.                                                                                                  O Amendment K October 30, 1992
 
CESSAR !!Siricamn
        )
taste 3.7;1 (Conted)
(Sheet 19 of 27)
{tASSIFICATIDs 01 JTRUCTyg). SYSTEN),_AND ConPou[g!
Guality Safety                        Seiselc                                        Assuranc Conggynt identiflcation                      class _                            t
{stegory                      location      Requirement valves (21)
Safety valves                                    2                            1                              MSVN                Q MSIV's, MSIV Bypass Valves                      2                          .I                                MSVN                Q Atmospheric Dump Valves                          2'                            I                              MSYN                Q Valves                                          2/WNS                      '!/NS                        NA/MSVn/18              Q/N Containment Hydrogen Recombiner System Piping (28)                                      2                            1                              NA/SSCV              Q Mydrogen Recombiners-                            2                            I                                NA                  Q Hydrogen Anatyrers                              2                            i                                NA                  Q Hydrogen Recombiner Control Panel                3                            I                                NA                  Q Valves (28)                                      2                            i                              NA/SSCV              Q Steam Generator Blowdown System (22)
K Piping (28)                                      2/NNS                        1/NS                    $$CV/TB/MSVN              Q/N Flash Tank ~                                    NNS                          NS                              TB                  N Nest Exchanger                                  NNS                          NS                              TB                  N Filter                                          NNS                          NS                              T8                  N Deelneralizers                                  NNS                          NS                              TB                  N Valves (28)                                      2/NSS                        1/NS                    SSCV/TB/MSVN              Q/N Steam Generator Wet Layup Recirculation System (22)
Piping (28)                                    ' '2 / N N S                    I/NS                    SSCV/TB/MSVN            . Q/N Valves (28)                                      2/NSS                        1/NS-                    SSCV/TB/MSVN              Q/N Hydrogen Mitigation System Hydrogen Igniters                                NNS                          1                              SSCV                N-Potable and Sanitary Water Systems              NNS                          NS-.                            YD.                .N
      \
i.- .
Amendment-K October-30, 1992:
 
CESSAR EnWicuen TABLE 3,2 1 (Cont'd)
O (Sheet 20 of 27)
CLASSIFICATION or H ausTuaE5,_SYST[MS d WD COMPOW[NJS ouality Safety        Seismic                      Assuranc c_om_ ponent Identificatim              Elass_      pal m ry    locat im    !sssitement Instrumentation and Control Systems 1    Plant Protection System (PPS)
The PPS includes the electrical and mechanical devices and circuitry (from sensors to actuation device input terminals) involved in generating the signals associated with the two protective functions defined below:
Reactor Protective System (RPS)
That portion of the PPS which      3            I            NA/SSCV            Q generates signals that actuate reactor trip                                                                            g Engineered Safety Features Actuation System (EST)
That portion of the PPS which      3            I            NA/SSCV            Q generates signals that ectuate engineered safety features Safe Shutdown Systems The safe shutdown systems          3            I          DGB/NA/CCWX          Q include those systems required                              SSPS/MSVH/
to secure and maintain the                                  RXS/SSCV reactor in a safe shutdown contfition Att other systems required for      3              1        NA/DGB/CCWX/          Q safety                                                      SSPS/MSVM/
RXB/SSCV O
Amendment K October 30, 1992
 
CESSARinfinemer J
,                                                                                        TABLE 3.2-1 (Cont'd)
I (Sheet 21 of 27) l l                                                                                            CL ASSIFICATI0sy Situciut[S,_SYSitNS,_AND_COMPOutefS Quality l                                                                                                Safety            Seismic                                      Assuranc Component IdentifIcatJon                          _,    Class            Category          Locatlen            Requirement i-g                                        Control systems not required for                      NNS              NS                    ALL                      N
{                                            safety i
;                                          Control Room Panels (safety
* 3'                  I                    NA-                      Q related)-
f                                          Control Room Panels (other)                          3                  I.                  NA                      .Q j                                          Instrument valves and piping j                                            downstream of Safety Class'2
:                                            or 3 root valves (For safety-j                                            related instruments)
,                                            Piping, tubing, and fittings                      2/3                I                    ALL                      -0 f.
.                                              Instrument valves                                NNS                NS                  ALL                        N 4-Electric Systems l
Class 1E AC Equipment (inciv1es associated transformers,
{
4                                          protective relays, instrumen-l tation and control devices l
4.16 kV Buses                                      -3                    I                    NA                        Q f
4 j                                          480v Load Centers                                    3                  1                    NA                        Q A                                          480V Motor Control Centers                            3                    1    'NA/CCWX/0GB/SSPS                        Q Class 1E DC Equipment 125v Station Batteries and Racks .                                .I                      NA.                      O f                                          Battery Chargers                                      3                  I                  NA                      .O 125V Switchgear and Distribution                      3              'I                      NA                        Q
.                                              Panets I
;    \w 1-J I-Amendment K
:                                                                                                                                                - October 30, 199.2  _
p-
  , ,- ,,..    -,..--. -,,. ~ _.. ,                    .    . . , - ,v.--..~    -      ,=,-.,,,,..,--,,,,,,,,.--_a.,n.    ,n,.-,,-,,.    ,,,_,n  ;..,-,-_.,      ,,,n,, .,,L-....
 
CESSARRL"ic-O les!LMd (Cont'd)
(Sheet 22 of 27)
CLAS$1FICATION OF STRUCTUtfS..STSIINS, AND COMPOMINTS ouality Safety          Seismic                    Assuranc component identification                Class          Category    location    seguirement 1?0V Vital AC System Equipment inverters                                3              1              NA            Q 120V Distribution Panets                3              I              NA            0 Electrical Cables for Class 1E Systems 125V DC Cables (including cable          3              I              WA              Q splices, connectors, and terminal blocks)
      $ kV Power Cables (including cable      3              i          NA/DGB/CCWX/        Q splices, connectors, and terminal                                  SSPS blocks) 600V Power Cables (including cable      3              I          NA/DGB/CCWX/        Q spiices, connectors, and terminal                              SSPS/MSVM/
blocks)                                                          RXB/SSCV Control and Instrumentation Cables      3              I          DGB/CCWX/NA        Q (including cable splices,                                      SSPS/MSVH/RXB connectors, and terminal blocks)
Conduit and cable trays and their        3              1          DGB/CCWX/NA/        Q supports containing Class 1E                                  SSPS/MSVM/RXB/
cables and those whose falture                                      SSCV during a seismic event may damage other safety-related items Miscettaneous Class 1E Electrical Systems Containment building electrical        3              I              SSCV            Q penetration assembtles
,  Non Class 1E Electrical Systems          NNS            NS              ALL            N Amendment K October 30, 1992
 
CESSAR Mninema O
v TABLE.3 M (Cont'd)
(sheet 23 of 27) gin sit 1CAJ1ou or neocTuers,,n grus, Ano Compour ns cuality safety        seismic                    Assuranc C w i ldentificallon                                                            Class        {atgory    localign    B eghement Structures Reactor Building                                                                    2            I              RXB            Q Shield Building                                                                    2            1            SSCV            .Q Steel Containment                                                                2            1            $$CV            0 Internal Structure                                                                3            I            SSCV            0 Equipment Match                                                                  2            1            SSCV            Q Personnel Air Lock                                                                2            1            SSCV            0 Nuclear Annex                                                                      3            i              Na              Q Diesel Generator Buildint                                                        3            1              DG3            Q Main Steam Valve House                                                            3            I            HSVH-            Q Turbine Building                                                                    NNS          NS            TB              N Redwaste Facility (29)                                                              3                            RWF 1                              0 Station Service Water Pump                                                          3            1            $$PS            0 Structure Component Cooling Water Heat                                                        3            I            CCWX                  E Q
Exchanger Structure Dieset Fuel Storage                                                                  3            1              0FS            Q Service Building                                                                    NNS          NS            SXB            N Administratico Building                                                              NNS          NS            ADB            N Warehouse                                                                            NNS          NS            WH              N Fire Pump House                                                                      NNS          NS            FPH              N Dike (CVCS Outdoor Tanks)                                                            3            I              VD              Q Cranes Polar Crane                                                                          3            11            $$CV              Q Cask Handling Holst                                                                  3            11            NA              0 New Fuel Handling Holst                                                              3            11            NA.            Q Component Supports (23)                                                              -1/2/3/NNS  .!/NS          ALL            Q/N v
Amendment K-October 30, 1992
_ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ - - - - - - - - - -                                  -    -      N
 
CESSAR EL"lCAT13N O
TABLE 3.2-1 (Cont'd)
(Sheet 24 of 27)
CLASSIFICATION OF STRUCTURET, 5YSTEH53D10MPONENTS NOTES: (1) Two safety classes are used for heat exchangers to distinguish primary and secondary sides where they are different.
(2) Loss of cooling water and/or seal water service to the reactor coolant pumps (RCPs) may require stopping the pumps. However, the continuous operation of the pumps is not required during or following an SSE. The auxiliaries are therefore not necessarily Safety Class 3 or Seismic Category 1. Provision for cooling water to the pump bearing oil cooler and pump motor air cooler will not comply with the requirements of Regulatory Guide 1.29 (see Section 5.4.1.3).
(3) Only those structural portions of the RCPs which are necessary to assure the integrity of the reactor coolant pressure boundary are Safety Class 1.
(4) Safety class of piping within the reactor coolant pressure boundary (as defined in 10 CFR 50) is selected in accordance with the ANSI /ANS 51.1 criteria identified in Section 3.2.2.
For purposes of CESSAR, Safety Class 1, 2, 3, and NNS of        D ANSI /ANS 51.1 are equivalent to Quality Groups A, B, C, and D of Regulatory Guide 1.26.
(5) Flow restricting orifices are provided in the nozzles for RCS sampling lines, pressurizer level and pressure instruments, RCP differential pressure instrument lines, SIS pressure instrument  I lines, RCP seal pressure instrument lines, the charging line differential pressure instrument line, and the SIS hot leg injection pressure instrument lines, to limit flow in the event of a break downstream of the nozzle. The orifice size, 7/32-inch diameter and 1-inch long, precludes exceeding fuel design limits while utilizing minimum makeup rates. This permits an orderly shutdown in the event of a downstream break in accordance with General Design Criterion 33 (see Section 3.1.29). A reduction may, therefore, be made in the safety classification of lines downstream of the orifice.
(6) The pressure boundary housing for this component is a reactor vessel appurtenance and is Safety Class 1 and Seismic Category I, as described in Section 3.9.4.3.
O Amendment I December 21, 1990
 
CESSAR Hninema O
)                                                TABLE 3.2-1 (Cont'd)
)                                                  (Sheet 25 of 27)
  !                                                CLASSIFICATION OF 4
STRUCTURES, SYSTEMS, AND CONPONENTS NOTES:  (7) Core support structures and internals structures are designed                  lK-(Cont'd)        to the criteria described in Section 3.9.5.4.
(8) CEA and fuel _ assemblies are designed to the criteria described
;                        in Section 4.2.
i                (9)    Reactor coolant pump auxiliary components required for lubrica-tion and cooling of pump seals and thrust bearings are not i
K subject to the quality assurance requirements of 10CFR50, Appendix B.
(10) Except Lifting Frame Assembly, which is NS.
l (11) During normal plant operation only.                                              D (12) Safety Class I for pressure boundary; Safety Class 3 for l
b                    electrical portion of system.
(13) The piping, valves, and associated supports / restraints of the 7
Main Feedwater System from (and including) the Main Feedwater Isolation Valves to the steam generator feed nozzles are Safety Class 2, Seismic Category I, and are subject to the quality-                g assurance requirements of 10CFR50, Appendix B; the remainder is
;                        Safety Class NHS.
I
:                (14) Non-safety Cooling Headers are Safety Class NNS, Seismic
'                        Category II, and are not subject to the quality assurance                  g requirements of 10CFR50, Appendix B.
(15) The Normal Chilled Water System serves no safety function.
:                        Portions of the system which_are located in non-safety related                I areas are classed as non-seismic.
(16) Portions of the Fire Frotection System piping, valves, and                    g extinguishers wh;en are not in safety-related areas of the
:                        plant are designed as non-seismic.
I (17) Fuel Oil Recirculation System and storage tank fill line
.                    . strainer are Safety Class NNS.
lx n
b Amendment-K October 30, 1992
    ,.                      _ _ . . - _              .-.  ~      _
 
CESSAR El'acm2 O
TABLE 3.2-1 (Cont'd)
(Sheet 26 of 27)
CLASSIFICATION OF STRUCTURF575TM5 7JiD COMPONENTS NOTES:  (18) The Starting Air System is Safety Class NNS from the starting (Cont'd)      air compressor through the desiccant drying towers, and Safety Class 3 from the starting air receiver tank inlet check valve      7 to the engine connections.
(19) The Clean and Used Oil Transfer System is Safety Class NNS.
(20) Mechanical Equipment Room cooling components are Safety Class 3, Seismic Category I, and are subject to the quality assurance lg requirements of 10CFR50, Appendix B.                            I (21) The piping, valves, and associated supports / restraints of the    I Main Steam System from each steam generator to (and including) the Main Steam Isolation Valves are Safety Class 2, Seismic Category I, and are subject to the quality assurance requirements of 10CFR50, Appendix B; the remainder is Safety Class NHS.
(22) Piping is Safety Class 2 from the Steam Generators through the    7 Containment Isolation Valves.
(23) Component supports are designed to the criteria described in Section 3.9.3.4.
(24) Safety Injection drain and vent piping is Safety Class NNS, Seismic Category NS and is not subject to the quality assurance requirements of 10CFR50, Appendix B.
(25) locations:
CCWX =    Component Cooling Water Heat Exchanger Structure      K DGB  -    Diesel Generator Building FPH  -    Fire Pump House MSVH =    Main Steam Valve House RWF -      Radwaste Facility RXB  -    Reactor Building SSCV -    Steel Containment SSPS =    Station Service Water Pump Structure SXB  -    Service Building TB    -    Turbine Building                                        ,
NA    -    Nuclear Annex YD  -    Yard
                                                                                        )
Amendment K October 30, 1992
 
[
L CESSAR.nnLua 4
TABLE 3.2-1 (Cont'd) f (Sheet 27 of 27)
.                                                        CLASSIFICATION OF-STRUCIURE5 5YST MS, AND CONPONENTS i
i NOTES:            OFS              -    . Die wl Fuel Oil Storage (Cont'd)          ALL            -      Througout Plant
!                (26) Hydrogen lines in safety-related areas are either designed to Seismic Category I requirements, or sleeved with the outer pipe vented to the outside, or equipped with excess flow check valves so that in case of a line break,.the hydrogen concentration in the affected area will not exceed 2%.
(27) Quality Assurance Requirement                                                                                  g Q - The quality assurance requirements of 10CFR50, Appendix B are applicable N- The quality assurance-requirements of 10CFR50, Appendix B are not applicable (28) Containment isolation valves and containment penetration piping are Safety Class 2, Seismic Category I, and are in compliance with the quality assurance requiremerts of 10CFR50, Appendix B.
(29) The Radwaste Building foundation and curb are designed to the seismic criteria of regulatory position 5 of RG 1.143, t
f i
  ' O, V
Amendment K October 30, 1992
 
CESSAR n%ma O                                            TABLE 3.2-2 t
(Sheet 1 of 15)
,                                    SAFETY CLASS 1, 2 & 3 VALVES Component                      Location /      Safety- Seismic          Quality Identification                  Description        Class      Category-      Class        .
Reactor Coolant System (RCS) (1) lD-
'        RC-212                    Reactor vessel vent              2            I          1 RC-214                    Refueling level                  1            I          1 indicator (Hot leg)
RC-215, 216,-232,-332,    RCS drains                      1.          I          1-
!            233, 333, 234, 334, 235, 335, 310, 311, 312, 313, 314, 315, 316, 317
;        RC-248, 249, 252, 253,    Reactor coolant pump (RCP)      2            I          1 3
256, 257, 260, 261    pressure differential
.        RC-208, 209, 218, 219,    Pressurizer (Pzr) level-        2            I          1 l            220                      indicator RC-204, 205, 206, 207      Pzr pressure indicator
(                                                                2 1          1 4
RC-239                    Pressurizer refueling =          1            I          1 RC-200, 201, 202, 203      Pressurizer safety          .l I          1 I
RC-240, 241, 442, 443,    Pressurizer spray line          1            1          1 236, 237 RC-100E, 100F              Pzr spray line control          1            I          1 RC-244                    Pzr spray line check            'l            I          1 RC-210, 213, 238          Sample system                    2            I          1 RC-211, 403                Reactor vessel closure          2            I          1 head leakoff RC-217                    0-ring leakoff pres' re          2            1          1 indicator.
RC-265, 266                Mid-loop operating =            2            I          1 connection to IRWST
'        RC-268, 269                Mid-loop operating              1            I          1 connection to pzr-4 RC-270, 271, 272, 273,    Steam generator                  2            I          1
;-            274, 275, 276, 277,      differential pressure
.            278,~279, 280, 281, 282,~283, 284, 285 RC-292, 293, 294, 295,    RCS pressure differential        2            I          1 296, 297, 298, 299.
RC-752, 753, 754, 755      RCP seal housing drain      -1              1          1 RC-712, 713, 714, 715      RCP vent                        2            1          1 RC-446, 447, 448, 449,    RCP HP cooler                    1            I          1          .
450, 451', 452, 453 l
Amendment I                  l December 21, 1990            l i
 
CESSAREnMcua O
TABLE 3.2-2 (Cont'd)
(Sheet 2 of 15)
SAFETY CLASS 1, 2 & 3 VALVES Component                    Location /      Safety Seismic  Quality Identification                Description      Class  Category  Class RC-868, 869, 870, 871,  RCP filter drain            1      1        1 700, 701, 702, 703 RC-724, 725, 726, 727,  RCP seal cooler pressure    2      1        1 736, 737, 738, 739 RC-430, 431, 432, 433,  RCP controlled bleedoff      2      I        1 344, 345, 346, 347 RC-380, 381, 382, 383    RCP vapor seal pressure      2      I        1 indicator Main Steam & Feedwater System (MS&FW) (1)
SG-105, 106, 107, 108    ADV block valve              2      1        1 SG-130, 135, 172, 175    Downcomer isolation        2      1        1 SGel32, 137, 174, 177    Economizer isolation        2      I        1 SG-140, 141, 150, 151    Main steam isolation        2      I        1 SG-169, 183              MSIV bypass valve          2      1        1 SG-178, 179, 184, 185    Atmospheric dump valve      2      1        1 SG-552, 553              SG test connection          2      1        1 SG-554, 555, 556, 557,    Main steam safety valve    2      1        1 558, 559, 560, 561, 572, 573, 574, 575,                                                    1 576, 577, 578, 579, 691, 692, 694, 695 SG-567, 598, 599, 612,    Economizer check valve      2      1        1 650, 651 SG-586, 587, 605, 609    Downcomer drain valve        2      I        1 SG-603, 611, 661, 665    SG purge connection          2      I        1 SG-608, 644              Economizer drain valve      2      1        1 SG-613, 614, 615, 616,    SG level indication          2      1        1 617, 618, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 635, 636, 637, 638, 639, 640 SG-619, 620, 633, 634,    Main steam flow              2      1        1 658, 659, 662, 663      indication SG-642, 643, 652, 653    Downtomer check valve        2        1        1 SG-684, 685, 686, 687    Main steam purge            2        1        1 O
Amendment I December 21, 1990
 
CESSARENL -
  - v)
E TABLE 3.2-2 (Cont'd) 1 (Sheet 3 of 15)
;                                  SAFETY CLASS 1, 2 & 3 VALVES 4
Component                        Location /                  Safety  Seisele_  -Quality Identification                  Description                    Class    Category    Class Chemical and Volume Control System (CVCS)- (1) lI CH-101                    Letdown check to VCT                          3        I          1 CH-103                    VCT pressure indicator                        3        I          1 i      CH-104                    VCT vent isolation                            3        I          1 l
CH-110P, 110Q            Letdown control valve                        3        I          1 CH-ll2                    VCT gas supply check                          3        I          1 CH-113, 114              VCT level indicator                          3        I          1        K CH-ll5                    VCT to EDT relief                            3        I          1 CH-ll6                    VCT to RDH isolation                          3        I        -1 CH-ll7                    VCT local sample                              3        I          1 CH-118                    VCT discharge check                          3        I          1 CH-124                    BAST supply isolation-                        3      _I          1 CH-126                    BABT to BAST isolation                        3        I          1 lI
:. O CH-127 CH-128, 129 BAC line to BAST check BAST level indicator 3
3 I
I 1
1 I
lx 2
CH-130                    BAMP recirc isolation                        3        I          1      1 CH-131                    Boric' acid filter D/P-                      3        I          1      II CH-132                    Boric acid filter vent                        3        1          1      lx
.        CH-134                    BAMP to DRDH isolation                      -3        I          1      11 CH-135                    BAST level indicator                          3        I          1      [g CH-139                    Gas stripper to VCT                          3        I          1      i CH-143                    BAMP suction isolation                        3        I          1 CH-144                    BAST to PCPS isolation                        3        I          1        I CH-145                    BAMP suction isolation                        3        I          1-CH-146, 147              BAMP discharge pressure                      3        1          1 CH-150                    VCT-level indication                          3        I~        l      lK CH-152, 153              BAMP discharge isolation                    -3        I          1 CH-154, 155                                                                                        11 BAMP discharge check                          3        1          1      I CH-156                    BAST level indicator                          3        1          1      [g CH-160                    VCT level indication                          3        I          1      1 Boric acid filter isolation 3 CH-161                                                                          1          1 CH-164                    Boric acid filter bypass                      3      -I          1 CH-165                    Boric acid filter 0/P                        3        I          1 CH-166                    Boric acid filter                            3        1          1        I CH-172                    F-210Y isolation                              3        I.        1 CH-174                    Boric acid makeup                            -3        1          1-cross-connect CH-176                    BAMP local sample                            3        I          1 p  CH-177                    Boric acid to charging pump suction check 3        1          1      [K gr Am';ndment K October 30, 1992
                        ,-p      ern-      p-  -    wa--,n  >-e--    -  m    o +      +-    #  e.~-  ,,,-e , -
 
CESSARE.5 Gem O
TABLE 3.2-2 (Cont'd)
(Sheet 4 of 15)
SAFETY CLASS 1, 2 & 3 VALVES Component                  Location /      Safety Seismic  Quality Identification              Description        Class  Category  Class CH-179                RMW line to charging          3      I      1    lK pump suction check CH-184                RMW line to VCT check        3      I      1    {t CH-188                RMW to VCT check              3      1      1 h.
CH-190, 191          BAST gravity feed check      3      1      1 CH-192                BAMP to BAST recirc          3      1      1    II CH-198                RCP controlled bleedoff      3      1      1    [g CH-199                RCP controlled bleedoff      2      1      1 to RDT relief                                    !I CH-205                Auxiliary spray control      1      1      1    ,,
CH-208                Charging backpressure        1
                                                                          ^
1      1 CH-210Y              Boric acid flow control      3      I      1    II CH-231                Seal injection isolation      3      1      1    lx CH-241, 242, 243, 244 Seal injection flow control  2      1      1 CH-255                Seal injection isolation      2      1      1 CH-300                RCP bleedoff pressure        2      1      1 CH-301                Letdown orifice bypass        2      I      1      I CH-304                SCS Purification check        2      1      1 CH-307                SCS Purification isolation    2      I      1 CH-308                Letdown heat exchanger vent 3        1      1 CH-330                BAMP line to HT isolation    3      1      1 CH-344                Letdown flow indicator        3      I      1 CH-346                Letdown pressure              3      1      1 control isolation CH-347, 348, 349, 350 Letdown control valve iso. 3      1      1 CH-351                Letdown flow indicator        3      I      1 CH-353                Sampling system isolation    3      1      1 CH-354                Letdown to EDT relief        3      1      1 CH-355                Letdown filter bypass        3      1      1 CH-356, 357                                                                K Letdown filter 9/P iso.      3      I      1 CH-358                Letdown filter isolation      3      1      1 CH-359                Letdown filter vent          3      1      1 CH-360                Letdown filter isolation      3      1      1 CH-361                Letdown to DRDH isolation    3      !      1 CH-366                Letdown filter vent          3      1      1 CH-369                lon exchanger isolation      3      1      1 CH-370                IX inlet check                3      1      1 CH-371                IX vent to GWMS              3      1      1 CH-372                IX resin fill isolation      3      1      1 CH-373                Letdown filter isolation      3      1      1 Amendment K October 30, 1992
 
i CESSAR nanficarica n
:U
!                                                  TABLE 3.2-2 (Cont'd)
;                                                        (Sheet 5 of 15) i                                            SAFE 1Y CLASS 1, 2 & 3 VALVES
;                      Component                          Location /                              Safety: Seismic                                  Quality
;                Identification                          Description                              Class              Category                      Class CH-374                          IX isolation                                                  3                    I                      1 CH-375                          Letdown to DRDH                                                3-                    I-                      1 CH-376                          Letdown filter                                                3                    I                      1 CH-378                        - IX isolation        .
3                    1                        1 CH-379                        - RSSH to IX isolation                                          3                    I                        1 2
CH-380                          IX to SWMS isolation                                          3.                  I                      -'l CH-381                          IX bypass                                                      3                    I                        1 CH-382,-383                    IX isolation                                                  3                    I-                      1        K
:            CH-384                          IX check                                                      3                    1                        1 1
CH-385'                        IX bypass                                                      3                    1                        1 4
CH-386                          IX vent to GWMS-                                              3                    I                        1 CH-387                          IX resin fill isolation                                        3                    I                        l-i            CH-389                          IX isolation-                                                  3                    I                        1
!    -~g    CH-390                          RSSH to IX isolation                                          3                    1                      -1
(    j    CH-391                          IX to SWMS isolation                                          3                    I-                      1
: V          CH-392                          IX isolation                                                  3                    1                      1 L            CH-393                          Regenerative HX vent                                          .2                    I                      1        II l            CH-301                          IX bypass                                                      3                    I                      1 g
:            CH-395                        - IX isolation                                                  3                    I                      1 I            CH-396                          SCS check                                                      3                    1                      1 CH-397                          SCS isolation                                                  2                    1                      1        p CH-398                          IX isolation                                                  3                -I                        1 CH-399                          RSSH to IX isolation                                      --
3                    I                      1
,            CH-400                          IX to SWMS isolation                                          3                    I                      1 CH-401                          IX vent to GWMS                                                3                    I-                      1-CH-402                          IX resin fill isolation                                        3                    I                      -1 i            CH-403                          IX check                                                      3                    I                      1 IX isolation-2 CH-404                                                                                        3                    I                      1        K i            CH-407, 408                    IX D/P isolation                                              3                    I                      1
;            CH-414                          Letdown strainer bypass                                        3                    I                      l-CH-415                          IX isolation                                                  3                    I-                    -1 CH-418                          Letdown to VCT isolation                                      3                    1                      1 CH-419                          Letdown strainer to SWMS                                      3                    I                      1 CH-420                          IX effluent. sample                                            3                    I_                      1 CH-425                          Charging line pressure                                      _3                      I                      1-indicator isolation CH-426                          Letdown sample. isolation                                  _3                      I                      1-CH-427, 428                    Charging line flow                                            3                    1                      1 Indicator isolation CH-431                          Auxiliary spray check
;                                                                                                            1                    1                      1 lI Amendment K October 30, 1992
          +      w    -    ~-w  n  + r-        m --    ge -- -.    ---- e.,w v - m - ar s .e m - avg        <=~,.-s  e,-a        wux., -a,wp--s          m yr  we    +y ,
 
CESSAR HL*1CATl:N O
TABLE 3.2-2 (Cont'd)
(Sheet 6 of 15)
SAFETY CLASS 1, 2 & 3 VALVES Component            Location /        Safety Seismic  Quality Identification        Description        Class  Category  Class C!1-433          Charging line check          1      1        1 CH-434            Charging bypass line          1      1        1 CH-435            Charging line bypass check    2      1        1 CH-447            Auxiliary spray check        l      I        1 CH-448            Charging line check          1      1        1 CH-450            RDH to EDT check              3      1        1 CH-459            EDT line to GWMS pressure    3      1        1 indicator isolation CH-460, 461      EDT level indicator          3      1        1 CH-462            EDT drain isolation          3      1        1 CH-464            EDT to RDP check              3      1        1 CH-465, 466      RDP suction isolation        3      1        1 CH-468, 469      RDP discharge pressure        3      1        1 indicator isolation CH-470, 471      RDP discharge check          3      1        1 CH-472, 473      RDP discharge isolation      3      1        1 CH-474            Reactor drain filter bypass 3        I        1 CH-475            RDP discharge to RDH          3      1        1  I CH-476            Reactor drain filter D/P      3      1        1 CH-477, 478      Reactor drain filter          3      1        1 CH-479            Reactor drain filter D/P      3      1        1 CH-480            IDH to EDT check            3        I        1 CH-485            Pre-holdup IX to RSSH        3      1        1 CH-486            Pre-holdup IX to IDH          3      1        1 CH-488            Pre-holdup IX D/P            3      1        1 CH-489            Pre-holdup strainer to        3      1        1 SWMS isolation CH-490            Pre-holdup IX isolation      3      I        1 CH-491            Pre-holdup IX strainer        3        1        1 CH-492            Pre-holdup IX D/P            3      1        1 CH-493            Pre-holdup IX effluent        3        I        1 sample isolation CH-494            RSSH and RDP to RDH Check    2        I        1 CH-495            Pre-holdup IX to BAST        3        1        1 CH-496            Pre-holdup IX to stripper    3        I        1 CH-500            VCT bypass valve              3        1        1  x CH-501, 504      VCT discharge isolation        3      I        1 CH-505, 506      RCP C80 contain, isol.        2      1        1 CH-507            RCP bleedoff relief isol.      2      I        1 I
CH-510            BAST recirculation control    3      I        1 Amendment K October 30, 1992
 
i
          .CESSAR Ennnema                                                                                                                      f
]
TABLE 3.2-2 (Cont'd)
(Sheet 7 of 15)
SAFETY CLASS 1, 2 & 3 VALVES Component                                        Location /    Safety          Seismic        Quality Identification                                        Description    Class            Category        Class 2
CH-512                              VCT makeup isolation                        3            I              1    lI CH-513                              VCT to GWMS isolation                        3            1              1-  lK CH-514                              BAMP to charging pump                        3            1              1-I CH-515                              Letdown isolation                            1            l-            1 CH-516                              Letdown backuptisolation                    1            1              1
!                  CH-520                              lon exchanger bypass -                      3            I-            1    lK CH-523                              Letdown is01ation                            2            I            '1 CH-524                            Charging line isolation                      2            1              1      I
+
CH-527                            RMW to charging pump                        3            I-            1 CH-530, 532                        BAST discharge isolation                    3            l-            l'  lg l                  _CH-534                              BAST to charging pump-                      3            I              1    I
,                    CH-536                            BAST to charging pump                        3            1              1 i                    CH-560                            RDT suction isolation                        2            1              1
;                    CH-561                            RDT isolation                                2            I              1
      \              CH-562                            RDH to EDT isolation                        3            1              1        y i
^
CH-563                            EDT to RDP isolation                        3            1              1 CH-564                            EDT to GWMS isolation                        3            1              1
.                    CH-565                            Pre-holdup IX bypass                        3-            I              1 CH-566                            Gas stripper. bypass to EDT                  3            I              l-CH-567                            Gas stripper to VCT control                  3            1              1 4
CH-580                            RMWS to RDT isolation                        2            I              l
;                    CH-590, 591 _                    Charging flow control                        3            1              1  lK
!                    CH-600, 601, 602, 603              Letdown orifice isolation                  2            1-              1    II i                    CH-612, 613                      Seal injection line vent                    3              1              1    lx
;                    CH-614                            Seal injection vent                        3              1              1    31 4                    CH-639                            Chemical addition check-                  -3              1              1
!                    CH-645-                          VCT gas supply' isolation                    3              1              1 K
:'                    CH-646                            RCP bleodoff check                          3              i              1 CH-647-                            BAST recirc check'                          3              1              1 CH-648                            BAST retirc sample                          3              1              1 CH-649                            BABE isolation                              3              1              1 CH-653                            F-210Y isolation                            3              I              1
,                    CH-654                            MSH to gas stripper                        3              1-            1      1 CH-655                            Pre-holdup IX to                            3            _I              1 radiation monitor CH-656                            Gas stripper to HT                          3              I              l-F                    CH-657                            EDT relief to misc                        _3
_                1              1-radioactive sump CH-660                            Gas stripper inlet                          3              1              1 i'                  CH-663                            Reactor drain filter vent                  3              1              1 i O Amendment K October 30, 1992
    .  - _ . . _ _ ,          __. . - _ _ - _ _ . - . _ , _ _ ..-. ~ ~ _                      . - . - _ _ - .      . , _ _ _          __ _ _.
 
1 CESSAR E!2cuia O
TABLE 3.2-2 (Cont'd)
(Sheet 8 of 15)
SAFETY CLASS 1, 2 & 3 VALVES Component            Location /        Safety Seismic  Quality Identification        Description        Class  Category Class CH-665          RDP discharge sample            3    1      1 CH-668          BAM line to VCT check          3    I      1 I
CH-686          Holdup pump bypass to          3    1      1 reactor drain filter CH-700          Hydrostatic test connection 3        1      1 CH-701          Charging pump suction          3    1      1 CH-702          Charging suction pressure      3 1
CH-703, 704      Charging pump bypass            3    4      1      g CH-705, 706      Charging pump discharge        3    1      1 CH-710          Hydrostatic test connection 3        1      1 CH-712          Charging suction pressure      3    1      1 CH-713          Charging pump suction          3    I      1 CH-714, 715      Charging pump bypass            3    1      1 CH-716          Charging miniflow HX vent      3    1      1    lI CH-717          Charging recirc relief          3    1      1    g CH-719          Charging pump discharge        3    I      1    lg CH-721, 722      Letdown to pre-holdup IX        3    1      1 CH-723          Reactor drain line sample      3    1      1 CH-724          Pre-holdup IX isolation        3    1      1 CH-725          Pre-holdup IX check            3    1      1 I
CH-726          Pre-holdup IX resin fill        3    1      1 CH-727          Pre-holdt.p IX D/P              3    1      1 CH-728          Pre-holdup IX vent              3    1      1 CH-730          Pre-holdup IX to SWMS          3    I      1 CH-740          Controlled bleedoff drain      2    1      1 lK CH-747          Charging line check            2    !      1    31 CH-748, 854      Charging line drain            2    1      1 CH-750          Charging flow control iso.      3    1      1 K
CH-751          Regen. HX charging isolation 2        1      1    i CH-753          BAMP to PCPS                    3    1      1    lI CH-754          Charging flow control iso.      3    I      1 CH-760, 761      Charging recirculation check 3        1      1 CH-763          Charging pump discharge        3    1      1 CH-764, 766      Charging flow control iso.      3    1      1      K CH-768          Chemical addition line          3    1      1 CH-769, 770      Charging miniflow HX iso.      3    I      1 CH-787          Seal injection check            1    I      1 CH-789, 800      Seal injection flow            2    1      1 CH-802          Seal injection check            1    I      1      1 CH-804, 805      Seal injection flow            2    I      1 CH-807          Seal injection check            l    1      1 CH-809, 810      Seal injection flow            2    1      1 Amendment K            l October 30, 1992 l
 
CESSAR MMiricatinu
;O TABLE 3.2-2 (Cont'd)-
(Sheet 9 of 15)
SAFETY CLASS 1, 2 & 3 VALVES
!                            Component                            Location /          Safety Seismic Quality i                        identification                          Description          Class            Category' Class CH-812                        Seal injection check                      1                    I                          1    I i                      CH-814, 815                  Seal injection flow indicator            2                    1                          1
!-                    CH-816, 818, 819, 821 Seal injection filter                              3                    1                          1 CH-822, 823                  Seal injection to DRDH                    3                    1                          1    K
;                      CH-825, 826                  Seal injection filter D/P                3                    I                          1
:                      CH-830-                      Nitrogen supply to EDT                    3                    1                        -1  s 7
Nitrogen supply pressure control 3 CH-831                                                                                        I                          1  1 CH-833                        Seal injection drain                      2                    1                          1  l l                      CH-834                        Seal injection drain                      3                    I                          1  lx
!                      CH-835                        Seal injection check                      2                    1                          1  II
!                      CH-839                        Seal injection isolation                  3                    I                          1 CH-844, 845                  Seal injection filter vent                3                    l_                        1    g CH-848, 849, 859, 860 Seal injection drain                              1                  -I                            1 CH-853                      -Letdown line drain-                                              I O
1                                                                                              1                                                1
:                      CH-856                        BAHP suction drain                        3-                    I                          1
  \._./                CH-858                        RSSH line to EDT check                    3                    I                          1-CH-861                        RSSH to EDT isolation                    3                    1                          1    I CH-862                        RMWT supply to RDT                        3                    I                          1 i
CH-865                        Seal injection relief                    3                    1                          1  lK l                      CH-866, 867, 868, 869 Seal injection check-                            1                    1                          1 i
Pool tooling and Purification System (PCPS) (1) 4                      PC-200, 210                  Cooling HX inlet pressure                3                    1                          1 PC-201, 293                  Cooling HX cross-connect                  3                    1                          1
;                      PC-202, 203                  Cooling pump suction isolation            3                    I                          1 i                      PC-204, 205                  Cooling pump discharge pressure 3                              I                          1
!                      PC-206, '207                  Cooling pump _ discharge check            3                    1                          1    1 PC-208, 209                  Cooling-pump disch. isolation            3                    I                          1 1
PC-211,'212' Cooling HX inlet isolation                3                    I.                      '1 i                      PC-213, 214                  Cooling HX outlet isolation              3                    l-                        1
:                      PC-249                      'IRWST return line isolation              3                    1                          1 PC-257, 258                  Refueling pool disch. isolation 2                              I                          1 Refueling pool inlet isolation PC-291, 292            _                                              .2                    I                        'l PC-300, 301, 302, 303 Cooling flow indication iso.                      3                    I                          1 l
Safety Depressurization System _(SDS)
RC-406, 407, 408, 409 Rapid depressurization                            l-                    I                          1 p                    RC-410, 411, 412, 413 Pressurizer vent                                  1                    I                        'l
,                      RC-414, 415, 416, 417 Reactor vessel vent                              2                    1                          1 RC-418                        RCGVS vent to RDT                        2                    1                          1 i
t Amendment K-October 30, 1992
 
CESSAR E!%new, O
TABLE _3.2-2 (Cont'd)
(Sheet 10 of 15)
SAFETY CLASS 1, 2 & 3 VALVES Component              location /          Safety Seismic  Quality Identification                          Description          Class  Category  Class RC-419                          RCGVS vent to IRWST                2        1      1 RC- 263, 264                    RD pressure indication              2        1      1 RC-267                          RCGVS pressure indication          2        1      1 Safety injection System (SIS) (1)                                                          1 SI-100, 101                    IRWST return check valve            2        1      1 SI-102, 103                    1RWST isolation valve test          2        1      1 SI-104, 105                    CSP suction isolation              2        1      1 SI-106, 107                    SCS suction isolation              2        1      1 SI-108, 109                    Pressure gauge connection          2        I        1 SI-110, 111                    SCS/CS pump suction cross-connect                    2        1        1 SI-ll3, 123, 133, 143 Safety inj. containment check                2        I        1  lK SI-ll5, 125, 135, 145 S1 flow indication isolation                  2        1        1 S1-116, 126, 136, 146 51 flow indication isolation                  2        1      1 51-117, 127, 137, 147 SIT pressure indication iso.                  2        1      1 S1-119, 129, 139, 149 SIT pressure indication iso.                  2        1      1 SI-120, 121                    SCS suction BAMP isolation          2        1      1 SI-130, 131                    Safety injection pump isolation 2            1      1 (Pumps 3 and 4)
SI-157, 158                    Containment spray pump check        2        I      1 SI-161, 193                    CSS IRWST recirc line relief        2        1        1 SI-162, 192                    IRWST recirculation line            2        1        1    I refueling pool relief SI-164, 165                    Containment spray check            2        I        1 SI-166                          SI HL 2 to EDT relief              2        I        1 SI-168, 178                    SCS check valve                    2        I        1 SI-169                          SCS 2 suction thermal relief        1      1        1 SI-170, 180                    SDCHX vent valve                    2        1      1 51-172, 182                    SDCHX drain valve                  2        1      1 SI-174, 175, 176, 177 CSP discharge flow indication                  2        1      1 S1-179, 189                    SCS suction line relief valve        2        I      1 S1-187, 188                    SCS IRWST recirc line relief        2        1      1 S1-191, 194                    CS HX to EDT relief valve            2        1      1 SI-196, 197, 198, 199 Pressure gauge connection                      2        I      1  lK SI-207, 208                      IRWST isolation valve test          2        1        1 SI-210, 220, 230, 240 SIT fill and drain isolation                  2        I        1 SI-211, 221, 231, 241          SIT relief valve                    2        I      1 7
SI-212, 222, 232, 242 SIT level indication isolation                2        1      1 SI-213, 223, 233, 243 SIT level indication isolation                2        1      1 Amendment K October 30, 1992
:                    CESSAR H%ncueu                                                                                                  ;
1 1
TABLE 3.2-2 (Cont'd)
;                                                                        (Sheet 11 of 15) l SAFE 1Y CLASS 1, 2 & 3 YALVES
;                                        Component                        Location /            Safety Seismic          Quality identification                          _ Description          Class      Category      Class S1-214, 224, 234, 244 SIT local sample isolation                          2              1        1 i                        S1-215, 225, 235, 245 SIT check valve                                      1              1        1        i
:                        51-216, 226, 236, 246 Injection line pressure iso.                        2              1        1 J
SI-217, 227, 237, 247 Safety injection line check                          l            1        1        i SI-218, 219, 254, 255 51 pump orifice bypass valve                        2              1        1 S1-228, 238, 248, 258 SIT level indication isolation                      2            1        1
:                        51-229, 239, 249, 259 SIT level indication isolation                      2            1        1 S1-250, 251                        CS miniflow sample isolation          2            1        1 51-252, 253                        SCS miniflow sample isolation          2            1        1 51-260, 264                        SDCHX vent valve                      2            1        1 SI-261, 267                        sS pump mintflow isolation            2            1        1 l                      51-262, 266                        SDCHX drain valve                      2            1        1 S1-265, 269                        SCS pumo miniflow isolation            2            1        1 3
51-285, 286                        Safety injection to EDT relief        2            1        1 SI-287, 289                        SCS 1RWST recirc line relief          2            1        1
    \                    S1-290, 291                        Sli fill line isolation                2            I        1 S1-292                              EDT/ SIT relief valve                  2            1        1 SI-293                              SIT isolation valve                    2            1        1 l                        51-294                              EDT/ SIT local sampic                  2            1        1
:                        51-300, 301                        CS/SCS 1RWST recirc isolation          2-            1        1 i                        S1-302, 303                        SI IRWST recirc line isolation        2            1        1 S1-304, 305, 308, 309              1RWST isolation valve                  2            1        1 i                        SI-310, 311                        SDCHX flow control valve              2-            1        1 4
51-312, 313                        SDCHX bypass flow control              2            1        1 1
SI-314, 315                        SCS IRWST recire flow control          2            1        1 SI-321, 331                        Hot leg inj. loop isolation            2            1        1 SI-?'2, 332                        Hot leg check valve leak iso.          1            1        1    lK SI-390, 391, 392, 393 Holdup volume tank spillway                          2            1        1 SI-394, 395                        Reactor cavity _ spillway              2            1        1 SI-402, 470                        Safety injection pump isolation 2                    1        1 4                                                    -
(Pumps 1 and 2)
!                      SI-404, 405, 434, 446- 51 pump discharge check                            2            I        1 S1-408, 416, 433, 436 Pressure gauge isolation                            2            1        1 SI-409, 417, 439, 449 SI pump discharge to EDT relief                      2-            1        1 I
SI-410, 411, 412, 413 S1 pump miniflow isolation                          2            1        1 S1-418, 419                        Shutdown purification isolation 2                    1        _1 SI-420, 421                        Shutdown purification isolation 2                    1        1 51-424, 426, 4A8, 451 Si pump bypass check valve                          2            1        1 SI-427, 465                        SI effluent sampling valve            2-            1        1 1
p                    SI-429, 445                        SCS suction. sample isolation          2            1        1
--t    #                SI-430, 431                        SCS/ CSS discharge cross-connect 2                  1
,  %J                                                                                                                      1 Amendment K October 30, 1992
 
CESSAR E!L" ice O
TAHlE 3.2-2 (Cont'd)
(Sheet 12 of 15)
SAIETY CLASS 1, 2 3 3 VALVES Component                      Location /        Safety Seismic    Quality Identification                    Description        Class  Category  Class SI-435, 447, 476, 478 51 pump discharge isolation            2        1        1            .
51-450, 458                1RWST recirculation line          2        1        1 refueling pool isolation SI-454, 455                1RWST recirculation line          2        1        1 refueling pool isol6 tion 51-466, 467                SCS to EDT relief valve          2        1        1 SI-468                      SI HL 1 to EDT relief valve      2        1        1 I
51-460                    SCS 1 suction thermal relief      1        1        1 SI-473                      SlT fill line thermal relUf      2        I        1 SI-474                    RDT relief valve                  2        1        1 51-482, 483                CSP discharge pressure indic. 2        1        1 SI-484, 485                CSP discharge check valve        2        1        1 S1-488, 489                CSP discharge isolation          2        1        1 S1-490, 491, 492, 493 SCS flow indication isolation          2        1        1 SI-500, 501, 510, 511      CS header test connection        2        1        1 S1-506, 516                SI HL pressure indication        2        1        1 SI-522, 532                Si hot leg inj. check            l        1        1 S1-523, 533                S1 HL containment check          1        1        1 SI-525, 526                S1 HL 1 flow indication          2        1        1    p SI-535, 536                S1 HL 2 flow indication S1-540, 541, 542, 543 Si line check                          1        1        1    lK S1-550, 552, 553, 555 Si pump test isolation valve          2        1        1 S1-560, 561, 562, 563 CS miniflow HX vent valve              2        I        1 SI-564, 565, 566, 567 CS miniflow HX drain valve            2        1        1 SI-568, 569                SCS pump outlet check valve      2        1        1 51-570, 571, 572, 573 SCS miniflow HX vent valve            2        1        1 SI-574, 575, 576, 577 SCS miniflow HX drain valve            2        1        1 S1-578, 579                SCS pump outlet isolation        2        1        1 S1-580, 581, 582, 583 CS heat exchanger vent valve          2        1        1 1
SI-E84, 585, 586, 587 CS heat exchanger drain valve        2        1        1 SI-588, 589              1RWST recirc line BABE isolation 2          1        1          ,
51-609, 601              SCS train isolation valve          2        1        1 SI-602, 603              Si low flow control valve          2        1        1 SI-604, 609              Si hot leg inj. isolation          2        1        1 SI-605, 606, 607, 608 SlT atmospherte vent isolation        2        1        1 SI-611, 621, 631, 641 Sli fill and drain isolation          2        1        1 51-612, 622, 632, 642 Nitrogen pressure control            2        !        1 SI-613, 623, 633, 643 SIT atmospheric vent isolation        2        1        1 SI-614, 624, 634, 644 SIT discharge isolation valve        2        1        1      y SI-616, 626, 636, 646 Injection line isolation              2        1        1 SI-618, 628, 638, 648 Check valve leakage isolation        2        1        1 p
Amendment K october 30, 1992
 
CESSAR !!Sinema 0
TABLE 3.2-2 (Cont'd)                                        4 (Sheet 13 of 15)
SAFETY CULSS 1, 2 & 3 VALVES Component                        Location /          Safety Seismic      Quality identification                    Description            Class    Category __ Class SI-619, 629, 639, 649 Nitrogen pressure control                2          1          1 SI-651, 652,_653, 654 SCS suction line isolation                2        I          1 SI-655, 656            SCS suction line isolation              2          1          1 SI-657, 658              CSS 1RWST recirc flow control          2        l-        1 SI-661                  RDT isolation valve                    2        I-          1 S1-670                  IRWST return isolation                  2        1          1 SI-671, 672              Containment spray header iso.          2        1          1 SI-682                  SIT fill line isolation                2        1          1 SI-686, 696              CS HX to IRWST isolation                2        1          1 SI-687, 695              CS header block valve                  2        1          1 SI-688, 693              SCS IRWST recirc isolation              2        I          1 SI-690, 691              SCS train warm-up flow control          2-        I          1 S1-700, 701, 702, 703 IRWST level indication                    2        1          1 51-704, 705, 706, 707 HVT level indication O      SI-708, 709, 710, 711 Reactor cavity-level-indication 2 2        I          1 O      SI-712, 713, 714, 715 IRWST vacuum breakers S1-716, 717, 718, 719 1RWST relief valves 2
1 1
1 1
2        1          1 51-720                  1RWST return header isolation          2        1.        -1 Emergency feedwater System (EFW) (1)                                                      I EF-100, 101              Steam-Driven Pump Isolation            2        1          1 EF-102, 103              Motor-Driven Pump Isolation            2-        I          1 EF-104, 105              Steam-Driven Pump Flow Control          3        1          1 EF-106, 107              Motor-Driven Pump Flow Control          3        1          1 EF-108, 109              Steam-Driven Pump Turbine Steam Supply isolation                2        1          1 EF-110, 111              Steam Supply Drain Isolation            2        I          1 EF-ll2, 113              Steam Supply Bypass Isolation          2        I          I EF-200, 201, 202, 203 SG lsolation Check Valve                  2        1          1 EF-204,-205, 206, 207 EFW Pump Discharge Check                  3        I          1 EF-208, 209, 210, 211 EFW Pump Suction Isolation                3        I          1 EF-212, 213              EFWST Crossover Isolation              3        I          1 EF-214, 215              Non-Safety Condensate Source Isolation Check Valve -              3        1          1 EF-216, 217              EFWST Drain Isolation Valve-            3        1          1 EF-220, 221, 222, 223 EFW Pump Minimum flow Isolation 3                    I          1 EF-224, 225, 226, 227 Full Flow Test Bypass isolation 3                    1          1 EF-228, 229, 230, 231 Full flow Test Flow Control                3        1          1 EF-232, 233, 234, 235 Full Flow Test Bypass isolation 3                    I Oi 1
                                                                              ' Amendment I
                                                                              -December 21, 1990
 
CESSAR n%"icueu O
TABLE 3.2-2 (Cont'd)
(Sheet 14 of 15)
SAFETY CLASS 1, 2 & 3 VALVES Component                    Location /          Safety Seismic  Quality Identification                Description          Class _. Categog  Class EF-236, 237            Steam-Driven Pump Turbine Bearing Oil Cooler Return isolation    3        1      1        l EF-238, 239            Steam Supply Maintenance Iso. 2        I      1 i
EF-240, 241, 244, 245, Steam Supply Drain Isolation      2        I      1 246, 247, 248, 249 EF-250, 251, 252, 253, Steam Exhaust Drain Isolation      3        1      1 254, 255 EF-256, 257, 258, 259, flow Indicator Isolation          3        1      1 260, 261, 262, 263 EF-264, 265, 266, 267, Pressure Indicator Isolation      3        1      1 268, 269, 270, 271 EF-272, 273, 274, 275, flow Indicator Isolation          3        I      1 276, 277, 278, 279 EF-280, 281, 282, 283 Pressure Test Isolation            3        1      1 EF-284, 285, 286, 287 Level Indication isolation          3        1      1 EF-288, 289, 290, 291  EFW Pump Discharge Crossover      3        1      1 EF-292, 293            Pressure Indication isolation    2        1      1 I
EF-294, 295            Pressure Test Isolation          2        I      1 EF-296, 297            Pressure Test Isolation          3        I      1 EF-298, 299            Level Switch Isolation            2        1      1 EF-300, 301            Level Switch Isolation            3        1      1 EF-310, 311            EFWST Cleanup Isolation          3        1      1 EF-316, 317, 318, 319, Steam Supply Drain isolation        2        1      1 320, 321, 322, 323, 324, 325, 326, 327 EF-328, 329            Turbine Case Drain Isolation      3          1      1 EF-330, 331            Steam Supply Bypass Maintenance 2          I      1 EF-334, 335, 336, 337 Level Indication isolation          3        1      1 EF-338, 339, 340, 341  EFW Pump Discharge Maintenanca    3        1      1 O
Amendment I December 21, 1990
 
  - . _ _ _ _ = - - - - - -                                                                              -              - .- -..- - - - -
4 t
!                                        CESSAREn!%.m.                                                                                                                                                    !
:                                                                                                                                                                                                          1 i,
i 1
I                                                                                                                                                                                                          :
i e                                                                                                                                                                                                          !
j                                                                                    TABLE 3.2-2 (Cont'd)                                                                                                -
i:                                                                                        (Sheet 15 of 15)                                                                                                {
!                                                                              SAFETY CLASS _1, 2 & 3 VALVES                            -
l v
i
!                                              NOTE:          (1) All        containment                              isolation                valves        and            their                      i
.                                                                operators, including manual valves, check valves,                                                                        I and relief valves which also serve as isolation j                                                                  valves, are subject to the pertinent requirements                  -
of the Quality Assurance - Program as given in
[
!                                                                  Chapter 17.
e
                                                                                                                                                                                                          -t l-I i
4 i
5 9-k k
t l
Amendment..I December _21, 1990                                  ;
4
        , , . , , - ,-,,n.n,-,-,-.w,,,nn-.w,v,r.,,-+--...,,,,-      ,,,n- 4--,-r,-~. , ~  -
                                                                                            ,--,-r,n ,..-.w,r,.,,er.+              .,,--,,,na,    ,  ,-,,--sen,--e..,,-.,--,-,-  , , - -  ,-..-...n,.
 
)
CESSAR 8lAfincucu
. O 1Allt E 3.2-3 REL ATION5lllP Of SAFE 1Y CLASS 10 CODE CIASS l
Code Class Safety Class                            {ASMESection1111
!                  SC-1                                                    1 1
SC-2 for reactor                                        2 containment components
!                  SC-2 for fluid system                                  2 components 4
D SC-3 for core suppor-                                  CS structures SC-3 (otherwise)                                        3 Nils                                        Int'ustry Standards l
(''N L]
Amendment I December 21, 1990
 
CESSAREnecua i
3.3            WIND AND TORNADO IDADINGS U
All Soismic Category I structures, except those not exposed to l        wind, are designed for wind and tornado loadings.
3.3.1            WIND 14ADINGS The design for wind loading is in accordance with ANSI /ASCE 7-88,
          " Minimum      Design    Loads for Buildings and Other Structuros" 1
(Reference 1) .      Structural          geometrios not addressed in ANSI /ASCE 7-88 shall be ovaluated using ASCE Paper 3269, " Wind Forces on Structuros" (Raforenco 2), and ASCE Paper 4933, " Wind Loads on Domo-Cylinder and Domo-Cono Shapes" (Reference 3).
I          3.3.1.1          Design Wind Volocity                                                                K
:          A design wind velocity of 110 mph, at a height of 33 foot above nominal ground elevation is used as the fastest milo spood of
;          wind for a 50 year recurrenco period.
Velocity profilos and associated offective prosauros for winds with a 100 year recurrence period are calculated in accordance with Section 6 of Reference 1 utilizing an Importanco Factor, I,
* of 1.11 and Exposure C.
;          Gust response factors are dependent on height above grado lovel i
and are in accordance with Tablo 8 of Reference 1 for Exposure C.                                  ,
3.3.1.2          Dotormination of Applied Forces Based on structure          geometry and physical configuration, the D offectivo      pressure    distribution is transformed into applied equivalent static building forces utilizing appropriato shapo coefficients given in Reference 3.                                                                lK Wind pressure distribution curves                          for the containment shield
          . building are shown in Figuro 3.3-1.                              The maximum height- of tho lt shield building above grado is approximately 173 feet 3 inches.                                    I 3.3.2          TORNADO 14ADINGS D
:          All Soismic Category I structures, except those structures not exposed to wind, are designed for tornado _ loadings.
3.3.2.1          Applicable Design Parameters Tornado effects are in accordance with Interim Regulatory Guide 1.76 (Reference 4). The following paramotors are applicable to                                        I
(      the design basis tornado.
k Amendment K 3.3-1                                October 30, 1992 i
g---,,        ,,    .,en    -,.7-      . . . . -    , - - .          , a r,n~ r    v        ,
 
CESSARMMicua Maximum wind speed:
O 330 mph Rotational spoed:                                          260 mph Translational velocity:                                    70 mph Radius:                                                    150 foot                                          I Maximum pressure differential:                            2.4 paid Rate of pressure drop:                                    1.7 psi /cocond Missilo Spectrat                                          Soo Tablo 3.5-2 3.3.2.2        Dotormination of Forcou on Structuren                                                              D The forces on Soismic Category I structures due to tornado wind loadings are obtained using methods outlined in Section 3.3.1.2, with a wind velocity of 330 mph                            (voctor num of all component velocition - assumed constant with holght) .                              Volocity profiles are datormined as      outlined in Section 3.3.1.1.                                                    Effectivo proscuro distribution loads are transformed into equivalent I
static building forces as outlined in Section 3.3.1.2.                                                        In dotormining tornado wind loadings, both the importanco factor and gust factors are taken as unity.
Tornado loadings include tornado wind pressure, internal pressure due to tornado created atmosphoric pressure drop, and forces generated due to the impact of credible tornado missiles. Those loadings are combined with other loads as described in Section 3.8.
3.3.2.3        Effect of Failure of Structures or Components Not Designed for Tornado Loads Adjacent structures will not be permitted to affect or degrado the capability of Seismic Category I structures to perform their intended safety functions as a result of tornado loadings. This                                                  a is accomplished by one of the following methods:
A. Designing the adjacent structure                            to seismic                          Category  I tornado loadings.
B. Investigating the offect of adjacent structural failure on Soismic    Category  I  structures                        to  determine                          that  no impairmont of function results.
C. Designing a structural barrier to protect Soismic Category I structures from adjacent structural failure.
Amendment I 3.3-2                                        December 21, 1990
                                                                                                                      --_j
 
CESSAR E!!!Zena P)
't./
IIEPERENCES FOR SECTION 3.3                            D
: 1. "Hinimum Design Loads for Buildings and other AllSI/ASCE 7-88, llovember 27, 1990.                    Structures , " lK
: 2. " Wind  Forcos      on    Structures,"  ASCE  Papor    No. 3269,  D Transactions, ASCE, Vol. 126, Part II, 1961, p. 1124,
: 3. " Wind Loads on Domo-Cylinder and Domo-Cono Shapes," ASCE Paper  flo . 4933,    Journal of the Structural Division -
Procoodings of      the American Society of      Civil Enginocrs, Vol. 92, lio . STS, October 1966.                                        y
: 4. Safety    Evaluation      by  the  Office  of  fluclear  Reactor Regulation of      Recommended Modification to the R.G. 1.76 Tornado      Design    Basis  for  the  ALWR,    attached    to  a March 25, 1988 IJRC lottor to the ALWR Utility Stooring Committoo.
O O
Amendment K 3.3-3                October 30, 1992
 
Di s t esuce f lota Top of Dome Along Arc 1.engtle Citt.umference at Wha.h Dome Meets Cylindes at Springline      -
                                                                                          . < ~ ' ] \ ', i 11 ib7 4 0"                                          /                                $
                                                                                                                                        \\
s                                                  \ g i g g\
g s 'g
                                                                \
g i i    'l
                                                                              /
o
                                                                                                                        \ gig itn\\
g            )n g\ g\ g          gn I
[            \
g            i g ll              1 g  i gg              i                                            \i \ %i()            'l .              1 N              s%
g\g g (
i i
                                                                                                                          \
l
                                                                                                                                    *i          n,    I g 3.,                                                  l                                                    i .            i tS            55 t                                                                        '
t us.miMl h>?
g
                            ':t                                                                                                            .
9 8    6 42024641012*14                                                        **          -14    1310Ba 4                        s Wind  m r      o' j l lll lll((jlllllll3 lll l M                                                      [{fl l 8 j jl8 ; ll
                                                                                                                                                                                .,180*
Top o f Dorne - E l . 26 5 ' 4 0" DEVEl.0 PED Pl.AN VIEW OF llALF OF 110ME Springline 1175 7 ' + 0'i~ ,9'                            // 8 a 1,' y ,1 ,1          i                                  e i ,,''jj,          's        's      'g                      's    i
                            .76    4 2 0            5  - - lO          l                              ,
1,                    S                  4                    - 'S. 4
  ,GLgde                  5                    i i      is i                                              / i          \ \ t
                                                                                                                                              ~
                                                                                                                                                            \ \          '
                                                                                                                                                                            /
s i
                                                                                                                                            -k \                    -
O                  'J O                  60                                                90                            120                ISO                  180 DEVELOPED ELEVATION VIEW OF llALF OF CYLINDEli Amendment K October 30.1992 WIND PRESSURE DISTRIBUTION COEFFICIENTS (Cp)
 
CESSARM'a mu 1
3.4              WATER LEVEL (FIDOD) DESIGN
$          All Seismic Category I structures, components and equipment are designed for applicable loadings caused by postulated floods.
Section 2.4 of the site-specific SAR describes, in detail, tho
;          relationship of the site-specific flood levels to safety-related buildings and facilities.
l 3.4.1                FLOOD ELEVATIONS 1          The elevation lovel for floods at the reactor site is determined in accordance with Regulatory Guido 1.59, " Design Basis Floods for Nuclear Power Plants," and ANSI /ANS 2.8-1983, "Dotermining i          Design Basis Flooding at Power Reactor Sites." The design basis level for the System 80+ Standard Design is i foot below plant K
finished yard grade.                    Flood level values in excess of this 1 foot
;            level are site-specific and protection measures for that flood
.            loval are described in Section 2.4 of the oito-specific SAR.
3.4.2              PIIENOMENA CONSIDERED IN DESIGN IDAr CALCULATION All safety-related structures of the reactor building complex are designed to withstand the static and dynamic forces of the plant O        flood          lovel.        Other        safety-related              structures            or      systems h        essential for plant operation are designed for the site-related flood level as described in Section 2.4 of the site-specific SAR.
3.4.3              FLOOD FORCE APPLICATION F
The design flood is used in determining the applicable water level        for    design            of  all  Seismic            Category    I          structures        in accordance with the load combinations discussed in Section 3.8.4.                                                D The forces acting on those structures are determined on the basis of full external hydrostatic pressure corresponding to that flood lovel.          All Soismic Category I structures will bo in a stabic condition due to both moment and uplift forces resulting from the proper load combinations, including design basis flood levels.
3.4.4              FLOOD PROTECTION 3.4.4.1                  Flood Protection Measures for Seismic Category I Structures Tho flood protection measures for Soismic Category I structures, systems and components'are designed in-accordance with Regulatory Guide 1.102,              " Flood Protection for Nuclear Power Plants."                                      The following structures and systems in the reactor complex area are designed for flood level protection:
f
  \}
J Amendment K 3.4-1                                    October 30, 1992
 
CESSARHMeucu Nuclear Island O
Reactor Building Nuclear Annex (including)                                    g Diosol Conorator Building Control Building Main Steam Valve House and EFW Enclosures and Fuel Pool Building Those safety-related structures are designed to maintain a dry environment during all floods by incorporating the following safeguards into their construction:
A. No exterior access openings will be lower than 1 foot above plant grado olovation.
B. The  finished yard grado adjacent to the safety-related structures will be maintained at least i foot below the D ground floor elevation.
C. Waterstops    are used in all _ hori7ontal and vertical construction joints in all exterior walls up to flood level elevation.
D. Water seals are provided for all penotrations in exterior walls up to flood lovel elevation.
I E. Waterproofing of walls subject to flooding is provided.
For  other  safety  related  structures    whoro flood  protection measures are required (e.g. pumping systems, stoplogs, watertight        D doors, dikes, retaining walls and drainage systeme) the design of means for providing such protection will be described in Section 2.4 of the site-specific SAR.
Redundant equipment is separated and compartmentalized so that a single flooding event does not affect redundant safety systems.
Equipment such as the auxiliary shutdown panels are elevated off          7 the floor so that flooding events will not affect these important pieces of equipment.
lK 3.4.5        ANALYTICAL AND TEST PROCEDURES A description of the methods and test procedures by which static          D and dynamic effects of the design basis flood conditions or design basis groundwater conditions are applied is detailed in Section 2.4 of the site-specific SAR.
O Amendment K 3.4-2                October 30, 1992
 
CESSARH!L mn l
3.5                        MISSILE PROTECTION l                            The missile protection design for Seismic category I structures, systems and components is described in this section.
]                            Missile protection or redundancy is provided for seismic category
!                            I  equipment and components such that internal and external j                            missiles will not cause the release of significant amounts of                                                                                                              i
;                            radioactivity or prevent the safe and orderly shutdown of the l
reactor.
i
,                            The protection of essential structures, systems and components                                                                                                D will be accomplished by one or more of the following:
A. Minimizing the                                            sources    of          missiles              b          equipment                design features that prevent missile generation.y B. orientation or                                            physical      separation of potential                                        missile                    !
j.
sources away from safety-related equipment and components.
: c. Containment                                          of    potential missiles through the                                                une        of
}1                                  protective shields and barriers near the source.
D. The hardening of safety-related eq'uipment and components to withstand missile                                              impact, where such                            impacts          cannot                be
]                                  reasonably avoided by the methods above.                                                                                                                I 3.5.1                                MISSILE SELECTION AND DESCRIPTION 3
Potential missiles are                                              identified and characterized by type and l                            source and their probability.of occurrence, retention and impact.
For equipment with energy sources capable of creating a missile, the selection is based on the application of a single-failure i
criterion to the retention features of the component.                                                                                              Where sufficient retention redundancy is provided in the event of a                                                                                                D failure, no missile is postulated.
i Internally generated missiles can be generated potentially from two types of equipment:                                                  rotating components and pressurized components.                                Rotating components include turbine wheels, fans,
,                            auxiliary pumps                                              and their associated motors.                                        Pressurized components include valves,- heat exchangers, vessels and their 3                            associated components.
1
:l V
Amendment I 4
3.5-1                                              December 21,.1990
              ,.-,-,-.,,...r.        . , ~ . - - - - - . - , , - - - ~ - - - - . ,                  s    ..w-.
u._.            -
                                                                                                                            , . , - -            m,n--,,-      , , , - - . ~ .  ,,n.s      + ~    -
 
CESSAR Rheu O
The typos of missilos considorod and/or not considered in the design of Soismic Category I structures, systems, and c 'ponents are discussed in the following sections:
A.      Internally    Generated    Missilos    (Outside    Containment),
described in Section 3.5.1.1.
B.      Containment Internal Missiles, defined in Table 3.5-1 and Section 3.5.1.2.
C.      Turbino Missiles, described in Section 3.5.1.3.
D.      11atural Phenomena (Tornado) Missilos, described in Section 3.5.1.4.
,    E. Site Proximity Missilos      (Except Aircraft),    doccribed  in Section 3.5.1.5.
F. Aircraft Hazards, described in Section 3.5.1.6.
3.5.1.1          Internally Conorated Missilon (Outside Containment)
Internally generated missiles (outsido containment) from rotating and pressurized components are not considered credible for the ransons discussed below.
The    redundant  safety    systems  outsido  of  containment are physically separated such that no single gravitational or other            I type missile can impact both systems.
3.5.1.1.1          Auxiliary Pumps and Motora D
Thoro are no postulated missiles originating from auxiliary pumps and associated motors outsido containment for the following reasons:
A. The pump motors are induction typo which have relatively lI slow running spoods and are not prono to overspood.          The motors are all protestod at full running speed by the motor vendor prior to installation.
B.      In addition to the low likolihood of missiles due to motor overspeed as discussed in A. above, the motor stator would tend to servo as a natural container of rotor missiles if there were to be any.
C.      All pumps normally have relatively low suction pressures            7 and, therefore, would not tend to be driven to overspood due to a pipe break in the dischargo lino.        In addition, tho  l induction motor would tend to act as a brake to provent pump      l overspood.                                                        1 Amendment I 3.5-2                December 21, 1990
 
k CESSAR EnirlCATl N D.      Industry pump designs are such that ( and service history                                            D shows) no occurrences of impeller plocos ponotrating pump casings.
3.5.1.1.2            Emergency Foodwater Pump Turbinos There are no postulated missiles from the Emergency Feodwater (EFW) pump turbines for the following reasons:
A.      Turbino overspoed protection; electrical- trip at 115% of g rated spood, and mechanical trip at 125% of rated speed.
B.      Assurance    of    turbino        disk          integrity                by        design    and inspection.
C.      Enclosure    of    the      EFW  pumps          and        turbine              drivers  in    a reinforced concreto room.
3.5.1.1.3            Valves There are no missiles postulated from valvos for the following reasons:
A.      All valvo stems are provided with a backscat or shoulder larger than the valve bonnet opening.
B.      Motor operated and manual valve stems are restrained by stem threads.
C.      Operators on motor, hydraulic and pneumatic operated valves                                          D prevent stem ejection.
D.      Pneumatic operated diaphragms and safety valve stems are restrained by spring force.
E.      All valve bonnets are either pressure scaled, threaded or bolted such that there is redundant retention for prevention of missilo generation.
3.5.1.1.4            Pressuro Vossoln All    pressurized vessels outsido containment are moderate energy lK (275 psig)      or less and are designed and constructed to the standards of        the ASME Code.                      In addition to the ASME Code examination and testing requirements, all vessels will receive periodic      in-service        inspections.                Whero              appropriate,          those components are provided with pressure relief devices to ensure                                                3 that no pressure buildup will excerd material design limits.
O          on      this  basis,    moderate        energy ' pressure
  .b          onsidered credible missile sources.
vessels        are  not Amendment K 3.5-3                                        October 30, 1992
 
CESSARUMem O
3.5.1.2            Internally Conorated Missilos (Inside_Containnont)
Table 3.5-1 lists postulated missilos from equipment insido containment, and summarizes their characteristics.              Included are a major pretensioned studs and nuts, instruments, and the CEDM missilo.      Other items which were considered and specifically excluded because of redundant rotention features aro valve stems, valve bonnets and pressurized cavor platos.                                    ,
3.5.1.3            Turbino Missilon The probability of turbino missilo generation and adverso impact offects on Seismic Category I systems and components is assured to bo loss than 1.0E-4 ovents por turbino-year by a combination lg of the following measures A. Rollablo      turbine    overspood    protection    provisions    (sco    I Section 10.2.2 for details).
B. Adoquato assurance of turbino disc integrity by design and inspection (sco Sections 10.2.2 and 10.2.4 for details).
C. Placement      and    orientation    of  the  turbino    generator D (described below).                                                        ,
D. The protection provided by plant structures, not explicitly designed as barriors, that may reduce missilo energy to less g than      that  required    to  penetrate    Soismic Category I structures.
The turbino generator placement and orientation for the System 80+ Standard Design, and the corresponding low-trajectory missile strike zones, are illustrated in Figure 1.2-1. The placement and orientation of the turbine generator providos adoquato protection against      low    trajectory      turbino    missilos    by  excluding safety-related structures, systems, and components from the low                  I trajectory turbine missile striko zones in accordance with the guidelines of Regulatory Guide 1.115.
Critical      structures      (i.e.,    thoso    housing    safoty-related equipment) and exterior equipment are located in line with, or
,  within closo proximity to, the longitudinal axis of the turbines.
This makes the potential for turbino-generated missilos to strike these targets negligibly small.
O Amendment K 3.5-4                October 30, 1992
 
CESSAR !!Ericui:n O
Tho System 80+ design follows tho guidelinos of Rogulatory Guido 1.115 by placing and orienting the turbino such that all safety-related structuros, systems, and compoinents are excluded from the low trajectory turbino missile strike zonos or if site characteristics make this impossible, safety-related targots will                            y be placed and shiolded such that the combined strike and damago probablytyforthesafety-relatedtargotsinthosozonesisloss than 10    per turbino failure.
3.5.1.4        Mlasilon Conorated by Natural Phenomena Tornado-gonorated missiles are the limiting natural hazard and, as such, are a part of the design basis for Seismic Category I structuros and components.                    Table 3.2-4 lists those structures, lE shields and barriors that will be designed for tornado missile D offects. Tornado-generated missiles considered in the design are llI given in Table 3.5-2.                                                                      l 3.5.1.5        Missiles Conorated by Events Near the Sito Justification will be provided in the site-specific SAR.                                    D 3.5.1.6        Aircraft llazards Justification will be provided in the site-specific SAR.                              Also refer to Section 2.2.1.                                                                        I 3.5.2        STRUCTURES, SYSTEMS, AND COMPONENTS TO BE PROTECTED FROM EXTERNALLY GENERATED MISSILES Tornado missiles are the design basis missiles from external sources. All safety related systems, equipment and components required to safely shut the reactor down and maintain it in a safe  condition are housed in Category I structures designed as tornado  resistant      (see Section 3.5.1.4)                        and  as  such  are    o considered to be adequatoly protected.
3.5.3        BARRIER DESIGN PROCEDURES Missile barriors, whether steel or concrete, are-designed with sufficient strength and thickness to stop postulated missiles and to provent overall damage to Seismic Category I structures. The procedures by which structures and barriers are designed to perform this function are prosented in this section.
O Amendment I 3.5-5                      December 21, 1990 i
_      _ - _ _ - - _ -        - -    - - - - -                          ~
 
CESSAR8!Mem l
O  l 3.5.3.1          & il Damage Prediction                                    !
The prediction of local damage in the immediate vicinity of an impacted area depends on the basic material of construction of the    barrier    itself    (i.e. either  concrete    or  steel).
Corresponding procedures are discussed separately below.
3.5.3.1.1        Concrete Structures and Darriors Local damage preM r. tion for concrete structures includes the estimation of thc _ th of missile penetration and an assessment of whether secon_ , missiles might be generated by spalling.
Generally, the H dified Petry Formula or the Modified NDRC Formula (References 2 and 3) is used to estimate missile penetration with appropriate constants taken from available test data. To insure that no secondary missiles (due to spalling) are generated, a minimum barrier thickness of 3 times the penetration depth is provided. Depending on certain missile characteristics, additional penetration formulas may be employed as justified by full scale impact tests (References 3 and 4).
3.5.3.1.2        Steel Structures and Darriers The Stanford equation (Reference 5) is used as the basis for the design and analysis of steel structures and barriers.
3.5.3.2        Overall Damage Predic' ion The overall response of a structure or barrier to missile impact depends largely on the location of impact (e.g. near mid-span or near a support), the dynamic and deformation properties of the barrier and the missile, and the kinetic energy of the missile itself.
Depending on the deformation characteristics of both the barrier and the missile, an impact force time history can be developed using either work-kinetic energy principles or conservation of momentum. The structural response to this impulse loading, in conjunction with other appropriate design loads, is evaluated by the procedures given in References 3 and 6.
O' Amendment D 3.5-6              September 30, 1988
 
,          CESSAR MMincueu l
'                                                                                                                                  E 3.5.4            G10ERAL DESIGN DASES -
a Protection for all Soismic Category I structures, systems and                                                        .g components are provided by the following:
A. For  systems            and        parts  of    systems            located            insido      the containment (RCS and connected systems, Engineered Safety                                                                '
Featuro            systems),          appropriato        missile                barrier            design
;                procedures are used to ensure                            that              the    impact          of  any potential missile will not load                                to            a  loss-nf-coolant-
!                accidont or preclude tho systems from carrying out their
?                  specified safety functions.
B. For systems and equipment outsido containment, appropriato design proceduros (e.g., proper turbino orientation, natural                                                    D J
separation, or missilo barriors) aro used to ensure that the impact of any potential missilo does not prevent the system or  equipment            from        carrying      out        its          specified            safety j                  function.
;            c. For all systems and equipment, appropriata design procedures
'                  aro used to ensure that the impact of any potential missilo does not provent the conduct of a safe plant shutdown, or O            prevent the plant from remaining in a safe shutdown condition.
D. Safety-related instrumentation and control equipment are protected from potential missile sourcos.                                                The 1E and              I associated cabling and sensing lines are also protected from potential micsilo sources.
d d
j
,    A d
Amendment K 3.5-7                                    October 30, 1992
 
CESSAR !!hi:n O
REFERFNCF.S FOR SECTION 3.5
: 1. " Plant Design Against Missilos," AliSI/A11S-58.1.                                      (DRAFT  -
Formerly AllSI 11177-1974.)
: 2. A. Amirikan, "Dosign of Protectivo Structuros," Report No.
11T-3 7 2 6, Bureau of Yards and Docks, Dept. of the llavy, August 1950.
: 3. " Structural Analysis and Design of liuclear Power Plant Facilitics," Manual 11o. 58, Chaptor 6, American Society of Civil Engincors, 1980.                                                                            D
: 4. Stephenson,          A.      E.,                    " Full Scale Tornado-Missile Impact Tests," EPRI flP-440, July 1977, P10phrod for the Electric Power Research Institute by Sandia 11ational Laboratories.
: 5. Cottrell,    W.          B.                    and    A. W. Savol a ir' 1,    "U.S. Reactor Containment Technology," OR11L-ilSIC-5, Vol.                                  1, Chapter 6, oak Ridge Ifational Laboratory.
: 6. Williamson, R. A. and R. R. Alvy, " Impact Effects of Fragments Striking Structural Elements," llolmes and 11arver, Inc., Revised 11ovember, 1973.
O Amendment D 3.5-8                  September 30, 1988
 
2 CESSAREnMem I
l                                                                                  TABLE 3.5-1 1
j                                                                            (Sheet 1 of 2) l                                                              KINE 1.. ENERGY OF POTENTIAL. MISSILES          II) i Initial Kinetic Wel ht
!                                                    Item (2)        Energy (ft-lb) . jlb)                        Impact Section
: 1.          Reactor Vessel 1
;                                    Closure Head Nut                        1,706              100 Annular Ring, OD = 10.125" i                                                                                                                                10 - 6.9"
!                                    Closure Head Nut
;                                    and Stud                              5,226              65S Solid Circle, 6.75" Diameter lK Control Rod Drive                    57,600            1100 1.875" Diameter Solid Circle Assembly                                                        within a Concentric 7"                                C l
Diameter by .109" Wall Shroud
: 2.          Steam Generator l5                                    Primary Manway Stud and Nut 71        5.7 Solid Circle, 1,625" Diameter
,f                                    Secondary Handhole                                7      1.5 Solid Circle, l' Diameter
!                                      Stud and Nut i
j Secondary Manway                              17        3.2 Solid Circle, 1.5" Diameter
,                                      Stud
:                        3.          Pressurizer                                                                                                          K Safety Valve                                  80          10 Solid Circle, 2" Diameter Flange Bolt i                                    Lower Temperature                      2377            7.6 Edge of Solid Disk 4" Element                                                        Diameter and 4" Thick Manway Stud and Not                            71-      6.3 Solid Circle, 1.5" Diameter
: 4.          Reactor Coolant Pump and Piping Temperature Nozzle                    2,123                8 Edge of Solid Disk 4" with RTD Assembly                                              Diameter and 4" Thick Amendment K j                                                                                                                        October 30, 1992
 
CESSAR !!SinCAUON O
1AlllE 3.5-1 (Cont'd)
(Sheet 2 of 2)
KINETIC LNIRGY Of P01[NilAL MISSILESIII Initial Kinetic Weight Item (2)        Energy _[f t-lb)_ _]Ib)_                Impact Section 1
Surge and Spray                2344        7    Edge of Solid Disc 4"            );
Piping Thermowells                                Diameter and 4" Thick with R1D Assembly j
Reactor Coolant Pump                              Edge of Solid Disk 2.75" Thermowell with RID            1,095        8    Diameter and 0.5" Thick O
4 NOTf$:    (1) All dimensions, weights and kinetic energies are typical values.
(2) All materials are steel, Amendment K October 30, 1992
 
t 1
1 i                                                                                                                                !
I 3
l                                                                TABLE 3.5-2                                                      l j:                                                                                                                                r DESIGN BASIS TORNADD MISSILES AND THEIR IMPACT VELOCITIES                            1-i j:;                                                                                            Design Impact Velocity (ft/sec)    ,
Dimensions                                        2
;    Missile Descriptions'                            Weight'(lbs)  Impact Area (in )      Horizontal          Vertical 1'                  .
!    A Wood . Pl ank .        3.6" x'11.4".x 12'            115              41                  272                  191    i I
4 B  6" Sch. 40: Pipe    6.6"D'x 15'                  287              34                  171                  119    !
i K  I'
;    'C  I" Steel. Rod        I"D x 3'                      8.8            0.79                  167                  167 I
!    D . Utility' Pole        13.5"D x 35'                1124              143                  180                  126
}'-  E 12" Sch. 40 Pipe-    '12.6*D x 15'                  750              125                  154                  108 i
    -F -Automobile            6.56' x 4.27' x 16.4'        3990            4030                  194                  136      l 1
I 4    Missiles A, B, C, and E are to be considered at all elevations and missiles D and F at elevations up to 30 feet          1  i f    above all grade levels within 1/2 mile of the structure.
i                                                                                                                                  ,
i                                                                                                                                i
[-
1 i                                                                                                                                i i
I L
l '-                                                                                                                              !
Amendment K                !
j-                                                                                                      October 30, 1992          }
i                                                                                                                                  '
* I
 
!                                          CESSARnnL -
5 i
]                                                3.6          PROTECTION AGAINST DYNAMIC EFFECTS ASSOCI ATED WITil Tile j                                                            POSTUIATED Hut *rUltE OF PIPING protection of vital equipment is achieved primarily by separation 4                                                of  redundant safo shutdown systems and by separation of high-onergy pipe lines from safe shutdown systems,                                                                                                                                                                which are required to be functional following specific pipo rupturo events.                                                                                                                                                                E j                                                This redundancy and separation results in a design which requires
  ;                                              very few special protectivo features (such as whip rostraints and jot doflectors) to ensure safe shutdown capability following a j                                                postulated high-energy lino break.
Separation is maintained by barriors such as the containment
:                                                secondary shield wall, refueling cavity wall and cortain !Juclear                                                                                                                                                                p.'
Annex walls and tunnels or by physical distance.                                                                                                                                                              Loadings and          ,
jot zones of influence are calculated using methodology described in Section 3.6.2.
d 1                                                3.6.1          POSTUI.ATED pip 1tiG FAII,URES IN FLUID SYSTEMS                                                                                                                                                                  E 4-3                                                3.6.1.1          Design Basis Most systems and components outside Containment required for safo
,                                                plant shutdown are located in the Reactor Building Subsphero.
:                                                The Reactor Bulloing Subsphere and Nuclear Annex are divided by a
;~
structural wall which serves as a barrior between redundant trains of safe shutdown systems and components. Each half of-thb
,                                                Reactor Building Subsphere is- compartmentalized to separate                                                                                                                                                                    J l                                                rodundant safe shutdown components to the extent practical.
liigh-energy piping systems located in the 11uclear Annex, which are not required to be functional for safe shutdown, are routed primarily in designated pipo tunnola or in the Main Steam-Valvo liouses to provide separation from safe shutdown systems and components. The Reactor Building Subsphere and 11uclear Annex are separated by structural walls that provide physical barriers.
t Systems and components insido containment, which are required to 4
be functional for safo plant shutdown, are protected from
;                                                postulated pipo failuro dynamic offects primarily by separation and barriers.      The secondary shield wall servos as a barrier                                                                                                                                                                E between the reactor coolant loops and the containment liner.                                                                                                                                                            The refueling cavity walls, the operating floor, and the secondary shield wall provido separation between the reactor coolant loops.
The - steam generators and pressurizer are enclosed in cavities which also provide separation.
i i
b(
ik                                                                                                                                                                                                                                                                                    .
Amendment K' 3.6-1                                                                              October 30, 1992-
      -.-._.-.-.--.____------.---------_----..a                          - - - - _ _ - _ _ _ _ _ _ _ - _ - - - - - - - - . - - - . - - - - - - - - . . - . - - - - - - - - - . - _ _ . - - - - - _ - - - _ - - - - - - - - - - _ _ . - - _ _ . - -
 
CESSAR Mh e O
Main steam and main feedwater (downcomer and economizer)              linos outsido containment are separated from essential systems and components by virtue of the plant arrangement that places these lines along the roof of the Nuclear Annox.          The floors and walls J adjacent to the main steam and main feedwater lines are Seismic Category I concrete walls.          The essential portions of thoso systems    (main steam and main feedwater isolation valves)              are located    in  the    Main Steam Valvo llouses.          These rooms are separated from all other essential systems and components by Soismic Category I concroto slabs and walls.            (Refer to Figuros n 1.2-2, 7,    8 and 9.)
Any high-nporgy line routed through the annulus between the primary cv.tainment and its shield building is provided with a guard pipe so that rupture of high-energy lines in the annulus                a need not be analyzed.
The NSSS design includes two steam generators por unit, which facilitates separation of redundant systems and components insido containment.      Other than      for  the    safety  injection    system components, which must circulato cooling water to the vossol, the engincored safety features are generally located outside the cocondary shield wall.        The safety injection system pipes and cables, which terminato insido the secondary shield wall, are L,
routed outside the secondary shield wall to the extent practical to avoid postulated hazards.            Most of the main steam and foodwater piping        insido  containment is located at higher elevations, and the postulated dynamic effects are separated from safe    shutdown    systems    and    components    by    distance    and configuration.      Tabic 3.6-1 provides a list of plant fluid systems that contain high- and moderate-energy piping in the Nuclear Annex,        Reactor Building Subsphere,          and containment lg building.                                                                    l Table 3.6-2 providos a list of the systems that are required for safo shutdown or to support safe shutdown.
High- and moderate-energy pipe failure locations are postulated as described in Section 3. .2.        Each postulated rupture location is  evaluated for its etfeet on safe shutdown systems and components required following the specific pipe failure event.                g 3.6.1.1.1          Illgh-Energy Piping Systems A high-oncrgy pipe failure is postulated in branches or piping runs larger than one inch nominal diameter and which operato during normal plant conditions with high energy fluid.
Included in this category are fluid systems or portions of fluid systems which are pressurized above atmospheric pressure during Amendment K 3.6-2                  October 30, 1992
 
CESSAR Elihm l                      normal plant operation and which,                                                    in addition,          operato during normal plant conditions and whero either or both of tho following are mot:
A.                Maximum operating temperaturo exceeds 200*F, or U
B.                Maximum operating pressuro exceeds 275 psig.
l Fluid piping systems that qualify as high-energy for only short
,                      portions of their operational period are considered moderate-onergy systems if the portion of their operational period within                                                              '
the pressure and/or temperature specified above                                                          forhighenergyl3 fluid systems is loss than either of the following:
lK A.                Two porcent of the time period required to accomplish its system design function.
In analyzing the offects of a high-energy pipo failure, the consequences of pipe whip,                                              water          spray, jet impingement, flooding,                          compartment                pressurization,                  and          environmental conditions are considered.
3.6.1.1.2                                      Moderato-Energy Piping Systems A moderato-onergy pipo failuro is postulated in branchos or piping runs larger than one inch nominal diamotor and which                                                                      g operato                during                  normal  plant          conditions          with          moderate-onorgy fluid.
l Included in this category are fluid systems or portions of fluid l                        systems which are pressurized above atmosphoric pressure during normal plant operation and which, in addition, operato during normal plant conditions and whero both of the following are mot:
A.                Maximum operating temperature is 200'F or loss, and B.                Maximum operating pressure is 275 psig or less.
In analyzing the offects of a moderate-onorgy pipe failure, tho lK l                        consequences                                  of    water    spray,                jet  impingement,          flooding, compartment pressurization, and                                                  environmental            conditions- are      C considered.
l l
Amendment K 3.6-3                                  October 30, 1992 L_.--.              .        _ _ _ _ _ . _ _ _  _ _ . , _ _ _ - _ _          .-  . _ _ _ _ . _ . . . _          _ , _ _ . _            , - . -      ._
 
CESSAR EEacueu 3.6.1.2        Description 9
A listing of the high-energy lines inside the containment is given in Table 3.6-3.      A listing of high-energy lines outside the containment is given in Table 3.6-4.            Since the Turbino and Radwasto Buildings contain no safety-related equipment, high-onergy line breaks in those buildings aro generally excluded from this table.
Essential systems are thoso systems that are needed to safely shut down the reactor or mitigate the consequences of a pipe break for a given postulated piping failure. Ilowever, depending upon the type and location of a postulated pipe break, certain safety equipment may not be classified as or,sential for that particular ovent.
The essential systems which are to bo protected from the effects of  postulated piping failures are identified below.                  These escontial systems woro selected for each postulated breck to satisfy the protection criteria given in the introduction to Section 3.6.                                                                E A. The following systems, or portions of those Dyutems,                are required to mitigate the consequences of postulated breaks of high-energy reactor coolant pressure boundary piping that result in a lons-of-coolant-accident (LOCA) ensuming a loss of offsite power,
: 1. Reactor Protectivo System.
: 2. Engineered Safety Features Actuation System.
: 3. Safety Injection System.
: 4. Containment Spray System.
: 5. Class 1E Electrical Systems, AC and DC (including switchgear, batteries, and distribution systems), 1E              y cabling and sensing lines.
: 6. Diesel Generator Systems, including Diesel Generator Starting, Lubrication, and Combustion Air Intake and Exhaust Systems.
E
: 7. Diesel Fuel Oil Storage and Transfer System.
: 8. liydrogen Recombiner System.
: 9. Control Building 11VAC System.
Amendment I 3.6-4                  December 21, 1990
 
CESSAR n!?incum
: 10. Component Cooling Water System (portions required for        g operation of other listed systems).
: 11. Ultimate lleat Sink (site specific).                          a
: 12. Fuel Building IIVAC System.
: 13. Diesel Generator Building flVAC System.
: 14. Main Control Board (See Tables 7.3-2        and 7.3-14  for systems required).
: 15. Containment Isolation Systems:
E
: a. Penetration assemblies
: b. Isolation valves
: c. Equipment hatch
: d. Emergency personnel hatch
: c. Personnel lock
: f. Steel containment vessel                                lg
: g. Test connections
: h. Piping      between    penetration  assemblies    and isolation velves.
: 16. Ex-core Neutron Monitoring System.
: 17. Safety-related Radiation Monitors      (refer  to  Section 11.5).
: 18. Shutdown Cooling Svstem.                                      C
: 19. Essential Chilled Water System.
: 20. Safety Depressurization System.
: 21. Emergency Feedwater System.
: 22. Air Coolers
: 23. Station Service Water System
: 24. Reactor Coolant System                                      IK Amendment K 3.6-5                October 30, 1992
 
CESSAREnacuca l
B. The following systems,                        or portions of these systems are 9
required to mitigate the consequences of postulated breaks in high-energy secondary pressure boundary piping (main steam,  main foodwater, blowdown, or emergen'cy feedwater) assuming a loss of offsite power.
: 1. Reactor Protective System.
: 2. Engineered Safety Features Actuation System.
: 3. Safety Injection System.
: 4. Containment                        Spray  System  (for  breaks  inside  the containment only).
E
: 5. Main Steam and Feedwater System (from unaffected steam generator                      out to the containment      isolation valves, including the atmospheric steam dump, steam supply to the turbine-driven emergency feedwater pump, and the steam generator bloudown line).
: 6. Shutdown Cooling System.
: 7. Class      1E                  Electrical Systems, AC and      DC (including Switchgear,                      Batteries and Distribution Systems),
cabling and sensing lines.                                                IE l7
[
: 8. Diesel Generator                        System, including Diesel Generator Startiag, Lubrication and Combustion Air Intake and Exhaust Systems.
: 9. Diesel Fuel Oil Storage and Transfer System.                                        '
: 10. Component Cooling Water System (portions required for operation of other listed systems).
: 11. Ultimate Heat Sink (site specific).
: 12. Control Building HVAC System.
: 13. Fuel Building HVAC System.
: 14. Main Control Board (See Tables                        7.3-2  and 7.3-14  for systems required).
: 15. Essential Chilled Water System.
: 16. Containment Isolation Systems:
O Amendment J 3.6-6              April 30, 1992
 
CESSAR RE"ic mn O
v
: a. Penetration assemblies
: b. Isolation valves E
: c. Equipment hatch
: d. Emergency personnel hatch
: e. Personnel lock
: f. Steel containment vessel                                                          lK
: g. Test connections
: h. Piping    between                penetration            assemblics          and isolation valves.
: 17. Diesel Generator Building HVAC System.
l          18. Emergency Feedwater System.
: 19. Reactor Coolant System.
(K
: 20. Ex-core Neutron Monitoring.
1.
l G
: 21. Station Service Water System.
: 22. Air Coolers.
C. For other postulated breaks not included in items A and B above, systems must not be affected such . that. any break, evaluated on a case-by-case basis, violates the following criteria:                                                                                    g i          1. The pipe break must not cause a reactor coolant, steam, or feedwater line break.
: 2. The function of safety systems required .to perform protective actions to mitigate the consequences of the postulated break must.be maintained.
: 3. The ability to_ . place the plant in a safe shutdown condition must be maintained.
A systematic integrated review of.' sa f ety-related and associated J systems is- conducted during                  the design process to- verify compliance with design' criteria, interface requirements, -and' g safety design bases.
O t
Amendment K 3.6-7                            ' October 30, 1992
 
CESSARH'L a l
cO The potential effects of flooding as a consequence of a        pipe lE break, or leakage or through-wall cracks (as defined in Sections t 3.6.2.1.2.C and 3.6.2.1.2.D) are evaluated to ensure that the y' operability of safety-related equipment are not impaired.
An analysis of the potential effects of missiles is discussed in Section 3.5.
The potential environmental effects of steam on essential systems are discussed in Section 3.11.      In general,  because of the protective measures of redundancy and separation between systems and trains, the consequential effect of the transport of steam will not be sufficient to impair the ability of the essential system to shut down the plant and/or mitigate the consequences of the given accident of interest.
There are no high-energy lines in the vicinity of the control room. As such, there are no offccts upon the habitability of the control  room by pipe break either        from  pipe  whip,  jet impingement, or transport of steam.        Further discussion on control room habitability systems is provided in Section 6.4.
3.6.1.3        Safety Evaluation E
By means of design features such as separation, barriers, and pipe whip and jet impingement restraints, all of which are discussed below, the effects of pipe break will not damage essential systems to an extent that would impair their design function nor affect necessary component operability.
The ability of specific safety-related systems to withstand a single active failure concurrent with a postulated event is discussed in the failure modes and effects analyses provided in Sections 5.4.7, 6.2, 6.3, 6.5, 7.2, 7.3, 8.3, 9.2 and 10.4.
A. Separation The plant arrangement provides separation to the extent practical  between redundant safety systems in order to prevent loss of safety function as a result of hazards different from those for which the system is required to function, as well as for the specific event for which the systeu is required to be functional.      Separation between redundant safety systems with their related auxiliary supporting features is the basic protective measure.
O Amendment K 3.6-8                October 30, 1992
 
!                CESSAR 88&icuiu
;O In general, layout of the facility followed a multistep process to ensure adequate separation.                                                        E
: 1.        Safety-related systems            are      located    away      from  most high-energy piping.
]
4
: 2.        Redundant (e.g. , Division 1 and 2) safety systems and lJ subsystems are located in separate compartments.
1
: 3.        As necessary,          specific components are enclosed to maintain the redundancy required for those systems that must function as a consequence of specific piping                                E failure events.
l B.        Barriers-Shields and Enclosures i
,                          Protection requirements are met through the protection afforded by the walls, floors and columns in many cases. J Where adequate protection does not already - exist due to j                          separation, additional barriers, deflectors, or shields are
:                          provided as necessary to meet the functional protection i                          requirements.            Where compartments, barriers, and structures i
p                      are required to provide the necessary protection, they are t                      designed to withstand the combined effects of the postulated E
failure          plus      normal    operating      loads    plus      earthquake loadings.
C.        Piping Restraint Protection f'                          Where adequate protection - does not already exist due to
:                          separation,          barriers,        shields,: or      piping  restraints        are
!                          provided as            necessary to meet the              functional _ protection lJ requirements.              Restraints are not provided when it can be i-shown that the- pipe break would not cause unacceptable E damage to essential systems or components.
I                            The design criteria -for . pipe whip restraints are given in Section 3.6.2.3.2.5.                                                                      lJ D. .      Facility Response Analyses An evaluation of postulated pipe break events is performed lK 4
to identify those safety-related systems and. components that provide        protective          actions ' required        to  mitigate,-      to    E acceptable limits, the consequences of the postulated pipe break event.
', v Amendment.K 3.6-9                    . October 30, 1992
      -    ,--      r- =  -s-n-  -,o-        ,y  e    + --          ,.-,,v-                .-w.-  -    y
 
CESSAREna m O
Whenever the separation inherent in the plant design is shown to assure the functional capability of the safety systems required following a postulated pipe break event, no E additional protective measures are required for that event, and additional considerations of break type, location, y orientation, restraints, and other protective measures are not  required. When    necessary,    additional  protective E measures are incorporated into the design to assure the J functional capability of safety systems required following the postulated pipe break event.
In conducting the facility response analyses, the following criteria are utilized to establish the integrity of systems and components necessary for safe reactor shutdown and maintenance of the shutdown condition:
: 1. Offsite power is assumed to be unavailable if an automatic turbine generator trip or automatic reactor trip is a direct consequence of a postulated piping failure.
: 2. In addition to the postulated pipe failure and its accompanying    effects,    a  single  active  component failure is assumed in the systems required to mitigate the consequences of the postulated piping failure.
E The single active component failure is assumed, except as noted in Section 3.6.1.3.D.4.
,    3. Each high- or moderate-energy fluid system pipe failure l        is  considered separately as a single postulated initiating    event    occurring    during  normal  plant conditions.
: 4. Where a postulated piping failure is assumed in one of
.        two redundant trains of a system that is required to l
operate during normal plant conditions as well as to shut down the reactor, single failures that prevent the
;        functioning of the other train or trains of that system l        are not assumed, provided the system is designed to l
Seismic Category I standards, is powered from offsite and onsite sources, and is designed, constructed, operated, and inspected to quality assurance, testing, and inservice inspection standards appropriate for nuclear safety class systems.
: 5. All  available    systems    and  components,  including i
non-Seismic Category I and those actuated by operator actions, may be employed to mitigate the consequences Amendment J 3.6-10                April 30, 1992
 
:                  CESSARinMemx i
i b                                                                                                                                                                                                        :
1
.                                    of      a      postulated piping failure.                                                          In          judging- the availability of such systems and components, account-is taken of the postulated failure                                                                    and- its. direct
;                                    consequences,            such as unit trip and loss of offsite                                                  -
j                                    power,- and of the assumed single active component failure and its direct consequences. The feasibility i                                  of carrying out operator actions is based on a~ minimum l                                    of 30 minutes _ delay responding to alarm indication and i-                                  adequate access to equipment being available for. the -
proposed actions.                    (Access to the containment post-LOCA i                                    is not assumed.)
: 6.        Piping          systems            containing                      high-energy                                    fluids              are designed so that t h e -- e f f e c t s - o f a single postulated pipe break = _cannot, in turn, cause failures of other j                                    pipes or components with unacceptable consequences.                                                                                                  g 1
: 7.        For a postulated pipe failure, the escape of steam, water,'          and      heat                from            structures- enclosing                                                    the high-energy fluid containing piping does not preclude:
: a.        Accessibility to surrounding- areas important to the safe control of reactor operations.
        \                            b.        Habitability of the control room.
: c.        Ability          of          instrumentation,                                          electric                        power supplies, and components and controls to initiate,
;_                                              actuate, and complete a safety' action.- (A loss of redundancy is permissible, but not the loss of function.)
;                    The design criteria - define acceptable types of isolation for safety-related elements- and for high-energy - lines from- similar lJ elements of the redundant train.                                        Separation is accomplished by:            -
A. Routing the two groups through separate compartments, or B. Physically separating the'two groups by a.specified minimum distance, or E
C. Separating the two groups by structural barriers..
The _ design - criteria                assure that a postulated failure of a high-energy line or a ' saf ety-related element cannot take more than one safety-related train out of service._ _ The , f ailure - of a component or subsystem of one train may cause failure of another portion of the same train;-for example, a' Division'2 high-energy pipe-may cause failure of a Division 2 electrical tray, but not J IO          failure ofLany Division 1 component.                                            The capability to shut the Amendment J 3.6-11                                                          April'30, 1992 T  y -
w- y  y  g  1417-f-        e  y  4  -,igse'=  vt-Twrv1e w t* Me y w a *t-  - r wrm -fe"=      m at e *ts+t--  T  **Fm      #'*9F ww. ** TV-TM    *+4-**ym1-we  *%eww % eF '
 
CESSAR8!a% -
O plant down safely under such a failure will therefore remain intact.
Given the separation criteria above, and the pipe break criteria in Section 3.6.2.1.2, the effects of high-energy pipe breaks are not analyzed where it is determined that all essential systems, components, and structures are sufficiently physically remote from a postulated break in that piping run.
3.6.2        DETERMINATION OF DREAK IDCATIONS AND DYNAMIC EFFECTS ASSOCIATED WITH THE POSTULATED RUPTURE OF PIPING Described herein are the design bases for locating breaks and cracks in piping inside and outside containment, the procedure used to define the thrust at the break location, the jet impingement loading criteria, and the dynamic response models and results.
3.6.2.1        Criteria Used to Define Break and Crack Locations        ,
and Configurations                                      "
3.6.2.1.1          General Requirements Postulated pipe ruptures are considered in all plant piping systems and the associated potential for damage to required systems and components is evaluated on the basis of the energy in the system.      System piping is clascified as high-energy or moderate-energy,      and postulated ruptures are classified as circumferential breaks, longitudinal breaks, leakage cracks, or through-wall cracks.        Each postulated rupture is considered separately as a single postulated initiating event.
For each postulated circumferential and longitudinal break, an evaluation is made of the effects of pipe whip, jet impingement, compartment      pressurization,      environmental    conditions,  and flooding. For    piping    systems  where  leak-before-break  is J
demonstrated (Sections 3.6.2.1.3        and 3.6.3), dynamic effects of pipe breaks are not considered.        If required to demonstrate safe plant shutdown, an internal fluid system load evaluation is E
performed on the effects of fluid forces on components within or bounding the fluid system.        For each postulated leakage crack, an evaluation is made of the effects of compartment pressurization, environmental conditions and flooding.            For each postulated through-wall crack, an evaluation is made of the effects of environmental conditions and flooding.          The effects of pipe ruptures and/or leakage cracks are included in the environmental          J qualification      of  safety-related    electrical  and  mechanical equipment. Environmental qualification of safety related equipment is discussed in Section 3.11. The evaluation of the                  j required  systems and components demonstrate that the protection lE requirements of Section 3.6.1 a.re met.
l I    I Amendment J 3.6-12                April 30, 1992
 
1 CESSAR 8n%=
0
\
J 3.6.2.1.2          Postulated Rupture Descriptions A. Circumferential Break A  circumferential break is assumed to result in pipe severance with full separation of the two severed pipe ends ut.less the extent of separation is limited by consideration of physical means.      The break plane area (A                    is assumed perpendicular to the longitudinal axis of the") pipe , and is assumed to be the cross-sectional flow area of the pipe at the break location.      The break flow area (A 7) from each of the broken pipe segments for a circumferential break, with full separation of the two broken pipe segments, is equal to the break plane area (A                      . The break flow area, discharge coefficient and discha9g) e correlation are substantiated analytically or experimentally.
B. Longitudinal Break A longitudinal break is assumed to result in a split of the pipe wall along _ the pipe longitudinal axis, but without severance. The break plane area-(A ) is assumed parallel to the      longitudinal axis of the p3pc and equal to the O      cross-sectional flow area of the pipe at the break location.
Q      The break flow area (A ) is equal to the break plane area (A    . The break is absumed to be circular in shape or elT)ptical i          (2D x D/2) with its long axis parallel to the                    E axis. The discharge coefficient and any other values used for the area or shape associated with a longitudinal break are substantiated analytically or experimentally.
C. Leakage Crack A leakage crack is assumed to be a crack through the pipe wall where the size of the crac: and corresponding flow rate are determined by analysis and a leak detection system, as described in Section 3.6.3.
D. Through-Wall Crack A through-wall crack is assumed to be a circular orifice through the pipe wall of cross-sectional flow area equal to the    product of one-half the pipe                    inside  diameter _ and one-half the pipe wall thickness.
O Amendment J 3.6-13                            April 30, 1992
 
CESSAR E!L"icari n 3.6.2.1.3        Piping Evaluated for Leak-Before-Break O
A leak-before-break evaluation is performed for Class 1 piping            E with a diameter of ton inches or greater (i.e., the reactor coolant system (RCS) main loop piping, surge line, shutdown cooling and safety injection lines) and for the main steam line inside containment in order to eliminate the dynamic effects of lI pipe break from the design basis.      The evaluation is intended to lJ meet the requirements of 10 CFR 50, Appendix A, General Design          ,
Criterion (GDC)    4. The evaluation is performed using the guidelines of NUREG 1061, Vol. 3 (Reference 1) as described in Section 3.6.3.
3.6.2.1.4          Piping Other than Piping Evaluated for Leak-Before-Break E
This section applies to all high- and moderate-energy piping other than that whose dynamic effects due to pipe breaks are eliminated from the design basis by leak-before-break evaluation, as identified in Section 3.6.2.1.3.
3.6.2.1.4.1        Postulated Rupture Locations A. Class 1 Piping Ruptures, as specified in Item D below, are postulated to lJ occur at the following locations in each piping network designed in accordance with the rules of the ASME Boiler and E Pressure Vessel Code, Section III (Reference 2) for Class 1 piping:
: 1. The terminal ends of the pressurized portions of the run.
: 2. At intermediate locations selected by either one of the following methods:                                            J
: a. At each    location of potential high stress and fatigue such as      pipe fittings (elbows, teos, reducers,    etc.),  valves,  flanges,    and welded attachments, or
: b. At each location where either of the following [g conditions is exceeded.                                I Where the maximum stress range between any two load sets (including the zero load set) calculated by Eq. (10) in Paragraph NB-3653,      3 ASME Code, Section III, exceeds 2.4 Sm, and the stress range calculated by either Eq.
(12) or Eq. (13) in Paragraph NB-3653 exceeds 2.4 Sm.
Amendment K 3.6-14              October 30, 1992
 
CESSARMMc-
, (j s
3 i
Where the cumulative usage factor (U) exceeds y 0.1.
Where, as defined in Subarticle NB-3650, leakage crack' lK locations for Class 1 piping are specified in Item E y below.
S,    =    allowable stress-intensity value.
E U    =    the cumulative usage factor.
B. Class 2, Class 3, or Seismically Analyzed ANSI B31.1 Piping-Ruptures, as specified in Item D below, are postulated to lJ occur at the following locations in each piping network designed in accordance with the rules of the ASME Boiler and g Pressure Vessel Code, Section III, (Reference 2) for Class 2 and Class 3 piping, or with the rules of the ASME Code for Pressure  Piping,    B31,    Power  Piping,        ANSI /ASME        B31.1 [y (Reference 3) for seismically analyzed ANSI B31.1 piping:                      l
: 1. the terminal ends of the pressurized portion of the network, and E
v          2. either
: a. intermediate locations of potential high stress or fatigue such as pipe fittings, valves, flanges and welded-on attachments, or
: b. where the piping contains no fittings, weld attachments, or valves, at one location at each                        J extreme of      the    piping  run  -adjacent          to  the protective structure, _or
: c. intermediate    locations    where      the        stress,    S, exceeds 0.8(X + Y).
where, as defined in Subarticle NC-3650,                                E S    =    stresses    under    the        combination      of loadings for which either Level A or Level    B  service    limits          have-  been specified, as calculated from'the sum _of equations (9) and (10).
U Amendment K 3.6                        October 30, 1992-
 
CESSAR EnMem O
X    =    equation (9) Service Level B allowable stress.
Y    =  equation (10) allowable stress.
As a result of piping reanalysis due to differences between the design configuration and the as-built configuration, the highest stress locations may be shifted; however, the initially determined intermediate break locations may be used unless a redesign of the piping resulting    in  a  change  in  pipe parameters (diameter, wall thickness, routing) is required, or the dynamic effects from the new (as-built) intermediate J break locations are not mitigated by the original pipe whip restraints and jet shields.
Leakage crack locations for Class 2 and Class 3 piping are specified in Item E below.
C. Non-Safety Related ANSI B31.1 Piping System 80+ piping is designed so as to isolate seismically analyzed piping from non-seismically analyzed piping.        In cases where it is not possible or practical to isolate the seismic piping, adjacent non-seismic piping is analyzed according to Seismic Category 2 criteria. For non-seismic K piping attached to seismic piping, the dynamic effects of the non-seismic piping are simulated in the modeling of the seismic piping. The attached non-seismic piping up to the analyzed /unanalyzed boundary is designed not to cause a failure of the seismic piping during a seismic event.          J For  non-safety class piping which      is  not  seismically analyzed, leakage cracks are postulated at axial locations such that they produce the most        severe environmental effeccs.
D. Break Locations Both circumferential and longitudinal breaks are postulated to occur, but not concurrently, in all high-energy piping systems at the locations specified in Items A, B, or C, except as follows:                                              E
: 1. Circumferential breaks are not postulated in piping runs of a nominal diameter equal to or less than 1 inch.
: 2. Longitudinal breaks are not postulated in piping runs of a nominal diameter less than 4 inches.
Amendment K 3.6-16                October 30, 1992
 
CESSAR 8!!Mema O
: 3. Longitudinal  breaks are not postulated at                                terminal' ende.
: 4. Only - one type of break is postulated .at locations where, from a detailed stress analysis, such as finite-element analysis,~the state of stress can be used to                    -
identify the most probable type... If the primary plus secondary stress in the axial-direction is found to be at  least  1.5  times that in the circumferential direction for the most severe loading combination association with Level- A and Level B service limits, then--only a circumferential break is postulated.                                        ,
Conversely, if the primary plus secondary stress in the circumferential direction is found.to be at least 1.5 times that in the axial direction for the most severe loading combination associated with Level A and Level B service limits, then only a- longitudinal break is postulated.                                                                              ^
: 5. Circumferential      and  longitudinal    breaks _ are . not postulated at locations where the_ requirements of Item F are satisfied.                                                                    E
: 6. Circumferential      and  longitudinal _ breaks                        are not postulated at locations where the criterion in Item E.2 is used.
E. Crack Locations
: 1. Throagh-Wall Cracks Through-wall cracks are postulated in ~ ' all high-energy and moderate-energy piping systems :having. a nominal diameter greater-than 1 inch at the locations specified in A, B or C, except - that - through-wall cracks are not postulated at locations where:
: a. For Class 1 piping, the calculated value of S,                            as defined . in Item A, is .less than one-half                                the limits of Item A.2.b.
: b. For Class 2, Class 3 or seismically analyzed ANSI-B31.1- piping, the calculated values .of S as defined  in Item B.2.c .is less ~ than one-half the lg limits of Item B.2.c.
p
: c. The requirements of Item F are satisfied.
E
: d. The criterion in 2. below--is used.
?O Amendment K 3.6-17                  October-30,-1992-
 
CESSARH% m O
: 2. Leakage Cracks A  leakage  crack    is    postulated    in    place  of  a g circumferential    break,    or    longitudinal    break,  or through-wall  crack,    if  justified    by an analysis performed on the pipeline in accordance with the requirements of Section 3.6.3.
For moderate-energy fluid systems in areas other than containment penetration, leakage cracks are postulated at axial and circumferential locations that result in the most severe environmental consequences.            Where a break in a high-energy fluid system is postulated which results in more limiting environmental conditions, the leakage crack in the moderate-energy fluid system is J not postulated.
Leakage cracks, instead of breaks, are postulated in the piping of fluid systems that qualify as high-energy fluid systems for short operational periods of time but that qualify as moderate-energy fluid systems for the major operational period.
F. Piping Near Containment Isolation Valves Ruptures are not postulated between the containment wall and the inboard or outboard isolation valves in piping, which is          E designed in accordance with the rules of the ASME Boiler and Pressure Vessel Code, Section III (Reference 2), and which meets the following additional requirements:
: 1. The    limits  for    postulating      intermediate    rupture locations, as specified in Item A.2.b for Class 1 piping and Item B.2.c for Class 2 and 3 piping, are not lK cxceeded in that portion of piping.
: 2. Following a postulated pipe break of high-energy piping beyond either isolation valve, the stresses in the piping from the containment-wall, to and including the length of the isolation valvo, are maintained within E
Level C Service Limits as specified in the ASME Boiler and Pressure Vessel Code, Section III, (Reference 2).
: 3. The design and in-service inspection requirements, as specified in MEB 3-1 (Reference 4), are satisified.
Inservice inspection program requirements are given in lJ Sections 5.2.4 and 6.6.                                        lK
: 4. The containment    isolation valves are appropriately qualified to assure that operability and leak tightness          E are maintained when subjected to any combination of Amendment K 3.6-18                  October 30, 1992
 
;        CESSAR h"Ainema
!, /~l kJ loadings,      which may be transmitted to the valves from                        g postulated pipe breaks beyond the-valves.
: 5.              For moderate-energy piping, the stresses calculated by l                              the sum of equations (9) and (10) in'ASME Code,_Soction                              J
!                                III, NC-3653, do not exceed 0.4 times the sum of the
,                              stress limits given in NC-3653..
3.6.2.1.4.2                      Postulated-Rupture Configurations                                        lE A. Break Configurations
_ Where break locations are postulated at fittings without the
;              benefit of a detailed stress calculation, breaks are assumed i              to occur at each pipe-to-fittings weld.                                If detailed' stress i              analyses -or tests are performed,                                the ' maximum stressed location in the fittings is selected as the break ~ location.
Circumferential-breaks are postulated in fluid system piping
              .and                branch    runs as specified in CESSAR-DC Section-3.6.2.1.4.1.D.                  Instrument lines,_one inch and less nominal pipe of tubing size are designed to meet the provisions of Regulatory Guide 1.11.
.O j
Longitudinal breaks in fluid system piping and branch-runs are postulated as specified in Section 3.6.2.1.4.1.D.
y 3        B. Crack Configurations
:                Leakage cracks                    are postulated          at  those        axial        locations
                -specified in Section 3.6.2.1.4.1.E.
!                For high-energy piping, leakage cracks are postulated to be in those circumferential locations that result in the most severe environmental consequences.                          The flow from the crack is assumed to -wet all unprotected components within .the compartment with consequent flooding in the' compartment and
,                communicating compartments.                      Flooding effects are determined i                on the basis of . a conservatively _ estimated time _p eriod l-              required to effecc corrective actions.
i 1
3.6.2.1.5                    Details of Containment Penetrations E
Details of containment penetrations _ are discussed in Sections 3.8.1 and 3.8.2.
Amendment J f
3.6-19                          April 30, 1992
 
CESSAR 8Bacua O
3.6.2.2        Analytical Methods to Define Forcing Functions an_d Responso Models 3.6.2.2.1        Piping Evaluated for Leak-Beforo-Break There are no forcing functions or response models for the reactor coolant loop, surge line, shutdown cooling line, safety injection line and main steam line based upon elimination of dynamic effects by leak-before-break evaluation.
3.6.2.2.2        Analytical Methods to Defino Forcing Functions and Response Models for Piping Excluding that Evaluated for Leak-Before-Break This section applies to all high-energy piping other than that whose dynamic effects due to pipe breaks are eliminated from the design basis by leak-before-break evaluation.
3.6.2.2.2.1        Determination of Pipo Thrust and Jet Loads A. Circumferential Breaks Circumferential    breaks are    assumed  to  result  in  pipe severance    and    separation  amounting    to  at  least  a one-diameter lateral displacement of the ruptured piping sections, un3ess physically limited by piping restraints, structural members, or piping stiffness.        The dynamic force  E of the jet discharge at the break location is based on the effective cross-sectional flow area of the pipe and on a calculated fluid pressure as modified by an analytically determined thrust coefficient.      Limited pipe displacement at the  break  locations,    line  restriction    flow  limiters, positive pump controlled flow, and the absence of energy reservoirs are taken into account, as applicable, in the reduction of the jet discharge.        Pipe whip is assumed to occur in the plano defined by the piping geometry and configuration, and to cause pipe movement in the direction of the jet reaction.
B. Dynamic Force of the Fluid Jet Discharge The dynamic force of the fluid jet discharge is based on a circular break area equal to the cross-sectional flow area of the pipe at the break location and on a calculated fluid pressure modified by an analytically determined thrust coefficient, as determined for a circumferential break at the    same  location. Line  restrictions,    flow  limiters, O
Amendment E 3.6-20                  December 30, 1988
 
CESSAR HMincum 4
:O positive pump-controlled flow, and the absence of energy
:                              reservoirs are taken into account, as - applicable, in the reduction of jet discharge.
;                              Piping movement is assumed to occur in the direction of the jet reaction, unless limited by structural members', piping restraints, or piping stiffness.
;                          C. Pipe Blowdown Force and Wave Force
!                              The fluid thrust forces that result from either postulated circumferential or longitudinal breaks, are calculated using a simplified one stop forcing function methodology.1 This i                              methodology is based on the simplified methods described in j                              ANSI 58.2-(Reference 5) and in Reference 6.                                                                                            E When      the        simplified            method discussed above leads to
.                              impractical protective measures,                                                          then a more detailed j                              computer        solution which more                                                    accurately reflects                  the
;                              postulated pipe rupture event is used.                                                                        The computer a
solution is based on the NRC's computer - program developed
;                              for calculating two-phase blowdown forces (Reference 7).
D. Evaluation of Jet Impingement Effects i
Jet impingement - force calculations are performed only if structures or components are located near postulated high
.                              energy line breaks and it cannot be demonstrated that failure of the structure or component will not adversely affect safe shutdown capability.
.                          E. Longitudinal Breaks-
;                              A longitudinal break results                                                      in an axial              split without severance.            -The split is assumed to be ' orientated at any point about the circumference of the pipe, or alternatively i                              at--the point of highest- stress as - justified by detailed
!                              stress        analyses.                For              the                        purpose    .of          design,        the J longitudinal break is assumed to be circular or, elliptical (2D x 1/2D) in shape, with an area equal 'to the largest piping cross-sectional flow area at the point of the break and have a discharge coefficient of 1.0.                                                          Any other values used for the area,                        diameter and discharge coefficient associated with a _ longitudinal break is v erified .by test                                  -
data which defines the limiting break geometry.
3.6.2.2.2.2                    Methods for the Dynamic Analysis of Pipe Whip p                      Pipe    whip  restraints usually provide clearance for thermal                                                                            E
(%-                    expansion during                  normal operation.                                        If a break _ occurs,                  the restraints      or anchors nearest the break are designed to prevent l
Amendment J 3.6-21                                                      April'30, 1992 4
      - . . - - . . . - , -  . . - . ,  ,      en -, ~ , , , ,    --    - , - , - , . . - - - . - , , - - - - . -.
                                                                                                                                  +,---,.-c    , - - - --  .,r,---w  -,
 
CESSAR Trib u O
unlimited movement at the point of            break (pipe whip).                            The dynamic nature of the piping thrust load is considered.                                  In the absence of analytical justification, a dynamic load factor of 2.0 is applied in determining restraint loading.                                (Elastic-plastic) pipe and whip restraint material properties may be considered as applicable.      The effect of rapid strain rate of material properties is considered.          A    10 percent increase in yield strength is used to account for strain rate offects.
3 In general, the loading that may result from a break in piping is determined using either a dynamic blowdown or a conservative static  blowdown analysis.        The  method                    for        analyzing  the interaction effects of a whipping pipe with a restraint is one of the following:    (1) Equivalent Static Method (2) Lumped Parameter Method, or (3) the Energy Balance Method.
In conservative a  cases where static time history or energy analysis          balance model is  used.                  method is not used, ['K The lumped parameter method is carried out by utilizing a lumped 1Tss model. Lumped mass points are interconnected by springs to y take into account inertia and stiffness properties of the system.
A dynamic forcing function or equivalent static loads may be applied at each postulated break location with pipe whip [K interactions.      A  nonlinear clastic-plastic                            analysis  of  the piping-restraint system is used.
The energy    balance method      is  based on the principle of conservation of energy. The kinetic energy of the pipe generated J during the first quarter cycle of movement is assumed to be converted into equivalent strain energy, which is distributed to the pipe or the whip restraint.
3.6.2.2.2.3        Method of Dynamic Analysis of Unrestricted Pipes The impact velocity and kinetic energy of unrestricted pipes is calculated on the basis of the assumption that the segments at each side of the break act as rigid-plastic cantilever beams subject to piecewise constant blowdown forces.                                    The hinge    E location.is fixed either at the nearest restraint or at a point determined by the requirement that the shaar at an interior plastic hinge is zero.      The kinetic energy of an accelerating cantilever segment is equal to the difference between the work done by the blowdown force and that done on the plastic hinge.
The impact velocity V is        found from the expression for the kinetic energy:
KE = (1/2) M egVI Amendment K 3.6-22                                      October 30, 1992 l
 
CESSAR HMiflCATION V
where H    is the mass of the single degree of freedom dynamic model of9the cantilever.          The impacting mass is assumed equal to M,g.
3.6.2.3            Dynamic Analysis Methods to Verify Integrity and Operability 3.6.2.3.1            Pipe Whip Restraints and Jet Deflectors for Piping Evaluated for Leak-Before-Break There are no pipe whip restraints and jet deflector for the reactor coolant loop, surge line, shutdown cooling line, safety injection line and main steam line based upon elimination of dynamic effects due to pipe breaks by leak-before-break                                        C evaluation.
3.6.2.3.2            Pipe Whip Restraints and Jet Deflectors for Piping Other than that Evaluated for Leak-Before-Break This section applies to pipe whip. restraints for all piping other than that whose dynamic effects due to pipe breaks are eliminated from the design basis by leak-before-break evaluation.
t O
V    3.6.2.3.2.1            General Description of Pipe Whip Restraints When required, pipe whip restraints are provided to protect the lJ plant against the effects of whipping during postulated pipe break. The design of pipe whip restraints is governed not only by the    pipe break blowdown thrust, but also by functional requirements, deformation limitations, properties of whipping pipe and the capacity of the support . structure. _ Typically, a pipe whip restraint consists of a ring around the pipe and components supporting _ the ring from the supporting structure.
The diameter of the ring is established considering the . pipe diameter,    maximum thermal _ movement                    of    pipe,    thickness        of insulation and an additional 1/2-inch for installation tolerance.
The restraint is designed for the impact force induced by the                                  E maximum possible initial gap between the ring and the pipe.
This impact energy is usually too high for -an elastic restraint l          system  or    support    structure            to    absorb.        Therefore,        energy i          absorbing measures designed by                      the    energy _ balance approach (impact energy _+ external work                      =    internal energy of pipe restraint system), are provided.
3.6.2.3.2.2            Pipe Whip Restraint Components p    Pipe  whip      restraints    typically              consist      of  the    following
(    components:
Amendment J 3.6-23                      April 30, 1992
            -  -        -- ...              . . . . , - - -      --          .        a.  .- , - .    . - -
 
CESSAR EBOICATl*N O
A. Energy Absorbing Members Members that are under the influence of impacting pipes (pipe  whip)    absorb    energy  by  significant  plastic deformations (e.g., rods, and crushable honeycomb material).
B. Non-Energy Absorbing Members Those components which form a direct link between the pipe and the structure (e.g., ring and components other than energy absorbing members).
C. Structural Attachments Those fasteners which provide the method of attaching connecting members to the structure or the ring (e.g., weld attachments),                                                  g D. Structural Components Steel and concrete support structures which ultimately carry the restraint    load. Design criteria are specified in Section 3.8.
3.6.2.3.2.3        Design Loads Restraint design loads, the reactions, and the corresponding deflections are established using the criteria delineated in Section 3.6.2.2.2.
3.6.2.3.2.4        Allowable Stresses The allowable stresses are as follows:
Allowable stresses used in the design of the pipe break restraint components are consistent with the component function.            In general,  the  allowable stresses associated with the total reaction force, including impact, on the structure extension, anchorage and structure are taken as the minimum yield stress for structural steel and concrete embedments.      For those situations  J where structure load limiting features cannot be provided to maintain the allowable      stresses to within yield,      plastic deformation in structural components is tolerated so long as the structure is capable of continuing its functional requirement after the deformation occurs.      The upper design limit for pipe break restraint is 50 percent of the restraint material ultimate strain.
O Amendment J 3.6-24                April 30, 1992
 
CESSAREn hiu v
3.6.2.3.2.5          Design Criteria The unique features in the design -of pipe- whip restraint components relative to the structural' steel design are geared -to the-loads used and the allowable stresses. These are as follows:
E A. Energy-absorbing members are designed for the restraint reaction    and    the  corresponding    deflection              established according to the pipe size and material and the blowdown force using the criteria delineated in Section 3.6.2.2.
B. Non-energy-absorbing members, structural components,                        and their attachments to the building structure are designed for J                                {
2.0 times the restraint reaction to ensure that the required deficction occurs in the energy absorbing members and the connecting members remain elastic.                                    thatlE    I All essential components are evaluated for jet impingement and pipe whip _ effects using a dynamic or an equivalent static analysis of    testing    to demonstrate      either the                functional                J capability and/or operability in addition to the- structural integrity of the component.                                                                  E
    ,    3.6.2.3.2.6        Materials d      The mater 1Lis used are as follows:
A. For  energy-absorbing    members:    ASTM A-193                Grade B7 or lJ equivalent for tension rods, and crusnable honeycomb made of stainless steel for compression.
B. For other components:    ASTM A-588, ASTM A-572 Grade 50, and ASTM  A-36. Charpy  tests  will- be . performed- on                steels subjected to impact-loads and lamination tests are performed on steels subjected to through thickness tension.
3.6.2.3.2.7          Jet Impingement Shields g
Protection- from jets is- provided by using separation                            and redundancy, as described- in Section. 3.6.1,            in lieu of                jet shields.
3.6.2.4        Guard Pipo Assembly Design Criteria Guard pipes .to limit pressurization effects in the containment penetration area will _not be used except in " Hot . Penetration" assemblies as described in Section 3.8.2.1.3.4.                                                J Amendment J 3.6-25                          April 30, 1992-
                                                                  - - - _ _ _ -            _ _ _ _        _ a
 
CESSAR Hisinema O
3.6.3        LEAK-BEFORE-BREAK INALUATION PROCEDURE This section describes Leak-Before-Break (LBB) analysis to all          E applicable piping.      LBB analysis is used to eliminate, from the structural design bases the dynamic effects of double-ended guillotine breaks and equivalent longitudinal breaks for an applicable piping system.
LBB is applied to the following System 80+ piping systems.
: 1. Main Coolant Loop piping, hot and cold legs
: 2. Surge Line                                                      K
: 3. Direct Vessel Injection Line (main run inside containment)
: 4. Shutdown Cooling Line (main run inside containment)
: 5. Main Steam Line (main run insido containment) 3.6.3.1        Applicability of LBB Piping evaluated for LBB is first shown to meet the applicability requirements for NUREG 1061, Volume 3. The piping is designed to meet the requirement to be not particularly susceptible to failure from the effects of corrosion, water hammer or low- and high-cycle fatigue, or degradation or failure of the piping from indirect causes.
3.6.3.2        Leakage Crack Location A survey of the piping is performed to determine the locations of highest    stress    loading  and    coincident  poorest  material properties. All base metal, weld materials, heat affected zones in the vicinity of the terminal ends, and all intermediate elbow locations are considered.
3.6.3.3        Irak Detection There are two major aspects to leak rate based on crack detection in addition to the crack opening size; leak detection capability, and flow rate correlation for leakage through a crack.
3.6.3.3.1        Irak Detection System A leak detection system is recommended by Regulatory Guide 1.45, lI Reference 8, capable of detecting a leakage rate of 1.0 gpm or ly less from the primary system. NUREG-1061, Volume 3, recommends a I safety margin of ten on the leak detection system.            Diverse lE measurement    means    are  provided,  including  water  inventory 7
monitoring, sump level and flow monitoring, and measurement of airborne radioactive particulates or gases (see Section 5.2.5).
O Amendment K 3.6-26                October 30, 1992
 
l CESSARUnincmu 4                                                                                  ;
Leak detection system requirements to support the LBB analysis for main steam line piping are met by a combination of humidity        I detectors, air coolers, radioactive airborne activity sensors and sump flow and level meters.
3.6.3.3.2        Plow Rate Correlation The other major aspect of crack detection based on the leak rate, namely the flow rate correlation for leakage through a given crack size, cannot be predicted precisely.          Variables such as  g surface roughness of the side walls of the crack, the nonparallel relationship of the side walls due to the elongated crack shape, and possibly zigzag tearing- of the material during crack formation all introduce uncertainties in defining an exact flow 4
rate correlation.
The leakage rate required to be detectable is 1.0 gpm or less. lJ The licensing guidelines (NUREG 1061, Volume 3) recommend a lE
:      factor of 10 on that leakage rate for conservatism. Using recent IK
,      work by EPRI (Reference 10), the leakage rate per square inch of          ;
leak area in the 10 gpm leakage rate range is computed to be            E j      approximately 250 gpm per square inch for the primary system for the range of pipe sizes of interest.          The crack opening area II a
(  corresponding to the 10 gpm rate is found to be 0~.04 square inch. IE V;  Determination of the length of the detectable crack for stability g evaluation is based on the guidelines of NUREG-1061, Volume 3 and the above flow rate correlation, a
3.6.3.4        Scrooning of Leakage Crack Sizes Using EPRI/GE Estimation Scheme Prior to detailed calculations of through-wall leakage cracks and 4      corresponding margins on loads and crack sizes, a preliminary scoping evaluation is performed.          In this part, all possible locations in the piping evaluated are screened to identify the most critical candidates for detailed study. The screening study j,      is performed using the EPRI/GE estimation scheme (Reference 11)        E for the determination of crack opening areas using elastic plastic fracture mechanics methods, and the C-E developed JEST computer program for the leakage rates through cracks.
This estimation procedure -is = used to compare the severity of hypothesized flaws in all piping locations in order to reduce the number of cases to be subjected to detailed analysis.            The procedure also-provides an estimate of the leakage crack length for input to the detailed finite-element analysis.
P v)
(
Amendment K 3.6-27                October.30, 1992
 
i CESSAREEb a Material Proporties O
3.6.3.5 For the main coolant loop, the hot and cold leg piping material E is SA536 Gr70. All hot- and cold-leg pipe-to-pipe welds and the pipe-to-reactor vessel, steam generator and reactor coolant pump safe end welds are carbon steel. All main loop component nozzles are SA508 CL 1A, 2 or 3 carbon steel or SAS41 CL 1, 2 or 3. The lJ surge line is SA312 Type 347          stainless steel, resulting in lK bimetallic safe end welds.      The shutdown cooling line and the II direct vessel safety injection line are Type 304 or 316 stainless steel. The main steam line is SA516 Gr70 or A516 Gr70.                  3 The detailed    analysis  of    cracks    in  pipe    welds  requires consideration of the properties of the pipe and the weld materials. Previous work by C-E has shown that a conservative bounding  analysis  results when      the  material    stress-strain properties of the base metal (lower yield) and the fracture properties of the weld (lower toughness) are used for the entire structure, (Reference 12). This material representation is used for all analyses. The tensile (stress-strain) curves and the J D vs. Aa curves are required for each material type.
3.6.3.6        Leakage Crack Sizo Determination It  is  necessary that hypothesized through-wall cracks open significantly to allow detection by normal leakage monitoring under normal full power loadings.        The crack opening area is      E calculated at all the chosen locations for normal operating conditions, since these are the most prevalent conditions during plant operating life, when leakage is to be detected,          A range of crack sizes is considered to evaluate the sensitivity to leakage rate assumptions. The result of the analysis of several assumed crack sizes is then used to estimate the leakage length.            Under normal operation loading, almost all the material in the pipe is in the elastic range. With a small amount of plasticity, this method is very accurate in estimating the crack size.          The crack opening area is computed on the inside and outside of the pipe and the smaller area is used.
The  finite-element  analysis    is  performed    for  those  cracks determined by the estimation scheme to be of the assured leak detection size. The analysis is also performed for a crack twice that length subjected to the same loading conditions.          These two analysis results enable a curve of crack opening arca vs. crack length to be drawn. From this curve, the length of the assured leak detectable crack is determined.
O Amendment K 3.6-28                  October 30, 1992
 
[        CESSAR !!hmu 1
3.6.3.7              Computation of J-Integral Values 3.6.3.7.1              Range of Crack Sizes The crack lengths estimated using the EPRI/GE estimating scheme 1              (Reference 11) are input to the detailed stability analysis of
;            the through-wall cracks in the piping evaluated.                                                  The finite-element analysis is carried out for the estimated leakage crack
.            size and twice that length. This procedure, therefore, considers the stability of a range of crack lengths for all locations j              selected for the analysis.                                                                                                E 3.6.3.7.2              J-Integral i
;i            The stability of through-wall cracks is evaluated using the j            J-integral technique.                        The J-integral- is determined in the i            finite-element analysis for pressure, normal operation, and safe a
shutdown      earthquake loadings for two different crack lengths for i            each geometric model .                    For the margin on loads evaluation, the J-integral for the estimated leakage crack size is also evaluated l              for /2 x (Pressure +NOP+i3SE) loads. A typica' J-integral vet 'oad lJ increment curve is shown in Figure 3.6-1.
4 f\
3.6.3.8              Stability Evalbation
$            The stability of the cracked pApes is assessed by. comparing the
!            J-integral value due to the appljed loads on the . pipe to the material crack resistance.
The stability criterion for ductile crack extoncion employed is:
g
!                      if J-applied < J                material, or IC h  applied <
hmaterial l            then crack stability is assured.
The change in J-integral with crack length "a" is determined by 4            analyzing several crack lengths in the region of interest.                                                  For a leakage-crack of length "a", crack lengths "a", a-6,                                              and a + 6 are analyzed.          Similarly, - the change in J-integral with - - crack length in the region of length "2a" is~ determined by analyzing g cracks with lengths l2a, 2a-6, and 2a+6.- This method provides.the
,            derivative information in the 'two ' regions .o f interest.                                                        The variation of J with crack length in the region of                                            "a" and "2a" is plotted-along with'the material curve.                                    Evaluation of the plots 4
allows for-direct verification of the stability criteria.
The evaluations are performed for the locations chosen to envelop 4
f^
t all- limiting          cases.            The- pipes                  with the leakage crack' length E
                                                                                                          --Amendment K l                                                                          3.6-29                        October 30, 1992
 
l CESSAR EnDicari:n                                                        !
l I
1 O
subject to loads of /2 x (P+NOP+SSE) and the pipes with crack length twice the leakage crack length with loads of (P+NOP+SSE) are demonstrated to have significant margin between the material curve and the loading curve, indicating that all pipe locations    E satisfy the LBB crack stability criteria.
3.6.3.9      Results The piping evaluated by the methods described above are shown to IK meet all the criteria for application of the leak-before-break according to NUREG 1061, Volume 3. Specifically, these criteria require that:
A. Cracks which are assumed to grow through the pipe wall leak significantly while remaining stable. The amount of leakage is detectable with a safety margin of at least a factor of
: 10.                                                            E B. Cracks of the length that leak at the rate in A. can withstand normal operation plus safe shutdown earthquake loads with a safety factor of at least /2.
C. Cracks twice as long as those addressed in B. will remain stable when subjected to normal operation plus safe shutdown earthquake loads.
O Amendment K 3.6-30              October 30, 1992
 
    .    -      ~.        -  .-        -    .          .        --      -      -      --                    .
l            CESSAR n!Encan 4
i)
(
REFERENCES FOR SECTION 3.6-
: 1. " Evaluation          of        Potential            for      Pipe          Breaks,"        NUREG-1061,              E Vol. 3.
~
: 2. ASME Boiler and Pressure Vessel Code, Section III, Nuclear Power Plant Components, Class 1, 2 or 3.                                                                              lJ
: 3. ASME Code for Pressure Piping, B31, Power Piping, ANSI /ASME lE B31.1.                                                                                                                (J
: 4. USNRC Branch Technical Position MEB 3-1 Rev. 2 - Postulated                                                            E Rupture Locations in Fluid System Piping Inside and Outside i                          Containment,            attached to                  Standard                Review Plan 3.6.2,
,                          June, 1987.                                                                                                            l3
: 5. American National Standard Design Basis for Protection of l                          Light Water Nuclear Power Plants Against the Effects of Postulated Pipe Rupture, ANSI /ANS 58.2-1988.
!                      6. R. T. Lahey, Jr. and F. J. Moody,                                          " Pipe Thrust and Jet Loads," The Thermal Hydraulics of a Boiling - Water Nuclear i                          Peactor, Section 9.2.3, pp. 375-409, Published by American                                                              g i
l h
(
Nuclear Society, Prepared by the Division of Technical Information United States Energy Research and Development
.                          Administration, 1977.
a
;                      7. RELAP 4/ MOD 5, Computer Program User's Manual-098. 026-5.5.
2
: 8. USNRC    Regulatory                Guide        1.45        " Reactor          Coolant              Pressure
,                          Boundary Leakage Detection Systems."                                                                                  lJ
: 9. NUREG/CR-1319,.              " Cold Leg Integrity                            Evaluation,"              Battelle lC Columbus Laboratories.                                                                                                lJ
: 10.      PICEP:      Pipe Crack Evaluation -Program,                                      EPRI .NP              3596-SR, August, 1984.
: 11.      "An    Engineering. Approach                          for      Elastic-Plastic Fracture Analysis,." EPRI NP2931, by V . Kumar,                                        M. D. German, C. F.                      E Shih, July 1981.
: 12.      " Analysis of Cracked Pipe Weldments," EPRI NP-5057, February-1987.
: 13.      USNRC Regulatory Guide 1.11 (Safety Guide 11), Instrument Lines Penetrating Primary Reactor Containment; including-                                                              J supplement, Backfitting Considerations.
g Amendment J 3.6-31                                  April 30, 1992 l,
      ,3.  . - - . -.
7-,,,.,,    ,-,-y        .-.        .y.    , ,    , _ . _ , .  ,  ,n- ,,-.,m-  n ~,,4_    -.,, we -,    g -, .,
 
:                                                                                                                                                              1 CESSAR insincma O
TABLE 3.6-1 E
(Sheet 1-of 2)                                  _
2                                                          HIGH- AND MODERATE-ENERGY FLUID SYSTEMS i
High-Energy Fluid Systems (I)                                                        J Main Steam Main Feedwater                                                                      e
!                                                                  Steam Generator Blowdown
!                                                                  Auxiliary Steam                                  .
!                                                                  Reactor Coolant including Surge _ Line                                            lJ        '
l Chemical and Volume Control                                                      lg i
i                                                                - Moderate-Energy Fluid Systems E
i                                                                  Chemical and Volume Control i
Component Coolingg 2)                                                                g
,                                                                  Safety. Injection Containment Air Monitoring / Sampling                                            IE Diesel Generator Engine-Fuel Oil-                                                33
(                                                                Station Service Water                                                            lg Fire Protection                                                                  I Compressed Gas                                                                      y Pool Cooling and Purif_ication Station Heating                                                                  lE Containment Spray I2)                                                            la Drain                                                                            IE i                                                                  Essential / Norms.1 Chilled Water                                                la Breathing Air E
Instrument Air
:                                                                  Service Air i                                                                  Shutdown Cooling (2) i                                                                  Emergency Feedwater(2)                                                              ,
Diesel Generator Engine Lube Oil j                                                                  Diesel'GeneratorEngine(gjartingAir 4                                                                  Safety Depressurization                                                            K Steam. Generator Wet Layup Recirculation (2)~
l d
Amendment K-
                                                                                                                        - October 30,-1992
 
CESSARM5 Gems O
TABLE 3.6-1 (Cont'd)
E (Sheet 2 of 2) lilGil- AND MODERATE-ENERGY FLlllD SYSTEMS II) Systems shown are either totally or partially high-energy.
(2) See CESSAR-DC, Sections 3.6.1.1.1 and 3.6.1.1.2 for definitions of High and Moderate Energy Lines.      These piping systems are considered Moderate Energy, since these systems operate above the temperature and/or pressure limits for only a relatively short portion (less than approximately two percent) of the time during which they perform their intended function, as prescribed by guidance of ANSI /ANS-58.2-1988. Portions of these systems are, however, interfaced directly with other High Energy systems or have sections which are liigh Energy in nature.                            ,
(3) Systems or portions of systems which are not located in the Reactor Building Subsphere, Nuclear Annex, or inside Containment were generally excluded from this table by the guidance of CESSAR-DC, Section 3.6.1.2.
(4) That portion of SDS up to normally closed isolation valves; downstream portion is normally unpressurized.
O 1 Amendment J April 30, 1992 l
 
_ . . _ _ _ _ . .                      -__              . _ _ _ _ _          ___                ~    _ .. .
CESSAR ESincui:n                                                                              ,
O                                                  1AulE 3.6-2                              !
SYSTEMS REQUIRED FOR SAFE SilVIDOWN AND/OR TO MITIGATE lilE CONSEQUENCES DrTDESICN!!1A51S ACCIDf]g*
Reactor Protective Reactor Coolant Safety injection / Shutdown Couling                    c Containment Spray Emergency feedwater Component Cooling Water Station Service Water Auxiliary Power Area Radiation Containment Isolation                                lx Battery and DC Distribution Diesel Gennrator                                                    >
Diesel fuel Oil Engineered Safety features                                          '
Combustible Gas Control                                              <
instrument and Control Power in-core Thermocouple O
b Ex-core Neutron Monitoring Main Steam Main feedwater E
Control Element Assembly Drive Control Room IIVAC Diesel Generatoi Room HVAC ESF Switchgear Room IIVAC Station Service Water Pump ilouse HVAC Primary Containment Ventilation
!                                                    Safety injection System Equipment Room liVAC l                                                    Essential Chilled Water Ultleate lleat Sink (site specific)                    lJ Main Control Board Safety Depressurization E
1 1                                                                                                                        .
l Q            G ystems listed are either totally or partially required for safe ~ shutdown.
b Amendment K October 30, 1992
 
CESSARE h mu O
TABLE 3.6-3 (Sheet 1 of 11) llIGil-fNERGY LINES WITillN CONIAINMENT i
1                                            Line            Operating    Operating Item                    functional          Pressure    Temperature j              No. System            Description        1>275 psig} _(>200*f)_            i flgure No.
1 Main        from SG No. 1                  Yes        Yes          10.1-2 Steam        Line #1 to Cont Penetration 2 Main        from SG No. 1                  Yes        Yes          10.1-2 Steam        Line #2 to Cont i                                Penetration 3 Main        from SG No. 2                  Yes        Yes          10.1-2 l                    Steam        Line #1 to Cont                                                      1 Penetration O
b 4 Main Steam from SG No. 2 Line #2 to Cont Yes          Yes          10.1-2 Penetration S SG          SG No. 1 Blowdown            Yes          Yes          10.1-2,
.;                    Blowdown    Line #1 to Common                                        10.4.8-1 Blowdown Line J
6 SG          SG No. 1 Blowdown            Yes          Yes          10.1-2,          ,
Blowdown    Line #2 to Common                                        10.4.8-1 Blowdown Lino 7 SG          SG No. 1 Blowdown            Yes          Yes          10.4.8-1 Blowdown    Common Line to Cont lK Penetration 8 SG          SC No. 2 Blowdown            Yes        Yes            10.1-2, Blowdown    Line #1 to Common                                        10.4.8-1    I Blowdown Line 9 SG          SG No. 2 Blowdown            Yes          Yes          10.1-2, Blowdown    Line #2 to Common                                        10.4.8-1 4
Blowdown Line Amendment K October 30, 1992
 
1 l
CESSARMMema O
TABLE 3.6-3 (Cont'd)
(Sheet 2 of 11) lilGil-INERGY LINES WlilllN CONTAINMENT Line                            Operating  Operating Item                    functional                                                    Pressure  lemperature No. System _          Description                                                  [>275psig)l _(>200*f)_    F1_gure No,  y 10  SG          SG No. 2 Blowdown                                                    Yes        Yes      10.1-2, Blowdown    Common line to Cont                                                                        10.4.8-1 Penetration 11  Steam        SG No. 1 Secondary                                                    Yes        Yes      10.1-2      lK Generator    Side Drain Line #1 to First isolation                                                                                        J Valve 12  Steam        SG No. 1 Secondary                                                    Yes        Yes      10.1-2      lK Generator    Side Drain line #2 to first isolation                                                                                        J Valve 13  Steam      SG No. 2 Secondary                                                    Yes        Yes      10.1-2      lK Generator  Side Drain Line #1 to First Isolation                                                                                        I Valve 14    Steam      SG No. 2 Secondary                                                    Yes        Yes        10.1-2      lK Generator    Side Drain Line #2 to first isolation                                                                                        J Valve 15    S/G Wet    SG No. 1 Wet Layup                                                    Yes        Yes      10.1-2      lK Layup      Return Recirc Nozzle Recirc    to Interior Check                                                                                          J Valve 16    S/G Wet    SG No. 2 Wet layup                                                  Yes        Yes      10.1-2        lK Layup      Return Recirc Nozzle Recirc      to Interior Check Valve                                                                                                      J 17    Main        To SG No. 1 Economizer                                                Yes        Yes        10.1-2 Feedwater  Nozzle #1 from                                                                                              J Economizer Common Feedwater Line Junction Amendment K October 30, 1992
 
CESSAR nMicueu G                                                                                                          .
TABLE 3.6-3 (Cont'd)                                  .
(Sheet 7 of 11)
                                            "?NI-INUtGY LINES WillllN CONTAINMENT Lino              Operating    Operating item                          functional          Pressure    Temperature              I No.      System                  Description        1>275psig)      (>200*f)_  figure No.
53  Reactor          Hot leg injection            Yes          Yes      6.3.2-10      ,
Coolant          Loop #2 Check Valve SI-532 to Junction of Shutdown Cooling Line Loop #2 54  Reactor          Direct Vessel                  Yes          Yes      5.1.2-1 &
Coolant          injection Connection                                6.3.2-10
                                        #1 to SIS Interior Check Valve SI-247 55  Reactor          Direct Vessel                  Yes          Yes      5.1.2-1 &
  ,                    Coolant          injection Connection                                6.3.2-1C
  \
                                        #2 to SIS Interior Check Valve SI-227 56  Reactor          Direct Vessel                  Yes          Yes      5.1.2-1 &  a Coolant          Injection Connection                                6.3.2-1C
                                        #3 to SIS Interior l                                      Check Valve SI-237 57    Reactor          Direct Vessel                  Yes          Yes      5.1.2-1 &
l                      Coo'lant          Injection Connection                                6.3.2-10 l                                      #4 to SIS Interior l
Check Valve SI-217 58    Safety          Branch-Off of                  Yes          Yes      5.1.2-3 Depress          Pressurizer Safety System          . Valve RC-201 Steam Line to RC-409 l                                        (Rapid Depress. Line) l                59    Safety          Branch-Off of                  Yes          Yes      5.1.2-3 Depress          Pressurizer Safety
,                      System          Valve RC-203 Steam l                                      Line 4 to RC-408 (Rapid Depress. Line) l l
Amendment J April 30, 1992
 
CESSAR E!'ece 9
1ABlf 3.6-3 (Cont'd)
(Sheet 8 of 11) lilGil-INERGY LINES W111llN CONTAINMENT Line            Operating    Operating I
Item            functional              Pressure    Temperature No. System      Description            p 275 psigl _(>200*f)_    figure No.
60 CVCS  Letdown Line from              Yes        Yes        9.3.4-1, Loop 28 to                                            5.1.2-1 Regenerative Hx y
61 CVCS  Letdown Line from              Yes        Yes        9.3.4-1 Regenerative lix to letdown Hx 62 CVCS  Letdown Line from              Yes        flo        9.3.4-1 Letdown lix to                                                    J Containment Penetration 63 CVCS  Charging Line from              Yes        flo        9.3.4-1 Containment Pen to Regenerative lix                                                  I 64 CVCS  Charging Line from              Yes        Yes        9.3.4-1 Regenerative Hx to RCS Loop 2A 65 CVCS  Auxiliary Spray line            Yes        Yes        9.3.4-1,  g to Pressurizer Spray                                  5.1.2-3 Common Header 66 CVCS  SCS Hx Shutdown                Yes        Yes        9.3.4-1 Purification Line                                                  a Cont Pen Check Valve CH-304 to Letdown Hx 67 CVCS  RCP Seal Water                  Yes        No        9.3.4-1 Header from Cont                                                    I Pent to Branch Seal Water Lines 68 SIS    Safety injection                Yes          No        6.3.2-1C Line #1 from Check                                                  a Valve SI-543 to OV1 Line #1 Junction Amendment K October 30, 1992 l
l
 
CESSAR E!.'.Mem O                                                                                                                                        i V
TABLE 3.6-3 (Cont'd)
(Sheet 9 of 11) llIGil-!NERGY LINES WITillN CONTAINMENT Line              Operating        Operating item                                          functional            Pressure      Temperature                              I No._    System                                Description      ]>275_psig} _(>200*f)_                      [lgureNo.
i 69    SIS                        Safety injection                  Yes              No                  6.3.2-1C Line #2 from Check Valve 51-541 to DVI Line #2 Junction 70    SIS                        Safety injection                  Yes              No                  6.3.2-1C Line #3 from Check Valve S1-542 to DVI Line #3 Junction 71    SIS                        Safety Injection                  Yes              No                  6.3.2-1C Line #4 from Check O                                          Valve 51-540 to DVI Line #4 Junction 72    SIS                        Safety injection                  Yes              No                  6.3.2-10 line from SIS Tank #1 to Check Valve SI-247                                                                  3 i              73    SIS                        Safety injection                  Yes              No                  6.3.2-1C
                                                  .ine from SIS Tank #2 j                                                to Check Valve SI-227 74    SIS                        Safety injection                    Yes              No                  6.3.2-1C Line from SIS Tank #3 to Check Valve SI-237 75    SIS                        Safety Injection                    Yes              No                6.3.2-1C Line from SIS Tenk #4 to Check Valve SI-217
(
76    SIS                        SIS Tank #1 Relief                  Yes              No                6.3.2-1C Line to SIS Tank #1 Safety Valve S1-241 l              77    SIS                        SIS Tank #2 Relief                  Yes              No                6.3.2-10 i
Line to SIS Tank #2 Safety Valve SI-221 Amendment J April 30, 1992
_                                .  .~ . -
 
CESSAR nuiacuiw O
TAllLE 3.6-3 (Cont'd)
(Sheet 10 of 11) tilGil-[NERGY llNES WilllIN CONTAINHENT Line              Operating  Operat.ing item              functional            Pressure  Temperature              I No. System      Description        p275psig} j)200*f)_      figure No.
78  SIS    SIS Tank #3 Relief            Yes        No        6.3.2-1C Line to SIS Tank #3 Safety Valve SI-231 79  SIS    SIS Tank #4 Relief            Yes        No        6.3.2-1C Line to SIS Tank #4 Safety Valve SI-241 80  SIS    SIS Tank #1 Drain            Yes        No      6.3.2-1C Line to SI-641 81  SIS    SIS Tank #2 Drain            Yes        No      6.3.2-1C Line to SI-621 82  SIS    SIS Tank #3 Drain            Yes        No      6.3.2-1C Line to SI-631                                                g 83  SIS    SIS Tank #4 Drain            Yes        No      6.3.2-1C Line to SI-611 84  EFW    Emergency feedwater          Yes        Yes      10.4.9-1 Line from Motor                                    (Sheet 1)
Driven EfW Pump #1 Cont Pen Check Valve EF-202 to SG #1 Common EfW Line 85  EfW    Emergency feedwater          Yes        Yes      10.4.9-1 Line from Steam                                    (Sheet 1)
Driven EfW Pump #1 Cont Pen Check Valve EF-200 to SG #1 Common EfW Line 86  EfW    Emer9ency feedwater          Yes        Yes      10.4.9-1 Common Line to                                      (Sheet 1),  h, SG #1 feedwater                                    10.4.7-1 Downcomer Amendment K October 30, 1992
 
CESSARHiMem O
TABLE 3.6-3 (Cont'd)
(Sheet 11 of 11) tilGil-ENERGY LINES WillllN CONTAINMENT Line                              Operating  Operating item                    functional                            Pressure  Temperature              I No. System            Description                    (>275 pslgl  i __(>200*f)_  figure No.
87  EFW          Emergency Feedwater                          Yes        Yes      10.4.9-1 Line from Motor                                                  (Sheet 1)
Oriven EFW Pump #2 Cont Pen Check Valve EF-203 to SG #2 Common EFW Line a
88  EFW          Emergency Feedwater                          Yes        Yes      10.4.9-1 Line from Steam                                                    (Sheet 1)
Driven EFW Pump #2 Cont Pen Check Valve EF-201 to SG #2 Common EFW Line 89  EFW          Emergency feedwater                          Yes        Yes      10.4.9-1 Common Line to                                                    (Sheet 1),
SG #2 feedwater                                                    10.4.7-1  K Downcomer NOTE:    See CESSAR-DC Section 3.6;1.1.1 and 3.6.1.1.2 for definitions of High and Moderate Energy lines. The following piping systems are considered Moderate Energy, since these systems operate above the temperature and/or pressure limits of high energy status for only a relatively short portion (less than approximately two percent) of the time during which they perform their intended function, as                            J prescribed by guidance of ANSI /ANS-58.2-1988: Safety injection System (SIS), Containment Spray System (CSS), Shutdown Cooling System (SCS), and Emergency feedwater System (EfW). Portions of p            these systems are, however, interfaced directly with other High Dj          Energy systems or have sections which are High Energy in nature.
            .These piping sections have been included in this table.
Amendment K October.30, 1992
 
CESSARHML -
\
3.8        DESIGN OF CATEGORY I STRUCTURES 3.8.1        CONCRETE CONTAINMENT This section is not applicable to the System 80+ Standard Design.
For a description of the containment, see Section 3.8.2.                    For a description of the containment shiold building, seu section 3.8.4.
3.8.2        STEEL CONTA1NMFNT 3.8.2.1          Description of the Containment 3.8.2.1.1          Conoral The  containment    is    a  spherical          free-standing    welded  steel structure. Th o - sphoro is supported by sandwiching its lower                    '
_ portion between the building foundation concrete and the interior structure base.      There-is no structural connection either between the containment and the intorior structuro, or betwoon the                        I containment and the shield building. The diamotor of containment is 200 ft.      The plate nominal thickness is 1.75 inches.                    The containment 1.2-2, is shown on the plans and clovations of Figuros 1.2-3,  1.2-5,  1.2-6,  1.2-7 and 1.2-9.
The spherical shall plato segments will be shop fabricated and field welded.      Those plates will be approximately 25 feet long and 13 foot wide and can weigh as much as ten tons each; however, these dimensions will vary depending upon the plato location.
Two or more plates may be assembled and field welded on the ground and then erected.            A          vast majority of penetration-assemblics will be shop wolded to the vessel plates, while others will be attached to the vessel in the field. Vossol plate will lK be thickened around the penetration to compensate openings. Where there is a cluster of penotrations in thefor                  the same plate segment, the entire segment may be fabricated out of the thickor plato,      tapored to 1.75 inches at the edges.                      The additional thickness will depend upon the nominal sito, thickness and location of the penetration sleevo and shall be in accordance with    ASME    Boiler    and    Pressure          Vessel  Code requirements (Reference 1).                                          (ASME  Code) y 3.8.2.1.2          Anchorage Rogion The  containment      is    assumed  to          behave  as  an    independent, free-standing structure above elevation - 91+9.                  Below elevation 91+9, the vessel is encased between the base slab of the internal structures and the shield building foundation. In the transition
(  region,  a compressible material is provided as shown in . Figure 3.8-1 to eliminato excessivo bearing loads on the concrete as Amendment K 3.8-1                        October 30, 1992
 
CESSAREEnce O
well as to reduce the secondary stresses in the vossol at this location. No  shear  connectors    are  provided  betwoon the containment plate and the shield building foundation or baso slab I
of internal structuros. The lateral loads due to soismic forces, etc., are transferred to the foundation concrete by friction and bearing. Ho credit is taken for the reduction of shall stressos duo to concreto encasoment of tho vossol; thoroforo, the vossol plato thickness in the embedded zono is the same as in the froo Zone.
3.8.2.1.3        Containment Ponotrations 3.8.2.1.3.1        Equipment llatch I
The equipment hatch is composed of a cylindrical sloovo in the containment shall and a dished head 22 foot in diamotor with mating bolted flangos.      The flanged joint has double seals with an annular space for pressurized leak testing in accordance with        y' 10CFR50, Appendix J.
The equipment hatch is designed, and fabricated in accordance with Section III, Subsection NE of the ASME Boiler and Pressure        K Vessel Code. The equipment hatch is tested and stamped with the containment vessel.
Details of a typical equipment hatch are shown on Figuro 3.8-1.
3.8.2.1.3.2        Personnel Locks I
Two personnel locks 10 foot in diamotor are provided for each unit. Each lock has double doors with an interlocking system to prevent    both  doors  being    opened  simultaneously. Remoto indication is provided to indicato the pooltion of each door.
Double seals are provided on each door with an annular space for      h, pressurized leak testing in accordance with 10CFR50, Appendix J.
The personnel    locks are wolded steel      subassemblics designed, fabricated, tested, and stamped in accordance with Section III, Subsection NE of the ASME Code.                                        I Details of a typical personnel lock are shown on Figuro 3.8-1, 2
O Amendment K 3.8-2              October 30, 1992
 
CESSAR 8lMimim 3.8.2.1.3.3          Fuel Transfer Ponotration A fuel transfer penetration is provided for transfer of fuel                                                                    I between the fuel pool and the containment fuol transfer canal.
The fuel transfer penetration is provided with a double scaled blind flange in the transfor canal and a gate valve in the fuel pool. An annular space is provided between the double seals on the blind flango for pressurized leak testing in accordance with                                                                K 10CFR50, Appendix J,                                The fuel transfer tube penetration sloove and flanges are designed, fabricated, testod and stamped in accordance with Section III, Subsection NE of the AsME Code. The fuel transfer penetration is shown in Figuro 3.8-2.
3.8.2.1.3.4          Mechanical Ponotrations Mechanical    penetrations                                                are  treated          as    fabricated      piping assemblies meeting the requirements of the ASME Code, Section III, Subsection NE, and Subsection NC.
The process    line            and                            penetration                  flued  head      making  up  the pressure    boundary                  are                                consistent          with  the      system  piping materials; fabrication, inspection, and analysis requirements are as required by the ASME Code, Section III, Subsection NC. All wolds on the      process pipo are accessible                                                          for    inspection  in accordance with the ASME Codo, Section XI.                                                                                      I High energy    lines and selected                                                  engincored safety system and auxiliary lines require the typical " Hot Penetration" assembly shown on Figuro 3.8-2 which features an exterior guard pipe for protection of other penetrations in the building annular space.                                                                    ,
Other lines use the typical " Cold Ponotration" assembly also shown in Figure 3.8-2 since a leak into the annular spaco would not cause a personnel hazard or damage other penetrations in the immediato area.
Mechanical penetrations                                                  are  Icak        tested  in    accordance  with 10CFR50 Appendix J.                                                                                                              E 3.8.2.1.3.5          Electrical Ponotrations Medium voltage electrical penetrations for reactor coolant pump power (shown on Figure 3.8-2) use scaled bushings for conductor seals. The assemblies incorporate dual seals along the axis of each conductor.                                                                                                                  I Low voltage power, control, and instrumentation cables enter the containment    vessel                    through                              penetration          assemblics      which  are designed to provide two leak-tight barriers in serios with each conductor.
                                                                                                              -Amendment K 3.8-3                          October 30, 1992
 
CESSARnMem                                              .
O All electrical penetrations are designed to maintain containment                                                                                              ,
integrity            for                            Design Basis Accident conditions,                                                            including  ^
prescuro, temperature, and radiation.                                                              Double barriors permit testing of each assembly in accordance with 10CTR50 Appendix J to lK verify that containment integrity is maintained.                                                                                                              p The electrical penetration assemblics are designed, fabricated, tested, and stamped in accordance with IEEE-317.                                                                                The pressure                y' boundary portion of the assembly is designed, fabricated, tested and stamped in accordance with Section III, Subsection NE of the ASME Code.
3.8.2.2                Appilcablo Codes; Standards, and Specifications lI The          design,                                materials, fabrication,                        crection,                                    inspection, testing, and inservice surveillance of the stcol containment and penetrations is covered by the following codes,                                                                                                  standards, specifications, and regulations:
Codes                                                                                        Title ASME                                                                    Boiler and Pressure Vessel Code, Section II, " Material Specifications" ASME                                                                    Boiler          and Pressure Vessel Code, Section III, Division 1, Subsection NE, " Class MC Components" ASME                                                                      Boiler and Pressure Vessel Code, Section                V,              " Nondestructive                              g Examination" ASME                                                                        Boiler        and      Pressure            Vessel Code, Section        IX,      " Welding                                  and Drazing Qualifications" ASME                                                                        Boiler        and      Pressure              Vessel                        Code, Section        XI,      Rules for Inservice Inspection of Nuclear Power Plant Components,                Subsection                                        IWE
                                                                                " Requirements            for          Class                            MC  and Metallic          Liners            of                            Class    CC Components            of  Light-Water                                    Cooled Power Plants" O
Amendment K 3.8-4                                October 30, 1992
 
J CESSAR M Lmn                                                                                                                            .
i
!                                Roqulatory Guidos                                          Title                                                                    !
e                              1.11                              -Instrument Lines Ponotrating Primary                                                            :
l                                                                    Reactor Containment (Safoty Guide                                                              '
: 11)                                                                                          q i                                1.50                                control of Prohoat Temperature for                                                              t
;                                                                    Wolding of Low-Alloy Stool I                                1.54                                Quality - Assuranco Requirements for i                                                                    Protectivo coatings Applied-to Wator-Coolod Nuclear Power Plants                                                                    -
1                                1.57                                Design                Limits            and                              Loading Combinations              for        Motal                              Primary Reactor                  Containment                                      System
                                                                  . components 1.63                                Electric Ponotration ' Assemb11os                                              in Containment Structures for Nuclear-Power Plants-1.84                                Design        and Fabrication codo caso                                            K Acceptability - ASME Soction III, 5                                                                                                                                                          '
Division 1 1.85                                Materials Code Case Acceptability -
ASME<Soction III, Division 1 1.141                                Containment Isolation Provisions for Fluid Systems 1.147                                Incorvico              Inspection                      Codo                Caso Acceptability - ASME                                Section XI, Division 1 Regulations 10CFR50                              Appendix A - General Design Criteria for Nuclear Power-Plants i
10CFR50                          -Appendix                J    -
Primary . Reactor Containment . LeakagoL Testing                                                for Wator-Cooled Power Reactors
          \
Amendment K
                                                                    -3.8-4a                                  October 30, 1992
 
CESSAR MAnflCATl!N Standards O
IEEE                                    IEEE-317-      Electric    Ponotration  g Assemblics in Containment Structures for    14uclear    Power    Generating Stations 3.0.2.3        Ioada and loading Combinations The loads and loading combinations for the analysis and design of the containment vousel are in accordance with Subsection llE ,
Section III,    of  the ASME Code              and Regulatory Guide 1.57 (Reference 13). In  addition, the specified loads and loading combinations are in accordance with the NRC Standard Review Plan, Section 3.8.2, 11.3 (Referenco 12).                  The loads and loading combinations are summarized in Tables 3.8-1 and 3.8-2.
A. Dead Load and Construction Loads The dead load includes the weight of the containment shall and all permanent attachments. Construction loads are those loads  imposed on the containment                  shell  only  during construction. A typical construction load is the shoring load induced by the formwork for the containment shield                    I building concreto dome.
B. Thermal Loads The containment vossol is subjoct to thermal loads during normal operation of              the unit.      The  maximum  operating temperaturo can reach 110*P.
C. Soismic Loads The containment vessel is loaded by simultaneous seismic events in two orthogonal hori2.ontal                directions and the vertical direction.            Soismic loads are described in Section 3.7.
O Amendment K 3.B-4b                  October 30, 1992
 
CESSAREBMem O    D. Ext.ornal Pressuro                                                              y A vacuum load can be imposed on the containment Vossol by an inadvertent actuation of the Containment Spray System during lK normal unit operation.      The desf gn vacuum pressure is 2.0 psig.
E. Design Basis Accident The Design Basis Accident Loads are based on the peak pressure and temperaturo developed insido containment as a result of a rupture in the primary coolant system up to and including a double-ended rupture of the largest pipo (a Loss-of-Coolant-Accident or LOCA) or a main steam lino
{                  break. The containment vossol design pressure is 49 psig and the design temperature          is    290'F.        See Chapter      6 for details of the Containment Design Basis Accident.
F. Combustible Gas Loads The containment vessel is subject to the consequences of uncontrolled hydrogen-oxygen recombination as specifiod in the Code of Federal Regulations, 10 CFR 50.44.
O h    G. Localized Loads I
Ponotration loads, piping loads and jot impingement loads are all localized loads applied to the containment vessel.
Penetration and piping loads are duo to the reactions at penetrations, pipe supports / restraints and other attachments welded to the shell. Jet impingement loads are_due to fluid jets caused by the rupture of small diamator piping adjacent to the containment vessel.
3.8.2.4        Design and Analysis Procedures A. Design Por ASME Code The  containment    vessel    is  designed        to      satisfy    the requirements of Articles NE-3130 and NE-3320 of the ASME Code with regard to pressuro loadings.                The local areas around openings are reinforced as necessary por Article NE-3330.
B. Static and Soismic Load Analysis The containment vessel        is  analyzed      to determine          all membrano, bending and shear stresses resulting from the specified static and scismic loads. The vessel is idealized (nv)
Amendment K 3.8-5                        October 30, 1992
 
CESSAR ME"icari:n l
l as a three dimensional thin shall using the finito 01cmont O
method of analysis.      The stresses and deficctions produced in the shell under the applied loads are calculated with the ANSYS    computer    program    (Reference    2). The  AllSYS mathematical model unnd to represent the containment vessel              ,
is shown in Figure 3.8-3.                                                l Scismic stresses and deflections are calculated using the response spectrum method.      The frequencies of vibration and corresponding modo shapes are determined using the normal modo method. 14odal responses are combined as doccribed in Regulatory Guide 1.92        (Reference 15). The appropriate damping lovel for the applied responso spectra is defined in Regulatory Guide 1.01 (Referenco 14).
C. Buckling The critical buckling stresses in the containment vessel aro 7
determined by applying the appropriato safety factors and capacity reduction      factors to    the results of    a  three-dimensional    linear  bifurcation    analysis using    an  ANSYS finite element model similar to that constructed for the static and dynamic analyses.      These methods are described in Article NE-3222 of the ASME Code and AS!4E Codo Case N-284 (Referenco 5). Codo Case acceptability is in concurrence with Regulatory Guide 1.84 (Reference 17).                          lK D. Ultimato Capacity The maximum pressure capacity of the containment vessel is evaluated by a large displacement clastic-plastic nonlinear I analysis. The vessel is modeled with axisymmetric shell finite elements using the ANSYS computer program. The ANSYS model is shown in Figure 3.8-4.
E. Combustible Gas Loads                                              lK The stresses in the containment vess91 due to combustible gas loadings are calculated using a static linear elastic 3 analysis. The vessel is represented by an axisymmetric shell finito element model with the ANSYS computer program. K This rnodel is the same as the model used for the ultimate capacity evaluation.
F. Nonaxisymmetric and Localized Loads                                h There are no nonaxicymmetric loads applied to the stool              g containment vessel during a Design Basis Accident.
O Amendment K 3.8-6                October 30, 1992
 
CESSARn!L .
Localized loads applied to the containment vessel may be piping support / restraint reactions, reactions from other attachments, jet impingement loads, etc. The ANSYS computer program is used to calculate the local stresses caused by these loads, which are then included in the appropriate loading combination.
G. Computer Programs ANSYS  (Reference 2) is a general purpose finite 01cmont-                                    1 program capable    of  both                          linear and nonlinear analysis.
Loads may be either static or dynamic in naturo.                                        The program has a large cicment library unoful in modeling a variety of problems.
3.8.2.5        Structural Acceptanco Critoria A. Allowablo Stress Limits Allowable    stresses have been established for each of the loading combinations listed in Table                            3.8-2. Those limits are in compliance with Subsection NE, Section III of the
.      ASME Code and Section 3.8.2, II.5 of the NRC Standard Review                                I Plan. They are summarized in Table 3.8-3.
B. Buckling Safety Factors The factors of safety for buckling loads are 3.0 for Level A and B loads, 2.5 for Levol C loads and 2.0 for Lovel D loads. These values are in agreement with the limits set forth in Article NE-3222 of the ASME Code.
C. Ultimate Capacity The failure criteria for the ultimate capacity analysis is defined in Section III, Appendix II,                              Article 1430 of the ASME Code. The collapse load is determined by examining the path of the load-displacement curve at various points on the containment vessel.
The containment vessel must satisfy the allowable limits for Lovel C loadings shown in Table                              3.8-3  when subjected to combustible gas loads.
Amendment I 3.8-7                              December 21, 1990 l
l
 
CESSARnMem O
3.8.2.6        Materials, quality control, nr _Special Construction Techniquen 3.8.2.6.1        Materials The containment vessel materials are in accordance with Article llE-2000 of Subsection flE ,    " Class MC Components," of the ASMC          I Boiler and Pressure Vessel Code, Section III, "liuclear Power Plant Components."
The containment plate material is ASME SA537 Class 2.                This material is exempt from post-weld heat treatment requirements through thicknesses of 1.75 inches in accordance with Tabic                >
llE-4622.7(b)-1 of the ASME Doller and Pressure Vessel Code,                y' Section III. Welds on plate thicknesses      which exceed 1.75 inches will be post weld heat treated.
Fabrication and erection of the containment vessel are in accordance with Article !!E-4000 of Section III of the ASME Code.
This    includes    welding  procedures,    procedure  and  operator performance    qualifications,    post  weld  heut  treatment    and    I tolerances.
liondestructive  examination    of  welds    and  materials  is  in accordance with Article 11E-5000 of Section III of the ASME Code.
lK 3.8.2.6.2        Quality Control The general provisions of the overall Quality Assurance program are outlined in Chapter 17.          These are supplemented by the special provisions of the ASME Code for quality control as applicabic to Class MC Components.        The containment vessel is ASME Code stamped.      Therefore, the ASME Code requirements for quality control have priority over those outlined in Chapter 17 in case of any conflict.                                                    I 3.8.2.6.3        Special Construction Techniquen The steel containment vessel may be assembled in sections in an area of the construction yard and then lifted and moved into place with a walker crane. This procedure allows the assembly of the containment to begin when the plates forming the lower hemisphere are delivered to the site.              In this manner the containment assembly can proceed on a parallel path with the construction of the concrete subsphere region. The following O
Amendment K 3.8-8                October 30, 1992
 
CESSARH L a options are two of soveral techniques that can be employed for placing                      the  concrete        for    the        dish    podestal          supporting        the containment:
A.              The concreto dish except for the top four inches can be placed.          The containment vossol then would bo placed on the support heads and pressuro grouted.
B.            The containment vessel can bo placed on the support heads and used as formwork for placing the concreto.
With either option caro must be taken to provent the floating of the containment. This is accomplished by filling the containment with water as the grout /concr9to is placed.                                                After the lower containment section has boon placed, the construction of the intorlor structuro can begin.                                      The assembly of the containment sections will continuo in the yard.                                      As the work on the interior structure continues additional sections of the containment can be                                                      I lifted into placo.                        Af ter the major equipment is placed in the interior structure the top section of the containment vessel can be set.                      The completed containment wiH then be used to support the scaffolding for the concreto domo of the shiold building.
3.8.2.7                          Testing and In-corvico Survoillance Roqulromonto The containment vossol, personnel airlocks and equipment hatch are inspected and testod in accordance with the ASME Boiler and Pressure Vessel Code, Section III, Subsection HE.                                                        Penetrations are pressure tested as required for Subsection NC of the ASME Code, Periodic leakage rate tests of the containment are conducted in                                                        K accordance with 10CFR50, Appendix J to verify leak tightness and integrity.                      These      tests        and          other        in-servico            inspection 11 requirements are described in Section 6.2.                                                Periodic in-service g inspections are conducted in accordance with the ASME Boiler and Prossure Vessel Code, Section XI, Subsection IWE.
3.8.3                            CONCRETE AND STRUCTURAL STEEL INTERNAL STRUCTURES 3.8.3.1                            Descr3ption of the Internal Structures
,            The            internal            structure        is        a    group    of        reinforced        concrete i
structures that enclose the reactor vessel and primary system.                                                          I The internal                      structuro provides biological shielding                                    for the containment interior.                            The internal structuro concreto base rests i
insido the lower portion of the containment vessel sphere. A description of various structures that constitute the internal l    structure ic given in the following paragraphs. The details of V(a        the internal structure are shown in Figures 1.2-2, 1.2-3, 1.2-6, 1.2-7 and 1.2-9.
Amendment-K 3.8-9                          October 30, 1992
 
CESSAR Ence O
The primary shield wall enclosos the reactor vossal and providos protection for the vossol from internal missiles.      The primary shiold wall providos biological shiolding and in designed to withstand tho temperatures and proucuros following LOCA.          In addition, the primary shield wall providos structural support for the reactor veseol. The primary shield wall is a minimum of six foot thick.
The accondary shiold wall (crano wall) providos supports for the polar crano and protects the stool containment vossol from internal missiles. In addition to providing biological chiolding for the coolant loop and equipment, the crano wall also providos btructural support for pipe supports /rentraints and platforms at various levels. The crano wall is a right cylinder with an insido diamotor of 130 foot and a height of 118 foot from its baco. The crano wall is a minimum of four foot thick.
The refueling cavity, when filled with borated water, facilitates the fuol handling operation without exceeding the acceptablo level of radiation insido the containment. The refueling cavity has the following sub-compartments:
I A. Storago aron for upper guido structuro.
B. Storage area for core support barro3.
C. Refueling canal.
The refueling canal, when filled with borated water, forms a pool above the reactor vossol.          The reactor vessel    flango  is permanontly scaled to the bottom of      the refueling canal    to provent leakago of refueling water into the reactor cavity. The fuel transfer tubo connects the refueling canal to the Spont Fuel Pool. The refueling canal is filled with borated water to a depth that limits the radiation at the surface of the water to acceptablo lovels during the period when a fuel assembly is being transferred to the Spent Puol Pool. The shield walls that form the refueling cavity are a minimum of six foot thick.
The In-containment Refueling Water Storago Tank (IRWST) provides storage of refueling water, a single sourco of water for the safety injection and containment spray pumps and a heat sink for the Safety Depressurization System.      The IRWST is dishlike in shape and utilizes the lower section of the Internal Structure an its outer boundary. The IRWST is provided with a stainless stool liner to provent leakage.      A full description of the IRWST is provided in section 6.3.2.
O Amendment I 3.8-10              December 21, 1990
 
4 I
CESSAR !!Mine-
  ,    \
The operating floor providos access for operating porconnel functions and providos biological shiolding.                              Insido the crano
.            wall, the operating floor is a reinforced concreto slab with a covered hatch that is aligned with hatches in the two lower floors.                  Outsido the crano wall, tho oporating floor consists of 4
stool grating. Thoro are also reinforced concreto floor slabs at olevation 115+6 and clovation 91+9 that connoct the crano wall and the primary shield wall.
Tho support systems for the roactor vessel, steam generators, reactor coolant aumps and primary loop piping are complotoly j            described in Sectnon 5.4.14.
The locations of the missilo shield, hatch covers, and other removable structures are shown in Figures 1.2-2, 1.2-3, 1.2-6, 1.2-7 and 1,2-9.                      The removablo slabs and hatch covers are provided. with                    suitablo    tiedown devices to climinato any
,            possibility of those items becoming missilos in caso of a seismic
]            ovont or other loading conditions.                                                                        ,
1                                                                                                                        ,
,            3.8.3.2                        Apnlicablo Codon, Standards,_and Specifications 1
Category I structures are designed in accordance with the codos and critoria listed in Table 3.8-4.                                                                  I i
3.0.3.3                        Loads _and Loading Combinations                                            i The                  loads  and  loading  combinations          used for  the      internal structures are shown in Table 3.8-5.
The internal structures are designed for the following loads:
A.                  Dead load 4
B.                  Equipment operating loads and other live loads C.                  Pipo reactions D.                  Seismic (See Section 3.7 for noismic critoria)
E.                  Internal missiles    (The internal structure is designed - to withstand internal missiles as defined in Section 3.5.)
F.                  Pipo rupture jet impingement G.                  Differential pressures betwoon the reactor vossel cavity, pressurizer    enclosure    or    In-containment      Refueling          Water i                                  Storago Tank and the remainder of _ the containment froo
,                                  Volume.
t Amendment I 3.8-11                    December 21, 1990
              . , .-... -.- - - - _ .                        - . - .      --,                  . -.        --- .  ~.-
 
CESSAR TQcua O
3.8.3.4        Donign and Analynin Proceduron The internal structuro in designed for the loads and load combinations specified in Section 3.8.3.3. The completo internal structuro    (and    supporting              substructure)      is  modolod  with throo-dimensional solid, plato or shell and beam finito olomonts using AliSYS or another suitablo computer code.                    The forces and moments resulting from the applied static and dynamic loads are used to design the walls, slabs, beams and columns which make up the Internal Structuro. The design is performed using either ACI 349-85 (Reference 3) or AliSI/AISC 11690-1984 (Roferenco 4) as appropriato.
3.8.3.5        Structurni Acceptanco_.Critoria  _
The structural acceptanco critoria for the Internal Structures is outlined in Section 3.8.4.5.
3.8.3.6        Materiala,_ Quality Control, and Special _
Conntruction Techniquen The    materialc,    quality    control,            and    special  construction techniques for the concreto internal structures are outlined in Section 3.8.4.6.
3.8.3.7        Tooting and In-norvico surveillance Requiremonta Testing and in-servico survol11anco requirements are outlined in Section 3.8.4.7.
3.8.4        OTilER CATEGORY I STRUCTURES 3.8.4.1        Doncription of the Structuroc 3.8.4.1.1        Containment Shlold Building The containment shield building                    is    a  reinforced  concreto structuro composed of a right cylinder with a hemisphorical domo.
The containment shield building shares a common foundation base mat with the nuclear system annox.                        The containment shield building houses the stool containment vossol and safety-related equipment, and is designed to provide biological shielding as well as external micsilo protection for the stool containment shell and safety-related equipment.
8 Amendment I 3.8-12                      December 21, 1990
 
CESSAR O L mu The containment shield building has an inner radius of 105 feet,lI a cylinder thickness of 4 feet up to elevation 146+0.                                                  Above elevation 146+0 the shield building thickness is 3 feet including                                              K the dome area. The height of the containment shield building is approximately    215  feet.                                The            structural  outline    of    the containment shield building is shown on Figures                                          1. 2-2 and  1. 2-3.
An annular space is provided between the containment vessel and                                                I containment shield building above elevation 91+9 for structural separation and access to penetrations for testing and inspection.
The shield building and the nuclear annex are connected to form a g monolithic structure.
The reactor building lower volume is that portion of the reactor building which is below clovation 91+9 and external to the containment vessel.      The reactor building lower volume houses auxiliary  safety-related                equipment.                            This  area    below the spherical containment allows efficient use of space for locating safety -equipment    adjacent                                      to  the  containment    vessel    and climinating excessive piping while allowing maximum access to the containment for locating penetrations.
3.8.4.1.2        Nuclear System Annex I
The nuclear system annox, as discussed here, includes the Control
\    Building, Diesel Building,                      Fuel Building, and Main - Steam Lino Valychouse. Expansion and contraction joints are used to segment the different areas of the nuclear system annex for structural purposes. Expansion and contraction joints are also used to isolate these areas from adjacent buildings.
The nuclear system. annex                    is a reinforced concrete- structure composed of rectangular walls, columns, beams, and floor slabs.
The nuclear system annex sharea a common foundation base mat with and is monolithically connected to the containment building.
shield lK In addition to the structural components, there are components    designed    to                provide. biological                            shielding    and protection against tornado and turbine missiles.                                                Structural components, as well as members serving as shielding components, vary in thickness from approximately one foot to five foot.
Details of the nuclear system annex are shown in Figures 1.2-2 through 1.2-10.
7 3.8.4.1.3        Station Service Water System Structure There  is a  Station Service Water System structure which                                                is Category I; however, it is entirely site-specific.
3.8.4.2        Applicable Codes, Standards, and Specifications
~h\  Category I structures are designed in accordance with the codes and criteria shown in Table 3.8-4.
Amendment K 3.8-13                        October 30, 1992
 
CESSARM5Gnc-                                                                  ,
O I 3.8.4.3        Ioads and loading Combinations                                l l
The Category I structures are designed to maintain their function for the following loadings:
A. Dead Loads The dead loads include all sustained loads during and after construction.
B. Operating Loads operating      loads  are  those  loads    associated  with  the operation of the plant.
C. Design Basis Accident Loads The Decign Basis Accident Loads arc those associated with the pressure increase in the annulus due to a temperature rise as    a    result of    the    energy release insido the containment vessel during a loss-of-coolant accident.
D. Wind Loads The wind load is based upon ANSI A58.1-1982 (Reference 6)          I and ASCE Papers 3269 and 4933 (References 7 and 8) using 130 mph as the fastest mile of wind for a 100 year recurrence period as defined in Section 3.3.1.
The normal and tornado wind loads considered in the design of  the containment shield building are nonaxisymmetric loads. The wind loads are analyzed by approximating the wind distribution on the containment chield building as defined in ASCE Paper 4933 by a Fourier Series.            The wind distribution curves used in the design are given in Section 3.3.1.        Individual    harmonics are analyzed and combined to produce the force and moment resultants for the total series.
The wind loads on the Category I structures other than the shiold building are analyzed using the methods defined in ASCE Paper 3269.
E. Tornado Loadings The tornado loadings are described in Section 3.3.2.
O Amendment I 3.8-14                December 21, 1990
 
CESSAR E!%ncueu o
: 14. Regulatory Guido 1.61, " Damping Valves for Seismic Design of Nuclear Power Plants".
: 15. Regulatory Guido 1.92,    " Combining Modal Responses    and Spatial components in Soismic Responno Analysis".
: 16. Code of Federal Regulations, Title 10, Part 50.
: 17. Regulatory Guido 1.84, Donign and Fabrication Codo Case Acceptability ASME Section III Division 1.                    K O
O l
l l
l l
l
  /  \
  'x.-
Arnendment K 3.8-23                October 30, 1992
 
CESSAR E!!Gncui:n x
TABLE 3.8-2 (Shoot 1 of 2)
LOADING COMBINATIONS FOR STEEL CONTAINMENT I
The containment vessel may be subject to the combined effect of two or more of the design loadings listed in Tablo 3.8-1.                        The stresses computed by analysis for each design loading shall be combined in the following manner:
A. Testing Condition:
This includes the testing condition of containment to verify its leak tight integrity.                                                      [g D+L+Pt+Tt B. Design Conditions:
These includo all design loadings to which the contairmont vessel might be subjected during the expected life of the plant D+L+T              a
                                              *N a
                                                    +P a C. Service Conditions:
The  loads  corresponding                  to  the  service limits  may  be combined by -their actual time history of occurrence while considering their dynamic effect upon the structure.                              I Level A Service Limits D+L+T                    +R    +P D+L+T                    +R    +P Level B Service Limits D  + L + T" ++RR" ++PP" ++EE D+L+T                  g    o      o Level C Service Limits:
D  + L + T" ++RR" +
D+L+T                          +P P" ++ E' E'
g    g      g (7
.v)
Amendment K October 30, 1992
 
C E S S A R E! L"icu cu O
TABLE 3.8-2 (Cont'd)
(Sheet 2 of 2)
IDADING COMBINATIONS FOR STEEL CONTAINMENT Level D Service Limits:
D+L+T                      a
                                              +R a +E a +Y      +
j+
* r        m D. Post-LOCA Conditions:
D+L+Pg+E E. Construction Conditions:                                                            I D+C F. Stability Considerations:
The following combinations are considered for stability with the containment subject to external pressure.
D+L+T                                    +E D+L+T                    g
                                              + R"o ++ PP + E'
                                              +R        o These combinations are in accordance with the applicable load combinations in Section 3.8.2 of the NRC Standard Review Plan.              The load combinations also meet the Code Requirements of Subsection NE, Section III, Division 1, of the ASME Code. The Service Limits are defined in the ASME Code.
O Amendment I December 21, 1990
 
CESSARHiMe-O                                                        TABLE 3.8-5 (Cont'd)
(Sheet 3 of 10)
LOAD COMBINATIONS FOR CATECORY I STRUCTURES                                                        ,
: 3.        Extreme Environmental Loads Extreme environmental loads are those which are credible but are highly improbable.                  They include:
E'        ---    Loads generated by the Safe Shutdown Earthquake W          ---    Loads generated by the Design Basis Tornado specified for t                                  They include loads due. to the tornado wind the plant.
pressure          (W  ,  loads    due      to      the tornado-created di f ferential ,) pressures(W ),              and      loads due to the tornado-generated missiles            ,)
The combined effect of W, W, and W is determined in a conservative manner for e$ch harticular* structure or portion O                      thereof, as applicable, by using one or more of the following combinations as appropriate:
1 (i)            Wt*N w (ii)          Wt-W p (iii) Wt            W, (iv)          Wg - W, + 0.5 W p (v)          Wt - W, + W, (vi)          Wt"Nw + 0.5 Wp+Wm
: 4.        Abnormal Loads Abnormal loads are those loads generated by a postulated high energy pipe break accident within a building and/or compartment thereof.
Included in this category are the following:
P a
                                            ---    Pressure equivalent static load within                          or across    a compartment and/or building, generated by the postulated
        - .                                        break, and including an appropriate dynamic load factor to account for the dynamic nature of the load Amendment I l
December 21, 1990
_ ._ __    - . _ _ _ _ . , -                -- , . _                  _        . . _ . _                ~ . _ - _    . , _ . _ - .
 
CESSAR E51inem 1ABLE 3.8-5 (Cont'd)
(Sheet 4 of 10)
LOAD COMBINATIONS FOR CATECORY I STRUCTURES T*
Thermal loads under thermal conditions generated by the    1 postulated break and including T o R
8 Pipe reactions under thermal conditions generated by the postulated break and including R g Y
r Equivalent static load on the structure generated by the reaction of the broken high-energy pipe during the lx postulated break, and including an appropriate dynamic load factor to account for the dynamic nature of the load Y
3 Jet impingement equivalent static load on a structure aenerated by the postulated break, and including an appropriate dynamic load factor to account for the dynamic nature of the load Y"
Missile impact equivalent static load on a structure generated by or during the postulated break, such as pipe whipping, and including an appropriate dynamic load factor to account for the dynamic nature of the load in determining an appropriate equivalent static load for Yr, Yj, and Ym,  el astic-pl astic behavior may be assumed with appropriate ductility ratios as long as excessive deflections will not result in    I loss of function of any safety related system.
: 5. Other Definitions S    ---
For structural steel, S is the required section strength based on the elastic design methods and the allowable stresses defined in ANSI /AISC N690-1984 -
U    ---
For concrete    structures,  U  is the section strength required to resist design loads based on the ultimate strength design method described in ACI 349-85 Y
          --- For structural steel, Y is the section strength required to resist design loads based on plastic design methorts described in ANSI /AISC N690-1984 O
Amendment K October 30, 1992
 
CESSAR 2nfinemu o
'Q                                                      TABLE 3.8-5 (Cont'd)
(Sheet 5 of 10)
LOAD COMBINATIONS FOR CATEGORY I STRUCTURES II.          Load Combinations and Acceptance Criteria for Category                            1 Concrete j                            _S_tructures The following set of load combinations and allowable design limits is used for all Category I concrete structures:
: 1. Service load Conditions
!                                Service- Load Conditions, represent Normal, Severe Environmental and Normal / Severe Environmental loads.
The Ultimate Strength Design method is used with the following load combinations:
: 1)    U = 1.4 D + 1.7 L.
: 2)    - V = 1.4 D + 1.7 L + 1.9 E
-(V 3                            3)    U - 1.4 D + 1.7 L + 1.7 W 1
:                                  If thermal stresses due to T              0 are present, the following combinations are also.satisfie8: and                    R
: 4)    U = (0.75) (1.4 D + 1.7 L + 1.7 To + 1.7 Rg )
I
: 5)    U = (0.75) (1.4 D + 1.7 L + 1,9 E + 1.7 To + 1.7 Rg) j                                  6)    U = (0.75).(1.4 0 + 1.7 L.+ 1.7..W + 1.7 To + 1.7 Rg )
Both cases of L having its full value or. being completely. absent are checked.
In addition the-following combinations are considered:
1
: 7)    U = 1.2 D + 1.9 E
: 8)    U.= 1.2 0 + 1.7 W Where soil and/or hydrostatic pressures.are present, in addition to
,_                                  all the above combinations where' they have been included 'in L and D, respectively, the requirements of ACI-349-85 are also satisfied.
    ,O
(]-
Amendment I October 21,'1990 e      , + - - , , , ,            v                              .--,  ,    - - - - -  , . , , , -    g      -~.
 
CESSARn%ncua TABLE 3.8-5 (Cont'd)
(Sheet 6 of 10)
LOAD COMBINATIONS FOR CATEGORY I STRUCTURES
: 2. Factored Load Conditions Factor Load Conditions represent Extreme Environmental, Abnormal, Abnormal / Severe Environmental and Abnormal / Extreme Environmental loads.                                  The Ultimate Strength Design method is used with the following load combinations:
: 1)                                U-D+L+To+Rg + E'
: 2)                                  U-D+L+To+Rg+Wt
: 3)                                  U-D+L+Ta+Ra + 1.5 P a 4)
U=D+L+Ta+Ra + 1.25 Pa + 1.0 (Yr + Y) + Ym) + 1.25 E
: 5)                                  U-0+L+Ta+Ra + 1.0 Pa + 1.0 (Yr+Yj + Y m) + 1.0 E'                  I In factored load combinations (3), (4), and (5), the maximum values of Pa , T , R ,a Y , Y , rand Y , including an appropriate dynamic load factor, aare used unless a Sime-history analysis is performed to justify otherwise.                                Factored load combinations (2), (4), and (5) are satisfied first without the tornado missile load in (2), and without Y'      r Y, and Y m in (4) and (5). When considering these loads, i
howevet, local section strength capacities may be exceeded under the effect of these concentrated loads, provided there will be no loss of function of any safety related system.
Both cases of L having its full value or being completely absent are checked.
Where any load reduces the effects of other loads, the corresponding coefficient for that load should be taken as 0.9 if ~ it can be demonstrated                                that the load        is  always  present  or  occurs simultaneously with other loads.                                    Otherwise the coefficient for the load should be taken as zero.
Where the structural effects of differential settlement, creep, or shrinkage may be significant, they should be included with the dead 1cac, D, as applicable.
Amendment I October 21, 1990
 
CESSAR i!nincim,.
O                                  1ABLE 3.8-5 (Cont'd)
(Sheet 7 of 10)
LOAD COMBINATIONS FOR CATEGORY I STRUCTURES 111. Load Combinations and Acceptance Criteria for Category I Steel Structures The following set of load combinations and allowable design limits is used for all Category I steel structures:
: 1. Service Load Conditions Either the~ elastic working stress' design methods or the plastic design methods of ANSI /AISC N690-1984 may be used,
: a. If the elastic working stress design methods are used:
: 1)    S-D+L
: 2)    S - D + L + E.
: 3)  .S=D+L+W                                                                                          I l                      If thermal stresses due to T and R are present, the following combinations are also satisfied:
: 4)    1. 5 S - D + L + To+R o
: 5)  -1.5 S - D-+ L--+ To+Ro+E
: 6)    1.5 S = D + L + To + R g-+ W r
l                      Both cases of L having its full value 'or being completely absent are checked.
: b. If plastic design methods are used:
: 1)  -Y = 1.7 0 + 1.7 L
: 2)    Y - 1.7 D + 1.7 L + 1.7 E
: 3)    Y = 1.7 0_+ 1.7 L + 1.7 W-l l  %
l Amendment I-December 21, 1990 E                                                                . _ . . . . - . . . . _ , _ _ _ . - - _ . . . _ .
 
CESSAR ML"icavitu TABLE 3.8 "i (Cont'd)
(Sheet 8 of 10)
LOAD COMBINATIONS FOR CATECORY I STRUCTURES If thermal stresses due to To and Ro are present, the following combinations are also satisfied:
: 4)    Y - 1.3(D + L + Tg+R)  g
: 5)    Y - 1.3(D +,L + E + To+R)  g
: 6)    Y - 1.3(D + L + W + To+R)  g Both cases of L having its full value or being completely absent are checked.
: 2. Factored Load Conditions The following load combinations are satisfied:
: a. If elastic working stress design methods are used:
: 1)    1.6 S - 0 + L + T o +Rg + E'
: 2)    1.6 S - D + L + To+R g +W t
: 3)    1.6 S = D + L + Ta+Ra+P a 4) 1.6 S* = D + L + Ta+Ra+Pa + 1.0 (Y3+Yr + Ym) + 1.0 E 5) 1.7 S* = D + L + aT +Na+Pa + 1.0 (Y) + Yr + Ym ) + 1.0 E' For these two combinations, (4) and (5), in computing the required section strength, S, the plastic section modulus of steel shapes may be used.
: b. If plastic design methods are used:
: 1)  _
Y* - 0 + L + Tg4 Rg + E'
: 2)    Yv    D+L+Tg+Rg+Wg
: 3)    Y* - D + L + Ta+Ra + 1.5 P a 4)
Y* = 0 + L + Ta +Ra + 1.25 Pa + 1.0 (Y) + Yr + Ym) + 1.25 E
: 5)    Y* = D + L + Ta+Ra + 1.0 Pa + 1.0 (Y) + Yr + Y,) + 1.0 E' Amendment I December 21, 1990
 
CESSAR Hiho,.
O                      MECHANICAL SYSTEMS AND COMPONENTS 3.9 3.9.1          SPECIAL TOPICS FOR MECilANICAL COMPONENTS 3.9.1.1          Design Transients The following information identifies the_ transients used in the design and fatigue analysis of ASME Code Class 1 components, reactor internals and component supports.                            Cyclic data for the design of ASME Code Class-2 and 3 components, as applicable, are discussed in Section 3.9.3.              All transients are classified with respect    to    the        component- operating                condition        categories identified as Level A, B, and D and testing as defined in the lE ASME Code, Section III. The transients specified below represent conservative estimates for design purposes only and do not purport to be accurate representations of actual transients, or necessarily reflect actual operating procedures; nevertheless, all envisaged actual transients are accounted for, and the number and severity of the design transients exceeds those which may be anticipated during the life of the plant.
Pressure test,      and emergency upset,  temperature        - fluctuations and  faulted transients  resulting from        the normal, are computed  by lK O          means of computer simulations of the reactor coolant system, pressurizer,      and        steam generators.                Design transients are detailed in the equipment specifications. The component designer-then uses the specification' curves as the basis for ' design and fatigue analysis.
In support of the - design of each Code Class 1 component, a fatigue analysis of the combined effects of mechanical and thermal loads is performed in accordance with the requirements of-Section III of the ASME Code. The purpose-of the analysis-is-to demonstrate that fatigue failure will not occur when the components are subjected to typical dynamic events which may occur at the power plant.
The fatigue analysis is based upon-a series of dynamic . events depicted in the respective component specifications.                              Associated with each dynamic- event- is. - a mechanical,                              thermal-hydraulic transient- presentation            along          with    an      assumed -number- of occurrences-for the event.            The presentation is generally' simple and straightforward, since it is meant. to envelope' the actual plant response.          The intent is~to present material for purpos'es of design.
                                                                ~
Similarly,.the characterization of a given dynamic event with a specific name is unimportant.                    Any plant dynamic occurrence with consequences which fall within the envelopes associated _with one O          of these dynamic events is by definition represented by that Amendment K 3.9-1                              October 30, 1992'
  , _ . _ _ _ . _ _ _    .      . , _ . ~            _ _ . . ,        __ _.__._._.._.__._-,;_                . . . _
 
CESSAR E!L"lCATCN O
dynamic    event. The  fundamental    concept ensures that        the lK consequences ~ of    the normal and upset conditions which are expected to occur in the power plant are enveloped by one or more of the dynamic event portrayals in the component specifications.
The number of occurrences selected for each dynamic event is conservative, so that in the aggregate, a 60-year useful life                E is provided by this design process.
Design  load    combinations    for  ASME Code Class 1, 2, and 3 components    are  given    in    Section    3.9.3.      Design loading combinations for Code Class CS internals structures are presented            g in Section 3.9.5.2.
The principal design bases of the reactor coolant system (RCS) and reactor internals structures are given in Sections 5.2 and 3.9.5, respectively.
Table 3.9-1 summarizes the transients used in the stress analysis IC of primary system Code Class 1 and Class CS components. ThelK basis  for  the  transients    is  indicated,    and  the  number  of occurrences specified provides a system / component design that lK will not be limited by expected cyclic operation over the life of the plant. The number of occurrences is generally based on a once/ day,    once/ week,    once/ month,    and    so    forth,    type  of evaluation.      It is expected      that the      frequency of cyclic transients will be greater than design at the beginning of plant life and significantly less than design after the first year of operation with cumulative occurrences less than design values.
System integrity is further assured by using conservative methods of predicting the range of pressure and temperature for the transients. The list of transients includes startup and shutdown lK operations, inservice hydrostatic tests, emergency and recovery operations,      switching  operations,    and  seismic    events. The lK applicable operating condition category as designated by the ASME Code Section III is also indicated in each case.
The    transients    listed    include    allowance    for    less    severe transients, such as rod withdrawal incident or boron dilution incident. The number of transients listed are believed to be far in excess of any number or severity that can be anticipated to occur during the life of the facility.
Pressure and thermal stress variations associated with the design transients are considered in the design of supports, valves, and piping within the reactor coolant pressure boundary (RCPB).
In addition to the design transients listed above and included in the fatigue analysis, the loadings produced by the OBE and SSE are also applied in the design of components                                  E and support structures of the RCS. The OBE and SSE are classified as upset Amendment K 3.9-2                  October 30, 1992
 
CESSARn h mu n
U and faulted condition events respectively.- For the number of cycles pertaining to the OBE, refer to Section- 3.7.3.2.                                                                  Design  g load combinations for ASME Class 1, 2 and 3 components are given in Section 3.9.3.
3.9.1.2          Computer Programs Used in Stress Analyses 3.9.1.2.1          Reactor Coolant System The following paragraphs provide a summary of the applicable computer' programs used-in the structuralJanalyses for ASME Code Class 1 systems, components,-and supports in the CESSAR-DC scope.
The summaries include individual descriptions and applicability data. The computer - codes employed in these analyses have been verified in conformance with design control methods, consistent with the quality assurance program described in Chapter _17.
3.9.1.2.1.1        MDC STRUDL                                                                                                    E The MDC_STRUDL computer. program provides the ability to specify                                                                                ;
characteristics of framed structure and three-dimensional solid structure problems, perform static and dynamic analyses,                                                                    and reduce and combine results.
O. Analytic procedures in the pertinent portions of MDC STRUDL apply lE to    framed    structures.      Framed              structures                                              are    two-    or three-dimensional structures composed of slender,' linear members that can be represented by properties along a centroidal axis.
Such a structure is- modeled with joints, including support joints, and members connecting the . - j oints      -
A variety : of force conditions on members or joints - can be specified.                                                                The member stiffness matrix is computed from- beam theory.                                                                    The total stiffness matrix of the- modeled structures is obtained by appropriately-combining-the individual member ~ stiffness.
The stiffness . analysis method 'of _ __ solution                                                          treats the    joint displacements as unknowns.- The- solution-                                                          procedure          provides results    for  joints  and; members.                -Joint                                              results- . include displacements and - reactions and ' joint -_ loads as calculated from member end forces.      Member results are member end forces and distortions. The _ assumptions          governing                                                the      beam -element representation of the structure are as follows: linear, elastic, homogeneous, and -isotopic behavior, small deformation, plane sections remain plane, and; no coupling of- axial, torque, and bending.
The-program is used to define the-dynamic characteristics of.the structural _models used .in the ' dynamic seismic analyses of the reactor ' coolant system components. - The= natural frequencies and mode    shapes of the        structural _models                                                        and the ' influence Amendment K 3.9-3                                                                October 30, 1992
 
CESSAR8!Lbeu Ol coefficients which relate member end forces and moments and                  i support reactions to unit displacements are calculated.              The    I influence    coefficients    are    calculated  for    each    dynamic    1 degree-of-freedom of each mass point and - for each degree-of-freedom of each support point.      The ANSYS computer code (Section 3.9.1.2.1.14)  is also used as an alternate to MDC-STRUDL for          K defining the    dynamic characteristics of the reactor coolant system and seismically analyzing it.
The program can perform either time-history analysis or spectrum analysis using the modal super position technique.              Support reactions, member -loads and joint acceleration are computed by back substituting from the modal coordinates to physical                E coordinates through the applicable transformation matrice and then combining modal contributions from each individual mode included in the response analysis.
MDC STRUDL is a program which is in the public domain and has had sufficient use to justify its applicability and validity.
Extensive verification of the C-E version has-been performed to supplement the public documentation. The version of the program in  use at C-E was developed        by the McDonnell      Automation Company / Engineering Computer  International and is run on the IBM computer system. MDC STRUDL is described in more detail in f Reference 1.
3.9.1.2.1.2        C-E MARC The C-E MARC program is a general purpose nonlinear finite element program with structural and heat transfer capabilities.
It is described in detail in Reference 2.
C-E MARC is used for stress analysis of regions of vessels, piping or supports which may deform plastically under prescribed loadings. It is also used for clastic analyses of complex geometries where the graphics capability enables a well defined solution. The thermal capabilities of C-E MARC are used for complex geometries where simplification of input and graphical output are preferred.
C-E MARC is the C-E modified version of the MARC program, whichlE is in the public domain and has had sufficient use to justify its applicability and validity.      Extensive verification of the C-E version    has    been    performed    to  supplement    the    public documentation.
3.9.1.2.1.3        JEST JEST is a proprietary computer code developed for evaluation of nuclear piping systems with hypothesized          flaws. The code Amendment K 3.9-4                October 30, 1992
 
CESSAREn h o performs      fracture      mechanics related calculations such as J-Integral parameter and crtck mouth opening displacements used in leak-before-break and stability evaluations.                            Input to the code consists of the geometry, material properties, the flaw size                                e and the loading conditions.                The code uses elastic-plastic estimation scheme type solutions developed by Electric Power Research Institute (EPRI) and General Electric (GE) .                                Several EPRI/GE analytical solutions are available in the code.                                  The program is used to automate calculations that would have been performed manually. .The verification of JEST was performed by K
making direct comparison with hand calculations and with other direct solutions.
i        3.9.1.2.1.4          SUPERPIPE SUPERPIPE is a linear finito element program for the static and dynamic analysis of piping systems.                These systems may include-such components as bends, elbows, tees, reducers,_ socket or butt welds, flexible couplings, and flanges, with the appropriate flexibility factors and stress indicos accounted for.                              Support' types may include rigid, spring, constant-force, snubber, anchor, or user-specified, and may have any desired orientation, g
(n
    \
      '  Analyses    performed include thermal,              weight, frequency and mode shape, response spectrum, and time-history.
applied      load, Following the static and dynamic analysis phase, the program performs a complete ASME B&PV Code, Section III Class 1 stress check, combining analysis results in any manner specified by the i'
user to create the appropriate loading cases applicable for each of the ASME code stress equations._ The user also supplies the number of occurrences of each steady-state and transient load state, with which the program performs a complete fatigue damage calculation.
SUPERPIPE, which is in the public domain,_was developed by ABB-Impell and is described in' detail in' Reference 20. SUPERPIPE was                              E verified in accordance with ABB-Impell's Qualty Assurance Manual.
3.9.1.2.1.5-          DFORCE E
The computer code program DFORCE calculates the internal forces and moments at designated locations in a piecewise linear structural system, at each time step, due to the time history of relative displacements of the system mass points and boundary points. The program also selects the maximum value of each component of force or moment at each designated' location, and the times at which they occur,            over the entire duration of                        the specified dynamic event, t
V Amendment K 3.9-5                              October 30, 1992-
 
CESSAR E!Er"icarian O
The program forms appropriate linear combinations of the relative displacements at each time step and performs a complete loads analysis of the deformed shape of the structure at each time stop over the entire duration of the specified dynamic event.
The program is used to calculate the time dependent reactions in structural models subjected to dynamic excitation which are analyzed by the CEDAGS program.
To demonstrate the validity of the DFORCE program, results for test cases were obtained and shown to be substantially identical to those obtained for an equivalent analysis using the public          E domain program MDC STRUDL.
3.9.1.2.1.6        SC LINK SG  LINK determines steam generator and snubber stroke and building interface boundaries for the steam generator snubber lever system. The program verifies the kinematics of the snubber lever linkage systems based on input motions of the steam generator lug and detailed snubber lever system geometry.
3.9.1.2.1.7        CEDAGG The computer program CEDAGS      (C-E Dynamic Analysis of Gapped Structure) performs a piccowise linear direct integration solution of    the  coupled equations of    motion of    a  three dimensional structure which may have clearances or gaps between the structure and any of its supports or restraints (boundary gaps) or between points within the structure (internal gaps).
The contacted boundary points may be oriented in any selected direction and may respond rigidly, clastically, or plastically.
The structure may be subjected to applied dynamic loads or boundary motions.
The CEDAGS program is used to calculate the dynamic rasponse-of piecewise linear structural systems subjected to time varying load forcing functions resulting from postulated pipe break            E conditions.
To demonstrate the applicability and validity of the CEDAGS program, the solutions to an extensive series of test problems lK were obtained and shown to be substantially identical to results obtained by hand calculations or alternate computer solutions.
3.9.1.2.1.8        CE177, Itead Penetration Reinforcement Program    lE This program calculates reinforcement available and reinforcement required for penetrations in hemispherical heads.      The technique described in paragraph NB-3332 of the ASME Code, Section III is used.
Amendment K 3.9-6                October 30, 1992 3
 
                        - CESSAR Ennneuin i
i This              program is used to perform preliminary _- sizing and reinforcement calculations for hemispherical heads in_the reactor vessel.                      Program was verified by comparisons of program results-and hand calculated solutions of classical-problems.
3.9.1.2.1.9                                              CE102, Flange Fatiguo Program                                                                                        E l                                This program computes the redundant reactions, forces, moments, stresses, and fatigue usage factors in c reactor vessel head,                                                                                                                            ,
.                                head flange, closure studo, vessel flange, and upper vessel wall l                                for pressure and thermal loadings.                                                                    Classical shell equations are used in the interaction analysis.
This program is used to perform the fatigue analysis of the-reactor vessel closure head and vessel flange assembly.                                                                                              Program
;                                was verified by comparisons                                                                    of        program. results and ' hand-calculated solutions of classical problems.
}                                3.9.1.2.1.10                                              CE105, Nozzle Fatigue Program                                                                                      E i
This program computes the redundant- reactions forces, moments, and fatigue _ usage factors for nozzles'in cylindrical shells, i        O                      This program is used to perform the-fatigue analysis of reactor i
vessel nozzles and steam generator feedwater nozzle.- Program was I                                verified by comparisons of program results and hand-calculated j                                solutions of classical problems.
:                                3.9.1.2.1.11                                              CEC 26, Edge Coefficients Program                                                                                  E I-This code calculates the coefficients for edge' defc,rmations of t                                conical                      cylinders                        and            tapered- cylinders 'when                                suojected                  to l-r axisymmetric_ unit shears and' moments applied at the. edges.
j                                This program is _ used to perform the fatigue analysis- of - reactor _
[                                vessel wall transition.                                                          Program was verified by comparisons of a
program results and hand-calculated' solutions - of ; classical j                                oroblems.
a E
l                                3.9.1.2.1.12                                              CE124, Generalized 4 x 4:Prograni F                                This program computes the redundant- reactions, : forces, moments, i
stresses, and fatigue usage factors for ' the'' reactor. vessel- wall:                                                                                        .
i at  -
the ' transition l from a - thick to thi.nner 'section and 'at' the -
bottom.' head juncture.
e This program is used . to perform fatigue anal'ysis . of: reactor
;.                              vessel bottom head juncture.                                                          Program was verified by comparisons.-
n_
* 1
                              -of program - results and hand-calculated solutions- of classical =
problems.
(/
Amendment E h                                                                                                                      3.9-7                                        December:30,:1988 4
e,y-9  ,ryw-,  ww-+  e-9,,-  r    w  ar
                                              ~-v e - - m t w  +v  --+*+  ei-'ir--*v--,-  efC+=,--g 9a',-w-=v.-.y  r\p- v w he  e-- *'=W+-+7    e++i--ir w e f- =~      ywW5--t'* e- v-'-t'T--"
w r irw+<w-,  e w e=-
 
CESSAR HMicavi:s O
3.9.1.2.1.13          SEC 11 The SEC 11 program automates the flaw ovaluation method of ASME B&PV, Section XI, Appendix A.        This program performs the crack growth analyses and assesses the margin against critical crack          E size according to the criteria in Appendix A.        The program has been verified by direct comparison of program results and hand calculations.      The program is used for leak-before-break type analyses.
3.9.1.2.1.14          ANSYS ANSYS is a large-scale, general-purpose, finite element program for linear and nonlinear structural and thermal analysis. This program is      in  the  public  domain. Additional  descriptive information on this code is provided in Section 3.9.1.2.2.2.
This program is used for numerous applications for all components in the areas of structural, fatigue, thermal and eigenvalue analysis. Program was verified by comparisons of program results and hand-calculated solutions of classical problems.
3.9.1.2.1.15          CE301, The Structural Analysis for Partial        E Penetration Nozzles, Ileater Tubo Plug Welds, and the Water Level Boundary of the Pressurizer Shell Program This program computes various analytical parameters, primary plus secondary stresses and stress intensities, peak stresses and stress intensities, and the cyclic fatigue analysis with usage factors at cuts of interest.      This program is utilized to satisfy the requirements of Section III, of the ASME B&PV Code.
This  program is used in the fatigue analysis of partial penetration nozzles in the pressurizer and piping.        Program was verified by comparisons of program results and hand-calculated solutions of classical problems.
E 3.9.1.2.1.16          CE223, Primary Structure Interaction Program This code calculates redundant loads, stresses, and fatigue usage factors in the primary head, tubesheet, secondary shell, and stay cylinder for pressure and thermal loadings.
This program      is used  in the  fatigue analysis of the steam generator primary structure.      Program was verified by comparisons of program results and hand-calculated solutions of classical problems.
O Amendment E 3.9-8                December 30, 1988 1
 
CESSARMub a n
v 3.9.1.2.1.17          CE362, Tube-To-Tubesheet Wold Program.                                                  E This code performs a three body interaction analysis of_ the tube-to-tubesheet weld juncture.              The code calculates primary, secondary, and peak stresses and computes range of stress and fatigue usage factors.
This program is used in the fatigue aralysis of steam generator tube-to-tubesheet weld.        Program was verified .by comparisons of program results and hand-calculated solutions of classical problems.
3.9.1.2.1.18          CE206, Support Skirt Loading Program                                                    E This code calculates the stresses in the conical support skirt of the steam generator for external-loads.
This    program  is. used    in  the      structural  analysis                    of      steam generator support skirt.- Program _'was' verified by - comparisons.: of -
program    results    and  hand-calculated        solutior:s                    of--classical problems.
I-3.9.1.2.1.19          CE210, Principal Stress Program l
This code sums stresses for three load conditions and computes principal stress intensity, stress intensity range, and fatigue usage factor.
This program is used in the fatigue analysis of steam generator.
components. Program was verified by comparisons of program results and hand-calculated solutions of classical problems.
3.9.1.2.1.20          CE211,. Nozzle Load Resolution-Program                                                  E This is a special purpose code, used to calculate stresses i~n-lK nozzles produced by piping loads i n combination with . internal pressure.
This-program-is used in the f atigue analysis of steam ' generator nozzles. Program was verified by comparisons of. program results-and hand-calculated-solutions of classical-problems.
    -3.9.1.2.1.21          KINI2100 Program                                                                        E    J This  is  a- general-  purpose -finite          difference program =    This program is used for steady-state and transient heat- transfer _lK thermal analysis.                                                                                              E This-program is used in' numerous thermal relaxation = analyses for'IK g''  all_ components. -Program _was verified.' by comparisons of program- g.
results:and-hand-calculated solutions'of classical probl                                  's.
                                                                                                                        't Amendment K 3.9                                    October ~ 30,-1992 l
 
CESSAR HE"lCATION O
3.9.1.2.1.22        CEFIASil-4 A l  This is a code used to calculate transient conditions resulting lK from a flow line rupture in a water / steam flow system.            The
;  program is used to calculate steam generator internal loadings following a postulated main steam line break.
l  This program is used in a steam line break accident structural analysis. Program was verified by comparisons of program results and hand-calculated solutions of classical problems.
3.9.1.2.1.2a        CRIBE                                                E l
This is a one-dimensional,        two-phase thermal hydraulic code,lg utilizing a momentum integral model of the secondary flow.          This code was used to establish the recirculation ratio and fluid mass inventories as a function of power level.          The code is in the public domain and has had sufficient use to justify its applicability and validity. This program is used for determining IlI steam generator performance. Program was verified by comparisons of program results and hand-calculated solutions of classical problems.
3.9.1.2.1.24        SASSI l  The SASSI program is used in soil-structure interaction analyses l  and it is based on the Flexible Volume Substructuring Method.
This method is a general substructuring technique, which uses the finite element method and solves the equations of motion in the l  frequency domain using the method of complex response, l  The  SASSI  substructuring    scheme  provides  rigorous  analytical solutions in each step of the SSI problem.              In the Flexible Volume Method, the complete soil-structure system is divided into          K two substructures:      the " foundation" and the " structure".      The mass and stiffness of the " structure"            is  reduced by the l  corresponding properties of the volume of excavated soil.            The mass and stiffness of the excavated soil-are retained within the
    " foundation" model. The Jmpedance problem is solved using the
    " foundation" model,    and consists of a series of axisymmetric solutions of a layered site to applied point loads.              In the System 80+ analysis, the SASSI standard analysis methodology is modified, as discussed in Appendix 3.7B, and the solution of the SSI problem is reduced to three steps:
A. Solution of the site response problem to determine the free-field  motions    within    the  embedded  part  of  the structure.
O Amendment K 3.9-10                October 30, 1992
 
CESSAR EE#icarian B.      Solution of the impedance and scattering problem.
C.      Solution of the structural problem. .This involves forming-the complex stiffness matrices and load vector-and solving the equations of motion for the final displacements.
The version of the SASSI. program used in the soil-structure
,            interaction (SSI) analysis of the System 80+ is version 2.0, dated-June 1985.
l' To    compute                  foundation                    impedances and scattering with an axisymmetric approach, SASSI was' modified and enhanced.                                                                    Thus, two of the version 2.0 modules were modified for the System 80+
project as version 3.0, and a new module was developed as version                                                                      g
;            3.0.
2
)            The SASSI program is extensively verified and validated and documented using three different methods of verification and correlation:
i A.      Correlation                            to      results      of              problems' with              closed        form.
;                    solutions, such as site response and response of simplified structural systems.
B.      Correlation to solutions of other -well known SSI couputer codes in the industry such as CLASSI and FLUSH.
!            C.      Correlation to experimental- results, such as the Lotung j                    Large Scale Expuciment sponsored by the Electric Power i
Research                    Institute / Nuclear Regulatory Commission / Taiwan Power Company, and others, i
  .s r
i f
i Amendment K 3.9-10a                                  October:30, 1992
 
CESSARH55?iem O
3.9.1.2.2                                                              Code Class CS Internals, Puol and CEDMs E
The following computer programs are used in the static                                                                  and dynamic analyses of reactor internals, fuel, and CEDMs.
3.9.1.2.2.1                                                              MRI/STARDYNE The MRI/STARDYNE program uses the finite element method for the static and dynamic analysis of two- and three-dimensional solid structures subjected to any arbitrary static or dynamic loading or base acceleration.                                                            In addition, initial displacements and velocities may be considered.                                                              The physical structure to be analyzed is modeled with finite elements that are interconnected by nodes.                      Each element is constrained to deform in accordance with an assumed displacement field that is required to satisfy continuity across element interfaces.                                                              The displacement shapes are evaluated at nodal points. The equations relating the nodal point displacements and their associated forces are called the element stiffness relations and are a function of the element geometry and its mechanical properties. The stiffness relations for an element are developed on the basis of the theorem of minimum potential energy.                                                              Masses and external forces are assigned to the nodes.                                                            The general solution procedure of the program is to formulate the total following equations:
(K)          -
{6} = {P}                                                                          (1) v 2[m){q}                                -
[K) {q} = 0                              (2) where:
{6} = the nodal displacement vector
{P} = the applied nodal forces (m) = the mass matrix v                          = the natural frequencies
{q} = the normal modes Equation (1) applies during a static analysis which yields tne nodal                    displacements                                        and  finite  elements  internal    forces.
Equation (2) applies during an eigenvalue/ eigenvector analysis, which yields the natural frequencies and normal modes of the structural system.                                                          Using the natural frequencies and normal modes together with related mass and stiffness characteristics of the structure, appropriate equations of motion may be evaluated to determine structural response to a predescribed dynamic load.
Amendment E 3.9-10b              December 30, 1988
 
CESSAR E!L"icari:n Ch t    1 V
The finito elements used to date in C-E analyses are the elastic beam, plate and ground support spring members.              The assumptions governing      their    use    are    as  follows:      small  deformation, linear-clastic behavior, plano sections remain plane, no coupling of axial, torque and bending, geometric and elastic properties constant along length of element.
Further description is provided in Reference 4.
The  MRI/STARDYNE code is used in the                analysis  of  reactor internals. The ANSYS code (3.9.1.2.2.2)          is also used as an      K alternative to STARDYNE.          The program is used to obtain the mode shapes, frequencies and response of the internals to predescribed static and dynamic loading.              The structural components are modeled with beam and plate elements.                Ground support spring elements are used,          at times,      to represent the effects of surrounding structures.          The geometric and clastic properties of these elements are calculated such that they are dynamically equivalent to the original structures. The response analysis is then conducted using both modal response spectra and modal time history techniques.          Both methods are        compatible with the program.
O    The program is also used to perform a static finite element V    analysis of the lower            support    structure    to  determine  its structural stiffness.
MRI/STARDYNE is in the public domain and has had sufficient use to    justify      its    applicability      and    validity.      Extensive verification of the C-E version has been performed to supplement the public documentation.
3.9.1.2.2.2            ANSYS ANSYS is a general purpose nonlinear finite element program with structural and heat transfer capabilities.              It is described in Reference 5.      ANSYS is used to perform detailed stress analyses of the fuel assembly due to combined lateral and vertical dynamic loads        resulting          from      postulated        seismic      and      '
loss-of-coolant-accident conditions.              Static    finite    element analyses    of  reactor    internal    structures,    such  as  flanges, expansion compensating ring and core shroud, are performed with ANSYS stresses.
to determine vertical and lateral stiffnesses and thermal ANSYS    is  a  proprietary      code  in  the  public    domain. The developers, Swanson Analysis Systems, Incorporated have published an ANSYS verification manual with numerous examples of its usage.
  /3 fV)
Amendment K 3.9-11                  October 30, 1992
 
CESSAREBac-O 3.9.1.2.2.3        ASilSD The ASilSD program uses a finite element technique for the dynamic analysis of complex axisymmetric structures subjected to any arbitrary static or dynamic loading or base acceleration. The three-dimensional axisymmetric continuum is represented as an axisymmetric thin shell.        The axisymmetric shell is discretized as a series of frustums of cones, llamilton's variational principle is used to derive the equations of motion for these discrete structures.          This leads to a mass matrix,    stiffness matrix,      and load vectors which are all consistent with the assumed displacement field.              To minimize computer storage and execution time, the nondiagonal " consistent" mass matrix is diagonalized by addiing off-diagonal terms to the appropriate diagonal terms.      These equations of motion are solved numerically in the time by a direct step-by-step integration procedure.
The assumptions governing the axisymmetric thin shell              finite element representation of the structure are those consistent with linear    orthotropic      thin    elastic    shell  theory. Further description is provided in Reference 6.
ASilSD is used to obtain the dynamic response of the core support barrel under normal operating conditions and due to a LOCA.            An axisymmetric thin shell model of the structure is developed.          The spatial Fourier series components of the time varying normal operating hydraulic pressure or LOCA loads are applied to the modeled structure. The program yields the dynamic shell.and beam mode response of the structural system.
AStiSD has been verified by demonstration that its solutions are substantially identical to those obtained by hand calculations or from accepted experimental tests or analytical results.              The details of these comparisons may be found in References 6 and 7.
3.9.1.2.2.4        CESilOCK The  computer  program    CESl!OCK  solves    for  the  responec  of structures which can be represented by lumped-mass and spring systems and are subjected to a variety of arbitrary type loadings. This is done by tgumerically solving the dif ferential equations of motion of an n        degree of freedom system using.the Runge-Kutta-Gill    technique.      The    equations    of  motion  can represent an axially responding system or a laterally responding            4 system  (i.e.,  an axial motion,        or a coupled lateral      and  I rotational motion).      The  program  is  designed  to  handle a  large 3.9-12                                    j 1
l
 
CESSAR BnelCATION o
O number of options for describing load environments and includes such transient conditions as time-dependent forces and moments, initial displacements and rotations, and initial velocities.
Options are also available for describing steady-state loads, preloads, accelerations, gaps, nonlinear elements, hydrodynamic mass, friction, and hysteresis.
The output from the code consists of minimum and maximum values of translational and angular accelerations, forces, shears, and moments for the problem time range.              In addition, the above quantities are presented for all printout times requested.            Plots can    also    be    obtained  for    displacements,    velocities    and accelerations as desired.        Further description is provided in Reference 8.
The CESHOCK program is used to obtain the transient response of the reactor vessel internals and fuel assemblies due to LOCA and seismic loads.
Lateral    and vertical lumped-mass and spring models of the internals are formulated.        Various types of springs (linear, compression only, tension only, or nonlinear springs) are used to
,  represent the structural components.            Thus, judicious use of
/s  load-deflection characteristics enables effects of components Q)  impacting to be predicted. Transient loading appropriate to the horizontal and vertical directions is applied at mass points and a  dynamic response (displacements and internals forces) is obtained.
CESHOCK has been verified by demonstration that its solutions are substantially identical to those obtained by hand calculations or from accepted analytical results via an independent computer code. The details      of  these    comparisons  may    be  found  in References 7 and 8.
3.9.1.2.2.5          SAMMSOR/DYNASOR SAMMSOR/DYNASOR provides the ability to perform nonlinear dynamic analyses    of    shell  structures    represented    by    axisymmetric finite elements and subjected            to  arbitrarily varying load configurations.
The program employs the matrix displacement method of structural analysis,      utilizing a curved shell          element.      Geometrically nonlinear dynamic analyses can be conducted using this code.
Stiffness    and  mass  matrices  for    shells  of  revolution are generated utilizing the SAMMSOR part of this code.              This program p  accepts    a    description  of  the    structure  in    terms  of  the 3.9-13
 
CESSAR E%"lCATION O
coordinates and slopes of the nodes, and the properties of the elements joining the nodes.          Utilizing the element properties, the structural stiffness and mass matrices are generated for as many as twenty harmonics and stored on magnetic tape.                  The DYNASOR portion of the program utilizes the output tape generated by SAMMSOR as input data tor the respective analyses.
The equations of motion of the shell are solved in DYNASOR using Houbolt's numerical procedure with the nonlinear terms being moved to the right-hand side of the equilibrium equations and treated as generalized pseudo-loads.              The displacements and stress resultants can be determined for both symmetrical and asymmetrical loading conditions.          Asymmetrical dynamic buckling can be investigated using this program.                Solutions can be obtained for highly nonlinear problems utilizing as many as five circumferential      Fourier    harmonics. Further    description  is provided in References 9 and 10.
This    program      is    used  to    analyze  the  dynamic    buckling characteristic of the core support barrel during a LOCA hot-leg break. The program's nonlinear characteristics provide this capability.
A  finite element model of the CSB is formulated which is consistent with the computer program.            Taking into account the initial deviation of the structure and the shell mode which is most    likely    to    give  the  minimum critical pressure,        the time-dependent pressure load is applied to the barrel.                  The maximum displacement occurring in the barrel is obtained.
SAMMSOR/DYNASOR has        been verified by demonstration that its solutions are substantially identical to those obtained by hand calculations, accepted experimental test or analytical results, and results obtained with a similar independently written program in the public domain.        The details of these comparisons may be found in Reference 7.
3.9.1.2.2.6            MODSK MODSK is a C-E computer program which solves for the natural frequencies and mode shapes of a structural system.            The natural frequencies and mode shapes are extracted from the system of equations:
2 (K-W n  M) #n=0 where:
K      =    model stiffness matrix 3.9-14
 
CESSAR HMincun M -'    =      model mass matrix w
n
                  =      natural circular f equency-for the nth: mode 4n      =      n rmal m de shape matrix for the nth mode-.
The solution to the general eigenvalue problem is obtained using the dual Jacobi rotation method.-
The MODSK code is used in-the analyses ~of reactor internals to
  -obtain frequencies and mode shapes, and damping parameters.
The results of these_ analyses are incorporated - into - overall' reactor vessel internals models, which calculates-dynamic response due-to seismic and LOCA conditions.
The MODSK _ program was -developed - by              C-E. To - demonstrate the-                          !
validity of the MODSK program, results froml_ lateral and vertical test problems _ were obtained and shown_ to be substantially identical to those obtained from an equivalent; analysis using the public domain program ANSYS (Refer to_Section 3.9.1.2.2.2),
3.9.1.2.2.7              SAPIV-The-SAPIV computer code is a structuralDanalysis program capable-of' analyzing two and three-dimensional _ linear complex structures subjected - to any arbitrary static - and dynamic _- loading _ or base acceleration.        The ' analysis technique . is based 'on the finite element displacement method.- The structure to be analyzed can be-represented using -bars,__ beams, ~ plates,              membranes .and                            three-dimensional finite elements.
Structural stiffness and load vectors are. assembled :from the element matrices which are derived assuming various displacement functions =within - each : element _ whereas -lumped - mass matrices are used-to represent inertia characteristics tof the.. structure.                                          In the static analysis,;the assembled equationsiof equilibrium _are solved - by using ; a . linear equation solver.-              l Dynamic' analysis capabilities -include modal . analysis, modal-: superposition and direct _ integration methods' .of computing dynamic - response - and
  -response spectrum techniques.
SAPIV has been applied - to- the eigenvalue and - response spectra analyses _'of spent fuel' storage racks and111fting rig structures.
The SAPIV' code is used-in_the computation ofadynamic response of-c o n t r o l e l e m e n t -- d r i v e mechanisms under mechanical and . seismic -
loads'. Both_ modal-~ analysis and response spectrum capaDilities of the_codelare used to find the naturalffrequencies and mode shapes A
3.9-15
____.J____
                                        ~          '      "                                          '
 
CESSARE!Me-O and the dynamic loads in CEDM components. ANSYS (3.9.1.2.2.2) is    K also used as an alternative to SAPIV.
SAPIV is in the public domain and has had sufficient use to justify its applicability and validity.      Extensive verification        -
of the C-E version has been performed to supplement the public documentation.                                                              :( \
3.9.1.2.2.8        CEFLASil-4 B The CEFLASH-4B computer code (Reference 14) predicts the reactor pressure vessel pressure and flow distribution during the subcooled and saturated portion of        the blowdown period of a Loss-of-Coolant-Accident (LOCA).      The equations for conservation        (
of mass, energy and momentum along with a representation of the equation of state are solved simultaneously in a node and flow path network representation of the primary reactor coolant system.
CEFLASH-4B provides transient pressures, flow rates and densities throughout the primary system following a postulated pipe break            -
in the reactor coolant system.                                              :
The CEFLASH-4B computer code is a modified version of the CEFLASH-4A code (References 15 through 17).          The CEFLASH-4A computer code has been approved by the NRC (References 18 and 19). The capability of CEFLASH-4B to predict          experimental blowdown data is presented in Reference 14.
3.9.1.2.2.9          LOAD LOAD calculates the applied forces of the axial internals model which is contained within water control volumes using results from the CEFLASH-4B blowdown loads analysis as input. The fluid momentum equation is applied to each volume and-a resultant force is calculated. Each force is then apportioned to the various structural nodes contained within the volume. Use of the fluid momentum equation takes into -account pressure forces, fluid friction, water weight, and momentum changes within each volume.
The resultant forces are' combined with the reactor vessel motions obtained from the reactor coolant system analysis before the structural responses are determined.      The LOAD code has been verified by demonstrating that its solutions are substantially identical to those obtained from hand calculations.
3.9.1.2.3        Non-NSSS Structures and Components Computer programs used in the analysis of non-NSSS structures are discussed in Sections 3.7.1.4, 3.8.2.4 and Appendix 3.7B.              7 Amendment K 3.9-16                October 30, 1992
 
CESSAR MninCATitN 3.9.1.3                  Experimental Stress Analyses                                                                      !
Requirements for experimental ; stress analysis -have                                            not    been imposed on any equipment in the CESSAR-DC scope.
                                                                                                                                                    -1 3.9.1.4                  Considerations for the Evaluation of the Faulted Condition 3.9.1.4.1                  Seismic Category I RCS. Items The major components of the reactor coo} ant = system (RCS) are designed to withstand the forces associated with the design basis pipe breaks discussed in Section 3.6, in combination with- the                                        --
forces associated with the Safo_ Shutdown Earthquake and normal operating conditions.                    For_ structural- evaluation, the design basis pipe breaks are those breaks for which leak-before-break cannot be demonstrated.                      Since'the dynamic effects of. breaks in piping systems listed in Section 3.6.2.2.1 are eliminated by leak-before-break,                the pipe            break loads- analysis procedure considers . only those branch line pipe breaks not eliminated by leak-before-break.
See Section 3.9.3 for discussion of loading' combinations.
Analyses are performed to generate component loads and motions due to the forces associated with branch line pipe breaks.                                                The          E analyses account for the reactor vessel and supports, major connected piping and components and'the reactor internals. The results of the analyses include loads on major component supports and RCS piping loads.
The analyses performed for branch-line-breaks use MDC.STRUDL code (see Section 3.9.1.2.1.1).
The resultant component and support reactions are specified, in combination with _ the appropriate normal operating and seismic reactions,_for design verification by the methods discussed below and in Section 3.9.3.
The system or subsystem analysis used to establish, or: confirm, loads which are -specified for the design- of - components and supports is performed on an clastic basis, When.an elastic system analysis -is employed to establish ' _ the' -
loads which act on components .and supports,- elastic . stress analysis methods are also 'used in the design calculations 'to -
evaluate ~the effects of the loads on the components-and supports, h
V
                                                                                                              -Amendment E 3.9-17                              December'30, 1988
 
CESSAR HE"lCATIIN O
In particular, inelastic methods such as plastic instability and        E limit analysis methods, as defined in Section III of the ASME Code,  are not used in conjunction with an elastic system analysis. The RCS and its supports, which are analyzed      usinglK elastic methods, are shown in diagram form in Figure 3.9-1.
Inelastic methods of analysis are used in cases wherc it          is deemed desirable and appropriate to permit significant local inelastic response.      In these cases,    if any,  the system or subsystem analysis performed to establish the loads which act on components and component supports are modified to include the inelastic strain compatibility in the local regions of the components and component supports at which significant local inelastic response is permitted.
Inelastic methods defined in Section III of the ASME Code as plastic instability or limit analysis methods are not used.
3.9.1.4.1.1        Reactor Internals and CEDMs See Sections 3.7.3.14 and 3.9.2.5.
3.9.1.4.1.2        Non-Code Items The components not covered by the ASME Code but which are related to plant safety include:
A. Reactor Internal Structures (Class IS).                          lK B. Fuel.
C. Control element drive mechanisms (CEDMs).
D. Control element assemblies (CEAs).
Each of these components is designed in accordance with specific criteria to ensure their operability as it relates to safety.
The fuel assembly and control element assembly design is discussed in Section 4.2. The non-code components of the control        E element drive mechanisms        (CEDMs)  are proven by testing as described in Section 3.9.4.4.
3.9.1.4.2        Seismic Category I Non-NSSS Items The analytical method for evaluating the faulted condition ures a linear elastic model as described in Section 3.7.3. The ASME Section III allowable stress limits will be met for faulted loads,  including  the  safe    shutdown  earthquake  and  system O
Amendment K 3.9-18              October 30, 1992
 
CESSAR naamon O
v transient    loads  described    in  Section    3.9.1. Pipe    rupture restraint energy absorbing members are an exception to the use of linear clastic models.        The methods for the dynamic analysis of          K pipe whip      are given    in CESSAR-DC      Section 3.6.2.2.2.2.      For allowable stresses and design criteria, see Sections 3.6.2.3.2.4 and 3.6.2.3.2.5, respectively.
3.9.2          DYNAMIC SYSTEM ANALYSIS AND TESTING 3.9.2.1          Piping Vibrations, Thermal Expansion, and Dynamic              E Effects Safety-related piping systems are designed in accordance with thelK ASME B&PV Code, Section III.        The preoperational test nrogram for [E tha class 1, 2 and 3 piping systems simulate actual operating lK modes to demonstrate that the appurtenances comprising these(E systems meet functional design requirements and that piping vibrations are within acceptable levels.              The testing program g        '
will meet the intent of ASME OM-S/G, Part 3 standard and Part 7 guide.
3.9.2.1.1          Steady-State Vibration E
Essential systems and systems with the potential to experience s  significant vibration are monitored for steady-stato vibration.
The piping , is monitored during normal operating and - test modes E along with operating modes expected to result in the most severe lE vibration.      The piping is visually inspected and- vibrationlK movements    will be taken using portable instrumentation at locations where the vibration is judged _to be the most severe.
When necessary, the piping will be instrumented and monitored                  C remotely.
The measured piping displacements are compared - with allowable lK displacement      limits that are based on the allowable amplitudes, S a,  given below.
S    = 7 690 psi for carbon steelTwith UTS <                      2 This r$prese,nts the alternating stress intensity at 1080 gips        /in .
cycles  and is extrapolated from Figure        I-9.1  of Appendix    I  of ASME - Code,    E Section III.      S forstaglesssteelisequaltothealternating stress intensith at        10    cycles taken      from- Figure. I-9.2    of Appendix I of ASME Code,-Section III.
If the measured piping displacements exceed allowable limits,            one or more of the following actions are taken-so that the vibration lg can be qualified,                                                            a lE t]
Amendment K 3.9-19                  October-30, 1992
 
CESSARE h m O
A. Analyses    are                                              performed            to  show      that        the    measured lK displacements are acceptable.
lE B. Additional testing is performed to show that                                                                          the peak (K stresses due to the vibration are acceptable.                                                                                    [g C. The source of the excessive vibrations is eliminated.                                                                            \K D. The pipe supporting arrangement is modified to reduce the lK vibration to acceptable levels.
E 3.9.2.1.2          Transient Vibration Vibration monitoring is performed for systems expected to g experience significant transients. The piping is instrumented to                                                                          l measure the system response during the transient events.
lE The measured response is compared with analytically predicted lK values from the piping stress report.                                                              If the predicted values IE are exceeded, the measured response is shown to be acceptable byI                                                                          g additional analyses or testing; or the source of the transient is l eliminated or modified to reduce the transient loadings or l modifications to the pipe supporting arrangement will be made to reduce the system response to acceptable levels.
3.9.2.1.3            Thermal Fxpansion Safety-related                systems                                          that    are  expected            to    experience significant    thermal                                                      movements      are  monitored            for    thermal      g expansion. A preheatup walkdown is performed so that locations of  potential    thermal                                                    interferences can be identified and appropriate corrective action taken prior to heatup.                                                                              One      E complete thermal cycle, i.e., cold position to hot position to cold position, is monitored.                                                              The piping and components are visually inspected and piping displacements are monitored at predetermined locations. The measurement locations are based on                                                                              K the    locations                  of                                      snubbers,      hangers,        and    expected      largo displacements.              When necessary, the piping is instrumented and monitored remotely.
Acceptable limits of pipe displacement,                                                              based on          analytically b predicted  movements                                                      from    the    piping      stress      reports,    are      g determined prior to testing.                                                              The measured displacements are compared to the acceptance limits to determine whether the piping systems are free to expand as expected.                                                                        If    the measured          E displacements are not within the acceptance limits, then analyses are performed or corrective action is taken, as appropriate, to IK ensure that pipe stress and support and equipment allowables are not exceeded.
Amendment K 3.9-20                        October 30, 1992 a
 
1 CESSAR nui"lCATION O
3.9.2.2            Soismic Qualification of-Mechanical-Equipment This section describes the seismic qualification methods and procedures for NSSS and non-NSSS mechanical equipment which is safety related                (Seismic Category I) or non-safety related mechanical equipment whose failure can prevent -the satisfactory accomplishment of safety function (Seismic Category II).                                                                      The procedures described herein are consistent with - U. S. ' Nuclear Regulatory Guide 1.100, Rev. 02.                              Mechanical equipment which is designed to ASME Code requirements satisfy the procedures-of RG 1.100.
3.9.2.2.1                Nuclear Steam Supply System The operability of                        all        active  and passive safety-related mechanical equipment (Seismic Category I) related to the NSSS is demonstrated        by          analysis              and/or testing.                        The                  structural integrity of non-safety related mechanical equipment (Seismic Category II) is demonstrated by unalysis and/or testing.                                                                      The metheds and procedures used and the results of-tests and analyses that    confirm          implementation                  of    the                design - criteria                        for safety-related mechanical equipment,                                          including supports,                              are provided in Section 3.9.3, 3.9.4 and 3.9.5.
O 3.9.2.2.2                Non-NSSS Items K
The following dynamic analysis and testing procedures are used for Seismic Category I and II mechanical equipment and equipment supports.
3.9.2.2.2.1                    Seismic Testing and Analysis The ability of                Seismic Category I                      equipment to perform                                    its
                  -functions during-and after an earthquake is demonstrated by tests and/or analysis.              Loadings due to plant normal operation, seismic 4
and non-seismic vibrations shall be considered.                                                          Prior to SSE qualification,_            it          is  demonstrated.                that              the    equipment                  can withstand the OBE excitation without loss of                                                function. Damping.
values for equipment being qualified are .taken from Regulatory Guide 1.61 and IEEE Std. 344-1987 or from other documented test data. The selection of testing and/or analysis for a' particular piece of equipment is based- on practical considerations.                                                                    When practical, the Seismic category ; .I operations are _ activated and tested ~during-the vibratory testing. When this is not practical, these operations are simulated by a combination of tests- and analysis.
The    structural            integrity of Seismic Category II mechanical equipment    is      demonstrated- during and after an earthquake by I    N.)
Amendment K 3.9-21                                  October 30, 1992 l
_  -                -    ._        _ _ _ . - _ . . .                  ..  . . . , _ , . _ _ . _            _ ~ . . . _ _ , - .                _ - _ . _
 
CESSARn.'a m O
analysis and/or tests.                                    Loadings due to plant normal operation, seismic and non-soismic vibrations shall be considorod.                                    Prior to SSE qualification,                    it is demonstrated that the equipment can withstand          tho  OBE            excitation                without  loss  of    structural integrity.
Dynamic coupling betwoon the equipment and rotated systems is considorod. Damping valuou for equipment being qua33fied are taken from Regulatory Guido 1.61 and IEEE Std. 344-1987 or from                                      K other documented test data.
3.9.2.2.2.2              Soismic Analysis Soismic category I equipment that is largo, simplo (e.g., panels, pumps and valves), and/cr consumes large amounts of power and whose functional operability is assured by its structural integrity is qualifiod by an analysis to show that the loads, stroncos, and deflections are loss than the values which give assuranco of proper operation.                                    Analysis is also used to show that there are no natural frequencies below the frequency range of a testt facility.
3.9.2.2.2.3              Basin for Test Input Motion When equipment is qualified by test, the responso spectrum or the time history          at    the point                        of  attachment to the supporting structure is the basis for determining the test input motion.
3.9.2.2.2.4              Random Vibration Input When random vibration input is used, the actual input motion envelopes the appropriate floor input motion at the individual                                        E modos,    liowever, single frequency input, such as sino boats, is used provided one of the following conditions are mot:
A. The characteristics of the                                      required  input  motion  are dominated by one frequency.
B. The anticipated responso of                                    the equipment    is adequately represented by one modo.
C. The input has sufficient intensity and duration to excito all modos to the required magnitudo, such that the testing responso spectra will onvelope the corresponding responso spectra of the individual modes.
3.9.2.2.2.5              Input Motion The input motion is applied to the vertical and one horizontal axis simultaneously.                          Ilowever, if the equipment responso along the vertical direction is not sensitive to the vibratory motion Amendment K 3.9-22                October 30, 1992
 
CESSAR Mincarieu                                                                                                                              ,
;                                                                                                                                                                        i i
l along the horizontal direction, and                                  vico versa, then the input motion is applied to one direction at                                a time. In caso of single j                            frequency input, the timo phasing of                                  the inputs in the vertical i
and horizontal directions is such                                    that a purely rectilinear g                                          i resultant input is avoided.
I 3.9.2.2.2.6                                    Pixturo Design i
The fixture design simulates the actual service mounting and causes no extraneous dynamic coupling to the equipment.                                                                                    ;
lK 3.9.2.2.2.7                                    Equipmont Testing lE Equipment testing is on the prototypo basis.                                    Similarity between lK                                    ;
the equipment being testod and the                                      installed equipment is assured.                        This is usually done by the vendor who supplios the equipment.                                                                                                                            E 3.9.2.3                                  Dynamic System Analysis Methods for Reactor Vessel Core Support and Internal Structures 3.9.2.3.1                                    Introduction                                                                                  ?
The flow-induced vibration of the reactor internals components during normal operation can be-charactorized as a forced response                                                                          ;
to both                        datorministic            (porlodic and transient)                  and random pressure fluctuations                                  in  the  coolant.      Methods have been developed to predict' the various components of the . hydraulic forcing function and the responso of the reactor internals to such excitation.
This analytical methodology is summarized in Figure 3.9-2. The method separatos the response calculations into. two groups in accordance with -the physical nature                                      of- the        loading                    1.e.,                  '
deterministic                                or    random. Methods      for    developing                          the deterministic component of the . hydraulic forcing function are discussed                        in Section - 3. 9. 2. 3. 2,      while  those relating to the random component                                are discussed    in  Section 3.9.2.3.3.                          Whero complex flow path configurations- or- wide variations _in pressure distribution are involved, the hydraulic forcing functions are formulated using a tost-analysis combination method utilizing-data obtained from plant tests and/or scaled model tests.
The - response of the -reactor vossol core support _ and internal structures (to include _Coro support Barrel Assembly, Upper Guido Structure Assembly and Lowor_ Support Structure Ascombly) to the normal _ operating _ hydraulic loads are calculated-by finite element techniques.                                The . mathematical  models    used  in    these              response-analyses are described in Section-3.9.2.3.4.- The' methods used in-calculating the structural' _ responses are discussed in Section 3.9.2.3.5.                                                                                                                                  ,
                                                                                                                  . Amendment'K-
                                                                                        -3.9-23                    October 30,.1992
- ,,_                ~. _ _.__._. _ ._ _ ._..-..,-- .~._ _ _ _ , . _._. _                                    . _ . - . . , . - . _ . , . - . . - . _ , . _ _ _ - . _
 
CESSARHMem O
3.9.2.3.2          Periodic Forcing Function 3.9.2.3.2.1          Coro Support Barrol Assembly An analysis based on an idealized hydrodynamic model is employed to    obtain  the    relationship    betwoon roactor coolant pump pulsations    in    the  inlet  ducts    and the periodic pressure fluctuations on the coro support barrel. A detailed doucription of this model and subsequent solution are given in References 21 through 27. The model represents the annulus of coolant between the core support barrol and the reactor vessel. In deriving the governing hydrodynamic differential equation for the above model, the fluid is taken to be compressible and inviscide.        Linearized-versions of the equations of motion and continuity are used. The excitation  on    the  hydraulic model      is  harmonic with the frequencies of excitation corresponding to pump rotational speeds and blado passing frequencies.          The result of the hydraulic analysis is a system of        equations which defino the forced response,  natural    frequencies    and  natural  modes    of  the hydrodynamic model.      The forced responso equations define the spatial distributions of pressure on the core support barrel system as a function of time.
3.9.2.3.2.2          Upper Guido Structuro The dynamic force on the upper guido structure assembly is due to flow induced forces on the tube bank. The periodic components of these forcos are caused by pressure pulsations at harmonics of the pump rotor and blado passing frequencies, and vortex shedding due to crossflow over the tubes.
A serios of tests on full size tubos at reactor pressure and temperat"re indicated no evidence of periodic vortex shedding at the Reynolds Number and turbulence levels expected in the tubo bank (Reference 28). Thus, the only significant periodic forco is that due to pump pulsations.      Data from this same test series was utilized to determine the magnitude of these pulsations at the pump rotor, twice the rotor, blado passing, and twice blado passing frequencies.
3.9.2.3.2.3          Lower Support Structuro Assembly The ICI nozzles and the skowed beam supports for the ICI support plate are excited by periodic and/or random, flow induced forces.
The periodic component of this loading is due to pump related pressure fluctuations and vortex shedding due to crossflow.        High turbulence intensity caused by jetting through the flow skirt makes  it  unlikely    that  regular vortex shedding will occur (References 29 and 30). If it were assumed to occur, the maximum 3.9-24
 
CESSAR EBLmu O
V shodding frequency would be well bolow the lowest structural frequency for both the ICI support nozzles and skewed beams. The magnitudo and frequency of this periodic force are accounted for based on data in the literaturo for crossflow over both vertical (Referencon 31 and 32) and showed (Roforence 33) isolated tubos.
Derivation of pump frequency related loads is accomplished by assuming that those periodic pressuro variations are propagated undiminished through the flow skirt from the lower portion of the core barrol - reactor vessel annulus.            The magnitudo of thoso pulsations is based on a combination of analytical predictions, based on Reference 21, and data from previous procritical programs (References 23 and 24).
3.9.2.3.3      Random Forcing Function 3.9.2.3.3.1        Coro Support Darrol Assembly The random hydraulic forcing function is developed by analytical and experimental methods.        An analytical expression is developed to define the turbulent pressuro fluctuation for fully developed flow (Roforence 34).      This expression is modified, based upon the c result of scalo model testing (References 35 and 36), to account for the fact that flow in the downcomer is not fully developed.
V)
(
Based upon tests results, an expression is developed to define the spatial dependency of the turbulent prosauro fluctuations.
In addition, experimentally adjusted analytical expressions are developed to define the ponk value of the pressure spectral density associated with the turbulence and the maximum area of coherenco, in terms of the boundary layer displacement, across which the random pressure fluctuations are in phaso (References 25,  26  and 27).          The  transient      behavior of the random fluctuations during loop startup and shutdown is assumed to be identical to that of the periodic excjtations.
3.9.2.3.3.2        Upper Guido Structuro Results of the full size tubo tests (Referenco 28) showed that at normal operating conditions the shroud tubes are                  excited by upstream and wake produced turbulent buffeting (References 28, 37 l    and 38). The forcing function for this type of loading can bo represented  as        band a            limited    white  noiso    power  spoetrum (Reference 28). The magnitudo of this spectrum is computed based on data from those tests.      The resultant velocity dopondent force is combined with static drag            loads to compute the amplitudo responso and stress levels.
1 O
v 3.9-25
 
CESSAR Hecma O
3.9.2.3.3.3          Lower Support Structuro Assembly The ICI nozzles and ICI support plato support beams are both subject to turbulent buffeting by the flow skirt jets.            The outermost ICI nozzlos and beams receivo full impact of the jets before the jets decay due to fluid entrainment and the prononco of innor tube rows. The force spectrum of thoso jots is assumod to be represented as wido band white noise.          The magnitudo of this spectrum is based on data in the literature for impingement of turbulent jets (Referenco 39 and 40). This velocity dependant magnitudo is applied to cach tubo, assuming no chango in jet characteristics, between the outermost and inner tubes.            The approach velocity for each tubo is calculated from an analytical expression      based    on  experimental  data  on  the  velocity distribution in the lower portion of the reactor vessel-core barrol annulus and the flow skirt.
3.9.2.3.4          Mathematical Models A finito olomont analysis is performed on each of the reactor internals components using mathematical models.      Those models are designed to provido the most officient analysis under the most significant loading condition to which each structure is exposed.
The core support barrel assembly is modeled as a shell using the AShSD computer code (Referenco 6) (Figure 3.9-3).        The structure is fixed at the upper flange to datormino the beam modos and frequencies. The choll modos and frequencies are found by considering the upper flange fixed and the lower flango pinned.
These      analyses    include  hydrodynamic  mass  offects. All significant modo shapes and frequencios are used in combination to perform the normal operating deterministic response analysis.
A simplified finito element niodel of the barrel assembly is generated on the STARDYNE computer code (Reference 4) or ANSYS        g (Reference 5) for uso in the random responso analysis.
The control olomont shroud tubes in the upper guido structure assembly are modelod as beams supported at the ends by plato clomonts. The end platos are in turn supported by spring clomonts which represent the stiffness of additional surrounding structure. A typical model of this configuration is shown in Figuro 3.9-4. The STARDYNE computer code (Reference 4) or ANSYS    g (Reference 5) is employed to allow the same models to be utilized for modal analysis as well as dotorministic and random response analysis.
The lower support structure assembly is modeled in soveral ways.
Beam and plato elements are assembled in a comparatively coarse mesh to model the entiro Instrument Nozzlo Assembly (Figuro
: 3. 9-5) . This representation of the structure is used on STARDYNE computer code (Reference 4) or ANSYS (Reference 5) the    to  lK determine the modes, frequencios and response actions of the assembly as a system.
Amendment K 3.9-26              October 30, 1992
 
CESSAR nSi"icavi:n O
The reaction points in this model are taken at the bottom plate level of the LSS Assembly.            Typical ICI nozzles (Figure 3.9-6) and Skowed Deams (Figure 3.9-7) are modeled e. s fine mesh beam elements reacted at the support points by spring elements representing      the    surrounding      structure    flexibility. Thesu
;        component models are used on the STARDYNE computer code (Reference 4) or ANSYS (Reference 5) to provide the individual lK structural modos, frequencies and responses within the system.
The results of both individual and system analysis are combined to provide the total response.
3.9.2.3.5            Response Analysis i        3.9.2.3.5.1            Deterministic Response j        The normal mode method            (Reference 41)    is used to obtain the structural response of the reactor internals to the deterministic forcing functions developed in Section 3.9.2.3.2.              The method is applied to the appropriate finite element models described in Section 3.9.2.3.4.        Generalized masses based on modo shapes and the mass matrices from the finito element computer programs are calculated for each component's modes of vibration. Modal force
];  e    participation factors are based on_ the modo shapes and the
(    predicted periodic forcing functions are calculated for each mode and forcing function.            The generalized coordinate response for each modo is then obtained through solution of the corresponding set  of    independent    second order        single-degree of    freedom equations.      Utilizing displacement and stress modo shapes from i
the finite element computer programs, the modal responses of the reactor internals are obtained by means of the appropriate coordinate transformations.            Response to any specific forcing function is obtained through summation of the component modes for that forcing function.
3.9.2.3.5.2            Random Response The normal mode method            (Reference 41)    is used to obtain the 3
structural response of the reactor internals subjected to random forcing functions.        The random forcing functions are assumed to be of both the band limited and wide band white noise varieties as described in Section 3.9.2.3.3.              Experimental and analytical expressions are used to define the force power spectral density associated with flow related turbulence and jet impact.                  The appropriate mathematical models described in Section 3.9.2.3.4 are used in the STARDYNE computer code (Reference 4) or ANSYS g (Reference      S). These      codes    compute    the  response    RMS displacements, loads and stresses in a multi-degree-of-freedom linear elastic structural model subjected to stationary random
      \  dynamic loadings, such as those described in Section 3.9.2.3.3.
  /^Y Amendment K 3.9-27                October 30, 1992
 
CESSARinnnce O
The largest response of the Core support Barrel is expected to be in the " beam" mode. The simplified finite element model of this structure, described in Section 3.9.2.3.4, is used to compute these displacements.
The Upper Guide Structure and Lower Support Structure do not lK respond to random excitation as complete assemblies but rather experience local disturbances of individual components within the lK assemblies. The modal analyses from the finite element models of these components, (Figures 3.9-4, 3.9-5 and 3.9-7) already used for deterministic analysis, are once again utilized to determine the random responaco via the normal modo procedure.
i 3.9.2.4        Comprehensivo Vibration Assessment Program (CVAP)              ;
i In accordance with Regulatory Guide 1.20 (Reference 44), a CVAP E              '
is developed    for System 80+.      System 80+ is designated as non-prototype Category I, per Regulatory Guide 1.20, with Palo Verde Unit 1, a Combustion Engineering System 80 Reactor as the valid prototype. Palo Verde Unit 1 and System 80+ design are lK substantially the same with regard to arrangement design, sizeg        p and operating conditions.                                              l' The CVAP for System 80+ design consists of an Analysis and y'
Inspection Program. The Analysis Program consists of dynamic analyses which will be documented in an ASME Design Stress g
Report. In addition, flow loads and struciural responses for System 80+ are compared with System 80 to confirm System 80+ lK design is as non-prototype Category 1 reactors.                        gg The Inspection Program consists of a pre-hot functional and a lK post-hot functional inspection of the reactor internals.          The IE duration of the hot functional testing are established to insure IK that 10E+7 cycles of vibration will have occurred before the post-hot functional inspection.      A detailed inspection of major 3 load bearing surfaces, contact surfaces, welds, and maximum stress    locations  identified  in  the  Analysis  Program  are i performed. Photographic    documentation    is  taken    of  all lK observations made during the pre- and post-hot            functional lE inspections. A comparison is made of the structures to verify [K that no loss in structural        integrity due to flow induced vibration has occurred.                                                E The Analysis Program and Inspection Program together confirm the lK adequacy of the analysis prediction techniques and the structural      g integrity of System 80+      design according to the guidance of Regulatory Guide 1.20.
O Amendment K 3.9-28                October 30, 1992
 
CESSAR n%"icariau i
  \.
3.9.2.5          Dynamic System Analysis of the Henctor and CEDMn Under Faulted Conditions                            l' Dynamic analyses are perfocmed to determine blowdown loads and structural responses of ti.e reactor core support,        internals  g  -
structures and fuel to postulated pipe break and SSE loadings and        I to verify the adequacy of their design.
E Because of Leak-Befcre-Bre0X arguments, all nain RCS loop pipe breaks and all major prhnary branch line pipe breaks have been climinated from consideration of dynamic effects.          Internal    i blowdown loads due to breaks in small primary side pipes (6 inch        !
diameter and less are considered in the design of the reactor internals. The loads due to these small pipe breaks are combined        l with the 6SE loads by the SRSS method, and are found to represent    K  i less than a 10% increase in the SSE loads.        Stress intensities for faulted conditions are governed by reactor vessel response motions    from SSE and major secondary side branch line pipe breaks.      Dynamic analyses are performed to determine the structural response of the Class CS and internal structures to assure that the criteria of Tabic 3.9-16 is achieved for the appropriate combination of pipe break and SSE loads, i
V i
      \
Amendment K 3.9-29              October 30, 1992
 
CESSAR l'sk m O
3.9.3          ASME CODE CIASS 1, 2 AND 3 COMPONDITS, COMIONENT SUPPORTS AND CIASS CS CORE SUPIORT STRUCTURES ASME B&PV Codo Section III Class 1, 2 and 3 Piping and Compononts are designed and constructed in accordance with Section III of the ASME Boiler and Pressure Vossol Codo and Code Case (s).
In accordanco with ASME Codo, a specification is provided for piping supports which definos the jurisdictional boundary for the NF portion of the piping support.
For equipment component supports, such as those for pumps and vossols, the supports are generally furnished by the manufacturer along with the equipment.          The supports are designed and classified by the vendors and moot either ASME Subsection NF, the rules for the class of the component being furnished, or AISC, as appropriato.
Reactor coolant      loop piping and      associated components and component supports are designed and analyzed by Combustion Engincoring.      Loading    conditions,    stress    limits,    design transients, and methods of analysis for ASME Codo Class 1 reactor coolant loop piping and associated              components  and component supports are discussed in Section 3.9.3.1.                      g 3.9.3.1          Loading Combinations, Design Transients and Strons Limits The loading combinations specified for the design ASME B&PV Section III Code Class 1 components, supports, and piping are categorized as normal,        upset,  emergency and faulted.        The following specific loading combinations are specified for design:
A. The concurrent loadings associated with the Lovol-A (normal) plant conditions of dead weight, pressure and the thermal and expansion offects during startup, hot standby, power operation and normal shutdown to cold shutdown conditions.
B. The concurrent loadings associated with either the normal plant condition or the Level-B (upset) plant condition and the vibratory motion of the Operational Basis Earthquako l      (OBE) .
C. The    concurrent    loadings  associated    with    the  Lovel-C (omergency) condition.
D. _The concurrent loadings associated with the Level-A (normal) plant condition, the vibratory motion of the SSE, and the dynamic    system    loadings    associated  with    the Level-D Amendment E 3.9-30                  December 30, 1988
 
CESSAR Enfimia l
i (faulted)                  system condition (postulated pipo rupture for E
branch line breaks not eliminated by leak before break analysis).                    The SSE and pipo rupture loadings are combined                        l by the SRSS method in accordunco with the guidelines of                                          y' 1
NUREG-0484, Rev. 1, 1980 or by a more conservative method.
The specific design transients specified for design are discussed in Section 3.9.1.1.
ASME B&PV Codo Class 1, 2 and 3 piping and components of fluid systems are designed and constructed in accordanco with Section                                                      ,
III of the ASME Boiler and Pressuro _Vossel Codo. Hydrostatic                                                        >
testing is performed por Section III.                                                                              E Design pressure, temperature, and other loading conditions that provido the bases for design of fluid systems are presented- in the sections which describo the systems.
Stross analysis is performed to datormino structural adoquacy of lK                                                  '
pressure components under the operating conditions of normal, upset, omorgency or faultod, as applicable.                                                                        E Significant - discontinuition . are considorod,                              such- as nozzlos, lK flanges, etc.                                In addition to the_ design calculation required by IE the ASME B&PV Section III code, stress analysis is performed by lK methods outlined in the code appendicos or by other methods by g reference to analogous codes or other published literature.
3.9.3.1.1                                    ASME Code Class 1 Components and Supports Design transients for core support structures and ASME Code Class 1        components,                          supports and -piping- are discussed in Section 3.9.1.1.                          Loading combinations for ASME Codo Class 1 components are described in Table 3.9-2. Stress limits for ASME Codo Class 1                                                  E components, supports and piping are described in Table                                                      3.9-3.
The operating pressures of codo class 1 active valves'are limited to.the pressures taken from the applicable primary pressure-class-pressure-temperature -rating of the ASME Code, Section III, for the maximum temperature for_the applicable condition.
3.9.3.1.2                                    Core Support Structures (Class CS) and Internal                      g Structures (Class IS)
Design                    transients- for . core support structures and reactor lK internals structures are discussed in Section 3. 9.1.1. Loading combinations and stress-limits are presented in Section 3.9.5.
v Amendment K 3.9-31                    October 30, 1992-
      .        . _ . ~ . ~ . , _ _ _ _ _ _ _ . _ . _ . . . _ . - _ . . _ _ , - _                            . _ . . - . _    - - _ - , , . - _ _ . -
 
CESSAR EP.Menia O
3.9.3.1.3        ASME Codo Class 2 and 3 Components and Supporto Loading combinations applicable to Code Class 2 and 3 components and supports are described in Table 3.9-2.                System operating conditions due to the design transients defined in Table 3.9-1, as well as any other auxiliary system specific conditions, are reviewed to determine the appropriate operating parameters to be used in the design of Code Class 2 and 3 components.
The design stress limits for each of the component's loading                g' conditions are presented in Tables 3.9-5 through 3.9-9. Inelastic methods, as permitted by ASME Section III for Class 1 components, are not used for those components.                                          K 3.9.3.1.3.1        Tanks, llent Exchangers, and Filters Pressure vessels supplied for the auxiliary systems aret                    g Shutdown Cooling Heat Exchanger Safety Injection Tanks Containment Spray Heat Exchanger Containment Spray Mini-Flow Heat Exchanger Shutdown Cooling Mini-Flow Heat Exchanger Component Cooling Water System Heat Exchangers Component Cooling Water System Surge Tanks Essential Chilled Water Compression Tanks Essential Chilled Water Refrigeration Units Diesel Generator Fuel Oil Storage Tank Diesel Generator Fuel Oil Day Tank Diosol Generator Cooling Water surgo Tank Diesel Generator Starting Air Aftercoolers Diesel Generator Starting Air Filter / Dryer Units                    7 Diesel Generator Starting Air System Air Receivers Diesel Generator Lube Oil Cooler Diesel Generator Lube 011 Sump Tank Heaters Diesel Generator Intake Turbocharger Diesel Generator Exhaust Aftercooler Diesel Generator Intake and Exhaust Silencers and Air Filters Main Control Room Air Handling Units w/ Filters Main Control Room Water-cooling Coils Main Control Room Heating Coils Fuel Building Ventilation Exhaust Filter Train Reactor Building Subsphere Ventilation System Cooling Coils Reactor Building Subsphere Ventilation System Filters Annulus Ventilation System Filters Spent Fuel Pool Cooling System Heat Exchangers Station Service Water Strainers O
Amendment K 3.9-32            October 30, 1992    I
 
CESSARE h ms U(3 Vessel asnemblics, including supports, support attachment welds, and  anchor      bolts,    are capabic of withstanding specified horizontal and vertical seismic accolorations.                  The soismic accolorations are applied separately at the conter of gravity acting in each of two orthogonal horizontal directions and either vertical direction.        The stresses or reaction loads at h given point, due to the three separate analyses, are combined by the SRSS method to defino a total seismic design condition.                    Tno design allowablo nozzle forces and moments act in directions that yield the highest stress which combined with the seismic loads, as datormined above, and other concurrent loads.
For Class 2 and 3 pressure retaining parts under the concurrent loadings of      the  OBE  and normal      operation    Level-B    (upset conditions), the primary membrane str ess is less than 1.1S, and h,
the primary membrane plus bending stress is less than 1.65S.                No Lovel-C (emergency) condition that has been identified for the applicable components to more severe than the upset condition; therefore, no appropriate stress criteria are provided.                  Under the concurrent loadings of the normal operating condition and the SSE, the primary membrane stress is lens than 2.0S, and the primary membrano plus bending stress is less than 2.4S (where S =
Allowable value of ASME B&PV Code, Section III).
O C/      Vessel    components    not  subject    to  fluid    pressure,    such  as supports, attachment welds, and anchor bolts, are designed to the lK stress criteria of ASME B&PV Code, Section III for the loading conditions defined above.
In cases where the natural frequency could not be increased to avoid amplification of the floor responso of the postulated seismic input for a specific plant, the components are modeled as multi-mass systems,        and  their  modal  frequencies    and  maximum reactions are determined from the floor response spectra for the plant. The maximum damping values used are 2% for OBE and 3% for lE SSE. The design point reactions due to each modal loading arel combined as the sum of the absolute values or by root sum square of the modal reactions,          as appropriate per rccommendation of Regulatory Guide 1.92.
3.9.3.1.3.2            Valves For Class 1 valves, loading combinations are in accordance with Tablo 3.9-2.
Table 3.9-3 Stress limits are in accordance for with Note (a) of active valves an.      Table    3.9-3  for  inactive  y valves.
ASME Class 2 and 3 valves are designed by analysis to standard (q
v j
rules. Stross-limits are shown in Table 3.9-9 for active valves and in Table 3.9-8 for inactive valves.
Amendment K 3.9-32a                  October 30, 1992
 
CESSAR 8!Mincumu
!                                                                                                  O 1
THIS PAGE INTENTIONALLY BLANK i
O O
Amendment I 3.9-32b                December 21, 1990
 
I CESSARH5iem 1
3.9.3.1.3.3            Pumps Pumps suppliod for the Auxiliary Systems are:                                F.
Safety Injection (activo) (Safeguard) Codo Class 2                                  j Shutdown Cooling (activo) (Safeguard) Code Class 2                                  l Containment Spray (activo) (Safoguard) Codo Class 2                                  ;
Component Cooling Water System Pumps (activo) Codo Class 3 Station Servico Water System Pumps (activo) Code Class 3 Essential Chilled Water Circulation Pumps (activo) Code Class 3 Diosol Generator Fuel Oil Rocirculation Pump (activo) Codo Class 3 Diccci Generator Fuel Oil Booster Pump (activo) Code Class 3 Diosol Gonorator Cooling Water Circulation Pump (activo)
Codo Class 3                                                                    !
Diesel Generator Cooling Water Koop Warm Pump (active) Code          I class 3 Diocol Generator Starting Air System Air Compressors (activo) Codo Class 3 Diosol Generator Lubo Oil Transfer Pumps (activo) Codo Class 3 Diosol Generator Prelubo Oil Pump (activo) Codo Class 3 Reacter Building Subsphere Sump Pumps (activo) Code Class 3 Os          Diosol Generator Building Sump Pumps (active) Code Class 3 Spent Fuel Pool Cooling System Pumps (active) Code Class 3 Emergency Foodwater Pumps (active) Code Class 3 The design rules and associated design stress limits applied in the design of ASME Code Class 2 and 3 pumps are in accordance with the ASME Code,            Section III, Subsections        NC  and  ND, respectively. The results are as described heroin.                            E Stress limits for ' active pumps are shown in Table 3.9-7 and stress limits for non-activo pumps are shown in Tablo 3.9-6.
Loading combinations are in accordance with Table'3.9-2.
Pump assemblics,        including supports,    support attachment wolds, and bolts, are capable of withstanding specified horizontal and vertical soismic accolorations.            The seismic accelorations are applied separately at the contor of gravity acting in.each of two orthogonal horizontal directions and either vertical direction.
(''N                                                                                              ,
Amendment I 3.9-33                  December 21, 1990
 
CESSAR E!!Uncua O
The stresses or reaction loads at a given point, due to the three separato analysos, are combined by the SRSS method to defino a total seismic design condition.      The design allowable nozzle forces and moments act in directions that yield the highest stress when combined with the seismic loads, as determined above, and other concurrent loads.
Ic The stress critoria of the ASME Code, Section III are applied in the design of component supports to the same Code Class as the
,  pressure boundary involved within the jurisdictional boundaries defined in the code for the loading conditions defined above.
Those stool support structures which are considered to be an extension of the building structuro, but supplied with the pump assembly (i.e., bedplates), are designed to the stress critoria of the AISC Manual of Steel Construction.
In addition, the Safeguard Pump assemblies are required to be capable of withstanding the design thermal transients of Section    y'
,  3.9.1.
O O
Amendment K 3.9-34              October 30, 1992
 
CESSAR EnUncamn O
* 3.9.3.1.4        Piping and Piping Supports 3.9.3.1.4.1        ASME Code Class 1 A. Piping For ASME Code Class 1 piping, the combinations of deuign
;              loadings are categorized with respect to service lovels, identified as Lovel A, Level B, Level C, or Lovel D, as shown in Tables 3.9-10 and 3.9-11.        The design stress limits for each of the loading combinations are found in ASME B&PV Code, Section III, 11B-3 6 0 0.
B. Piping Supports For pipe supports, the design loading combinations are presentnd in Tables 3.9-11 and 3.9-14. The doulgn service stress limits for all loading service lovcis shall be consistent with ASME B&PV Section III, Subsection 11F.
3.9.3.1.4.2        ASME Codo Claco 2 and 3 n      A. Piping For ASME Code Class 2 and 3 piping the combinations of design and service loadings are categorized with respect to system service icyclo identified as Design, Level A, B, C and D as shown in Tables 3.9-12 and 3.9-13.            The design stress limits for each of the loading combinations are found in ASME B&PV Code, Section III, 11C/11D-3 600.
B. Piping Supports For    pipe  supports,      the  design  and  service  loading combinations are presented in Tables 3.9-11 and 3.9-14.        The design stress limits for all loading survice levels shall be con:11 stent with ASME Section III, subsection 11F, C. Functional Capability To address the functional capability of piping, the criteria outlined in Reference (46) is used. These critoria have lK been reviewed and accepted by the Mechanical Engineering Branch of the tiRC.
[ T L)
Amendment K l
3.9-35                October 30, 1992
 
CESSAR EnMem.s O
3.9.3.2        Pump and Valve Operability Annurance 3.9.3.2.1        Active ASME Code Clann 2 and 3 Pumps and Class 1, 2 and 3 Valven Furnished with the NSSS            E l
3.9.3.2.1.1        Operability Assurance Program Active pumps and valves are defined as pumps and valves and those            y,'
components that must perform a mechanical motion in order to shut down the plant, maintain the plant in a safe shutdown condition,                  '
or mitigate    the consequences        of  a  postulated event.        The p" operability (i.e., performance of this mechanical motion) of active components during and after exposure to design bases events is confirmed by:
A. Designing each component to ao capable of performing all safety functions during and following design bases events.
The  design    specification      includes    applicable      loading combinations, and conservativo design limits for active components.        The    specification    requires      that    the manufacturer demonstrate operability by analysis, by test,              E or by a combination of analysis and test. The results are independently reviewed by the 11SSS Supplier considering the effects of postulated failure modes on operability.
B. Analysis and/or test demonstrating the operability of design    under    the    most  severe Methods /results of operability demonstration programs eachlC postulated      loadings.
are detailed in Sections 3.9.3.2.1.2 and 3.9.3.2.1.3.
C. Inspection of each component to assure compliance of critical parameters with specifications and drawings.              This inspection confirms that specified materials and processes were used, that wall thicknesses met code requirements, and that fits and finishes met the manufacturer's requirements based on design clearance requirements.
D. Shop testing of        each    component  to    verify  "as-built" conditions,    as    defined    in  Sections      3.9.3.2.1.2    and 3.9.3.2.1.3.
E. Startup and periodic in-service testing in accordance with A3ME  Boiler and Pressure Vessel Code,              Section XI    to demonstrate that the active pumps and valves are                    in operating condition throughout the life of the plant.
NSSS active pumps are listed below with a brief description of active safety function of each.        11SSS active valves are listed in Table 3.9-4.
Amendment K 3.9-36                  October 30, 1992
 
_._____s 1
i CESSARn h mn                                                                                                      i I
I                                                                                                                                '
;                                                                                                                                i j                                  Active Components                                    Activo Safety Functior)
Safety injection pumps                              Operate at flow ratos              E to runout Shutdown cooling pumps                              oporato at design flow                    r Containment spray pumps                              Operato at design flow-          lK 3.9.3.2.1.2                        Operibility Assurance Program Results for i                                                    Active Pumps                                                        g Operability                    of the      Safety    Injection,        shutdown      Cooling and
'                containment Spray pumps under required conditions demonstrated by lK analyses of the~ assemblics and by analyses and tests of the motors.
For the safety injection, shutdown cooling.and containment spray pumps,                allowablo stresses are not .excooded, .clearancos are acceptable and -shaf t and - podestal bolt deflections do not causo stresses to exceed the normal values.
Where necessary, lumped mass models are used . with- the computer programs to determine the natural frequencies and displacements.
The modols are conservative (i.e., si.nplifications tend; to make i
them more flexible).
To verify                    aas-built" conditions the pumps are hydrostatically tested in accordance with the ASME B&pV Code, Section- III to confirm acceptability of                            structural          intogrity of          pressura
              -retaining parts,                      tested for seal                leakage, and tested for performance -and Npsil characteristics                                in .accordance with the liydraulic parameters.
Institute  Standard      to  verify.-operation          within specified The motors are. Class IE and are tested in accordance with parameters.
IEEE        Standard    112A-1978 to verify operation within.specified Additionally, IEEE Standard 323-1983, as endorsed by i
Regulatory Guido 1.89,. and IEEE Standard 344-1987-as endorsed by                                        K i
              -Regulatory Guide 1.100 Rev.-2 dated June >1988, are applicable for i
motors events.
to: assure operability -during and following design basic l
j                3.9.3.2.1.3                        Operability Assurance Program for Active Valves-                            ,
'              Safety-related active-valves'must perform their mechanical motion
              ' during: or. af ter design . basis . events.                            The - qualification program lE L
is    .in      accordance        with  '  IEEE  Standard Regulatory Guide-1.100, Rev. 2' dated June.1983, and assures that g.
344-1987      as endorsed by, these valves lwill operate during a' seismic event. Qualification tests and/or analyses are conducted for all active valves.
Amendment K 3.9-37                          . October 30; 1992 y
  . -.. -  . - _ ,                    .-a-,-.-.      . - . - , z. . .      .,_, -      .-,---a.-            - . w .... _ . -
 
CESSAR 8!$?, cati:n O
Class  1,  2 and 3 valves are designed / analyzed according to the rules of the Ast4E Boiler and Procuuro Vessel Code, Section III, Section 11B-3500, 11C-3500, and 14D-3500 respectively.
Procuromont    specifications      for    safety-related    active    valvos  h, conform to the intent of Regulatory Guide 1.148 and stipulato that the valvo vendor shall submit either detailed calculations lE and/or test data to demonstrate operability when subjected to the specification loading and stress criteria (normal through faulted conditions). The decision to accept actual or prototype test data, or analysis for operability assuranco in made during the normal design and procurement process.            The decision to test is based on:
A. Whether the component is amenable to analysis.
B. Whether proven analytical methods are available.
C. Whether applicable prototype test data is available.
If analysis or prototype test data is not sufficient, testing is conducted to qualify the component or to verify the analytical technique.
Where    appropriato,    valvo    stem    deflection    calculations    are performed to determine deflections due to short term seismic and other    applicable    loadings.      Doflections    so datormined are compared to allowable clearances.          It must be noted that seismic events are of short duration; thus, contact (if it occurs) does not demonstrate that operability is adversely affected.                Cases where contact occurs are reviewed on a case by case basic to determino acceptability.
The operability of active Code Class 1, 2 and 3 components is assured through an extensive program of design verification, qualification    testing      and    thorough    survoillance    of    the manufacturing,    assembly    and    shop testing of        each    active component. Each aspect of the design related to pressure boundary integrity and operability is either tested or verified by calculations.        Pr ocedures    for  testing  are  developed by ',
component manufacturers and reviewed and approved before the tests are conducted.        The design analyses of the component take into consideration environmental conditions including loadings developed from soismic, operational offects, and pipo loads.
Where necessary and feasible, the conclusions of these analyses are confirmed by test.
O Amendment K 3.9-38                  October 30, 1992
 
CESSAR Minem on all activo valvos, an analysis of the extended structuro is also performed for static equivalent SSE loads supplied at the contor of gravity of tho oxtended structuro. The maximum stress limits allowed in those analyses show that structural integrity is within the limits developed and accepted by the ASME Code.
The safety-related valvos are subjected to a series of tests prior      to        service    and during    the plant  life. Prior  to installation, the following tests are performodt K
A.      Shell hydrostatic test to ASME Section III requirements.
B. Backscat and main seat leakage tests.
l                C. Disc hydrostatic test.
D. Functional tests to verify that the valvo opens and closos lK within the speciflod timo limits.
E. Operability          qualification of motor operators        for_ the environmental            conditions over tho installed life (1.0.,
aging, radiation, accident environment simulation) according
_                to IEEE Standard 382-1972, as endorsed by Regulatory Guide 1.73.
Cold hydro qualification- tests, hot functional qualification tests, periodic in-service inspections, and periodic in-servico
,                operation are performed in situ to verity and assure the i                functional ability of the valves.                  Those tests ensure tho reliability of the valve for the design life of the plant. The valves are designed using either stress analysos or the pressure cont ining minimum wall thickness requirements.
All the active valvos aro designed to have a first natural                          ,.
frequency which is greater than the ZPA.                This is shown by            '
suitable test or analysis, i
All manually-controlled, electrically-operated valves will be subject to 10 CFR 50,59 ovaluatior.s to datormine which valvec Branch Technical Position ICSB 18 (PSB) may apply. All valves which are evaluated as possibly performing an " undesirable function" will be outlined in individual plant system technical specifications.            In certain casos where inclusion of such valvos is inappropriato, such as where manipulations are required for                      K maintenance,          10 CFR 50.59 operability datorminations will be performed in accordance with plant proceduros and operational directivos.
    -          The position indication system for all safety-related valves will
(\            be designed to moet the single failure critorion of Regulatory Guido 1.47.
Amendment K 3.9-39              October 30, 1992
 
CESSARK h a O
In addition to the abovo,      the following specific operability assurancos are provided for the various type valvoo:
3.9.3.2.1.3.1        Pneumatically Operated Valvos pneumatic operated valvos are furnished by soveral vendors.lg Methods of operability demonstration are summarized below. I spring actuation of the valvo is the required active safety function. Loss of electric power or supply air results in lK venting of the actuator and return of the valvo to the safe position. Each vendor provides their own method to demonstrato valve    operability. The  operability    for  these valves is demonstrated by analysis, test or by a combination of analysis and test.      The vendor considers concurrent loads including seismic, design pressure and pipe loads.
The throo-way solenoid valve was qualiflod by test and analysis      g to IEEE Standard 382-1972, as endorsed by Regulatory Guide 1.73, IEEE Standard 323-1983 and IEEE Standard 344-1987 as endorsed byI K Regulatory Guide 1.100, Rev. 2 dated June 1988. Testing includedI thormal aging, radiation aging, woar aging, vibration endurance, soismic event simulation, and loss-of-coolant-accident. All test results provido catisfactory evidence of air solenoid valvo operability.
Limit switches, used to determino valve position, were qualified by testing and analysis to IEEE Standard 323-1983, IEEE Standard 344-1987 as endorsed by Regulatory Guido 1.100, Rev. 2 dated June    g 1988 and IEEE Standard 382-1972. Switches are performance tested for aging simulation, wear aging, radiation exposure, seismic qualification, and design basis event environmental conditions.
For valves outside of containment and utilizing EA-170 limit switches, the switches are seismically qualified to IEEE Standard 344-1987 as endorsed by Regulatory Guide 1.100, Rev. 2 dated Jung    K 1988 and were testod to sustain radiation dosages up to 2 X 10 rads.
3.9.3.2.1.3.2        Motor-Operated Valycn Motor-operated valves are qualified by analysis as a minimum as described above. The analysis for each valvo assembly considers the offects of seismic loads,        design pressure, and piping reaction forces to provide assurance of operability.
To provide full qualification of the motor-operated valve actuator,    environmental and soismic qualification tests are lK        ,
conducted to simulate the following conditions:                          l A. Inside Containment (LOCA).
Amendment K 3.9-40                October 30, 1992
 
CESSAR Enfncum l
\ ('')
V B. Outside Containment.
C. Seismic Qualification.
D. Steam Line Break Accident.
Mid-sizo valvo actuators are subjected to completo environmental qualification consisting of      inside containment  and outside containment. Each qualification exposed the actuator to thermal and    mechanical    aging,  radiation  aging,  seismic    aging, K onvironmental transient profile test, and steam line break. For 1
the steam lino break test an actuator is subjected to a very high
!        superheated temperature to demonstrate that the electrical com-ponents of the actuator never exceeds the saturated temperature I
o l
i f
(D )
i l  %.J i
'                                                        ' Amendment K 3.9-40a            October 30, 1992
 
CESSAR !!aincuiu                                                                i O
TilIS PAGE IllTEliTIOliALLY BLAliK l
O O
Amendment K 3.9-40b                        October 30, 1992 I
                                -,              ~  ..._- -- _.
 
CESSARE!NL -
f3 O
corresponding to the ambient pressure for the short duration of the test. This short-term test provides evidence that the existing qualification envelopes the steam                    line  break  for p' superheated temperatures as high as approximately 492*F for a few minutes (sce Section 3.11).
The qualification of the mid-size valve actuator                  is used tolK generically  qualify            all  sizes    of  mid-size  valve  actuator operators for the environmental test conditions in accordance with IEEE Standard 382-1972.              All sizes are constructed of the same materials with components designed to equivalent stress levels, and to the same clearances and tolerances with the only difference being in physical size which varies corresponding to the differences in unit rating.
All the qualifications are conducted per IEEE Standard 382-1972 and meet the requirements of IEEE Standard 323-1983 and IEEE                    g Standard 344-1987 as they apply to Valve motor actuators.
Further,  since the actuators perform satisfactorily without maintenance throughout the various qualifications, the valve actuators are fully qualified for use in CE Nuclear Power Generating Plants.
3.9.3.2.1.3.3                  Pressurizer Safety Valves
  \
Pressurizer Safety valves are 6 x 8 valves.              Operability has been successfully demonstrated by a combination of dynamic testing and analysis or by static testing.                  Operability was successfully demonstrated with a 6g seismic load by one vendor or with a 7.lg scismic load by another vendor. Dynamic testing has demonstrated that the natural frequency of both valves was greater than 33 Hz.
A summary of the test programs follows:
A. Vendor A Safety Valves
: 1. Natural Frequency Demonstration Vibration input was in a single, horizontal direction.
It was established by previous experience that the horizontal direction was more significant than the vertical direction, and that there was no material difference between the various horizontal directions.
The frequency of vibration was increased from 5 to 75 Hz at a rate of 1 octave per minute.                  Accelerometers were mounted on the valve assembly. The actual natural frequency under test conditions was 38 Hz.
: 2. Operability Demonstration A
(V)          A  series of tests demonstrated that the valve would fully open              and  reseat  during  and  after  a  seismic Amendment K 3.9-41                October 30, 1992
 
CESSAR E5 Gem  .
O acceleration. Vibration input ranged from 3 to 6g and 10 to 33 11 2 . The tests were performed using saturated steam. In addition, analysis was used to establish the significance of nozzle loading. The results indicated that deformation was significantly less than the inter-nal cicarances. This loading was, therefore, neglected in the seismic operability tests.
B. Vendor B Safety Valves
: 1. 11atural Frequency Demonstration A resonance survey was performed along three orthogonal axes with one axis being th 4 conterline of the outlet port.    (Valve mounted on inlet port.)      Ito resonant frequencies were detected in the range of 1-50 llz on any axis.
: 2. Operability Demonstration A series of tests demonstrated that the valve would fully open and reseat during and after applying the following loading combinations:      Static seismic loads up to 7. lg were applied to the valve in the direction of least bending stiffness.      In addition the maximum permissible piping loads were applied concurrently.
The tests were performed using saturated steam.        Valve j            operation was satisfactory.
C. EPRI Testing of Safety Valves Pressurizer safety valves were      tested in the EPRI Program under full pressure and full flow conditions.        Test This lE testing demonstrated that stable valve operation under these lK conditions is dependent upon the inlet pipe configuration,
,      built up back pressure range and blowdown setting.      Prior to E l
valve shipment, the inlet pipe configuration and built up back pressure range for the specific plant are examined by CE and the applicable valve vendor.          If  necessary,  the valves are adjusted to provide blowdown settings which will        ',
l      result in stable valve operation.      These blowdown settings are recommended by the vendor and approved by CE.          These adjustments are based on the results obtained in the EPRI Test Program. Required adjustments to the valve to assure operability arc documented in the site-specific SAR.
3.9.3.2.1.3.4          Check Valves The check valves are characteristically simple in design and their operation is not affected by seismic accelerations or lK Amendment K 3.9-42                October-30, 1992
 
CESSAR Ennnema the maximum applied nozzle loads.        The check valve design is compact and there are no extended structures or masses whose motion could cause distortions which could restrict operation of the valvo. The nozzle loads due to maximum seismic excitation do not affect the functional ability of the valve since the valve disc is designed to be isolated from the casing wall.                The    K clearance supplied by the design around the disc prevents the disc from becoming bound or restricted due to any casing distortions caused by nozzle load.        Therefore, the design of these valves is such that once the structural integrity of the valve is assured using standard design or analysis methods, the ability of the valve to operate is assured by the- design features. In addition to these design considerations, the valve also undergoes                                                            lK A. Stress analysis, including the SSE loads.
B. In-shop hydrostatic tests.
C. In-shop seat leakage test.
D. Periodic in-situ valve exercising and inspection, to assure the functional ability of the valve.
3.9.3.2.2          Non-NSSS Activo ASME Code Class 2 and 3 Pumps and class 1, 2-and 3 Valves 3.9.3.2.2.1          Pumps Safety-related active pumps are subjected to in-shop tests that include hydrostatic tests of casing to 150% of the design pressure, and performance tests to determine total development              E head, minimum and maximum head, not positive suction head (NPSH) requirements, and other pump / motor characteristics. Vibration is monitored during the performance tests.
In addition to the required testing, the pumps are designed and supplied in accordance_with the following specified criteria:
A. In order to ensure that the active pump will not be. damaged during the seismic event, the pump manufacturer is required to demonstrate _by test and/or analysis that the            lowest-natural' frequency of the pump is_ greater than the ZPA.
pump, when having a natural frequency above the ZPA, will The  be E considered essentially-rigid. This frequency is considered sufficiently high to ' avoid problems with amplification between the component and structure for all_ seismic areas.          E A ' static  shaft  deflection analysis    of    the  rotor. is The natural O
performed.                    frequency  of    the    support  is v
determined and used in conjunction with the plant seismic Amendment K 3.9-43                  October _30,  1992
 
CESSAR MEncavi:s h
response spectra. The deflection determined from the static shaft  analysis    is  compared    to  the    allowable    rotor clearances. The    pump    manufacturer    is    required    to E demonstrate the pump operabi))ty during and after the SSE.
If the natural frequency is found to be below the lowest        ZPA y'    l frequency,  an analysis is performed to determine              the amplified input accolorations necessary to perform              the static  analysis. The    static  deflection    analyses    are performed using the adjustad accelerations.
l B. The maximum seismic nozzle loads are also considered in an analysis of the pump supports to ensure that unacceptable            E system misalignment cannot occur.
C. To complete the seismic qualification procedures, the pump motor and all appurtenances vital to the operation of the pump are independently qualified for operation during the maximum seismic event in accordance with IEEE Standard 344-1987. If the testing option is chosen, sine-boat or lK sweep testing for the electrical equipment is justified by satisfying one or more of the following requituments to demonstrate that multi-frequency response is negligible or that the sine-beat or sine-sweep is of sufficient magnitude to conservatively account for this effect:
: 1. The equipment response is basically due to one mode.
: 2. The sine-beat response      spectrum  in  the  region  of significant response.
: 3. The floor response spectrum consists of one dominant modo and has a narrow peak at this frequency.
E The decree of coupling in the equipment, in general, determines if a single or multiaxis test is required.      Multiaxis testing is required if there is considerable cross-coupling. If coupling is very light, then single-axis testing is justified or, if the degree of coupling can be determined, then single-axis testing can be used with the input sufficiently increased to include the effect of coupling on the response of the equipment.
From this, it is concluded that the safety-related pump / motor assemblies manufacturer show that it will not be damaged and will continue operating under SSE loadings and will perform their intended functions.
O Amendment K 3.9-44                October 30, 1992 l
l
 
CESSARHSLmu 3.9.3.2.2.2            Valven Safety-related      active valves    are  subjected  to  the  following tests:
1
;  A. Shell hydrostatic tests, in accordance with ASME B&PV Code, Section III requirements.
i  B. Backseat and main seat leakage tests.
l                                                                            E l C. Disc hydrostatic tests.
!  D. Functional tests that verify that the valve will open and close with the specified-time limits when subjected to the design differential pressure.
i  E. Operability    qualification    of  motor operators      for  the j        environmental    conditions over the installed life (i.e.,
:        aging,  radiation,    accident,  environment simulation) in j          accordance with IEEE Standards 323-1983, 344-1987, and lK 382-1972.
After    installation,    cold  hydrostatic  tests,    hot  functional tests, and periodic inservice operation are performed to verify
)  and assure the functional ability of the valve.              These tests j  enhance reliability of the valve for the design life of the i  plant, i
The valves are designed using either stress analysis or standard
:  design rules for minimum wall thickness requirements. On _ all I  active    valves  with  extended  topworks,  an  analysis  is  also performed for static equivalent OBE loads applied at the center j  -of gravity of the extended structure.
g i
The maximum stress . limits allowed in the analyses are those recommended by the ASME Code for the particular - ASME _ Class of valve analyzed.
!  In addition to these tests and analyses,-valves are tested for i
verification _of operability during a simulated seismic event by demonstrating      operational  capabilities    within  the  specified
,    limits. The valve is mounted in a manner that represents typical
{  valve installation. The valve unit includes the operator and_all
'  appurtenances normally attached to the valve appurtenances in service. The operability of the valvo during SSE is demonstrated by ratisfying the following criteria:--
A. All the active valves with extended:topworks are designed to-have.a first natural frequency greater than the lowest ZPA-frequency. This may _ be shown by test and/or analysis.        K t-Valves with a first natural frequency'less than the. lowest
          .ZPA frequency are discussed below.
Amendment K 3.9-45                October 30, 1992' i
t
 
CESSARE20nem O
B. While in the shop and installed in a suitable test r'q, the extended topworks of the valve are subjected to a statically applied equivalent seismic load. The load is applied at the conter of gravity of the operator in the direction of the weakest axis of the yoke. The design pressure of the valve is simultaneously applied to the valve during the static 1 cad tests.
C C. The valve    is  then operated with the equivalent seismic static load applied (i.e., from the normal operating status to the faulted operating status).        The valve must perform its safety-related function within the specified operating time limits. Three full-stroke operations are required.
D. Motor operators and other electrical appurtenances necessary for operation are qualified as operable during the SSE by IEEE Standard 344-1987, Seismic Qualification Standards,[K prior to their installation on the valve.
The piping designer supports the piping in such a way that the          E equivalent seismic static load accelerations are not exceeded at the valve inlet and outlet support points.        If the frequency of the valve with topworks,. by test or analysis, is less than ZPA, a lK dynamic analysis of the valve        is performed to determine    an equivalent acceleration that is to be applied during the static test. The analysis provides the amplification of the input acceleration considering the natural troquency of the valve and frequency content of the plant floor response spectra.            The adjusted accelerations are determined using margins similar to that contained in the horizontal and vertical accelerations used for " rigid" valves. The adjusted accelerations are used in the static analysis, and valve operability is assured by the methods outlined    in  listings  B  to  D  above,  using  the  modified acceleration input.
E The above testing program applies only to valves with overhanging structures (e.g., the operator) .      The testing is conducted on a representative number of valves. Valvec from each of the primary safety-related design types (e.g., motor-operated gate valve) are tested. Specific valves are qualified by the tests, and the results are extended to qualify valves within a range of sizes.
An analysis is conducted to prove the similarity between the tested valve and the installed oncu.
Due to the simple characteristics of check valves and other compact valves, they are qualified by the following tests and analysis:
A. Stress analysis of the attached piping for SSE loads.
Amendment K 3.9-46                October 30, 1992
 
l CESSARHNiNma                                                                                                !
                                                                                                                              )
                                                                                                                            -l i
l B. In-shop hydrostatic test.
C. In-shop seat leakage test.
]
D. Periodic valve exercise and inspection                            to    assure      the            1
.                        functional ability of the valve.
Using the methods described, safety-related active valves in the system are qualified for operability during a seismic event.
3.9.3.3          Design and Installation Details for Mounting of Pressure Rolief-Devices I
Safety valves and relief valves are analyzed'_                          Tccordance with the ASME Section III Code.
E 1                  The method of        analysis for safety valves and relief                              valves
;                  suitably    accounts        for      the      time-history        of      loads      acting i                  immediately following a valve opening                            (i.e.,        first. few J
milliseconds).        The      fluid-induced-            forcing      functions        are calculated. for each safety valve' and relief valve using
~
one-dimensional equations for the conservation.of mass, momentum, and energy.      The calculated forcing functions are applied at
:    O            locations along the -associated piping where a change in fluid 4
Q            flow direction occurs. Application of these forcing functions to the associated piping model constitutes the dynamic time-history i                  analysis. The dynamic response of the piping . system is determined    from the input forcing functions.                            Therefore,      a dynamic amplification factor is inherently accounted for-in the analysis.. Alternately, an equivalent static; analysis may be used
;                  following the criteria of Appendix 0 of the'ASME Code Section III                                K j                  as supplemented by the additional criteria of SRP3.9.3, Section II.2.
i Snubbers or strut-type restraints are used as required.                                    The l                  stresses resulting from the loads produced-by the sudden opening
,                  of a relief or safety valve are combined with stresses due to g
i                  other pertinent loads and are shown to be within allowable limits of the ASME Section;III Code.                Also, the analyses show .th t the loads applied to the nozzles of the safety and relief vaues do not exceed the maximum loads specified by the manufacturer.
Jurisdictional boundaries between ASME Section III Class 1, 2_and 3 component supports and the building structure are. established                                K in accordance with ASME Section III, Subsection NF.
1 3.9.3.4          Component Supports.
,                  Supports for ASME Section III Code Class                      1,  2 and 3 ' components are specified for design in accordance with the loads and loading-                              E combinations      discussed        in  Section          3.9.3.1  and      presented .. i n -
(          -Table 3.9-2.
                                                                                        . Amendment K 3.9-47                          October 30, 1992.
l
        . ~- .- ,                .-        ..      .      . . . . . - - -      -.      .. -        ..-        .  . _ ,
 
CESSAR HSiricaviSn O
Component supports which are loaded during normal operacion, seismic and following a pipe break (branch line breaks not eliminated by leak-before-break) are specified for design for loading combinations (A) through (D) of Section 3.9.3.1.      Design stress limits applied in evaluating loading combinations (A),
(B), and (C) of Section 3.9.3.1 are consistent with the ASME Code,  Section  III. The design stress limits applied          in evaluating loading combination (D) of Section 3.9.3.1 are in accordance with the ASME B&PV code,        Section III. Loads in compression members are limited to 2/3 of the critical buckling load.
Expansion anchors are designed in accordance with ACI-349, Code Requirements  for Nuclear Safety Related Concrete Structures.
This assures that the design strength of concrete for a given g expansion anchor or group of anchors is greater than the strength of the anchor steel, accounts for the effect of shear-tension interaction, and considers minimum edge distance and bolt spacing on expansion anchor capacity.        Base  plate  flexibility- is accounted for in the calculation of expansion anchor bolt loads.
Where required, snubber supports are used as shock arrestors for safety-related systems and components.        Snubbers are used as structural supports during a dynamic event such as an earthquake or a pipe break, but during normal operation act as passive devices which accommodate normal expansions and contractions of the systems without resistance.      For System 80+, snubbers are minimized, to the extent practical, through the use of design optimization procedures.
Assurance of snubber operability is provided by incorporating analytical, design, installation, in-service, and verification criteria. The elements of snubber opetability assurance for System 80+ include:
E A. Consideration of load cycles and travel that each snubber will experience during normal plant operating conditions.
B. Verification that the thermal growth rates of the system do not exceed the required lock-up velocity of the snubber.
C. Accurate characterization of snubber mechanical properties in the structural analysis of the snubber-supported system.
D. For engineered, large bore snubbers, issuance of a design specification to the snubber supplier,        describing the required structural and mechanical performance of the snubber;  verification  that  the  specified  design  and fabrication requirements are met.
l Amendment K 3.9-48                October 30, 1992
 
CESSARinL mu r
  \
E. Verification that snubbers are properly installed. and operable prior to plant operation, through visual inspection and    through        measurement              of            thermal            movements        of snubber-supported systems during start-up tests.
E F. A snubber- in-service inspection and testing program, which includes      periodic      maintenance- and visual- . inspection, inspection following a faulted event, a functional testing program, and repair or replacement of snubbers failing inspection or test acceptance criteria.
3.9.4        CONTROL ELEMENT DRIVE MECHANISMS 3.9.4.1        Descriptive Information of CEDM The control element drive mechanism -(CEDMs) are magnetic jack-type drives used to vertically position and indicate the_ position of the control element assemblies (CEAs).                                      Each CEDM is capable of withdrawing, inserting, holding, or tripping the CEA-from-any point within its 153-inch stroke in_. response to operation signals.
E The CEDM is designed to function during and after all- ' normal
'  O h
plant transients.
seconds maximum.
The CEA drop time forL 90% insertion is 4.0 The drop . time is defined . as the interval between the time power is removed from the.CEDM coils to the time the CEA has reached 90% of its fully l inserted position. The CEDM pressure boundary components              have a design life of .60 years.
The CEDM is designed to operate without-maintenance for a minimum of'1-1/2 yearc.and without replacing components-for.a minimum'of 3 years. The CEDM is_ designed to function normally during and after being subjected to_the Operating - Basis Earthquake loads.
The CEDM will allow for tripping of the CEA during and~after a                                                    E.
Safe Shutdown Earthquake.
The design and construction of the CEDM-pressure housing fulfill' the requirements of the ASME boiler and Pressure Vessel Code, Section III, for Class 1 vessels.. The CEDM pressure housings are part of the- reactor coolant pressure - boundary,- and they . are designed to meet stress requirements _ consistent with those of the vessel._ The. pressure housings are_ capable' of withstanding,                    -
throughout the design life, all normal operating loads, which include the steady-state and transient operating- conditions specified .for- the        vessel.      Mechanical                        excitations .are _also defined and included as            a normal _ operating, _ load.
The-. CEDM:
pressure housings ;are service rated - at 2500 psi at 650*F.                                        The loading combinations and stress limit categories are' presented;in Table 3.9-16 and are consistent with those defined in the.ASME
  -.e    code.
s Amendment E-3.9-48a                                          December 30, 1988
 
4 CESSAR 8!s%nion O l i
i i
i 1
TIIIS PAGE INTENTIONALLY BLANK
!                                                                                                                    O 4
4 O
Amendment K 3.9-48b                          October 30, 1992
 
4 .
i            CESSARnub a L;                                                                                                                                                                        .
i i-
.              The design -duty requirements for the CEDM is'a' tota 1 cumulative i              CEA travel of 100,000 feet operation without loss of function.
i The test programs performed in support of the ~ CEDM design ~ are -
a              described in Section 3'.9.4.4.
i
{-              3.9.4.1.1                      Control Element _ Drive Mechanism Design Description                                                                                                              '
The CEDMs are mounted on nozzles on top of the reactor vessel t              closure head.                    The CEDMs consist of                                            the upper _ and : lower - CEDMl                        -
:              pressure housings, motor assembly,                                                                  coil stack        assembly,            reed i              switch assemblies, and extension shaft assembly.                                                                          The - CEDM: is i              shown in Figure 3.9-8.                            -The drive power is: supplied-by the coil i              stack assembly, which is-positioned around the CEDM_ housing. Two 4            - position indicating reed - switch assemblies -_ are supported -by_ the
!              upper pressure housing shroud, which' encloses the upper pressure
]
housing: assembly.
?-              The      lifting operation consists of a _ series of magnetically _
!              operated step movements. .Two sets of mechanical latches are                                      -
4 utilized          engaging              a      notched                          extension shaft._                        To      prevent excessive latch - wear, a means has - been- provided - to unload the i              latches during .the engaging operations.                                                                  The magnetic -force. is                          -
i      V        obtained.from large de magnet coils mounted on the outside of the-L              lower pressure housing.
l Power      for        the        electromagnets                              is              obtained . from _ two              separate
;              supplies.            A control programmer actuates the -stepping ' cycle _and j              moves-the CEA-by a forward or reverse' stepping sequence. Control                                                              .
;              element drive mechanism hold is obtained by energizing one coil
'              at a reduced current, while all other' coils _are deenergized. The CEAs are- tripped - upon _ interruption of . electrical power to all i              coils. - Each CEDM is connected to-the CEAs by an extension shaft.                                                                                    E j              The weight of the CEDMs and.the CEAs isLcarried by the pressure
!              vessel head.                Installation,. removal,:~and maintenance of the CEDM is possible with the reactor vessel head in ; place; however, the missile shield placed over the reactor vessel cavity makes - the CEDMs inaccessible-'during operation of the plant.
i-
              -The axial ~ position - of a CEA inLthe core is :-indicated 1 by three
,.            . independent              readout' -systems..                                        One              counts        the  CEDM          stepsi L              electronically,                    and the. other .two--                                              consist . - of: -magnetically:
i-              actuated 1 reed switches - located at regular intervals 'along the-These - systems , are designed to indicate CEA position 1 to lE i --            CEDM.
within + 2-1/2                        inches of the                                true ' location.                      This . accuracy'.
requirement is based on ensuring that the' axial alignment-between l_            -CEAs/PLCEAs-is maintained within acceptable _ limits.
      \      - The . materials' in contact with the reactor coolant used ~in the-CEDM are listed in Section '4.5.1.
l:                                                                          .
Amendment.E t                                                                              3.9            _
December 30, 1988-4 f
    .,.,r  --    v  -
                            --.m  v v- - --v ww*w---=*      ,-1  ----<~--w-+--*--e-**--*e-<+v-e*-c-vsee',-r-e+                                **-,=-w+-A--+1e--~--
 
CESSARHMem O
3.9.4.1.1.1        CEDM Pressure llousing The CEDM pressure housing consists of the motor housi.ig assembly and the upper pressure housing assembly.        The motor housing assembly is attached to the reactor vessel head nozzle by means of a threaded joint and seal welded.      Once the motor housing assembly is seal welded to the head nozzle, it need not be removed since all servicing of the CEDM is performed from the top of the housing. The upper pressure housing is threaded into the top of the motor housing assembly and seal welded. The upper pressure housing encloses the CEDM extension shaft and contains a vent.
3.9.4.1.1.2        Motor Assembly The motor assembly is an integral unit which fits into the motor housing and provides the linear motion to the CEA. The motor assembly consists of a latch guide tube, upper latches and lower latches.
Both upper latches and lower latches are used to perform the stepping of the CEA and by proper sequel.cing perform a load transfer and minimize latch and extension shaft wear. The upper lK latch also performs the holding when CEA motion is not required.
Engagement of the extension shaft occurs when the appropriate set of magnetic coils is energized. This moves sliding magnets which can a two-bar linkage moving the latches inward.        The upper latches move vertically 7/16 inches while the lower latches move vertically 3/8 inches to perform both the load transfer and stepping action. Total CEA motion per cycle is 3/4 inches.
3.9.4.1.1.3        Coil Stack Assembly The coil stack assembly for the CEDM consists of four large DC magnet coils mounted on the outside of the motor housing assembly. The coils supply magnetic force to actuate mechanical latches for engaging and driving the CEA extension shaft. Power for the magnetic coils is supplied from two separate supplies. A CEDM control system actuates the stepping cycle and obtains the correct CEA position by a forward or reverse stepping sequence.
CEDM hold is obtained by energizing the upper latch coil at a reduced current while all other coils are deenergized. The CEAs are tripped upon interruption of electrical power to all coils.
Electrical pulses from the magnetic coil power programmer provide one of the means for transmitting CEA position indication.
A conduit assembly containing the lead wires for the coil stack assembly is located at the side of the upper pressure housing shroud.
Amendment K 3.9-50              October 30, 1992
 
      -- -.            .    - . _ -                    .        . . - _ - -        . - = . .    -        . - . . - . - - .                - -        -. . . - .
4 I                        CESSAR c"minem.
3-l-
3:
j                          3.9.4.1.1.4                        Reed Switch Assembly:
,                        Two-        reed              switch      assemblies: provide                      separate                means          for
;                        transmitting CEA position indication.. Reed switches and voltage q
divitur networks are used to provide two -independent output
,                        voltages proportional to the. CEA position.                                                          The - reed switch -
!                          assemblies are positioned so as .to L utilize the . permanent magnet                                                                            '
I                          in the top of the extension shaft. The permanent magnet actuates 1
the reed switches as it passed by. them. _ The reed. switch i                          assemblies are provided with accessible electrical connectors at l                          the top of the upperipressure housing.
I j                          3.9.4.1.1.5                        Extension Shaft Assembly
]                        The extension shaft assemblies are used to link the'CEDMs to.the F                          CEAs.      The extension shaft assembly is a 304-stainless-steel rod                                                                            ,.
[                        with a permanent magnet ' assembly at' the top _ for _ actuating reed switches:in the. reed switch assembly, a center section called the i
drive shaft and a lower end with a coupling-device-for connection j                          to the CEA.
l 1                        The drive shaft is'a long_ tube made of' Type 304 stainless steel, j                          It _ is. _ threaded and pinned to .the' extension shaft. - The .. drive                                                                        ,
:                          shaft-has circumferential notches in 3/4 inch increments - along
;                          the shaft .to provide the means : of engagement- to the control l                          element drive mechanism.
!                        The magnet assembly, located -in :the top of the . extension shaf t j;                        assembly, _ consists of a housing, magnet.and plug. The magnet is-j                        made of two cylindrical _ alnico -5 magnets.      - This magnet land-              assembly            lK
~
is used to actuate the reed switch                                        position--indicator                              is-
:                        contained' in .a                  housing which -is plugged -at. the bottom '. of - the
}                        housing.
I                          3.9.4.1.2                        Description of the CEDM Motor. Operation; j.
i                        Withdrawal or insertion of the CEA is accomplished by progiamming
: j.                      ' current-.to' the various ._ coils.                                    :There    are              three    programmed U                        conditions for. each coil: -(i. e. ,                                  high- voltage ' for: initial . gap
!                        closure, -low voltage - for maintaining: -the gap closed and zero volta _ge-to. allow open_ing of_the gap)_.
                        .3.9.4.1.2.1.                        Operating. Sequence for-the' Double' Stepping.
j'                                                            Mechanism:
l:                    ~
The initial conditionlis-.the hold mode.                                          In this condition,_ the.
,                        upper-latch coilils energized.at low voltage.
L h                                                                                                                                Amendment K
                                                                                  '3.9-51
;                                                                                                                                . October.30, 1992 p.
            .. .- . . .                . . . - . - _ .        . _ . . _ . - - . - . - , . - - . - . ~ . - .                          . - . . - - . . -            . . -
 
CESSAR nEcm:n O
A. Withdrawal (Ref. Figure 3.9-8)
: 1. The upper lift coil    is energized causing the 7/16" upper lift gap to close lifting the CEA.
: 2. Low current is supplied      to  hold  the  CEA  in  the withdrawn position.
: 3. The lower latch coil is energized causing the lower latches to engage the drive shaft with 1/32-inch clearance.
: 4. The upper lift coil is de-energized allowing the upper latches to drop 7/16 inches and the drive shaft to lower 1/32 inches placing the load on the lower latches.
: 5. The upper latch coil is de-energized disengaging- the upper latches.
: 6. The lower lift coil    is energized  lifting the drive shaft 3/8 inches.
: 7. The upper latch coil is energized engaging the upper latches in the drive shaft with 1/32-inch clearance.
: 8. The lower lift coil is de-energized allowing the lower latches to drop 3/8 inches and causing the drive shaft to drop 1/32 inches applying the load on the upper latches.
: 9. The lower latch coil is de-energized disengaging the          4 lower latches from the drive shaft.
B. Insertion
: 1. The lower latch coil is energized causing the lower latches to engage the drive shaft.
: 2. The lower lift coil is energized lifting the lower latches 3/8 inches and lifting the drive shaft 1/32 inches thus applying the load to the lower latches.
: 3. The upper latch coil is de-energized cat:ing the upper latches to disengage the drive shaft.
: 4. The  upper    lift  coil  is  energized  moving  the E
de-energized upper latch assembly up 7/16 inches.
O I
Amendment E l                                3.9-52            Decembcr 30, 1988 i
 
CESSAR HEL.
O
: 5. The upper latch coil is energized _ engaging the latches with clearance.
: 6. The lower lift coil is de-energized allowing the lower-latch to drop with the drive _ shaft.                The drive shaft'              E will move down 3/8 inch, stopping _on _ the _ upper latch assembly, which is energized and in its up position.
: 7. The lower latch coil is de-energized disengaging the lower latches.
: 8. The upper lift coil-is de-energized lowering the upper E
latch assembly with the drive shaft 3/8 inch.
3.9.4.2                Applicable CEDM Design Specifications The pressure boundary components are designed and fabricated in accordance with the requirements for Class 1 vessels per . the applicable Edition and Addenda of Section- III . (Subsections -NCA and NB)  of the - ASME Boiler and Pressure _ Vessel Code and the                                K criteria of SRP 3.9.4, Rev. 2 Subsection _II.2.                              The pressure boundary material complies with the requirements of Section III
  \
and IX of the ASME Boiler and Pressure Vessel Code -and C N-4-11.
The adequacy of the design of the non-pressure boundary components have been verified by prototype accelerated life testing as discussed in Section 3.9.4.4.
The reed switch position transmitter (RSPT) assembly of the CEDM is designed to comply with IEEE StandardL323-1983, standard.for
          " Qualification of Class I. Electrical-Equipment for Nuclear Power                              g Generating Stations," and IEEE Standard 344-1987,                              " Recommended Practice Seismic Qualification of Class _IE Equipment for Nuclear-Power Generating Stations"_, as_ endorsed - by Regulatory- Guide 1.100. The electrical components are- external to. the pressure boundary and are non-pressurized.
The test program to - verify- the CEDM design- is discussed in Section 3.9.4.4.
3.9.4.3                Design loads, Stress Limits and Allowable Deformations The CEDM stress analyses consider the.following loads:
l X
Amendment K 3.9-53          . October 30,- 1992 l'
u 4  ,,-..e.-      ,.m..  , , , . . , ,    ,m._ n s ,w.  ,y,-.-.-.-4      .e ,    ,
g,
 
1 CESSARn!Mema O
A. Reactor coolant pressure and temperature B. Reactor operating transient conditions C. Dynamic stresses produced by seismic loading                              and  design lg bases pipe breaks                                                                      I D. Dynamic stresses produced by mechanical excitations Full    length RSPT assemblies are                              subjected to biaxial random multi-frequency input motions corresponding to design bases                                    K excitations. Testing is performed using four RSPT orientations to account for asymmetries in the design.                                                          I E. Loads  produced  by                        the  operation    and  tripping  of  the mechanism I. Dynamic stresses produced by excitations from pipe breaks g other than those eliminated by LBB.
The methods used to demonstrate that the CEDMs operate properly under seismic conditions are presented in Section 3.7.3.14.
The    design and fabrication of the CEDM pressure boundary components fulfills the requirements of the ASME Code, Section III, for Class I vessels.                            The pressure housings are capable of withstanding throughout the design life all the steady state and transient operating conditions specified in Table 3.9-16.
The adequacy of the design of the CEDM pressure boundary and non-pressure boundary components has been verified by prototype accelerated life testing as discussed in Section 3.9.4.4.
Clearances for thermal growth and for dimensional tolerances were investigated, and tests have proven that adequate clearances are provided for proper operation of the CEDM.
The latch locations are set by a master gauge, and settings are verified by testing at reactor conditions.
A weldable seal closure, por Section III of the ASME Code, is provided for the vent valve in case of leakage.
The motor housing fasteners are mechanically positively captured, and all threaded connections are preloaded before capturing.
The coil stack assembly can be installed or removed simply by lowering or lifting the stack, relative to the CEDM pressure housing, for ease of coil replacement or maintenance.
Amendment K 3.9-54            October 30, 1992 l
1
 
4 CESSAR1!nine-b i V                                                                                                                                                                                            '
,        3.9.4.4                    CEDM Performance Assurance Program                                                                                                                        !
        - 3.9.4.4.1                        CEDM Testing j        3.9.4.4.1.1                                Prototype Accolorated Life Tests
!        The System 80+-CEDM is similar to and based on existing magnetic =
,        jack mechanisms presently in use on operating reactors such as-
!        Maine -Yankee                (Docket No. 50-309) and Calvert Cliffs _ (Docket 50-317), the 150-inch core reactors such as-Arkansas Nuclear One l        Unit 2 (Docket No. 50-368) and San Onofre Units 2 & 3--(Docket No.
l 50-361/362), and is the same as the System 80 CEDM presently in use at Palo Verde (Docket Nos. 50-528, 529).                                                                                                                  E l        The significant differences between the System 80t drives and"
.        pre-System 80 CEDMs are:
A.        ;The elimination of the pulldown coil.
;        B.        The use of the lift coils to perform both_a load transfer                                                                                                                ,
function and stepping action.
!        The elimination of the_ pulldown coil required installation of a coil spring to ensure positive resetting of the latch assemblies.
In 3/4-inch addition,    the pitch  in 'place    driveofshaf        the t3/8-inch was modified  spacingbyofplacing    previous          the drive teeth on lE shaf ts - to . allow load transfer- _ and stepping with the same coil.
The . safety release- mechanism                                          uses the- same materials and clearances as on all previous magnetic jack mechanisms.                                                                                      'The-following describes accelerated ' life tests on both 'a pre-System j        80 mechanism as well as on .a - prototype System ~8 0- CEDM.~ Both-s programs provide' design verification-for the System 80+~CEDM.
[        A pre-System 80 prototype CEDM was' subjected : to s an accelerated
,        life test; accumulating a minimum of 157,000 feet of.. travel oniall CEDM components.                              In. addition, _ the latch. guide tube _ bearings :in the motor assembly saw an additional 50,000 feet of-operation.
The prototype mechanism was ' installed on 'a_ test facility which was operated at:a: nominal - . temperature , of 600
* F c and 2250 psi..
After 50,000_ feet _of _ operation lif ting 230.! pounds at _40. inches
,        per minute, theLmotor was removed from the test motor-housing:and the bearing surfaces inspected. . _During this inspection. it was found that excessive wear existed on the_ upper gripper-magnet and-upper gripper housing bearings.
The gripper. housing magnet bearing configuration wasirevised-and replacement - parts with this revision were incorporated into: the prototype mechanism._ _This. configuration was reinstalled into the=
test = facility' and                                  the ' mechanism          operated as-' before - for an O.  -
additional 157,000-feet of travel.                                              The replacement parts:showed Amendment,:E 3.9-55                                December- 30,71988
                      ,.e..em        ,%.-..-,+-w4--,.----,,,-w,,          ,    n    yo  y  ,,,ym,., ..,,,,,--,-y  .,c.w,,-.y--,,1,  y- g e-y w ry u ,, e ,,,; 9,m -,  -%, , p r- , y m-
* CESSARE!Mem O
a wear of only .001 inches while the latch guide tube bearings had a total wear of 0.012 inches. The mechanism at disassembly was    still  operational    with  no  abnormalities. This  test constituted operation equivalent to 1.5 to 2.0 times the design duty requirements of the mechanism.
A prototype System 80 CEDM was assembled and installed in a test loop, where the accelerated wear test was conducted at 615'F and 2250 psi. The total weight attached to the CEDM was 450 pounds and this was moved at a nominal speed of 30 inches per minute. A total of 34,000 feet of        travel was then completed without difficulty. Included in that test footage were 300 full-height gravity scrams.
The mechanism motor was removed        from the test facility and disassembled    for  inspection. The latch guide tube bearings showed a maximum diametral wear of 0.003 inches with negligible wear on the gripper housing to gripper magnetic bearings.
Alignment tabs, which maintain orientation of the gripper with the latch guide tube, showed extensive wear but had not caused mechanism malfunctions. These alignment tabs have been replaced in the production units with an improved design.
Upon completion of the accelerated wear test, 300 full height light weight drops were completed utilizing a 75-pound test weight. The maximum CEA drop time to 90% insertion was 2.93 seconds which met the 4.0 second criterion. All release tines were less than the 0.3 seconds with normal releases completed in less than 0.200 seconds.
3.9.4.4.1.2        First Production Test A  qualification test program was completed on the first production C-E magnetic jack CEDM.      A similar test program was
-  invoked for the System 80 CEDMs.        During the course of this program, over 4000 feet of travel was accumulated and 30 full height gravity drops were made without mechanism malfunction or measurable wear on operating parts.        The program included the following:
A. Operation at 40 in./ min lifting 230 pounds (dry) at ambient temperature and 2300 psig pressure for 800 feet.
B. Six full-height 230 pounds dry weight gravity drops at ambient temperature.
C. Operation at simulated reactor operating condition at 40 in/ min lifting 230-pound for 1700 feet.
D. Six  full-height drops    at  simulated  reactor  operating conditions with 230 pounds of weight.
Amendment E 3.9-56            December 30, 1988
 
CESSAR1E L m,.
l E.              An operational test at ambient temperature and pressure, lifting 335 pounds for.500 feet.                                                                                                    2300, psig lE F.              Six full-height drops of the 335 pound weight.
G.              Operation at simulated reactor conditions for 1700 feet at 20 in/ min, lifting 335 pounds.
H.              Operation at ambient temperature and'2300 psig for 1100 feet and 20 full-height drops with an attached dry weight of 130 pounds.
The mechanism operated without malfunction throughout the test prograni and, upon final inspection, no measurable wear was found.
3.9.4.4.1.3                                                  Operating Experience'at the Palo Verde Nuclear Generating Station E
The System 80+                                          CEDMs are identical to- those in operation at PVNGS.
malfunction.              That            experience-has'shown that the CEDMS operate without lg 3.9.5                                  REACTOR VESSEL CORE SUPPORT-AND INTERNALS STRUCTURES j          3.9.5.1                                        Design Arrangements The components of-the. reactor vessel core support structures are divided. into two major ~ parts - consisting of- the core - support structure - and the upper - guide structure , assembly._                                                                                                      The flow skirt, although functioning as-an integral _ part of the coolant flow path, is separate-from the internals and is; affixed'to the bottom - head of the pressure vessel.                                                                                                  The-- arrangement of. these components is shown in Figure 3.9-9.
3.9.5.1.1                                            Core Support Structure The major structural member-of the reactor internals is the core support structure.                                                    The -_ core support ' structure consists:of the core support barrel and the lower support _ structure.                                                                                                              The--
material for the assembly is Type 304 stainless steel. -
The core support structure is-supported atlits upper.end by the upper flange of_the core support barrel, iwhich - rests- on a ledge in the reactor . vessel.                                                              Alignment is accomplished by- means- of four equally spacedikeys in the flange, ..which 1 fit into the_ keys in the vessel ledge and.. closure : head.                                                                                                The;: lower flange.of.the core support barrel supports, secures, and positions' the. lower support structure and is attached to-the" lower support structure-by m e a n s -- o f a welded flexural connection.                                                                                                The lower - support
(
v structure provides support for the core by means of support beams'-
that transmit the load to the core support barrel lower flange.
Amendment'K 3.9-57                                October 30, 1992
 
CESSARHMema The locating pins in the beams provide orientation for the lower O
ends of the fuel assemblies.                                        The core shroud, which provides a flow path for the coolant and lateral support for the fuel assemblies, is also supported and positioned by the lower support structure. The lower end of the core support barrel                                                      is restricted from excessive radial and torsional movement by six snubbers which interface with the pressure vessel wall.
3.9.5.1.1.1                          Core Support Barrel The core support barrel is a right circular cylinder including a heavy external ring flange at the top end and an internal ring flange at the lower end.                                        The core support barrel is supported from a ledge on the pressure vessel. The core support barrel, in turn, supports the lower support structure upon which the fuel assemblies rest.                                        Press-fitted into the flange of the core support barrel are four alignment keys located 90 degrees apart.
The reactor vessel, closure head, and upper guide structure assembly flange are slotted in locations corresponding to the alignment key locations to provide alignment between these components in the vessel flange region. The core support barrol assembly is shown in Figure 3.9-10.
The upper section of the barrel contains two outlet nozzles that interface with internal projections on the vessel nozzles to minimize leakage of coolant from inlet to outlet.                                                    Since the weight of the core support barrel is supported at its upper end, it is possible that coolant flow could induce vibrations in the structure. Therefore, amplitude limiting devices, or snubbers, are installed on the outside of the core support barrel near the bottom end.      The snubbers consist of six equally-spaced lugs around    the  circumference                                      of  the  barrel          and    act  as  a tongue-and-groove assembly with the mating lugs on the pressure vessel. Minimizing the clearance between the two mating pieces limits the amplitude of vibration.                                          During assembly, as the internals are lowered into the pressure vessel, the pressure vessel lugs engage the core support barrel lugs in an axial direction. Radial and axial expansion of the core support barrel are accommodated, but lateral movement of the core support barrel is restricted.                  The pressure vessel lugs have bolted, captured Inconel X-750, SA-637, Grade 688, Type 2 shims. The core support                                                lg barrel lug mating surfaces are hardfaced with Stellite to minimize    wear.                                      The  shims    are  machined          during    initial installation to provide minimum clearance.                                              The snubber assembly is shown in Figure 3.9-11.
3.9.5.1.3.2                                  Lower Support Structure and Instrument Nozzle Assembly The lower support structure and ICI nozzle assembly position and support the fuel assemblies, core shroud, and ICI nozzles.                                                  The Amendment K 3.9-58                    October 30, 19;2
 
CESSAR naincamu (D
U structure is a welded assembly consisting of a short cylinder, support beams, a bottom plate, ICI nozzles, and and ICI nozzle support plate.      The lowest support structure is made up of a short cylindrical section enclosing an assemblage of grid beams arranged in egg-crate fashion.      The outer ends of these beams are welded to the cylinder. Fuel assembly locating pins are attached to the beams. The bottoms of the parallel beams in one direction are welded to an array of plates which contain flow holes to provide proper flow distribution.          These plates also provide support for the ICI nozzles and, through support columns, the ICI nozzle support plate. The cylinder guides the main coolant flow and limits the core shroud bypass flow by means of holes located near the base of the cylinder.        The ICI nozzle support plate provides lateral support for the nozzles. This plate is provided with flow holes for the requisite flow distribution.        The lower support structure and ICI nozzle assembly is shown in Figure 3.9-12, 3.9.5.1.1.3        Corn Shroud The core shroud provides an envelope for the core and limits the amount of coolant bypass flow.      The shroud consists of a welded s vertical assembly of plates designed to channel the coolant through the core. Circumferential rings and a top and bottom end U}  plate provide lateral support.        The rings are attached to the vertical plates by means of welded ribs which extend the full length of the core shroud. A small gap is provided between the core shroud outer perimater and the core support barrel in order to provide upward coolant flow in the annulus, thereby minimizing thermal stresses in the core shroud.      The core shroud is shown in Figure 3.9-13. Four hardfaced alignment lugs, spaced 90 degrees apart, protrude vertically from the top of the core shroud and engage in corresponding hardfaced slots in the upper guide structure fuel alignment plate to ensure proper alignment between the upper guido structure        assembly,  core  shroud,  and  lower support structure.
3.9.5.1.2        Upper Guide Structuro Assembly The Upper Guide Structure Assembly (UGS) aligns - and laterally supports the upper end of the fuel assemblies, maintains ' the lg control element spacing, holds down the fuel assemblies during operation, prevents fuel assemblies from being lifted out of position during a severe accident condition and protects the control elements from the effects of coolant cross flow in the upper plenum. The UGS assembly      is handled .as one unit during installation and refueling.
m  The UGS assembly consists of the UGS support barre] assembly and the CEA shroud assembly (Figure 3.9-14). The UGS support barrel (V)  assembly consists of UGS support barrel fuel alignment plate, UGS Amendment K 3.9-59            October 30, 1992
 
CESSAR 82La O
base plate and control element shroud tubes.      The UGS support barrel consists of a right circular cylinder welded to a ring flange at the upper end and to a circular plate (UGS base plate) at the lower end. The flange, which is the supporting member for the entire UGS assembly, seats on its upper side against the pressure vessel head during operation. The lower side of the flange is supported by the holddown ring, which seats on the core support barrel upper flange. The UGS flange and the holddown ring engage the core support barrel alignment keys by means of four accurately machined and located keyways equally spaced at 90 degree intervals. This system of keys and slots provides an accurate means of aligning the core with the closure head and thereby with the CEA drive mechanisms. The fuel alignment plate is positioned below the UGS base plate by cylindrical control element shroud tubes. These tubes are attached to the UGS base place and the fuel alignment plate by rolling the tubes into the plates and welding. The fuel alignment plate is designed to align the lower ends of the control element shroud tubes which in turn locate the upper ends of the fuel assemblies.      The fuel alignment plate also has four equally spaced slots on its outer edge which engage with Stellite hardfaced lugs protruding from the core shroud to provide alignment. The control element shroud tubes bear the upward force on the fuel assembly holddown devices. This force is transmitted from the alignment plate through the control element shroud tubes to the UGS barrel base plate.
The CEA shroud assembly limits cross flow and provides separation of the CEA assemblies. The assembly consists of an assemblage of large vertical tubes connected by vertical plates in a grid pattern. The shroud assembly is' mounted on the UGS base plate and is held in position by eight tie rod tube assemblies.      ThelK tie rods are bolted against plates located at the top of the CEA shroud assembly and are pretensioned. The tubes and connecting plates are furnished with multiple holes to permit hydraulic E communication. Guides for.the CEA extension shafts are provided by the guide structure support system (GSSS).
The holddown ring provides axial force on the flanges of the upper guide structure assembly and the core support structure in order to prevent movement of      the structures under hydraulic forces. The holddown ring is designed to accommodate the differential thermal expansion between the pressure vessel and the internals in the vessel ledge region.
3.9.5.1.3      Plow Skirt The Inconel flow skirt is a right circular cylinder, perforated with flow holes, and reinforced with two stiffening rings. The flow skirt is used to reduce inequalities in core inlet flow distributions  and to prevent  formation of large vortices in the Amendment K 3.9-60          October 30, 1992
 
t
;              CESSAR EE"ication 1
j                      lower plenum.                  The skirt is supported by ,nine equally spaced 1                      machined sections that are- welded to the bottom head of the pressure vessel.
l j                      3.9.5.1.4                      In-Core Instrumentation Support System
!                      The complete in-core neutron flux monitoring system includes                                                                                        .
I self-powered in-core detector assemblies, supporting structures
;                      and guide paths, an external movable detector drive system and an
:                      amplifier system to process detector signals.-. The self-powered i                      in-core detector assemblies                                                    and -the amplifier system are described in Section 7.7.                                        The external movable - detector -drive system and the instrumentation supporting structures and guide
{                      paths are described in this section and shown in Figure 3.9-15.
J The support system begins outside the pressure vessel,-penetrates the bottom of the. vessel boundary and terminates in-the upper-end
;                      of the fuel assembly. 'Each in-core instrument is guided over its full length by the external guidance conduit, the pressure vessel
{                      nozzles,                the  lower. support structure ICI nozzles .and .the
:                      instrument guide tube of the fuel assembly._ Figure 3.9-12.shows l                      the            in-core        instrument . support                                                    structure.-        The- in-core instrumentation support system routes the instruments so that detectors are located in selected fuel assemblics throughout the
;    k                core.              An equal instrument length exists for all locations.                                                              The
;                      guide tube routing _outside the reactor vessel is a simple .180'
;                      bend to the seal table.                                              'The pressure boundaries for the individual instruments are at the . out-of-reactor seal table, i                    where -the                  external              electrical                            , connections              to-:the    in-core
!                      instruments are made (Figure 3.9-15).
The        in-core instrument assemblies contain a movable detector
                                                                                                                                        ~
i guide tube                  to  allow              insertion                            of 'a miniature movable flux detector. .The assemblies have an--integral seal plug which-forms
,                    a seal at the instrument seal table and through which the signal j                    cables and movable guide tube pass.                                                                Static O-ring seals are'used I                      to seal against operating pressure.
The movable detector drive-system consists of two drive' machines, two transfer. machines, two drive cables with detectors- and' the
}                      interconnecting tubing.                            Because the two halves of the system are-
:              . identical with only- several                                                        connections. between them (leak l
L detection and '.- gas purge) , only half of -' the system is-described below.
'                  A. fission' chamber is cused as the movable . flux detection : device.
The detector signal cable-is-wound with an edgewise nelical--steel-wrap.to form the drive cable. .This cable-construction allows a-hobbed                  wheel in-the drive machine to drive ' the cable in either i:                direction.                      The-drive-machine consists'of aecable reel,-a f ive
;.                motor,                  gear reducer,                hobbed                  drive                      wheel    and~a shaft position p
3.9-61 f
 
C E S S A R H,iG"icari:n O
encoder. The detector may be positioned from the control room by use of the plant computer or a separate control box.
The detector may be shifted from any location to any other location in less than eight minutes.        The detectors are shifted by the transfer machine which is mounted above the seal table.
The machine consists of a geared drive motor, multiple position Geneva positik i ng mechanism,        inlet  and outlet tubes and miscellaneous lim.t and interlock switches.        External commands control the motor to position the mechanism so that the inlet path is lined up with the correct outlet path.            The transfer machine also has connections for inert gas blanketing and for guide tube leak detection. The gas connection allows an inert gas supply to blcnket the transfer machine and movable detector guide tubes during machine operation.
The leak detector alarm system is a float switch mounted in a
,  chamber which is fed from both transfer machines.        Any leak which might occur in a movable detector guide tube flows to the transfer machine and then to the transfer machine sump, which exits to the leak detector.      A solenoid valve past the leak detector allows remote drainage of the leak detector sensing line.
3.9.5.2        Design Ioading conditions The following loading conditions are considered the core support and internals structures.          in the design of lE A. Normal operating temperature differences B. Normal operating pressure differences C. Flow loads D. Weights, reactions and superimposed loads E. Vibration loads F. Shock loads (including operating basis and safe shutdown earthquakes and pipe breaks not eliminated by LBB)              lK G. Anticipated transient loadings not requiring forced shutdown H. Handling loads (not combined with other loads above)              E 3.9.5.3        Design loading Categories The design loading conditions are categorized as follows:
Amendment K 3.9-62              October 30, 1992
 
i
:            CESSARnubiu O      3.9.5.3.1                              Level A and Level B Service Loadings                                                                                      C This category                          includes the combinations of design loadings i
consisting                        of    normal              operating                    temperature                              and  pressure
;            differences, loads due to flow, weights, reactions, superimposed
;            loads,              vibration,                        shock            loads          including                          operating              basis earthquake, and transient loads not requiring shutdown.
:            3.9.5.3.2                              Level C Service Loadings i'          Level C Service Loadings are derived from a loading combination                                                                                                  K of normal operating loads and the design basis pipe break (DBPB).
The DBPB is defined as a postulated pipe break that results in i
the loss of reactor coolant at a rate less than or equal to the capability of the reactor coolant makeup system (i.e. less than
,            150 GPM).
3.9.5.3.3                              Level D Service Loadings                                                                                                  E 4
The following loading combination shall be considered as Level D Service Loadings.
A.                Normal Operation Loads
!    (,/
j            B.                Either the Main Steam / Feed Water Pipe Break (MS/FWPB)                                                                                      or K
;                              Loss of Coolant Accident (LOCA) Loads i
C.                Safe Shutdown Earthquake (SSE) Loads LOCA is defined as the loss of reactor coolant at a rate in-excess of the reactor coolant normal makeup rate, from breaks in i
the reactor coolant pressure boundary inside primary containment up to, and including, a break equivalent in size to the largest                                                                                                  E
]            remaining primary branch line not eliminated-by leak before break j            (LBB) criteria.
3.9.5.4                              Design-Bases for Reactor Internals The stress limits to which the reactor internals are designed are listed in Table 3.9-16.
K The operating categories and stress limits are defined -in the applicable section of the Section -III of the ASME Boiler and Pressure Vessel Code.
E To            properly perform their functions,                                                    the reactor internal structures are designed to meet the deformation. limits listed a
In)    below:
r Amendment K 3.9                                              October 30, 1992~
L
 
CESSAR E!?JFicari:n Level B and Level C service loadings, thelK 9
A. Under Level A, core will be held in place and deflections will be limited so that the CEAs can be inserted under their c,wn weight as    E the only driving force.
B. Under service loading combinations other than Level A, B, g and C service loadings that require CEA insertability, deflections are limited so that the core will be held in place, adequate core cooling is preserved, and all CEAs can E be inserted. Those deflections that would influence CEA movement are limited to less than 80% of the deflections required to prevent CEA insertion.
The allowabic deformation limits are established as 80% of the loss-of-function deflection limits.
The significant component deflection limits are designed as followe:
: 1. Fuel lower end fitting interface with the lower support    K structure is deflection limited to avoid disengagement.
: 2. Fuel upper end fitting interface with the upper guido structure      relative      displacement      precludes disengagement.
: 3. The CEA shroud lateral deflection allows CEA insertion.
O Amendment K 3.9-63a            October 30, 1992
 
CESSAR En#lCATION
(
s l
i i
l e
l i
l j
THIS PAGE INTENTIONALLY BLANK i
l 1
e i
4 l
i l
i I
l i
1 i
b 4
i i
a i
k
  !  s
?
1 Amendment K j                                                                                                                        3.9-63b                                            October 30, 1992 1
            - _ . . , . . ..      . . . . - . . . . - . _ . _ _ . .      . . _ _ . . . _ ~ . . . . . . _ , . . . _ , . . . _ . . . . _ . . . . _ . . _ . . _ . . . _ _                  _ _ , _ . . _ . . - -
 
CESSAR8ln hia O
In the design of critical reactor vessel internals components which are subject to fatigue, the stress analysis is performed utilizing the design fatigue curve of Figure I-9-2 of Section III of the ASME Boiler and Pressure Vessel Code. A cumulative usage factor of less than one is used as the limiting criterion.
As indicated in the preceding sections, the stress and fatigue limits for reactor internals components are obtained from the ASME Code. Allowable deformation limits are established as 80%
of the loss-of-function deflection limits. These limits provide adequate safety factors assuring that so long as calculated stresses, usage factors, or deformations do not exceed these limits, the design is conservative.
3.9.6        IN-SERVICE TESTING OF PUMPS AND VALVES                    E The in-service testing program for Code Class 1, 2 and 3 pumps and valves will be developed in accordance with the requirements of Section XI of the ASME B&PV Code. This program is implemented lK to assess operational readiness during preservice and in-service [E inspection. The inservice festing program in coordination with the System 80+ design will utilize provisions and features such g that  minimal departure    from ASME    B&PV  Code,    Section XI, Subsections IWP and IWV requirements result.
3.9.6.1        In-service Testing of Pumps In-service testing of pumps is limited to those Code Class 2 and 3 pumps which are required to perform a specific function in shutting down a reactor or in mitigating the consequences of an      E accident, and that are provided with an emergency power source.
The required hydraulic and mechanical parameters will be measured by the methods and with frequency prescribed in Subsection IWP of ASME Section XI. The pump test plan and schedule are included in the technical specifications.
In addition to Section XI of the ASME B & PV Code, the following provisions will be included as a part of the pump test plan for the pumps specified above:
A. Full flow testing    of  these  Class 2  and  3  pumps  on  a quarterly basis.
K B. Pump suction pressure while pump is operating will be a standard test parameter in      addition  to  static  suction pressure (pump shut down).
C. Guidance for ensuring minimal pump miniflow operation while testing.
Amendment K 3.9-64            October 30, 1992
 
CESSAR RE#icarieu F
0
      \
,            D.          A Pump Maintenance Plan which will ensure the trending 1of all safety related pump test parameters.- This program will j                          also provide a link between trended results and plant 4                          engineers responsible ' for pump operability and reliability
'                            so that problems may be identified and further analysis may be instituted.-                    The Plan will also establish a pump disassembly / inspection program based upon:                                                                                                      g
: 1. Historical performance of the pump to identify pumps which are prone to degradation / wear.
: 2. Analysis of' trends of pump test parameters.
i                            3. Analysis of pump components, such as "O-Rings," which l                                are subject.to aging..
3.9.6.2                    In-service Testing of Valves lE l              In-service testing of valves is limited to those Code Class 1,: 2 and 3 valves which are required to perform a specific function in
;              shutting down a reactor or in mitigating the consequences of an accident.          'ihe required hydraulic and mechanical _ parameters will be measured by the methods -and with- frequency prescribed in O        Subsection IWV of ASME Section XI.                                                The test plan and schedule jh              are included in the technical specifications, i
;              In addition to Section XI of the ASME B & PV Code, the following 2
provisions will be included as a part of the valve test plan for
,              the valves specified above:
A.          Determir.ation of the optimal test frequency of valves from a                                                                                    K regulatory, design,                  vendor and- engineering practicality
;                            standpoint.
B.          Programmatic use of appropriate non-intrusive . diagnostic
;                            check valve testing technologies, t
l              C.          For those valves which must _ operate under differential i                            pressure to perform-their safety function, tests are to be-t                            performed on-an appropriate schedule in a manner which best replicates the postulated-differential pressure.
[
D.          Categorization and appropriate                                          testing                of    the- following classes of Category'A valves:
1 1
: 1. Pressure              isolation valves                                    -
valves              that                provide i                                . isolation of a' pressure difforential from one part of a
,                                  system to another or between systems.
Amendment-K 3.9-64a                                October 30,-1992 m  .-,i.-eav e          ts--    re -    y- e.*+-  m  s oyy eawa y,=,cy.ece ,f    ,-ag-a g g,gv, y ypg gme      w &  vg,mS-      9 9,yey,-  ei..++m,e't39 s- y    g- ,ec. ,.-9,s
 
CESSAR Unir"lCATION O
: 2. Temperature isolation valves - valves whose leakage may cause    unacceptable    thermal  stress,  fatigue,  or stratification in the piping and thermal loading on supports or whose leakage may cause steam binding on pumps.
: 3. Containment    isolation valves  -
valves that provide l          isolation capability for the piping systems penetrating containment, i  E. A Valve Maintenance Plan which will ensure the trending of l
all safety related valve test parameters. This program will      K also provide a link between trended results and plant engineers responsible for valve operability and reliability so that problems may b3 identified and further analysis may be instituted.      The Plan will also establish a valve disassembly / inspection program based upont
: 1. Historical portormance of the valve to identify valves which are prone to degradation / wear.
l    2. Analysis of trends of valve test parameters.
1 I    3. Analysis of valve components, such as "O-Rings," which l          are subject to aging.
l l
l l
O Amendment K 3.9-64b            October 30, 1992
 
CESSAR8!aAnia
/^
U REFERENCES FOR SECTION 3.9
: 1. MDC STRUDL, McDonnell Douglas Corp., St. Louis Mo.
: 2. " MARC-CDC User Information Manual," Volume I and Volume III, MARC Analysis Corp.        and Control Data Corp. Minneapolis, Minn., 1976.
: 3. " LION, Temperature Distributions for Arbitrary Shapes and Complicated Boundary Conditions," Schmid, J. R., et al, KAPL-M-6532 (EC-57), July 27, 1966.
: 4. MRI/STARDYNE-Static and Dynamic Structural Analysis System:
User Information Model, Control Data Corporation, June 1, 1970.
: 5. DeSalvo,    G. P. and Swanson,  J. A.,  ANSYS-Engineering Analysis System Swanson Analysis Systems, Inc., Elizabeth, Pa., 1972.
: 6. " Dynamic Stress Analysis of Axisymmetric Structures under Arbitrary Loading," Ghosh, S. and Wilson, E., Dept. No. EERC 69-10, University of California, Berkley, September 1969.
()  7. Topical    Report      on Dynamic Analysis of Reactor Vessel        E Internals Under        Loss-of-Coolant Accident Conditions with Application of Analysis to C-E 800 Mwe Class Reactors,"
Combustion      Engineering,      Inc.,  CENPD-42,    August    1972 (Proprietary).
: 8. " SHOCK,  A Computer Code for Solving          Lumped-Mass Dynamic Systems," Gabrielson, V. K., SCL-DR-65-34, January 1966.
: 9. "SAMMSOR    II    -
A Finite  Element Program to Determine Stiffness and          Mass  Matrices  of  Shells-of-Revolution,"
Tillerson, J. R. and Haisler, W. E., Texas A&M University, TEES-RPT-70-18, October 1970.
: 10. "DYNASOR II      -
A Finite Element Program for the Dynamic Non-Linear Analysis of Shells-of-Revolution," Tillerson,          J.
R. and Haisler, W. E.,      Texas A&M University, TEES-RPT-70-19, October 1970.
: 11. "Early Blowdown Analysis for Loss of Fluid Test Facility,"
Fabic,  S.,  Kaiser Engineers, Report No. 65-28-RA, June 1965, Revised April 1967.
p) e                                                                              ,
V
{
                                                                                ?
Amendment E        d 3.9-65              December 30, 1988  l
 
CESSAR n%"lCATION O
: 12. " FLASH-4 A Fully Implicit Fortran IV Program for the Digital Simulation of Transients in a Reactor Plant," Porsching, T.
A., et al, WAPD-TM840 March 1969.
: 13. " Description of Loss-of-Coolant Calculational Procedures,"
Combustion    Engineering,  Inc.,    CENPD-26,  August  1971 (Proprietary).
: 14. " Method for the Analysis of Blowdown Induced Forces in a Reactor Vessel," Combustion Engineering, Inc., CENPD-252-P, December, 1977 (proprietary).
: 15. "CEFLASH-4A*    A Fortran-IV-Digital Computer Program for Reactor Blowdown Analysis," Combustion Engineering, Inc.,
CENPD-133P, August, 1974 (proprietary).
: 16. "CEFLASH-4A:    A Fortran-IV Digital Computer Program for Reactor    Blowdown Analysis    (Modifications),"  Combustion Engineering, Inc., CENPD-133P, Supplement 2, February, 1975 (proprietary).
: 17. Scherer, A. E., Licensing Manager, (C-E), Letter to D.      F.
Ross, Assistant Director of Reactor Safety Division          of Systems Safety, LD-76-026, March, 1976 (proprietary).            E
: 18. Parr,  O. D., Chief Light Water Reactor Project Brack 1-3, Division of Reactor Licensing (NRC), Letter to F. M. Stern, Vice President of Projects (C-E), June, 1975.
: 19. Knell, K., Chief Light Water Reactors Brack No. 2, Letter to A. E. Scherer, Licensing Manager (C-E), August, 1976, (Staff Evaluation of CENPD-213).
: 20. SUPERPIPE -A    Computer Program for Structural Analysis and Code Compliance Verification of Piping System,          Impell Corporation, Walnut Creek, California.
1
: 21. " Theory of Pump Induced Pulsating Coolant Pressure in PWRs,"
l      Penzes, L. E., 2nd Int. Conf. on Structural Mechanics in l      Reactor Technology, Vol. II, Part E-F.
: 22. " Forced Vibration of a Shell Inside a Narrow Water Annulus,"
Horvay, G., Bowers, G., Nuclear Engr. Design V34, 1975.
l
: 23. Main Yankee Precritical Vibration Monitoring Program, Final Report, CENPD-93, February, 1973.
l  24. Omaha  Pre-critical Vibration    Monitoring  Program,  Final Report, CEN-8(0), May, 1974.
Amendment E 3.9-66            December 30, 1988
 
CESSAR !!nificarien -
;o
: 25.                  Calvert Cliffs Analysis of Flow-Induced Structural Response, i                                                CEN-4(B).
j                          26.                  Comparison of Calvert Cliffs, Main Yankee and Ft. Calhoun Design Parameters _and Flow-Induced                                Structural      Response, CENPD-115 Supp. 1, April, 19_74.
: 27.                  Comparison of ANO-2, Maine Yankee and Ft. Calhoun Reactor 3
Internals Design Parameters and Flow-Induced Structural Re-sponse, CEN-8(A)-P Supp.                  1,      May 1975.
: 28.                  " Response of a Tube Bank to Turbulent Crossflow Induced j                                                Excitation," Lubin, B. T., ASME-77-DET-142.
l                          29.                  " Pressure Distribution o n. Circular Cylinder at Critical
!                                                Reynolds Numbers," Batham, J. P., J1 Fluid. Mech., v57, pt j                                                2,  1973.
i
: 30.                  "Supercritical Reynold Number Simulation for Two Dimensional Flow Over Circular _ Cylinders," Szecheny, I. E., J1. F1- .d i                                                Mech, v70,-pt 3, 1975.
: 31.                  " Properties of Karman Vortex Streets," Chen, Y.                                  N.,      Sulzer i                                                Technical Review, 1972.                                                                            E s
i                            32.                  " Fluctuating Lift Forces of the Karman Vortex Streets on
:                                                Single Circular Cylinders and in Tube Bundles," Chen, Y. N.,
Part 1 - ( ASME-71-VIBR11) , Part 2 (ASME-71-VIBR-12), Part e
:                                                  (ASME-71-VIBR-13).
!_                          33.                  " Vortex Excited Oscillations of Yawed Circular Cylinders,"
i                                                King, R., ASME 76-WA/FE-16.
i                          34.                  Msrk,    W. D. , - Chandiramani, K. L., Karnopp, R. L., Reactor-
}I Internals Vibration Study, BBN Report 151273, Oct. 1967.
: 35.                  Final Report on Studies of Flow in a 0.248 Scale Model of j                                                the Omaha PWR,_ H. L. Crawford and L.-J. Flanigan, l August, 1970, Battelle Memorial Institute.
1
: 36.                  Final-Report.On Studies of Flow in a 1/5-Scale Model of-the
;                                                Palisades PWR, CEND-358, L. A. Schultz, D. A. Trayser, L. J.
Flanigan,-Battelle Memorial Institute, April, 1969.                                                          i a
: 37.                  Owen,    P. R.,-    " Buffeting                      ' Excitation of Boiler Tube vibration," J1. of Mechanical Science, Vol. 7, N. 4, 1965.
: 38.                  Davies, P.O.A.L.,        "An Experimental Investigation of the f                                              Unsteady Pressure Forces on a Circular Cylinder in_ a i (                                              Turbulent Cross Flow," Bruun, H. H., J1. of Sound &
L                                              Vibration, V40, N.4, 1975.
2
,                                                                                                                        Amendment E 3.9-67                  December 30, 1988
 
CESSARnEncucu O
: 39. "A Study of Free Jet Impingement," Coleman, D. D., et al.,
Part 2, J1. Fluid Moch. 1971 V.45, Part 3, pg. 477-512.
: 40. " Spectra of Turbulence in a Round Jet," Gibson,      M. M., Jo.
Fluid Mechanics V15, 1963.
: 41. Ilarty, W. C., Rubinstein,    M. P.,  Dynamics of Structures, Prentice-liall, 1964.
: 42. " Dynamic Stress Analysis of Axisymmetric Structures Under Arbitrary uoading," Report 11o. EERC 68-10, S. Chosh & E.      L.
Wilson, Sept. 1969, Univ, of Calif.
E
: 43. " Comprehensive  Vibration Assessment Program for Reactor Internals    During    Preoperational    and  Initial    Startup Testing," USNRC Regulatory Guide 1.20 Rev. 2, May, 1976.
: 44. "A Comprehensive Vibration Assessment Program for Palo Verde Nuclear Generating Station Unit 1 (System 80 Prototype),"
Combustion Engineering, Inc., CEN-263, Rev. 1 January, 1985 (Proprietary).
: 45. " Structural Analysis of Fuel Assemblics for Seismic and Loss-of-Coolant Accident Loading," Combustion Engineering, Inc., CENPD-178, Revision 1, August 1981.
: 46. Texas    Utilities    Services    Letter  Log  No. TXX-3423, h,
October 15, 1981.
9 Amendment K 3.9-68            October 30, 1992
 
CESSAR !!Sinumn                                                                      ,
TABLE 3.9-1 (Shoot 1 of 6)
TRANSIPNTS USED IN STRESS ANALYSIS OF CODE CLASS 1 COMPONENTS                                    ,
Normal Conditions        ~
Occurrencon (Sco Note 1)
: 1. Power operation with normal + NSSS process paramotor variations ~(5-100%
power)                                            1,000,000. (each)
: 2. Daily load cycle of 100-50-100%
power (2 hour ramps)                              22,000.                      -
: 3. Frequency control                                  800,000.
: 4. Turbino power steps of i lo porcent (15-100% power)                                    2,000. (each) y    5. Turbine power stops of 1 i percont-
      /            (5-15% power)                                      2,000. (each)
: 6. Turbino power ramps of i 1%/ min (5-15% power)                                      2,000. (each)      K
: 7. Turbine load rejection up to 50%
(50-100% power)                                    40.
: 8. Turbine generator runback _to house load (15-100% power)                              40.
: 9. Loss of a main feedwater pump without causing a reactor trip (50-100% power)                                    40.
: 10. Uncomplicated reactor trips
                  '(5-100% power) (See Note 2)                        150.
: 11. NSSS operations with the control systems 11n the manual' mode (0-5% power)                                      2,000.
: 12. NSSS operations with the control systems in the manual mode
(''
N )}
(5-100% power)-                                    2,000.
l Amendment K l
zOctober 30, 1992
 
CESSAR !!!Gncucu O
TABLE 3.9-1  (Cont'd)
(Shoot 2 of 6)
TRANSIENTS USED IN STRESS ANAINSIS OF CODE CLASS 1 COMPONENTS Normal Conditionn                      Occurrences (See Note 1)
: 13. Opening of the TW economizer valve during power increasing operations      500.
: 14. Startup and coastdown of a Reactor Coolant Pump at hot standby conditions                              4,000.
: 15. Operation of the auxiliary spray system                                  500,
: 17. Tio line thermal backup (+ 20%
power change)                          60.  (each)
: 18. Plant heatup                            500.
E
: 19. Plant cooldown                          500.
: 20. Steam generator blowdown                2,000.
l  21. Shift from normal to maximum CVCS flow rate and return              2,000.
: 22. Spurious actuation of the pressurizer spray                      40.
I  23. Spurious actuation of the pressurizer heaters                    40.
: 24. Inadvertent closure of one economizer feedwater valve              40.
l  25. Inadvertent isolation of one main feedwater heater                  40.
: 26. Spurious startup'of a safety injection pump during shutdown conditions                              40.
O Amendment K October 30, 1992
 
    . . . _ . - . . . . . . . - . - - .    . _ - _ _ _ . _            _ . _ . . - _ - - . - - . . . _  _ - . .          . . . . . _ - . = . - _ . - -
l
( E!ifi/ Lit !!alficatinu                                                                                                          -
C i
TABLE 3.9-1 (Cont'd)
;                                                                            (Shoot 3 of 6)                                                                    l TRANSIENTS USED IN STRESS ANALYSIS OF
{                                                                  CODE CLASS 1 COMPONENTS l                                        Test Conditions                                                          Occurrences                                  ,
(Sco Note 1)
: 1.      RCS hydrostatic test                                                    15.
: 2.      RCS leak test                                                            200.
: 3.      Secondary hydrostatic test                                              15.
: 4.      Secondary leak test                                                      200.
: 5.      SIS /SCS check valve operability test                                                                    500.
: 6.      SIS /SCS preoperational and maintenance test                                                        240.
K Upset Conditions                                                        occurrences (Sco Note 1)
: 1.      Decrease in feedwater temperature                                        20,
: 2.      Increase in foodwater flow rate                                          20.
: 3.      Increase in steam flow rato                                              20.
: 4.      Inadvertent opening of a steam generator relief or safety valve                                        10,
: 5.      Loss of external load                                                    20.
: 6.      Turbine trip                                                            20.
: 7.        Loss of condenser vacuum                                              '20.
: 8.        Loss of non-omergency AC power to the station auxiliarios                                              10.
: 9.        Loss of normal foodwater flow                                            20.
Amendment K October 30, 1992~
  ..          ,            ,.__--,_.;-.-..                --    -,,,a-.                      -,.,..:..              - ~..        -.          .. ,      ,.
 
C E S S A R M L"icu es O
TAllLE 3.9-1 (Cont'd)
(Shoot 4 of 6)
TRAN!illOITS USED IN !ITitESS ANATWSIS OF CODE CLASS 1 COMPONENTS Test Conditions                                        Occurrences (See Note 1)
: 10.        Loss of forced reactor coolant flow                    20.
: 11.        Unco 1 strolled CEA withdrawal from suberitical or low power conditions                    10.
: 12.        Uncontrolled CEA withdrawal at power                                                  10.
: 13.        Control rod misoperation, system malfunction, operator error or inadvertent RPCS operation                              20.
: 14.        Natural circulation cooldown                                                    *
(HSB to HSD)                                          10.
: 15.        Loss of component cooling water to                                          K the letdown heat exchanger                              10.
: 16.        Inadvertent boron dilution                              10.
: 17.        Inadvertent operation of the ECCS at power                                                5.
: 18.        CVCS malfunction that increases RCS inventory                                              20.
: 19.        Failure of small lines carrying coolant outside containment (sample line break)                                    5.
: 20.        Inadvertent MSIS at zero power                          5.
: 21.        Closure of a single MSIV                                5.
: 22.        Reactor Coolant Pump Seal Failure                      10.
O Amendment K October 30, 1992
_ . _          ___--. m__-_      .-__-__.m__.________ _ _ _
 
CESSAR !!Sincuiu                                                                                                                                                                              :
i i
5                                                                                                                                                                                                              r I
TABLE 3.9-1                      (Cont'd)
(Sheet b of 6)
TRANSIENTS USED IN STRESS ANALYSIS OF CODE CIASS 1 COMPONENTS Tent Conditionn                                                                                                  Occurrences (See Note 1)                                          '
: 23.                  Loss of. Seal Injection with Loss                                                                                                                                      -
of Cooling Water                                                                                                5.
Emergency conditions                                                                                            Occurrences                                            ;
(See Note 1)                                          >
: 1.                    Inadvertent Opening of a SDS Valvo                                                                              1.
Faulted Conditionn                                                                                              Occurrencen (See Note 1)                                          -
: 1.                                                                                                                                                                      K Steam system piping failure (SLB)                                                                                1.
: 2.                    Feedwater system pipe break (FWLB)                                                                              1.
: 3.                  Reactor coolant pump rotor seizure                                                                              1.
: 4.                  Reactor coolant pump shaft break                                                                                1.
: 5.                  Steam generator tube rupture (SGTR)                                                                              1.
: 6.                  Loss of coolant accident (LOCA)                                                                                  1.                                                      1
: 7.                  Inadvertent opening of-a pressurizer safoty valve                                                                                        1.
: 8.                  Rod ejection accident-                                                                                          1.
[
        \
                                                                                                                                                                      -Amendment 1<
October 30,-1992
      ,,ne,e-,  ,v.,,.gwe  ,g e ,, , , ,w, ,, , .g e~g y - e e - m, -t  ,-,,vrwe ,      e, w,- < ,,-,,,, N w. , m &,-, m , w ye,,en. vet ~,-.,  '
                                                                                                                                                  .<,~,m-,-        -,  -- - c re e-- - w .g p v    ur.'- t -        4
 
CESSAR EnMeni:n O
TABLE 3.9-1                  (Cont'd)
(Sheet G of 6) 110tes (Table 3.9-1):
(1)  This is the total number of occurrences considered over 60 years for each event. This frequency of occurrence is for desigri purposes only and does not necessarily reflect the actual expected number of operational occurrences.
(2)  These  are  uncomplicated reactor trips.                    Reactor trips occurring as a consequence of other DBEs are included                        K elsewhere in this table as part of other events.
(3) These events are not considered credible in forming the basis of the liSSS. They are included to demonstrate that the 11SSS components will not structurally fail even in the highly unlikely event that they do occur.                        A  design frequency of occurrence of one (1) in sixty years is assigned for all faulted events.                      The actual expected frequency of occurrence of these events is much less.
9 O
Amendment K October 30, 1992
 
CESSAR 8!Mincmu                                                                                                !
O                                                                                                                  -
TABLE 3.9  7 4 (Cont'd)
(Sheet 5 of 8)
SD SMIC 1 ACTIVE VALVES ASME VALVE                        SYSTEM NAME                  VALVE              SECTION III      AC1UATOR NO.              (safety function)                    TYPE              CODE CLASS          TYPE SI 614          Safety injection Sys.                Check                        1              None        I (0perate)
CH 205            Auxiliary Spray (Close)              Globe                        2            Solenoid Charging Line (Close)                                                                        K CH 208                                                Globe                        2            Solenoid CH 144            BAST to PCPS iso.                    Hand                        3              None CH 154            BAMP Discharge Check                Check                        3              None CH 155            BAMP Discharge Check                Check                        3              None        I CH 164            Boric Acid filter Bypass            Hand                        3              None CH 174            Boric Acid Makeup Cross-            Hand                        3              None connect CH 177            Boric Acid to Charging              Check                        3              None Pump Suction Check                                                                        K CH 190,191        BAST Gravity feed Check              Check                        3              None
~
O S1 305 SI 304 SI 309 IRWST Isolation IRWST isolation IRWST Isolation Gate Gate Gate 2
2 2
Motor Motor Motor SI 308            IRWST isolation                      Gate                        2              Motor SI 300,301        CS/SCS IRWST Recirculation          Gate                        2              Motor Isolation SI 302,303        SI IRWST Recirculation              Gate                        2-            Motor Isolation 51 695            CS Header 2 Block Valve              Gate                        2              Motor i  SI 687            CS lieader 1 Block Valve            Gate                        2              Motor i  51 657            CSS 1 IRWST Recirculation            Globe                        2              Motor      I l                      Line Flow Control SI 658            CSS 2 IRWST Recirculation            Globe                        2              Motor Line Flow Control SI 314            SCS 1 1RWST Recirculation            Globe                        2              Motor Line Flow Control SI 315            SCS 2 IRWST Recirculation            Globe                        2              Motor Line Flow Control l  SI 688            SCS 1 IRWST Recirculation            Gate                        2              Motor l
'                      Line Isolation SI 693            SCS 2 1RWST Recirculation            Gate                        2              Motor Line Isolation i  SI G82            SIT Fill Line Isolation              Relief                      2              None CH 255            Seal Inj. Containment                Globe                        2              Motor Isolation (Operate)
SI 390            Holdup Volume Tank                  Gate                        2              Motor 51 391            Spillway                            Gate                        2              Motor Amendment K-October 30,-1992 e m+    ---%-?
_          wo- - -            .4    y-            -                            -c--            ,
 
CESSAREEncucu O
TABLE 3.9-4 (Cont'd)
(Sheet 6 of 8)
SEISMIC I ACTIVE VALVES ASME VALVE            SYSTEM NAME                VALVE    SECTION 111    ACTUATOR NO.        (safety function)__              TYPE    CODE CLASS      TYPE SI 392    Spillway                      Gate              2          Motor SI 393    Spillway                      Gate              2          Motor  I SI 394    Reactor Cavity                Gate              2          Motor SI 395    Spillway                      Gate              2          Motor CH 431    Awiliary Spray Check          Check            1          None    g (Close)
CH 433    Charging Line Check            Check            1          None (Close)
CH 435    Charging Line Bypass Check    Springloaded      2          None    y Check CH 447    Auxiliary Spray Check          Check            1          None (Close)
CH 448    Charging Line Check            Check            1          None (Close)                                                      }
CH 494    RHW Supply Line to RDT        Check            2          None{
Check (Close)
CH 501,504 VCT Discharge Isolation        Gate              3          Motor CH 505    RCP Controlled Bleed-0ff      Globe            2        Pneumatic (Close)                                          Diaphragm l CH 506    Containment Isolation          Globe            2        Pneumatic l                    (Close)                                          Diaphragm CH 514    BAMP to Charging Pump          Globe            3          Motor i CH 515    Letdown isolation Valve        Globe            1        Pneumatic l                      (Close)                                          Diaphragm CH 516    Letdown Line Isolation        Globe            1        Pneumatic K Valve (Close)                                            Diaphragm CH 523    Letdown Isolation              Globe            2        Pneumatic Diaphragm CH 524    Charging Line Isolation        Globe            2          Motor CH 534    BAST to Charging Pump          Gate              3          Motor CH 536    BAST to Charging Pump          Gate              3          Motor CH 560    RDT Suction Isolation          Globe            2        Pneumatic (Close)                                          Diaphragm CH 561    RDT Suction Isolation          Globe            2        Pneumatic (Close)                                          Diaphragm CH 580    RMW Supply Isolation to        Globe            2        Pneumatic RDT Iso. (Close)
Ch 590,591 Chai91 ng Flow Control        Globe            3          Motor CH 639    Chemical Addition Check        Check            3          None CH 705    Charging Pump Discharge        Check            3          None{    }
CH 719    Charging Pump Discharge        Check            3          None Amendment K October 30, 1992
 
  ..        .      .-    -          -  .  -    - -        -      - - - .                  =
CESSAR EN!!nc m.
O TABLE 3.9-4 (Cont'd)
(Sheet 7 of 8)
SEISMIC I ACTIVE VALVES ASME VALVE                  SYSTEM MAME                  VALVE            SECTION III        ACTUA10R NO.                (safety function)                1YPE            CODE CLASS            TYPE I
CH 747            Charging Line Check            Check                        2              None CH 750            Charging Flow Control Iso.      Globe                        3              Motor lK CH 753            BAMP to PCPS                    Hand                        3              None  II CH 754            Charging Flow Control Iso.      Globe                        3              Motor CH 764            Charging Flow Control iso.      Globe                        3              Motor CH 766            Charging Flow Control Iso.      Globe                      3              Motor CH 787            Seal Injection Check            Check                        1              None (Operate)
CH 802            Seal Injection Check            Check                        1              None (Operate)
CH 807            Seal Injection Check            Check                        1              None (Operate)
O  CH 812 CH 835 Seal Injection Check (Operate)
Seal Injection Check Check Check                      2 l              None None K
(Operate)
CH 866            Seal Injection Check            Check                        1              None (Operate)
CH 867            Seal Injection Check            Check                        1              None (0perate)
CH 868            Seal Injection Check            Check                      1              None (Operate)
CH-869            Seal Injection Check            Check                        1              None (Operate)
RC 200            RCS (Operate)                  Safety                      1              None RC 201            RCS (Operate)                  Safety                      1              None RC 202            RCS (Operate)                  Safety                      1              None RC 203            RCS (Operate)                  Safety                      1              None RC 244            RCS (Operate)                  Check                        1              None RC 409            Safety Depressurization        Gate                        1              Motor I
System RC 407            Safety Depressurization        Globe / Angle              l'              Motor System RC 4(,8          Safety Depressurization        Gate                        1              Motor System RC 406            Safety _Depressurization        Globe / Angle              1              Motor System RC 415            Safety Depressurization        Globe                      2            Solenoid System Amendment X October 30, 1992
                                                                              . _ ~ . _ , .    -    ,,  _
 
CESSAR E!L"icari u O
TABLE 3.9-4 (Cont'd)
(Sheet 8 of 8)
SEISMIC 1 AC11VE VALVES ASME VALVE            SYS1[M NAME                    VALVE    SEC110N 111      AC10A10R NO.          (safety function)_                TYPE    CODE CLASS          TYPE RC 414      Safety Depressurization        Globe                2          Solenoid System RC 417      Safety Depressurization        Globe                2          Solenoid System RC 416      Safety Depressurization        Globe                2          Solenoid System RC 410      Safety Depressurization        Globe                1          Solenoid System RC 411    Safety Depressurization          Globe                1          Solenoid I System RC 412    Safety Depressurization          Globe              1          Solenoid System RC 413    Safety Depressurization          Globe              1          Solent  )
System RC 418    Safety Depressurization          Globe              2          Solenoid System RC 419    Safety Depressurization          Globe              2          Solenoid System NOTES:  1.    (Operate) is defined as valve being capabic of both opening and closing.
2,    (Close) is defined as valve being capable of moving to or maintaining    n a closed position.
: 3.    (0 pen) is defined as valve being capable of moving to or maintaining an open position.
O Amendment I December 21, 1990
 
i 4
i 4
CESSAREHL m.
J i                                                                                                                                                                                                                    !
4 4
i                                                                                                  TABLE 3.9-5 1
1 j                                                                        S1RESS CRITERIA 10R SAFETY-RilATED ASME
:                                                                                      CLASSTAND MASST VLSSITS                                                                                                        .
q                                                                                                                                                                                                                  -!
i Servlco Lovel                                                                            __
Strons Llmitn*
l                            Design and Level A                                                                              o m_s 1.0 S j
b s 1.5 S (o m      ##              * #
L) j                          -Level B o
n -5 1.1 S l                                                                                                                            (o, or ag) + o b                          s 1.65 S E
Level C m s_1.5 S l                                                                                                                            o
{                                                                                                                            (o , or og) + o b                        s 1.80'S j                            Level D                                                                                        o,s 2.0 S-t
                                                                                                                                                      +- '#
b s 2.4 S l                                                                                                                            (o m      # #
L)                                                                    i 1
t
* Stress limits are taken from ASME III, Subsections NC and ND (Table 3321-1).
t l
a i
I 1
I-i
?
p                                                                                                                                                                                                                    ,
1 A
i t,
E
:                                                                                                                                              AmendmentsK                                                        'I
                                                                                                                                            -- O c t o b e r .3 0 , ' 1 9 9 2 --
4
    , , w w. m.-,,r.-  , -,$  -,.--gwy -yh v., , ~wvve,,,we,v.-w.--,-.*  ,,w-m-+<-r-    ,yev,yw,,--ww-+,w.v-,w,-,-,r-w--w,verw,*y,v-wr'w.+-,,y-e vv ,  *ye      tv--e e-,-,,-5t-,t>v--v.w+=-&s-  r y e- -e e
 
s.
i J
CESSAR iniiricuien 4
j TABLE 3.9-7 DESIGN CRITERIA FOR ACTIVE PUMPS AND PUMP SUPPORTS I
j                                                    Service Level                                                                        -Stress Limits
* i j                                                  Design and Level A                                                                ASME B&PV Section III,
;                                                                                                                                    Article NC-3400 and i                                                                                                                                    HD-3400 l
;                                                  Level B                                                                                <-1.0          S j
o, o" I ob $ 1.5 S j                                                  Loyal C                                                                                                                                    E
                                                                                                                                          < 1.2 S o" I o b 5 1.65 S o
J                                                  Loyal D                                                                                < l.2 S l                                                                                                                                    o" I o b < 1.8 S o,
i
)
!
* The stress limits specified for active pumps are moro 3                                                restrictive than the ASME B&PV Section III limits.- For Service i
Level D-(membrane plus bending), stressos may exceed 1.8 S but must romain below the material yield stress.                                                              In such casos, a 4
deflection analysis is performed to assure that the maximum
,                                                displacements are within the deflection limits which will not l-                                              impair the operability of the equipront.
i i
i:
i i
i t
4 i
4 5:
i                                                                                                                                                                                                                        !
Amendment E December 30, 1988-
  - , - , _ _ , . . . - - , . . _ , , . . _ . -          ;- - , _,, a , -, . . . . ~ _ . . . . , . . , , , _ . . _ _ , , . _ , _ . .    , , , . _ - - - - . _ . . . . _ _ . . , _ _ , , . _ _ , _ , , . _ . , . . . - .
 
CESSAR !!?sinema TABLE 3.9-9 STRESS CRITIGLIA FOR CIASS 2 AND CLASS 3 ACTIVE VAINES          y E
Service Ievel              Stross Limits
* max (Note SJ Level A                  ASME Section III                  1.0 Articlo NC-3500-and ND-3500 Lovel B                  o,$ 1.0 S                        1.0 o, + ob  s 1.5 S Lovel C                  o,s 1.2 S                        1.1 o, + ob  s 1.65 S Levol D                  og s 1.2 S                        1.2 o, + ob  5 1.8 S E
Notes 1 through 5 of Table 3.9-8 also apply to this table.
* The stress limits specified for activo valvos are moro lK rostriccive than the ASME B&PV Section III limits.          For Service Lovel D (nombrane plus bending), stresses may exceed 1.8 S but must remain below the material yield stress.      In    3 such casos, a deflection analysis is performed to assure that the maximum displacements are within the deflection limits which will not      impair the operability of the equipment.
N
                                                      -Amendment K October 30, 1992-1 l
 
CESSAR Sniincimu O
V TABLE 3.9-15 STRESS LIMITS FOR CEDM PRESSURE Il0VSINGS
:                                                                                      Stress Categories and j                            Operating Condition                              Limits of Stress Intensitiesja)
: 1.      Level A and Level 8: Normal                            Figures NB-3221-1 and 3222-1,            !
Operating Loading plus Normal                          including notes.
Operating & Upset Plant Transients                                                            E plus Operating Basis Earthquake Forces.                                                                                          ,
: 2.      Level D:    Normal Operating                          Article F-1000, Appendix F, Loadings plus Faulted Plant                            Rules for Evaluation of Service Transients plus Safe Shutdown                          Conditions Loading with Level D
  ;                      Earthquake Forces Plus Design                          Service Limits (b).                    g l
Bases nipe Breaks.
,                3.      Testing:    Testing Plant Transients                  Paragraph NB-3226
)
For the above listed operating conditions, the following limits regarding function apply:
;                1. Level A and Level B: The CEDMs are designed to function normally during and aTter exposure to these conditions.
E
: 2. Level D:    For SSE, the deflections of the CEDM pressure housing are limited to the elastic design limits of Article F-1330, Appendix F (defined above) so that the CEAs can be inserted after exposure to these i
conditions.
NOTE:        a. References listed are taken from Section !!! of the ASME Boiler i                                  and Pressure Vessel Code,
: b. Level D dynamic ' loads due to SSE and design bases pipe breaks are ' combined by the SRSS method in accordance with the                            K guidelines of NUREG-0484.
l i
Amendment K October 30, 1992
_ ..                _      ,        -.          - ._, _ . _..-._.        _ _ _ _ _ -            , _ _ ~
 
CESSAR !!hms
(
TAllLE 3. 9-16 STRESS LIMITS l'OR DESIGN AND SEltVICE IDADS Design Limits The coro support and internal structures shall be designed to meet the Design Limits defined in 11G-3221 of ASME Boiler and Pressure    Vessel  Codo Section III Subsection 11G for Design Loadings. Both structures aro safety Class 3, Soismic Category 1 and Quality Class 1 in accordance with ANSI /ANS-51.1-1983.            K Core  support  structures    shall  conform to  all  the rules  of construction in accordance with ASME Code Section III sub-section      K NG. Reactor internals other than core support structures shall meet the guidelines of 11G-3000 and be constructed so as not to adversely affect the integrity of the core support structures.
Levol A Service Limits The core support and internal structures shall be designed to meet the Level A Service Limits defined in NG-3222 of IB1D for Level A Service Loadings.
Level B service Limits g
The coro support and internal structures shall be designed to moot the Lovel B Survice Limits defined in NG-3223 of IB1D for Level B Service Loadings.
Level C Service Limits The core support and internal structures shall be designed to          K meet the Level C Service Limits defined in NG-3224 of IB1D for Level C Service Loadings.
Level D Service Limits E
The core support structures shall be designed to meet the Level D Service Limits defined in 11G-3225 of IB1D for elastic system analysis of Appendix P of Reference 3.1.2 using Lovel D Service Loadings. Maximum stress      intensity will  be obtained from principal stressos resulting from an SRSS combination of LOCA and      K SSE loadings plus normal operation loads in ._accordance with NUREG-0484 Rev. 01.
V Amendment K October 30, 1992
                                                                              )
l
 
_ . - . . - . - - . - . . . ~ . _ - - - - - - -                                                  ,          _ _ _ -                  ... -. - - - - . . - - ...            _.
I 2
i O
3 1
i i                                                                              u_.na
                                                                    ,d
:                                                                4.-        ,
                                                                                                        %,                              W,<
r i                                                SEAL HOUSINGS t    '      ~-    ~ ~
3, '
j                                                AND SEAL TABLE i
3 h
i          s PRESSURE VESSEL d'
(REACTOR VESSEL) 3 i
(w )
i i
                                                                        ;                  s                        _l l  L                                                    =
l                                      ICISUPPORTS                                                  'M N
                                                                                                            ~
!                                      (TYPICAL)
]
                                                                                                                                      \            INSTRUMENT
                                                                .J                                        =
4 ge                              ,                                      $            GUIDE TUBES i                                                                fic.- ~
                                                                                                                              . .t" a t
(TYPICAL) .'
j                                                                                                                                                  (ONLY 3 SHOWN -
  ;                                                                                                                                                  FOR SIMPLICITY) r 1
i, 4
I 4
l 4                                                                                                                                                            Amendment K October 30,1992 g
:                                                              =                                                                                                    Figure
_Jgg                                                              . pi CORE INSTRUMENT SYSTEM -
 
CESSAR EE!Lw3.                                                                                                        ,
6 3.10            SEISMIC AND DYNAMIC QUALIFICATION OF MECIIANICAL AND ELECTRICAL EQUIPMENT This section describos the soismic design criteria and analysos, tests,        procedures,      and acceptanco critoria applied to two categorios of mechanical and electrical equipment.                                                        The two categories are safety related (soismic Category I) equipment and K
non-safety related equipment whose failure can prevent the satisfactory accomplishment of safety functions (Scismic category II).
The information applicable to instrumentation and electrical equipment is provided in this section.                                          Valvos and pump motors and other mechanical equipment are discucsod in Section 3.9.2.2.
3.10.1            SEISMIC QUALIFICATION CRITERIA Instrumentation and electrical equipment used for post-accident monitoring, the Reactor Protective System (RPS), the Engincorod Safety Features Actuation System (ESFAS), the actuation devices lD for ESF system actuated components,                                    and the                  emergency power system are designed to Scismic Category I requirements to ensure the ability to initiato required protectiva actions during, and O, following, a Safe Shutdown Earthquake (SSE); and, to supply power, following an SSE, to components required to mitigate the consequences of events which require safety _ system operation.                                                    lD Instrumentation and electrical                                    equipment designated Soismic Category I are shown to maintain their structural integrity and                                                    K not adversely impact safety related equipmont during an SSE.
3.10.2            MimlODS AND PROCEDURES FOR QUALIFYING SEISMIC                                                  lK CATEGORY I ELECTRI"AL EQUIPMENT AND INSTRUMENTATION Seismic        Category I instrumentation and electrical equipment required to perform a safety action during a seismic-event, after a    seismic event,          or both are. qualified                                  (with appropriate documentation) in accordance with the requirements of the equipment specifications. These requirements are consistent with those of IEEE 344-1987,                        " Seismic -Qualification of Class 1lD Electrical Equipment for Nuclear Power Generating Stations" and include the following:
A.      The seismic excitation for-which the equipment must qualify will be determined based on location in the plant.                                                        D B.      The equipment will                  be desig=.md to perform                                  its intended function during and after an earthquake of the 1.1 tensity of theSafeShutdownEarthquake,andfornon-seismicvibrationslg in accordanco with R.G. 1.100, Rcv. 2.
Amendment K 3.10-1                                          October 30, 1992
 
CESSARESA m                                                  _
i C. Analysis, testing or operating experience will be required O',
;        to substantiate the adequacy of the design depending on the          l type of equipment under consideration and its intended safety function.                                                    l D. The quality assurance program, as described in Chapter 17, D illustrates    the    procedurco    used  in  assuring  the implomontation of the requirements.
Seismic    Category I instrumentation and electrical equipment requiring seismic qualification are the same as those listed in the    tables  of  Appendix 3.11B as requiring environmental        K qualification. The test program where used will provide the following:
E. A  test program is    required  to confirm the functional operability of all      Seismic  Category I    electrical and associated mechanical equipment and instrumentation during and after an earthquake of magnitude up to and including the SSE.
F. The characteristics of the required input motion shall be specified by one of the following:
: 1. response spectrum
: 2. power spectral density function
: 3. time history Such characteristics, as derived for the structure or system seismic analysis, shall be representative of the input motion at the equipment mounting locations.
G. Equipment shall be tested in the operational condition.
Operability shall be verified during and after the testing.
H. The actual input motion shall be characterized in the same manner as the required input motion.          Conservatism in amplitude and multi-frequency energy content shall          be demonstrated. That is the test response spectrum (TRS)      K shall envelope the required response spectrum (RRS) over the entire frequency range.
I. Multifrequency input motion shall be used whenever possible. lK However, single frequency input, such as sine beats, may be utilized provided one of the following conditions are met:
9 Amendment K 3.10-2              October 30, 1992
 
CESSARinL mn
: 1. The  characteristics        of  the  required              input  motion indicate that the motion is dominated by one frequency (i.e., by structural filtering offects).
: 2. The anticipated responso of the equipment is adequately _
represented by one modo.
: 3. The input has sufficient intensity and duration to excito all modos to the required magnitudo, such that the  touting      response spectra will envelopo the corresponding responso spectra of the individual modes.
J. The input motion shall be applied to one vertical and one principal -(or two orthogonal) horizontal axes simultaneously unless it can be demonstrated that- the equipment response along    the vertical direction- is not sensitive to the vibratory motien - along the horizontal direction, and vice-versa. Tho-time phasing of the inputs in the vertical and horizontal directions will bo-such that a purely rectilinear resultant input is avoided.            The acceptablo alternativo'is to have vertical and horizontal inputs in-phase, ~ and . then repeated with inputs 180 degrees out-of-phaso. . In addition, the t e s t  -.w i l l - b c repeated with the - equipment rotated 90-g      degrees horizontally. Biaxial          and triaxial input motion may be utilized where practical.                                                          D K. The fixture design shall meet the following requirements:
: 1.      Simulate the actual service mounting.
: 2.      Cause no extraneous dynamic coupling to the test item.                      lK L. The in-situ application of vibrutory devices to superimpose the seismic vibratory loadings on the complex active device for operability testing is acceptable when application - is justifiable and= meets the requirements of IEEE 344-1987.                              _
lK.
M. The. test program may be based upon selectively testing a representative number of mechanical components according to type,  load, level,- size or other appropriate classification b on a prototype basis.                                                                F 3.10.3      METHODS AND- PROCEDURES OF ANALYSIS OR TESTING- OF SUPPORTS OF-ELECTRICAL EQUIPMENT AND INSTRUMENTATION-To ensure qualification- for- the required forces,                          acceleration.
requirements are -included -in equipment specifications- as dosign parameters.      Vondors will use this information as the basis for analysisL or -testing depending on the              type,          size,      shape,- or complexity of. equipment-to be qualified.
Amendment K
                                        '3.10-3                            October. 30,-1992
 
CESSAR Eininema O
The equipment    specification will      includo,    as  a  minimum,  the following coismic requirements:
A. The appropriate soiomic excitation for which the equipment must qualify will be determined based on location in the plant.
B. The equipment is required to perform its intended function before,  during,  and after the time the equipment is                y' subjected  to  high    stresses resulting from design basis ovents.
C. Analysis, testing, past qualifications, or a combination of            D these is required to substantiate the adequacy of the design, depending on the type of equipment and its intended safoty function.
J D. The quality assuranco program, as described in Chapter 17,                  i illustrates    the    procedures    used      in    assuring    the  K implementation of the requirements.
E. Analyses or testa shall be performed for all supports of electrical    and    associated    mechanical      equipment    and instrumentation to ensure their structural capability to Vithstand seismic excitation.        lion-scismic vibrations shall      g be considered in accordance with R.G. 1.100, Rev. 2.
F. The analytical results will include the following:
: 1. The required input motions to the mounted equipment shall be obtained and characterized in the manner as stated in Section 3.10.2 item F.
: 2. The combined stresses of the support structures shall be within the allowablo limits found in recognized mechanical handbooks.
G. Supports  shall    be    tested  with      either    equipment or dynamically equivalent models installed.          If the equipment is not operating or not insta)1ed during the support test, the response at the equipment mounting locations shall be monitored and characterized in the manner as stated in Section 3.10.2 item F.      In such a caso, equipment shall be tested separately and the actual input to the equipment shall be more conservative in amplitudo                and  frequency content than the monitored response.
II . The requirements of Section 3.10.2 items F, 11 , I, J, and K are applicable when tests are conducted on the equipment supports.
Amendment K 3.10-4                    October 30, 1992
 
CESSARMMik.m O
Specifically, cabinet and support test requirements will be conducted as follows:
The design seismic environment of equipment located within support structures (cabinets) will be determined by either tost or analysis.
I.        Testing will consist of one of the following procedures
: 1. Fully _ Operational Cabinet Test The cabinet, fully loaded with equipment, will be tested in its operating stato.                          During testing, a samplo of safety-related functions will be monitored.
This test will demonstrate both structural integrity and functional operability.
: 2. Weighted Cabinet Test With subsequent Equipment Tests (a)  The    cabinet    will  be      tested              with  simulated equipment in place of the actual equipment. The simulated equipment will be equal in mass, mass distribution, and mounting to the actual equipment h                        such that the dynamic responso of the weighted V[~                          cabinet is equal to that of cabinot.
the fully loaded During testing, the motions present at the equipment mounting points will be recorded.
This test will demonstrate the cabinet structural integrity    and    dotormine                  the    local    soismic environment of the actual equipment.
(b)  The actual equipment will be independently tested                        D to  those motions determined                        by the weighted cabinet test.      The equipment will oc operational and all safety-related functions will be monitored during the test.        This test will demonstrate functional operability of the equipment.
: 3. Equipment Test                                                                  =
Equipment which is not mounted in a cabinet will be tested  or  analyzed    in  its                operating    state  in  a configuration which simulates its intended mounting.
J. For structures which can be modeled, a dynamic analysis may be substituted for the weighted cabinet test to determine the motions at the enclosed equipment mounting points, l'\
v) g
        \
Amendment D 3.10-5                                September 30, 1988
_ _ _ _ _ _ _ _                                J
 
CESSAR HL"icavi:n O
For both testing and analysis, the input motions to the cabinet shall be derived from the building motions at the cabinet's intended location.
3.10.4              MIM'llODS AND PROCEDURES FOR QUALIFYING SEISMIC CATEGORY II ELECTRICAL EQUIPMENT AND INSTRUMENTATION Seismic Category II instrumentation and electrical equipment (non-Class 1E) perform non-safety functions but their failure can prevent the satisfactory accomplishment of one or more safety functions.          The requirement for such equiomont is to demonstrate structural integrity for the equipment and its supports.                The methods and procedures for qualifying such equipment include the following:
A.          The seismic excitation for which the equipment must qualify is determined based on location in the plant and enveloping generic inpat ground motion.
B.          The equipment is designed to maintain          its  structural integrity during an earthquake of the intensity of the SSE, and for non-seismic vibrations in accordance with R.G.
1.100, Rev. 2.
C.          Analysis, testing or operating experience is required to substantiate the adequacy of the design, depending on the type of equipment under consideration.
D.          The requirements of Section 3.10.2 items F, H,      I,  J and K are applicable when tests are conducted on the equipment.
E.          The quality assurance program, as described in Chapter 17, illustrates    the    procedures  used  in    assuring    the implementation of      the requirements. This  program also ensures that test    results and analysis records will be available for audit  for the life of the plant.
s O
Amendment K 3.10-6              October 30, 1992
 
  . - - - - - - . - - . - . -                                                            . . - . - .                      -  - . . --_ . .                  -.. -.- _ . - - . - .. . - .. .. .. ..~
C E'e  E GGMn        eAD                Gell *N CERTIFICAT13N                                                                                                  (Shoot 5 of 9) i t
EFFECTIVE PAGE LISTINC (Cont'd)
Chapter 4 Text (Cont'd)                                                                                                                                                                        ;
Page                                                                                                                            Amendment 4.4-13                                                                                                                                            B                                                      ,
4.4-14                                                                                                                                            B                                                      t 4.4-15 4.4-16                                                                                                                                            F 4.4-17                                                                                                                                            B 4.4-18                                                                                                                                            F 4.4-19                                                                                                                                            F                                                        -
4.4-20                                                                                                                                            B 4.4-21                                                                                                                                            B 4.4-22 4.4-23                                                                                                                                            F 4.4-24                                                                                                                                            B 4.4-25 4.4-26 4.4-27 4.4-28 4.4-29                                                                                                                                            B 4.4-30                                                                                                                                            B 4.4-31 4.4-32                                                                                                                                            B 4.4-33                                                                                                                                            B 4.4-34                                                                                                                                          -F.                    . -
4.4-35 4.4-36 4.4-37                                                                                                                                            a 4.4-38 4.4-39 4.5-1                                                                                                                                            F.
4.5-2                                                                                                                                            F-4.5-3                                                                                                                                            D 4.5-4                                                                                                                                            x 4.5-5                                                                                                                                            F'-
4.5-6                                                                                                                                            F 4.5-7                                                                                                                                            K.
                                  ' 4.5-8                                                                                                                                          -K
                                  - 4.5-9.                                                                                                                                          'K 4.5-10                                                                                                                                            D'-                                                    >
4.5-11, 4.5-12 4.6-1                                                                                                                                          ~B 4.6-2                                                                                                                                          - F'
                                  -4.6-0                                                                                                                                              F Amendment K October: 30,.1992
            , - , , , , .-  wr,,-# un c , ,- + v y. , , , , . . . - , , -    .,.wcy.-,.*            ,-g-e,, o w.s,o e .m    se *w    *-+v',****r*- er -9 v*  * * - -            'r w w'=F,4-T      ='Metw ( * +-4'w = w e b++ T +- t -''~e"
 
CESSAR nnincucu                                                                        (Shot 6 of 9)
O EFFECTIVE PAGE LISTING (Cont'd)
Chapter 4 Tablen                                                    Amendment 4.2-1 (Sheet 1)                                                                        B 4.2-1 (Sheet 2)                                                                        F 4.2-1 (Sheet 3)                                                                        F 4.2-1 (Sheet 4)                                                                        F 4.2-1 (Sheet 5) 4.2-1 (Sheet 6)                                                                        B 4.2-2 4.2-3 (Sheet 1)                                                                        F 4.2-3 (Sheet 2)                                                                        F 4.3-1 (Sheets 1 and 2)                                                                B 4.3-2                                                                                  B 4.3-3                                                                                  B 4.3-4                                                                                  B 4.3-5                                                                                  B 4.3-6                                                                                  B 4.3-7                                                                                  B 4.3-8                                                                                B 4.3-9 4.3-10                                                                                B 4.3-11 4.3-12 4.3-13 4.3-14                                                                                B 4.3-15                                                                                B 4.3-16 4.3-17 4.3-18 4.3-19 4.4-1 (Sheet 1)                                                                        F 4.4-1 (Sheet 2)                                                                        F 4.4-2                                                                                  F 4.4-3 4.4-4                                                                                  F 4.4-5 4.4-6                                                                                  F 4.4-7 4.4-8                                                                                  F 4.4-9 (Sheet 1)                                                                        F 4.4-9 (Sheet 2)                                                                        B 4.6-1                                                                                  B O
Amendment K October 30, 1992 i
 
CESSAR !!ninc m.                                                          ,
1 TABLE OF CONTFXTS CHAPTER 4 Section      Subject                                      Page No.
4.4.4.5.1        Reactor Coolant System Flow            4.4-30 Determination-4.4.4.5.2        Thermal Margin Analysis.                4.4-32 4.4.4.5.3        Hydraulic Instability Analysis        -4.4-35        ,
4.4.5        TESTING AND VERIFICATION                    4.4-36 4.4.6        INSTRUMENTATION REQUIREMENTS                .4.4-36      1 4.5          REACTOR MATERIALS                            4.5-1 4.5.1        CONTROL' ELEMENT DRIVE STRUCTURAL          4.5-1 MATERIALS 4.5.1.1          Material Specifications'              ~4.5-1 4.5.1.2          Control of the Use of 90 ksi          4.5-3 Yield Strength Material 4.5.1.3          Control of the Use of Sensitized      4.5-4
                                                                                ~
Austenitic Stainless Steel 4.5.1.3.1        Solution Heat Treatment                4.5-4 Requirements 4.5.1.3.2        Material Inspection Program 4.5-4        #
4.5.1.3.3        Avoidance of Sensitization            4.5-4 4.5.1.4          Control of Delta Ferrite in            4.5-5 Austenitic Stainless Steel Welds-4.5.1.5            Cleaning-and Contamination            -4.5-5 Protection Procedures 4.5.2        REACTOR-INTERNALS MATERIALS-                4.5-6 4.5.2.1            Material Specifications'              .4.5        ;
4.5.2.2            Welding Acceptance Standards          4.5-8 4.5.2.3            Fabrication'and~ Processing of        4.5-8.
Austenitic Stainless Steel          -
                                                                                                -1 I
                                                          'xi                                      l
                                                                                                  -l t-
 
CESSAR 8!!!ince O
TABLE OF CONTIOFFS CHAPTER 4 Section    Subject                                Page No.
4.5.2.3.1        Control of the Use of Sensitized  4.5-9 Austenitic Stainless Steel 4.5.2.3.1.1            Solution Heat Treatment    4.5-9 Requirements 4.5.2.3.1.2            Material Inspection Program 4.5-9 4.5.2.3.1.3            Unstabilized Austenitic    4.5-9 Stainless Steels 4.5.2.3.1.4            Avoidance of Sensitization  4.5-10 4.5.2.3.1.5            Retesting Unstabilized      4.5-11 Austenitic Stainless Steelo Exposed to Sensitizing Temperature 4
4.5.2.3.2        Hon-Metallic Thermal Insulation  4.5-11 4.5.2.3.3        Control of Delta Ferrite in Welds 4.5-11 4.5.2.3.4        Control of Electroslag Wcld      4.5-11 Properties 4.5.2.3.5        Welder Qualification for Areas of 4.5-11 Limited Accessibility 4.5.2.4          Contamination Protection and    4.5-12 Cleaning of Austenitic Stainless Steel 4.6        FUNCTIONAL DESIGN OF REACTIVITY        4.6-1 CONTROL SYSTEMS 4.6.1      INFORMATION FOR THE CONTROL ROD        4.6-1 DRIVE SYSTEM (CRDS) 4.6.2      EVALUATION OF THE CRDS                4.6-1 4.6.2.1          Single Failure                  4.6-1 4.6.2.2          Isolation of the CRDS from      4.6-1 Other Equipment 4.6.2.3          Protection from Common Mode      4.6-2 Failure xii
 
e                                                                                                                                  ,
1 i
CESSAREniL mn
                                                                                                                                .f I
i i                                                                                                                                )
i                                                                                                                                l l                  C.            The materials in contact with the reactor coolant used in
!                                the extension shafts are listed below:
!                                  1. Shafts, rod, and plunger                                                                  ;
j                                      ASTM A276, Type 304 (austenitic stainless steel)                                          ,
i ASTM A264, Type 304 (austenitic stainless steel) l
;                                  2. Gripper i
j                                      ASTM B446 (nickel-chromium-molybdenum-columbium alloy) i
[                                      QQ-C-320, Class 2B (chrome plating) lD l                                  3. Spring i
.                                      AMS 5699B, Inconel X-750-(nickel base alloy) l                                  4. Pin Type 304 austenitic stainless steel l'                                The  functions        of    the      extension              shaft    components-  are described in Section 3.9.4.1.
D.            The weld rod filler materials used with the above listed
,                                  components are Type 308 stainless steel, Type 316 stainless j                                  steel and Inconel 82.
All of-the materials listed above were used in an~ extensively tested CEDM assembly - that. exceeded _ lifetime requirements,. as
'                  described in Section 3.9.4.4.1. Also, all of the materials have performed              satisfactorily in service in Maine Yankee                                  (Docket 50-309),            Millstone-2 (Docket 50-236), Calvert Cliffs 50-317), and other reactors, (Docket s
4.5.1.2'                    _ Control of the Use of 90 ksi Yleld Strength Material The only-' control element-drive structural material; identified in Section 4.5.1.1 which has'a yield strength greater than 90 kai is:
ASTM A276, Type 440C, martensitic stainless-steal.-                                        Its usage is limited to t'he steel ball ~ in the vent - valve on the topof-thelo
                                          ~
CEDM-and bearing inserts inlthe motor assembly.                                      The ball is.used as          a. seal and is not a primary load bearing member of the
                  -pressure            boundary, while the- inserts, which are Type:440C forlD-surface hardness, see little - stress and _ are -not part - of the safety . release mechanism in -the motor _ assembly.                                      This _ material was                                exceeded O.                        tested- and                    lifetime            requirements.          Also,-  this
                                                                                                          ' Amendment D 4.5-3                                September-30,:1988
  - . -    c,,    - , - , - . . .          , . . . u. c,.,  -_.-.-.-.....-.--,,-..-..-.-..a..-._~a.          -
 
CESSAR EPJw"icari:n O
materia. is presently being used in operating reactors such as Maine Yankee (Docket 50-209), Calvert Cliffs (Docket 50-317) and St. Lucie Unit 1 (Docket 50-335) and has performed satisfactorily e  for the same application.
4.5.1.3                            Control of the Use of Sensitized Austenitic
#                                        Stainless Steel
                    - the use of sensitized austenitic stainless steel is 6    -
with the recommendations of Regulatory Guide 1.44, as J  ui_.    . i  in            Sectionr. 4.5.1.3.1 through 4.5.1.3.3, except for the e  crittri          used to demonstrate freedom from sensitization.                                        The d  ASTM            Strauss Test is used in lieu of the ASTM A262 Method E, Mnd      i    Strauss Test, to demonstrate freedom from sensitization L.    . . a-    sted unstabilize6 austenitic stainless steel.                                          The 3    form .s        ast                          has shown,    through        experimentation,      excellent correlat )n with the type of corrosion observed in severely ser 31rized austenitic riainless steel.
4.5.1.3.1                                    Solution lleat Treatment Requirements
                                                                                                                    ]
All    raw austenitic stainless steel, both wrought and cast, employed in the fabrication of the control element drive mechanism structural components is supplied in the solution annealed condition. as described in Sect 1                                        4.5.2.3.1.1.
4.5.1.3.2                                    haterial Inspection Program Extensive testing on stainless steel mockups, fabricated using production techniques, hhs been conducted to determine the effect of    various                          welding    procedures          on  the    susceptibility    of unstabilized                                  Type    300          series    stainless      steels    to sensitizatior. - 1 nduced                            intergranular          corrosion.      Only    those prcx dures ar.a-; .r                              practices demonstrated not to produce a sentatized' structure are used in the fabrication of control element drive ucchanism structural components,                                                            g 4.5.1.3.3                                    Avoidance of Sensitization Homogeneous                            or      localized        heat    treatment    of    unstabilized f    austenitic stainless steel in the temperature range 800 to 1500*F is prohibited.
O Amendment K 4.5-4                  October 30, 1992 i
 
CESSARnnLmn l
1
,                  The following is a list of the major ' components of the reactor
]                  internals together with their material specifications:
A.            Core support barrel assembly t
: 1.        Type 304 austenitic stainless steel to the. following -
specifications:
$                                            a.        SA-182 3
: b.        SA-240
: c.        SA-479 l                                2.          Precipitation hardened stainless steel to the followino                                                      -
l                                            specifications:
!                                            a.        SA-453, Grade 660                                                                                                                                K
:                                            b.        SA-638, Grade 660 B.          Upper guide structure assembly-i                                1.          Type 304 austenitic - stainless steel                                                                        to'~ the following specifications:
:                                            a.        SA-182 i                                            b..        SA-240'                                                                                                                                        g
                                          - c.        SA-213 4                                            d.        SA-479 l                                                                                                                                                                  ~
l0 l                                2.          Precipitation hardened stainless'' steel to the following specification:
i                                            a.        SA-638, Grade 660
: 3.          Type 347 austenitic stainless steel to the following                                                                                                      g.
specifications:
:                                            a.        SA-479 i                                          b.      ' SA-312 i
C.          Core shroud assembly
,                                l '.      Type 304 austenitic stainless .: steel to the following specifications:
;                                          'a.          SA-182                                                                                                                                        g-
: b.          SA-240-2 D.-        Holddown ring-K
          <                      ^SA-182, Alloy F6NM.
Amendment:K 4.5-7                                                            October-'30, 1992 y m weew    ww-*g 9-    g w      y e v -se z ur -we-m's w- 4%w d  y-p p swr    qww'Trw'anse y-yrvew=Ty r -qw r 3      sy9-
* ur d sm-u k  Me We*    g
* TP4yp"g  e $ at-g g y g- mp4gav    p p w'W &
 
CESSAR E!L"icui:n O
E. Bolt and pin material ASTM-A-453 and ASTM-A-638, Grade 660 material (trade name A-286) is used for bolting and pin applications. This alloy is heat treated'in accordance with the ASTM specifications        D by precipitation hardening at 1300-1400'F for 16 hours to a minimum yield strength of 85,000 psi.              Its  corrosial proporties are similar to those of the Type 300 series austenitic    stainless steels. It  is  austenitic    in  all conditions of fabrication and heat treatment. This alloy was used for bolting in previous reactor systems and test facilities in contact with primary coolant and has proven completely satisfactory.
F. Chrome plating and hardfacing G. Special Purpose Material K
SA 479 S 21800 (Trade Name Nitronic 60) is used for special applications where anti-galling properties are desired.
Chrome plating or hardfacing are employed on reactor core lg support and internals' structures, components or portions I rnereof where required by function. Chrome plating complies with Federal Specification No. QQ-C-320.        The hardfacing D material employed is Stellite 25.
All of the materials employed      in the reactor      internals  and in-core instrument support system have performed satisfactorily in operating reactors such as Palisades      (Docket-50-255),    Fort Calhoun (Docket-50-285) and Maine Yankee (Docket-50-309).
4.5.2.2        Welding Acceptance Standards
( Welds employed on reactor internals and core support structures are fabricated in accordance with Article NG-4000 in Section.III,      p and meet the acceptance standards delineated in article NG-5000, Section III, Division I, and control of welding is performed in accordance with Section III, Division I, and Section IX of the
! ASME Code. In. addition, consistency with the recommendations of l Regulatory Guides 1.31 and 1.44 is described in Section 4.5.2.3.
4.5.2.3        Fabrication and Processing of Austenitic Stainless
;                Steel
( The  following  information  applies  to unstabilized      austenitic l
stainless steel as used in the reactor internals.
Amendment K 4.5-8                October 30, 1992
 
CESSAR !! Enema
(
4.5.2.3.1                                Control of the Use of Sensitized Austenitic                                                                -
Stainless Steel The reccamendations of Regulatory Guide                                                1.44,        as described in i
Sections 4.5.2.3.1.1 through 4.5.2.3.1.5, are followed except for                                                                          K the criterion used to demonstrate freedom from sensitization.
4.5.2.3.1.1                                Solution Heat Treatment Requirements l
All raw -austenitic stainless steel- material, both wrought - and cast, employed in the fabrication of the reactor -internals is
[
supplied in the solution annealed-condition, as specified:in the pertinent ASTM or ASME B&PV Code material specification ~(i.e. ,
1900 to 2050'F for 0.5 to 1.0 hour per inch of -thickness and rapidly cooled to below. 700*F).                                              .The . time .at . tomparature -is determined by-the size and the type of component.
Solution heat treatment is not performed on completed or partially fabricated components.- Rather, the extent of. chromium carbide precipitation                                is    controlled ~ during                      all                  stages of fabrication as described-in Section 4.5.2.3.1.4.
4.5.2.3.1.2                                Material Inspection Program Extensive testing of stainless steel mockups, fabricated using
!                  production techniques, was conducted to determine.the effect of l                  various welding procedures on the susceptibility of unstabilized Type        300                  series      stainless. steels- to                      sensitization-induced intergranular corrosion.                                Only those procedures and/or--practices demonstrated not to produce a sensitized. structure - are used in                      .
the fabrication of reactor internals components.
                                                                                                                                                          .lK As a result of the above tests, a relati_onship was established-between the carbon content of Type 304 stainless steel:and weld heat input.                            This relationship is used- tot avoid: weld heat affected zone sensitization as' described in Section 4.5.2.3.1.4.
4.5.2.3.1.3                              .Unstabilized Austenitic Stainless Stools The unstabilized- grade of- austenitic' stainless steel- with a carbon content greater than 0.03% used for components of the.
!                  reactor internals is Type 304.' -This-natorial is furnishediin the solution annealed condition.                                        The acceptance criterion used for-l                  this material, as furnished from the steel ' supplier, . is ASTM l                  A262, Method E.
)
i.
O'v .
Amendment K 4.5-9                                  October- 30,_1992 i '.
_~      -      _ , . , , . _ , _ . . , , , _ ,        _ _ , ,    ...;..      .,_._ _ . ;_ .        , , _ . , . . . _ . . ,._,., .          . . _ _ _ . _
 
CESSARfdR5ICAT13N O
Exposure    of  completed or partially fabricated components to temperatures ranging from 800 to 1500*F is prohibited except as described in Section 4.5.2.3.1.5.
Duplex,    austenitic stainless steels containing more than SFN delta ferrite (weld metal, cast metal, weld deposit overlay) are not considered unstabilized since these alloys do not sensitize, i.e.,    form a continuous network of chromium-iron carbidos.
Specifically, alloys in this category are:
CF8M        Cast stainless steel (dclta ferrite controlled CFS        to SFN-33FN) 308, 309    Singly and combined stainless steel weld filler 312, 316  metals (delta ferrite controlled to 5FN-20FN                                            D as deposited)
In duplex austenitic/ferritic alloys, chromium-iron carbides are precipitated preferentially at the ferrite /austenite interfaces during exposure to temperatures ranging from 800-1500*F.                                            This precipitate    morphology                      precludes                  intergranular  penetrations associated with sensitized Type 300 series stainless steels exposed to oxygenated or otherwise faulted environments.
4.5.2.3.1.4          Avoidance of Sensitization Exposure of unstabilized austenitic Type 300 series stainless steels to temperatures ranging from 800 to 1500'F will result in carbide precipitation.                The degree of carbide precipitation or sensitization depends on the temperature, the time at that temperature, and the carbon content.                                          Severe sensitization is defined as a continuous grain boundary chromium-iron carbide network. This condition induces susceptibility to intergranular corrosion in oxygenated aqueous environments, as well as those containing halides.      Such a metallurgical structure will readily fail the Strauss Test, ASTM A708.                                          Discontinuous precipitates (i.e.,  an intermittent grain boundary carbido network) are not susceptible to intergranular corrosion in a PWR environment.
Weld heat affected zone sensitized austenitic stainless steels (which will fall the Strauss Test, ASTM A708) are avoided by careful control of:
A. Weld heat input to less than 60 kJ/in B. Interpass temperature to 350*F maximum C. Carbon content to            5 0.065                                                                D O
Amendment D 4.5-10              September 30, 1988
 
CESSAR !Ennemer                                                                                                                :(Shoot l'of 17)
V EFFECTIVE - PAGE I,ISTING CIULPTER 6 Table of Contents Page                                                                                                      Amendment                          '
i i
i                                                                                                                            I-11                                                                                                                          G 111-                                                                                                                        G iv                                                                                                                          G v                                                                                                                            J vi                                                                                                                          -I vii                                                                                                                          I viii                                                                                                                          J ix                                                                                                                            I X                                                                                                                            J xi                                                                                                                          -I-xii                                                                                                                          I xiii                                                                                                                        .I xiii-a                                                                                                                        J xiii-b                                                                                                                        J l                  xiv                                                                                                                          G'-
l-      .
xv                                                                                                                            J xvi                                                                                                                          I xvii                                                                                                                          I xviii                                                                                                                        G xix                                                                                                                          G xx                                                                                                                            J xxi                                                                                                                            I' xxii                                                                                                                          -I xxiii                                                                                                                        .I
                -xxiv                                                                                                                          I xxv                                                                                                                            I xxvi'                                                                                                                          I xxvii                                                                                                                          I-xxviii                                                                                                                        I=
xxix'                                                                                                                          I
                ;xxx                                                                                                                            I xxxi                                                                                                                          -I
                .xxxij I
                'xxxiii                                                                                                                          I xxxiv-                                                                                                                        I Text
                'Page                                                                                                  -Amendment
[
      -C.
6.1-1 6.1-2 I
I-Amendment K October.30, 1992
            .-    ..._.._~.-_........._.___-.....,.,.._._-.,..-_;_....-.,_...-.__.____.._...-_-__._...._
 
CESSAR MaiPicari:n                                                            ( m et 2 or 123 EFFECTIVE PAGE LISTING 9
(Cont'd)
CHAPTER 6 Text (Cont'd)
Page                                                Amendment 6.1-3                                                                        D 6.1-4                                                                        D 6.1-5                                                                        J 6.1-6                                                                        J 6.2-1                                                                        I 6.2-2                                                                        G 6.2-3                                                                        G 6.2-4                                                                        G 6.2-5                                                                        G 6.2-6                                                                        G 6.2-7                                                                        G 6.2-8                                                                        G 6.2-9                                                                        G 6.2-10                                                                        G 6.2-11                                                                      G 6.2-12                                                                      G 6.2-13                                                                      G 6.2-14                                                                      G 6.2-15                                                                      G 6.2-16                                                                      G 6.2-17                                                                      G 6.2-18                                                                      G 6.2-19                                                                      G 6.2-20                                                                      G 6.2-?1                                                                      G 6.2-22                                                                      G 6.2-23                                                                      G 6.2-24                                                                      G 6.2-25                                                                      G 6.2-26                                                                      .G 6.2-27                                                                      G 6.2-28                                                                        G 6.2-28a                                                                      G 6.2-28b                                                                      G 6.2-28c                                                                      H 6.2-28d                                                                      H 6.2-28e                                                                      G 6.2-28f                                                                      G 6.2-29                                                                      E 6.2-30                                                                      J 6.2-31                                                                      I 6.2-32                                                                      J 6.2-33                                                                      J Amendment K October 30, 1992
 
            .  . . . _ _ .      _ _.                .      ._ ~  __                .    .        .._ . _ . . . _ . _                  ._        .          _        _        _
4
                -CESSAR !!nLmo                                                                                                                (sbaat 3 or:17) i-1 4
;                                                    EFFECTIVE'PAGE LISTING                              (Cont'd)
;                                                                          CHAPTER 6 i
Text      (Cont'd) j                    P_a a g                                                                                              Amendment
}
;                    6.2-34                                                                                                                  J 6.2-34a                                                                                                                J t                    6.2-34b                                                                                                                J
!                    6.2-35                                                                                                                  E
: l.                  6.2-36                                                                                                                  J f                    6.2-37                                                                                                                  J 6.2-38                                                                                                                  J l                    6.2                                                                                                                J' 6.2-40                                                                                                                -I i-                  6.2-41                                                                                                                -J i
6.2                                                                                                                J-6.2-42a'                                                                                                                I i                    6.2-42b                                                                                                                J-
:                    6.2                                                                                                                  I i                    6.2-44                                                                                                                  J
!      \            6.2-45                                                                                                                  K
;                    6.2-46                                                                                                                  K                                                  ,
;                    6.2-47                                                                                                                  K l                    6.2-48                                                                                                                  K.
.                    6.2-49                                                                                                                  K-l                    6.2-50                                                                                                                  K.
!                    6.2-51                                                                                                                  K-6.2-52                                                                                                                  K 6.2-53                                                                                                              -K 6.2-54                                                                                                                  K
!.                  6.2-55                                                                                                                  K.
!                    6.2-56                                                                                                                  K' i                    6.2-57                                                                                                                  K l                    6.2-58                                                                                                                  K
'                    6.2-59                                                                                                                  K..
6.2-60                                                                                                                  I i                    6.2-61                                                                                                                  J 6.2-62                                                                                                                  J- -
1 6.2-63                                                                                                                  J 6.2                                                                                                                .J                                                  '
I-6.3-1                                                                                                                    I E.3-2                                                                                                                    I-6.3-3                                                                                                                    I 6.3                                                                                                                .I 6.3                                                                                                                  LI                                              -t 6.3-6                                                                                                                  -I
(                  6.3-7                                                                                                                    I 6.3-8                                                                                                                  _. I -
4                                                                                                                                            Amendment K~
October 30, 1992 l;
    ,- . ~ , ,    w,-,-    w  ,e,., n.  ,-<,a,
                                                        ,,,,+,.,,4,    , , , , . 'n-,n,,,---, , , . -  ,a ,- ,            ,,,,-,,+,.,,,,,.w        -n  , , , , , - , -,--,~+,.,..v  r.v..n-
 
1 l
                                                                    )
CESSAR 8lMinem3s                                  (sh==t 4 of 27)    j O i EFFEC'1; PAGE LISTING (Cont'd)
CHAPTER 6 Text (Cont'd)                        Amendment 6.3-9                                            I I
6.3-10                                          I 6.3-11                                          I 6.3-12                                          J 6.3-13                                          I                  !
6.3-14                                          I                  ,
6.3-15                                          I 6.3-16                                          I 6.3-17                                          I 6.3-18                                          I 6.3-19                                          I 6.3-20                                          I 6.3-21                                          I 6.3-22                                          J 6.3-23                                          G 6.3-24                                          G 6.3-25                                          G 6.3-26                                          G 6.3-27                                          H 6.3-28                                          H 6.3-29                                          H 6.3-30                                          H 6.3-31                                          H 6.3-32                                          H 6.3-33                                          H 6.3-34                                          H 6.3-35                                          H 6.3-36                                          H 6.3-37                                          H 6.3-38                                          H 6.3-39                                          H 6.3-40                                          H 6.3-40a                                          G 6.3-40b                                          G 6.3-40c                                          G 6.3-41                                          D 6.3-42                                          I 6.3-43                                          I 6.3-44                                          'I 6.3-45                                          I 6.3-46                                          I 6.4-1                                            J 6.4-2                                            J 6.4-3                                            J 6.4-4                                            E Amendment K October 30, 1992
 
  .  -.          .    . .  .  .-                -. .., . - ..-...                              ...= - -_              .          . . .        .-                                -          - . . .          . .
C        SSAR DESCERTIFICATISM          12N                                                                                  '(Sheet 5 of-17)
EFFECTIVE PAGE LISTING                              (Cont'd)..                                                                                  ,
CHAPTER 6 Text (Cont'd)                                                                                        Amendment 6.5-1                                                                                                                        E 6.5-2                                                                                                                        I 6 5-3                                                                                                                        J 6.5-4                                                                                                                    'I                                                                        -
6.5                                                                                                                  -I 6.5-6                                                                                                                        I 6.5-7                                                                                                                        I.
6.5                                                                                                                  .I 6.5-9                                                                                                                        I 6.5-10                                                                                                                        I 6.5-11                                                                                                                        I.
6.5-12                                                                                                                        I-6.5-13                                                                                                                        I 6.5-14                                                                                                                        I 6.5-15                                                                                                                        I 6.5-16                                                                                                                        I-6.5                                                                                                                      I                                                                    -
                                                                                                                                ~
6.5-18                                                                                                                        I 6.5-19                                                                                                                        J 6.6-1                                                                                                                        H 6.6-2                                                                                                                        H 6.6-3                                                                                                                        H 6 '. 7 -1                                                                                                                    I                                                                    ,
6.7-2                                                                                                                        I:-
6.7-3                                                                                                                    .I 6.7-4                                                                                                                        I-                                                                  '
6.7-5                                                                                                                        J                                                                    -
6.7-6                                                                                                                        I 6.7                                                                                                                        I-6.7-8                                                                                                                        I-6.7-9                                                                                                                        D 6.7                                                                                                                      I 6.7-11:                                                                                                                  .J 6.7-12                                                                                                                        I.
,                    6.7                                                                                                                  ~- I 6.7-14                                                                                                                    .I 6.8                                                                                                                        J 6.8-2                                                                                                                    !J 6.8-3                                                                                                                    -J' 6.8                                                                                                                        J-6.8-5                                                                                                                    -J
: l.                  6.8-6                                                                                                                        J --
6.8-7                                                                                                                    :J' 6.8-8                                                                                                                        J-6.8-9                                                                                                                        J                                                                    >
Amendment K
                                                                                                                                              = October- .3 0, - l'9 92 ~
i l'                                                                                                            t E-_-        , .. .              ,  . _ _ . - . . . . _ _ , . , . . . . . . . . . , - _ . , - , , _            -.-,,.t.,.~..,-,-._....,.__.            . _ . ~ . . _ , . , , _ . . , . . . . , . . _ . . - , - .
 
CESSAR2lMa an                                                                                                                (She::t 6 of 17)
O EFFECTIVE PAGE LISTING                                    (Cont'd)
ClihPTIG 6 Tables                                                                                                            Amendment 6.1-1 (Sheet 1) 6.1-1 (Sheet 2) 6.1-2                                                                                                                        D 6.1-3 6.1-4                                                                                                                        D 6.2.1-1 (Sheet 1)                                                                                                            G 6.2.1-1 (Sheet 2)                                                                                                            G 6.2.1-1 (Sheet 3)                                                                                                            G 6.2.1-2                                                                                                                      G 6.2.1-3                                                                                                                      I 6.2.1-4 (Sheet 1)                                                                                                            G 6.2.1-4 (Sheet 2)                                                                                                            G 6.2.1-4  (Sheet 3)                                                                                                          G 6.2.1-4 (Sheet 4)                                                                                                            G 6.2.1-4 (Sheet 5)                                                                                                            G 6.2.1-4  (Sheet 6)                                                                                                          G 6.2.1-4 (Sheet 7)                                                                                                            G 6.2.1-4 (Sheet 8)                                                                                                            G 6.2.1-4  (Sheet 9)                                                                                                          G 6.2.1-5 (Sheet 1)                                                                                                            G 6.2.1-5 (Sheet 2)                                                                                                            G 6.2.1-5 (Sheet 3)                                                                                                            G 6.2.1-5 (Sheet 4)                                                                                                            G 6.2.1-5 (Sheet 5)                                                                                                          G 6.2.1-5 (Sheet 6)                                                                                                            G 6.2.1-5 (Sheet 7)                                                                                                            G 6.2.1-5 (Sheet 8)                                                                                                            G 6.2.1-5 (Sheet 9)                                                                                                            G 6.2.1-6 (Sheet 1)                                                                                                            G 6.2.1-6 (Sheet 2)                                                                                                            G 6.2.1-6 (Sheet 3)                                                                                                            G 6.2.1-6 (Sheet 4)                                                                                                            G 6.2.1-6 (Sheet 5)                                                                                                            G 6.2.1-6 (Sheet 6)                                                                                                            G o.2.1-6 (Sheet 7)                                                                                                            G 6.2.1-6 (Sheet 8)                                                                                                            G 6.2.1-6 (Shect 9)                                                                                                            G 6.2.1-6 (Sheet 10)                                                                                                          G 6.2.1-6 (Sheet 11)                                                                                                          G 6.2.1-6 (Sheet 12)                                                                                                          G 6.2.1-6 (Sheet 13)                                                                                                          G 6.2.1-6 (Sheet 14)                                                                                                          G 6.2.1-7 (Sheet 1)                                                                                                            G 6.2.1-7  (Sheet 2)                                                                                                          G Amendment K October 30, 1992
 
i CESSARinihan                                                            "Sh***      7      '        ')
c5 O
EFFECTIVE PAGE LISTING          (Cont'd)
CHAPTER 6                                                                        -
Tables (Cont'd)                                            Amendment 6.2.1-7 (Sheet 3)                                                      G 6.2.1-7 (Sheet 4)                                                    -G 6.2.1-7 (Sheet 5)~                                                      G 6.2.1-7 (Sheet 6)                                                      G
!              6.2.1-7 (Sheet 7)                                                    -G 6.2.1-7 (Sheet 8)                                                      G 6.2.1-7 (Sheet 9)                                                      G-6.2.1-7 (Gheet 10)                                                      G 6.2.1-7 (Sheet 11)                                                      G 6.2.1-7.(Sheet 12)                                                      G 6.2.1-7 (Sheet 13)                                                      G 6.2.1-7 (Sheet 14)                                                      G-6.2.1-8 (Sheet 1)                                                      G 6.2.1-8 (Sheet 2)                                                      G' 6.2.1-8_(Sheet 3)                                                      G-6.2.1-8 (Sheet 4)                                                      G 6.2.1-9 (Sheet 1)                                                      G 6.2.1-9 (Sheet 2)                                                      G 6.2.1-9 (Sheet 3)                                                      G 6.2.1-9 (Sheet 4)                                                    -G      ,
6.2.1-9 (Sheet 5)                                                      G    'l
              '6.2.1-9  (Sheet 6)                                                      G 6.2.1-9 (Sheet.7)                                                      G-6.2.1-10-(Sheetil).                                                    G1 6.2.1-10 (Sheet 2)                                                      G 6.2.1-10 (Sheet.3)                                                      G 6.2.1-10 (Sheet 4)                                                      G I
l 6.2.1-10 (Sheet 5)                                                      G 6.2.1-10:-(Sheet 6)                                                  .G 6.'2.1-10~(Sheet 7)                                                    G L              6.2.1-11 (Sheet:1)                                                      G l              .6.2.1-11-(Sheet 2)-                                                    G 6.2.1-11 (Sheet _3)                                                    G-l              6.2.1-11 (Sheet 4)-                                                    G
,              6.2.1-11-(Sheet 5)_                                                  LG l              6.2.1-11;(Sheet 76)                                                  -G i              6.2.1-11 (Sheet 7)                                                      G 6.2.1-12L(SheetL1)                                                    -G 6.2.1-12.(Sheet 2).                                                    G 6.2.1-12-(Sheet 3)(                                                    'G-16~2.1-12 (Sheet-4)_
                  .                                                                    G 6.2.1-12 (Sheet 5)                                                      G 6.2.1-12 (Sheet 6)
O G
6.2~1-12-(Sheet 7)
                    .                                                                  G-Amendment K October. 30, 1992
                                          ..,,;s__.-;_,_,...,...._.._                      ;___..;.-. _              ___..u.
 
CESSAR EEMucares                                  (Sheet a or 17)
O EFFECTIVE PAGE LISTING (Cont'd)
CIIAPTER 6 Tables (Cont'd)                        Amendment 6.2.1-13 (Sheet 1)                              G 6.2.1-13 (Sheet 2)                              G 6.2.1-13 (Sheet 3)                              G 6.2.1-13 (Sheet 4)                              G 6.2.1-13 (Sheet 5)                              G 6.2.1-13 (Sheet 6)                              G 6.2.1-13 (Sheet 7)                              G 6.2.1-13 (Sheet 8)                              G 6.2.1-13 (Sheet 9)                              G 6.2.1-14 (Sheet 1)                              G 6.2.1-14 (Sheet 2)                              G 6.2.1-14 (Sheet 3)                              G 6.2.1-14 (Sheet 4)                              G 6.2.1-14 (Sheet 5)                              G 6.2.1-14 (Sheet 6)                              G 6.2.1-14 (Sheet 7)                              G 6.2.1-14 (Sheet 8)                              G 6.2.1-14 (Sheet 9)                              G 6.2.1-15 (Sheet 1)                              G 6.2.1-15 (Sheet 2)                              G 6.2.1-15 (Sheet 3)                              G 6.2.1-15 (Sheet 4)                              G 6.2.1-15 (Sheet 5)                              G 6.2.1-15 (She3t 6)                              G 6.2.1-15 (Sheet 7)                              G 6.2.1-16 (Sheet 1)                              G 6.2.1-16 (Sheet 2)                              G 6.2.1-16 (Sheet 3)                              G 6.2.1-16 (Sheet 4)                              G 6.24 1-16 (Sheet 5)                              G 6.2.1-16 (Sheet 6)                              G 6.2.1-16 (Sheet 7)                              G 6.2.1-17 (Sheet 1)                              G 6.2.1-17 (Sheet 2)                              G 6.2.1-18                                        G 6.2.1-19 (Sheet 1)                              G 6.2.1-19 (Sheet 2)                              G 6.2.1-20                                        G 6.2.1-21 (Sheet'1)                              G 6.2.1-21 (Sheet 2)                              G 6.2.1-21 (Sheet 3)                              G 6.2.1-21 (Sheet 4)                              G 6.2.1-21 (Sheet 5)                              G 6.2.1-21 (Sheet 6)                              G 6.2.1-21 (Sheet 7)                              G Amendment K October 30, 1992
 
CESSAR annnemen                                                                                                                                        (Sheet 9 of 17)
P O
EFFECTIVE PAGE LISTING- (Cont'd)
CIIAPTER 6                                                                                                                                                  ,
Tables (Cont'd)                                                                                                      Amendment                                                                                  ,
6.2.1-22                                                                                                                                            G 6.2.1-23 (Sheet 1)                                                                                                                                  G 6.2.1-23 (Sheet 2)                                                                                                                                  G-6.2.1-23 (Sheet 3)                                                                                                                                  G 6.2.1-23 (Sheet 4)                                                                                                                                  G-6.2.1-23 (Sheet 5)                                                                                                                                  G 6.2.1-23 (Sheet 6).                                                                                                                                G 6.2.1-23 (Sheet 7)                                                                                                                                .G 6.2.1-23 (Sheet.8)                                                                                                                                  G 6.2.1-23 (Sheet 9)                                                                                                                                  G 6.2.1-23 (Sheet 10)                                                                                                                                G 6.2.1-23 (Sheet 11)-                                                                                                                                G 6.2.1-23 (Sheet 12)                                                                                                                              -G 6.2.1-24 (Sheet 1)                                                                                                                              - G-6.2.1-24_(Sheet 2)                                                                                                      -
G 6.2.1-24'(Sheet 3)                                                                                                                                  G-6.2.1-24 (Sheet:4)                                                                                                                                  G' tO
( ,)                  6.2.1-24 (Sheet 5)                                                                                                                              ' G.
4 6.2.1-24 (Sheet 6)                                                                                                                                  G
                              . 2.1-24'-(Sheet 7)                                                                                                                                G 6.2.1-24 (Sheet 8)                                                                                                                                  G-6.2.1-24 (Sheet 9)                                                                                                                                  G 6.2.1-24 (Sheet 10)                                                                                                                                G 6.2.1-24 (Sheet 11)                                                                                                                                G 6.2.1-24 (Sheet 12)                                                                                                                              _G 6.2.1-24 (Sheet 13)                                                                                                                                G 6.2.1-24_(Sheet 14)                                                                                                                                G 6.2.1-24 (Sheet 15)                                                                                                                                G 6.2.1-25                                                                                                                                        .G 6.2.1-26 (Sheet _1)                                                                                                                                G; 6.2.1-26_(Sheet 2)                                                                                                                                G
                              '6.2 3-26 (Sheet 3)                                                                                                                                G 6.2.1-27 (Sheet-1)                                                                                                                              -H 6.2.1-27.(Sheet 2)                                                                                                                              -H 6.2.1-27;(Sheet 3)                                                                                                                                H 6'.2.4-1                (Sheet 1)                                                                                                                  I-6.2.4-J'(Sheet 2)                                                                                                                                  I 6.2.4-1-(Sheet.3)
I 6.2.4-r (SheetL4)                                                                                                                                  I-
                            . 6.2.4-1: (Sheet'5)'                                                                                                                                J 6.2.4-1E(Sheet?6)                                                                                                                                  J-6.2.4-1_(Sheet 7)                                                                                                                                  I
                              ~6.2.4-1                (Sheet-8)                                                                                                                  I'
: 6. 2. 4 (Sheet- .9)                                                                                                                          . I.
5~-                  6.2.4-1 (Sheet'10)                                                                                                                                I Amendment K October 30, 1992'
  * - + , -          py y- y      ,-e- w, v v3  -w.y,-    ,- wc g    gy-+.+    , er e- y,v-,*.- , . - -a we e..e-,w--,+=.rs,,        =e w --,e ,., e, m e w % .w. m -y-,-r~  e. e , w w.ye,v , -,,r e ,,rw ear.-~e-- w ope + ey*e,--d    r.-,, ,# = cepw -r
 
CESSAR 886"ic 12s                                  (She=t to or 17)
O EFFECTIVE PAGE LISTING (Cont'd)
CIIAPTER 6 Tables (Cont'd)                        Amendment 6.2.4-1 (Sheet 11)                                I 6.2.4-1 (Sheet 12)                                I 6.2.4-1 (Sheet 13)                                I 6.2.4-1 (Sheet 14)                                I 6.2.4-1 (Sheet 15)                                I 6.2.5-1                                          K 6.2-5-2                                          K 6.2.5-3                                          I 6.2.5-4                                          I 6.2.5-5                                          I 6.2.5-6                                          I 6.2.5-7                                          I 6.2.5-8                                          K 6.3.2-1    (Sheet 1)                            I 6.3.2-1    (Sheet 2)                            J 6.3.2-1    (Sheet 3)                            I 6.3.2-2    (Sheet 1)                            I 6.3.2-2    (Sheet 2)                            I 6.3.2-2    (Sheet 3)                            I                  !
6.3.2-2    (Sheet 4)                            I 6.3.2-2    (Sheet 5)                            I 6.3.2-2    (Sheet 6)                            I 6.3.2-2    (Sheet 7)                            I 6.3.2-2    (Sheet 8)                            I 6.3.2-2    (Siteet 9)                            I 6.3.2-3                                          I 6.3.2-4                                          C 6.3.3.2-1                                        G 6.3.3.2-2                                        G 6.3.3.e-3 6.3.3.2-4                                        G 6.3.3.2-5                                        G G.3.3.2-6                                        G 6.3.3.3-1                                        H 6.3.3.3-2                                        H 6.3.3.3-3                                        H 6.3.3.3-4                                        H 6.3.3.3-5                                        H 6.3.3.3-6                                        H 6.3.3.5-1  (Sheet 1)                            H 6.3.3.5-1 (Sheet 2)                              H 6.3.3.6-1                                        H 6.5-1 (Sheet 1)
I 6.5-1 (Sheet 2)                                  I
. 6.5-1 (Sheet 3)                                  I Amendment K October 30,-1992
 
CESSAR n!Mriemen                                                          (Shaat 22 of 27)
EFFECTIVE PAGE LISTING        (Cont'd)
CHAPTER 6 Tables (Cont'd)                                          Amendment 6.5-2                                                                  I 6.5-3 (Sheet 1)                                                        I 6.5-3 (Sheet 2)                                                        I 6.5-3 (Sheet 3)                                                        I 6.5-3 (Sheet 4)                                                        I 6.5-3 (Sheet 5)                                                        I 6.7-1                                                                  I 6.7-2                                                                  I 6.7-3-(Sheet 1)                                                        D 6.7-3 (Sheet 2)                                                        I 6.7-3 (Sheet 3)                                                        I 6.8-1 (Sheet.1)                                                        J 6.8-1 (Sheet 2)                                                        J Figures.                                                  Amendment x
6.2.1-1 (Sheet'1)                                                      G 6.2.1-1 (Sheet 2)                                                      G
                -6.2.1-2      (Sheet 1)                                                G-6.2.1-2 (Sheet 2)                                                      G 6.2.1-3 (Sheet 1)                                                      G-6.2.1-3      (Sheet 2)                                                GL 6.2.1-4 (Sheet 1)                                                      G 6.2.1-4-(Sheet 2)                                                      G.
6.2.1-5 (Sheet 1)                                                      G-l                6.2.1-5 (Sheet 2)                                                      .G 6.2.1-6 (Sheet 1)                                                      G 6.2.1-6 (Sheet'2)                                                      G 6.2.1-7 (Sheet.1)                                                      G-6.2.1-7 (Sheet 2)                                                      G
                =6.2.1-8      (Sheet 1)                                                  G 6.2.1-8 (Sheet-2)                                                      G
                .6.2.1-9      (Sheet 1)                                                  G 6.2.1-9 (Sheet-2)_                                                    'G 6.2.1-10~(Sheet 1)                                                      G 6.2.1-10-(Sheet 2).                                                    G:
6.2.1-11: (Sheet 1.)                                                  .G-E                6.2.1-11 (Sheet 2)-                                                    G l'                6.2.1-12 (Sheet 1)                                                      G 6.2.1-12 (Sheet'2)                                                      G l ___            6. 2.1-13 -_ . (Sheet 1)                                              .G 6.2.1-13-(Sheet 2)                                                      G
        \
                                                                                        = Amendment.K October 30, 1992 L _ . _. . . . _ _ _ _        _.- _ . _.a.~. - . _ .._f=..  ..z...._____._..-_...._...-._          . . . . . . , . .  , . _ - . .
 
CESSARE!!Gema                                    (Shoot 12 of 17)
O l EFFECTIVE PAGE LISTING (Cont'd)                    l l
CIIAPTER 6                            l l
Figures (Cont'd)                      Amendment 6.2.1-14                                        G                  l 6.2.1-15                                        G 6.2.1-16                                        G 6.2.1-17 (Sheet 1)                              G 6.2.1-17 (Sheet 2)                              G 6.2.1-18                                        G 6.2.1-19                                        G 6.2.1-20                                        G 6.2.1-21                                        G 6.2.1-22                                        G 6.2.1-23 (Sheet 1)                              G 6.2.1-23 (Sheet 2)                              G 6.2.1-24 (Sheet 1)                              G 6.2.1-24 (Sheet 2)                              G 6.2.1-25 (Sheet 1)                              G 6.2.1-25 (Sheet 2)                              G 6.2.1-26 (Sheet 1)                              G 6.2.1-26 (Sheet 2)                              G 6.2.1-27 (Sheet 1)                              G 6.2.3-27 (Sheet 2)                              G 6.2.1-28 (Sheet 1)                              G 6.2.1-28 (Sheet 2)                              G 6.2.1-29 (Sheet 1)                              G 6.2.1-29 (Sheet 2)                              G 6.2.1-30 (Sheet 1)                              G 6.2.1-30 (Sheet 2)                              G 6.2.1-31                                        G 6.2.1-32                                        G 6.2.1-33                                        G 6.2.1-34                                        G 6.2.1-35                                        G 6.2.1-36                                        G 6.2.1-37                                        H 6.2.1-38                                        H 6.2.1-39                                        11 6.2.3-1                                        J 6.2.4-1 (Sheet 1)                              J 6.2.4-1 (Sheet 2)                              I 6.2.4-1 (Sheet 3)                              I 6.2.4-1 (Sheet 4)                              I 6.2.4-1 (Sheet 5)                              J 6.2.4-1 (Sheet 6)                              I 6.2.4-1 (Sheet 7)                              I 6.2.4-1 (Sheet 8)                              I 6.2.5-1                                        J Amendment K October 30, 1992
 
CESSAR E!aincuion                                    (Sheet 13 of 17)
  /3
        )
(J EFFECTIVE PAGE LISTING (Cont'd)
CHAPTER 6 Figures (Cont'd)                      Amendment 6.2.5-2                                            K 6.2.5-3                                            K 6.2.5-4                                            K 6.2.5-5                                            K 6.3.2-1A                                          I 6.3.2-1B                                          I 6.3.2-1C                                          I 6.3.2-1D                                          I 6.3.2-1E                                          I 6.3.2-1F                                          I 6.3.2-1G                                          I 6.3.2-2                                            I 6.3.3.2-1A                                        G 6.3.3.2-1B                                        G s
6.3.3.2-1C                                        G 6.3.3.2-1D.1                                      G
'            6.3.3.2-1D.2                                      G
[D      6.3.3.2-1E                                          G
(_)      6.3.3.2-1F 6.3.3.2-1G G
G 6.3.3.2-1H                                        G 6.3.3.2-2A                                        G 6.3.3.2-2B                                        G 6.3.3.2-2C                                        G 6.3.3.2-2D.1                                      G 6.3.3.2-2D.2                                      G
,            6.3.3.2-2E                                        G 6.3.3.2-2F                                        G 6.3.3.2-2G                                        G
: 6. 3. 3. 2 -?H                                    G 6.3.3.2-3A                                        G 6.3.3.2-3B                                        G 6.3.3.2-3C                                          G 6.3.3.2-3D.1                                      G 6.3.3.2-3D.2                                        G 6.3.3.2-3E                                          G 6.3.3.2-3F                                          G 6.3.3.2-3G                                          G 6.3.3.2-3H                                          G C.3.3.2-4A                                          G 6.3.3.2-4B                                          G 6.3.3.2-AC                                          G 6.3.3.2-40.1                                        G (n)
N,5 6.3.3.2-4D.2 6.3.3.2-4E G
G Amendment K October 30, 1992 n  _
 
CESSARnnincum                                        (sn ct 14 or 17)
O EFFECTIVE PAGE LISTING (Cont'd)
CHAPTER 6 Figures (Cont'd)                      Amendment 6.3.3.2-4F                                            G 6 . 3 . 3 . 2 - 4 t.                                G 6.3.3.2-4H                                          G 6.3.3.2-5A                                          G 6.3.3.2-5B                                          G 6.3.3.2-5C                                          G 6.3.3.2-5D.1                                        G 6.3.3.2-5D.2                                        G 6.3.3.2-5E                      '
G 6.3.3.2-5F                                          G 6.3.3.2-5G                                          G 6.3.3.2-5H                                          G 5.3.3.2-5I                                          G 6.3.3.2-5J                                          G 6.3.3.2-5K                                          G 6.3.3.2-5L                                          G 6.3.3.2-5M                                          G 6.3.3.2-5N                                          G 6.3.3.2-50                                          G 6.3.3.2-SP                                          G 6.3.3.2-5Q                                          G 6.3.3.2-5R                                          G 6.3.3.2-5S                                          G 6.3.3.2-6A                                          G 6.3.3.2-6B                                          G 6.3.3.2-6C                                          G 6.3.3.2-6D.1                                        G 6.3.3.2-6D.2                                        G 6.3.3.2-6E                                          G 6.3.3.2-6F                                          G 6.3.3.2-6G                                          G 6.3.3.2-6H                                          C 6.3.3.2-7A                                          G 6.3.3.2-7B                                          G 6.3.3.2-7C                                          G 6.3.3.2-7D.1                                        G 6.3.3.2-7D.2                                        G 6.3.3.2-7E                                          G 6.3.3.2-7F                                          G 6,3.3.2-7G                                          G 6.3.3.2-7H                                          G 6.3.3.2-8A                                          G 6.3.3.2-8B                                          G Amendment K October 30, 1992
 
CESSAR1HWicmc.                                            _(Shant 15-of 17)
EFFECTIVE PAGE LISTING- (Cont'd)
CHAPTER 6 Figures (Cont'd)                            Amendment 6.3.3.2-8C                                              G 6.3.3.2-8D.1                                              G 6.3.3.2-8D.2                                              G
    .6.3.3.2-8E                                                G 6.3.3.2-8F                                                G 6.3.3.2-8G                                                G
    -6.3.3.2-8H                                                G 6.3.3.2-9A                                                G 6.3.3.2_-9B                                              G 6.3.3.2-9C                                                G 6.3.3.2-9D.1                                              G-6.3.3.2-9D.2                                          .G 6.3.3.2-9E                                                G 6.3.3.2-9F                                            -G 6.3.3.2-9G                                            -G 6.3.3.2-9H                                                G 6.3.3.2-10                                                G 6.3.3.2-11:                                            -G 6.3.3.3-1A                                                H 6.3.3.3-1B                                                H 6.3.3.3-1C                                                H 6.3.3.3-1D                                                H-6.3.3.3-1E                                                H                      -t 6.3.3.3-1F                                            'H 6.3.3.3-1G                                                H 6.3.3.3-1H                                                H
    -6.3.3.3-2A_                                              H.                  --
6.3.3.3-2B                                            -H 6.3.3.3-2C                                              -H-6.3.3.3-2D                                              H 6.3.3.3-2E                                              -H' 6,3.~3.3-2F                                              H-6.3.3.3-2G                                              H-6.3.3.3-2H-                                            .H 6.3.3.3-3A                                                H.
6.3.3.3-3B-                                              H 6.3.3.3-3C-                                              H --
6.3.3.3-3D-                                              H-6.3.3.3-3E-
                      ~
H-6;3.3.3-3F-                                              H 6.3.3.3-3G-                                              H 6.3.3.3-3H                                              -H 6.3'3.3-4A' H.
(
  =
Amendment-K.
October- 30, 1992
 
CESSAR 2!L"icucu                                    (shoot 16 or 17)
O EFFECTIVE PAGE LISTING  (Cont'd)
CHAPTER 6 Figures (Cont'd)                        Amendment 6.3.3.3-4B                                        H 6.3.3.3-4C                                        H 6.3.3.3-4D                                        H 6.3.3.3-4E                                        H 6.3.3.3-4F                                        H 6.3.3.3-4G                                        H 6.3.3.3-4H                                        H 6.3.3.3-5A                                        H 6.3.3.3-5B                                        H 6.3.3.3-5C                                        H 6.3.3.3-5D                                        H 6.3.3.3-5E                                        H 6.3.3.3-5F                                        H 6.3.3.3-5G                                        H 6.3.3.3-5H                                        H 6.3.3.3-6A                                        H 6.3.3.3-6B                                        H 6.3.3.3-6C                                        H 6.3.3.3-6D                                        H 6.3.1.3-6E                                        H 6.3.3.3-6F                                        H 6.3.3.3-6G                                        H 6.3.3.3-6H                                        H 6.3.3.3-7A                                        H 6.3.3.3-7B                                        H 6.3.3.3-7C                                        H
;  6.3.3.3-7D                                        H 6.3.3.3-7E                                        H 6.3.3.3-7F                                        H
. 6,3.3.3-7G                                        H 6.3.3.3-7H                                        H 6.3.3.3-8A                                        H 6.3.3.3-8B                                        H 6.3.3.3-8C                                        H 6.3.3.3-8D                                        H 6.3.3.3-8E                                        H 6.3.3.3-8F                                        H 6.3.3.3-8G                                        H 6.3.3.3-8H                                        H 6.3.3.3-9                                        H 6.3.3.4-1                                        H 6.3.3.4-2                                        H 6.3.3.4-3                                        H Amendment K October 30, 1992
                                          =~
 
CESSAR E!!Finem:u                                                                                                      (Sheet 17 of 17)
N EFFECTIVE PAGE LISTING                                  (Cont'd)
CIIAPTER 6 Figui'es (Cont'd)                                                                                        Amendment 6.3.3.4-4                                                                                                              H 6.3.3.4-5                                                                                                              H 6.3.3.4-6                                                                                                              H 6.8-1                                                                                                                  K 6.8-2                                                                                                                  J 6.8-3                                                                                                                  J 6.8-4                                                                                                                  J v
4 Amendment K October 30, 1992
 
CESSARMi?Lma n
U TABLE OF CONTENTS (Cont'd)
CHAPTER 6 Section    Subject                                        Page-No.
6.2.5.2.2.1            Igniter Locations                  6.2-53 6.2.5.2.2.2            Igniter Assembly                  6.2-53                        K 6.2.5.2.2.3            Igniter Power Supply _            6.2-53 6.2.5.2.2.4            System Actuation                  6.3-54 6.2.5.3          Design Evaluation                        6.2-54
                                                                                                    \
6.2.5.3.1        Containment Hydrogen Recombiner System  6.2-54
                                                                                          -lK 6.2.5.3.2        Hydrogen Mitigation-System              -6.2-56 6.2.5.4          Testing and Inspections                  6.2-57 6.2.5.4.1        Containment Hydrogen Recombiner System  6.2                          -j 6.2.5.4.2        Hydrogen Mitigation System                6.2-58 6.2.5.5          Instrumentation-Requirements              6.2-59 O      6.2.5.5.1 6.2.5.5.2 Containment Hydrogen Recombiner System Hydrogen Mitigation System 6.2-59 6.2-59 6.2.5.6          Materials                                6.2-59 4
6.2.6      CONTAINMENT LEAKAGE 1ESTING                    6.2-61 6.2.6.1          Containment Integrated Leak              6.2-62 Rate Test 6.2.6.2          Containment Penetration Leakage          6.2-63 Rate Test 6.2.6.3          Containment Isolation Valve              6.2-63 Leakage Rato Test 6.2.6.4-          Scheduling and Reporting of              6.2-64 Periodic Tests                                                            ,
6.2.6.5          Special TestingLRequirements-            6.2-64 6.3        -SAFETY INJECTION SYSTEM                        6.3-1 6.3.1      DESIGN BASES                                  6.3  v .
Amendment K            _
vii              October 30, 1992
 
CESSARna%mw O
TABLE OF CONTFNTS (Cont'd)
CHAPTER 6 Section  Subject                                      Page No.
6.3.1.1        Summary Description                      6.3-1 6.3.1.2        Criteria                                6.3-2 6.3.1.2.1      Functional Design Bases                  6.3-2 6.3.1.2.2      Reliability Design Bases                6.3-2 6.3.1.2.3      Capability to Meet Functional            6.3-3 Requirements 6.3.2    SYSTEM DESIGN                                6.3-10 6.3.2.1        System Schematic                        6.3-10 6.3.2.2        Component Description                    6.3-10 6.3.2.2.1      Incontainment Refueling Water            6.3-10 Storage Tank 6.3.2.2.2      Safety Injection Tanks                  6.3-11 6.3.2.2.3      Safety Injection Pumps                  6.3-12 6.3.2.2.4      Piping                                  6.3-14 6.3.2.2.5      Valves                                  6.3-14 6.3.2.3        Applicable Codes and                    6.3-17 Classification 6.3.2.4        Materials Specifications and            6.3-17
,                Compatibility l
l 6.3.2.5        System Reliability                      6.3-17 I 6.3.2.5.1      Safety Injection Tanks                  6.3-17 6.3.2.5.2      Safety Injection Pumps                  6.3-18 6.3.2.5.3      Power Sources                            6.3-18 l 6.3.2.5.4      Capacity to Maintain Cooling            6.3-19 Following a Single Failure 6.3.2.6        Protection Provisions                    6.3-20    I 6.3.2.6.1      Capability to Withstand                  6.3-20 Design Bases Environment 6.3.2.6.2      Missile Protection                      6.3-21    ;
6.3.2.6.3      Seismic Design                          6.3-21    l 6.3.2.6.4      Water Hammer                            6.3-22 Amendment J viii                April 30, 1992
 
CESSAR !!!L"ic 1 cn LIST OF TABLES-(Cont'd)
CHAPTER 6 Table        Subject 6.2.1-12    Main Stepm Line Break, 50% Power            .MSIV Failure (8.72-ft Total Area) 6.2.1-13    ' Main Steam Ling Break, 20%: Power --Loss of:One CSS            !
Train (8.72 ft    Total Area) 6.2.1-14      Main Stepm Line Break, 20% Power          -
MSIV Failure
                      -(8.72 ft Total Area) 6.2.1-15      Main Steam Ling Break, 0%. Power - Loss-of'one CSS Train (4.50 ft Total Area) 6.2.1-16      Main Stepm~ Line Break, : 0% Power          . MSIV. Failure-(4.50 ft    Total Area) 6.2.1-17      Summary    Results. of  Postulated      Pipe  Rupture Analysis i
6.2.1-18      Initial Conditions for Containment Peak Pressure Analysis 6.2.1-19'    ESF    Systems    Parameters    for ^ Containment    Peak
                      -Pressure Analysis 6.2.1-20      Containment Spray. Pump: Activation-Characteristics-6.2.1-21    Typical Passive' Heat Sink Data 6.2.1-22    Initial. -Conditions      'for. _ Containment-  Minimum Pressure Analysis 6.2.1 23.-  ' Long-Teral Mass and. Energy Release 6.2.1-24      Energy. Balances 6.2.1-25      Primary Side Resistance Factors, FLOOD MOD 2.-CODE 6.2.1-26      Blowdown And 'Reflood : Mass And--Energy Release for-the Minimum Containment Pressure Analysis 6.2.1-27    -Description' - of Assumptions . Used =in Containment Annulus Transient-Analysis-                    -
  -Q    6.2.4-1      Containment Isolation Valve and Actuator Data.              J.
L                                                                Amendment J j'                                        XV                    April 30, :1992 l
1 4
 
CESSARn.%L a O
LIST OF TABLES (Cont'd)
CHAPTER 6 Tablo    subject 6.2.5-1  Containrent Hydrogen Recombiner System Parameters 6.2.5-2  Hydrogen Production Parameters 6.2.5-3  Radiolysis Hydrogen Generation Assumptions 6.2.5-4  Aluminum and Zinc Inventories in Containment 6.2.5-5  Aluminum Corrosion Rate Versus Time After LOCA 6.2.5-6  Zinc Corrosion Rate Versus Time After LOCA 6.2.5-7  Containment    Hydrogen Recombiner  System  Failure Modes and Effects Analysis 6.2.5-8  Hydrogen Mitigation System Igniter Locations        lK 6.3.2-1  Safety Injection System Component Parameters 6.3.2-2  Safety Injection System Failure Modes and Effects Analysis G.3.2-3  Safety Injection Pump NPSH Requirements 6.3.2-4  Safety Injection System Head Loss Requirements 6.3.3.2-1 Time Sequence of Important Events for a Spectrum of Large Break LOCAs (Seconds After Break) 6.3.3.2-2 General System Paranciers and Initial Conditions, Large Break SIS ?crformance 6.3.3.2-3 Large Break Spectrum 6.3.3.2-4 Feak Clad Temperature and Oxidation Percentage for the Large Break Spectrum 6.3.3.2-5 Variables Plotted as a Function of Time for Each Large Break in the Spectrum 6.3.3.2-6 Additional Variables Plotted as a Function of Time for the Limiting Large Break 6.3.3.3-1 Safety Injection Pumps Minimum Delivered Flow to RCS (Assuming One Emergency Generator Failed)            h)'
Amendment K            !
xvi              October 30, 1992      l l
 
i            CESSAR Milincucu LIST OF FIGURES (Cont'd)
CIIAPTER 6 Figuro      Subject 6.2.5-2    ContainmentHydrogenConcentrationvsSingleTimelK After    LOCA  (Without Recombiners and With a Recombiner Start Time of 72 Ilours) 6.2.5-3    IRWST Hydrogen Concentration vs Single Time After lK LOCA (Without Recombiners and With a Recombiner Start Time of 72 Hours) 6.2.5-4    Aluminum Corrosion Pete vs Temperature 6.2.5-5    Zinc Corrosion Rate vs Temperature 6.3.2-1A  Safety Injection System Piping and Instrumentation Diagram 6.3.2-1B  Safety Injection System Piping and Instrumentation 7_
Diagram
        ,      6.3.2-1C  Safety Injection System Piping and Instrumentation Diagram 6.3.2-1D  Safety Injection System Flow Diagram, Short-Term Mode 6.3.2-1E  Safety Injectiot. System Flow Diagram, Short-Term Mode 6.3.2-1F    tfety Injection System Flow Diagram,    Long-Term
                          %de 6.3.2-1G  Safety Injection System Flow Diagram,      Long-Term Mode
          ,    6.3.2-2    Safety    Injection    Pump Head  and  NPSH  Curves (Typical) 6.3.3.2-1A 1.0 x Double-Ended Slot Break in Pump Discharge Leg, Core Power                                      i 6.3.3.2-1B 1. 0 - x Double-Ended Slot Break in Pump Discharge Leg, Pressure in Center Hot Assembly Node a        6.3.3.2-lC  1.0 x Double-Ended Slot Break in Pump Discharge
          )                Leg, Leak Flow m
Amendment K xxi              October 30, 1992 E
 
CESSARnn%ua.
e                                                                        O LIST OF FIGURES (Cont'd)
CHAPTER 6 Figure        Subject 6.3.3.2-10.1  1.0 x Double-Ended Slot Break in Pump Discharge Leg, Flow in Hot Assembly      -
Path 16, Below Hot Spot 6.3.3.2-lD.2  1.0 x Double-Ended Slot Break in Pump Discharge Leg, Flow in Hot Assembly - Path 17,      Above Hot Spot 6.3.3.2-lE    1.0 x Double-Ended Slot Break in Pump Discharge Leg, Hot Assembly Quality 6.3.3.2-lF    1.0 x Double-Ended Slot Break in Pump Discharge Leg, Containment Pressure 6.3.3.2-lG    1.0 x Double-Ended Slot Break in Pump Discharge Leg, Mass Added to Core During Reflood 6.3.3.2-lH    1.0 x Double-Ended Slot Break in Pump Discharge Leg, Peak Clad Temperature 6.3.3.2-2A    0.8 x Double-Ended Slot Break in Pump Discharge Leg, Core Power 6.3.3.2-2B    0.8 x Double-Ended Slot Break in Pump Discharge Leg, Pressure in Center Hot Assembly Node 6.3.3.2-2C    0.8 x Double-Ended Slot Break in Pump Discharge Leg, Leak Flow 6.3.3.2-2D.1  0.8 x Double-Ended Slot Break in Pump Discharge Leg, Flow in Hot Assembly    -
Path 16,  Below Hot Spot 6.3.3.2-2D.2  0.8 x Double-Ended Slot Break in Pump Discharge Leg, Flow in Hot Assembly    -
Path 17,  Above Hot Spot 6.3.3.2-2E    0.8 x Double-Ended Slot Break in Pump Discharge Leg, Hot Assembly Quality 6.3.3.2-2F    0.8 x Double-Ended Slot Break in Pump Discharge Leg, Containment Pressure O
Amendment I xxii                  December 21, 1990
 
CESSAR Enn"ication l
0 6.2.5          COMBUSTIBLE GAS CONTROL IN CONTAINMENT Following a design basis Loss-of-Coolant Accident (LOCA), control of combustible gas concentration in containment is provided by the Containment Hydrogen Recombiner System (CHRS).                      Hydrogen may be released to the containment atmosphere following a LOCA by radiolysis of water, corrosion of containment materials by the                              I containment spray, reaction of the zirconium cladding with steam and dissolved hydrogen coming out of solution from the reactor coolant and pressurizer steam space.                        The CHRS prevents the concentration of hydrogen from reaching the lower limit of 4% by volume in air or steam-air mixtures. flammability          The sy tcm      lK is  designed        in  accordance with            the  guidance provided by Regulatory Guide 1.7 and as required by 10 CFR 50.44, 10 CFR 50.46 and General Design Criteria 5, 41, 42 and 43. In addition, this system provides the capability for controlled purging to aid in post-accident containment atmosphere cleanup with filtration of  the discharge provided by the annulus ventilation filter                                I trains.
During a degraded core accident, hydrogen will be produced at a greater rate than that of the design basis LOCA.                        The Hydrogen lK Mitigation System (HMS) is designed to accommodate the hydrogen lI production from 100% fuel clad metal-water reaction and limit the g
* average    hydrogen concentration                  in    containment  to    10%      in accordance with 10 CFR 50.34(f) for a degraded core accident.
These limits are imposed to preclude detonations in containment that might jeopardize containment integrity or damage essential equipment. The HMS consists of a system of ignitors installed in containment to promote the combustion of hydrogen in a controlled manner such that containment integrity is maintained.
6.2.5.1        Design Bases 6.2.5.1.1              Containment Hydrogen Recombiner System (CIURS)                        7 A.      The CHRS is an Engineered Safety Features (ESP) System designed to maintain the hydrogen concentration within the containment atmosphere below its lower flammability limit of 4% in accordance with Regulatory Guide 1.7. The system is designed to be manually                  initiated prior to hydrogen concentration reaching 3.5% by volume.
B.      Two independent, full capacity, parallel loops make the system fully redundant and enable it to withstand a single active failure and still perform its design function.
C.      The CHRS is designed to provide sufficient suction points inside containment to eliminate stagnant pockets of air l                  where hydrogen could accumulate.
l Amendment K 6.2-45                  October 30, 1992 1
l
 
CESSAR En!inemos O
D. Recombiner                                                                    inlet                                            connections              from  the        In-containment Refueling Water Storage Tank (IRWST) are provided to remove hydrogen produced by sump radiolysis in the IRWST.
E. Components of the CHRS are designed to sustain normal and Seismic Category I loads as well as temperature and pressure transients from a LOCA.
F. The hydrogen recombiners are protected from                                                                                                                                      damage  by missiles or jet impingement from pipe ruptures.
G. Components of the CHRS located in containment will be designed to meet the appropriate environmental requirements specified in Appendix 3.11A.
7 H. System equipment located outside of containment will be arranged to preclude failure of the CHRS due to failure of other non-Category I systems.
I. CHRS components will be designed in accordance with ASME Boiler and Pressure Vessel Code, Section III, Class 2 requirements.
J. In                      the                                event                                            of                          offsite  power  loss,        power  to  the ContainmentHydrogenRecombinerSystemwillbeautomaticallylK supplied by the Class 1E 480 VAC Auxiliary power System which is supplied by the emergency diesel generators.
K. The system valves and components will be designed                                                                                                                                        in accordance with ANS Safety Class 2 requirements.
L. Access and shielding are provided to the areas where the 7
portable hydrogen recombiner and control panel skids are to be placed along with areas where coupling operations are required.
M. Capability will be provided for a controlled purge of the containment atmosphere to aid in post-accident containment cleanup.                                                        This portion of the system is non-safety related.                                                                          lK N. Redundant hydrogen analyzers prmide hydrogen concentration measurement of the incoming ga- ' rom containment as well as the recombiner                                                                                                    discharge fc,                          monitoring of recombiner            I performance.                                                                                The hydrogen analizers are independent of the hydrogen recombiners and are permanently installed to allow hydrogen concentration monitoring throughout the accident.
O Amendment K            )
6.2-46                      October 30, 1992        '
 
CESSAR ER!%mos O
6.2.5.1.2          Hydrogen Mitigation System (HMS)
A. The HMS is designed to allow adiabatic, controlled burning of hydrogen at low concentrations to preclude hydrogen concentration build-up to detonable levels. The system is designed to prevent the average hydrogen concentration in containment from reaching 10% by volume during a degraded core accident with 100% fuel clad metal-water reaction in          I accordance with 10 CFR 50.34(f). The system is designed to be manually initiated from the Control Room.
B. The HMS igniters are divided into two redundant groups, A                            -
and B. Each group has independent and separate control,
~
power, and igniter locations to ensure adequate coverage in the event of a circuit failure.      In the event of an offsite power loss, the ignitors have the capability of powered from the alternate AC source          (gas turbine)beinglK or emergency diesel generators.        The ignitors can also be powered from the Class 1E emergency batteries via DC-to-AC inverters.
I C. The hydrogen burning from the ioniters will not jeopardize the survivability of critical p? ant equipment.
      .O    D. Although the containment is designed to promote mixing, the igniters will be positioned in areas where hydrogen is produced most rapidly or could accumulate.
lK E. HMS components in containment are designed to sustain normal and Seismic Category I loads.
                                                                                                          }
F. HMS components are non-nuclear safety related since they are        I not required to prevent or mitigate the consequences of a design basis accident.      However, the HMS is required to mitigate the consequences of a severe (degraded core) accident.
G.      HMS components incontainmentwillbedesignedtowithstandlK severe accident environmental conditions.
6.2.5.1.3          Design Basis LOCA Hydrogen Production The design basis LOCA hydrogen production and accumulation                  I analysis was performed using the NRC Regulatory Guide 1.7 model.
This model assumes the fission product activity release specified in TID-14844 and the values for post-accident hydrogen generation specified in Regulatory Guide 1.7. Per Regulatory Guide 1.7, the effects of partial pressure of steam is considered in the a
Amendment K 6.2-47                October 30, 1992
 
CESSARn h uou O
hydrogen production analysis.      The parameters which determine the amount of hydrogen produced during the design basis LOCA are listed in Table 6.2.5-2.        Design basis LOCA hydrogen generation assumptions are discussed in the following sections.
6.2.5.1.3.1          Core Solution Radiolysis Radiolysis of the emergency core cooling solution occurs as a result of the decay energy of fission products in the fuel. The hydrogen production analysis by core cooling solution radinlysis is based on the TID-14844 release model.            Per Regulatory Guide 1.7, it is assumed that all of the beta energy is absorbed within the fuel and cladding with a maximum of 10% of the gamma energy being  absorbed  by the cooling solution in the core.                    A-conservative hydrogen yield of 0.5 molecules per 100 eV was assumed for both core and sump solution radiolysis. All noble gases are assumed to be released to containment. The assumptions I.
for hydrogen production due to radiolysis in the core and sump solutions are listed in Table 6.2.5-3.
6.2.5.1.3.2          Sump Solution Radiolysis Radiolysis of the sump solution occurs due to the radiolytic decomposition of the containment sump water              by the    fission products. The TID-14844 release model is assumed where 50% of the total core halogens and 1% of all other fission products, excluding noble gases, are released from the core to the sump solution. The total decay energy from the released fission products is assumed to be fully absorbed in the sump solution.
The containment sump includes areas in containment (i.e., holdup volume, horizontal surfaces, etc.) and the IRWST.            Since 57% of    g the containment sump water is enclosed in the IRWST, 57% of the sump radiolysis is assumed to occur in the IRWST.
6.2.5.1.3.3          Corrosion of Containment Materials Corrosion of metal surfaces, primarily aluminum and zinc, are significant contributors to hydrogen production in containment              I during a LOCA when subjected to the borated containment spray.
The inventory or aluminum and zinc in containment is minimized to the extent practical to limit these hydrogen sources.                  The inventories used        in  the  hydrogen production analysis are conservative in that they are the maximum limit of aluminum and zine to be used in containment.          The actual inventories are anticipated to be lower.
6 Amendment K 6.2-48                  October 30, 1992
 
CESSAR Ennemon The corrosion      rate of aluminum and zinc during a LOCA is 7 dependent    on  containment      spray pH                      and composition,  alloy composition and temperature, with temperature being the primary governing parameter.          The containment time-temperature curve (Figure 6.2.1-16) used in determining aluminum and z/ ~ c corrosion lKy rates is based on a conservative representation of the postulated post-accident transient.            Since this                      temperature plot only lK extends to 11.57 days, the temperature at that time of 170*F is conservatively assumed from 11.57 to 30 days. The aDminum and zinc corrosion rates as a function of temperature a,' 3ased on ANSI N-275, Draft 10 which provides conservative um .r bound hydrogen generation rates.              Aluminum and zinc inventories are                        -
listed in Tabic 6.2.5-4.            No    credit is taken for protective shield effects of insulation, oxide layer buildup or enclosures from the spray.
1 A. Aluminum Aluminum corrosion rates are based on ANSI N-275, Draft 10 and are shown versus temperature in Figure 6.2.5-4 and as a function of time after the LOCA in Table 6.2.5-5.                                    The aluminqm inventory used is 1000 lbm which corresponds to a 285 ft' surface area with a thickness of 250 mils. Due to the conservative temperatures used in the later stages of the LOCA, the corrosion rate is above 200 mils / year for the entire period which is more conservative than the Regulatory                            y Guide 1.7 requirements.
B. Zinc Zinc in containment is in two forms, galvanized steel and zinc-based paint.      Thesq two forms are combined for a total inventory of 379,700 ft" surface area with a thickness of 6 mils. The zinc corrosion rates are based on ANSI N-275, Draft 10 and are shown versus temperature in Figure 6.2.5-5 and as a function of time after the LOCA in Table 6.2.5-6.
C. Corrosion of other containment materials is negligible.
6.2.5.1.3.4          Zirconium-Water Reaction The zirconium-water reaction which occurs on the surface of the zirconium cladding during a LOCA is described by the chemical equation:
Zr + 2H O        ZrO      + 2H 2
2                  2 + Heat Per Regulatory Guide 1.7, the hydrogen produced is assumed to be 5 times the maximum calculated reaction under 10 CFR 50.46. This Amendment K 6.2-49                              October 30, 1992
 
CESSAR 8!nincuion O
corresponds    to 5% of the 56,130 lbm of Zirconium cladding              h, surrounding the active fuel.          Per Regulatory Guide 1.7, the hydrogen is assumed to be released into containment over a 2 minuto period from the start of the transient.
6.2.5.1.3.5        Dissolved Ilydrogen in Reactor Coolant The maximum equilibrium quantity of hydrogen in _he reactor coolant is 3890 scf.        This quantity includes both the maximum allowable hydrogen concentration in the primary coolant water at 100 cc (STP) per kilogram of water and the equilibrium hydrogen in the pressurizer steam space at the maximum concentration of 2/10 of 1% by weight of steam. The entire 3890 scf of hydrogen is assumed to be released immediately into containment at the initiation of the LOCA.
6.2.5.1.4        Design Basis LOCA Ilydrogen Accumulation Besides    containment, the IRWST is the only other            enclosed compartment which could experience hydrogen pocketing.          Ilydrogen recombiner inlet connections are provided for the IRWST which account for one-half of the 100 cfm flow to each recombiner.
To  account    for  single  failure,  only one of the 100 cfm recombiners is considered in the analysis.          The flow split per recombiner is 50 cfm from containment and 50 cfm from the IRWST.
Ilydrogen concentration versus time is shown in Figure 6.2.5-2 for        I containment and Figure 6.2.5-3 for the IRWST. These figures show hydrogen concentration without recombiner flow and with a single recombiner started 72 hours after the LOCA.
6.2.5.2      System Design 6.2.5.2.1          Containment Ilydrogen Recombiner System The CHRS consists of two redundant loops.          Within containinent, each loop of the CilRS is comprised of a suction header (influent piping)  with motor operated valves and a discharge header (effluent piping) with a check valve. Outside of containment, in the Nuclear Annex, each loop consists of influent piping, manual and motor operated isolation valves, sample piping, a hydrogen analyzer, a mobile recombiner and control panel skid, test and calibration connections, an isolated instrument      an airisolated  nitrogen connection,  a supply safety' connection, valve, and lK effluent piping.
I The recombiners      and control panels are skid-mounted, self-contained units.      Flanged piping connections are used for ease of O
l                                                          Amendment K l                                  6.2-50                October 30, 1992 l
l
 
CESSARE2ec-
:D-i  l U                                                                                    ,
installation. To  place  the  recombiners  in  operation,    the recombiners and control pancis are placed in their specified locations and the following connections are made:
A. Instrumentation                                                          j
                                                                                    -l' B. Hydrogen Test connection C. Power Supply D. Suction Piping E. Discharge Piping The  safety    valves    protect  the  CHRS  against    inadvertent  I pressurization during testing or system purging.        During normal system operation, the test and nitrogen connections are closed and the safety valve is isolated from the CHRS. The safety. valve and its associated isolation valve provide two -valve isolation between the CHRS and the atmosphere during a LOCA.
Instrumentation and controls are provided in a local control panel to allow operation and monitoring of each recombiner.
(
Inlet lines to the recombiners are provided from the IRWST and the upper portion of        containment. Divisional  separation    is maintained in these individual inlet lines as'well as the two recombiner inlet and outlet headers in the Nuclear Annex.lK Redundant inlet piping and an individual motor-operated valve in each suction line in containment allow suction from all areas of containment where hydrogen gas could accumulate while accounting for a single failure,                                                        j A ventilation    survey of containment' will - be performed upon completion of containment construction and assembly of the enclosed equipment.      This survey will be to verify that no-stagnant air pockets exist in containment and the IRWST.              If there are pockets of stagnant air where hydrogen could accumulate without local recombiner inlet connections, an inlet line from            I each of the recombiners will be placed in the high point of each of those stagnant pockets.
Table 6.2.5-1 lists component design parameters for the CHRS.-
The CHRS flow diagram is shown in Figure 6.2.5-1.
6.2.5.2.1.1          System Operation
      'The  CHRS  is    started  manually within    72  hours    after  a O      Loss-of-Coolant Accident.      By this time, two mobile recombiner skids are aligned and connected to the influent and effluent Amendment K 6.2-51                3ctober 30, 1992
 
CESSAR naincmon O
piping of the CHRS in the Nuclear Annex. The recombiner units are manually started and the containment isolation valves and the                K motor operated valves in the influent and effluent piping in containment are opened.      The system is now in the operational mode and ready to perform its function.
The containment atmosphere is drawn into the recombiner package through the suction header.      Hydrogen and oxygen are combined to form water vapor. The process gis is then piped back to contain-ment completing the recombination cycle.
6.2.5.2.1.2          Hydrogen Analyzers Two redundant hydrogen analyzers are provided.              Each analyzer is independent of the recombiners and does not require connection of the recombiners to operate.        Each of the analyzers can monitor either of the supply lines from containment. Within 30 minutes after a LOCA, both hydrogen analyzers are manually activated to monitor hydrogen levels and to alert the operators in the Control Room  if  hydrogen concentration exceeds 3.5%.                A redundant analyzer is available should a malfunction occur in one of the analyzers.
After    the  recombiners    are        placed in operation,        periodic porational checks of hydrogen recombiner performance can be performed. This is accomplished by opening the appropriate                  7 analyzer isolation valves and drawing a containment atmosphere sample through the hydrogen analyzer. The recombiner performance is determined by drawing recombiner influent and effluent through the hydrogen analyzer and comparing the hydrogen concentrations.
Provisions are also made for periodic checks of hydrogen analyzer performance.
6.2.5.2.1.3          Containment Purging The CHRS provides the capability for post-accident controlled purging' of the containment atmosphere to aid in clean-up.                The containment air can be routed from the suction header to the annulus via the recombiner bypass line.            The air is filtered prior to discharge by the annulus ventilation filter trains..
Make-up air to containment is initiated manually using the Containment Low Volume Purge Supply.
6.2.5.2.2        Hydrogen Mitigation System The hydrogen ignitors are placed so as to achieve controlled hydrogen burning.      Considerations for igniter positioning are as              g follows:
O l                                                                Amendment K          ,
6.2-52                      October 30, 1992
 
CESSARnuhou A. Hydrogen released to      the        In-containment Refueling Water Storage Tank (IRWST) produced from in-vessel oxidation.
B. Ex-vessel hydrogen production.
C. Local positioning in the reactor cavity, due to dry cavity scenario where zirconium and steel are oxidized using steam from the concrete as a water source.
D. Potential areas of hydrogen pocketing.
E. Vulnerability to damage from a pipe rupture during a LOCA.                  g F. Accessibility for maintenance and testing.
6.2.5.2.2.1          Igniter Locations The hydrogen ignitors are positioned to burn hydrogen locally near the sources and globally in areas where hydrogen could accumulate. Each igniter location consists of tuo igniters, one from group A and one from group B.              A total of forty-two ignitors are distributed throughout the containment at the twenty-one locations    listed    in  Table    6.2.5-8.            These  locations  are h
V approximate, based on equipment and piping proximity, as well as inspection and maintenance access.
6.2.5.2.2.2          Igniter Assembly Each ignitor is an AC powered glow plug powered directly from a step down transformer.      Each igniter assembly consists of a 1/8" thick steel enclosure (8" H x        6"      Wx    8"  D) which contains the transformer and all electrical connections and partially encloses the    igniter.      The    enclosure          meets      National    Electrical l      Manufacturers Association        (NEMA)          Type    4  specifications  for watertight integrity under various environmental conditions, including    exposure _ to    water          jets. The scaled      enclosure i      incorporates a heat shield to minimize the temperature rise                        I I
inside the igniter assembly, and a spray shield to reduce water impingement on the glow plug from above. The igniter assembly is.
designed to meet Seismic Category I requirements.
6.2.5.2.2.3-        Ignitor Power Supply The HMS igniters are equally divided into two redundant groups, having separate circuits and circuit breakers in each group.                  The number of igniters on each circuit ranges from 1 to 10.                      Each-group has independent and separate control, power and igniter locations to ensure adequate coverage in the event of a single-l e  failure. The igniters are manually actuated from the Control (L  Room.
Amendment K 6.2-53                        October 30, 1992
 
CESSAR nainemou I
O The ignitors are powered from the Class 1E 120 VAC Instrumentation and Control Power System (Section 8.3.2.1.2.1) that has normal and alternative power supplies from offsite Vital llK sources.        In the event of a loss of offsite power, the ignitors will be powered from the emergency diesel generators.                                              Group A y ignitera will be powered from the Division I diesel generator and group B igniters from the Division II diesel generator.                                            On loss of offsite power and failure of the emergency diesel generators to start or run (Station Blackout), the ignitors can be powered g from the alternate AC source gas turbine or the Class lE batteries via DC-to-AC inverters.
6.2.5.2.2.4                    System Actuation Station Severe Accident Management Procedures for responding to severe accidents will include instructions for actuating the hydrogen igniters and will address actuating and securing the ignitors in the later stages of the accident.
6.2.5.3                    Design Evaluation 6.2.5.3.1                    Containment Hydrogen Recombiner System since only one of the two completely separate recombiner loops is required,        a          single          active    failure              will not      prevent      the recombiners from fulfilling their design function. The CHRS is                                                    y in operation only during specified emergency conditions and not during normal plant operation.                                      This system is,          therefore, considered not subject to postulated passive failures.                                                  The system, as designed, can be periodically pressure tested to verify leak tightness. The effluent from this test can be vented to containment.                  IEEE Std. 279-1971, " Criteria for Protection Systems for Nuclear Power Plants" is applicable to automatically actuated protective systems.                            Since the hydrogen recombiner system is manually actuated and need only be placed in operation within 72 hours following a LOCA, the requirements of IEEt: Std.
279-1971 are not applicable. However, the guidance of Section 4 was used in the system design as follows:
                  "4.2 Single Failure Criterion" Any single active failure within the system will not prevent proper action at the system level when required.
                  "4.3 Quality of Components and Modules" Quality levels shall be achieved through the specification of requirements known to promote high quality, such as requirements                for          design,              rating      of      components, manufacturing, quality control, inspection, calibration, and testing.
Amendment K 6.2-54                              October 30, 1992
 
1        CESSAR narication r)
(
V_
                      "4.4 Equipment Qualifications" Tests            shall  be  conducted          to  verify    the  performance requirements determined to be necessary for achieving the system requirements.              See section 6.2.5.4.1.
                      "4.5 Channel Integrity" Both      loops have          been designed to maintain necessary functional capability under appropriate extreme conditions.
                      "4.6 Channel Independence"                                                    y Each        recombiner loop          is        completely    independent    and    ,
physically separate.
                      "4.10 Capability for Test and Calibration" Capability has been provided for testing and calibrating both loops during power operation.                      See Section 6.2.5.4.1.
The Containment Hydrogen Recombiner System is supplied power by a Class 1E electrical system which meets the requirements of IEEE
    ,7    308-1972.          Failure of one emergency diesel generator will notlK
    \      preclude the function of the other redundant CHRS train.
As stated in Regulatory Guide 1.7, the lower flammability limit for    hydrogen in air saturated with water vapor at room temperature and atmospheric pressure                          is  approximately four percent by volume.                For  these  conditions,        detonation  does not occur until a much higher concentration is attained; the CHRS design limit of 4% by volume is far below the detonation point.
The portable recombiner skid and control panel skid will be situated in a shielded area such that the radiation level                                  I associated with post-LCCA conditions does not prevent personnel from    manually            operating    the- system,          performing    periodic inspection of the control panel skid, or sampling.
The CHRS failure modes and effects analysis is contained in Table 6.2.5-7.
Figures    6.2.5-2          and    6.2.5-3          indicate    post-LOCA  hydrogen concentration versus time both with and without a single recombiner in operation for containment and the IRWST.                            These figures show that a single 100 cfm recombiner, initiated 72 hours following a LOCA is capable of maintaining hydrogen concentration below the 4 percent by volume limit.
lg The conservatism of the hyd:. ogen production and accumulation                            7 analysis is assured by the following:
72nendment K          j 6.2-55                      October 30, 1992      '
 
CESSAR 8nn"ication                                                            :
O A. Limiting the amount of zine and aluminc.m inside containment lK such that the resulting hydrogen generated is less than predicted.
I B. Using conservative values for aluminum and zinc corrosion rates.
C. Using maximum    value    of  fuel  cladding  zirconium-water - lK reaction.
D. Using maxi ;um hydrogen yield rates for radiolytic decay of        I fission products.
Forced mixing of the containment atmosphere topreventhydrogenlf pockets is not required since all potential stagnant air pockets are eliminated by venting them upward through open grating and vents as required. If any potential pockets are identified which cannot be vented upward they will be provided with suction linen-to the recombiners.
Redundant hydrogen analyzers are provided for monitoring of the post-LOCA containment atmosphere.        Each hydrogen analyzer is functionally independent of its associated hydrogen recombiner.
The portable portions of the CHRS are the hydrogen recombiner and control panel skids.      Piping connections between portable and permanent portions of the systeru are equipped with flanges as            I shown in Figure 6.2.5-1.      Blank flanges can- be used when tl.e recombiners are not in use to provide added isolation capability.
Electrical connections between portable and permanent portions of the system are equipped with quick disconnects.          The portable skids are anticipated to be stored in place at each site with appropriate access to facilitate portability.
Suction points for the CHRS are provided in the upper portion of containment and the IRWST.      Each recombiner's associated suction piping will be routed downward on opposite sides of containment.
Suction piping is protected-from dynamic effects such as missiles and pipe whip by maintaining physical separation. An analysis of-postulated pipe breaks will be performed as described-in Section 3.6 to further assure the adequacy of the routing.
The CHRS also provides the capability of hydrogen purging to allow cleanup of the post-accident containment atmosphere via the annulus ventilation filter trains.
6.2.5.3.2        Hydrogen Mitigation System The HMS is non-safety related, but has the capability of being powered from the alternate AC source gas turbine or Class 1E Amendment K 6.2-56              October 30, 1992
 
CESSAR nairicavion
    \g emergency diesel generators or emergency batteries via inverters for reliability. IIMS components in containment are designed to      7 meet seismic Category I requirements.
The requirements of 10 CFR 50.34(f) are highly conservative in both the hydrogen metal-water  reactionconcentration postulated. limit and present Steam  the amount  of fuel clad lK in containment and the open containment design provide additional design margin.
The ignitors are positioned in areas of potential high hydrogen concentration, and each of these areas has at least two ignitors with separate power supplies.
6.2.5.4      Testing and Inspections 6.2.5.4.1        Containment liydrogen Recombiner System o
Components of the CliRS can be inspected and, with the exception of the isolation valves inside containment, are accessible for maintenance during normal plant operation.
Instrumentation accuracy will be provided by instrumentation calibration    as    required    under    the    facility  maintenance    I procedures. Hydrogen analyzers will be calibrated against
    \  samples of known hydrogen concentrations            to verify    their accuracy.
The recombiner vendor will perform a full scale demonstration test as part of the process of ' obtaining NRC certification for the recombiner and control panel skid -packages. The CIIRS will incorporate recombiner and control panel skid packages which are equivalent to the one certified by the NRC.
Each recombiner unit will be functionally tested at the vendor's site prior to shipment.      The operating conditions will be the maximum values from Table 6.2.5-1 of inlet temparature, pressure, external pressure drop, and hydrogen concentration.            The test will include normal startup, operating steady state, and normal shutdown. The recombiner will meet the flow rate specified in Table 6.2.5-1 foraminimumtimeintervalof15minutesofsteadylK state operation.
Upon delivery of the recombiner and control panel skid packages and afterwards periodically,        the  following  tests will      be 7
performed:
l      A. Safety valves will be tested in the context of a plantwide program for safety and relief valve testing.
r  L/
Amendment K 6.2-57                  October 30, 1992 l
l
                        ~.              _
 
CESSARn.%nem B. At each scheduled refueling, but not less than once every two years, the following tests will be performod:
: 1. All  valves    with    remote  position    indicators,      which during power operation are          inaccessible    for direct observation shall be visually observed to confirm that remote valve      indication    accurately    reflects    valve operation.
: 2. The CHRS will be pressurized to test system integrity.
: 3. The CHRS will be brought into a recycle, preoperational heatup mode by the procedures given                in    Section 6.2.5.2.1.1 to check recombiner operation.
: 4. When she CHRS reaches operating conditions, hydrogen at a known rate and concentration will be added at the hydrogen    test    connection    to  verify      recombiner operability with the hydrogen analyzer.
C. At least once every three months all valves will be exercised. The necessary valve stem or disk movement shall-be established by exercising the valve while observing an-appropriate indicator which signals the required change in                I 1 position. The startup air and containment isolation check valves will be tested by connecting a pressurized air rource with a flow indicator to the startup air . line. The va_ves between the pressure source and the return line to containment will then be opened. A positive flow indicates that the check valves are opening properly.
I 6.2.5.4.2        Hydrogen Mitigation System Preoperational- testing,        to be performed before startup,            will verify that the electric current drawn by each group of ignitors is within tolerance, and that the temperature of each igniter is at least 1700*F.        The. current measured in each circuit during preoperationn1      tests    provides    the-  baseline    for      future-surveillance tests.
The igniter system will be subjected to surveillance testing on a l- quarterly basis. This testing will consist of energizing the HMS and taking current and voltage readings of the igniter circuits.
If the power _ consumption is not comparable with that measured during preoperationai testing, the ignitors on the affected                        i circuits    will    be  individually    inspected to ensure their operability. In addition to power consumption measurements, the temperature of each' igniter will be measured during each g
refueling outage to verify a minimum temperature of 1700*F.
Amendment K 6.2-58                  October 30, 1992
 
CESGAR !!n% mon k
6.2.5.5                        Instrunnentation Requirements I
6.2.5.5.1                        Containment Hydrogen Recombiner System The recombiner skid package is capable of operating under varying The unit gas flow is      K containment                    atmosphere  conditions.
monitored and gas temperature is monitored at various points on the unit control panel.
The recombiner fan and heater are protected against high temperature by flow and temperature control instrumentation.
Instrumentation and control are provided for isolation of the CHRS through closure of the influent piping motor operated valves inside and outside of containment upon receipt of a Containment Isolation Actuation Signal (CIAS).
Hydrogen concentration is monitored in the Control Room from the hydrogen analyzers.                    An alarm is actuated in the Control Room if hydrogen concentration exceeds 3.5%.
6.2.5.5.2                        Hydrogen Mitigation System Indication and control for the HMS igniters are located in the d              Control Room.
operability testing.
Temperature indication is provided for igniter 6.2.5.6                        Materials Materials used in the CHRS and HMS are compatible with the                            I containment atmosphere and the nuclear environment by the following means:
A. Components will be fabricated from austenitic -stainless steel, type 316, 304, or equivalent.
B. None of the materials except clastomers and lubricants used are subject to decomposition by the radiation or thermal' environment.                    The specifications require that the materials be              unaffected        when  exposed  to    the  equipment design temperature and the total integrated radiation dose.
C. Materials such as clastomers and lubricants that may reach their damage threshold- by exposure                          to the    specified environment will be replaced during routine maintenance.
D. Materials of the CHRS are compatible with the containment atmosphere                    composition    and  chemistry  during    normal operations and during design basis accident conditions.
  %./
Amendment K 6.2-59              October 30, 1992
 
CESSAR n%"icari:n E. The HMS ignitors are compatible with the containment O
atmosphero  composition    and  chemistry  during  normal I operations and during severe accident conditions.
O O
Amendment I 6.2-60              December 21,.1990
 
1
( E!i5i/LFt salir"ic4Iion n
u,                                                                              l 1
TABLE 6.2.5-1 l
CONTAINMIOTP HYDROGEN RECOMBINER SYSTFM PARAMETERS Parameter                            Value Number of Recombiners                                    2            y Flow Rate per Recombiner, cfm                            100 Desigr. Pressure, psig                                    60 Design Inficent Temperature, 'F                          300 Design Radiation Level, Rads                                          l Recombiner                                            1.0 x 10 E
Recombiner Blower Motor                                          8 1.0 x 10 Control Panel                                                    6 3.0 x 10
[''\  Hydrogen Concentration Limit, Percent by volume        4%              I
()
d O
Amendment K October 30, 1992
 
CESSAR !!S% mon O
TABLE 6.2.5-2 HYDROGEN PRODUCTION PARAMPTERS Parameter                            Value Reactor Power (Full power plus 2% uncertainty), MWt    3876 Reactor Operating Time, Months                        18 3                      6  I Containment Not Free Volume (Minimum), ft              3.377 x 10 3
IRWST Freeboard Volume (Design basis LOCA)', ft        1.032 x 10  '
Initial Temperature, 'F                                110 Initial Pressure, psia                                .15.1 Initial Relative Humidity                              10%
Cladding Zirconium Mass (Surrounding active                          K fuel), lbm                                            56,130 Dissolved Hydrogen in Reactor Coolant (Maximum),
cc(STP) per kg of water                              100 I
Dissolved Ilydrogen in Pressurizer Steam Space (Maximum), by Weight                          2/10 of 1%
O Amendment K October 30, 1992 t.
 
V                                        b/                                                  v    .
TABLE 6.2.5-7 CONTAIl09ENT llVDROGEN RECOMBINER SYSTEM FAILURE MODES AND EF TCTS ANALYSIS 1
Failure                    Failure                    Effect on        Method of No. Component      Mode                    Mechanism                    Systcu          D2tcction 1  Hydrogen  Fails to start            Diesel generator            Hone due to      Indication of Recombiner                          failure; mechanical          redundant        lack of power and/or electrical            recombiner      at manual failure                      train            control station 2  Hydrogen  Signal failure            Sensing cell                None due to      Periodic testing Analyzer                            depletion                    redundant        and control room I analyzer          annunciation
[                Electronic                Electrical                  None due to      Periodic testing failure                  component fails            redundant        and control room analyzer          annunciation Mechanical                Mechanical                  None due to      Periodic testing failure                  component fails            redundant        and control room analyzer          annunciation 3  CHRS Valve Falls to                  Mechanical                  None due to      Periodic testing operate                  and/or electrical          redundant        and control room failure                    recombiner        annunciation
;                                                                      train Amendment I December 21, 1990
 
CESSA                                                                                                                                          8ln% nou TABIE 6. 2. 5-8 IIYDROGEN MITIGATION SYSTEM IGN1TIG1 IDCATIONS REGION COV15tED                                                                                                                                EIEVATION        RADIAL LOCATION      AZIMUTII Reactor Cavity                                                                                                                                94 ft.              43  ft.          8' 91+9 Elevation                                                                                                                                100 ft.            52  ft.          70*
91+9 Elevation                                                                                                                                100 ft.            47  ft.          130' 91+9 Elevation                                                                                                                                100 ft.            47  ft.          230'                      -
91+9 Elevation                                                                                                                                100 ft.            47  ft.          310' IWAC Distribution                                                                                                                            100 ft.            69  ft.          8' Ileader IWAC Distribution                                                                                                                            100 ft.            69 ft.            105' licader INAC Distribution                                                                                                                            100 ft.            69 ft.          185'          h, IIcader 1WAC Distribution                                                                                                                          100 ft.            69 ft.            275' lieader Letdown IIX Room                                                                                                                          100  ft.          65  ft.          150' Regenerative llX Room                                                                                                                      100  ft.          60  ft.          200*
Outside                                                                                Crane                              Wall          125  ft.          69  ft.          25' Outside                                                                                Crane                              Wall          125  ft.          69  ft.          142' Outside                                                                                Crane                              Wall          125  ft.          69  ft.          225' Outside                                                                                Crane                              Wall          125  ft.          69  ft.          310*
Dome                                                                                                                                    192  ft.          46  ft.          90*
Dome                                                                                                                                    192  ft.          46  ft.          270' Dome                                                                                                                                  252  ft.          24  ft.          O'                          ~
Dome                                                                                                                                  252  ft.          24 f t..        90' Dome                                                                                                                                  252  ft.-          24 ft.            180*
Dome                                                                                                                                  252  ft.          24 ft.            270*
O Amendment K October 30, 1992
 
o I    -1.      I    1    I      I    I  i    I      3
_ /~'}
    \  ,)--                                                                    o
                  -                                                        _ o 5
E a
2 o                  o x
o a
                                                                            - o w            z E            r
                                                %            b 5            3 0
o
                                                -                              2 3
O 6
5                                  9 a
o  0
                                                                              $    w E-r Ij
  -i            -                                                        -
[
_                                                          _  g n
                                                              \
_                                                          _  g-l.
l-1    I      I    i    1      1    I  I    l      a o        e    n-    n    e;    o    <-  e    s  -    a E
                                                  %H Amendment K
    /~T,_                                                                        October 30.1992-
    '\ -
* CONTAINMENT HYOROGEN CONCENTRATION vs TIME =            Figure -
jg / p                  AFTER LOCA (WITHOUT RECOMBINERS AND WITH.
A SINGLE RECOMBINER START TIME OF' 72 HOURS)          6.2.5-2 l
[
 
0
                                                    -                0
                                                    -        .        8 0
g I  0 7
0 g                                                            I  0 6
R E
N I                              R                            0 g
B                              E                        I  0 M                              N I
O                              B C                              M E                              O R                              C T                              E                              S R                              R U                                                            U O                              H                              O g
H                              T                            0 H
T                              I                        I  0 I
W                            4  .
W                                                            E M
I T
0 g                                                          I    0 3
g 0
0 2
0 g                                                          I    0 1
        -      .  -      -      -    -    -      -                  0 0  3    g  y      6      5    4    3      2      1        g 1
s-3I
                                                                            >3C3O5 $ 7 O 3C1C' 7      $,
mE
                        =$w" 3<CrOO$ O=CF2d$*.- $a<" derr                          TeEo
                    >3w= OOp 4_-[            rmO0KEztIr ygC I_*I bIs t
    %N              > mggr* xmOOgeg        v~>24 2-      7 f  t
                                                      -45r C sN IOc2W
                                                                -                  EeTw
 
I v
100,000          ---i      i    i      i      i      e            -
                          -                                                              i g            -
M 10,000                                                              -
                                                                                      ~
4              :                                                        -
Q              -
e              -
9              _
o E
o      1,000    --
O              -
3              -
g g              -
O          3
              <t 100 100        125    150  175    200    225  250    275      300 TEMPER ATURE, ''F ALUMINUM CORROSION RATES BASED ON ANSI N-275, DRAFT 10 Amendment i December 21,1990 O                                                                                        Figure ggg                            ALUMINUM CORROSION RATE vs TEMPER ATUtiE
 
O 1000_        ,      ,      ,      ,      ,        ,      ,        ,
              ~
                                                                      /    .
c:      -
B a  100  --
2        -
              ~
ui      ~
                                                                            ~
                                                                            ~
Q        -
ec                                                                    -
g'      -
B        -
O                                                                    -
cc cc 10  -
o        :                                                            :
3i        i      i      i      i      i      i      i 100      125  150    175    200-    225      250    275    300 TEMPERATURE,'F ZlNC CORROSION RATES BASED ON ANSI N 275, DRAFT 10 i
Amendment K        -
October 30,199 Figure Jg                      ZINC CORROSION RATE vs TEMPERATURE
 
CESSAR E!Mincuisw                                  (snoot 2 or 21)
, ,/
{
\
EFFECTIVE PAGE LISTING CilAPTER 7 Table of Contents Page                                        Amendment i                                                D 11                                                D                :
111                                              D iv                                                E v                                                  E vi                                                I vii                                              E vili                                              E ix                                                I x                                                D xi                                                D xii                                              D xiii                                              D
  ,    xiv                                              D f  ) xv                                                I
(_,/  xvi                                              D xvii                                              D xviii                                            E xix                                              E xx  ,
I xx.1                                              E xxii                                              E xxiii                                            I xxiv                                              I xxv                                              D xxvi                                              I xxvii                                            I xxvili                                            I xxix                                              I Text
                                                                            )
Page                                        Amendment 7.1-1                                            I 7.1-2                                            I 7.1-3                                            I 7.1-4                                            I 7.1-5                                            I p      7.1-6 7.1-7 I
g%                                                      I 7.1-8                                            D 7.1-9                                            D                i 7.1-10                                            D Anondment K October 30, 1992
 
h CESSAR En!Am:n                                                                                    (Shoot 2 of 11)
O.
EFFECTIVE PAGE LISTING                      (Cont'd)
CIIAPTER 7 Text    (Cont'd)
Page                                                              Amendment 7.1-11                                                                                          K 7.1-12                                                                                          K 7.1-13                                                                                          K                                      =
7.1-14                                                                                            I 7.1-15                                                                                          D 7.1-16                                                                                            D 7.1-17                                                                                            D 7.1-18                                                                                            D 7.1-19                                                                                            E 7.1-20                                                                                              I 7.1-21                                                                                              I 7.1-22                                                                                            K 7.1-23                                                                                              D 7.1-24                                                                                            D 7.1-25                                                                                              D 7.1-15                                                                                              D 7.1-27                                                                                              D 7.1-28                                                                                              D 7.2-1                                                                                                I 7.2-2                                                                                                E 7.2-3                                                                                                I 7.2-4                                                                                                E                                  _
7.2-5 7.2-6                                                                                                E 7.2-7                                                                                                I 7.2-8                                                                                                I 7.2-9                                                                                                I 7.2-10                                                                                                I 7.2-11                                                                                                I 7.2-12                                                                                                I 7.2-13                                                                                                I 7.2-14                                                                                              I 7.2-15                                                                                              E 7.2-16                                                                                                E 7.2-17                                                                                                E 7.2-18                                                                                                E 7.2-19                                                                                                I 7.2-20                                                                                                I 7.2-21                                                                                                I 7.2-22                                                                                                E 7.2-23                                                                                                I 7.2-24                                                                                                E l
Amendment K                          l October 30,.1992
 
CESSAR E!L"icucu                                  (sh: t 5 or 21) l r:arg
(    )
  'O EFFECTIVE PAGE LISTING (Cont'd)
CilAPTER 7 Text (Cont'd)
Mcy                                          Amendment 7.4-8                                            D 7.4-9                                            D 7.4-10                                            D 7.4-11                                            I 7.4-11                                            D 7.4-13                                            D 7.5-1                                            D 7.5-2                                            D 7.5-3                                            D 7.5-4                                            D 7.5-5                                            I 7.5-6                                            D 7.5-7                                            D 7.5-8                                            D 7.5-9                                            D
  ?q 7.5-10                                            D V)    7.5-11                                            I 7.5-12                                            E 7.5-13                                            D 7.5-14                                            D 7.5-15                                            D 7.5-16                                            D 7.5-17                                            D 7.5-18                                            D 7.5-19                                          D 7.5-20                                            I 7.5-21                                            D 7.5-22                                            D 7.5-23                                            D 7.5-24                                          D 7.5-25                                          D 7.5-26                                          D 7.5-27                                          D 7.5-28                                          D 7.5-29                                          D 7.6-1                                            K 7.6-2                                            K 7.6-3                                            I 7.6-4                                            E AInondment K October 30,--1992
=
 
CESSAR !!.%nem:n                                  (Shoot 6 of 11)
O EFFECTIVE PACE I.1 STING (Cont'd)
CIIAPTER 7                            '
Text (Cont'd)
Pago                                        Amendment 7.6-5                                            E 7.6-6                                            I 7.6-7                                            D 7.6-8                                            D 7.6-9                                            D 7.6-10                                            I 7.6-11                                            D 7.6-12                                            D 7.6-13                                            1 7.7-1                                            D 7.7-2                                            D 7.7-3                                            D 7.7-4                                            I 7.7-5                                            D 7.7-6                                            I 7.7-7                                            D 7.7-8                                            I 7.7-9                                            I 7.7-10                                            D 7.7-11                                            I 7.7-12                                            I
  <.7-13                                          D 7.7-14                                            D 7.7-15                                            I 7.7-16                                            I 7.7-16a                                          D 7.7-17                                            D 7.7-18                                            D 7.7-19                                            D 7.7-19a                                          I 7.7-19b                                          I 7.7-20                                            D 7.7-21                                            D 7.7-22                                            D 7.7-23                                            I 7.7-24                                            D 7.7-25                                            D 7.7-26                                            I 7.7-27                                            D 7.7-28                                            I 7.7-29                                            I 7.7-30                                            I 7.7-30a                                          D Amendment K October 30, 1992
 
CESSAR nin"lCATION TABLF. OF CONT 10dTS CIIAl'fFR 7 Section    Subject                                      Pago No.
7.0        INSTRUMENTATION AND CONTROLS                  7.1-1
 
==7.1        INTRODUCTION==
7.1-1 7.1.1      IDENTIFICATION OF SAFETY-RELATED              7.1-1 SYSTEMS 7.1.1.1          Plant Protection System (PPS1            7.1-1 7.1.1.1.1        Alternate Protection                    7.1-2 System (APS)                                    lD 7.1.1.2          Reactor Trip System (RTS)_              7.1-2 7.1.1.3          Engineered Safety Feature              7.1-2 Systems (ESF Systems) 7.1.1.4          Systems Requirod for Safo                7.1-2 Shutdown 7.1.1.5          S,afety-Related Display                  7.1-4 Instrumentation 7.1.1.6          All Other Systems Required              7.1-4 tor Safety 7.1.1.7          Design Comparison                        7.1-4 7.1.1.8          System Drawings                          7.1-5 7.1.1.9          System Diver sity                      7.1-5 7.1.2      IDENTIFICATION OF SAFETY CRITERIA            7.1-5 7.1.2.1          Design Bases                            7.1-5 7.1.2.1.1        Systems Required for Plant              7.1-6 Protection 7.1.2.1.2        Systems Required for Safe Shutdown      7.1-6 7.1.2.1.3        Safety-Related Display                  7.1-6 Instrumentation 7.1.2.1.4        All Other Systems Required              7.1-6 for Safety Amendment D i            September 30, 1988
 
CESSAR !!.'ana O
TABLE OF CONTENTS (Cont'd)
CllAl"I'ER 7 Section  Subject                                      Pago No.
7.1.2.2      Conformance to IEEE 279-1971            7.1-7 7.1.2.3      Conformanco to IEEE 308-1980            7.1-7 7.1.2.4      Conformance to IEEE 317-1983            7.1-7 7.1.2.5      Conformance to IEEE 323-1983,            7.1-7 as Augmented by Regulatory Guido 1.89 7.1.2.6      Conformance to IEEE 336-1985,            7.1-7 as Augmented by Regulatory Guido 1.30 7.1.2.7      Conformanto to IEEE 338-1977 1          7.1-7 as Augmented by Regulatory Guido 1.118 7.1.2.8      Conformance to IEEE 344-1987,            7.1-8 au Augmented by Regulatory                        J Guido 1.100 7.1.2.9      Conformanco to IEEE 379-1977,            7.1-8 as Augmented by Regulatory Guido 1.53 7.1.2.10      Conformance to IEEE 384-1981,            7.1-9 as Augmented by Regulatory Guido 1.75 7.1.2.11      Conformance to IEEE 387-1984            7.1-10 7.1.2.12      Conformance to IEEE 450-1980            7.1-11 7.1.2.13      Conformance to IEEE 603-1980,            7.1-11 as Augmented by Regulatory Guido 1.153 7.1.2.14      Comparison of Design with                7.1-11 Roqulatory Guido 1.6 O
Amendment D 11                September 30, 1988
 
r CESSARm!A m                                                                                        i l
t W
TAHI.E OF CONTENTS (Cont'd)                                                        !
C11 APTER 7                                                          ,
P.oction  Subject                                                          Page No              i i
7.1.2.15        Conformance to Regulatory Guido 1.11                        7.1-11              j.
7.1.2.16        Conformance to Roquintory Guido 1.17                        7.1              7.1.2.17        Conformanco_to Regulatory Guide-1.22                        7.1-13 7.1.2.18        Conformance to Requlatory Guide 1.29                      - 7.1            $
i 7.1.2.19        Conformance to Roquintory Guide 1.40 7.1-14 L
7.1.2.20        Conformanco to Roquiatory Guido 1.'45                        7.1-14 7.1.2.21        Conformance to Roquiatory Guido 1.47                        7.1            <
7.1.2.21.1      Operating Dypasson                                          7.1-10              i 7.1.2.21.2      Trip Channel Bypasaca                                        7.1-16              -
7.3.2.21.3        ESF Components Inoperablo                                  7.1-16              ,
7.1.2.22          Conformancu to Regulatory Guide'1.62                        7.1-16              j 7.1.2.23          Conformance to Regulatory Guido 1.63'                      7.1-17              ,
7.1.2.24          Conformance to Regulatory Guido 1.68                      7.1      D 7.1.2.25          Conformance to'Roquiatory Guido 1.73                      7.1-17 7.1.2.26            Conformance to Requlatory Guido'1.97                      7.1                7.1.2.27          Conformanco to Requintory Guido 1.105                    7.1                7.1.2.28            Conformanco-to Rogulatory Guido-1.106                    17.1-19          -s Conformance to Regulatory Guido=1.120                    7.1-19l
                                                                ~
7.1.2.29 as Augmented by-BTP CMEB 9.5-1 7.1.2.30      ' Conformance- to' Rogulatory Guido                            7.1                                    to 1.133                                                                    .
7.1.2.31            Conformance to Regulatory Guide 1.151,                    7.1-20~
7.1.2.32            Conformance to Rogulatory'Guido_1.152:                  -7.1-20 L
7.1.2.33            Conformance to Regulatory'Guido2 1;156                  l7.1-210 7.1.2.34            Conformance,,to'Rogulatory Guido 8.12~                  ' _7 .1 -21
                                                                  ' Amendment-D' 111-              . September-30, 1988:
s
 
A diDW%Tf M I;A-
                                ?' /,8 fj; 4. /, P ash:aN 6, Aj . -    ~ ' d CLTIFICATION a .m . .. v .
O TAllLE OF COliTENTS (Cont'd)
CilAl"rER 7 Unction                Subject                                          Pago_No.
7.1.3                  Il1TERFACE REQUIREMEllTS                        7.1-21 7.2                    REACTOR PROTECTIVE SYSTEM                        7.2-1 7.2.1                  DESCRIPTIO!i                                    7.2-1 7.2.1.1                      Systems Description                        7.2-1 7.2.1.1.1                    Trips                                      7.2-2 7.2.1.1.1.1                        Variable Overpower                  7.2-2 7.2.1.1.1.2                        liigh Logarithmic PoWor              7.2-2 Lovel 7.2.1.1.1.3                        Iligh Local Power Density            7.2-3 7.2.1.1.1.4                        Low Departure From liucleate        7.2-3 Boiling Ratio 7.2.1.1.1.5                        liigh Pressurizer Pressure          7.2-3 7.2.1.1.1.6                        Low Pressurizer Pressure            7.2-4 7.2.1<1.1.7                        Low Steam Generator Water            7.2-4 Level 7.2.1.1.1.8                        Low Steam Generator Pressure        7.2-4 7.2.1.1.1.9                        liigh Containment Pressuro          7.2-5 7.2.1.1.1.10                        liigh Steam Generator Water          7.2-5 Level 7.2.1.1.1.11                        Manual Trip                          7.2-5 7.2.1.1.1.12                        Low Reactor Coolant Flow            7.2-6    lE 7.2.1.1.2                    Initiating Circuits                        7.2-6 7.2.1.1.2.1                        Process Measurements                7.2-6 7.2.1.1.2.2                        CEA Position Measurements            7.2-6 7.2.1.1.2.2.1                              CEA Position Monitoring      7.2-7 by the RPS                              E 7.2.1.1.2.2.2                              Control and Protective        7.2-8 Actions for CEA Misalignments s'
Amendment E iv                December 30, 1988
 
CESSAREl L ia                                                                              _
77
(      )
J 7.1.2.12        Conformance to I E EM _ 4 50-19110 Conformance to IEEE 450-1980, "IEEE Recommended Practice for Large    Lead Storage    Batteries      for  Generating Stations                      and Substations," an criteria in the design of theco systems is discussed in Chapter 8.
7.1.2.13        Conformance to IEEE 603-19110, an Augmented by Hegulatory Gulde 1.1S3 The safety systems such as PPS, EST-CCS and R'I SS conform to the requirements of IEEE 603-1980,          " Standard Criteria for Safety Systems for 11uclear Power Gencrating Stations," as augmented by Regulatory Guide 1.153, " Criteria for Power, Instrumentation, and Control    Portion of    Safety      Systems."      For  descriptions                    of conformances,    refer to Sections          7.1.2.2,    7.1.2.3,                    7.1.2.5, 7.1.2.7, 7.1.2.9 and 7.1.2.10.
7.1.2.14        .C_omparinon of Denign with Regulatory Guido 1.6 See Chapter 8.
lI
    /
      --  7.1.2.15        Conformance to Regulatory Guide 1.11 i
(
(,!'  Cuidelines for instrument lines which penetrate primary reactor containment, and which are part of thn reactor coolant pressure boundary or are connected directly to the containment atmosphere do not apply, since there are no lines which fall directly into this category.      Containment pressure is monitored by                                four redundant pressure transmitters located outside of containment which monitor containment atmosphere. The lines both inside and outside containment are kept as short as possible.                    11 o other instrument lines penetrate reactor containment.
D 7.1.2.16        _Conformance to Regulatory Guide 1.17 The following design features addreco                the  requirements of Regjlatory Guide 1.17,        " Protection of      11uclea r Power Plants Against Industrial Sabotage":
A. Separate Geographic Locations for Equipment
: 1. Redundant channels of safety-related instrumentation and control cabinets are designed to be located in separate plant locations.          These equipment locations are designed consistent with the intent of 11UREG-0908                                K (Reference 5) and are described in Chapter 13, Appendix 13A, Section 7.
  /      \
  \
I J
Ame,dment K 7.1-11                    Oct oby 3 0, 1992 l                                                                              'Y l
l
 
CESSARl'a u O
B. Limited Ability    to Change  System liardwaro  and  Software Configurations
: 1. Portions of systems are designed to limit the ability                D of operating and maintenanco personnel to chango basic system functions (e.g., setpoints can be changed, but the trip function calculation cannot be altered).
Further details on the protection features of the I&C system, relative to on setpoint security, are contained              K in Chapter 13, Appendix 13A, Section 8.
: 2. The transfor of control between the Main Control Room D and    Remoto  Shutdown    Panol  is  under    key  lock administrativo control with built-in alarms.        Further details of the protection features of the I&C system, relativo to impeding unauthorized transfor from the K Hain Control Room to the Remote Shutdown Panel, are contained in Chapter 13, Appendix 13A, Section 8.
: 3. The PPS design does not permit bypassing either the RPS or ESFAS signals at the system lovel. Bypasses can be initiated in only one of the four redundant protection channels at a timo.      Attempts to bypass additional channels will be rejected and be annunciated,              as discussed in Sections 7.2.1 and 7.3.1.
: 4. Vital instrumentation cabinet doors      are  locked and equipped with " door open" alarms.
C. Fail-Safo Design Philosophy                                                9
: 1. Systems are generally designed to fail safely upon de-energization, removal of printed circuit boards and disconnection of cables and data links.
: 2. Test modes are designed such that they do not provent system actuation.
D. Safety System. Status Monitoring
: 1. Critical  safety system    setpoints can be determined manually and, in addition, are automatically monitored lK via the Plant Protection System (PPS) Interface and Test Processor (ITP), and the plant Data Processing I System.
: 2. Reactor trip and ESFAS initiation trip channel bypass                D alarms are provided.
O Amendment K 7.1-12                October 30, 1992
 
CESSAR EL'acmow U
: 3. Component level bypasses in the ESF systems result in system    level  inoperable      alarms    for          the    affected systems, as described in Section 7.1.2.21.
E. Diverso    Manual    vs  Automatic      Reactor            Trip    and    ESFAS Initiation
: 1. Reactor Trip and ESFAS are automatically initiated by the PPS. These same      functions      can            be manually initiated by the operator. The RTSS and ESF-CCS manual initiation trips do not rely on any PPS components for actuation. Thereforo, those functions can bo manually initiated with a comploto failure of the PPS automatic initiation logic.
The abovo features are designed to impodo sabotago. See Chapter lE 13,  Appendix 13A for a more comprehensivo discussion on lK protection against sabotago.                                                              lc 7.1.2.17        Conformance to Regulatory Guido 1.22 D
The PPS, ESF-CCS, and the RTSS, as described in Section 7.1.1,
  -  conform to the guidance of Regulatory Guido 1.22, " Periodic fN  Testing    of  Protection    System conformance is described below.
Actuation      Functions."              This A. Provisions  are  made  to  permit    periodic            testing    of  the complete PPS, ESF-CCS, and RTSS with the reactor operating at power or when shutdown.          These tests cover the trip                      o action from sensor input to actuated devices.                        Those ESF actuated devices which could affect operations are not tested while the reactor is operating but, instead, are testod while the reactor is shutdown.
B. The provisions of this position are incorporated in the testing of the PPS,        from sensor to actuation including the ESFAS and ESF-CCS and the RTSS.
devico, lI C. No provisions are made in the design of the PPS, ESF-CCS, lD and RTSS at the systems level to intentionally bypass an actuation    signal    that    may    be    required            during power operation. All bypasses are on a channel lovel to prevent an operator from inadvertently bypassing a trip function.
D. The manual      testing    circuitry      for  an RPS channel                  is interlocked to prevent testing in more than one redundant channel simultaneously.        When a channel is bypassed for D
manual testing, the bypass is automatically indicated in the rS        main control room.
Amendment K 7.1-13                            October 30, 1992
 
CESSAR nnLuou When an ESFAS is bypassed for manual testing. the bypass is lD 9
E.
automatically indicated in the main control room.
F. Actuated devices which cannot be tested during reactor operation will be tested by the ESFAS circuitry when the reactor in shut down.
A further description of the PPS, RTSS and ESF-CCS test features is provided in Sections 7.2 and 7.3.
7.1.2.18            Conformance to Regulatory Guide 1.29 The PPS and ESF-CCS and other instrumentation and controls necessary for safety conform to the guidance of Regulatory Guide 1.29,  " S e i sniic Design Classification."      This conformance is described below.
The systems designated as Seismic Category I are items listed in C.1.k, C.1.1, c.1.n and C.1.q.        The seismic classification and  D qualification methods are discussed in Combustion Engineering's Topical Report CENPD-182 (Reference 3), Chapter 18 and Section            y 3.10.
Those  portions of structures,          systems,  or components whose continued function is not required, are designated as Seismic              g Category II and designed so that the SSE Will not cause a failure which will reduce the functioning of any plant safety feature to an unacceptable level, including incapacitating injury to the occupants of the control room.
7.1.2.19            Conformance to Regulatory Guide 1.40 Continuous duty motors and their conformance_to Regulatory Guide 1.40, " Qualification Tests of Continuous-Duty Motors Installed Inside the Containment of Water-Cooled Nuclear Power Plants," are discussed in the site-specific SAR.
7.1.2.20            Conformance to Regulatoinf Guide 1.45 The Acoustic Leak Monitoring System, as described in the NSSS Integrity Monitoring System, Section 7.7.1.6, is employed as one            D of the three methods of detecting RCS leaks in accordance with Regulatory Guide 1.45, " Reactor Coolant Pressure Boundary Leakage Detection      Systems."    Refer  to  Section  5.2.5  for  a  more comprehensive discussion on RCS leak detection methods.
7.1.2.21            Conformance-to Regulatory Guide 1.47 The design of the RPS and the ESFAS as indicated in Sections 7.2 and 7.3, is consistent with the recommendations            of Regulatory Amendment I 7.1-14                December 21, 1990
 
CESSAR nainemou
(
r
(
Guide          1.47,    " Bypassed and Inoperablo Status Indication for Nuclear Power Plant Safety Systems."                                Conformance is described below.
A.          Annunciator outputs are provided to indicato, at the system level, the bypassing or deliberato inducing of inoperability of  a  protection system.                    The system lovel alarms are actuated when a component actuated by a protection system is bypassed ar deliberately rendered inoperable.
B.          Those auxiliary and support systems within the CESSAR licensing scope provido automatic annunciator activation to indicate, on a system level, the bypassed or deliberatoly induced inoperability of an auxiliary or support system that effectively bypasses or renders inoperable a protection system and      the        systems          actuated    or    controlled      by_        a protection system.
: c.            Annunciation is provided in the control room, at the syatom Icvol, for each bypassed or deliberately induced inoperable status in a protection system.
: 1. These are supplied for those systems discussed in A.
and B. above.
      \
: 2. All of these bypasses are expected to be used at least once a year.
: 3. All of these bypasses are expected to be usable when the annunciated system is expected to be operable.
D.            The operator is able to activate each system level bypass indicator manually in the control room.
Bypasses and inoperable status conditions can be classified into the following groups:
operating bypasses,                                                                    D 1)
: 2)    trip channel bypasses, and
: 3)    ESF components inoperable.
There are no system level bypasses for the RPS or ESPAS.
7.1.2.21.1                  Operating Dypasses The operating bypass is used during routino startup and shutdown.
These            bypasses    must          be        manually      inserted.        They utilize permissive logic generated from the parameter (s) being bypassed g                            to ensure the bypass is removed if plant conditions- deviate to
(                            the point where the bypass is no longer safe.                                  (Example:    If the Amendment D 7.1-15                      September 30, 1988 l
l
    = - - .                  , . - - , - - - --                  ..- - --_. --,.--.-,.,                      .
 
CESSAR Ennricarios O
coolant system pressure rises above a predetermined setpoint, the RPS/ESFAS pressurizer pressure bypass is automatically removed. )
Once a bypass is automatically removed,                    the manual      normal (unbypassed) position must be                actuated and then the bypass position reactuated in order to reinsert the bypass.
This prevents cycling the bypass with the permissive contact status. Bypass status indication is provided on the PPS remote operator's modules for each channel.                  The bypass and bypass permissive status are provided to the plant Data Processing System. operating bypasses include the RPS/ESFAS pressurizer pressure bypass, the high log power bypass and the CPC DNBR/LPD trip bypass.
7.1.2.21.2        Trip Channel Hypasses These bypasses are used to            individually bypass channel trip inputs to the protection system logic for maintenance or testing.
The trip logic      is      converted from a two-out-of-four to a two-out-of-three logic for the parameters being bypassed, while maintaining a coincidence of two for actuation.              Only one channel for any one parameter may be bypassed at any one time.                      These bypasses must be manually initiated and removed.                      Individual bypass indication is provided locally at the PPS and at the PPS remote operator's modules located in the control room.                          In addition, the status of each bypass is provided to the plant Data Processing System.
7.1.2.21.3        ESF Components Inoperable                                        D The bypassed and/or inoperable condition of ESF components is monitored by the ESF-CCS, as described in Section 7.3.                    ESF-CCS status outputs are provided to the Data Processing System (DPS) which processes logic to indicate at the system level, the bypassire, inoperability or deliberate inducing of inoperability of an ESF system.      The DPS also provides status information at the component level.          The operator has the ability to activate each ESF system level bypass indicator manually in the control room. Inoperable indication is shown on the DPS CRTs, Integrated Process Status Overview (IPSO) panel and Discrete Indication and Alarm System (DIAS) alarm tiles as further described in Sections 7.7.1.4 and 7.7.1'.S.
7.1.2.22        Conformance to Regulatory Guide 1.62 Manual  initiation      of    the  RPS      is    described    in    Sections 7.2.1.1.1.11 and 7.2.2.3.2.          Manual initiation of the ESFAS is described in Section 7.3.2.3.2. Conformance to Regulatory Guide                    D 1.62, " Manual Initiation of Protective Actions," is as follows:
Amendment D 7.1-16                    September 30, 1988
 
CESSAR nainemou O
A. Each of the above systems can be manually actuated.
B. Manual initiation of a protective action causes the same actions to be performed by the protection syntom as would be performed if the protection system had been initiated by automatic action.
C. Manual switches are located in the control room, ESF CCS and at the RTSS for use by the operators.                                                                          Some ESF functions                          D also have manual actuation at the Remote Shutdown Panel.
D. The amount of equipment common to the manual and automatic initiation paths is kept to a minimum, usually just the actuation devices.                                          No          single              credible                  failure          in    the manual, automatic,                                      or common portions of the protective system will prevent initiation of a protective action by manual or automatic means.
E. Manual initiation requires a minimum of equipment consistent with the needs of A, B, C, and D above.
F. Once                initiated,                      manual                  protective                    action            will      go      to completion.
t 7.1.2.23                        Conformance to Hegulatory Guide 1.63 Electrical penetrations and their conformance to Regulatory Guide 1.63,  " Electric Penetration Assemblies in Containment Structures for Water-Cooled Nuclear Power Plants," are discussed in Section 3.8.2 and the site-specific SAR.
7.1.2.24                        Conformance to Regulatory Guide 1.68 Conformance with Regulatory Guide 1.68,                                                                              "Prooperational and Initial Start-Up Tott Program for Water-Cooled Power Reactors,"                                                                                                  o is discussed in Chapter 14.
7.1.2.25                        Conformance to Regulatory Guide 1.73 The Nuclear Power Module licensing scope electric valve operators intended to be installed inside the containment are qualified in compliance with Regulatory Guide 1.73, " Qualification Tests of Electric Valve Operators Installed Inside the Containment of Nuclear. Power Plants," (sco Section 3.11). The Class 1 electric valve operators inside the containment are qualified according to the requirements of Section II of Appendix B to 10 CFR 50. The qualification tests of the electric valve operators - -f ollow the applicable requirements of IEEE 382-1980, J44-1987 and 323-1983.
            \    The qualification tests demonstrate the design adequacy of the
    ]            operators for service inside containment.
those conditions that would be imposed during and after a Design These tests simulate Amendment D 7.1-17                                                  September 30, 1988
        'r      a- T  *  -+-r* g---9-Fp"**-g      ---w    +*-=a--*g+-+w-e+-        em-ae  g -*e--se -$--- -"ey'-  --W wr- - - -    T  a- -=T-    Os e-e F    T-    P'+    f-  * ' -
 
CESSARENGem O
Dasic Event (e.g., LOCA) and those occurring during normal D operating      conditions.      The qualification        tests        verify  the adequacy of design for service under DBE conditions subject to the following:
A. Subcomponents (e.g., littit switches) are not integrated with the valve operator mechanism but are, instead, part of the installed operator assembly.
B. The test sequence described in IEEE 382-1980 or the actual service sequence is used during operator qualification tcsts whichever has the most severe operating conditions.
C. The    valve    operator      is    tested    under        the    severest environmental conditions (T, P, RH, Radiation) that simulate the conditions to which the valve operator is expected to be exposed during and following a DBA.
D. The radiological source term for qualification tests is based on the same source term used in Regulatory Guide 1.7 taking into consideration the containment size, beta and gamma radiation.
7.1.2.26          Conformance to Hegulatory Guido 1.97 7
The design of the post-accident monitcring instrumentation and information display via the DPS and DIAS is described in Sections 3.1 and 7.5.          The design conforms to Regulatory Guide 1.97,    " Instrumentation      for    Light-Water-Cooled Nuclear Power Plants To Assess Plant            and  Environs Conditions During and Following an Accident."
7.1.2.27          Conformance to Rpgulatory Guido 1.105 The    generation      of    safety    system    setpoints        conforms    to ISA-S67.04-1987,        "Setpoints        for  Nuclear          Safety    Related Instrumentation Used in Nuclear Power Plants."
The setpoint methodology is similar to that explained in CEN-278(V), " Selection of Trip Setpoint Values for the Plant Protection      System,"    submitted      on  the  Palo Verde          Nuclear Generating Station Unit 1 Docket, STN-50-528.                    The environment considered when determining errors is the most detrimental realistic environment calculated or postulated to exist up to the longest time of the required Reactor Trip or Engineered Safety Feature Actuation.        This environment may be different for different events analyzed.            For the setpoint calculation, the accident environment error calculation for process equipment uses the environmental conditions up to the longest required time of trip or actuation that results in the largest errors, thus providing additional conservatism to the resulting setpoints.
Amendment D 7.1-18                        September 30, 1988
 
CESSAR nuiricuiu The reference leg heating component uncertainties for steam                                      !
generator level also take into account pressure and temperaturo variation within the steam generator.
D For all temperature and pressure setpoints,                          the trip will be initiated at a point that is not at saturation for the equipment.
For level setpoints, no analysis setpoint is within 5% of the ends of the level span.
7.1.2.28                      Conformanco to Regulatory Guido 1.106 Conformance                to        Regulatory    Guido    1.106,  " Thermal  overload-Protection for Electric Motors on Motor-operated Valves," is.
accomplished as follows. Thermal overload protection devices.are-                      -
not used in safety-related motor-operated valvo control circuits.                            U  -
Thermal overload signals are used only for status annunciation.
The ESF-CCS, as described in Section 7.3,                              has the design capability to provide MOV thermal overload                            status which is availablo via the DIAS and DPS described in Section 7.7.1.4 and                                  -i 7.7.1.7.                                                                                          I 7.1.2.29                      Conformance to Hegulatory Culdo 1.120, as Augmented by BTP CMEH 9.S-1 The following design features address the guidelines contained in Regulatory Guide 1.120,                          " Fire Protection Guidelines- For Nuclear Power Plants":
A.      Redundant                  channels    and    divisions  of    safety-related instrumentation and control cabinets are designed to be'                                  t located in separate geographic plant fire zones.
B.      The Control ' Complex                  is designed- to allow. a safe; plant            D shutdown with a - major firo in - the ' main; control: room'.                    The desiga utilizes fiber-optics and other. signal isolation technologies in conjunction with the ability to manually transfer control to the Remote Shutdown Panel (s);.
C.      The minimization' of combustible materials- is -' considered Tin the -design- and fabrication of; the instrumentation and controls.
D.'    The control room design includes provisions to locate fire-protection system audible and visual alarm-panels within the control room or', alternately, to integrate the~ alarms into
                      -the DIAS and DPS.-
O Amendment E 7.1              -December- 30',- 1988
.. .-        .- ?          ,A-.-
 
CESSAR ElMiflCATION O
E. Control      room and computer room                equipment,    panels and D
consoles that are safety related,                  contain fire detection devices with local and remote alarm annunciators.
The above features and design considerations form only a part of the defense in depth fire protection philosophy. See Section 9.5 for  a    more comprehensive discussion                of    the  plant's fire    I protection program.
7.1.2.30            Conformance to Regula, tory Guide 1.133 The design of the Loose Parts 14onitoring System conforms to Regulatory Guide 1.133, " Loose-Part Detection Program for the Primary System of Light-Water-cooled Reactors," and is described in detail in Section 7.7.1.6.3.
7.1.2.31            Conformance to Regulatory Guide 1.151 All protection and control sensing methods meet the independence requirements of Regulatory Guide 1.151,                      " Instrument  Sensing Lines" as described in Sections 3.1.20, and 7.7.1.1.13, 7.1.2.32            C_onformance to Regulatory Guide 1.152 Regulatory Guide 1.152,                " Criteria    for Programmable        Digital Computer System Software in Safety-Related Systems of 11uclear Power Plants,"          states that the requirements set forth                    in A11S I / I E E E- AliS 4 . 3 . 2 - 19 8 2 provide a method acceptable to the NRC    D staff for designing software, verifying software, implementing software,      and validating computer              systems      in  safety-related systems of nuclear power plants.
A. The Core Protection Calculator System (CPCS) described in Section 7.2.1.1.2.5 is a digital computer system that generates reactor trip signals for low D!iBR and high Local Power Density. The CPCS software is developed and tested in accordance with Regulatory Guide 1.152 as described by CE?l-3 9 ( A) -P ,  "CPC    Protection Algorithm Software Change Procedure," (Reference 4).
B. The Plant Protection System (PPS) described in Section 7.2 is a multiple microprocessor based system that generates RPS    and ESF initiation signals.                  The PPS software is developed and tested in accordance with Regulatory Guide 1.152.
C. The ESF Component Control System (CCS) described in Section 7.3 is a multiple microprocessor based system that controls and actuates ESF fluid system components.                        The ESF-CCS software        is  developed      and tested        in    accordance with Regulatory Guide 1.152.
Amendment I 7.1-20                    December 21, 1990
 
CESSARnnincum
                                                                                                                                                                                                                                                                    )
l D.                The Discrete Indication and Alarm System (DIAS) described in                                                                                                                                                        !
Section 7.7.1.4 is a microprocessor based system that includos PAMI. 7'ho DIAS software is developed and tested in accordance with Regulatory Guido 1.152.
7.1.2.33                                        Conformanco to Regulatory Guide 1.156 Conformance                                    to              Regulatory                              Guido                          1.156,                    " Environmental Qualification of Connection Assemblics for Nuclear Powcr Plants",
in as described in Sections 7.1.2.5, 7.1.2.8 and 7.1.2.18.                                                                                                                                                                            ,
7.1.2.34                                        Conformanco to Regulatory Guido 8.12 Conformance to Regulatory Guido 8.12, " Criticality Accident Alarm                                                                                                                                                                    ,
Systems," for the reactor is accommodated via the Boron Dilution-Alarm Logic described in Section 7.7.1.1.10.                                                                                                        In addition, th Ex-Coro Noutron Flux Monitoring Syst-em Start-up- Channels provido D an audible count rate via speakers located in the main control room and containment building.
Both                  the DIAS and DPS are designed to present this alarm information, as well as any other plant specific - criticality accident alarms, to the control room operator.
7.1.3                                  INTERFACE HEQUIREMENTS i
General instrumentation and control interface requirements and the                specific interface                                      requirements are                                                  discussed. in- tho                                                                    _
principal section for the safety-rolated. systems.                                                                                                                              Tablo 7.1-1 identifies the applicable section where standardized functional descriptions for the interfacing auxiliary and supporting systems are provided.
A.                Operational Controls All                control              modules              supplied                          by the                      site                      operator                    for            y_
installation in the Main control Panels and/or the Remoto shutdown Panels shall be designed to be compatible with the HFE                design                  assumptions,                                criteria                        and                task-                    analyses-identified in Chapter 18.
1 Amendmant I 7.1-21                                                                    December 21, 1990-p %..pp-iwa a %.  ,pp,-wwa    9g7    -y7m my9,-,*,..-,g-9,g w- y    p,y    ,pg-r yf,p.+g  y gygp9,,,r wgy.,9 999a g _9 w ywcy_ , 9 9  --
r s 9 q -p -M-4 4ay<er,T      ymp- ,cm-ye.VM g 7 eM -et-9 we +4 m Ase        't- r e w9'w.-#--=nu+      4W'*e(*- t >1
 
CESSAR EL%"lCATION O
ltEPIGil34CP.S FOlt SEC" PION 7.1 I
: 1. " Qualification      of    Combustion      Enginacring    Class    1E Instrumentation,"          Combustion        Engineering,        Inc.,
D CE!1PD-255-A-1983, Revision 03, October 1985.
: 2. " Seismic  Qualification      of    Instrumentation      Equipment,"
Combustion Engineering, Inc., CENPD-182, 14ay 1977.
: 3. "CPC  Protection      Algorithm    Software    Change  Procedure,"
D Combustion    Engineering,      Inc.,    CEN-39(A)-P,    Revision 03, November 1986.
: 4. NUREG-0908,    August,    1982,    " Acceptance Criteria    for  the 7
Evaluation of Nuclear Power Reactor Security Plans."
: 5. " Acceptance Criteria for the Evaluation of Nuclear Power Reactor Security Plans", U.S. Nuclear Regulatory Commission              K Report, NUREG-0908, August 1982.
O O
Amendment K 7.1-22                  October 30, 1992
 
CESSAR E L m
(
7.6        AIL OTIIIUt INSTRUM10frATION SYSTIMS RI' QUIRED FOR SAFifrY 7.
 
==6.1          INTRODUCTION==
 
This section describes the Shutdown Cooling System suction line valvo interlocks and the Safety Injection Tank isolation valvo interlocks.      The Shutdown Cooling System (SCS) is discussed in Section 5.4.7. The Safety Injection System (SIS) is discussed in Section 6.3.
The interlockn on the SCS and on the Safoty Injection Tanks (SIT) are designed to act as permissivos. The SCS suction lino valvo interlocks permit the isolation valvos to be oponod below a certain  pressuro.      The SIT isolation valvo interlocks are designed to permit the oporator to isolato the SITS at low pressure allowing the SITS to be maintained at a given pressure when the balance of the RCS in depressurized.
Since there are no reactor coolant loop isolation valves, there will always bo some flow in an idlo loop.          There is, thoroforo, no need for a cold water interlock.
The refueling interlocks arc discussed              in  Section 9.1.4.
Instrumentation utilized to mitigate the consequences of fuel
\  handling accidents is discussed in Sections 9.4 and 15.7.4.                                    D The SCS suction line valvo interlocks and the SIT isolation valvo interlocks are poworod from the omorgency bussos.                          This assures that the interlocks and valves will operato under postulated loss of AC power conditions.
7.6.1.1          System Descriptionn 7.6.1.1.1          Shutdown Cooling System suction Lino Valvo Interlocks The SCS is a low temperaturo, low pressure system used to removo                                D decay heat from the RCS.      Cooldown of the RCS is accomplished via the steam generator down to at least 350*F and 400 psia.                          Below lK those values the SCS is used to cool the RCS to refueling lD temperaturos and      to  maintain  those  conditions                  for  extended periods of time.
To preclude overpressurization,          thoro are redundant,                    motor drivon, interlocked, isolation valves on each suction lino.                                The interlocks provent the suction line isolation valvoe from being opened if RCS pressure has not decreased below an acceptable value per Table 7.6-1.
lg
(
'Q)
Amendment K 7.6-1                October 30, 1992
 
C E S S A R N M % m ou The RCS preanuro oignals unod are provided by proosurizer 3 O
prennure asioty chanhalu.                      (Sco Figurea 7.6-la, 7.6-lb and 7.6-Ic for thic logic).
These intiriceks are redundant so that any single failure will not causo a suction lina and heat exchanger to bo nubjected to prennures arcat.c r tSalc donign prennuro.                          The interlock cannot be overridden no chat O W atcr action cannot ir.9dvertently subject the SCS to RCS prettuero.                      In addition, no sing 1r failuro can provent the operator from aligning the valven, on at least one auction        lino,        for    shutdown          cooling        after      RCS    proasuro requiremento are satisfled.
Further detalla on the protection featurco for the Shutdown                                                  y' cooling System are provided in Chapter 13, Appendix 13A, Sections 7 and 8.
Redundant rellof valveu are provided on the suction lines to prevent or mitigato overprecourization from prescure trannients.
Thono tranniento can be cauced by inadvertant ctarting of safety injection pumpu, charging pumpu, inadvertent energization of                                                D pressurizer backup heatoro, or a combination of these.                                              The relief valves are act at the valuon shown on Table                                        7.6-1          to insure the cyctem stays below its design limits.
7.6.1.1.2                  Safety Injection Tank Inolation valvo Interlocks The SIS in donigned t.o inject borated water into the RCS upon recolpt of an SIAS (refer to Section 7.3) and to provido long term cooling in conjunction with other systems following an accident.        The Safety Injection Tanks (SITc) inject borated water into the RCS if syntom proccuro dropa below their internal                                                  D proscuro.          During normal operation, each tank has a motor operated isolation valve that in open with power removed from its motor circuit to climinato the possibility of upurious actuation.
l        As the RCS pressure is reduced during plant shutdown, the low pressuriz0:          pronoure          trip      cotpoint        is    reduced      to      avoid inadvertent          initiation            of    safety        injection,      the    SITS are depressurized to a value below the SCS donign proasure, and the valves have their power rectored and are closed.
The  SIT        interlocks          are        med      to      prevent      the    SITc      from inadvertently          procnurizing              cho    SCS      while      maintaining            SIT availability in case of a uOCA.                        Refer to Figure 7.6-2 Ior the                        3 interlock logic.              Tho icolation valvos are manually closed when RCS pronsure dropa below the value shown on Table 7.6-1 cuch that the SITS cannot cause overpronsurization of the SCS while th(
SITc are maintained at come pressure above atmospheric. As RCS pronsure incroacon, the valvoo will automatically reopen at the pronsure        indicated        in        Table 7.6-1.          This    opening    of      the SIT I
Amendment K 7.6-2                        October 30, 1992 l
l_
 
1 CESSAR E!ai"icuion                                          (Sheet 3 of 4)
EFFECTIVE PAGE_ LIST 1HG (Cont'd)
CilAPTEll 8 Tablen (Cont'd)                            Amendment 8.3.1-1      (Sheet 4)                                    J 8.3.1-1 (Sheet 5)                                          J 8.3.1-1 (Sheet 6)                                          J B.3.1-1 (Shoot 7)                                          J 8.3.1-1 (Shoot 8)                                          J 8.3.1-1 (Sheet 9)                                          J 8.3.1-1      (Sheet 10)                                  J 8.3.1-1      (Sheet 11)                                  J 8.3.1-1      (Shoot 12)                                  J 8.3.1-2 (Shoot 1)                                          J 8.3.1-2      (Shoot 2)                                    J 8.3.1-2      (Sheet 3)                                    J 8.3.1-2 (Sheet 4)                                          J 8.3.1-2      (Sheet 5)                                    J
,                          8.3.1-2 (Sheet 6)                                          J 8.3.1-2 (Sheet 7)                                          J 8.3.1-2        (Shoot 8)                                  J 8.3.1-2        (Sheet 9)                                  J 8.3.1-2        (Sheet 10)                                  J 8.3.1-2        (Shoot 11)                                  J 8.3.1-2 (Sheet 12)                                          J 8.3.1-2        (Sheet 13)                                  J U.3.1-2        (Sheet 14)                                  3 8.3.1-2 (Sheet 15)                                        J 8.3.1-2 (Sheet 16)                                        J 8.3.1-2      (Sheet 17)                                  J 8.3.1-2 (Sheet 18)                                        J 8.3.1-2 (Sheet 19)                                        J 8.3.1-2      (Sheet 20)                                  J 8.3.1-2 (Sheet 21)                                        J 8.3.1-2 (Sheet 22)                                        J 8.3.1-2 (Sheet 23)                                        J 8.3.1-3 (Sheet 1)                                          J
  .                        8.3.1-3      (Sheet 2)                                    J 8.3.1-3        (Shoot 3)                                  J 8.3.1-3 (Sheet 4)                                          J 8.3.1-3 (Sheet 5)                                          J 8.3.1-3        (Sheet 6)                                  J 8.3.1-3 ' Sheet 7)                                        J 8.3.1-3 (Sheet 8)                                          J 8.3.1-3 (Sheet 9)                                          J 8.3.1-3 (Shoot 10)                                          J 8.3.1-3        (Sheet 11)                                  J 8.3.1-3        (Gheet 12)                                  J Amendment J April 30, 1992
 
CESSARE!.L eu                                        (Shoct 4 of 4)
O EFFECTIVE PAGE LISTING (Cont'd)
CilAPTFJt 8 Tablen (Cont'd)                        Amendment 8.3.1-3 (Shoot 13)                                  J 8.3.1-3 (Shoot 14)                                  J 8.3.1-3 (Shoot 15)                                  J 8.3.1-3 (Shoot 16)                                  J 8.3.1-3 (Shoot 17)                                  J 8.3.1-3 (Shoot 18)                                  J 8.3.1-3  (Shoot 19)                                J 8.3.1-3 (Shoot 20)                                  J 8.3.1-3 (Shoot 21)                                  J 8.3.1-3 (Shoot 22)                                  J 8.3.1-3 (Shoot 23)                                  J 8.3.1-4  (Shoot 1)                                  J 8.3.1-4  (Shoot 2)                                  J 8.3.1-4  (Shoot 3)                                  J 8.3.1-4  (Shoot 4)                                  J 8.3.1-4  (Shoot 5)                                  J 8.3.1-4  (Shoot 6)                                  J 8.3.1-4  (Shoot 7)                                  J 8.3.2-1 (Sheet 1)                                  E 8.3.2-1 (Sheet 2)                                  E B.3.2-2                                            E 8.3.2-3  (Shoot 1)                                  J 8.3.2-3 (Shoot 2)                                  I 8.3.2-4  (Shoot 1)                                  J 8.3.2-4  (Sheet 2)                                  J 8.3.2-4  (Shoot 3)                                  J 8.3.2-4  (Sheet 4)                                  J Figuren                                . Amendment 8.2-1                                              J 8.2-2                                              J 8.3.1-1                                            K 8.3.1-2                                            K 8.3.2-1                                            J 8.3.2-2                                            J O
Amendment K October.30, 1992
 
CESSAR E!!!incucu                                    (sh::t i or 24)
'w.
EFFECTIVE PAGE LT!ITING CllAPTER 9 Table of Contento Pago                                          Amendment i                                                  E 11                                                J iii                                                I iv                                                I v                                                  J vi.                                                J vil                                                I viii                                              J 1x                                                I x                                                  I xi                                                I x11                                                I xill                                              J xiv                                                I xv                                                I xvi                                                J
[j) s    xvii                                              I xviii                                              J xix                                                J xx                                                  I xxi                                                I xxii                                              J xxiii                                              I xxiv                                                J xxy                                                J xxvi                                                J xxvii                                              K xxviii                                              J Text Page                                          Amendment 9.1-1                                              I 9.1-2                                              J 9.1-3                                              I 9.1-4                                              I 9,1-5                                              J 9.1-Sa                                              J 9.1-5b                                              J 9.1-6                                              J
[s)-
Ns 9.1-7 9.1-8 J
J Amendment K October 30, 1992-
                                =_
T
 
CESSAR ElMicucu                                    <sa:et 2 or 143 O
EFFECTIVE PAGE LISTING  (Cont'ti)
CitAPTEll 9 Text (Cont'd) 1339                                      Amentiment 9.1-9                                            I 9.1-10                                          J 9.1-11                                          J 9.1-12                                          I 9.1-13                                          J 9.1-14                                          J 9.1-15                                          I 9.1-15a                                          J 9.1-15b                                          J 9.1-16                                          I 9.1-17                                          C 9.1-18                                          I 9.1-19                                          I 9.1-20                                          0 9.1-21                                          I 9.1-22 9.1-23                                          J 9.1-24                                          I 9.1-25                                          I 9.1-26                                          I 9.1-27 9.1-28 9.1-29                                          I 9.1-30                                          J 9.1-31                                          I 9.1-32                                          I 9.1-33                                          E 9.1-34                                          I 9.1-35                                          J 9.1-36                                          J 9.1-37                                          J 9.1-38                                          E 9.1-39                                          J 9.1-40                                          J 9.1-41                                          J 9.1-42                                          E 9.2-1                                            I 9.2-2                                            J 9.2-3                                            J 9.2-4                                            I 9.2-5                                            J 9.2-6                                            I 9.2-7                                            J Amendment K October 30,-1992
 
CESSAR Einificuim                                  (shcot 3 or 14)
    ~s EFFECTIVE PAGE I.TSTING (Cont'd)
CilAPTIG1 9 Tort (Cont'd)
Pago                                        Amendment 9.2-8                                            I 9.2-9                                            I 9.2-10                                          J 9.2-11                                          J 9.2-12                                            J 9.2-13                                            J 9.2-14                                            J 9.2-15                                            J 9.2-16                                            J 9.2-17                                            J 9.2-18                                            J 9.2-19                                          J 9.2-20                                            J 9.2-21                                            J 9.2-22                                            J
[s
  \
9.2-23 9.2-24 J
J 9.2-25                                            J 9.2-26                                            J 9.2-27                                            J 9.2-28                                            J 9.2-29                                            J 9.2-30                                            J 9.2-31                                            J 9.2-32                                            J 9.2-33                                            J 9.2-34                                            J 9.2-35                                            J 9.2-36                                            J 9.2-37                                            J 9.2-38                                            J 9.2-39                                            J 9.2-40.                                          J 9.2-41                                            I 9.2-42                                            J 9.2-43                                            J 9:2-44                                            J 9.2-45                                            J 9.2-46                                            J 9.2-47                                            J g 9.2-48                                            J Amendment K October 30, 1992
 
CESSAR En!incamu                                                                    (shoot 4 of 24)
EFFECTIVE PAGE I.TSTING                                (Cont'd)
C11AIFTER 9 Text (Cont'd)
Pago                                                                          Amendment 9.2-49                                                                              J 9.2-50                                                                              J 9.2-51                                                                              J 9.2-52                                                                              J 9.2-53                                                                              J 9.2-54                                                                              I 9.2-55                                                                              J 9.2-56                                                                              J 9.2-57                                                                              E 9.2-58                                                                              B 9.2-59                                                                              B 9 . 2 - 6 Ci                                                                        E 9.2-61                                                                              J 9.2-62                                                                              I 9.2-63                                                                              I 9.2-64                                                                              J 9.2-65                                                                              J 9.2-66                                                                              J 9.2-67                                                                              J 9.2-68                                                                              J 9.2-69                                                                              I 9.2-70                                                                              I 9.2-71                                                                              E 9.2-72                                                                              E 9.2-73                                                                              I 9.2.-74                                                                              J 9.2-75                                                                              J 9.2-76                                                                              J 9.2-77                                                                              J 9.2-78                                                                              J 9.2-79                                                                              J 9.2-80                                                                              E 9.3-1                                                                              J 9.3-2                                                                              J 9.3-2a                                                                              J 9.3-2b                                                                              J 9.3-2c                                                                              J 9.3-2d                                                                              E 9.3-3                                                                                I 9.3-4                                                                                I 9.3-5                                                                                J 9.3-6                                                                                J Amendment K October 30, 1992 i'' -
_ . - _ _ _ _ _ _ _ . - . _ - _ _                _ _ - - - . - m. _ _ _ _ _ . . . - _ _ _ _ . _ _ ___m... _..._ m.
 
C E S S A R E!Sincu a                                  (sd at s or 14)
          )
EFFECTIVE PAGE LISTING    (Cont'd)
CilAPI'FJ1 9 Text (Cont'd)
M                                              Amendment 9.3-7                                                I 9.3-8                                                I 9.3-9                                                I 9.3-10                                              J 9.3-11                                              I 9.3-12                                              J 9.3-13                                              J 9.3-14                                              B 9.3-15                                              I 9.3-16                                              I 9.3-17                                              I 9.3-18                                              I 9.3-19                                              I 9.3-20                                              J 9.3-21                                              J h      9.3-22 9.3-23 J
J 9.3-24                                              J l              9.3-25                                              J 9.3-26                                              J 9.3-27                                              J 9.3-28                                              J
(              9.3-29                                              I 9.3-30                                              I 9.3-31                                              I 9.3-32                                              I l              9.3-33                                              I i
9.3-34                                              I I              9.3-35                                              I l              9.3-36                                              I 9.3-37                                              I 9.3-38                                              B
              .9.3-39                                              I 9.3-40                                                I 9.3-41                                                B 9.3-42                                                B l
9.3-43                                                B 9.3-44                                                I 9.3-45                                                B 9.3-46                                                I
_rg    9.3-47                                                B l- l        t 9.3-48                                                I
()    9.3-49                                                I Amendment K October 30, 1992 l . --
 
C E S S A R E! E nen gu                          (Shoot 6 of 14)
O EFFECTIVE PAGE LISTING (Cont'd)
CIIAPTER 9 Text (Cont'd)
Pago                                      Amendment 9.3-50                                          I 9.3-51                                          I 9.3-52                                          I 9.3-53                                          B 9.3-54                                          I 9.3-55                                          I 9.3-56                                          I 9.3-57                                          I 9.3-58                                          B 9.3-59                                          I 9.3-60 9.3-61                                          I 9.4-1                                          J 9.4-2                                          J 9.4-3                                          J 9.4-4                                          I 9.4-5                                          I 9.4-6                                          J 9.4-7                                          J 9.4-8                                          J 9.4-9                                          J 9.4-10                                          I 9.4-11                                          J 9.4-12                                          I 9.4-13                                          I 9.4-14                                          J 9.4-15                                          I 9.4-16                                          I 9.4-17                                          I 9.4-18                                          I 9.4-19                                          J                  '
9.4-20                                          J 9.4-21                                          J 9.4-22                                          J 9.4-23                                          K 9.4-24                                          J 9.4-25                                          K 9.4-26                                          J 9.4-27                                          I 9.4-28                                          I 9.4-29                                          J 9.4-30                                          I 9.4-31                                          I Amendment K October 30, 1992
 
CESSAR EnG"icucu                                  (Su=t 7 of 24)
  !,v)
EFFECTIVE PAGP. LISTING  (Cont'd)
CIIAPTl?R 9 Text (Cont'd)
Page                                      Amendment 9.4-32                                          J 9.4-33                                          J 9.4-34                                          I 9.4=35                                          I 9.4-36                                          I 9.4-37                                          J 9.4-38                                          J 9.4-39                                          I 9.4-40                                          I 9.4-41                                          J 9.4-42                                          J 9.4-43                                          I 9.4-44                                          J 9.4-45                                          I 9.5-1                                            J
  /g      9.5-2                                            K
  \
        )
s/    9.5-3                                            K 9.5-4                                            K 9.5-5                                            K 9.5-6                                            K 9.5-7                                            K 9.5 8                                            K 9.5-9                                            K 9.5-10                                          I 9.5-10a                                          J 9.5-10b                                          K 9.5-11                                          K 9.5-12                                          I 9.5-13                                          I 9.5-14                                          K 9.5-15                                          J 9.5-16                                          K 9.5-17                                          K 9.5-18                                          K 9.5-19                                          I 9.5-20                                          J 9.5-21                                          K 9.5-22                                          K l          9.5-23                                          J I          9.5-24                                          J
! ['Ni    9.5-24a                                          J 9.5-24b                                          J l
  \_.)
t.
Amendment K October-30, 1992
 
CESSAR 1%incucu                                (Sheet 8 of 14)
O EFFECTIVE PAGE LISTING (Cont'd)
CIIAPTER 9 Text (Cont'd)
Pago                                    Amendment 9.5-25                                        J 9.5-26                                        J 9.5-27                                        I 9.5-28                                        J 9.5-29                                        I 9.5-30                                        I 9.5-31                                        I 9.5-32                                        I 9.5-33                                        K 9.5-34                                        I 9.5-35                                        K 9.5-36                                        I 9.5-37                                        J 9.5-37a                                      J 9.5-37b                                      J 9.5-38                                        J 9.5-39                                        I 9.5-40                                        I 9.5-41                                        I 9.5-42                                        I 9.5-43                                        E 9.5-44                                        E 9.5-45                                        E 9.5-46                                        J 9.5-47                                        E 9.5-48                                        J 9.5-49                                        J 9.5-50                                        E 9.5-51                                        J 9.5-51a                                      J 9.5-51b                                      K 9.5-52                                        J                  -
9.5-53                                        K 9.5-54                                        K 9.5-55                                        J                  -
9.5-56                                        K 9.5-57                                        E 9.5-58                                        I 9.5-59                                        J 9.5-60                                        E 9.5-61                                        E l  9.5-62                                        E
?
i Amendment K October 30, 1992 I
l
 
MSSAR !!nWicition                                                                                                      (Sheet 9'of 14)
      \
EFFECTIVE PAGE LISTING (Cont'd)
CIIAPTER 9 Text                  (Cont'd)
Page                                                                                                Amendment 9.5-63                                                                                                    I 9.5-64                                                                                                    K 9.5-65                                                                                                  K 9.5-66                                                                                                  K 9.5-67                                                                                                  K 9.5-68                                                                                                  K 9.5-69                                                                                                  E 9.5-70                                                                                                  K 9.5-71                                                                                                  K 9.5-72                                                                                                  I 9.5-73                                                                                                  K 9.5-74                                                                                                  K 9.5-75                                                                                                K 9.5-76                                                                                                  I 9.5-77                                                                                                  J 9.5-78                                                                                                  J 9.5-79                                                                                                  J 9.5-80                                                                                                  E 9.5-81                                                                                                E 9.5-82                                                                                                J 9.5-83                                                                                                E Tables                                              Amendment 9.1-1                                                                                                E 9.1-2 (Sheet 1)                                                                                      J 9.1-2 (Sheet 2)                                                                                      E 9.2.1-1                                                                                              J 9.2.1-2                                                                                                I 9.2.1-3 (Sheet 1)                                                                                    J 9.2.1-3 (Sheet 2)                                                                                    J 9.2.1-4                                                    (Sheet 1)                                  I 9.2.1-4                                                    (Sheet 2)                                  I 9.2.1-4 (Sheet 3)                                                                                    I 9.2.2-1                                                                                              I 9.2.2-2 (Sheet 1)                                                                                    I 9.2.2-2 (Sheet 2)                                                                                    J 9.2.2-3                                                  (Sheet 1)                                  J 9.2.2-3 (Sheet 2)                                                                                    J 9.2.2-3 (Sheet 3)                                                                                    J 9.2.2-3                                                  (Sheet 4)                                  J Amendment K      l October 30, 1992
 
CESSAR 8Biricavi:n                                  **""W O
EFFECTIVE PAC 2 LISTING (Cont'd)
CIIAPTER 9 Tables (Cont'd)                        Amendment 9.2.2-3 (Sheet 5)                                  J (Sheet 6) 1 9.2.2-3                                            J 9.2.2-3 (Sheet 7)                                  J 9.2.2-3 (Sheet 8)                                  J                  '
9.2.2-3  (Sheet 9)                                J                  ,
9.2.2-3  (Sheet 10)                                J 9.2.2-3 (Sheet 11)                                J 9.2.2-3  (Sheet 12)                                J 9.2.2-3  (Sheet 13)                                J 9.2.2-3  (Sheet 14)                                J 9.2.2-3  (Sheet 15)                                J 9.2.2-3  (Sheet 16)                                J 9.2.2-4  (Sheet 1)                                J 9.2.2-4  (Sheet 2)                                I 9.2.2-5 (Sheet 1)                                  J 9.2.2-5 (Sheet 2)                                  J 9.2.2-5 (Sheet 3)                                  J 9.2.2-6 (Sheet 1)                                  J 9.2.2-6 (Sheet 2)                                  J 9.2.2-6 (Sheet 3)                                  I 9.2.3-1                                            J 9.2.3-2                                            B 9.3.1-1 (Sheet 1)                                  J 9.3.1-1 (Sheet 2)                                  J 9.3.1-1  (Sheet 3)                                J 9.3.1-1 (Sheet 4)                                  J 9.3.2-1 (Sheet 1)                                  J 9.3.2-1 (Sheet 2)                                  I 9.3.2-1 (Sheet 3)                                  I 9.3.2-1 (Sheet 4)                                .I 9.3.2-1  (Sheet 5)                                J 9.3.2-1 (Sheet 6)                                  J 9.3.4-1 (Sheet 1)                                  I 9.3.4-1 (Sheet 2)                                  B 9.3.4-1 (Sheet 3)                                  I 9.3.4-1 (Sheet 4)                                  I 9.3.4-2 (Sheet 1)                                  I 9.3.4-2 (Sheet 2)                                  I 9.3.4-2 (Sheet 3)                                  I 9.3.4-2 (Sheet 4)                                  I 9.3.4-3                                            E 9.3.4-4 (Sheet 1)                                  I 9.3.4-4 (Sheet 2)                                  K 9.3.4-4 (Sheet ~3)                                K 9.3.4-4 (Sheet 4)                                  I Amendment K October 30, 1992
 
t CESSAR1lML=<                                                                                    (""*** ** ' ' ' "            l
                                                                                                                                          -i
                                                                                                                                          ~!
      \
                                                          - EFFECTIVE PAGE LISTING- (Cont'd)
                                                                                    - CHAPTER 9                    -
Tables-- (Cont'd)                                                    Amendment                              i 9.3.4-4 (Sheet 5)-                                                                            K 9.3.4-4 (Sheet 6)                                                                            I 9.3.4-4 (Sheet 7)                                                                            K 9.3.4-4 (Sheet 8)                                                                            I 9.3.4-4 (Sheet 9).                                                                            K 9.3.4-4 (Sheet 10)                                                                            K --
9.3.4-4 (Sheet 11)        '
I l
9.3.4-5                                                                                      I-                              '
9.3.4-6 _ (Sheet                            1)                                                I.
9.3.4-6 (Sheet-2).                                                                            I 9.3.4-6 (Sheet 3)                                                                            I-                              .
9.3.4-6 (Sheet.4).                                                                            I 9.3.4-61(Sheet 5).                                                                            I          -
9.3.4-6 (Sheet 6)                                                                            I-
            -9.3.4-6_(Sheet.7)                                                                            I 9.3.4-6 (Sheet 8)                                                                            I
: 9. 3. 4 (Sheet 1)                                                                        I
    .[      9.3.4-7 (Sheet 2)                                                                            I 9.4-1 (Sheet 1)
J 9.4-1 (Sheet _2)                      _                                                    I' 9.4-1 (Sheet 3)                                                                            -J 9.4-1.(Sheet-4)                                                                          -- J
            -9.4-1              (Sheet 5)                                                            .J.
9.4-1 (Sheet:6)                                                                              J                                ,
9.4-1~(Sheet.7)_                                                                            J-
: 9. 4 (Sheet''8)
K                        -
9.4-1.(Sheet'9)                                                                              K-9.4-11(Sheet-10)                                                                            J.
9.4-1 (Sheet 11)                                                                          'J 9.4-1;(Sheet-12)                                                                            J 9.4-1.(Sheet'13)                                                                            J 9.4-1 (Sheet-14)-                                                                            J 9~4-1 (Sheet 15).                                                                            J-9.4-1 (Sheet 16)                                                                            JL 9._4-1_. (Sheet 17 )                                                                      -- J '                              i
            -9.4-2                                                                                        J--
9.4-3                                                                                        K 9.4-4                                                                                        J' 9.5.3-l'(Sheet 1)                                                                        .E
            '9.5.3-1              (Sheet'2)                                                              E
                            . Figures                                                            Amendment O
    <%g-    9.1-1                                                                                    -J                                ~I 9.1-2                                                                                    - I-Amendment K-October 30, 1992                '
: l.                                                                                                                                        }
  ~ -      , . , , ~ ~ ~ .        ,,,,,,-,-s,            -n.- - a, :..e ,,--. , ,.    ..~,-.e
 
C E S S A R n u % uion                                                                                                (Sheet 12 of 14)
O EFFECTIVE PAGE LISTING                                                    (Cont'd)
CllAPTER 9 Figures (Cont'd)                                                                                          Amendment 9.1-3                                                                                                                K 9,1-4                                                                                                                I 9.1-5                                                                                                                I 9.1-6a                                                                                                                J 9.1-6b                                                                                                                I 9.1-7                                                                                                                  I                    --
9.1-8                                                                                                                  I 9.1-9                                                                                                                  I 9.1-10                                                                                                                J 9.1-11                                                                                                                J 9.1-12                                                                                                                J 9.1-13                                                                                                                I 9.1-14a                                                                                                                I 9.1-14b                                                                                                              I 9.1-15                                                                                                                I 9.1-16                                                                                                                I 9.1-17                                                                                                                I 9.1-18                                                                                                                J 9.1-19                                                                                                                I 9.1-20                                                                                                                I 9.1-21                                                                                                                I 9.1-22                                                                                                                I 9.2.1-1 (Sheet 1)                                                                                                      J 9.2.1-1 (Sheet 2)                                                                                                      J 9.2.1-1 (Sheet 3)                                                                                                      J 9.2.1-1 (Sheet 4)                                                                                                      J 9.2.2-1 (Sheet 1)                                                                                                    J 9.2.2-1 (Sheet 2)                                                                                                    J 9.2.2-1 (Sheet 3)                                                                                                      J 9.2.2-1 (Sheet 4)                                                                                                      J 9.2.2-1 (Sheet 5)                                                                                                      J 9.2.2-1 (Sheet 6)                                                                                                      J 9.2.2-1 (Sheet 7)                                                                                                      J 9.2.2-1 (Sheet 8)                                                                                                      J 9.2.2-1 (Sheet 9)                                                                                                      J 9.2.2-1 (Sheet 10)                                                                                                    J 9.2.2-1 (Sheet 11)                                                                                                    J 9.2.2-1 (Sheet 12)                                                                                                    J 9.2.2-1 (Sheet 13)                                                                                                    J 9.2.2-1 (Sheet 14)                                                                                                    J 9.2.2-1 (Sheet 15)                                                                                                      J 9.2.2-1 (Sheet 16)                                                                                                      J 9.2.2-1 (Sheet 17)                                                                                                    J 9.2.2-1 (Sheet 18)                                                                                                    J Amendraent K October 30, 1992
 
1 CESSAR HEPICATIIN
    .e~\
i,
\v EFFECTIVE PAGE LISTING (Cont'd)
CIIAPTER 9 Figures (Cont'd)                      Amendment 9.2.3-1                                          J 9.2.6-1                                          J 9.2.8-!                                          E 9.2.9-1 (Sheet 1)                                J 9.2.9-1 (Sheet 2)                                J 9.2.9-1 (Sheet 3)                                J 9.2.9-1 (Sheet 4)                                J 9.2.9-1 (Sheet 5)                                J 9.2.9-1 (Sheet 6)                                J 9.2.9-1 (Sheet 7)                                J 9.2.9-1 (Sheet 8)                                J 9.2.9-1 (Sheet 9)                                J 9.2.9-1 (Sheet 10)                              J 9.2.9-1 (Sheet 11)                              J 9.2.9-1  (Sheet 12)                              J 9.2.9-1 (Sheet 13)                              J
    ,f s    9.2.9-1 (Sheet 14)                              J
(    )  9.2.9-1 (Sheet 15)                              J
  \s ,/    9.2.9-1 (Sheet 16)                              J 9.2.10-1                                        E 9.3.1-1 (Sheet 1)                                J 9.3.1-1  (Sheet 2)                              J 9.3.1-2                                          J 9.3.1-3                                          J 9.3.3-1                                          J 9.3.3-2  (Sheet 1)                              J 9.3.3-2  (Sheet 2)                              J 9.3.3-3 (Sheet 1)                                J 9.3.3-3  (Sheet 2)                              J S.3.3-4  (Sheet 1)                              J 9.3.3-4  (Sheet 2)                              J 9.3.3-5 (Sheet 1)                                J 9.3.3-5 (Sheet 2)                                J 9.3.4-1 (Sheet 1)                                K 9.3.4-1 (Sheet 2)                                K 9.3.4-1 (Sheet 3)                                I 9.3.4-1 (Sheet 4)                                I 9.4-1                                            J 9.4-2 (Sheet 1)                                  J 9.4-2 (Sheet 2)                                  J 9.4-3                                            J 9.4-4                                            J r''s    9.4-5 9.4-6 J
(s._-)                                                    J Amendment K October 30, 1992
 
CESSAR E!M??icavi:n                              **
* of W O
EFFECTIVE PAGE LISTING (Cont'd)
CIIAIM31 9 Pigures (Cont'd)                      Amendment 9.4-7                                            J 9.4-8                                            J 9.5.1-1                                          J 9.5.1-2                                          K 9".5.1-3                                        K 9.5.1-4                                          K 9.5.1-5                                          K 9.5.1-6                                          K 9.5.1-7                                          K 9.5.1-8                                          K 9.5.1-9                                          K 9.5.4-1 (Sheet 1)                                J 9.5.4-1 (Sheet 2)                                J 9.5.5-1                                          J 9.5.6-1 (Sheet 1)                                J 9.5.6-1 (Sheet 2)                                J 9.5.7-1 (Sheet 1)                                J 9.5.7-1 (Sheet 2)                                J 9.5.7-1 (Sheet 3)                                J 9.5.7-1  (Sheet 4)                              J 9.5.8-1                                          J 9.5.9-1                                          J O
Amendment K October 30, 1992
 
CESSARR30 u ix TABLE OF CONTENTS (Cont'd)
CHAPTIG1 9 Section                _ Subject                                            Page No.
9.5                    OTHER AUXILIARY SYSTEMS                              9.5-1 9.5.1                  FIRE PROTECTION SYSTEM                                9.5-1 9.5.1.1                      Design Basis                                  9.5-1 9.5.1.1.1                    Goals                                          9.5-1 9.5.1.1.2                    Objectives                                    9.5-1 9.5.1.2                      General Design Guidelines                      9.5-3 9.5.1.3                      Safety-Related Fire Areas, Rooms              9.5-5 and Zones 9.5.1.3.1                    Description                                    9.5-5 9.5.1.3.2                    Fire Rated Barriers                            9.5-9
    \            9.5.1.3.2.1                            Components of Fire Barriers          9.5-9 9.5.1.3.2.2                            Architectural and Structural        9.5-9 Features 9.5.1.3.2.3                              Door Units                          9.5-9 9.5.1.3.2.4                              Fire Dampers                      9.5-10 9.5.1.3.2.5                              Penetration Seals                  9.5-10 9.5.1.3.2.6                              Fire Insulating Material          9.5-10      -
9.5.1.3.3                    Isolation / Containment of-Flames, Heat,      9.5-10 Smoke, and Hot Gases 9.5.1.3.4                    Interior Finish Materials                      9.5-10b 9.5.1.3.5                    Means of Egress                                9.5-10b 9.5.1.4                      Safe Shutdown Following Fire                  9.5-11 9.5.1.5                      Fire Protection / Detection / Alarm            9.5-12 Systems 9.5.1.5.1                    Fire Pumos and Water Supply                    9.5-12 9.5.1.5.2                    Water Distribution System, Hydrants,          9.5-14 and Hose Houses 9.5.1.5.3                    Automatic Sprinkler Systems                    9.5-15 9.5.1.5.4                    Fire Hose and Standpipe Systems                9.5-19.
9.5.1.5.5                    Portable Fire Extinguishers                    9.5-20
(''N          9.5.1.5.6                    Fire Detection and Alarm System                9.5-20 Amendment I              1 xvii    December 21, 1990
 
CESSAR Enecura O
TABLE OF CONTENTS (Cont'd)
CIIAPTER 9 Section    Subject                                          Page No.
9.5.1.6          System Interfaces                          9.5-22 9.5.1.E.1        Emergency Lighting                          9.5-22 9.5.1.6.2        Ventilation Systems                        9.5-22 9.5.1.6.3        Equipment Water Shields                    9.5-24    J 9.5.1.6.4        Curbs and Drains                          9.5-24 9.5.1.6.5        Reactor Coolant Pump Motor Oil            9.5-25 Collection System 9.5.1.6.6        Fire Brigade Radios                        9.5-25 9.5.1.6.7        Fire Brigade Breathing Air System          9.5-26 9.5.1.7          Startup and Recurring System Tests        9.5-26 and Inspections 9.5.1.7.1        Fire Pumps                                9.5-26 9.5.1.7.2        Water Distribution System                  9.5-28 9.5.1.7.3        Automatic Sprinkler Systems                9.5-29 9.5.1.7.4        Hose Station and Standpipe Systems        9.5-30 9.5.1.7.5        Fire Detection and-Alarm Systems          9.5-31 9.5.1.7.6        Portable Fire Extinguishers                9.5-31 9.5.1.7.7        Smoke Control                              9.5-32 9.5.1.7.8        Emergency Lighting                        9.5-32 9.5.1.7.9        Fire Brigade Rad.ios                      9.5-33 9.5.1.8          Control of Combustible Materials          9.5-33 9.5.1.8.1        Structures,- Equipment, and' Components    9.5-33 9.5.1.8.2        Flammable and Combustible Liquids          9.5-34 9.5.1.8.3        Combustible Contents                      9.5-35 9.5.1.8.3.1            Combustible Furnishings              9.5-35 9.5.1.8.3.2            Transient Combustible Material      9.5-35 9.5.1.9          Fire Protection Program                    9.5-36 9.5.1.9.1        Fire Prevention                            9.5-36 9.5.1.9.2        Personnel Qualifications                  9.5-37 9.5.1.9.3        Fire Brigade Organization, Training,      9.5-37 and Records 9.5.1.10        Fire Hazards Analysis                      9.5-38 9
Amendment J xviii              April 30, 1992
 
CESSARnnLms
,n.
[    }
't.J TABLE OF CONTFNTS (Cont'd)
CHAPTER 9 Section  Subject                                        Page No.
9.5.1.11        Fire Protection Quality Assurance        9.5-38 Program 9.5.2    COMMUNICATIONS SYSTEMS                          9.5-43 9.5.2.1        Design Bases                              9.5-43 9.5.2.2        System Description                        9.5-43 9.5.2.2.1      Intraplant (PABX) Telephone              9.5-43 System 9.5.2.2.2      -Intraplant Public Address (PA)          9.5-43 System 9.5.2.2.3      Intraplant Sound-Powered                  9.5-44 Telephone Systems 9.5.2.2.4      Offsite Communications                    9.5-44 9.5.2.2.5      System Operation                          9.5-45
[j'\,
\
9.5.2.3        Inspection-and Testing                    9.5-45 Requirements 9.5.3    LIGHTING SYSTEMS                                9.5-46 9.5.3.1        Design Bases                              9.5-46 9.5.3.2        System Description                        9.5-47 9.5.3.2.1      Normal Lighting System                    9.5-47 9.5.3.2.2      Security Lighting System                  9.5-48 9.5.3.3.3      Emergency Lighting                        9.5        9.5.3.3        Inspection and Testing                    9.5-49 Requirements 9.5.4    DIESEL GENERATOR ENGINE FUEL OIL                9.5-51 SYSTEM 9.5.4.1        Design Bases                              9.5-51 9.5.4.1.1      Safety Design Bases                      9.5-51 9.5.4.1.2      Interface Requirements                            J 9.5-51 F%
(x_-)
Amendment J xix                April 30, 1992
 
CESSAR EnF#icarcu O
TABLE OP CONTENTS (Cont'd)
CHAPTER 9 Section  Subject                                    Page No.
9.5.4.2        System Description                    9.5-51a 9.5.4.2.1      General                                9.5-51b 9.5.4.2.2      Component Description                  9.5-53 9.5.4.3        Safety Evaluation                      9.5-53 9.5.4.4        Inspection and Testing                9.5-55 Requirements 9.5.4.5        Instrumentation Application            9.5-56 9.5.5    DIESEL GENERATOR ENGINE COOLING            9.5-59 WATER SYSTEM 9.5.5.1        Design Bases                          9.5-59 9.5.5.2        System Description                    9.5-59 9.5.5.2.1      General                                9.5-59 9.5.5.2.2      Component Description                  9.5  9.5.5.3        Safety Evaluation                      .9.5-61 9.5.5.4        Inspection and Testing                9.5-61 Requirements 9.5.5.5        Instrumentation Application          9.5-61 9.5.6    DIESEL GENERATOR ENGINE STARTING            9.5-63 AIR SYSTEM 9.5.6.1        Design Bases                            9.5-63 9.5.6.2        System Description                    9.5-63 9.5.6.2.1      General                                9.5-63 9.5.6.2.2      Component Description                  9.5-65 9.5.6.3        Safety Evaluation                      9.5-65 O
Amendment I xx              December 21, 1990
 
CESSARE!!Gcus
    ,ex .
  /      't
-t
          )                                                                      ;
w.J -
TABLE OF CONTENTS (Cont'd)                          I CILAPTER 9                                l Section  Subject                                      Page No.
9.5.6.4        Inspection and Testing                  9.5-66 Requirements 9.5.6.5        Instrumentation Application            9.5-66 9.5.7    DIESEL GENERATOR ENGINE LUBE OIL            9.5-67 SYSTEM 9.5.7.1        Design Bases                            9.5-67 9.5.7.2        System Description                      9.5-67 9.5.7.2.1      General                                9.5-67 9.5.7.2.2      Component Description                  9.5-69
      -~      9.5.7.3        Safety Evaluation                      9.5-70
    '\.--      9.5.7.4        Inspection and Testing                  9.5-70 Requirements 9.5.7.5        Instrumentation Application            9.5-71 9.5.8    DIESEL GENERATOR ENGINE AIR INTAKE          9.5-73 AND EXHAUST-SYSTEM 9.5.8.1        Design Bases                            9.5-73' 9.5.8.2        System Description                      9.5-73 9.5.8.2.1      General                                9.5-73 9.5.8.2.2      Component Description                  9.5-73 9.5.8.3        Safety Evaluation                      9.5-74 9.5.8.4        Inspection and Testing                9.5-74 Requirements 9.5.8.5        Instrumentation Application            9.5-74
    /~'s
  !        l-
  \,. ..)
Amendment I xxi              December 21, 1990
 
C ESS AR E"lCATIIN O
TABLE OF CONTENTS (Cont'd)
CHAPTER 9 i
Section    Subject                                    Page No.
9.5.9      DIESEL GENERATOR BUILDING SUMP              9.5-77 PUMP SYSTEM 9.5.9.1          Design Bases                          9.5-77 9.5.9.2          System Description                    9.5-77 9.5.9.3          Safety Evaluation                      9.5-77 9.5.9.4          Inspection and Testing                9.5-77 Requirements 9.5.10      COMPRESSED GAS SYSTEMS                      9.5-79 9.5.10.1          Design Bases                          9.5-79 9.5.10.1.1        Overall Design Bases                  9.5-79 9.5.10.1.2        Interface Requirements                9.5-79 9.5.10.2          System Description                    9.5-79 9.5.10.2.1        Valves                                9.5-80 9.5.10.3          Safety Evaluation                    9.5-80 9.5.10.4          Inspection and Testing                9.5-83 Requirements 9.5.10.5          Instrumentation Application          9.5-83 O
Amendment J Xxii              April 30, 1992
 
CESSARinL mw
                                                                                                                  -l 9%.
I
                                      -LIST OF FIGURES                                                              '
CIIAPTER 9 Pigure      Subject 9.4-5        Subsphere Building Ventilation System                                                    ,
9.4-6        Containment Cooling and Ventilation System J
9.4-7        Diesel Building Ventilation, System                                                      '
9.4-8        Nuclear Annex Ventilation System 9.5.1-1      Fire Protection Water Distribution System-9.5.1-2      Nuclear . Island          Fire Barrier Locations          Plan ' at El. 50+0 9.5.1-3      Nuclear Island Fire Barrier Locations, Plan at El. 70+0 9.5.1-4    Nuclear Island Fire Barrier Locations Plan at E l . -.
81+0 9.5.1-5    Nuclear Island Fire Barrier Locations Plan at El.
91+9                                                                  E 9.5.1-6    Nuclear    Island          Fire' BaL*rier Locations        Plan. at-                      ,
El. 115+6-9.5.1-7    Nuclear . Island Fire              Barrier Locations      Plan at
* El. 130+6 9.5.1-8    Nuclear- Island- Fire              Barrier' Locations--Plan: at-146+0                                                                      . . _
            -9.5.1-9    Nuclear-Island' Fire Barrier ~ Locations Plan . at'. E1:-                g 170+0 9.5.4-1    Diesel Generator-Engine Fuel Oil' System-        -
9.5.5-1    Diesel Generator Engine Cooling Water' System J.
9.5.6-1    Diesel-Generator Engine Starting Air System.
9.5.7-1    Diesel' Generator Engine Lube Oil System:
  -(    ..
                                                                            -Amendment K.
xxvii-                      October- 30,41992
$Y t
  , ~ :-              , ,,      a      w ,- -        -- .n . . , -e - ,        ,,        , ,    t      ,
I q_.
 
CESSAR !!MiflCATI3N O
LIST OF FIGURES CIIAPTER 9 Figure      Subject 9.5.8-1 Diesel Generator Engine Intake and Exhaust System J
9.5.9-1 Diesel Generator Building Sump Pump System O
l                                                                              O Amendment J xxviii                  April 30, 1992
 
iCESSARiinincamt                                                                                                                            ;
L:%d TABLE 9.3.4-4 (Sheet 1 of 11)~
PRINCIPAL COMPONENT DATA StM4ARY Regenerative Heat Exchanger Quantity                                                                        1 --      _        _
Type                                                                            Shell-' and tube, vertical Code (tube and shell side)                                                      ASME III, Class-2~
Tube Side (Letdown)                                                                                                                  ,.
Fluid                                                                    Reactor coolant,.2.5 wt'% boric acid, maximum Design pressure                                                          2485 psig Design temperature                                                      650*F Materials                                                                Austenitic stainless steel Normal flow                                                              100;gpm Design flow                                                              200 gpm m      Shell Side (Charging)                                                            ASME III, Class:2 Fluid                                                                    Reactor coolant. 2.5 wt-% boric acid, maximum Design pressure                                                          3025 psigi                                        I.
Design temperature                                                      550*F1                                                  -
Materials                                                              Austenitic stainless steel Normal' flow                                                            90 gpm Design ' flow                                                            200 gpm
                                                                                                                                                  ~
Letdown Heat Exchanger Quantity                                                                        1              -
Type .-                                                                        Shell and~ tube, horizontal-Code-(tube and shell side)                                                      ASME III, Class 2 Tube. Side (Letdown);
Fluid'                                                                  Reactor coo! ant, 2.5 wt'_% boric acid,-        '
                                                                                        . maximum                            ,
Design-pressure                                                      -2485 psig
              -Design temperature
                                                                                        - 5 50
* F --
Materials-                                                            TAustenitic' stainless ~ steel
                ' Normal flow                                                            100 gpm Design flow                                                          1200 gpm-g AmendmentII E
                                                                                                                                                  ~
                                                                                                                    . December 21, 1990'.
                                                                                  .. . _ _ .          , .  . . . . . _    .:      .-.,      7
 
CESSAR 2necucu O
TABLE 9.3.4-4 (Cont'd)
(Sheet 2 of 11)
PRINCIPAL COMPONENT DATA SlM4ARY Shell Side (Cooling Water)                      ASME III, Class 3 Fluid                                      Component cooling water Design pressure                            150 psig Design temperature                        250*F Materials                                  Carbon steel Normal flow                                950 gpm Design flow                                2400 gpm                              I Pressure loss                              15 psid 0 1500 gpm & 105'F Seal Injection Heat Exchanger Quantity                                        1 Type                                            Shell and tube-(steam heater),
vertical Tube Side (Seal Injection)
Code                                      ASME III, Class 3                      b Fluid                                      Reactor coolant, 2.5 wt % boric acid, maximum Cesign pressure                            2735 psig Design temperature                          200'F Materials                                  Austenitic stainless steel Pressure loss                              10 psi 0 30 gpm & 120'F Normal flow                                26 gpm Design flow                                30 gpm 1
Shell Side (Steam)
Code                                        ASME Ill, Class 3 Fluid                                      Steam-saturated Design pressure                            110 psig Design temperature                          360*F Materials                                  Carbon steel Design flow                                1740 lbm./hr.
Charging Pumps Code                                            ASME III, Class 3 Quantity                                        2 Type                                            Centrifugal                            y Design pressure                                  2735 psig Design temperature                              200'F Normal flow                                      90 gpm Amendment K October 30, 1992 k-
 
ESSAR !Bnficaric -
i O                                                                                              ,
TABLE-9.3.4-4 (Cont'd)                                        ,
(Sheet 3 of 11)-                                        !
PRINCIPAL COMPONEKf DATA SUPMARY' Shutoff head                                      6,300 ft.                                ,
Normal suction pressure                          38 psig Normal temperature of pumped fluid                120*F 50 ft.
NPSH required Materials in contact with pumped f_luid          Austenitic stainless steel-Fluid                                            2.5'wt %_ boric acid,_ maxim _um Charging Pump Mini-flow Heaf .:xchanger Quantity                                          1                      __
I.
Type                                              Shell and tube, horizontal                .
Tube Side (Charging) i Fluid                                        Reactor. coolant, 2.5'wt % 3aric-acid, maximum Design Pressure                              200 psig Design temperature                          200'F G      Materials
      ~ Normal flow Austenitic stainless steel 35 gpm Design Flow                                  100 gpm-Code                                        ASME III, C1 ass 3-lK-Shell Side (Cooling Water)-
Fluid                                        Component; cooling l water-Design Pressure __                            150 psig Design Temperature                          250*F Materials                                  -Carbon Steel Normal flow                                  2 gpm-
      . Design-Flow                                  200 gpm Code                                        ASME III, Class 3-                1:
Boric Acid Makeup Pumps-Quantity                                        ;2 Type                                              Centrifugal-Design pressure                                  200.psig Design temperature                              - 200*F' Rated head                                      1300 ft Normal - flow                                      165 gpm Normal operating temperature                    '40-120*F-
  .NPSH required                                      15 ft V
Amendment-K October 30, 1992 t j
 
C E S S A R En M e m on O
TABLE 9.3.4-a (Cont'd)
(Sheet 4 of II)
PRINCIPAL COMPONENT DATA St#9tARY Fluid                                            2.5 wt % boric acid, maximum Material in contact with liquid                  Austenitic stainless steel Code                                              ASME III, Class 3 Reactor Makeup Water Pumps Quantity                                          2 Type                                              Centrifugal Design pressure                                  200 psig Design temperature                                200'F Rated head                                        300 ft.
Normal flow                                      165 gpm Normal operating temperature                      40-120'F NPSH required                                    15 ft                        7 Material in contact with pumped fluid            Austenitic stainless steel fluid                                            Demineralized water Code                                              None lloldup Pumps Quantity                                          2 Type                                              Centrifugal Design pressure                                  100 psig Design temptrature                                200*F Rated head                                        145 ft Normal flow                                      50 gpm Normal operating temperature                      40-120*F NPSH required                                    10 ft Materials in contact with pumped fluid            Austenitic stainless steel fluid                                            2.5 wt % boric acid, maximum Code                                              None Reactor Drain Pumps Quantity                                          2 Type                                              Centrifugal Design pressure                                  200 psig Design temperature                                200*F Rated head                                        145 ft Normal flow                                      50 gom Normal operating temperature                      120*F NPSH required                                    10 ft Amendment I December 21, 1990
[-                                                                                      -)
 
CESSARHEncuen 73
(    )
xs' TABLE 9.3.4-4 (Cont'd)
(Sheet 5 of 11)
PRINCIPAL COMPONENT DATA St# MARY Materials in contact with pumped fluid                                                                                Austenitic stainless steel Fluid                                                                                                                2.5 wt % boric acid, maximum Code for fluid end                                                                                                    ASME III, Class 3 I
Volume Control Tank Quantity                                                                                                              1 Type                                                                                                                  Vertical, cylindrical Internal volume                                                                                                      5,800 gallons (approx)
,            Design pressure, internal                                                                                            75 psig Design pressure, external                                                                                            15 psig Normal operating temperature                                                                                          120*F Normal operating pressure                                                                                            20 psig Blanket gas (during plant operation)                                                                                  Hydrogen Code                                                                                                                  ASME III, Class 3              lK Fluid                                                                                                                  2.5 wt % boric acid, maximum
    . [mT  Material                                                                                                              Austenitic stainless steel Boric Acid Batching Tank Quantity                                                                                                              1 Internal volume                                                                                                      630 gallons (minimum)
Design pressure                                                                                                        Atmospheric                    I -
Design temperature                                                                                                    200*F                            -
Normal operating temperature                                                                                          155'F Type heater                                                                                                          Electric immersion Heater capacity, minimum                                                                                              45kW Fluid                                                                                                                  12 wt % boric acid, munuuin Material                                                                                                              Austenitic stainless steel V)
[
Amendment K October 30, 1992
 
CESSARM5Ecm O
1ABLE 9.3.4-4 (Cont'd)
(Sheet 6 of 11)
PRINCIPAL COMPONENT DATA SUf9MRY Normal operating pressure                      Atmospheric Code                                          None Equipment Drain Tank Quantity                                      1 Type                                          Horizontal, cylindrical Internal volume                                10,500 gallons (minimum)
Design pressure                                30 psig internal,15 psig external Design temperature                            300*F Normal operating pressure                      3 psig Normal operating temperature                  120'F Code                                          ASME III, Class 3 Fluid                                          2.5 wt % boric acid, maximum Material                                      Austenitic stainless steel Reactor Drain Tank                                I  }
Quantity                                      1 Type                                          Horizontal, cylindrical Design pressure (internal)                    130 psig Design pressure (external)                    15 psig Design temperature                            350'F psig Normal operating pressure                      3 psig Normal operating temperature                  120*F Internal volume                                2850 gallons (minimum)
Blanket gas                                    Nitrogen Material                                      Austenitic stainless steel Code                                          ASME VIII Fluid                                          2.5 wt % boric acid, maximum Holdup Tank Quantity                                      1 Type                                          Vertical (field fabricated)
Internal volume                                435,000 gallons Design pressure                                1.5 psig Design temperature                            200'F Operating pressure-                            Atmospheric Operating temperature                          40-120*F Material (wetted)                              Austenitic st.ainless steel Code                                          API-650 Fluid                                          2.5 wt % boric acid, maximum      i I Amendment I December 21, 1990 1
 
T' iCESSAR nincam                                    -
1X-TABLE 9.3.4-4.(Cont'd)
(Sheet 7 of 11).-
PRINCIPAL COMPONENT DATA SUt9WlY Quantity                                              1 Reactor Makeup Water -Tank Type                                                  Vertical- (field fabricated)
Internal volume                                    .445,000 gallons ---
Design pressure                                      1.5:psig Design temperature                                    200*F Operating pressure                                    Atmospheric-Operating temperature                                40-120'F I'
Material-(wetted)                                  -Austenitic stainless steel Code                                              -API-650 Fluid                                                Demineralized' water-Boric Acid Storage-Tank Quantity                                              1-                              _
Type                                                -Vertical (field fabricated)s Internal volume                                      180,000 gallons Design pressure                                      . 1.5 psig-Design temperature.                                  200*F .
Operating pressure                                    Atmospheric Operating. temperature                                60-120*F Material (wetted)                                .Austenitic stainless _ steel
            . Code                                            --ASME III, Class 3..                    lKE Fluid                                                2.5 wt % boric acid,' maximum-Purification and Deborating lon-Exchangers Quantity                                            -3    .,
Type                                                . Flushable Design pressure.                                      200_psig                              I-
            -Design temperature                                    200*F-Normal operating temperature Resin'-volume, each (useful)                        120*F 32.0    ft -3 (minimum required)-
Normal . flow                                        100 gpm                                          2' Maximum flow                                          170:gpm                          -
Code for vessel-                                    ;ASME III,-Class 3                  .lK-Retention screen size                                80 U.S. mesh' Material                                              Austenitic' stainless steel:                '    '
Resiri                                            -Cation / anion -              -
1 es 3
: mixed-bed for purification;-
anion bed for.deborating-Is          i M-          Fluid                                                2.5 wt % boric acid, maximum'                    ?
                                                                                      - Amendinent K October:30,L 1992 n
 
CESSAR infincuia O
TABLE 9.3.4-4 (Cont'd)
(Sheet 8 of 11)
PRINCIPAL. COMPONENT DATA StMMRY Pre-holdup Ion Exchanger Quantity                                          1 Type                                              Flushable Design pressure                                  200 psig Design temperature                                200*F Normal operating temperature                      120*F Resin volume, each (useful)                      32.0 ft3 (minimum required)
Normal flow                                      100 gpm Maximum flow                                      170 gpm Code for vessel                                  ASME III, Class 3 Retention screen size                            80 U.S. mesh Haterial                                          Austenitic stainless steel Fluid                                            2.5 wt % boric acid, maximum Resin                                            Cation /anien mixed bed Boric Acid Condensate Ion Exchanger                    I Quantity                                          1 Type                                              Flushable Design pressure                                  200 psig Design temperature                                200*F Normal operating temperature                      120*F Rosin volume, (useful)                          32 ft3 (minimum required)
Normal flow                                      20 gpm Maximum- flow                                    100 gpm Code for vessel                                  ASME VIII Retention screen size                            80 U.S. mesh
-Material                                        Austenitic stainless steel Fluid                                            10 ppm boron, maximum Resin                                            Anion Purification Filter -
Quantity                                        2 Type elements                                    Replaceable cartridge Retention for 2 micron and                      98%
larger particles, % by wt Normal operating temperature                      120*F Design pressure                                  200 psig 9
Amendment I December 21, 1990
 
CESSAR En@icari:n yq U
TABLE 9.3.4-4 (Cont'd)'
(Sheet 9 of 11)
PRINCIPAL COMPONENT DATA SUPMARY I-Purification Filter (Cont'd)
Design temperature                              200*F                            .
Design flow                                      200 gpm                              a Normal flow                                      100 gpm                          :;
Code for vessel                                  ASME-III- Class 3            lK        !
Material                                        Austenitic stainless steel Fluid                                            2.5 wt % boric acid, maximum Boric Acid Filter                                      !
Quantity                                        1 Type elements                                    Replaceable cartridge Retention for 2 micron and                      98%
larger particles, % by wt                                                            1 Normal' operating temperature                    40-120*F                                i Design temperature                              200*F b(./  Design pressure Design flow 200 psig
                                                          .200 gpm Code for vessel                                  ASME III, Class'3
        ' Materials. wetted                                Austenitic stainless steel    I-Fluid:                                          2,5 wt % boric acid, maximum Neactor i8akeup Water Filter Quantity                                        1-Type elements                                    Replaceable cartridge Retention for 2 micron and                      98%
larger particles, % by wt Normal operating temperature                    40-120*F Design temperature                              200'F Design pressure.                                200.psig Design. flow                                    200.gpm
<          Code for vessel                                  ASME VIII.
Materials, wetted                                Austenitic stainless steel Fluid-                                          Demineralized water Reactor Drain Filter                                q
          ' Quantity                                        1 Retention for 2 micron and                      '98%
larger particles, % by wt n,
    ' j-Type elements                                    Replaceable cartridge Normal operating temperature                      120*F.                              j d
Amendment K              l A'                                                .
October 30,-1992-      -
 
CESSAR EnsiPICATION O
TABLE 9.3.4-4 (Cont'd)
(Sheet 10 of 11)
PRINCIPAL COMPONENT DATA
 
==SUMMARY==
 
Design temperature                                              200*F Design pressure                                                200 psig Design flow                                                    100 gpm Code for vessel                                                ASME III, Class 3 Materials, wetted                                              Austenitic stainless steel Fluid                                                          2.5 wt % boric acid, maximum    I Seal Injection Filter Quantity                                                        2 Type elements                                                  Replaceable cartridge Retention for 5 micron and                                      95%
larger particles, % by wt Normal operating temperature                                    125'F Design pressure                                                2735 psig Design temperature                                              200*F.
Design flow                                                    30 gpm                        i Code for vessel                                                ASME III, Class 3              IK Materials, wetted                                              Austenitic stainless steel Fluid                                                            2.5 wt % boric acid, maximum Normal flow                                                      26 gpm Boric Acid Concentrator Quantity                                                        1 4
Design DF (Bottoms to Distillate)                              10 Maximum distillate effluent concentration                      10 ppm boron Design flow                                                    20 gpm Cooling water flow                                              700 gpm (maximum)
Steam required at 50 psig                                      13,500-lb/hr                      I Code                                                            ASME '1111 Cas Stripper Quantity                                                        1 3
Design DF                                                        10 Design flow (process)                                            200 gpm Cooling water flow                                              700 gpm (maximum)
Steam required at 50 psig                                        20,000 lb/hr (maximum)-
Code                                                            ASME III, Class 3 O
Amendment K          l October 30, 1992
 
h CESSAR2nincmu                                                                                                                            ,
$-(                                                                                                                          _
TABLE 9.3.4-4 (Cont'd).
(Sheet 11 of 11)
PRINCIPAL COMPONENT DATA SUPMARY                                                                    -s-Chemical Addition Package Chemical Addition Tank:                                                                                                              3 Quantity                                                    1 Internal volume                                            8. gallons (minimum).
Design pressure                                            Atmospheric Design-temperature                                          150*F.
Normal operating tenperature                                40-90*F                  _                  .
Material                                                    Austenitic7 stainless steel'                                    I Fluid                                                      N H or Li OH solution Code                                                      N$n$
Chemical Addition Pump:
      -Quantity                                                      1 Type                                                        Positive displacement, variable I                                                                      capacity--
Design pressure                                              2735 psig Design-' temperature      .
150*F-                                                                  -
Normal operating temperature                                40-90*Ft Capacity                                                    0-25 gal /hr Design head                                                2735'psig 7 Fluid                                                      N H -or Li OH solution--                  -
Material in contact with fluid                              _Absfeniticstainlesssteel.
Code                                                        None-Y n
Amendment I'=              '
December- 21, 1990
_ . . -    ,    .                , . .... .                ._.          . . . - - , _ . . .      - . _ . , , . . ~ . -
 
CESSARin h on                                                                                      ,
The . essential mechanical equipment room cooling- systems                                  are protected from the effects of internally generated missiles, pipe break effects, and water spray (GDC 4).
The Subsphere Building essential HVAC: System is designed to limit-the offsite and control room dose following a.LOCA or DBA within y the guidelines of 10 CFR 100 and Standard Review Plan Section 6.4' respectively.            Radiological consequences are discussed-in Section.
15.
The            Subsphere    Building      Ventilation          Systems    are    separated according to Divisions with each 100% exhaust. system contnining a lK filter train complete- with -particulate- filters                              and      carbon II adsorbers and two 50% fans as shown-in Figure 9.4-5.                                            lK The essential mechanical room cooling units are shown in Figure 9.4-4.
9.4.5.1.1                Codes and Standards Equipment,            work,    and      materials          utilized    conform      to    the requirements and recommendations of the codes and standards listed below:
A.            Fan ratings conform to the Air Moving and Conditioning.
Association (AMCA) Standards.                                                      E B.          ' Fan motors conform to applicable' standards of the National ~
Electrical. Manufacturers          Association          (NEMA). and      the Institute-of Electrical and Electronic Engineers (IEEE) '.
C.            Essential equipment, fans, coils, dampers,='and ductwork will be manufactured-in accordance with ASME/ ANSI AG-1-1988.-
D.-          Ventilation ductwork conforms to applicable standards of the
                              -Sheet Metal and Air ~ Conditioning Contractors National Association (SMACNA),
i E.            Cooling coils in the essential cooling units.are designed in accordance with-the ASME B&PV Code, Section III,-Class 3.
F.            High-efficiency particulate air (HEPA)                filters conform to I
ERDA-76-21, " Nuclear-Air Cleaning Handbook."
G.            Carbon  filter media, Nuclear' Grade                as  defined      by- the Institute for Environmental Sciences..
l Amendment K 9.4-23                        October 30, 1992 i
_ l. -      .---_,_._..__.~..~~.,-.__.._-_.._......-.,..-..,,-..,..__._,_....-._..-._-.-,._.,a
 
CESSAR nnhuou O
11 . Applicable    components    and  controls    conform    to  the h,
requirements of IEEE, Underwriter's Laboratories        (UL)  and HEMA.
I. The following Regulatory Guidos have special significanco to the Subsphoror Reg. Guido      Title 1.29            Testing of Nuclear Air Treatment Systems ASME H510                                                1 1.52            Design    Testing  and  Maintenance  for  Post Accident      Engincored      Safety      Featuro Atmospheric Cloanup System Filtration and Adsorption Units of Light Cooled Nuclear Power Plants 9.4.5.2        System Description The Subsphoro Building Ventilation System is shown in Figure 9.4-5 and consists of the following:
A. A supply air system complete with air-handling u ,t, two 100%  fans,  dampors and associated duct'c h rk for each division.                                                          3 B. An exhaust air system rated for higher capacity than tho l          supply air system, complete with full filter train, two 100%
exhaust fans and associated ductwork for each division.
C. Essential mechanical equipment room cooling units.
The essential mechanical equipment room cooling units consist of a cooling coil with recirculation fan and dampers to removo heat generated within the space.        A recirculation cooling unit is        I provided in addition to a ence-through ventilation system because the sorved areas are potentially contaminated.        Applicable areas are as follows:
A. Safeguard component areas including Safety Injection pump-rooms, Shutdown Cooling pump rooms, Containment Spray pump rooms, Fuel Pool IIcat-X rooms, motor-driven and steam-driven Emergency Food Water pump rooms, Shutdown Cooling float-X rooms, Containment Spray Heat-X rooms, Shutdown Cooling              J lleat-X rooms, Penetration rooms, and associated piping and valve galleries.
Amendment J 9.4-24                April 30, 1992
 
I CESSAR 8la%mou                                                                                                                                                                                                l i
9.4.5.2.1                                              Component Doncription                                                                                                                              ;
The essentini mechanical equipment room cooling units consist of chilled                          wator                    cooling                    coil,        direct-drivo                                          contrifugal                                    ;
recirculation fan, and dampora and controls to achiovo tho                                                                                                                                            -i desired oporation.                                          Tho chilled water coils are sorvod from the canontial chilled G tor system.                                                                                                                                                        I F
The essential mechanical equipment room vontilation units contain intake filters, direct-drive contrifugal cupply and exhaust fans,-
and dampers and controls to achieve the desired operation.                                                                                                              There are heating and                                          cooling coils to temper - the outsido air as required.                                                                                                                                                                                                ,
9.4.S.2.2                                              System Operation The Subsphoro Building Vontilation System is comprised of two divisionally onparato, fully redundant ventilation systems-each                                                                                                                        K-capable of being provided outsido air by one 100% capacity supply unit and two 50% capacity supply fans por division.                                                                                                          The supply air is filtored and then conditioned as nooded by the heators and cooling coils and the exhaust air is bypassed around the exhaust filter train.                                        There are two 50% capacLty exhaust fans provided por division.                                            Air exhausted is monitored by a. radioactivo y                                                                                                  :
gaseous detector sampling the air in the exhaust duct u? stream of the exhaust filter train. Upon detection of radioactnvity, the oxhaust air is processed through one 100% exhaust filter train complete with particulato filters and carbon adsorbers prior to discharge                          into the atmosphere.                                        Additional monitoring of the exhaust air is provided in the unit vent.                                                                                Supply - and exhaust fans are electrically interlocked such that the building _will always remain under a slight negative prosauro to direct--all releanos through the exhaust filter trann.                                                                                In the event _ of a                                          y' loss-of-coolant-accident, the general ventilation equipment-will continuo to operato normally..as long as offsito power is available.                              On LOOP, the exhaust fans will be poworod from the Class lE diosol generators.
Normal                operation of                          the              ossential mechanical                                      equipment                    room II cooling and ventilation units is as required to maintain spaceIK temperatures.                                        The cooling systems will operato based on heat-l load as indicated by room temperature. In the event of a LOCA or ly DBA,            all units are automatically- started- and will operate g throughout the event.
(
I Amendment K
                                                                                                                        ' 9. 4 -2 5_                                          October 30, 1992
  --eevr m i -w m %    ,. . w ,, C 4.,.,-w-w.r,w . , ew-,vw er_.p,,,w,,,.w,.w,,,rmy.-,,,y--        ~m-w.-wr,.=.y--y.y , -w rww .v,      w n-+ y-*+t * *" w- =r -**- v -v' Fw' r---w w w r *=8--ve Pe t n-      v'ae-*f-+  eN=--*-*4T-TM"'
 
CESSAR En"lCATION O
9.4.5.3          Safety Evaluation The cuocntial mechanical equipment toom cooling systems consist of two completely redundant, independent f ull-capacity systems.
Division I cooling system serven Division I onnontial mechanical equj pment rooma, and Division II cooling syntom corvos Division II cosential mechanical equipment rooms.                      Each train is powered from independent, Clasa IE power courcou.                        (Units with chilled water cooling collo are headored on separato essential chilled water cooling systems.)                      Equipment capacition are selected based on conservative ovaluations of heat-producing equipment and concorvative assumptionn of adjacent area temperaturco. Failure of one train may cause subsequent loss of components in the associated roomn.      The consequences of thin are acceptablo sinco full redundancy of escential mechanical components is provided.
All ennential componenta of the mechanical equipment room cooling systems are donigned ao Scismic Category I equipment, and will                                I remain functional following a design baalu carthquake.                            Intako and    exhaust structurca are                    protected  from wind-generated or tornado-generated missileo.
Redundant components of the canential mechanical equipment room cooling nystems are physically separated and protected from internclly generated minniles.                        When subjected to pipo break offects, the components are not required to operato because the served mechanical equipnent is located in the same space as the cooling    components.                    Therefore,  a  pipe  break    in  the  same mechanical safety train is the only possible meann of affecting the cooling syntom.
The Subsphere Building ennential IIVAC cxhaunt filter trains complete with particulate filters and carbon adsorbers shown in Figuro 9.4-5 are designed to limit the offsite and control room done within the guidelines of 10 CPR 100.
A differential proscuro indicator controllor located across the charcoal adsorber modulates a damper downstream of the filter train to maintain a constant system resistance as the filters load up. This arrangement assures a constant system flow.                        liigh and low differential pressure alarms provide indication of any abnormality in flow rates.                                                                    J All essential components in the subsphere ventilation system are designed to permit in-service inspection.
Fresh air intakes are located in the control building duct shaft and are protected against adverso environmental conditions high winda, rain, onow, ico etc.
Amendment J 9.4-26                  April 30, 1992
 
1 O                                                                                                                                O TABLE 9.4-1 (Cont'd)
(Sheet 7 of 17)
HVAC SYSTEM DESIQt PARMETERS Flow Rate / Unit Operational Mode Area or                            Type-        Heat load          Air            Cool Water No Units              Power
                                                                                                                        %        Capacity Supply          _ Equipment Location    Monsal Essential    System          Blu/hr            CFM              gym I              Mtr Emerg                        X    Recirculating        220,000        4,500            40      1/100                Train B Cooling coil,
;              'FDW Pump II                                AHU                                                                              120/460 fan, filter 3 BHP
                        .[12]
,.              Turb Emerg                      X    Recirculating        250,000        5,000            45      1/100                Train D Cooling coil, FDW Pump II                              AHU                                                                              120/460 fan, filter
;.                                                                                                                                                                          I 3 BHP
[13]
6                                                      Normal Cooling coil
:                Containment              X              Cooling          12 x 10        100,000            800-    4/33 120/460 and fan 100 HP 6                                                      Normal Prefilter, Containment            .X          -High Purge        .1.4 x.10 ,      30,000            280    1/100 HEPA, cooling Supply                                                                            120V i
120/460 coil, heat,
                                                                                                                                                            -2 fans, 100 HP i
X            Low Purge            58,400        1,250              0    1/100                Normal Prefilter,
;-            ' Con.ainment-t
;                                                        Supply-                                                                          120/460 HEPA, cooling, coil, heat,
: 2. fans, 3 HP  y 3.07 x 10 6                                                        Normal Cooling coil-
              . Containment          .X-                CEDM                            80,300            614    2/100 460/120 and fan, 100 HP        l 4.<
Amendment J-April 30, 1992                            ,
jb s                -            ..m                    -                      .- . m. . . .  -_ . . - _            . , _ _ _ _ .          _ _ _ . . _ _
 
TABLE 9.4-1 (Cent'd)
(Sheet 8 of 17)
HifAC SYSTEM DESIGN PARAMETERS operational Mode                                                                                            I Area or                      Type            Heat Load        Air  Cool Water No Units      Power Location Normal Essential  System            Btu /hr        CFM      gps      % Capacity Supply      Equipment _
Containment      X            Pressurizer      included in    10,000        -
2/100        Nomal  Fan, 5 HP        J Cooling        Containment                                      46CV
. Containment    X              Reactor        Included in    20,000        -
2/I00        Normal  Fan, 10 HP Coo?ing        Containment                                      460V                    I Containment      X            Containment                  -
30,000      -
2/100        Nor=al  Filter train Clean-up                                                          46GV    and fan, 75 EHP Containment    X              High Purge                  -
30,000      -
1/IGO Filter Nomal    Filter train Exhaust                                            1/100 Fan    460V    and 100 HP,      J l fan Containment    X              Low Purge                  -
1,250      -
1/100 Filter Nomal    Filter train Exhaust                                            1/100 Fan    460V    and 5 HP, I fan Subsphere      X              Heat / Cool                      21,000            2/50          120/460 Prefilter,    lK Vent. Sup. I                                                                        Fans        4 BHP    cooling heat    ,
coil, fan        a Subsphere      X              Heat / cool                      11,000            2/50        120/460 Prefilter,    lK Vent. Sup. II                                                                      Fans        4 BHP    cooling heat  '
coil, fan        J A=end=ent K October 30,        2
 
l~
t O                                                O                                                O TABLE 9.4-1 (Cont'd) l (Sheet 9 of 17)
HVAC SYSTEM DESIGN Pf2AMETERS t
F1 w Rate / Unit                                        r, g
Area or                            Type          Heat Load      Air    Cool Water No Units    Power Location.      Monsal Essential    System          Stu/hr        CFM          gpa    % Capacity Supply  Equipment Subsphere I                    X      Exh. to                  -
13,200          -
2/50        120/460 Filter train lK ;
Vent Exh                              Unit Vent                                          Fans        15 HP l    Subsphere II                  X      Exh. to                  -
13,200          -
2/50        120/460 Filter train lK Vent Exh                              Unit Vent                                          Fans        15 HP                j l    Fuel Pool Heat                X    Recirculating        150,000      3,200              I/100      Train D Ccoling Div. II                                  AHU                                                        120/460 coil, fan,
[I7]                                                                                          1.5 EHP filter Fuel Pool. Heat                X    Recirculating -      150,000      3,200              1/100      Train C Cooling
* Div. I                                    AHU                                                        120/460 coil, fan,
_[20]                                                                                          1.5 BHP filter          J
!  Penetration Room              X    Recirculating        90,000      2,000        18    2/100      Train C Cooling Div. IC                                  AHU                                                        120/460 coil, fan,
[19] and [21]                                                                                      1 BHP  filter Penetration Room-              X    Recirculating        90,000      2,000        18    2/100      Train D Cooling coil,
!  Div.'IID                                  AHU                                                        120/460 fan, filter        !
[18] and [22]                                                                                      1 BHP Penetration Room              'X    Recirculating        .90,000      2,000        18    2/100      Train A Prefilter, Div. IA                                  AHU                                                        120/460 cooling coil,
[23]'and [25]                                                                                      1 BHP  fan l
Amendment K October 30, 1992 L                                                                  .      _                    ..
 
TABLE 9.4-1 (Cont'd)
(Sheet 10 of 17)
IIVAC SYSTB DESIGN PARAMETERS I
Flow Rate / Unit Operational Mode Area or                            Type          llcat Load      Air    Cool Water No Units    Power Location      Normal Essential    System            Blu/hr        CFM        gp:n  % Capacity Supply    Equipment Penetration Room              X    Recirculating          90,000    2,000      18    2/100        Train B Prefilter, Div. IIB                                AHU                                                          120/460 cooling
[24] and [25]                                                                                    1 BHP  coil, fan Elec. Room                    X    Recirculating          170,000    7,000      45    2/100        Train A Prefilter,    J Div. II Cha. B                          AHU                                                          120/460 cooling coil, fan, 3 HP Elec. Room                    X    Recirculating          170,000    7,000      45    2/100        Train C Prefilter, Div. 11 Cha. D                          AHU                                                          120/460 cooling coil, fan, 3 HP Control Bldg.        X              Smoke Fan                  -
15,000          -
2/100        120/460 Fan, 7.5 HP Elec. Rooms I
Stairwells            X              Smoke Fan                  -
12,000          -
5/100        120/460 Fan, 5 HP Aanulus                        X      Exhaust                    -
18,000          -
2/100        120/460 Fan, filter 63 EHP train Fuel Bldg.                                                        6 X                Supply              1.0x10    21,600        130  1/100        120/460 Fan, AHU                                                        20 BHP prefilter,      g heat coil, cool coil Fuel Bldg.                    X      Exhaust                    -
25,000          -
2/100      120/460 Fan, filter I
Filter Train                                                    75 BHP train Amendment J G                                                  G                                  April 30, 1
 
CESSAR nahm.                                                                                                                                                        i i
1ABLE. 9.4-2                                                              J RCS INSULATION lifAT LOADS                                                                                    :
Ileat Load Per                          llcat Load Per Component                                                          Component (Blu/hr).                      Plant (Blu/hr)
Reactor Vessel Closure llead                                                            45,200                                        45,200                      ;
Reactor Vessel and Bottom licad                                                          187,400                                      187,400    1 Pressurizer                                                                              134,420                                      134,420                    :
r Steam Generator (primary head only) 56,900                                        113,800 Reactor Coolant Pump Casing                                                              15,500                                      62,000 Reactor Coolant System Piping                                                            213,200                                      213,200 f
5 E
l Amendment J.
April;30,-1992-                                ,[
. . . . .  . , . . __,,,m._.__,.  . . . , , _ . _ _ . _ _ _ _ _ _ _ , . , _ . . . _ , . . _ . .._. -            _ _ _ . _ . _ . . _ _ . , . . _ _ - . . . , . . , . _ _ . . .
 
J
                                                                                                'IABLE 9.4-3 INPUT FOR RELEASE M(ALYSIS FILTER EFFICIENCIES Design /                                                                                  Maxiome    I Testing            Ventilation  Recirculation      Charcoal    HEPA          HEPA    In-Leakage Area identity                                            Standard            CFM*          CFM*            (Elem. ) (Particulate)  (Organic)    CFM Control Room                                            RG 1.52              2,000          4,000              95          99          95          10 Subsphere                                                RG 1.52            13,'_00          N/A              95          99          95        N/A    lK Annulus                                                  RG 1.52            IF,,000        18,000              95        99            95        1,000 Fuel Building                                            RG 1.52            25,000          N/A              95        99            95        N/A      I Containment                                              RG 1.140            30,000        60,000              95        99            95        N/A oVentilation CTM is shown for each Division.
Amendment K October 30,
 
1 CESSAR nai"icariou m
I V) 9.5        OTilER AUXILIARY SYSTD4S 9.S.1        FIRE PROTECTION SYSTEM 9.5.1.1        Denign Hanin 1
The design basis of the System 00+ Standard Design fire protection system employs defense-in-depth systems approach in
,        combination with an integrated program including operational surveillance, testing, maintenance, administrative controls, and Quality Assurance to provide a fire safe plant consistent with NUREG-0800, Section 9.5.1, " Standard Review Plan", and SECY-90-16
          " Evolutionary Light Water Reactor (LWR) Certification Issues and 'I Their Relationship to Current Regulatory Requirements."
9.S.1.1.1          Coals A. Prevent release of radioactive contamination in excess of 10 CFR Part 100 limits.
B. Prevent loco of ability to achieve safe shutdown following fire.
f
    \
C. Prevent fire from threatening more than any one electrical channel or mechanical division of equipment or components required to achieve cold shutdown.
D. Prevent fire from damaging more than any one electrical channel or mechanical division of safety related structures, equipment, or components.
E. Mitigate the potential of personnel injury due to fire.            I F. Preserve unit availability by limiting potential fire damage to an acceptable level.
G. Protect capital investment in the facility.
9.S.1.1.2          Objectiven A. Station design and layout to prevent the possibility of fire affecting redundant channels and divisions of equipment required for cold shutdown.      Safe shutdown as defined in the Standard Review Plan pertains to cold shutdown as part of the System 80+ design philosophy.      This includes potentihl interaction with other plant systems and to prevent a fire induced LOCA.
B. Plant layout to assure adequate access and egress routes for p}
C personnel protection.
Amendment J 9.5-1              April 30, 1992
 
l CESSARMahnou O
C. Outside    Containment      and    the  Annulus:      Provision  of lI three-hour fire rated barriors between redundant divisions l of safety-related equipment.          Exceptions are control room I and the remote shutdown panol room which are physically separated and electrically isolated from each other as described herein.
I Safo cold shutdown can be acifieved following fire in any                  l area assuming all equipment in the fire area (or insido containment;      at  tho    specific    location) is rendered inoperable and that reentry into the firo area for repairs and operator actions is not possible.
Inside Containment and Annulus:          Separation of redundant divisions    by    quadrant    to  provido    sufficient    spatial separation,    as proven by engincoring analysis in the annulus and at containment penetrations. Another option for separation is through use of mineral insulated jacketod cables which qualify as either a throo hour rated barrior or a radiant heat shield.        If it qualifies as a radiant heat shield,  engincoring analysis will verify that the heat chield coupled with minimum 20 ft.              separation betwoon redundant divisions with no intervening combustibles, and/or augmented with sprinklers and automatic fire detectors, will withstand any credible fire occurrence.            Where redundant 3 divisions    of    equipment    normally  used  to  achieve  cold shutdown,  by necessity, convergo, an engineering analysis will  be  conducted    (when sufficient      design detail    is available) to assure that cold shutdown can be achieved utilizing equipment which would not be af fected by fire at the specific location.        Tha engineering analysis will be maintained as part of the System 80+ design basis.
D. Fire detection and alarm systems to provide prompt detection and notification of fire.
E. Fixed automatic sprinklor systems          to assure prompt fire      y suppression consistent with design objectives.
F. Manual fire fighting equipment for early fire suppression and for structural fire fighting.
G. IIVAC systems to mitigato smoke migration beyond the area of lK firo origin.
11 . A fire prevention program including housekeeping control of            y combustible    materials,      control  of  potential    ignition sources, and a program of management inspections, audits and reviews.
Amendment K 9.5-2                  October 30, 1992
 
                ^ **
D l'.b f*
Mrn DESIGN BT CtHilFIC ATION
        /m l    \
V I. A fire response program consisting of well trained and equipped plant personnel prepared at all times to assume fire fighting responsibilities.
J. Operations      and maintenance                                                        programs    for    surveillance, testing and maintenance of                                                              fire  protection systems and      I features.
K. A Quality Assurance program to assure design methods and features are properly implemented.                                                              The Quality Assurance program also verifies that                                                              operations,    maintenance, and surveillance programs are properly implemented.
L. Sufficient      firo area compartmentation                                                            to  preclude the presence of Category 1 risks.                                                            A Categcry    1  risk in defined in the Fire llazards accessment as an area where equipment or component damage and electrical faulting are unacceptable.
An example would be a location where redundant equipment and components required for safe shutdown are susceptible to damage by a single fire.                                                                                                    g M. A fire protection program that complies with liUREG 0800 g\            Standard Review Plan and CMEB 9.5-1, Rev. 2, July 1981:
          /              " Guidelines for Fire Protection of liuclear Power Plants" and SECY Letter 90-16,        " Evolutionary Light Water Reactor (LWR)
Certification Issues and Their Relationships to Current Regulatory Requirements." Specific deviations and technical justification are included in the fire hazards analysis.
The Design Basis Goals and Objectives as stated above will mitigate the potential of fire, provide for prompt detection should fire occur, provide automatic suppression and/or manual fire suppression capabilities as determined by the Fire llazards                                                                  y Analysis,    provide fire resistant barriers to mitigate fire propagation, protect redundant safety related trains of equipment
~
from damage due to a common fire exposure,                                                                    and precluda the potential release of radioactivity to the environment.
9.5.1.2            General Design Guidelinas A. Outsido containment redundant divisions of safety related electrical equipment are separated from each other by                                                                        J three-hour fire rated fire barriers.                                                            Exceptions are control room and remote shutdown panel room which are physically I
separated,        electrically isolated,                                                      and provide redundant shutdown capability.                                                        Individual transfer switches which transfer control from the cor ;rol Room to the Remote                                                                        K Shutdown Panel, are separated f om each other by three-hour fire rated barriers.
O Amendment K 9.5-3                  October 30, 1992
 
CESSAR naibou O
B. Separation    of  redundant divisions                      by  quadrant      provide sufficient    spatial      separation                in    the    annulus    and  at containment penetrations as proven by engineering analysis.
Another option for separation is through use of mineral insulated jacketed cables which qualify as either a three hour  rated    barrier      or  a              radiant    heat    shield.      If  it qualifies as a radiant heat chield,                          engineering analysis will verify that the heat chield coupled with minimum 20 ft.
separation between redundant divisions with no intervening                              J combustibles, and/or augmented with sprinklers and automatic fire detectors, will withstand any credible fire occurrence.
Where redundant divisions of equipment normally used to achieve    cold      shutdown,                by  necessity,      converge,    an engineering analysis will be conducted (when sufficient design detail is available) to assure that cold shutdown can be achieved utilizing equipment which would not be affected by fire at the specific location.                        The engineering analysis
,                will be maintained as part of the System 80+ design basis.
C. A fire protection water supply is installed, with redundancy and reliability to meet provisions of BTP CMEB 9.5-1.
D. Fixed    automatic        suppression                systems      are      installed, engineered for the specific hazard to                            be protected in accordance with the design objectives as determined by the                              I Fire Hazards Analysis.
E. Portable    fire      extinguishers,                fire hydrants,          fire hose stations and supporting equipment are provided to facilitate manual fire fighting.
F. Ventilation systems are installed, including provisions for controlling spread of fire and smoke beyond the area of origin. HVAC  systems    are              division    specific;      therefore, there are no dampers in barriers which separate redundant divisions of safety-related equipment.                            The exception to this is that there is a single opening in the divisional fire wall that separates the redundant air handling units.                              K An air intake duct which supplies make-up air to the redundant Control Room Systems passes through this opening.
This arrangement enables make-up air to be drawn from either side of the facility and is necessary for nuclear safety reasons. This opening is protected with a combination fire and smoke damper.        Smoke control capability is provided as part of HVAC system design to mitigate smoke spread beyond the area of origin.
O Amendment K 9.5-4                                October 30, 1992
 
CESSARnnhin                                                                                                                                                                  !
1 G. Smoke control capability is provided as part of HVAC system                                                                                                              l design to mitigate smoke migration ooyond the area of origin.
11 . Multiplexed instrument and control signals by fiberoptic cablos are provided to minimize the quantity of combustible exposed cable insulation in the plant.
I. Where      fixed              fire          suppression                            systems                    are          installed, provisions for control and drainage of water are included.
J. Systems and equipment are designed to mitigate the potential for fire due to equipment failure during the design basis seismic event.                  An example is the reactor coolant pump motor oil collection and drain system.
K. Fire protection (suppression and detection) equipment is designed to mitigato possible interaction with safety                                                                                            I related equipment during the design basis seismic - event.
Interaction includes the potential for water spray or flood due to pipe failure.
L. Fire hose standpipo system and a water supply in the Nuclear Annex are designed to withstand a design basis earthquake.
Provido a water supply (250 gpm) to at least one ' hose station for at least 2 hours.
M.-  Respond to specific requirements of BTP CMEB 9.5-2, Rov.                                                                                  1, July 1981.
9.5.1.3              Safety-Related Fire Areas, Rooms, and Zones Fire areas, rooms, zones and other areas containing equipment important to safety are identified in fire barrier drawings - to establish the scope of the Fire llazards Analysis . and to assure compliance with Regulatory. Guidanco (see Figures. 9.5.1-2 ~ to 9.5.1-9.                                                                                                                                          lg 9.5.1.3.1                Description A. Elevation 50+0 (Figuro 9.5.1-2)                                    .
3;
: 1.      Nuclear Annox
: a.        Vital              Instrumentation                                and          Equipment                    Rooms,--
Division .I, Channels A&c; Division II, Channels.
B&D.
Amendment K 9.5-5                                                . October 30, 1992    -
$I  D''        Er'  ?p    N  .W-t-g    gwyr  yvmqg  ysm y- T 9 y gopeg M- g p  g y'.g w+g m y    *wwcp--    : a mgy g u    Sty-r*tweT            & w-- u-tyTati - yae wr--g-qh=~w
 
CESSARHKince O
: b. Vital Battery Rooms,    Division  1,  Channels A&C; I Division II, Cr.annels B&D.
[K
: c. Instrument Air Rooms.
d    Unassigned Equipment Rooms.
o    Charging Pump Rooms.                                  lK
: f. Chemical and Volumo Control Equipment Room.
: g. Component Cooling Water Pumps.
: 2. Reactor Building Subsphere
: a. Turbino Driven    Emergency Foodwater  Pump Rooms, Divisions I and II.
I
: b. Motor Driven Emergency      Foodwater  Pump  Rooms, Divisions I and II.
: c. IIVAC equipment areas (located in each quadrant).
NOTE:      Firo rated walls are located along azimuths 0* to 180* and 90* to 270* to provide fire separation for the frur quadrants.
: 3. Diosol Generator Buildings K
: a. Diesel Generator Rooms, Divisions I and II.
B. Elevation 70+0 (Figure 9.5.1-3l
: 1. Nuclear Annex
: a. Essential Battery Rooms, Division I, Channels A&C; Division II, Channels b&D.                              I
: b. Electrical Equipment Rooms, Division    I,  Channels A&c; Division II, Channels B&D.
lK
: c. Remoto .Mutdown Panel Room.                            lI
: d. Cable chase, Division    I,  Channels A&C; Division II, Channels B&D.
I
: c. Essential Chiller Room, Division I, Channels A&C; Division II, Channels B&D.
O Amendment K 9.5-6              October 30, 1992
 
CESSAREN!Luin O                                                                                                                  ;
: f. Emergency Feedwater  Tank Rooms,            Division                      I, Channels A&C; Division II, Channels D&D.                                            7      ;
: 2. Reactor Building Subsphere                                                                      ,
: i. Fuel Pool Coolant Pump Rooms, Divisions I and II.
C. Elevation 9149 (Figuro 9.5.1-5)                                                            _g
: 1. Nuclear Annex
: a. 125 VDC Battery Rooms,    Non-Essential N1 and H2                                  I Equipment Rooms
: b. Unassigned Equipment Rooms.
: c. D10001 Generator Building Vent 1 & 2 Rooms.                                        K-
: d. Motor Control Conters.
: e. RCP Switchgear.                                                                    I
: f. Emergency Foodwater Tank Rooms.
: 2. Reactor Building lI
: a. Annulus.                                                                                    I
: b. Reactor Coolant Pumps Motor Oil Drain Tank.
: c. Reactor Drain Tank.                                                                g
: d. Cable concentrations, Division    I,      Channels A&C; Division II, Channels B&D.
: e. Incore thermocouple-cable concentrations.-
: f. Control Rod Drive Cable-Concentrations.
D. Elevation 115+6 (Figure 9.5.1-6)                                                          lI
: 1. Nuclear Annex
: a. Control Room.                                                                      y,
: b. Document Room,
: c.  -HVAC (storage) Room, a
Amendment K-9.5-7                    October 3.0,                      1992
  .c -
                                                          -  ---y- n  wS'vv------g--r- c' n m ?- * -    T  '    n''
 
CESSAR EP.!PICATl:N O
: d. Unassigned Equipment Room.                          lI
: o. Main Steam Valvo llouse, Division I & II.          lK
: f. Spont Fuel Pool.                                    lI
: g. Subsphoro Exhaust Equipment Room, Division I & II. g
: h. Computer Room.
: 2. Reactor Building                                        lI
: a. Control Element Drive Mechanism (CEDM)              lK
: b. Stena Gonorators, I and II.                        lI
: c. Reactor Coolant Pumps A, B, C, D                      g E. Elevation 130+6 (Figuro 9.5.1-7)
: 1. Nuclear Annex                                            lI
: a. Control Room IIVAC Room, Division I.                  g
: b. Control Room HVAC Room, Division II.
: c. New Fuol Storage Area.                                I
: d. Unassigned Equipment Room.
: c. Annulus Exhaust Equipment Room, Division I & II.
: f. Nuclear Annex Vent. Equip. Room, Division I & II. g
: g. Nuclear Annex Exhaust Equip. Room, Division II.
F. Elevation 146+0 (Figure 9.5.1-8)
: 1. Nuclear Annex                                            lI
: a. Unassigned Equipment Room.
lx lI
: b. Hot Tool Crib Rooms.                                !K
: 2. Reactor Building                                          II lK-
: a. Pressurizer.
I
: b. Containment Auxiliary Carbon Filter Units.
Amendment K 9.5-a                October 30,_1992 t
 
CESSAR!E!Lma
: c. CEDM Cooling Units, E
: d. Roactor Vossol.
i G. Elevation 170+0 (Figuro 9.5.1-9)                                              i
: 1. Nuclear Annex                                                        lI ,
i
: n. Containment Purgo Equ.ipment Room._                                !
: b. Nuclear Annox Exhaust Equipment' Room, Division I.
E
: c. Fuel Pool Vontilation Equipment Room, Division I.
t
: d. Fuel Pool Ventilation Equipment Room, Division-II.
: c. CCW Surge Tanks.                                                  ;
9.5.1.3.2        Firo Rated Barriors 9.5.1.3.2.1        Components of Fire Barriors Firo barriers consist of architectural and structural features (walls, floors, and ceilings), assemblics to - seal openings .in fire barriors (doors, dampers, and penetration scal _ assemblies),                  .
and fire rated insulation material (cabic wrap and radiant energy shields). Euch firo barrior - component is tested 'in accordance ith nationally recognized codes and standards'to assure adequato firo resistance rating.                                                            ;
I 9.5.1.3.2.2        Architectural and StructuralLFeaturco Walls, floors, and ceiling assemblics designated as fire barriors moet the acceptance criteria of ASTM. E119, " Fire Tests of Building and Construction Materials."
    '9.5.1.3.2.3        Door Unita Door -units installed -in designated _ fire barriors . meet the acceptance criteria of ASTM E152, " Fire Tests of Door Assemblies" and NFPA' 80, "Firo Doors and. Windows.'"                Door. units includo components (i.e., door leafs, frames, latches, closures,' hinges, astragal strips, and kick plates).
    -D'oor units which are provided to' meet multiple: design criteria such. as fire, f l o o d ,- p r e s s u r e , and security are reviewed. and
    -analyzed- to assure they will                  withstand the potential- fire exposure. . Where possible, - fire barrier -~ doors with ? securityf(or other speciality) hardware are Listed or Approved as a fire rated door unit with the hardware as part of the door unit.
Amendment K 9.5              -October- 30,_1992 i-                    --
                                                                =-
                                                                                  -.p L
 
                                                                                              +
C E S S A R Ela b i0u O
9.S.I.3.2.4          Firo Dampern ventilation damporn installed in donignated firo barriorn moet the acceptanco critoria of Ub SSS, "Firo Damporn" and ilFPA 90A, "Inntallation of Air conditioning and Ventilation Syntomn."
To allow damper inopoction and maintenance, accoon opening in ductwork in provided adjacent to each Itre barrior.
9.S.I.3.2.5          Penetration Scalc Ponotration neals in fire barriorn for electrical and mechanical            -
nyntoms moot the acceptanco critoria of ASTM I:014, " Fire Tenta of Through Ponotration Firo Stopa."        Condulta which panott ato fire barriera are nealed in accordanco with 1:dicon 1:loctric Inntituto,
              " Conduit Fire Protection Itoncarch Program," report dated 6/1/87.
Where cable traya and liVAC ductn penetrato fire barriern, hangora on each aldo (or top aldo) of the barrior aro doulgned to rentrain the cable tray and ducto no that failure of hangern and collapno of cable traya or ductn on either nido of the barrior will not pull the penotration neal annombly out of the oponing.
9.S.I.3.2.6          Firo Innulating Material 1
The  doulgn    philonophy    of  the  Syntom  804  in    to  provido nyntem/ equipment channel and divinion neparation to preclude the need for firo rated insulating matorini and radiant energy heat chieldn. In the courno of detailed design and development of thq Firo !!azarda Analynin, it may be noconnary to uno thone materialo to annuro fire nafety in accordance with the Standard Review                  ~
Plan. If nocennary, fire rated innulating material will be rated in  accordance    with    ASTM  E119  for  architectural    featuroc.
Compononto which may be protected by Iiro rated insulating material    includo atructural atool,      redundant nafety related cablon, and safoty related componento.
Electrical componento protected by fire innulating material have ampacity dorated baned on innulating material property.
9.S.1.3.3          Inolation/ Containment of Flamon, !! cat, Smoko, and llot Ganon Inolation/ containment of fire and products of combustion are achioved    by  implomonting  olomonto    of  the  defonne-in-depth concepto.
The Dyntom 804 minimizon the availablo quantity of combuntibio material by uno of fiber optic cable which reducen the number of control  and  cignal  cablen  (by an outimated order of magnitude Amendment I 9.S-10                December 21, 1990
 
CESSAR nn%mou from that which would otherwise be requirod).                    Equipment location and separation by fire barriers as stated above serves to provide inhoront containment        of        firo spread.        Penetrations in fire barriors are designed to contain combustion products as well as                                i provent fire spread. Ventilation systems are designed to provide                          I smoke control capabilities which are necessary to preclude the possibility of redundant safety related equipment from being damaged by firo and spread of products of combustion.                              The        ;
ventilation system for each area is arranged to ventilate products of combustion without spread to other areas.
The control building ventilation system is provided~with separate outside air intakes for the control room separate from the remainder of the control complex including the remote shutdown room. Separato ductwork is utilized for the control room and the remoto shutdown room to eliminate smoko migration between the two areas.
The Control Compicx has a smoke control system which utilizes dedicated smoko exhaust fans, smoke dampers and 100% outsido air supplied by the control complex air-handling units.-                        The smoko purge fans are sized to exhaust three cfm per sq. ft.                      The smoke purge system is manually activated by the control room operator.
In the subsphere, electrical equipment rooms A, B, C and D on elevation 50+0 are        separated by channel with 3 hour fire resistance barriors.      The two channels within a division share a common ventilation system, but are separated by firo dampers.                            3 Smoke purge fans are utilized to provent smoke migration from one channel to the other in the same division.
Smoke migration between divisions                        in the  nuclear annex is prevented by providing a 3 hour fire resistance wall between divisions with all penetrations scaled to maintain the 3 hour fire resistance barrier.                    Ilo llVAC ducts will penetrate the divisional wall.      Separato !!VAC systems are provided for each side of the divisionally separated building.                    The stairwells are pressurized to prevent smoke from entering and migrating between olevations.
The ventilation systems handle smoke purgo by isolation of supply air in the area in which the fire occurred.                      The normal exhaust system for the area will purge the smoke providing a slight negativo pressure to the area in relation to surrounding areas still receiving supply air.                  The exhaust filter unit is bypassed in the smoke purgo mode.                  This mode of operation is manually activated by the control' room.                  The recirculation cooling units in an area with smoke will need a maintenanco check to see if the profilter needs    replacing and the cooling coils nood to be cleaned after the smoko purgo is completed.
Amendment'J 9.5-10a                April 30, 1992
 
CESSAR nARICATION O
9.5.1.3.4            Interior Finluh Haterialo                                            y Structural resistive.
materials are classified as noncombustible or firolK l1 Interior finish, exposed thermal insulation, radiation shielding, lK and acoustical materials meet the                    following critoria      in tho installed configuration:
7 A. Flame spread of 25 or less B. Smoke development of 450 or lecs Floor coverings meet the following critorion in the installed                              K configuration:
Minimum critical radiant flux of 0.45W/cm 2 Flame spread and smoke developed are measured in accordance with ASTM F-84, " Tost for Surface Burning Characteristics of Building Materials." Critical radiant flux is measured in accordance with g ASTM E-640, " Test for Critical Radiant Flux of Floor Covering Systems Using a Radiant llent Energy Source."
If it is necessary to select a specific material which does not meet or has not been testod to the above qualifications (in the installed configuration), an engineering analysis will confirm that the General Design Guidelines . are met and there is no                              I reduction in the fire safo quality of the plant.
9.S.1.3.5            Heans of Egresa Personnel egress in the Nuclear Annex                        is arranged to      meet provisions of NFPA 101,                  " Life    Safety    Code" or NFPA
                " Alternative Approaches to Life Safety."                                        101m,lh, There are stairs in each quadrant of the Nuclear Annex onclosedll by two-hour fire rated valls.                  Each stair tower is pressurized by a dedicated fan mounted at the top of the tower.                      Exit pathways K are clear and unobstructed, allowing personnel egress / access, lx Access / egress      into  the        containment    Building    is  through    two personnel air locks,                one located on olevation 115+6 and one                I located on olevation 14G+0.
Scaled _ beam,      batterr        powered emergency lighting units installed to illuminate cmorgency egress paths in accordance withi                  aro l7 standards of NFPA 101, "The Life Safety Code."                                          lK O
Amendment K 9.5-10b                    October 30, 1992
 
CESSARnahow n
V Scaled beam, 0-hour minimum battery powered omergency lighting unita are provided for all arcan and accoon to arcan that must be                  3 occupied for safo shutdown of the plant following a fire.
9.S.I.4          na fo _ _ Shu tdown l'ol l ow i ng ._ l'i ro The Syntom 80+ plant arrangement and layout providos inhoront separation of anfoty related systems, equipment and compononts, divisions and channolo.          The plant arrangement permits the unit I to be taken to cold shutdown following a firo without the nood to implomont repairs or for operatorn to perform oxtraordinary manual actions outside of the control room or remoto shutdown panel room.
In tho'ltuclear Annox, each division of safety related equipment lK are separated by throo-hour firo rated barriern.                  Exceptions are the control room and the remoto shutdown panol room which contain nafety related equipment of each division and channel.                        The control room and the remoto chutdown panol room are conentially redundant to each other no that firo in olthor room will not affect the ability to achiovo cold shutdown from the unaffected 3
control system.
Electrical power, control, and instruments are separated and electrically indopondent to precludo electrical intoraction and associated circuit failurco in accordance with IEEE 384-1, "IEEE Standard Critoria for Indopondence of Clann IE Equipment and Circuita."- Annociated circuits, an defined in Revision 1 to Gonoric Letter 81-12, will be avoided.                                            J Cablen of redundant anf aty related divisions- and channels ontor l1 the Reactor Building on olevation 91+9                        Division '1, which consiota of Channelu A and C, entors the Reactor BuildingL from lJ opposito sidos, an doop Division 2, which conninta-of Channals B and a    Channels A and B, which ontor the Reactor _ Building in cloco  proximity,      are coparated by a- throo-hour. firo rated                1-barri'      Likowloo, Channels C and D, which unter the Roactor Builda ,,  in closo proximity, are separated - by a_ three-hour fire rated barrior. ' Thoso cablon - than transgress the annulus.                  Each cafety related channel ontorn the annulus in a separato quadrant and is noparated f rom . the other safety related channels by - at least 20 foot, without intervening combustibles. .W horo it-~ia.not possible to maintain 20 foot without intervening combustibles, cablos are encioned in throo-hour fire rated barriors or heat shields until 20 foot separation la achieved. . Itoat shields and separation distance will bo juotified by ongineering analysis. J In addition, aoparation will bo augniented with - sprinklors' and automatic fire detectora if required by the analysis. ' Cable ampacity will be dorated in accordanco-with the characteristics of the insulating material.
Amendment'K 9.5-11                      October 30, 1992
 
CESSAR n="ic41 ow Incide containment, cafety related cables generally are confined e
to their respective quadrants.              Where redundant divisions of safety related cables normally used for cold shutdown converge inside containment, an engineering analysis confirms that cold shutdown can be achieved utilizing systems and equipment which would not be affected by fire at that location.                        In each potential Reactor Building fire scenario,                cold shutdown is assured by operation from the control room or remote shutdown panel without repairs or extraordinary operator action outside of the control room or remote shutdown panel room.
9.S.1.5          Fire Protection / Detection / Alarm Systems The  ffre    penetration    water      supply  and    distribution system configuration is as shown in Figure 9.5.2-1,                " Fire Protection Water Distribution System."
9.5.1.5.1          Fire Pumps and Water Supply The fire protection water supply is provided by two, 300,000 gallon ground level storage tanks designed in accordance with NFPA 22, " Standard for Water Tanks for Private Fire Protection."
Each tank is equipped with a roof vent, roof access hatch, inside and outside ladder, overflow pipe, and a water level indication instrument.
Each tank has an automatic fill system supplied from the plant treated  water system.        Use of treated water will preclude                y potential system problems and deterioration associated with raw water (i.e., biological organism invasion such as Asiatic clams and microbiological 1y induced corrosion).              The fill system is designed to refill either tank within eight hours. Water storage tanks are heated as necessary to preclude freezing.                      Where heating is not practical, pumps are designed to automatically begin recirculation through tanks when ambient temperature approaches the point where freezing obstructs water flow to the pumps.
There are two full capacity fire pumps.                One pump is electric motor driven and one is diesel engine - driven.                Each pump is arranged to take suction from either tank. Each fire pump unit is UL Listed for the specific application.                  Fire pumps are designed in accordance with NFPA 20, " Standard for Installation of Centrifugal Fire Pumps."            Each fire pump includes an air release valve, set of suction and discharge gauges, and main relief valve. The electric motor driven pump has a recirculation relief valve. The diesel engine driven pump is equipped with an adjustable speed governor, overspeed protection, and redundant battery units including chargers.            Controllers for each pump are Amendment I 9.5-12                  December 21, 1990
 
+
CESSAR Heincuia UL Linted and includo _ ndjustable timo dolay startorn and a morcury pronsure switch with high and low prosauro settings. The following alarms are providad:
A. Electric driven _ pump
: 1. Pump running
: 2. Lona of power D. Dional driven pump
: 1. Engine running
: 2. Controller-in " manual position"
: 3. Low engina oil prosauro
: 4. High engino coolant temperaturo
: 5. Failure to start
                        ~
: 6. Shutdown from.overspeed T
: 7. Battery failuro
: 8. Battery charger failuro The  dienal- fuel . oil    storago. tank    in  sized.to      provido -an eight-hour fuel supply to the diocol engine driven fire - pump.
The  tank    in  located  in  tho  dienol' driven' pump -room          for environmental control and to accuro fuel _ quality.
Tho motor driven firo pump and.the'diosol engino. driven-ffra pump aro ooparated by a throo-hour firo rated barrior to anpuro- that both pumps would'not bo damaged by a singlo fire. EachLfire pump room in protected by an-- automatic - aprinklor ayatom : to further reduco fire exposuro.,
Diocharge piping of each pump -is interconnected - co' that 'olther
  . pump can -oupply either      connection to      the underground?-wator:
distribution syntom.
The-firo pump :; tant ihoador- includes _ a- flow' motor 1to . f acilitate fire pump      testing  and .a  hoso- header    to~ facilitata- system:
flushing.
Fire pump and - storage tank : piping is designed to provido a ful_1y adequate  water' supply _  .to  sprinkler    and  firo    hone'standpipo.
                                                            . Amendment I
 
===9.5 December===
1, 1990
 
CESSAR E!aibou O
systems with one fire pump and one water storage tank out of service.
The electric motor driven fire pump is powered                                              by the unit    y auxiliary power supply.                                      Back-up power is provided by the sito alternate AC power supply combustion turbine and cloctrically protected so that fire in the power house will not interrupt pump operation.
A jockey pump provides                                        system pressure maintenance to avoid lK starting of the main firo pumps under nonfire conditions.
9.5.1.5.2                        Water Dlutribution Syntem, Ilydrants, and 1I000 llouses Underground water distribution piping is cement lined ductile iron or plastic which in UL Listed or Factory Mutual Approved for fire servico.                    Interior and above ground pipe is galvanized carbon                  steel    which                      complies    with  ASTM  A53,    " Standard Specification for Welded Pipe, Steel, Black and llot Dipped, Zinc Coated and Seamless Stool Pipo."                                        Piping is " looped" around the power block and cross- connected within the Nuclear Annex so that sprinkler systems have redundant water supply flow paths.                                              Two pipes penetrate containment, to provido redundant w6ter supplies to primary and back-up fire protection systems.
Piping is sized based on water flow with the shortest flow path out of service.                    Calculations are based on anticipated internal 3
pipe roughness after 60 years of service.
Sprir xler systems and hose station connections to the water distributien system are arranged so that a single impairment will not isolate primary and secondary protection for any area.
Fire hydrants are located about 250 foot apart around the yard loop.        Ilydrants are provided with individual isolation valvos so that they can be individually isolated for repair.                                          Each hydrant has 2-2                    inch outlets individually controlled by gate valves.
Fire hose houcos are located near alternate fire hydrants.                                            Hose house equipment includes:
A. 350 ft of 2\ inch fire hose B. 150 ft of 1\ inch fire hose C. 2-2                  inch x l\ inch gated wyc connectors D. 2-2                  inch adjustable spray nozzles O
Amendment K 9.5-14                October 30, 1992
 
CESSAR1BMc-
      ) E.      2-1        inch adjustable spray nozzlos F.      2-2\ inch hoso coupling gaskets G.      2-1        inch hose coupling gaskets 1
H.      4 coupling spanner wrenches I.      I hydrant wrench Whoro hydrants or hose houses are subject to damago by vehiclo damago,            appropriato guards      and barriors aro provided for protection.
Sectional isolation valvos are located throughout. the water distribution            system    to  assure that any- portion of the distribution system that serves buildings containing safety a related systems, equipment,                and components can bo impaired without isolating primary and secondary tiro protection.
The fire protection water distribution system complies with NFFA 24, " Standard for Private Fire Servico Mains."
s Piping, valves, fittings, and fire hydrants are designed-for 175 psi operating pressure.
9.S.1.5.3                  Automatic-Sprinkler Systems A.      Description Automatic preaction sprinkler systems aro utilized for' fixed                        I fire protection in the Nuclear.Annox, Roactor Building, and' the alternato AC source - Combustion Turbino, as determinod-by the Fire llazard Analysis.              Wat pipe automatic sprinkler systems aro used whero proaction . type systems are - not mandated by tho. plant Design Basis.
A      proaction      sprinkler    system          consists      of:    a= . piping distributior, system which supplios- water to sprinkler. heads which are. located -based on engineering analysis 'and requirements of NFPA 13, " Standard for Installation of                                      '
Automatic Sprinkler Systems,"- to assure- adequate water distribution and-to preclude the possibility of' interference with the water distribution pattern - due - to obstruction, by other plant-equipment and components.                    Sprinkler headsaare normally closed and are actuated by heat sensitive elements.                            -
* Actuation temperatures of those olements -are based on the individual. location and application.                    Distribution ; piping between the system- control station and sprinkler-heads'is
    .O5 Amendment J 9.5.15                        April 30,.1992 l
!        ,.,n..    , , _ .      ,      .      ,          -    a--    .      _        - -
 
CESSAR naincuion O
normally dry and superviced with air or nitrogen.                                    Water io held  at a speciality "preaction valve" at the cystem                                      control lJ station. The system includes a fire detection cubayatem activated by fire or smoke detection devices, colected by engineering    analynia    for    the  specific          location                            and application based on the Fire llazards Analysia.                                              Upon activation of a      fire detection device,            the                  automatic proaction control    valve opens, allowing water                                into          the piping cystem.
Water is then diccharged only through sprinkler heads in which the heat conuitive ele.mont has actuated, thereby                                                  -
applying water only to the area involved in fire.                                            Each proaction sprinkler system has a manual control valve immediately upstream of the preaction control valve and                                            I mechanical trim to accommodate testing and maintenance.                                                      '
Alarms monitor system air pressure and water flow.                                            Each system alarms and annunciaten locally and in the control roo    to alert station personnel to actuation.                                    The main control station in located outside of the protected area.
Two  inch  drains  and  inspector's    test connections                                  are provided to tent nyutom water flow and alarm operation.
Each drain and test connection is arranged to discharge into a station drain for water control.
B. Coverage The following areas are protected by automatic preaction sprinkler nyctema:
: 1. Elevation 50+0, Nuclear Annex
: a. Janitorial /licalth Phynien Storage / Work Area,
: b. Maintenance Work Areas.
: c. Personnel Aislen.
K    '
General Storage Areas.
d.
: e. Diesel Generator Buildings,
: f. Primary Chemistry Lab Area.
: g. Chemical and Volume Control Pump Room.
: h. Chemical and Volume Control Equipment Room.
O Amendment K 9.5-16                      October 30, 1992
 
CESSAR Hsincamu
      /
(
: 2.          Elevation 5040, Reactor Building I
: a. Turbine Driven      Emergency Feedwater Pump Rooms,                                        !
Divisions I and II.                                                                      .
: 3.          Elevation 70+0, Nuclear Annex                                                                    ,
: a. Channel A, B, C,    D Pornonnel Access Aisles.
t
: b.      Essential Chilled Water Areas.                                                            ;
: 4.          Elevation 91+9, Nuclear _ Annex                                                    lI
: a. Personnel Access Areas.
: g.            -
: b. Radiation Access Control.                                                                  1
: c. Maintenance      Areas        -
(Hot              Machine    Shop,                '
Decontamination Room and Truck Bay).                                        I S.          Elevation 115+6, Nuclear Annex                                                                    3 E
: a. Storage Room.
                  -                                b. Maintenance Area.                                                            7
: c. Tool Storage Room.
: d. Personnel Decontamination Areas.                                            K.
e.-    Break Room.                                                                l71 6.-          Elevation 115+6, Reactor Building                                                  g
: a. Reactor Coolant Pump Motors.
: 7.          Elevation 130+6, Nuclear Annex                                                    lI lK
: a. Technical Support Center.                                                                  ,
I-
: b. Maintenance-Area.-
                                                                                                                                    .lK
                                    -8.          Elevation 146+0,= Nuclear Annex                                                                  v I
: a. Maintenance Area.
: b.  ' Hot Tool Crib Rooms.                                                        g            ,
: c. Personnel Decontarination Areas.
O Amendment K'                  O 9.5-17                                    October 30, 1992 P h%19    fr-t''g  y 44 4 y  m4 /n  ni-iu i-em  etw  q4*f    ytpr      y  q-at_ vm  F -+y*-  p~e +s w = c 4us se up    *              * " * +
 
CESSAR nuiricuion v
x9 Sprinkler system design specifications (i.e., design d, sity.
over the designed operating area) is determined by the Fire Hazards Analysis.        Each system is designed based on the available water supply with 750 gpm reserved for hose streams.
C. Systems Interaction
: 1. Sprinkler system piping is seismically restrained to i                avoid    interaction      with  systems,  equipment,    and components which must function following the design basis seismic event.
: 2. Sprinkler head locations are selected and analyzed to assure that water spray does not expose redundant equipment required to achieve cold shutdown or high voltage electrical equipment which may result in a personnel hazard.
I'
: 3. Sprinkler systems are analyzed to assure that pipe break / water spray does not potentially expose equipment required for cold shutdown.
: 4. Sprinkler system drains and test connectio'ns are routed to unit drains to control water discharge.
: 5. In area = where equipment is subject to damage by water accumulaLion, floor drains are provided or equipment is installed on elevated platforms to avoid damage.
: 6. Sprinkler K Lv (7e located as required by NFPA 13.
Other plant equipment and components are located so that they do not obstruct the designed sprinkler water discharge pattern.        If- obstructicn is unavoidable, additional sprinkler heads are installed to assure proper water distribution.
: 7. Where    installed,      automatic  sprinkler  systems  are considered primary protection.        Portable extinguishers and fire hose stations are provided for back-up protection.
Sprinkler system components          including manual    isolation valves, preaction control valves, pipe, fittings, . hangers, sprinkler heads, and detectors are Underwriter's Laboratory Listed or Factory Mutual Approved for use in fire protection systems.
O Amendment K 9.5-18                October 30, 1992
 
CESSAR Ennneuion                                                                          i i
9.5.1.5.4                Firo llose and Standpipo Systems Fire hose and standpipe systems consists of piping connections to the water distribution system, manual isolation valves, and 1 inch fire hose.            These systems are installed in accordance with NFPA 14, " Installation of Fire Hose and Standpipe Systems."
Fire hose and standpipe systems are designed to be operational following the design basis earthquake.                    The primary water supply to the standpipe system is from the fire protection water distribution system.              Each connection of the standpipe system to the fire protection water distribution system includes a manual isolation and a back flow prevention check valve which are seismjcally qualified.                A 30,000      gallon seismically designed pressurized water storage located on the roof of the Nuclear Annex is connected to the fire hose standpipe system downstream of the check valves. The 30,000 gallon pressurized water storage tank will provide 250 gpm at a minimum of 65 psi to any fire hose station in the Nuclear Annex or Reactor Building for two hour duration.        In the event of loss of the fire protection water distribution system following a seismic event, the fire hose star 'i ne system can supply the specifled volume and pressure to one .i        tone in the safety related portions of the station.
Firt n.1        stati as are designed for Class III service (for use by              I buildi . - occupants and a fully trained structural fire brigade) as defined by NFPA 14, " Fire llose and Standpipe Systems."
Standpipe system piping is sized to supply 500 gpm at a minimum 65 psi pr,ssure from the primary water supply and 250 gpm from the seismically designed back-up water supply.                          Each hose connection to the standpipe includes a 1                        inch and a 2    inch connection.            Connections have pressure reducing orifices -if necessary to maintain a maximum system pressure at 100 psi for firefighter safety.
Hose stations are located so that any location where safety related equipment may be damaged by fire can be reached with at least one effective hose stream.
Hose stations are equipped with 1                    inch fire hoses which are a maximum of 100 feet long. Hose stations which protect electrical equipment have adjustable spray nozzles qualified for use on energized electrical equipment.
Fire hoses, isolation valves, and hose nozzles are Underwriter's Laboratory Listed or Factory Mutual Approved for use in fire service.
O Amendment I 9.5-19                December 21, 1990
 
CESSAR EL%"lCATION O
9.5.1.5.5        Portable Fire Extinguishers Portable  fire  extinguishers  are  located  and  arranged  in  7 accordance with NFPA 10, " Standard for Installation and Use of Portable Fire Extinguishers."    An exception is that fire hose stations are utilized for Class A fires except in the control room  and computer room where a water based extinguisher rated at:U 2A is installed.                                                      I Portable extinguishers are located such that extinguisher can be reached with a maximum of 75 feet of travel from any protected location. An exception is that in high radiation areas where the Firo Hazards Analysis determines that there is a minimum of combusticle materials and a minimum of risk to safety related equipment or equipment necessary to maintain unit availability, fire extinguishers are located outside of          the area where responding fire brigade members can obtain an extinguisher and carry it into the area for use.      This is consistent with ALARA principles.
Due to the potential for chemical corrosion of safety related equipment and components, dry cheuical extinguishers are not installed in safety related portions of the station.              Dry chemical extinguishers are located in the fire brigade equipment room and are used at the discretion of the fire brigade captain.
Inside containment, during power operation, fire extinguishers are -located near the personnel access portals (rather than throughout containment) . During maintenance outages, additional fire extinguishers will be moved into containment to support maintenance activities.
Fire extinguishers are located to be accessible.      Locations are clearly marked to be prominently visible.
Fire extinguishers are Underwriter's Laboratory Listed or Factory Mutual Approved for use in fire protection service.
9.5.1.5.6        Fire Detection and Alarm System A fixed automatic- fire detection system is installed in the Nuclear Annex and portions of the Reactor Building.            Areas covered by the fire detection system are established by the Fire Hazards Analysis based on the potential hazard risk to safety related equipment and equipment necessary to maintain unit availability,    potential  detector    effectiveness    (based  on engineering technique of NFPA 72, " Fire Detection and Alarm Systems"), and ALARA concerns. Thc fire detector system design 9
Amendment'J 9.5-20                April 30, 1992
 
iCESSARJML mu 4
N/                                                                                          ,
        -philosophy    in _ to : cover areas which contain major . electrical equipment _ and components (such as control rooms,-- system transfer
        -switches, computers, switchgear, motor control centers, _ battery,_            I.  -'
inverters, and-technicalz cabinets), major safety related ipumps,,
ventilation _ equipment areas, and areas containing substantial quantities of combustible material such as change room-storage, contaminated area step off pads, and laundry areas.
The type of fire detectors considered for use in the System 80+* lK          '
[
are as follows:
A. Heat detectors - -designed        to  operate  at    predetermined ambient temperature.=
B. Ionization and photoelectric smoke detectors        -
designed to operate in the presence of particles of combustion..
C. Flame detectors    -  des'igned to _ operate- by detection- of infrared, visible, or ultraviolet radiation.
D. Continuous line type detection - designed _ to operate when exposed to a predetermined' ambient temperature rate-of-rise, g-Detectors are specifically selected for each - location based on potential fire hazard,        need for timely actuation,          ambient conditions, ventilation and ceiling height, as determined in the              I  4i Fire Hazards Analysis.
D'etectors . are " addressable."    The central control panel ls    I  -a microprocessor based " intelligent" system.          This arrangement allows detector sensitivity and function to_be determined at'~the control panel.
Manual ._ pull . stations  are    addressable _ and -are      located as determined by the Fire Hazards Analysis.          Either manuali pull-stations or individual fire detectors can --activate - the: central control ' panel which -initiates alarm and annunciation in the                      ,
control room and locally in the vicinity of_the activated l device.
The control panel' is. located in the control room for operator convenience, i'        The ; fire detection and alarm - system is powered l from the station auxiliary, safety grade, power distribution-9ystem.. The control panel contains back-up .- batteries = capable of supplying power-. to-detection system for 24 -hours consistent c with requirements" of; NFPA 72, " Fire Detectors and Alarm Systems."
Q      Failure of the fire detection and alarm system would not affect:
(j    operation of other plant systems.
Amendment K 9.5-21                  October 30,51992-          .
i:
 
CESSAR nsincmou O
Fire detectors, control panels, and manual pull stations are Underwriter's Laboratory Listed or Factory Mutual Approved for fire protection service.
9.5.1.6        System Interfaces                                      1 9.5.1.6.1        Emergency Lighting Scaled beam, battery powered lights are located, as determined by the Fire Hazards Analysis, for personnel egress in accordance with NFPA 101, " Life Safety Code," as well as in the control room, Technical Support Center, Operations Support Center, the Remote Shutdown Panel Room, and the stairway which provides access from the control room on olevation 70+0 and to elevation K
50'-0 where the reactor trip switchgears are located. Emergency lights will also be provided along the pathways between the Control Room and the transfer switches which are used to transfer control of the Remote Shutdown Panel Room.
Batteries of these emergency lights are designed for eight hours continuous operation following loss of station auxiliary power.
Bulbs are located so that adequate illumination is provided and is not obstructed by plant equipment and components.
Battery powered, emergency      lighting  units  are  Underwriter's Laboratory Listed.
9.5.1.6.2        Ventilation Systems Fire and smoke control are recognized as important elements of the overall fire protection program. The ventilation systems are designed in accordance with NFPA 90A,        " Air Conditioning and  y Ventilation Systems" and NFPA 204M, " Smoke Control Systems."
Ventilation Systems are division-specific so that fire or smoke in an area containing a safety related division of equipment cannot migrate through the ventilation ducts to an area containing the redundant division of safety related equipment.
Fire dampers are installed in fire rated barriers and have the same fire resistance rating as the barrier. Exceptions are the Containment Purge and Pressure Control Systems and Annulus Ventilation System which must function following some plant design basis accidents to prevent release c,f radioactivity. Fire dampers are not installed in these systems because failure or spurious actuation would interfere with system safety function.
Portions of the Nuclear Annex Control Complex Smoke Control System motor operated smoke control dampers are installed in lieu of  thermally operated,    automatic closing fire dampers as described below.
Amendment K 9.5-22                October 30, 1992
 
C E S S A R n n % m os c
k The smoke control design philosophy is to allow for smoke venting from any plant area without spreading to adjacent areas, to maintain plant habitability for operator _ protection ~and to ensure protection of the public. The containment, subsphere, fuel pool, nuclear annex and two diesel buildings are each served by 100%
outside air and 100% exhaust ventilation systems.
Smoke  control and exhaust is accomplished by aligning the                        y ventilation to supply 100% outside air and to exhaust directly to the outside. Smoke and gases containing radioactive materials are routed through a filter train to the unit vent if a radioactive signal is received.              The control complex has smoke exhaust fans to remove smoke from specific areas as determined by control operators utilizing signals from smoke detectors located in exhaust and return air ducts.                The control operator aligns dampers to exhaust an area where fire occurs while isolating exhaust and return air in adjacent areas while supply dampers remain open to create a slight positive pressure in adjacent areas.
During the smoke purge mode of operation, the filter units are isolated and the smoke is bypassed around the filter units to the atmosphere. The smoke purge is manually activated by the control room after the fire is extinguished completely.                      Recirculation cooling units in the smoke filled areas will need a maintenance check to see if the prefilters need replacing and the cooling coils need to be cleaned after the smoke purge is completed.                      J A moisture eliminator is provided in each exhaust filter unit upstream of the charcoal and HEPA filters to remove entrained particulate    water  in    the      airstream.      Electric      heaters- are provided downstrear of the moisture eliminators to vaporize the water particles not removed by the moisture eliminators.
Fresh air intakes are located remote from the ventilation system exhaust to preclude the possibility of contaminating the intake air with products of combustion.
Stairwells in the Nuclear Annex are individually pressurized with-roof-mounted fans to preclude smoke infiltration.
Carbon and high energy particulate air (HEPA) do not represent a                    I potential  exposure fire -hazard to nearby safety related components. Carbon,    used in carbon filters, has a minimum ignition temperature of 625'F.                HEPA filters have a minimum ignition temperature 'of        600*F.        Normal heating system air.
temperature is about 105'F.            If  the  air temperature approaches 200'F,  carbon  will begin    to      re. ease  any adsorbed radioactive iodine. If an  air temperature          e.*cursion    occurs in the safety
\    related ventilation system with carbon or HEPA filters, the heat sensor will cut off the filter train fan and the redundant fan Amendment J 9.5-23                      April 30, 1992
 
i CESSAR ERMcuion                                                                i O  ;
serving the redundant division will begin to serve the area l7 involved; therefore, the fire will be isolated.                        I 9.5.1.6.3        Equipment Water Shields protection of equipment susceptible to water damage required for safe shutdown of the plant from            inadvertent or advertent discharge of water from fire protection systems will be through use of water shields,        conduit seals, curbs and drains, and equipment pedestals.
Equipment shielding. It is not expected that shielding from the effects of water spray from overhead sprinkler systems will be necessary. Sprinklers in safety related areas will be of the automatic pre-action type that requires the activation of an automatic fire detector and fusing of a sprinkler head prior to releasing water.      A pipe break downstream of the pre-action control valve will not release water.        Shielding from spray from manual fire fighting operations will not be required outside of containment. Redundant safety related equipment is separated with 3-hour fire rated barriers which will confine the fire and fire fighting operations to a single area.        From a safe shutdown standpoint it is assumed that the fire will render the equipment in the affected area inoperable, and safe shutdown will be of no consequence. All penetration seals in floors and walls up to a height of 24 inches will be waterproofed to prevent water from J the affected area from migrating to adjacent areas.
Safety related equipment in close proximity to fittings in the standpipe and interior fire hose system will be shielded as necessary    to    prevent  damage    from    inadvertent  discharge.
Shielding    location    will  be  finalized    following  as-built walkdowns.
Inside containment, where redundant division equipment is located in close proximity, (i.e, within 20 feet of each other) , such as the motor      operated depressurization valves located at the pressurizer, shielding will be provided as deemed necessary following interaction review during detailed design and as-built walkdowns.
Conduit ends.      The open ends of all vertical conduit, and the open ends of all horizontal conduit that terminate within 18 inches of a floor, will be sealed to prevent water infiltration.
9.5.1.6.4          Curbs and Drains Where fixed fire protection systems are installed, floor drains            1 are provided, sized to collect water discharga.          In areas where drains are not installed due to pressure boundary constraints, Amendment J 9.5-24                  April 30, 1992
 
m
    -    :CESSARinnncinom 1
  - LJ 9.5.1.7.9        Fire Brigade Radios A. Fire  brigade    radios      are  functionally    tested,  -during          >
preoperation testing,- in each area of the plant to assure                  i proper operation.
                                                                                          't B. Fire brigade radios are tested _ as part of station -fire                      .
drills to assure continued proper operation.
9.5.1.8        Control of combustible Materials
          -A program is establishe'd control of. storage, use and-disposal of            y combustible material. Combustible materials ~are defined as those materials which will ignite, burn, support combustion, or-release                  i combustible vapors.when exposed to fire or heat in the installed configuration.
9.5.1.8.1        Structures, Equipment, and Components A. Structures Structures are comprised of noncombustible material.- Some interior  finish    materials      are  of  limited    combustible construction    with        the    following      fire    -resistive characteristics:
: 1. Maximum flame spread _of:25-
: 2. Maximum smoke development'of 450-          _ _
: 3. Minimum 1 critical radiant flux of-.45W/cm2                            3
                                                                                          .i Notes 1 and 2 are acceptance criteria of ASTM _-E84,1_" Test for        K Surface Burning--Characteristics of Building ~ Materials"        . Note
              '3-is obtained from NFPA 253, " Test"for Critical. Radiant Flux of Floor Covering Systems Using a Radiant Heat Energy Source."
q B. Equipment                                                                  ]
1              Some plant equipment 'contains ~ synthetic . materials such . as neoprene plastic and nylon parts.- These quantities are not 7-present in _ concentrations. which would create -a        significant' fire hazard. -Locations'contai'ning significant quantities.of
              -plastic material ~ such as cable insulation are evaluated.in
              -the Fire Hazards' Analysis-to consider'the potential affects of combustion _such as heavy: smoke production and generation of corrosive and toxic gases.
O L)                                                                                        ;
Amendment-K 9.5-33                  October 30, 1992
 
CESSAR EnWICATION O
Dulk hydrogen storage cylinders are located outside of the Nuclear Annex within the protected area.        In safety related areas of the plant, hydrogen piping is designed to Peismic Category 1 requirements.
Reactor coolant pump motors each contain about 250 gallons of oil for cooling and lubrication. Potential leak points are enclosed Jn a seismically designed oil collection shroud which drains to a full capacity, seismically designed tank in the basement of the Reactor Building. Thus, oil escaping from the reactor coolant pump motor would not create a potential fire hazard.    (An option under consideration is use of fire retardant oil similar to that commonly used in turbine governor systems, which would reduce the potential for ignition and severity of a fire. An oil collection and drain system would be provided but would not be seismically qualified).
Some  safety related pumps contain small quantities of lubricating oil or grease.      These cumps are reviewed on an individual basis    in  the    Fire Huzards Analysis.          Fire 7
protection features are provided as determined appropriate.
C. Components The majority of in situ combustible materials in safety related areas of the plant consists of plastic insulation of power, control, and instrumentation cables.            Use of fiber optic  cables  from  the    control    room    and  individual multiplexer panels in designated train-specific areas, reduces the quantity of combustible cable insulation by an estimated order of magnitude. Further, locctions containing significant    quantities    of    combustible      materials    are investigated in the Fire Hazards Analysis to consider the potential aff, cts of burning, such as heavy smoke production and generation of corrosive and toxic gases.
Some piping and HVAC insulation consists of synthetic rubber type products, where moisture control is a significant concern.
9.5.1.8.2        Plammable and Combustible Liquids Two above ground diesel fuel oil storage tanks (typically 67,500 gallons each) are located on either side of the Nuclear Annex, Diesel  Generator  Rooms. Storage    complies    with      NFPA  30,
" Flammable and Combustible Liquids Code."
O Amendment I 9.5-34                    December 21, 1990
 
CESSAR                        nWPc  ou A
a D
There is a diesel fuel oil day tank (typically 900 gallons) in each diesel generator room.                  Each tank is surrounded by a full I height (of the tank) concrete dike sized to contain 110% of the tank capacity.                Penetrations in the dike are sealed. Drains are y provided within the dike to remove spillage to a safe location.
Tank vents are routed outside of the room.
The Alternate AC Source                  -
Combustion Turbine (CT) is located remote from the Nuclear Annex such that fire involving the CT will                not affect  nuclear    safety  related  equipment. Fire protection features are provided for the Combustion Turbine, consistent with the                  Fire  Protection  Design objectives as determined appropriate by the Fire Hazards Analysis.
Storage of flammable and combustible liquido complies with NFPA 30, " Flammable and Combustible Liquids."                  Cleaning fluids and solvents are normally used in quantities of one gallon or less.
9.S.1.8.3                  Combustible Contents 9.S.1.8.3.1                  Combustible Furnishings I
gs            In areas designated as personnel work stations, change rooms, break rooms and combustible material storage areas, combustible C)
(
furnishings, and work related material are present.
areas, the Fire Hazards Analysis assesses the potential for fire In these ignition, growth, and consequences.
Based on this assessment, fire protection features are provided to assure that the Fire Protection Design Basis Goals and Objectives are met.
9.S.1.B.3.2              Transient Combustible Material An administrative control program assures the amount of transient combustible material in safety related areas are properly managed and that additional            fire  protection  features provided      as appropriate.        When specific tasks are completed or at the end of each shift, combustible waste material is collected and moved to the designated waste collection area.
Portable cylinders of flammable and combustible gases are used in the Nuclear Annex and Reactor Building.                  An administrative control program implements a permit system to assure control of use and storage of these cylinders.
V Amendment K 9.5-35              October 30, 1992
 
CESSAR EnirlCATION O
Storage and disposal of anticontamination clothing at radiation control zone (RCZ) step-off pads is recognized as a potentially significant  transient    combustible    fire    hazard. Therefore, anticontamination    clothing    is  stored    in  enclosed    storage cabinets. Cabinet doors are normally closed as required by station directives. Used anticontaminated clothing is placed in metal drums which have fusible link actuated or otherwise Listed or Approved covers. Fire protection and detection features are provided for step-off pad areas based on conclusions of the Fire Hazards Analysis.
9.5.1.9        Fire Protection Program 9.5.1.9.1        Fire ITevention A. Control of Hot Work Cutting, welding, and grinding operations are governed by a permit  system    as  required    by  station    administrative controls. Each task is reviewed and an adequate number of trained and qualified fire watch patrols established to assure that hot slag or sparks do not ignite nearby in situ-combustible    material    and    that    transient    combustible materials are relocated outside the vicinity.        Fire watch is  7 maintained for at least 30 minutes after completion of hot          '
work to assure that residual hot material does not ignite nearby combustible material.
B. Housekeeping Station directives, developed based on the Fire Hazards Analysis, determine an appropriate quantity of combustible material that can be located in any area of the plant.
Where it is neccesary to exceed the allowable quantity of combustible material in an area,          a  permit system is established    to  determine    appropriate    additional    fire protection features and the allowable          duration of the variation.
Designate    plant    functional      groups    have    material responsibility for specific plant areas and are responsible for housekeeping in these designated plant areas.
Plant management conducts regular housekeeping inspections to assure that the housekeeping program is being properly implemented and that violations are promptly corrected.
O Amendment I 9.5-36                  December 21, 1990
 
l      CESSAR ME"lCATICN o
9.5.4                DIESEL CENERATOR ENGINE FUEL OIL SYSTEM                                  E 9.5.4.1                      Design Bases 9.5.4.1.1                              Safety Design Bases                                    J The Diesel Generator Engine Fuel Oil System is designed to provide for storage of a seven-day supply of fuel oil for each diesel generator engine and to supply the fuel oil to the engine,                            E as necessary, to drive the emergency generator. The system is designed to mnet the single failure criterion, and to withstand the effects of natural phenomena without the loss of operability.
All components and piping are located in a Seismic Category I lI structure            (diesel generator building, diesel fuel storage y structure) except for a portion of the piping from the fuel oil storage tanks to the day tank, which is seismically qualified and protected.                  All essential components and piping are                    fully I protected from floods, tornado missile damage, internal misailes, pipe breaks and whip, jet impingement and interaction with non-seismic systems in the vicinity.
9.5.4.1.2                              Interface Requirementc O
h      The Diesel Fuel Storage Structure is an out of scope item which shall be provided by the applicant.                                A reference fuel oil structure is discussed in the following sections.                              The licensee shall verify that the following inte                                requirements are met toensureadequacywiththeSystem80+gce                              Standard  Design:
A. The Diesel Fuel Storage                              Structure  shall  meet  Seismic Category I requirements.
B. The Diesel Fuel Storage Structure                              shall  withstand  the effects of the following events:
: 1.      Natural phenomena, including SSE, floods, tornados, and hurricanes.
: 2.        Externally and internally generated missiles.
: 3.        Fire and sabotage.
C. If    located within 50 feet of any building containing safety-related equipment, the Diesel Fuel Storage Structures shall have a minimum fire resistance rating of 3 hours.
A t  \
V Amendment J 9.5-51                April 30, 1992    l 1
 
CESSAR          lMi"icariou D. The  Diesel    Fuel  Storage  Structure    design shall        meet o
requirements      set forth in      applicable      state and local environmental    regulations concerning the containment of fuel oil leaks and    spills in and around the structure.
E. The Diesel Fuel Storage Structure shall be located within the plant vital protection area and outside the turbine missile path.
F. Means shall be provided to ensure that the stored fuel oil is maintained at a temperature above the fuel oil cloud point (i.e , above the temperature at which the separation of wax becomes visible) such that fuel oil can be supplied and ignited at all times under the most severe environmental conditions expected at the site.          For structures housing steel tanks,      this can be accomplished by provided unit heaters supplied with Class 1E power to maintain the building at a temperature above the fuel oil cloud point.
All buried piping shall be installed below the frost line.
G. For    a  structure    housing    steel  tanks,      the  following requirements shall be met:
: 1. A  ventilation system shall be provided to allow                J personnel access during all modes of plant operation.
The ventilation system shall be designed as non-safety, non-seismic except for portions which may interact with safety-related piping or components which shall be designed to Seismic Category II requirements.
: 2. Design of      the Diesel    Fuel Storage Structure shall provide      adequate    accessibility      for    maintenance, inspection, and testing of components located within the structure.
H. Concrete tanks with steel liners designed in accordance with Section VIII of the ASME Boiler and Pressure Vessel Code may be  used.      For  sites  selecting  such      tanks,    adequate protection against missiles and natural phenomena shall be provided for safety-related piping and components external to the tank.
9.5.4.2          System Description The Diesel Generator Engine Fuel Oil System is shown in Figure-9.5.4-1 (Sheets 1 and 2).
e Amendment J 9.5-51a                    April 30, 1992
 
CESSAR Ennnemou O
9.5.4.2.1        General                                              g A separate and complete fuel oil storage and transfer system is provided for each diesel generator engine.        Two storage tanks lJ provide fuel oil for each engine, which is sufficient to operate at full load for a period of time no less than seven days plus a K margin to allow periodic testing.
Typically, this requires a combined usable volume of 135,000          7 gallons. The site-specific SAR shall verify that this is adequate for the diesel generators purchased.
Fuel oil is transferred by gravity from the storage tanks to the lK day tank which is    loc.ted within retaining walls inside the II diesel  generator  building. The day tank has a sufficient lK capacity of fuel oil to operate the diesel generator engine in excess of 60 minutes at full load.      Typically, this requires a 1 day tank of 900 gallons. The site-specific SAR shall verify that day tank capacity      is  adequate  for  the  diesel generatcrsa purchased.                                                            IK Fuel oil stored in the day tank is periodically checked for water content. Any accumulated water is drained from the tank through J the drain connection provided on the bottom of the tank.
A set of level switches located within the day tank control the position of the fuel oil transfer valve: opening the valve to allow fuel to flow to the day tank at low level and closing the valve to shut off the supply of fuel at high level. High and low level alarms are also provided both on the storage tanks and the day tank. In the event of a transfer valve failuro in the closed position,-the day tank low level alarm, indicating 60 minutes of fuel reserve at full load, allows the operator to take corrective      K action. In such an event,    a bypass line allows for manual filling of the day tank.      In the event of a transfer valve remaining in the open position, fuel oil would continue to flow from the storcge tanks to the day tank until the system reached hydrostatic equilibrium. Since there is no day tank overflow line, oil would rise in the Safety Class 3 day tank vent pipe to-an elevation equivalent to that of the fuel oil in the storage tank but well below the top of the vent.      The day tank vent is missile protected.
During normal operation, fuel oil is pumped from the day tank to the engine by the engine-driven fuel oil pump. The motor-driven fuel oil booster pump is normally isolated both electrically and mechanically, but may be operated if required during maintenance.      E The day tank provides sufficient positive suction to both the motor-driven fuel oil booster pump and the engine-driven fuel oil (o
N._./
    )  pump.
Amendment K 9.5-51b              October 30, 1992
 
CESSAR 82 Gem                                                          !
O Each pump is provided with a duplex suction strainer and a discharge    pressure relief valve, and an engine-mounted dual element fuel oil filter is provided on the common discharge header. Pressure gauges are located on the inlet and outlet sides of both strainers for local indication and an alarm is provided with each strainer to alert the operator of high differential pressure. Differential pressure indication and a high differential pressure alarm are also provided with the fuel oil filter.
Two fuel oil drip headers, one located on each bank of the diesel generator engine, contain unburned fuel leakage within the engine. The unburned fuel is removed from the drip headers through a piloted valve and ejector driven by the pressurized fuel oil return from the bypass headers to the day tank.      The E main circulation headers are fitted with a relief valve which prevents the engine fuel oil pressure from cxceeding a certain maximum and which discharges back to the day tank.
The day tank is surrounded by a fire wall which serves as a containment in the event of leaks or ruptures. The containment drain line is isolated by a normally closed, solenoid-operated valve. A high level signal from a level transmitter located within the containment opens this valve, allowing the oil to drain to the suction side of the lube oil transfer pump which is simultaneously activated and delivers the oil to _ a waste oil storage tank.
To prevent settling, stratification, and deterioration of the fuel oil during extended periods,      a system is provided to recirculate or transfer filtered fuel oil.      A separate and complete recirculation system is provided for each set of half capacity fuel oil storage tanks. Each sot of storage tanks shall be integrally connected with normally closed isolation valves and  y check valves to prevent backfilling and possible contamination of the fuel oil between tanks.        A manually operated positive displacement pump provided for each set of storage tanks takes suction from the flush mounted sample connection on the bottom of the storage tank and discharges the fuel oil through a simplex filter with alternate - bypass line to the storage tank fill connection. The filtering and recirculation process is performed on a tank by tank basis with the frequency of operation dependent on the results of a fuel oil inspection program. Since two half capacity storage tanks are provided per diesel, one tank will_be aligned to supply fuel oil to -its respective diesel while E
isolating the second tank through administrative control. -The contents of the isolated storage tank would be filtered and recirculated. Prior to realigning the tank to its respective diesel, a period of not less than 24 hours is required to allow any stirred sediment to settle.
Amendment J 9.5-52              April 30, 1992
 
1 CESSAR Ennsc-
                                                                                        )
Should the recirculation system be operating in the event of a LOCA,  a  redundant,  safety    related    interlock      is  provided  to shutdown the recirculation pump to prevent possible stirring of sediment. A redundant safety-related interlock is also provided to shutdown the recirculation pump should the fuel oil in the storage tanks drop below a level to preclude loss of fuel oil in the event of a recirculation system pipe rupture.
These two safety-related and redundant interlocks protect the Diesel    Generator Fuel Oil System during operation of the recirculation system. They assure uninterrupted operation of the essential emergency diesels in the event of a Loss of Offsite                  C Power or LOCA.
Fuel oil amenders are added as necessary to extend oil life by preventing oxidation and stratification.              A sample is used to inspect the oil      for  water    content    or    degradation and if degradation is      determined,    the  oil  may    be pumped out for disposal. Accumulated  water  in  the fuel  oil    storage tanks will be removed by the recirculation              system      through  a  sample connection provided on the recirculation pump discharge.
The day tank vent and fuel oil storage tank vents and fill connections which are exposed outdoors are constriscted using
  \  heavy gauge pipe to provide protection against tornado missiles.                K These vent and fill lines are located above the probable maximum flood level. Each fill connection is provided with a locking dust cap and each vent line is down turned.              The storage tanks can be filled and vented through the manway should the fill or vent lines become impaired.                                                    E 9.S.4.2.2        Component Description Fuel oil is recirculated by a recirculation pump within each                  g storage facility to prevent deteriore. tion.
The motor-driven fuel oil booster pump is normally isolated, both electrically and machanically, but may be operated if required during maintenance no deliver fuel oil to the diesel.
9.5.4.3        Safety Evaluation E
l l
The Diesel Generator Engine Fuel Oil System is a ANSI Class 3 piping system with the exception of the Fuel Oil Recirculation System and the fuel oil storage        tank fill line strainer which are The Fuel Oil Recirculation System ANSI Class 4 piping systems.
and the fuel oil storage tank fill line strainer are separated from the essential Diesel Generator Fuel Oil System by normally O
Amendment K 9.5-53                      October 30, 1992
 
CESSAR n$sLion O
closed ANSI Class 3 isolation valves.        An ANSI Class 4 flexible rubber hose    is used to connect the ANSI          Class 4 fill line strainer to the ANSI Class 3 fuel oil storage tank fill lines.                    E The diesel engine and engine mounted components are constructed in accordance with IEEE Standard 387. The fuel oil system is designed and constructed in compliance with ANSI Standard N195, lI except in regards to the flame arresters on the storage tanks, an overflow line from the day tank, and excluding all references to                K fuel oil transfer pumps.
Each diesel generator unit is housed separately in a Seismic Category I structure.
Diesel fuel oil      2D,  as specified by ASTM D975,            is normally delivered to the site by private carriers.          The fuel oil storage capacity is based on continuous operation of the diesel generator engines at rated load for a period of seven days. A 10 percent                  E margin in storage capacity is provided to preclude the necessity of refilling the tanks following routine performance testing.
The exterior of carbon steel tanks and other underground carbon steel components is coated.        In addition to being coated,          the external surfaces of buried metallic piping and tanks are protected from corrosion by an impressed current cathodic protection system in accordance with NACE Standard RP-01-69 or other means    as  deemed  appropriate    bhsed  on  site        specific  K conditions.
The interior of the fuel oil storage tanks are not coated since                '
the presence of fuel oil will act as a deterrent to internal corrosion. Requirements assure that the fuel oil storage tanks are maintained essentially full to provide a seven day supply.
E During surveillance intervals for sampling the fuel oil in the storage tanks, any accumulated water or sediment detected will be removed via the Fuel Oil Recirculation System. The fuel oil storage tanks are set at a level above the normal ground water table.
The fuel  oil sampling and impressed current cathodic protection provided)
(if              system  surveillances    are  in  conformance        with  I guidance of Regulatory Guide 1.137, Position C.2.
O Amendment K 9.5-54                  October 30, 1992
 
CESSAR ER! bien k
l During normal operation of the diesel any accumulated sediment in                      '
the bottom of the fuel oil storage tanks is prevented from entering the supply line to the day tank since the outlet connection is raised 6 inches above the storage tank floor.
During the addition of new fuel oil, degradation or failure of the diosol generator engine due to stirring of sediments is prevented by a two tank system.              Two half capacity fuel oil storage tanks per redundant diesel provide the ability to operate the diesel off one tank while isolating and filling the adjacent tank. prior to the addition of new fuel oil either during an accident or when " topping-off" the fuel oil storage tank, the                          j diesel would be aligned to one tank while the tank to be filled would be isolated through administrative control. After filling the storage tank, a period of not less than 24 hours must be allotted to allow sediment to settle prior to realigning the tank                C to its respective diesel.          In the event of an accident (blackout or LOCA), a sufficient reserve of fuel oil will be maintained to allow the diesel to operate off one storage tank while refilling the adjacent fuel oil storage tank, allowing for a 24 hour                              l settling period.
To minimize the chances of a fire in the fuel oil system, piping is routed such that it is remote from other piping and equipment with potentially hot surfaces and from any source of open flame or sparks. The fuel oil day tank is protected by a fire barrier.
There are no high energy lines within the diesel                      generator building and all moderate energy lines are properly supported and restrained to prevent damage to safety-related systems, piping and components resulting from line failure.
All fuel oil equipment is located in heated buildings except buried piping which is installed below the frost line to maintain J the fuel oil above the cloud point.
9.5.4.4          Inspection and Testing Requirements system components and piping are tested to pressures designated by appropriate codes.            Inspection and  functional        testing are performed prior to initial operation.
n v
i i
Amendment J 9.5-55                    April 30, 1992 l
_  ._ , _ _              .. ~  . -
 
CESSAR naincanos O
9.5.4.5            Instrumentation Application Each diesel generator engine              is provided with          sufficient instrumentation to monitor the operation of the fuel oil system.
All alarms are separately annunciated on the local diesel engine control panel which also signals a general diesel trouble alarm in the control room.        There are two redundant safety related interlocks provided on the fuel oil recirculation system. One interlock is provided to shutdown the recirculation pump in the event of a LOCA.      The second interlock is provided to shutdown the recirculation pump should the fuel oil level in the storage tanks drop below a specified level.              The fuel oil system is              -
provided with the following instrumentation and alarms:
A. Fuel oil storage tanks                                                      g
: 1. Low level and high 1cvel annunciators.
: 2. Technical specification low-low level alarm.
: 3. Level indication, 0-100%.
: 4. The capability for use of a stick gauge to measure the fuel oil level.
B. Fuel oil recirculation filter
: 1.      Inlet and outlet pressure indication.
C. Fuel oil day tank
: 1. Fuel oil transfer valve control,                                  g
: 2. High level alarm.
: 3. Low level alarm.
: 4. Level indication.
D. Fuel    oil strainers  (Engine-driven pump      and motor-driven booster pump)                                                            g
: 1. High differential pressure alarm - Alerts the operator to take corrective action by manually switching over to the alternate clean strainer.
: 2. Inlet and outlet pressure indication.
O Amendment K 9.5-56                  October 30, 1992
 
CESSAR1Hsinc==
i o
9.5.6          DIESEL GENERATOR ENGINE STARTING AIR SYSTEM 9.5.6.1          Design Bases                                                                            g The Diesel Generator Engine Starting Air System :is designed _ to provide fast start capability for the diesel generator engine'by-using compressed air to rotate.the engine until combustion begins-                                          1 and it accelerates under its own power.                                                                      l All components and piping are located within a Seismic Category _.I structure      (diesel generator building). and all essential:
components are fully protected from floods, tornado missile damage, internal missiles,-pipe breaks and whip, jet' impingement                                            ,
I and interaction with non-seismic systems in the vicinity.
9.5.6.2          System Description The Diesel Generator Engine Starting Air System is- show6 in Figure 9.5.6-1 (Sheets 1 and 2).
9.5.6.2.1          General Each diesel generator engine is provided with two independent starting air systems, each consisting- of a -compressor and
    -(        aftercooler, a filter / dryer unit, air - receivers , --injection - lines and valves, and devices-_to crank the engine.,
Ambient air from within the diesel-room'is compressed,-. cooled,    -
filtered, dried, filtered again and then - stored- until_ neededLin receiver tanks.- The starting _ : air. storage capacity -for each redundant -diesel engine is- sufficient for- a minimum 'of five                          -
successful engine starts without the use_oflthe air compressor;                                          E m Starting air is supplied to the_ diesel-generator engine;byl-four starting air solenoid valves, with each: valve supplying starting:
                            ~
air . to one end of the two cylinder banks on _ the engine.                                    The starting air enters the -lef t' . ' and right : bank: starting' air:
manifolds which are interconnected'within the.enginerte allow the-capability of one or -all the starting,_ air . solenoid;: valves operating to start the engine.                            From- there,_ -starting 1 air : -isi -
directed to both the                  left          and 1right- bank- starting; air
                                                                                            ~
distributors which admit the air to the individual cylinders,-on-their respective banks, in' firing.: order sequence' to rotate the '
engine._ The combined Estarting- air manifold ;also supplies starting air- to the~ governor oil pressure - boost cylinder which acts as an- accelerator pump to ensure : the diesel attains rated speed after receiving an automatic diesel? start signal.
v Amendment I 9.5-63                            ' December _21', 1990 v    we- ,                      .,we-1 -,,e-  ,w    ,-,--n-n-          ,m.~,- ,                              , - - -
 
CESSAR nn%mou O
The starting air receiver tanks also supply air at reduced pressure to the engine control panel instrumentation.        Air enters the  engine  control      panel  where  it  is  filtered    and  a self-contained pressure regulator maintains constant pressure for        E the diesel automatic safety shutdown system.            The automatic safety shutdown system is made up of a network of vont on fault pneumatic devices which monitor the engines parameters, tripping the  engine  when      a  manufacture's  recommended    temperature, pressure, overspeed, or vibration setpoint has been exceeded.
There are two types of engine trips.
Group "A"  trips are active only during the periodic testing of the diesel to prevent damage to the engine.          These trips are locked out during the emergency mode (i.e. LOOP or LOCA) to allow the engine to continue to run should alarm conditions exist.
Group "A" trips include and are activated upon the following:
: 1. Low Lube Oil Pressure.
: 2. Low Left and Right Turbocharger Oil Pressure.
: 3. Iligh Crankcase Pressure.
: 4. Excessive Engine Vibration.
: 5. liigh Lube Oil Temperature.
: 6. liigh Temperature Main Bearings.
: 7. liigh-liigh Jacket Water Temperature.                        K
: 8. Generator    Instantaneous Overcurrent Protection.
: 9. Generator    Loss of Field Protection.
: 10. Generator    Reverse Power Protection.
: 11. Generator    Ground Protection.
Group "B" trips        remain  active during all diesel generator operational modes      (test and emergency) to shutdown the engine should a setpoint    be exceeded. Group "B" trips include and are activated upon the    following:
: 1. Engine Overspeed.
: 2. Low-Low Lube Oil Pressure.
: 3. Generator Differential.
: 4. Generator Voltage-Controlled      Overcurrent    (Protection from external faults).
The low-low lube oil pressure trip contains redundant (two out of three) logic which must be affected to activate a diesel shutdown. The pneumatic logic for Group "A" and "B" trips            E consumes negligible volume, operating on pressure rather than flow capacity. Sufficient air pressure remains available for operating the pneumatic logic following five successive start attempts.
                                                                            *G Amendment K 9.5-64              October 30, 1992
 
CESSAREn h ou                                                                  q p
Relief valves on the compressor discharge line and on the air receiver      tanks    protect    the  starting      air  system    from  ,
overpressurization.
9.5.6.2.2          Component Description The starting air compressors are powered from a non-Class lE motor control center.        During a loss of offsite power,. the          K starting air compressors are powered from the alternate AC (AAC) power source. Each compressor discharges compressed air and the heat of compression is removed by a water-cooled aftercooler.
The component cooling water system provides cooling water on the tube side, g
To minimize the accumulation of moisture, the diesel engine starting air system is equipped with a multi-stage drying and filtering unit located in line between the aftercooler and the receiver tank to supply air with a dewpoint at least 10*F lower            y than the lowest expected ambient temperature. The air is first passed through a cyclone-type moisture separator and is filtered IK before entering one of two alternating desiccant drying towers (alternating between active and regeneration cycles) . The air is then filtered a second time before entering the receiver tank.
To minimize fouling of the starting air valves or filters with contaminants,    drip-traps    are  provided on        the  cyclone-type moisture separator and the air dryer pre-filter to collect any oil carryover.      Drains are also provided on the aftercooler and air receiver tanks.        Periodic blowdown of the drip-traps and drain valves will minimize the buildup of contaminants in the starting air system.        Strainers are provided upstream of the          C starting air solenoid valves to prevent rust carryover to the diesels.
Two starting air receiver tanks for each diesel engine provide storage capacity which is sufficient to allow five successful engine starts without the use of the compressor.
9.5.6.3          Safety Evaluation The Diesel Generator Engine Starting Air System is ANSI Class 4 from the starting air compressor through the desiccant drying towers, and ANSI Class 3 from the starting air receiver tank inlet check valve to the engine connections.            The diesel engine and engine mounted components are constructed in accordance with IEEE Standard 387.        The starting air aftercooler, which uses component cooling water on its tube side and the starting air receiver tank are designed in accordance with the requirements of f-s the ASME Boiler and Pressure Vessel Code, Section III, Class 3.
I
  \
Amendment K 9.5-65                    october 30, 1992 i
 
C E S S A R En!ific -
O The starting air compressor and the              starting air dryer are designed in accordance with the requirements of the applicable codes.
9.5.6.4        Inspection and Testing Requirements system components and piping are tested to pressures designated by appropriate codes.        Inspection and functional testing are performed prior to initial operation. Therefore, the system will be tested in accordance with the technical specifications.
E Periodic blowdown of the starting air tanks is done to check for moisture. The frequency will be determined based upon operating experience.
Air    dryer  desiccant    is  inspected        per  the  manufacturers recommendations (approximately every six months).
9.5.6.5        Instrumentation Application Each starting air receiver is equipped with a set of pressure switches which control the operation of the air compressor on its associated train; starting the compressor on low pressure and stopping the compressor on high pressure.            Pressure gauges are located on the tanks for local indication. An alarm is provided h
W at the local diesel generator control panel to alert personnel                      K when the air pressure drops below a preset value.            A separate 5  pressure switch on the engine cohtrol panel alarms if the air receiver tank pressure falls to a low setpoint.
If the starting air pressure to the starting air manifold drops to a    specified value with the engine failing to start, an                        E automatic lockout will prevent further start attempts and an alarm alerts the operator to take corrective action.                          The automatic lockout ensures there will be sufficient reserve for a manual restart.
All starting air system alarms are annunciated separately on the local diesel engine control panel and signals a general diesel trouble alarm in the control room.
The periodic testing and maintenance of all diesel engine                          y starting air system instruments is controlled by a preventative maintenance program. This program insures that instruments are periodically calibrated and tested, assuring reliability.                          E O
Amendment K 9.5-66                  October 30, 1992
 
CESSAR1a h ou                                                                                                      -
9.5.7                DIESEL GENERATOR ENGINE LUDE OIL SYSTEM                                                            l 9.5.7.1                      Design Bases The Diesel Generator                                      Engine Lube Oil System is designed to deliver clean lubricating oil to the diesel generator. engine, its                                                  E bearings and crankshaft, and other moving parts.-                                                  By _ means of
                      ' heaters, the lube oil system is designed to deliver warmed oil to the engine during standby to assure its fast-starting and load-accepting capability. The system-also provides a means by which used oil may be drained from the engine and its components, and replaced with clean oil.
4 All essential components and piping are located within a Seismic lK Category          I          structure                            (diesel generator building) and all essential components are fully protected from floods, tornado missile damage, internal ' missiles, pipe breaks and whip, -) et impingement and interaction with non-seismic systems in the vicinity.                                                                                                            I 9.5.7.2                      System Description The Diesel Generator Engine Lube Oil System is shown in Figure 9.5.7-1 (Sheets 1 through 4).                                                                                      lK 9.5.7.2.1                            General I
Each diesel generator unit utilizes the " dry _. sump" lube oil system, in which the supply of lubricating oil for the engine'is stored in a separate sump tank, independent of, and located at a lK lower elevation than the engine crankcase.- As oil accumulates-in the crankcase, _it drains by . gravity _ into the sump . tank.                                                        I Additions of' clean oil'are made to the nump. tank _from a storage tank located outside the diesel generator building, and used oil- lK-is removed from the sump tank via a-' transfer pump to a used oil lI storage tank.                      Each diesel generator has a separate and complete                      '
clean __ lube oil and used lube oil transfer system._                                                                g The engine-driven lube _ oil pump _ takes suction from the-sump. tank
                                                                                                                                ~
through a--built-in suction pipe with foot valve-and delivers'the oil in sequence from the pump discharge first to the oil pressure regulating valves which limit the L maximum pressure on the pump discharge, and then in series through the lube oil cooler, the full-flow lube oil filter and finally - to the full-flow lube oil                                                    I strainer.          From.the strainer, the oil enters the engine' internal circulation system.
l                      During engine _ standby, the motor-driven prelube oil pump operates                                                    .
i_                      continuously to ensure complete filling of - the lube oil system.
Oil which is_ circulated by-the prelube oil pump passes _over a set l                      of. thermostatically controlled electric heating elements before l
i                                                                                                                      Amendment K 9.5-67                  October 30, 1992
      ~ - - - _ - . _    __        ,_. _ _ _ . . - . .        - . . . _ _ .-.,_ ._ _,                  . . _ ,      ,    ~. -  -      -
 
CESSAR E!ahuou O
leaving the sump tank to maintain the engine in a warmed state.
From the prelube oil pump, the oil passes in series _through the prelube oil filter, the prelube oil strainer and enters the engine internal circulation system. A separate drip lube system provides a continuous, metered flow of oil to the turbocharger bearings during engine standby to ensure adequate bearing            g lubrication for startup.
The diesel generator engine crankcase is vented to the atmosphere through the roof of the Diesel Generator Building. The lube oil filters and strainers are also vented, but into the room itself.
The lube oil sump tank is vented to the atmosphere through the roof. The crankcase is equipped with blowout panels to prevent high pressures from damaging the engine.
The clean oil lube oil storage tanks are provided with individual fill, drain, and vent lines located outdoors. The used lube oil g storage tanks are provided with individual drain and vent lines located outdoors. All vent lines terminate above grade elevation and are down turned. The fill and drain connections terminate above grade elevation and are provided with a locking dust cap.
Each diesel is provided with a lube oil sump tank. The sump tank is equipped with a low level alarm which is set below the normal operating level. With an established oil consumption at full load, this volume is sufficient to operate the diesel in excess of seven days without requiring replenishment.
Should it become necessary to make additions of lube oil to the diesel,    lube oil  is  available in a storage tank located underground and outside the Diesel Generator Building.            A manually operated, positive displacement clean lube oil pump          E takes suction from the storage tank and discharges lube oil through a simplex filter to the intended diesel.          The pump suction is raised above the storage tank floor to prevent any accumulated water from entering the diesel lube oil sump _ tank.
Accumulated water in the bottom of the storage tank is removed through a sample connection flush on the_ bottom of storage tank.
The lube oil in the clean lube oil storage tank is inspected monthly to determine the purity of the oil. Parameters monitored include viscosity,    neutralization number,  and percentage of water. Any accumulated water detected in the bottom of the storage tank will be removed.      If degradation of the oil is detected, the oil may be pumped out for disposal.
Lubricating oil leakage is detected by:
A. Routine surveillance Amendment K 9.5-68                October 30, 1992
 
CESSAR HE"lCATION n
\v)
B. Low lube oil sump levels alarm
: c. Low lube oil pressure and alarm System leakage into the lube oil system through the jacket water is minimized by the normal operating pressure of the lube oil being higher than the jacket water pressure.      Oil leakage from the diesel is collected in a sump in the diesel room.
The truck fill connection for clean lubricating oil is locked anu is keyed differently from other fill connections. Administrative controls govern the issuance of this key.
Periodic monitoring of the level instrumentation associated with the lube oil sump tank may indicate leakage of oil from the system. Corrections will be made in accordance with applicable operating and maintenance proceduras. Makeup to the. system is manually initiated from the clean oil storage tank.
9.5.7.2.2        Component Description During operation of the diesel generator engine, heat is removed 3    from the lube oil system via the lube oil cooler.      Oil flows on
    \  the shell side while cooling water flcws through the tube _ side. g
-[V    The lube oil temperature drops while the water temperature increases. A 10% design margin is built into the cooler, assuring that the system is maintained in accordance with.
Manufacturers recommendaticn.
The lube oil transfer pump moves oil from the lube oil sump tank to the used oil storage tank. The pump is driven by an electric motor.
The prelube oil pump delivers warmed oil to the engine during standby. The pump is driven by an electric motor.
Two lube oil sump tank heaters are provided to keep the oil warm and fluid during engine standby.        The heaters are electric immersion-type heaters.
The above-mentioned motors and heaters are powered from the Essential Auxiliary Power Supply.
The clean lube oil transfer pump delivers oil from the clean lube oil storage tank to the lube oil sump tank. It is driven by an electric motor.
(m V) i Amendment E 9.5-69                December 30, 1988
 
1 C E S S A R 2nfiPic 1cn O
The used lube oil transfer pump transfers oil from the used lube oil storage tank to a truck or tanker for disposal.                                              The pump is driven by an electric motor.
The clean and used lube oil transfer pump motors are powered from the Station Normal Auxiliary Power Supply.
9.5.7.3                                                  Safety Evaluation The Diesel Generator Engine Lube Oil System is an ANSI Class 3 piping system with the exception of the clean and Used Lube oil                                                    -
Transfer System which is an ANSI Class 4 piping system.                                              The two systems are separated by ANSI Class 3 isolation valves.                                                  The diesel engine and engine mounted components are constructed in accordance with IEEE Standard 387.                                                The off engine essential equipment and components and the nonessential (i.e., Clean and Used Lube oil Transfer System) equipment and components are designed in accordance with the requirements of the applicable codes.
The exterior of carbon steel tanks and other underground-carbon steel components is coated.                                              In addition to being coated, the external surfaces of buried metallic piping and tanks are g protected from corrosion by an impressed current cathodic protection system in accordance with NACE Standard RP-01-69 or other means as deemed appropriate based on rite specific soil conditions.                                            Periodic monitoring, as described by the maintenance procedure, will remove any accumulated moisture from the tanks.
The governor lube oil coolers on the diesel generator engines are located at an elevation below the governor lube oil -level, thereby, not affecting the starting reliability of the engines.
The interior of the clean lube oil storage tank. is not coated since the presence of lube oil will act as a deterrent to                                                    g internal corrosion.                                              During the surveillance    intervals for sampling the lube oil in the storage tanks, any accumulated water will be removed.
9.5.7.4                                                Inspection and Testing Requirements System components and piping are tested to pressures designated by appropriate codes.                                              Inspection and functional testing are performed prior to initial operation.
O Amendment K            1 9.5-70              October 30, 1992      l
 
CESSAR nn% mon s
(
9.5.7.5        instrumentation Application Each diesel generator          engine is provided with sufficient iriatrumentation and alarms to monitor the operation of the lube oil system.      All alarms are separately annunciated on the local diesel engine control panel which also signals a general diesel trouble alarm in the control            room.      The lube oil system is provided with the following instrumentation and alarms:
The lube oil sump tank is equipped with a local level indicator along with a low level annunciator to alert the operator to take corrective action.
The full flow filters are equipped with locally-mounted pressure gauges. A high differential pressure alarm alerts the operator to manually switchover to the alternate clean filter; there is no filter bypass line.                                                            lK The engine mounted full flow strainers are equipped with a high                  E differential pressure alarm which alerts the operator to manually switchover to the alternate clean strainer; there is no strainer lh, bypass line.                                                                    I The diesel generator engine is equipped with both temperature and                E
\ pressure monitoring systems with separate alarm and trip switches to alert the operator of abr.ormal operating conditions. During standby, low prelube oil pressure is alarmed to alert operating J personnel      to    take    corrective      action.      If    a  shutdown setpoint/ alarm is exceeded while the engine is operating during the test mode,      a diesel trip will automatically shutdown the engine to prevent incurring any damage.
However,    if    such a    shutdown / alarm is received during the emergency mode (i.e.,      LOOP or LOCA) the trip is locked out and the engine continues to run.          The alarms alert the operator to prepare to switch over to the redundant diesel for power. Only a                  e low-low engine lube oil pressure shutdown / alarm will trip the engine regardless of the diesel operating mode.
The  engine inlet and outlet lube oil temperatures are also recorded by a multipoint recorder and may be monitored by a multi-channel pyrometer (in the manual mode) .              Both the recorder and pyrometer are located on the generator control panel.in the diesel generator building.
The periodic testing and maintenance of all diesel engine lube oil    system    instruments    is  controlled      by    a  preventative maintenance program. This program insures that instruments are
("
(
periodically calibrated and tested, assuring reliability.
Amendment K 9.5-71                      October 30, 1992
 
CESSAR nairicuion O
TilIS PAGE INTEliTIO!! ALLY 13LAllK O
I O              i Amendment I 9.5-72                          December 21,_ 1990
 
i CESSAR nainemon                                                                                                                                          (
9.5.8                      DIESEL GENEllATOlt ENGINE AIR INTAKE AND EXIIAUST SYSTEM                                                                    ,
9.U.8.1                            Design liases E
The Diosol Conorator Engine Air Intako and Exhaust System - in designed to supply clean air for combustion to the diesel generator engino and to dispose of the engines exhaust. The system is housed in-a building designed to withstand the offects of natural phenomena and credible missiles.
All components and piping are located withf4 a Soismic Category I structure                  (diosol generator building) and -all ossential components are fully protected from floods, tornado missile damago, internal missilco, pipe breaks and whip, jet impingement
                                                                                                            ~
i.
and interaction with non-sonsmic systems in the vicinity.                                                                                I.
9.S.B.2                            System Description      -
The Diosol Gonorator Engine Air Intake and Exhaust ' System is shown in Figuro 9.5.8-1.
9.5.8.2.1                                      Conoral f
Each diosol generator is provided with a two pipe combustion air.                                                              -
intake system.                                    Combustion air is drawn in through in linel air filters-prior to entering the turbocharger.
P' Each diosol generator-is provided with a two pipo exhaust system.-
The watorjacketed exhaust manifold dischargos directly into the                                    -
engine-mounted turbochargers. The exhaust piping thon-joins to pass through a single exhaust silencer and exits-the building.
Outsido air intakes are located at one end of the building and exhausts (both Diosol and Yontilation Systom) at the opposito and of the structure. The intake and exhaust structures are separato for each diesel building and are similar in design. .Each intake and oxhaust structure is served by a floor drain. In addition a lK sump, formed by the-curb at tho bottom of the intake and exhaust structures, provides capacity for proventing- accumulation ' of snow, ice, or- froozing rain from interfaring with emergency
;                        diosol generator system operation.                                                                      -
g-            ,
9.5.8.2.2                                      Component Description The turbocharger, driven by the hot exhaust gases on ono side, compresses the intako air on"the other side and forcos'it through the engine aftercooler.
l Amendment K 9.5-73                                  October 30, 1992 3
  - , , - , , ,,,y,, y,            -, m y. . , , , ,,
                                                      .y,.,,,,f.,,-.m,v,,,-..w,-,,~.-      ,,--,,,,,,-,-.,,,,,,-,,,,,,,y,.-,-,,,..-y,-44,_vE,,~,,-,_,,.,,  y,yy.,-  .,3-,mm, --3
 
CESSARUL%m O
The aftercooler removon heat from the compressed intake air, decroaning the air temperaturo,      cooling water flown through the  C tubo cido and its temperature increason.
Thoro are no activo components in the air intake and exhaunt          I syntom.
9.5.8.3        Unfoty Evaluation The Diosol Generator Engino Air Intake and Exhaunt System is an ANSI Clano 3 piping system. The dicaol engino and engine mounted c components are constructed in accordance with IEEE Standard 387.
The off ongina onnontial componento aro denigned in accordance with the requirements of the applicable codos.            The intako filter,  intake silencor, and exhaust ollancor are not ASMEln Section III      Clann 3    codo approvod. Thoso compononto are solomically qualified by shaker table tests or analynic performed by the manufacturer.      The compononta are inntalled in the diosol h,
gonorator building with Soinmic category I rootraintn.
The intake air plonum and the exhaunt gas plonum for each diosol generator unit are at opposito onds of the diosol gonorator building. This fact and alto-opecific analysis of the diocol generator engine exhaunt will establich that the riso of exhaust y ganon in sufficient to preclude the poonibility of recirculation to the point that system integrity is jeopardized.            Normal ventilation flowrato in 5% of the diosol run modo ventilation flowrato. Normal ventilation in filtored to maintain engino room n cleanlinous. All diocol generator building interior-surfaces are painted to minimizo concroto dust. Diosol intake air in taken at a height of 20 foot above grado to minimizo the intake of dust.      la Onsito storage of gason 10 discussed in Section 9. 5.10.        Those ganon are stored at a distance from the diosol generator building I such that there is no throat to the proper operation of the diosol engines.
9.5.8.4'        Inupection and Tonting Roguirements System components and piping are testod to pressures designated        E by appropriato codos.        Inspection and functional testing are performed prior to initial operation.
9.5.8.5        Inatrumentation Application Each diesel generator engina unit is provided with sufficient instrumentation    and alarms to  monitor the combustion intake and O
Amendment K 9.5-74              October 30, 1992
 
CESS AR nai"icariou exhauct system. A multipoint recorder on the local generator control    panel    records    the    individual  cylinder            exhaunt temperaturce and the inlet and outlet turbocharger exhaust temperaturca. A pyrometer, also on the local generator control panel,  automatically monitors each cylinder temperature and comparen it to the average temperature of the other cylinders.                                C The pyrometer will annunciate a high/ low temperature alarm on the local diocol engine control panel and signal a general diesel trouble alarm in the control room if a cylinder temperature exceeds the average temperature differential setpoint, with the pyrometer    automatic    sequencer    stopping  to            display    the out-of-tolerance cylinder.      A high or low exhaust temperature will not initiate a trip on the engine.        A manual advance is alco lK provided on the pyrometer to allow each individual cylinder to be checked as well as the inlet and outlet turbocharger exhaunt                                  e temperatures. The turbocharger temperatures do not affact the cylinder temperature averaging circuit.
Amendment K 9.5-75                        October 30, 1992
 
CESSAR EB?ificuion 9
TilIS PAGE IllTEllTIOllALLY BLAllK O
9 Amendment I 9,5-76                                              December 21, 1990
 
CESSAR E!.%ncui:n                                    (Sho"' 2 of 4) o k
L EPFECTIVE PAGE LISTING CilAPTIGt 11 Table of contento 13 2o                                        Amendment i                                                  J 11                                                J 111                                                J iv                                                J v                                                  J vi                                                  I vil                                                  I vill                                                J 3'ex t Pago                                          Amendment 11.1-1                                            J 11.1-2                                              I
['
11.1-3                                              J 11.1-4                                              J 11.1-4a                                            J 11.1-4b                                            J 11.1-5                                              J 1.1.1 - 6                                          J 11.2-1                                              J 11.2-2                                            J 11.2-3                                              J 11.2-4                                              I 31.2-5                                              I 11.2-6                                              J 11.2-7                                              J 11.2-0                                              I 11,2-9                                              J 11,2-10                                            J 11.2-11                                            I 11.2-12                                            J 11.2-13                                            J 11.2-14                                            J 11.2-15                                            J 11.2-16                                            J 11.3-1                                              J 11.3-la                                            J 11.3-1b                                            J e  11.3-2                                              I 11.3-3                                              I
(%    11.3-4                                              I Amendment K October 30, 1992 r
_    ,.                                ;        ,      ,,..-.m._
 
CESSAR Elniiicuia                                    (sne:e 2 cc 43 O
EFFECTIVE PACE LISTING (Cont'd)
CitA19'ER 11 Text (Cont'd)
Pago                                            Amendment 11.3-5                                                I 11.3-6                                              J 11.3-7                                                J 11.3-8                                              I 11.3-9                                              J 11.3-10                                              K 11.3-11                                              K 11.3-32                                              K 11.3-13                                              I 11.4-1                                              J 11.4-2                                              J 11.4-3                                              J 11.4-4                                              J 11.4-5                                              K 11.4-6                                              K 11,4-7                                              K 11.4-8                                              K 11.4-9                                              J 11.4-10                                              K 11.4-11                                              J 11.5-1                                              I 11.5-2                                              I 11.5-3                                              I 11.5-4                                              I 11.5-5                                              I 11.5-6                                              J 11.5-7                                              J 11.5-8                                              J 11.5-9                                              J 11.5-10                                              I 11.5-11                                              J 11.5-12                                              J 11.5-13                                              J 11.5-14                                              J 11.5-15                                              J 11.5-16                                              J 11.5-17                                              I 11.5-18                                              J 11.5-19                                            I 11.5-20                                            J O
Amendment K October 30, 1992
 
CESSAR !aMeni:u                                          (Shaat a or 4)              :
,r-G'
: EFFEC"f1VE PAGE LISTING (Cont'd)
CIIAPTER 11 Tables                                    Amendment 11.1.1-1                                                I 11.1.1-2 (Sheet 1)                                      I 11.1.1-2 (Sheet 2)                                      I 11.1.1-3 11.1.1-4                                                I 11.1.1-5                                                I 11.1.1-6 (Shoot 1) 11.1.1-6 (Sheet 2) 11.1.1-6 (Sheet 3) 11.1.1-7                                                I 11.1.1-8 11.2-1 (Shoot 1)                                        I 11.2-1 (Shoot 2)                                        I 11.2-2 (Sheet 1)                                        I 11.2-2 (Shoot 2)                                        J 11.2-3                                                  J 1.1. 2 -4                                              I
('N  11.2-5 (Sheet 1)                                        J 11.2-5 (Sheet 2)                                        J 11.2-6                                                  J 11.3-1                                                  K 11.3-2                                                  I 11.3-3                                                  J 11.3-4                                                  J 11.3-5                                                  J 11.3-6                                                  K 11.4-1                                                  K 11.4-2                                                  K 11.5-1                                                  J 11.5-2                                                  J 11.5-3 (Sheet 1)                                        J 11.5-3 (Shoot 2)                                        J 11.5-4 (Sheet 1)                                        J 11.5-4 (Sheet 2)                                        J 11.5-5                                                  J Amendment X October 30, 1992
 
(Shoot 4 of 4)
O.
EFFECTIVE l' AGE LISTING (Cont'd)
CII Alg'131 11 PJguren                                  Amendment 11.2-1 (Shoot 1)                                    K 11.2-1 (Shoot 2)                                    K 11.2-1 (Shoot 3)                                    K 11.2-1 (Shoot 4)                                    J 11.2-1 (Shoot 5)                                    J 11.2-1 (Shoot 6)                                    J 11.2-2                                              J 11.3-1                                              J 11.3-2                                              I 11.4-1 (Shoot 1)                                    K 11.4-1 (Shoot 2)                                    x O
O Amendment K October _30,  1992
 
k)lb!hbh khk hkk IICATION                                                              :
  . f'~
C TABLE OF CONTENTS (Cont'd)
CHAPTER 11 Goction          Subject                                                Pago No.
11.3.2            SYSTEM DESCRIPTION                                      11.3-2 11.3.2.1              General Description                                11.3-2 11.3.2.2              Component Description                              11.3-5 11.3.2.2.1            Charcoal Bods                                      11.3-5 11.3.2.2.2            Cooler Condonnor                                  11.3-5      1 11.2.2.2.3            Piping and Valvon                                  11.3-5 11.3.3            SAFETY EVALUATIONS                                      11.3-6 11.3.4            INSTRUMENTATION AND TESTING REQUIREMENTS                11.3-6 11.3.5            INSTRUMENTATION REQUIREMENTS                            11.3-6 O
e 11.3.6            ESTIMATED GASEOUS RELEASES                              11.3-6 11.3.6.1              Ro?.oasos                                          11.3-6 11.3.6.2              Caseous Roloase Points                            11.3-7 11.3.6.3              Dilution Factors                                  11.3-7 11.3.6.4              Estimated offsite Donos                            11.3-8 11.3.6.5              Cost Bonofit Analysis                              11.3-0 11.3.7            GASEOUS WASTE MANAGEMENT SYSTEM LEAK                    11.3-9 OR FAILURE 11.3.7.1              Identification of Causes and Accident-            11.3-9 Description 11.3.7.2              Analysis of Effectc and
                                                          ;nsequences            11.3-9 11.3.8            CONCENTRATION OF NORMAL EFFLU2NTS                      11.3-10 J
11.3.8.1              Analysis of Effects and Consequences              11.3-11 O
i Amendment J iii                April 30, 1992 i
 
CESSAR EL52cmos O
TABLE OF CONTENTS (Cont'd)
CllAPTER 11 Section    Subject                                        Pago No.
11.4      SOLID WASTE MANAGEMENT SYSTEM                  11.4-1 11.4.1    DESIGN BASES                                    11.4-1 11.4.1.1        Criteria and Evaluation                  11.4-1 lJ 11.4.1.2        codes an6 otandards                      11.4-3 11.4.1.3        Features                                  11.4-4 11.4.2    SYSTEM DESCRIPTION                              11.4-5 11.4.2.1        General Description                      11.4-5 11.4.2.2        Components Description                    11.4-6 11.4.2.2.1      Spent Rosin Storage Tank                  11.4-6 11.4.2.2.2      Dry Solids Compactor                      11.4-6 11.4.2.2.3      Radwasto Building Crano                  11.4-6 11.4.2.3        System Operation                          11.4-7 11.4.2.3.1      Spent Rosin Storage and Handling          11.4-7 11.4.2.3.2      Spent Filter Storage and Handling        11.4-8 11.4.2.3.3      Miscellaneous Solid Wastos                11.4-9 11.4.3    EXPECTED WASTE VOLUMES                          11.4-9 11.4.4    SAFETY EVALUATION                              11.4-9 11.4.5    INSPECTION AND TESTING REQUIREMENTS            _11.4-10 11.4.6    INSTRUMENTATION REQUIREMENTS                    11.4-10 11.4.7    STORAGE CAPACITY                                11.4-10  lJ 11.5      PROCESS AND EFFLUENT RADIOLOGICAL              11.5-1 MONITORING AND SAMPLING SYSTEMS 11.5.1    PROCESS AND EFFLUENT RADIOLOGICAL              11.5-1 MONITORING SYSTEM O
Amendment K iv                October 30,.1992
 
CESSAR neificariew N
11.3.7                      GASEOUS WASTE MANAGEMENT SYSTDi LEAK OR FAILURE 11.3.7.1                      Identification c,f Causes and Accident Description The Gaseous Waste Management System                                                            (GWMS),  as  discussed    in Section              11.3      is          designed                      to        collect,      monitor,    and store radioactive waste gases which originate in the reactor coolant system and require processing by holdup for decay prior to release.                De      GWMS                      utilizes                ambient temperature charcoal                ,
adsorption beds to provide sufficient decay of noblo gases.
The accident is described as an unexpected and uncontrolled release of radioactive Xenon and Krypton gases from the GWMS resulting from an inadvertent bypass of the main decay portion of the charcoal adsorber beds.                                              It is assumed to take as long as 2 hours to isolate or terminate the release.
11.3.7.2                      Analysis of Effects and Consequences A.        Bases
: 1.            The assumptions and methodology are consistent with guidance provided in Branch Technical position ESTB 11-5.                                                                                                  J
: 2.            An effective holdup time of 30 minutes is assumed for the bypass flow to account for transport time of the gases through the GWMS components via the release point to the nearest exclusion area boundary.
: 3.            In accordance with ESTB                                            11-5,  the Waste Gas System maximum            design capacity source term (at sustained power) is assumed to seven times the source term considered for normal operation, including anticipated operational occurrences.                                            PWR-GALE is run for a 30 minute decay case and the results are multiplied by seven to calculate the maximum design capacity source term.
: 4.            The total source term is equal to the maximum design basis source term plus the normal operations source term shown in Table 11.3-4.
: 5.            Particulates and radioiodines are assumed to be removed by pretreatment, gas separation, and intermediate radwaste treatment equipment.                                              Therefore,    only  the whole body dose is calculated in this analysis.
G Amendment J 11.3-9                            April 30, 1992 g---    -gy- - r +-    -
W    -$-*--  "      -'re*'t1p    p=wr-=  up    - rwaww    m
 
CESSAR 8!hm O
: 6. In the absence of site specific meteorological data and J exclusion area boundary information            an atmospheric dispersion factor (X/Q) of 1.00 x 10 t3 is assumed for K the exclusion area boundary as described in Chapter 15, Appendix A.
B. Methodology To calculate the dose consequences for a Waste Gas System failure methodology consistent with Branch Technical ESTB 11-5 is used.
D=    I K(i)
* Q(1)
* X/Q
* 7.25 Where:
D=    Doce (mrem)
K(i)  =
the total-body dose factor given in $8      10 U~1 of Regu}atory Guide 1.109 for the i t isotopo (mrem-m /pC1/yr)
Q(1)  =
tDR  n bl 9s nuclide release rate for the i    isotope (ci/yr)
X/Q =    atmospheric        dispersion  factor    at  the exclusion area boundary
                                  -3        3 X/Q =    1.00 x 10        s/m                                lK 7.25 =    conversign        factor    for 2  hour  release (p/ci-yr /ci-event-sec)
C. Results and Conclusions The resulting Exclusion Area Boundary noble gas dose to the whole body    is    14.7  mrom.      This meets the guidelines J specified in the Standard Review Plan Section 11.3.
11.3.8        CONCENTRATION OF NORMAL FFFLUENTS The Ganeous Waste Management Syntom            (GWMS) processes gaseous waste through a charcoal delay system which holds up noble gases and allows them to decay prior to release. The concentration at the exclusion area boundary during normal operation, including anticipated operating occurrences, was analyzed to verify it is less than 10 CFR 20, Appendix B, Tablo II, Column 1.
O Amendment K 11.3-10                October 30, 1992
 
CESSAR !alinemou                                                                          .
p
\
11.3.8.1                Analysin of Effects and Consequencen A.          Bases The bases for the estimated concentration of effluent are as follows:
: 1. This system continuously discharges at a uniform rate.
: 2. The concentration of          the effluent        is based on the design basis source term.
J
: 3. The total gaseous offluont calculated using NUREG-0017 methodology shown in Table 11.3-4 is multiplied by seven to yield a conservative approximation of the design        basis  source  term.        This    methodology        is consistent with the suggested methodology in Branch Technical Position ESTB 11-5 for a Waste cas System Leak of Failure consequence analysis.
: 4. In the absence of site specific matcorological data and site    Exclusion Area Boundary (EAB)              infor3ationy an.
atmospheric dispersion factor of 3.00 x 10                      n/m waslK f\
assumed for the EAB (500 meters) based on Chapter 15, Appendix A.
B.        Methodology The methodology used to calculate the concentration of the J effluent at the Exclusion Area Boundary is as follows:
C(i) = CF
* 7R(1)
* X/Q EAB-Where:
th C(i)  =      Concentration of the i          isotope at the EAB
( Ci/ml)                                                      lK CF
                            =      Conversion factor
                            = 3.17 X 10 3
(s pCi-m /yr-Ci-ml)
R(i) = Release Rate of i          isotope (Ci/yr)                          J X/Q EAB  =      Atmospherig dispgrsion factor at EAB (s/n )
                            =      1.00 x 10    (c/m )                                            lg O
Amendment K 11.3-11                      October 30, 1992
        - . + =      -        .y-.-    ,          ,-      - - .        ,.      -  --  en-g
 
CESSAR E!airicarios O
C. Results and Conclunionn The concentration of the offluent at the Exclunion Area Boundary is chown in Table 11.3-6. The concentration at the y Exclusion Area Boundary is well within 10 CFR 20 guidelines.
Although there are periodic purgos of containment during normal oporation,    thone purgon will    be controlled by proceduroa developed by the owner Operator to ensure compliance with 10 CFR 20 limits.
O i
Amendment J 11.3-12                April 30, 1992 1
(      .          .-    .            --. .    .      -.        ..    . . _ _ _    ..
 
CESSAR SHOicamn TABLE 11.3-1 I
SOURCES, VOLUMES AND FLOW RATES OF STRIPPED GASES FROM Tile PRIMARY COOI. ANT Flow Rato(a)                    Annual Voluno(b)                          lJ Wasto Gas Sourco                              (SCFM)                                        (SCP/yr)
PROCESS GAS HEADER (HYDROGENATED)
CVCS Gas Stripper                                          .32                                      145,000-Volume Control Tank                                    .004                                          1,624                                -
Equipment Drain Tank Reactor Drain Tank-(3)                                    .02                                        7,759                                ,
I PROCESS VENT IIEADER                                                                                                                      ;
(AERATED)
Blowdown. Recycle IX (2)                                  32                                            112..                              [
Purification-IX (2)                                      32                                            112                            "'
Deborating IX                                              16                                            56                I Lithium Removal IX                                        16                                              56 Pre-Holdup-IX                                            16                                            :56                              >
Boric Acid Condensato IX                                  16                                            56 Liquid Waste. Process IX (6)                              96                                            336
. Boric Acid-Concentrator.                                    1                                      2,626 Reactor Makeup Water Tank                                22                                        127,480                                )
Holdup Tank                                              22                                        127,480 Boric Acid Tank Laundry & Hot Shower Tank (2)                                7                                      17,567                                t Floor Drain Waste Tank (2)                                                                                                                '
Equipment Wasto Tank (2)                                                                                                                  '
Waste Monitor Tank (4)                                        7                                      53,325-SG Drain Tank (2)
Spent Rosin Tank-(3)                                      22                                          1,337 Gas Stripper Vent-                                                                                                        lK Process Gas Adsorp'n Dod Drain.                                                                                              I-Misc. Vents:and Drains                                                                                                                    '
NOTES:    (a)  Flow rates are estimated maximums, not continuous.
(b)  Volumes. include anticipated operational.                                                                  J-          '
occurrenCOs.
                                                                                          -Amendment-K
                                                                                          - O c t o b e r - 3 0 , L 1 9 9 2--            =i i
n-,~,,n.        - - ,
v,-,+,,,,,...-,,-...-,    ,_,.-e..,,  - - - , - , - - . - - - , , , , , ,        ,n                  .v
 
CESSARfi h m O
18EL.1hhl y1NM. LAM 1,,,,  A kD E WHpjf $ttitp If f Lyt NT TPI Af W(N1 AR{.0 I N P WlltL A l t it Qs k t f f f t 11N T A N A L Y $ l l C a rlson Humidity                    Adsorber                                Design /    becentamination Controt(1)        HtPA        Thickness            Design (2)        lesting          factor
_Y.t3tiIeticrLlylta        (Y/Nt          {JLN1      {1n,thgg}            [eryIce          ((gggigi  {% Pprtdl,_P,qqy,gM Containment Clean up          N              Y              2              Normal Op.        RG 1.140          99/90 Low Purge                      Y              Y              2              Normal Op.        tG 1.140          99/70 High Purge                    Y              Y              2              Normal Op.        RG 1.52          99/95
                                                                                  & Accident Reacto! Subsphere              V              V                2            Normal Op.        RG 1.$2          99/95
                                                                                  & Accident fuct Building                  Y              Y              2              Normal Op.        RG 1.52          99/95
                                                                                    & Accident-Normal Op.        R0 1.140          99/90        F huctent Annes (3)              Y              Y              4 Redwaste Building              1              Y              4              Normat Op.        RG 1.140          99/90 h0ftSt    (1) Relative humidity controlled to 70%.
(2) RC 1.52 filter systems with accident service requirements are not normally alloned to receive air flow. These ventitetion systems are aligned to the filter mode on high rediation monitor signals or other accident indications. Exceptionst 1) the Containment High Purge is etweys aligned f or filtration when in operation, and 2) the f uel Building Ventilation System is in filtered mode during att fuel handling operations.
(3) Also release pathway for Process Gas and Process Vent Header flows.
O Amendment I December 21, 1990
 
        .CESSAR E!n%ma l
TABLE 11.3-5                                                                              y ESTIMATF.D ANNUAL NSES FWM CMEOUS EFFLUFNT Appendix 1 Dono                              Objective Maximum Bota Air Doso (mrad /yr)                                    4.6                                    20 Maximum Gamma Air Doso (mrad /yr)                                    1.4                                    10 MAXIMUM IllDIVIDUAL AtiliUAL DOSE (mrom/yr)
Skin Dose II                                                      -4.2-                                    15 Total Body Dono I p' (2)                                          . 0.9                                    5                  I Maximum Organ Doso                                    (Infant-Thyroid)                                      15 NOTES:        (1)  Exposure from noblo gas plui..o immersion pathway.
I (2)  Maximum exposuro from iodino, particulato, tritium and C-14 via tho torrestrial oxposure pathways (i.e., ground plano, vegetable, meat and milk) and the inhalation exposure pathway.
i
(
Amendment J
* April 30, 1992'                                    ;
                                                                                                                                  = - -      x- , -
p .I-  m,,- y  + _ ,G,.,    e  e-  y. y u -    .,          ,,+-4++      rm W - v -"'ev* '-e*ee              -r-              + ''a*        1 1
 
CESSAR n%"icau O
TAllLE 11. 3-6 U
AVERAGE ANNUAL CONCENTRATION OF CASEOUS EFFLUEliTS AT Tile EXCLUSION AREA IlOUNDARY (a)
C(i)              MPC(l)
Nuclido            p C1/ml)            p Cl/ml)        FMPC(1)
I-131            3.99E-15            1.00E-10        3.99E-05 I-133            1.20E-14            4.00E-10        2.99E-05 Kr-85M            8.87E-13            1.00E-07        8.87E-06 Kr-85              1.71E-10            3.00E-07        5.69E-04 Kr-87              8.87E-13            2.00E-08        4.44E-05 Kr-88              1.77E-12            2.00E-08        8.87E-05 Xe-131M            3.55E-11            4.00E-07        8.87E-05 Xe-133M            2.22E-13            3.00E-07        7.39E-07 Xe-133            1.57E-11            3.00E-07        5.25E-05 Xe-135M          8.87E-13            3.00E-08        2.96E-05 Xc-135            5.32E-12            1.00E-07        5.32E-05 Xe-133            8.87E-13            3.00E-08        2.96E-05 Cr-51            7.32E-18            8.00E-08        9.15E-11 Mn-54            4.44E-18            1.00E-09        4.44E-09      K Co-57            5.32E-19            6.00E-09        8.87E-11 Co-58            6.65E-17            2.00E-09        3.33E-08 Co-60            2.13E-17            3.00E-10        7.10E-08 Fe-59            1.91E-18            2.00E-09        9.54E-10 Sr-89            1.57E-17            3.00E-10        5.25E-08 Sr-90            6.21E-18            3.00E-11        2.07E-07 Zr-95            2.44E-18            1.00E-09        2.44E-09 Nb-95            6.65E-18            3.00E-09        2.22E-09 Ru-103            1.24E-18            3.00E-09        4.14E-10 Ru-106            2.22E-19            2.00E-10        1.11E-09 Sb-125            1.35E-19            9.00E-10        1.50E-10 Cs-134            7.32E-18            4.00E-10        1.83E-08 Co-136            2.22E-18            6.00E-09        3.70E-10 Co-137            1.29E-17            5.00E-10        2.57E-08 Ba-140            1.40E-18            1.00E-09        1.40E-09 Co-141            9.54E-19            5.00E-09        1.91E-10 H-3              2.66E-10            4.00E-05        1.33E-03 C-14              1.62E-12            1.00E-07        1.62E-05 Ar-41            7.54E-12            4.005-08        1.89E-04 Total:          2.57E-03 MPC (a)  Based on the design basis cource term.
9 Amendment K october 30, 1992
 
CESSARinL mu i
i 11.4.2                                        BYSTEM DESCRIPTION 11.4.2.1                                          Conoral Doncription f
primary functions of the SWMS include providing means by which inputo-from the LWMS and primary lotdown systoma are processed to                                                                                                                                  I onsuro economical packaging within regulatory guidelines, as well                  .
no handling dry, low activity wastos for ship'ont to'a licensed burial facility.
                                                                                                                                                                                                                                                ?
The opent- ronin tank trains provide octtling 'apacity for                                                                                                                                        y' radioactivo bond resino transferrod from various 0                                                                                                            inoralizero.
Capability is provided for solidification of downtored resins or sluicing to containero approved for shipping and disposal of dewatered ion exchange resins.                                                                Also, connections are provided for use of vondor supplied norvices such as rapid dowatering or                                                                                                                                    1              .
wasto drying systems when it is determined that the use of those mothods represento a savings over the permanently installed alternativos.
A shiolded onsito storage area is provided to a'llow for interim lJ -
* otorago of higher activity packaged wastos.                                                                                                  The facility la sized such that it is capabic of storing the maximum number of full chipping containers gonorated in any six month period containing the greatest expected wanto generation. The process and storago aroan includo a dodicated overhead crano with direct access to adjacent truck bays with sufficient overhead-clearance                                                                                                                                  y to facilitato direct trailor loading of waste packages.                                                                                                                            Crano operation may bo performed remotely with the aid of crano-mounted vidoo cameras or locally to provido additional f1cxibility.
Building                              space          is        also                  provided                          to            sort. miscellaneous contaminated                                      dry      solids                    from              uncontaminated                                        solids                  for appropriato                                      and      cost                    offectivo                    packaging                            and                  disposal.-
Miscellaneous                                      solid        wasto                  consisting                                  of  contaminated or J potentially contaminated-rago, paper, clothing, glass, and other small items is received by the Solid Radwaste System when it arrives at the low-level handling and packaging area.                                                                                                                          Although waste _ forms are segregated and bagged at ' generation points throughout the plant, this area provides spaco:where the'wasto is                                                                                                                                  I further segregated (e.g., compactible versus non-compactible, radioactivo versus non-radioactivo) on sorting _ tables.                                                                                                                          When a cufficient quantity of contaminated wasto has boon accumulated,                                                                                                                                                    !
the compactor is operated. Radioactivity of filled containors is t
Amendment K 11.4-5                                                        October 30, 1992 7?47 4- c'St e t'471'7urrP'u    -'*T-TrT=*w=W 2WT3hW9 ,:* gy Mart"u"-f*T2'              "*# *-"*'"-"EWWT*7"-T"T*"    ''WFM  *Mi-'* 't-M'T-M*N-'M"hNT''MI*dT#'M'T          *'T**-''"''''T '*-*F'"$"""1P'=r1gr  7 g *'grM"        v''?'*"9'$8M
 
CESSAR8!ab a O
monitored no that proper handling,          storage,    and dinpocal are annured. Filled containers may be          ntored  in  the  low-level packago atorage area until chipped.
11.4.2.2          Componentn Doncrlption                                    1 Doolgn parameters for the equipment in the SWMS are provided in Table 11.4-1.      Component arrangement is shown on the syntom flow diagrama provided in Figuro 11.4-1 (Shoot 1 and 2).
11.4.2.2.1          Spent llenin Storago Tank Three stainless otool spent renin storage tanks with conical lK bottoms hold resins from radioactive or potentially radioactivo plant domineralizers.        11on-clogging acreens prevent the flow of resins out of the tank through the spent resin tank dowatering pump cuction lines and the service air injection and vont linen.
Multiple opent renin tank dewatering pump suction acreens are provided on each spent resin storage tank to reduce the poonibility of clogging when operating the cpont renin dewatering pump. Inntrumentation which monitors resin and water levels in tho tank and resin water content in road from a remoto panol located in the radwante control room.
11ormally, the tank in vented to thn room exhaust duct which in handled by the Itadwaato Building filtered exhaust system.          During resin transfers,      the  vent    line  in  closed to allow tank pressurization.      A    relief    valve  on    each    tank  prevents    y overpreocurization due to acrvice air pressure regulating valve failure. Rosin trancfors may be terminated          from the control room or the dowatered wasto procosning area using an emergency cutoff to actuate valvo closure in the resin tratust er lino and acrvice air cupply to the opent resin storage tank.
11.4.2.2.2          Dry Solida compactor The Dry Solida Compactor in used to reduce tho volume of such material an cloth, paper, and plastic that 10 contaminated.
Sorting and staging space in available in the low level wasto handling    and    packaging    area  to  separato    non-contaminated materials for ordinary landfill disposal.                                      I 11.4.2.2.3          Radwanto Building Crano The Radwanto Building        Crane  provides  acrvice    to  the  areas occupied by the:
A. LWMS Process Vessels O
Amendment K 11.4-6                  October 30, 1992'
 
CESSARHSh a n
U B.        LWMS process Pumps C.        Shiolded Storage Area D.        Container Tilling Platform E.        Shipping Truck Bay                                                                                        ,
F.        Vendor Solidification Bay I
G.        Miscollaneous contractor Space                                                                            j 11 .      Low-level llandling and Packaging Area                                                                    ;
I.        Low-level Waste Storage Area The crano is equipped with remote controls and surveillance camoras to minimize operational exposure.
11.4.2.3              stem Operation 11.4.2.3.1            fg ant Rosin Storago and llandling Spent resin is sluiced -f rom various plant domineralizers or ion                                                  '
exchangers to spent resin storage tanks whero --it- is- allowed to                      -
settle prior to processing.            Spent resin is segregated based on level of activity. liigh activity opent rosin from domineralizers
          " sod _ to process primary coolant, s u c h _. a s the purification and re-holdup lon exchangers in the chemical- Volumo and control'
                ' stem, are sluiced to the high activity spent resin storage unk.      Low activity spent resin from tho~ fuel-pool and boric acid concentrator ion exchangers and the LWMS domineralizers aro-sluiced to the low activity spent resin storage tank.                                                          g Service air or water injected through the resin outlet - line at the bottom of each tank is used to_ agitato-the resins prior to                                                    .
transfer to the processing area.                  -At .the                timo .of              transfer, service air is allowed to flow through the-service air:hoador to provido the necessary overpressure required to-propel tho rosins -
out-of the tank to the dowatered wasto processing area.
If necessary, low activity spent resin are sluiced to the _ low activity spent resin tank to allow for--settling and-holdup prior-to processing.        Otherwiso, they are batched directly to" disposal-containers for vendor-service processing and direct shipment to a, licensed burial facility.
High activity spent resin.is-sluiced to the high_ activity spent-resin storage tank to allow settling and decay of short-lived        -
i d
Amendment'K
                                                . 11.4-7                                      . October- 3 0 ,_- 1 9 9 2 m A-7  e        w    g44y ,      -      -we  t'    -e  yy    *ggA' yg-    @ 'w y    +'    m--e -1  5-t w  g V-
 
CESSAR naibou O
isotopes. Resin are then transferred to the processing area.      In semo cases, high activity resins may be blended with low activity resino. Diending may be accomplished by utilizing a cross connection which allows transfer of low activity spent resins to the high activity spent resin storage tank.
Decant from the resin storage tanks and the disposal containers, removed during the dowatering process, is directed back to the LWMS  for sampling    and procesing prior to release to the environment. Non-clogging screens on the spent resin tank and filters in the process line are provided to prevent the carryover            K of spent resin beads or fines to the LWMS during the transfer of                -
decanted water.
When solidification of spent resins is desired, instrumentation on the spent resin storage tank is used to assure that the appropriate water-to-resin ratio is present.        Adjustments to the ratio may be made using available water supplies or the spent resin tank dowatering pump as necessary. Following mixing, valve alignments are made to the binding area.      Filled containcro may be stored in the chielded storage area until shipped.
11.4.2.3.2        Spent Filter Storage and llandling A. liigh Activity Cartridge Filters When a cartridge filter needs to be replaced, it is first valved  out  of  service. If  the  fluid  in  the housing potentially contains dissolved fission product gases, the contents are flushed to the equipment drain tank (LWMS).
The filter housing is then vented and permitted to drain.                  ~
An overhead hoist is used to remove the shielding hatch above the filter. The filter cartridge is remotely removed from its housing and brought up into a shielded container if            I necessary. After its removal, the cartridge is transported to a filter bunker near the location where the filter is removed. An overhead crane removes a shield hatch, and the cartridge is then lowered into a dispossl container which rests in the bunker.      Following decay, full containers are removed from the bunker and transported to the Radwaste Building. If necessary, the container can be placed in the chielded storage area prior to final processing and shipment to an offsite disposal facility.
D. Low Activity LWMS Bag Filters Bag filters will be replaced on differential pressure or on a radiation level which is determined ALARA for manual change out. When replacement is necessary, water is purged Amendment K 11.4-8                October 30, 1992
 
      .    ~ _ __._                            ___ _ _ _ _                                                  _ _ _            - _  _ .    .
CESSARE!% mu C
from the filter housing and filtor media dowatered using                                                            j compressed process air.                                            The bags are lifted from the                      !
housing and placed into an adjacent shielded container using                                                        l remoto handling tools. When this container is filled, it is                                                          l moved by crano to the shiolded storago area to await shipment for disposal.
C. HVAC Filtern An area is provided for ilVAc filter packaging and storage.
The filters are placed directly into the                                              storago/ shipping containers without disassembly to reduce personnel exposure.                                                        '
Filtered hoods are also provided for handling filtors where airborno contamination may be a concern.
11.4.2.3.3                              Miscellaneous Solid Waston Sorting and                staging space is provided in the SWMS area to separato the contaminated material from the non-contaminated matorial prior to processing.                                          Filtored hoods aro also provided for segregating matorials where airborno contamination may be a                                                    y concern.
t                Miscellaneous solid wastos such a raga, contaminated clothing, swoopings, and other equipment are compressed into containers with a mechanical compactor.                                          During compactor operation, a fan is used to pull air through a llEPA filter and to a filtered exhaust system.                            When the containers are full they are manually scaled and moved to the low-level wasto storage area to await t
shipment. Surveys of the containers are mado prior to shipment, Space is provided in the shicided storage area to accommodato largo volumes of wasto such as irradiated hardware or other off-normal volumes of waste which may result from-plant modification.
                    -work.          These wastos are generally not compacted, but placed directly into shielded, disposal containers.
11.4.3                    EXPECTED WASTE VOLUMES
                    - Table 11.4-2 lists the estimated annual solid waste volumes that will be shipped for disposal.
11.4.4                    SAFETY EVALUATION The SWMS has no safe shutdown or accident- mitigation function. y Finally, accidental releases from this system,. Will not exceed the limits of 10 CFR 20.                                            Accidental releases due to af major component failure or SWMS leak will be contained in the Radwaste-Building, s
Amendment J 11.4-9                    April 30, 1992
  -,    y -
                        -ru  , , , .  , - , ,  -y , , - , , - - - - - ,y.r.,  .g    ,,    .-,e-m,,y, ,c ,          ,,w.. 4g
 
CESSAR EIM%mou O
11.4.5          INSPECTION AND TESTING HEQUIREMlWTS A Procoon Control Program appropriate to annure that the SWMS is operating as intended in developed prior to fuel loading.
Procedures for each phase of system operation including rosin transfer and batching help ensure that design objectiven are mot.
Emphasis in pla ',d on verifying instrumentation and remoto functions important to these design objectivos.
11.4.6          INSTitUMENTATION llEQUIRIMENTS Instrumentation and indicatione important to the Design Basis of the SUMS are as follows:
A.      Level Indicatoro
          !!1gh level indication will be provided to prevent overflow of tanks during fill and renin transfor/nluice operations.
Thece indications will be read in the facility control room.
I Also, video observation of all fill processen is included.
Densitometern are provided on the spent recin storage tanks and used to verify correct resin-to-water ratio when a batch of bead resin is to be solidified.
B.      Flow and Pressure Indicators Pump discharge flow and suction metering as well as pump discharge pressure indication will be provided to properly control the bed transfer process.
C.      Radiation Monitoring Area radiation monitors will be provided as discussed in Section 11.5.
f 11.4.7            STORAGE CAPACITY System 80+ will provido an Interim Onsite Storago Facility to provide adequato shielded storage space for solid waste (i.e.,              s wet, dry, solidified wasto). The Interim Onsite Storaga Facility        J is  located in closo proximity to the Radwaste Building to facilitato the transfer of shipping containers from the Radwaste Building to the Interim Onsite Storage Facility.        This facility is designed in accordance with Standard Review Plan, Section 11.4, EPRI Electric Utility Document, Chapter 12, and Regulatory Guide 1.143 requirements. Thece include:
O Amendment K 11.4-10            October 30, 1992
 
CESSAR E!Mincuion C
i A.      This facility providen aufficient shielded ctorage capacity                              l i
to accommodate the maximum expected wanto generated in a six month period.
B.      All    potential release pathways shall be controlled and monitored in accordance with 10 CFR 50, Appendix A (General Denign Critoria 60 and 64).                This will be ensured by the following:
                    -      Provision of curbing or elevated thresholdo to retain                            )
spills of waste, such no dewatered resino or sludges.                            '
                    -      Provision of floor drains to collect and routo spilla back to D'MS for processing.
Provicion          of area,    airborno,              and prococs  radiation a ronitorc.
C.      iho foundation and walla chall be designed in accordance with Regulatory Guido 1.143 to withstand an Operating Basis I:arthquako (O!3E) .
D.      Sufficient' nhielding is provided to limit the radiation b)
(/
level to loco than 2.5 mrem /hr in adjacent areas, permitting unrestricted access.
1: . liigh radiation containero are Iatrievable on a row-by-row basis.
F.      Video    is utilized        for remote viewing                in high radiation areas.
G.      Provisions for automatic firo detection and suppression.
(
Amendment J 11.4-11                        April 30, 1992 l
l
 
CESSAR !$incua.
(
TADI E 11.4-1 SOLID WASTE MANAGIMFNT SYSTEM
                        ~
I COMl'ONENT DESIGN llIGli ACTIVITY SPENT RESIN STORAGE TANK                                                                          y, Quantity                                        1 Total Volumo (Gal)                              5000 Material                                        Stainless Stool        .            I Geometry                                        Right Cylinder, Conical Bottom IDW ACTIVITY SPEtrl' ItESIN TANK E
Quantity                                        2 Total Volume (Gal)                              62000 Material                                        Stainless Stool Goomotry                                        Right Cylindor, Conical Bottom GPENT ITESIN TANK DINATERING                                                          I PUMP
    . Quantity                                        2    _
IK Type                                            Canned, IIorizontal Contrifugal Material                                        Stainless Stool                      y DINATERING PUMP Quantity                                        1 Typo                                            Singlo Stage Turbino-Material                                        Stainless-Stool                      I SPENT RESIN METERING PUMP Quantity                                        3              _
Type                                            Positivo Displacement-Material                                        Stainless Stool                        I
    - SPI'NT RESIN SI,UICE FILTER Quantity-                                        2            .                      lK-Type                                            LDisposablo Cartridge Material                                        Stainless Steel Rotention % (0 25' Micron)                      98              .
I Material                                        Stainless Stool (g
Amendment K October 30, 1992
 
i CESSAR Sin?"icu au                                                                                                                                                                    !
l
                                                                                                                                                                                                                      ?
r TAllLE 11.4-2 ESTTMATI'D MAXIMUM VOLUMES                              ~
DISCIIARGE FROM Tile SWMS.
(1 UNIT)                                                              y i
Volgmes Wasto Type                                                                                                                      (ft /yr)                                            ;
Spont Dead Rosins                                                                                                      2920 (1) (2) .                        K Filters                                                                                                                30                                                          i Miscellaneous Solids                                                                                                    2400 I
r NOTES:                      1.            180 cubic foot high activity resin and 240 cubic foot low activity resin
: 2.            Assumes 8 condensato domineralizor                                                          resin        beds lK -
discharge por fuel cyc?io 7
P 1
                                                                                                                                                                                                                    ?
      - f                                                                                                                                                                                                        .;
        \
Amendment K' October 30,. 1992'                                      -t e d'em- -e-s e      ev < we 'vwe ---c wd e-e .c.-wrve.-,  .-e+1r e -ew. e v-e-,- w  w- w. ar , ,, ww or,wwww.w..-,w,-%.y-w,wyg,yw,,wwy,y-          yewwy9,-4,--we.    - t v e'  TF **'"*-t'---P4M+e* -- "">i
 
lCESSARin!?ifi6mr-                                                                                (Sho$t 1 or 4) a b                                                                                                                                                            j
                                                        ' EFFECTIVE PAGE LISTING                                                                                  .
t CHAPTER 12-1 a
Table of Contents Page                                                                                Amendment.
i                                                                                        .
J-
                . 11                                                                                            K                                            .
iii                                                                                            K iv                                                                                            J V                                                                                              J vi                                                                                            J vii                                                                                            K viii                                                                                          K Text                                                                                                                                    ,
Page                                                                                Amendment =
s:        12.1-1                                                                                        J 12.1-2                                                                                        J 12.1-3                                                                                  -J                                                    ,
12.1-4                                                                                    - J-12.1-5                                                                                        J-12.1-6                                                                                    ' J -.
12.1-7                                                                                    - J-
                  -12.1-8                                                                                        I L'
                . 12.1-9                                                                                        I' 12.1-10.                                                                                      I                                              ,
12.2-1                                                                                    .I 12.2-2                                                                                        J-12,2-3                                                                                        J
:12.2-4:                                                                                        J=                                            ,
12,2-5                                                                                        'J
                ~ 12.2-6                                                                                        J' 12.2-7                                                                                    LI-
                  '12'.2-8                                                                                        I 12.2-9                                                                                        I 12.2-10                                                                                  -- J
; ..              12.2                                                                                  -:K
                  -12~.2                                                                                ._J 12.2-13:                                                                                      K
                  .12.2-14                                                                                        K-                                  ~
12.2-15                                                                                        J
                  .12 . 3 -l'                                                                                    K 12.3-2:                                                                                  .K
                  '12.3-3
                                                                                                                                                                ~
(                                                                                                        .K
    -s            12.3-4                                                                                        K'
                                                                                                                . Amendment =K
                                                                                                                ' October,30, 1992                              ,
yh              aw-.r6 -*---  +-"W"4        9my'-PL*W'7"h-    F T **' F " ''    a-" -
(                F MGP''n-    P    t* O M    E  Wi-* F
 
  - CESSAR iPOicui2u                                  (Sh::t 2 of 4)
O.
EFFECTIVE PAGE LISTING (Cont'd)
CIIAPTER 12 Text (Cont'd)                          Amendment 12.3-5                                            J 12.3-6                                            J 12.3-7                                            J 12.3-8                                            K 12.3-9                                            K 12.3-10                                          K 12.3-11                                          K 12.3-12                                          K 12.3-13                                          J 12.3-14                                          K 12.4-1                                            J 12.4-2                                            J 12.4-3                                            f 12.4-4                                            J 12.4-5                                            J 12.4-6                                            J 12.5-1                                            J Tables                                  Amendment 12.2-1                                            J 12.2-2 12.2-3 12.2-4 (Sheet 1)                                  J 12.2-4 (Sheet 2)                                  I 12.2-5 (Sheet 1)                                  I 12.2-5 (Sheet 2)                                  I 12.2-6                                            I 12.2-7 12.2-8                                            J 12.2-9 (Sheet 1)                                  I 12.2-9 (Sheet 2)                                  I 12.2-10 (Sheet 1)                                I 12.2-10 (Sheet 2)                                I 12.2-11                                          I 12.2-12 (Sheet 1)                                I 12.2-12 (Shoot 2)                                I 12.2-13 12.2-14                                          I 12.2-15 (Sheet 1)                                K 12.2-15 (Sheet 2)                                K 12.2-16                                          J Amendmant K October 30, 1992
 
CESSAR ESinem                                        (Shece 3 or 4)
. /3 x _
EFFECTIVE PACE LISTING (Cont'd)
CIIAPTER 12 Tables (Cont'd)                        Amendment 12.2-17 (Sheet 1)                                  I 12.2-17 (Sheet 2)                                  I.
12.2-18 (Sheet 1)                                  I 12.2-18 (Sheet 2)                                  I 12.2-19 (Sheet 1)                                  K 12.2-19 (Sheet 2)                                  K 12.2-20                                            I 12.3-1                                            J 12.3-2 (Sheet 1)                                  J 12.3-2 (Sheet 2)                                  J 12.3-2 (Sheet 3)                                  J 12.3-2 (Sheet 4)                                  J 12.3-2 (Sheet 5)                                  J 12.3-2 (Sheet 6)                                  J 12.3-2 (Sheet 7)                                  J 12.3-2 (Sheet 8)                                  J
[  )  12.3-2 (Sheet 9)                                  J Ns ,/  12.3-2 (Sheet 10)                                  J 12.3-2 (Sheet 11)                                  J 12.3-3                                            I 12.3-4 (Sheet 1)                                  J 12.3-4 (Sheet 2)                                  J 12.3-4 (Sheet 3)                                  J 12.3-4 (Sheet 4)                                  J 12.3-4 (Sheet 5)                                  J 12.3-4 (Sheet 6)                                  J 12.3-4 (Sheet 7)                                  J 12.3-4 (Sheet 8)                                  J
: 12. 3-4 (Sheet 9)                                  J 12.3-4 (Sheet 10)                                  J 12.3-4 (Sheet 11)                                  J 12.3-4 (Sheet 12)                                  J 12.3-4 (Sheet 13)                                  J 12.3-4 (Sheet 14)                                  J 12.4-1                                            I 12.4-2                                            I 12.4-3                                            .I 12.4-4                                            J
      -12.4-5                                            I
/D Amendment K October 30, 1992
 
(                                                        Q yRT FICATION -                                                        '
EFFECTIVE PAGE LISTING (Cont'd) e CHAPTER 12 Figuren                                                                            Amendment 12.2-1                                                                                                                  J                    "
12.2-2                                                                                                                  J 12.3-1                                                                                                                  K 12,3-2                                                                                                                  K 12,3-3                                                                                                                  K                    -
12.3-4                                                                                                                  K 12.3-5                                                                                                                  K 12,3-6                                                                                                                  K 12.3-7                                                                                                                  K 12.3-8                                                                                                                  K 12,3-9                                                                                                                  K 12.3-10                                                                                                                K 12.3-11                                                                                                                K 12.3-12                                                                                                                K 12.3-13                                                                                                                K 12.3-14                                                                                                                K 12.3-lb                                                                                                              K 12.3-16                                                                                                              K 12.3-17                                                                                                                K e
Amendment K October 30,-1992
 
C E S S A R M.5JZe m a v/-
TABLE OF CONTENTS CllAPTER 12 Section          Subject                                        Pago No.
12.0            RADIATION PROTECTION                          12.1-1 12.1            ENSURING THAT OCCUPATIONAL RADIATION          12.1-1 EXPOSURES ARE AS LOW AS IS REASONABLY ACHIEVABLE (ALARA[                                        -
12.1.1          POLICY CONSIDERATIONS                          12.1-1 12.1.1.1              Design and Construction Policies        12.1-1 12.1.1.2              Operation Policios                      12.1-2 12.1.2          DESIGN CONSIDERATIONS                          12.1-3 12.1.2.1              General Design Considerations for        12.1-3 shielding and ALARA Exposures
(( ,)    12.1.3          OPERATIONAL CONSIDERATIONS                      12.1-6 12.2            RADIATION SOURCES                              12.2-1    1 12.2.1          CONTAINED SOURCES                              12.2-1 12.2.1.1              Containment                              12.2-1 12.2.1.1.1            Reactor Core                              12.2-1 12.2.1.1.2            Reactor Coolant System                  12.2-1 12.2.1.1.2.1                Design Basis Source Terms          12.2-2 12.2.1.1.2.1.1              Maximum Fission Product Activities 12.2-2 in Reactor Coolant 12.2.1.1.2.2              Deposited Crud Activities            12.2-4 12.2.1.1.2.3              Neutron Activation Products          12.2-4 12.2.1.1.2.3.1            Nitrogen-16 Activity                12.2-4 12.2.1.1.2.3.2            Carbon-14 Production                12.2-5 12.2.1.1.3            Main Steam Supply System                  12.2-5 12.2.1.1.4            Spent Fuel Handling Transfer              12.2-6 lJ p    n
'w)
Amendment J i                April 30, 1992
 
CESSAR E!aincano O
TABLE OF CONTimTS (Cont'd)
CIIAPTFJt 12 Section      Subject                                        Page No.
12.2.1.1.5        Processing Systems                        12.2-6 12.2.1.1.5.1            Chemical and Volume Control        12.2-6 System (CVCS) 12.2.1.1.5.2            Steam Generator Blowdown System    12.2-7 12.2.1.1.5.3            Condensate Polishing System        12.2-8 12.2.1.2          Reactor Building Subsphere and Nuclear  12.2-8 Annex 12.2.1.2.1        Shutdown Cooling System                  12.2-8 12.2.1.2.2        Component Cooling. Water System          12.2-8 12.2.1.3          Fuel Building                            12.2-8 12.2.1.3.1        Spent Fuel Storage and Transfer          12.2-8 12.2.1.3.2        Spent Puel Pool Cooling and              12.2-9 Cleanup System 12.2.1.4          Turbine Building                          12.2-10 12.2.1.5          Nuclear Annex                            12.2-10    lK 12.2.1.6          Radwaste Building                        12.2-10 12.2.1.7          Sources Resulting from Design Basis      12.2-11 Accidents 12.2.1.8          Stored Radioactivity                    12.2-11 12.2.1.9          Field Run Pipe Routing                  12.2-12 12.2.2      AIRBORNE RADIOACTIVE MATERIAL                  12.2-12 SOURCES J
12.2.2.1          Inplant Concentrations                  12.2-13 12.2.3      SOURCES USED IN NUREG-0737 POST-                12.2-14 ACCIDENT SHIELDING REVIEW 9
Amendment K 11                October 30, 1992
 
                !hhk    RT FICAT13N
          -s TABLE OF CONTENTS (Cont'd)                                    ,
CHAPTER 12 Section    Subject                                            Page No.
12.3        RADIATION PROTECTION DESIGN FEATURES              12.3-1 12.3.1      FACILITY DESIGN FEATURES-                        , 12.3-1 12.3.1.1          General Arrangement Design-                '12.3-10 Features 12.3.1.2          Equipment and System Design                - 12.3-3 Features for Control of Onsito Exposure 12.3.1.3          Source Term Control                        12.3-7 12e3.1.4          Airborne Contamination Control              12.3  y 12.3.1.5          Equipment Improvemente                      12.3          w    12.3.1.6          Radiation Zone Designation                  12.3              12.3.1.7          General Design Considerations.to            12.3-10'
                                ' Keep Post-Accident Exposures ALARA 12.3.1.8          Post-Accident LRadiation Zones-            -12.3-10 12.3.2    SHIELDING                                          12.3-11 12.3.2.1          Shielding Analysis                          L12.3-11  y 12.3.2.2          ShieldingLDesign                            12.3-14 12.3.3    VENTILATION-                                      '12.3-14      .
l t
12.'3.4    AREA RADIATION AND' AIRBORNE RADIOACTIVITY          12,3-14 MONITORINGeINSTRUMENTATION-12.4        DOSE ASSESSMENT                                  ~12.4-1 12.4.1      METHODOLOGY 1                --
                                                                            -12.d-1
              '12.4.2      INDUSTRY AVERAGE OCCUPATIONAL EXPOSURE            '12.4-1
  }[                      FOR 1986
                                                                -Amendment K 111                  October- 30,-1992
 
CESSAR E!L"icuen O
J'ADLE OF CONTF3fTS (Cont'd)
CllAPTER 32                                1 Section  Subject                                      Pago No.
12.4.3  PWR REFERENCE PLANT DATA                    12,4-2 12.4.4  SYSTEM 80+ ALARA DOSE REDUCTICH FEATURES    12.4-3  lJ 12.4.5  SYSTEM 80+ ESTIMATED DOSE ASSESSMENT        12.4-5 12.4.6  OCCUPATIONAL EXPOSURE BREAKDOWN AMONG        12.4-5 WORKFORCE 12.4.7  SYSTEM 80+ INDIVIDUALS' EXPOSURE            12.4-6 DISTRIBUTION 12.5    HEALTH PilYSICS PROGRAM                      12.5-1 O
O Amendment J iv              April 30, 1992
 
l      CESSAR nMirication o
O LIST OF TABLES CllAPTER 12 Tablo                            Subject 12.2-1                            Maximum Neut ron Spectra outside Reactor Vessel 12.2-2                            Maximum Gamma Spectra Outside Reactor Vessel 12.2-3                            Shutdown Gamma Spectra Outside Reactor Vessel 12.2-4                            Basis    for        Reactor      Coolant        Fission      Product Activities 12.2-5                          Reactor Coolant Equilibrium Concentration 12.2-6                          Average Reactor Coolant Crud Activity 12.2-7                          N-16 Activity 12.2-8                            Spent Fuel Gamma Source
    . 12.2-9                            CVCS Heat Exchanger Inventories 12.2-10                          CVCS Ion Exchanger Inventories 12.2-11                          CVCS Filter Inventories 12.2-12                          CVCS Tank Inventories 12.2-13                          Shutdown      Cooling    System    (SCS)        Specific    Source Strengths 12.2-14                          Spent Fuel Pool Related                  Sources      Radionuclides Specific Activities 12.2-15                          Turbine Building            Sources      Radionuclide        Specific Activities 12.2-16                          Nuclear      Annex    Sources    Process            Gas  Specific y Activities 12.2-17                          Radwaste      Building      Sources        Liquid    Waste  Tank Specific Activities 12.2-18                          Radwaste Building          Sources Liquid Waste            Process Equipment i
Amendment J v                            April 30, 1992
 
CESSAR ENMcuia O
LIST OF TABLES (Cont'd)
CIIAPTER 12 Table    Subject 12.2-19  Radwaste Building                              Sources  Solid Waste  Process Equipment 12.2-20  NUREG-0737 Post-Accident Shielding Source Term
. 12.3-1    Normal Operation Accessibility Zone Designations                              J 12.3-2    Normal Operation Radiation Zones 12.3-3    Post-Accident Accessibility Zone Designations 12.3-4    Post-Accident Radiation Zones 12.4-1    PWR Reference Plant Data 12.4-2    Dose Distributions (in %) by Work Group 12.4-3    Individual                            Exposure    Distribution  for  Reference Plants 12.4-4    System 80+ Estimated Annual Occupational Exposure 12.4-5  System 80+ Annual Exposure Breakdown Among Workers                                _
O Amendment J vi                  April 30, 1992
 
1 lE!ifi/ Lit 1Enincanst                                                                                .
LIST OF FIGURES CHAPTER 12                                                        '
Figure          Subject 12.2-1          Maximum Spent Fuel Assembly Dose-: Rates!Vs.-Axial Distance in the Refueling Pool 12.2-2          Maximum Spent Fuel Assembly Dose Rates.Vs. Radial; Distance in the Refueling Pool 12.3-1          Radiation Zones Normal Operating Status and' Shutdown Plan at El. 50+0 12.3-2          Radiation Zones Normal Operating Status and.
Shutdown Plan at El. 70+0.
12.3-3          Radiation Zones Normal Operating Status and-Shutdown Plan at El.'81+0 12.3-4          Radiation Zones Normal Operating ~Statu,s and Shutdown Plan at El. 91+9.
      \. m 12.3-5          Radiation-Zones Normal Operating-Status.and
                                                                                                            .J Shutdown Plan at El.J115+6 12.3-6        ' Radiation Zones NormalLOperating Status and-Shutdown Plan at-.E).:130+6
^
12.3-7        Radiation-Zones Normal = Operating _ Status and Shutdown Plan at El. 146+0 12.3-8        Radiati'on Zones Normal _ Operating Status'and-Shutdown Plan at El. 170+0-12.3-9        Radiation Zones _ Post-Accident Conditions Plan at-El-, 50+0 12.3-10        Radiation Zones Post-Accident Conditions' Plan :at?
El. 70+0.
12.3-11        Radiation' Zones Post-Accident Conditions-Plan at El. 81+0
+
12.3-12        Radiation Zones Post-Accident Conditions Plan at El. 91+9 Amendment J vil                  April 30,L1992.
              . ..        .                            ,        -- .-          - , = . _ . a-  ,. a
 
CESSAR 85;?iema LIST OF FIGURES (Cont'd) e CIIAIFI'ER 12 Figuro  Subject 12.3-13  Radiation Zones Post-Accident Conditions Plan at El. 115+6                                          J 12.3-14  Radiation Zones Post-Accident Conditions Plan at El. 130+6 12.3-15  Radiation Zones Post-Accident Conditions Plan at El. 146+0 12.3-16  Radiation Zones Post-Accident Conditions Plan at El. 170+0 12.3-17  Fuol Transfer Tubo Details                          g.
O O
Amendment K viii                October 30, 1992
 
CESSAR Enncmos equipment waste tank radionuclide specific activities and an assumption that liquid waste processing equipment achieves an overall decontamination factor of 1000.
Specific activity source terms for waste process filters and domineralizers are calculated using an activity build-up and decay model.                                          Process flow rate assumptions consistent with Table 11.2.6-2 and process fluid activity levels provided in Table 12.2-17                                        are  used. For  the  purposes of the                                                                                    source term    I calculation, waste process filters and resin beds are assumed to have a 3 month useful service life.                                                                              Although radwaste process filtration media                                        source  terms  and                        useful                                                  service life will                  -
realistically vary, component sources will be controlled (i.e.,
media replacement based on elevated dose rate levels,                                                                                                                                    if necessary) to assure                                          occupational                              exposures                                                      associated    with radwaste system operations remain ALARA.
Specific activities for the high activity spent resin storage tanks are the                                        same as calculated for the CVCS                                                                                        purification demineralizer                                      resins  presented            in                        Table                                            12.2-10.            The  low activity spent resin storage tank source terms are taken from                                                                                                                              '
Table 12.2-18 values for waste process domineralizer resins.                                                                                                                                K 12.2.1.7                                        Sources Resulting from Design Basis Accidents Accident parameter and sources are discussed in Chapter 15.
I 12.2.1.8                                        Stored Radioactivity Tanks (holdup, reactor makeup water, boric acid and condensate                                                                                                                                  ~
storage) are the principle sources of activity located outside.
The Condensate Storage Tank is expected to contain sources to yield a surface dose rate of less than 0.2 mrem /hr.                                                                                                                          Section    3 15.7.3                                analysis evaluated the consequences of                                                                                        a  failure  of holdup, reactor makeup water and boric acid tanks.
Spent fuel is stored in the spent fuel pool until it is placed in                                                                                                                      y the spent fuel shipping cask. for transport offsite.                                                                                                                        Storage space is allocated in the radwaste building for storage of spent filter                                cartridges  and solidified                                      spent                                            resins,        evaporator \J bottoms, and chemical wastes.                                    Radioactive                                                                    wastes            stored  inside plant structures are shielded so that there is design radiation Zone II access outside the structure.                                                                                                          If radiation                levels outside the structure exceed the design radiation zone limit, or                                                                                                                      7 it is necessary to temporarily store radioactive waste outside plant structures, radiation protection measures are taken by the radiation protection staff to assure compliance with 10 CFR 20 and to be consistent with the recommendation of Regulatory Guide 8.8.
Amendment K 12.2-11                                                                                            October 30, 1992
 
CESSAR nNPicmon O
12.2.1.9        Field Run Pipe Routing Radioactive piping is not field routed.      Procedures are followed when radioactive pipe is routed.
These procedures are utilized to provide guidance so                that personnel exposure      is  maintained ALARA in accordance        with recommendations in Regulatory Guide 8.8.        Criteria for routing radioactive piping include:
: 1. Radioactive  piping  is routed  through  shielded pipe chases.
: 2. Systems  containing radioactive      liquids,  gases,  or slurries are physically located in close proximity to interfacing systems. This reduces the pipe length and minimizes the possibility of routing radioactive piping through personnel access corridors.          Pipe  routing through personnel access corridors is avoided.
: 3. Stagnant runs of piping are avoided to minimize the potential for crud traps. Flushing and decontamination capabilities are also provided as necessary.
12.2.2        AIRBORNE RADIOACTIVE MATERIAL SOURCES J
Airborne radioactive material is introduced within the plant principally through:      (1) leakage of radioactive fluids from equipment (e.g., valve stems and pump seals) , (2) evaporation of tritiated water, and        (3) recirculation of contaminated air dischargLI frcm the plant.
System 80+ design limits laakage of radioactive fluids as much as reasonable,    llowever, leakage of radioactive fluids through pump seals, valve stems, and flanges can not be eliminated entirely.
Therefore, utilizing recommendations and guidance provided by NUREG-0017, a source term is estimated based on the type of equipment, number of valves, flanges, and level of radioactivity in the fluid stream.
Evaporation of tritiated water from spills or - large bodies of water, such as the spent fuel pool, are significant sources of airborne tritium. The rate of evaporation is dependent on the pool temperature, air velocity across the pool, and relative humidity.
O Amendment J 12.2-12                April 30, 1992
 
CESSAR 8lninemon f'%
V) i Intake louvers for ventilation systems are located on the exterior of buildings draw outside air into the plant. This air may be contaminated.      The concentration of the radionuclides in the    air  at  the  intake  is  a  function of  site  specific characteristics, such as the atmospheric dispersion coefficient (X/Q),  the wake effect from the surrounding structure.          The release of low level of radioactivity from the unit vent is a continuous process.      In general the airborne material will rise, due to the momentum and the buoyancy of the effluent of the exhaust, and will be carried away by wind currents.            However, fumigation of the effluent may occur due to inversion of the plume compounded by wake of fects of nearby structures. This may cause the effluent to linger around the plant ventilation intakes where it can be drawn into the plant recirculating contaminated air discharged from the plant.
12.2.2.1        Inplant Concentrations The levels of airborne radioactivity within the plant during normal operation are based on estimates of the above sources. It is assumed that in areas where there are no potential sources of J radioactive    leakage    or  evaporation,    the  concentration  of
    ,. radicactivity is equal to the concentration in the air external (d-
      ) to the ventilation intakes. This is reasonable because the design of ventilation systems is such that air flows from areas of lower potential airborne radioactivity to areas of higher airborne radioactivity.
For those areas with sources of leakage or evaporation,            the concentration is calculated by:
C=CO + Q/(1.7E+06 F)
Where:
C= room concentration (uci/ml)
C =outside    air  concentration    for  the  appropriate vbntilation system (uCi/ml)
Q= source term (uci/hr)
K Q=L*PF*A O L= leakage or evaporation rate (ft /hr)
PF= partition factor A  n    a  act M y of G d h eam sow ce(uCy ml) 0 Amendment K 12.2-13              October 30, 1992 l
 
CESSAR EnfiPICATION lx$
Furoom oxhaunt flow rato(ft / min)                            J 3
1.7E+06= conversion f actor (f t -hr/ min) to (ml)          lK Credit for decay has been neglected for conservatism. The airborne concentrations in rooms or cubicles acccccible by J personnel throughout the plant will be maintained within maximum permisalble concentrations prescribed in 10 CFR Part 20, 12.2.3      SOURCES USED IN NUREG-0737 POST-ACCIDENT SIIIELDING REVIEW Item II.b.2 of NUREG-0737 clarifica the requiremont for ensuring that arcan which require post-accident personnel access or contain safety-related equipment are adequately chielded in the vicinity of    cyctemo  which may contain highly radioactive materials as a result of the Design Bania Accident.
I A  radiation  and shielding design review of the Syntom 80+
Standard Design in accordance with Item II.b.2 of NUREG-0737 is performed during the detailed design phase of the plant. The review of nyctems that, as a result of an accident,            contain highly radioactive materials was performed using the came methodology deceribed in Section 12.3.2.
Initial core releasca are used which are equivalent to those recommended in Regulatory Guiden 1.4 and 1.7 and Standard Review plan 15.6.5. The cource terms are presented in Table 12.2-20.
Plant arcan requiring post-accident occupation (" vital areas"),
and the duration of occupation are identified.
The calculated individual personnel radiation doses and average doco rates in vital arcan requiring continuoun occupation are less than 5 Rem (GDC 19) and 15 mrom/hr, respectively.
O Amendment K 12.2-14                  October 30, 1992
 
CESSAR d'Hicucu
        )
s TABLE 12.2-15 (Shnet 1 of 2)
TURBINE BUILDING SOURCES RADIONOCDDE SPECIFIC ACTIVITIES                    I SG (1)                                Blowdown  Blowdown Water    Condensate        Steam    Filter        IX
          ' Isotope      DCif_gm)    jpC1/gm)_      _{pC1/gm) (pCi/ml)  (pCi/ml) 3 Volume (f t ):                              1                    30 Sr-89          3.9E-09      2.0E-ll        2.0E-ll      ---
1.2E-04 Sr-90          3.4E-10      1.7E-12        1.7E-12      ---
5.4E-05 Sr-91          2.0E-08      1.0E-10        1.0E-10      ---
5.lE-06 Y-91          1.4E-10      7.2E-13        7.2E-13      ---
5.lE-06 Y-93          8.6E-08      4.3E-10        4.3E-10      ---
2.2E-05 Zr-95          1.lE-08      5.5E-Il        5.5E-Il      ---
                                                                          .4.5E-04 Nb-95          7.6E-09      3.8E-Il        3.8E-ll      ---
1.7E-04 Tc-99m        8.0E-08      4.0E-10        4.0E-10      ---
1.3E-05
  ,- m    Mo-99          1.7E-07      8.7E-10        8.7E-10      ---
3.0E-04
  /    \
Ru-103        2.lE-07      1 lE-09        1.lE-09      ---
5.3E-03 b      Ru-106 I-131 2.5E-06      1.3E-08 7.4E-09 1.3E-08 7.4E-09
                                                                    ---    2,9E-01  x 7.4E-07                                  ---
3.8E-03 1-132          1.8E-06      1.8E-08        1.8E-08      ---
1.lE-04 1-133          2.lE-06      2.lE-08        2.lE-08      ---
1.2E-03 1-135          3.3E-06      3.3E-08        3.3E-08      ---
5.8E-04 Te-129        1.7E-07      8.5E-10        8.5E-10      ---
5.2E-06 Te-129m        5.4E-09      2.7E-ll        2.7E-ll      ---
1.2E-04 Te-131        2.3E-08      1.2E-10        1.2E-10      ---
2.5E-07 Te-131m        3.8E-08      1.9E-10        1.9E-10      ---
3.0E-05 Te-132        4.6E-08      2.3E-10        2.3E-10      ---
9.5E-05 Cs-134        2.9E-07      1.4E-09        1.4E-09      ---
3.6E-02 Cs-136        3.5E-08      1.7E-10        1.7E-10      ---
2.6E-04 Cs-137        3.9E-07      1.9E-09        1.9E-09      ---
5.6E-02 Ba-140        3.6E-07      1.8E-09        1.8E-09      ---
2.9E-03 La-140        6.5E-07      3.2E-09        3.2E-09      ---
6.9E-04 Ce-141        4.2E-09      2.lE-Il        2.lE-11      ---
8.6E-05 Co-143        7.0E-08      3.5E-10        3.5E-10      ---
6.lE-05 Co-144        1.lE-07      5.5E-10        5.5E-10      ---
1.2E-02 i
      .Y Amendment K October 30, 1992
 
      /      CESSAR 2EL"icni:n O
TABLE 12.2-15 (Cont'd)
(Sheet 2 of 2)
TURBINE BUILDING SOURCES RADIDRUCDDE~SPECIFirliTIVITIES SG (1)                                                          Blewdown    Blowdown Water      Condensate                Steam                    filter          IX lsotope              fpci/Sm]      ,_(pCi /gm)    1pCMmJ                            (pCi/ml)    _(pCi/ml)        _
Kr-85                  ---            ---
1.2E-09                              ---          ---
Kr-85m                  ---            ---
2.3E-08                              ---          ---
Kr-87                  ---              ---
2.5E-08                              ---          ---
Kr-88                  ---            ---
4.5E-08                              ---          ---
Xe-131m                ---            ---
7.2E-09                              ---          ---
Xe-133                  ---            ---
4.7E-08                              ---          ---
Xe-133m Xe-135 2.6E-09 9.3E-08 g      [
Xe-135m                  ---            ---
2.5E-08                              ---          ---
Xe-137                  ---              ---
6.6E-08                              ---          ---
Xe-138                  ---            - - -
2.3E-08                              ---          ---
Mn-54                4.5E-08        2.2E-10          2.2E-10                          1.5E-01    9.9E-05 Co-58                1.3E-07        6.6E-10          6.6E-10                          1.7E-01    1.lE-04 Co-60                1.5E-08        7.5E-11          7.5E-Il                          6.7E-02    4.5E                    Fe-59                8.2E-09        4.lE-ll          4.lE-ll                          6.9E-03    4.7E-06 Cr-51                8.9E-08        4.5E-10            4.5E-10                        4.6E-02    3.lE-05 Tl) Also source assumed for SG Blowdown and SG Drain Tank fluid systems.                                      I 0
Amendment K October 30, 1992 iHH I i i f  ..                                  .                                                                        .  .  .
 
CESSAR 8lMinemou r
TABI,E 12.2-19 (Shoot 1 of 2)
RADWASTE BUIIDING SOURCES SOI.ID WASTE l'ROCESS EQUll' MENT IIA Spent                                IA Spent Renin                                    Res Tank                                  Tank {gI Icotope                                      fpC1/ml)                                JgC1/ml)      --
3                                                                              8290 Volumo( f t ) :                                    670 Br A1                                        1.6E-02                                2.9E-05 Br-84                                        1.GE-01                                3.0E-04 Br-85                                        1.7E-03                                3.2E-06 Rb-88                                        9.7E-02                                3.3E-04 9b-89                                        9.9E-02                                3.3E-04 Sr-89                                        2.3E+01                                3.1E-02 Sr-90                                        6.0E+00                                  3.4E-03 Sr-91                                        1.2E-01                                  2.2E-04 Sr-92                                        1.6E-02                                  3.0E-05 Y-90                                          1.1E-02                                  2.1E-05 Y-91                                          5.3E+00                                  6.8E-03 Y-91m                                        1.5E-04                                  2.9E-07 Y-92                                          4.0E-03                                  7.6E-06    K Y-93                                        2.3E-02                                  4.3E-05 Zr-95                                        7.3E+00                                  8.9E-03          -
Nb-95                                        4.1E400                                  6.5E-03        ;-
Tc-99m                                        1.0E-02                                2.0E-05 Mo-99                                        3.7E+02                                6.9E-01 Rh-103m                                      3.0E-04                                5.6E-07 Ru-103                                        3.4E+00                                5.1E-03 Ru-106                                        3.4E+00                                2.3E-03 I-131                                        3.9E+03                                7.3E+00 I-132                                        1.4E+01                                  2.6E-02 I-133                                        6.6E+02                                  1.2E+00 I-134                                        4. 0 E4 00                              7.6E-03 I-135                                        1.2E+02                                  2.3E-01 To-129                                        6.4E+02                                  1.2E-04 Te-129m                                      5.7E+01                                  9.2E-02 To-131                                        2.7E-02                                  5.1E-05 Te-131m                                      5.4E+00                                  1.0E-02 To-132                                        1.6E+02                                  3.1E-01 To-134                                        1.5E-01                                  2.9E-04 Cs-134                                      7.9E+03                                  8.9E+00 Cs-136                                      2.1E+02                                  7.2E-01 Cs-137                                        8.9E+03                                9.3E+00 Cs-138                                        7.6E-01                                2.6E-03 Ba-137m                                      2.9E-07                                  5.5E-10 Amendment K October 30, 1992
 
CESSAR Enecm:n O
TABLE 12.2-19 (Cont'd)
(Sheet 2 of 2)
RADWASTE BUILDING SOURCES SOLID WASTE PROCESS EQUIPMENT IIA Spent              LA Spent Rosin                  Res Tank                  Tank {g}
Isotope                _(pci/ml)                (pci/ml)
Ba-139                  5.8E-03                1.1E-05 Ba-140                  9.0E+00                1.7E-02 La-140                  1.7E-01                3.2E-04 Co-141                  3.5E+00                5.7E-03    K Co-143                  1.1E-01                2.2E-04 Co-144                  1.3E+01                9.2E-03 Pr-144                  3.2E-05                6.0E-08 Mn-54                    1.9E+01                2.7E-03        ,
Co-58                  2.4E+01                5.7E-03 Co-60                  8.2E+00                9.7E-04      -
i Fe-59                    1.0E+00                3.0E-04 Cr-51                  6.7E+00                2.3E-03        i O
Amendment K October 30, 1992
 
CESSARnn%
i v
12.3        RADIATION PROTECTION DESIGN FEATURES 12.3.1        FACILITY DESICH FFWrURES The  System      80+      design    incorporates                ALARA  principles    por Regulatory Guide 8.8 and 8.10 to minimize the onsite exposure to plant  personnel and operators during normal operation and maintenance            activities.      Section                12.1.2.1    details    ALARA principles    incorporated            into    the              plant  layout,    component locations, and material selection. The following section details specific design features to ensure operational and maintenance exposure is ALARA.                                                                              _-
12.3.1.1                General Arrangement Design Features A. Location of Radioactive Systems and Equipment Nonradioactive            systems    are              separated    from  radioactive systems.          This  helps  control  the            spread of  contamination  and minimize the necessity for                              routing    piping  containing radioactive fluids or slurries through personnel corridors.
This also facilitates radiation area access control.
Radioactive          equipment    are separated into compartments whenever possible.            Equipment is compartmentalized based on                  K frequency of access required, operational characteristics, and radiation level. For example, ion exchangers containers resin beads are typically located in a separate compartment from active components, such as pumps and valves.                              Valves are typically located in valve galleries.                              Ion exchangers are located in pits with their associated spent resin service tanks located directly below the ion exchanger to minimize the pipe lengths and the general area radiation.
The compartment walls provide shielding which enables personnel to perform operation and maintenance activities in a lower radiation area.
B. Pipe Routing Pipe  lengths          of  radioactive systems are minimized by locating interfacing systems in close proximity. Piping for these systems are then routed through shielded pipe chases.
The number of active components located in pipe chases are minimized to reduce the frequency of access required into the pipe chase for maintenance activities.
Amendment K 12.3-1                              October 30, 1992
 
CESSAR E!ahnou O
C. Spacing The System 80+* Standard Design is designed to provide adequate spacing around equipment for easy access of equipment for maintenance and inspection.        This includes provisions for adequate laydown area or equipment pull area,        i as well as transport paths for removal or replacement of equipment. Rigging and lifting equipment are also provided to facilitate the removal, transport, or replacement of equipment    or  portable    shielding    during    maintenance activities.
D. Ilot Tool Cribs and flot Machine Shops flot tool cribs are located in low radiation areas adjacent to maintenance areas to minimize waiting times in high radiation    areas,  to    help  prevent    the    spread  of contamination, and to decrease the amount of decontamination work required to be performed. This reduces the radioactive wastes generated and personnel exposure.
The provision of a hot machine shop adjacent to the equipment hatch enables personnel to remove equipment from            .
containment and perform maintenance in a lower radiation        g area. Access to the hot machine shop is also provided from the truck bays and maintenance areas for ease of equipment movement.                                                            '
E. Staging Areas Large staging areas inside and outside the equipment hatch and personnel airlocks allow pre-staging prior to the start          :
of  an outage, as well as provide space for efficient                !
radiation controls for moving equipment in and out of containment.
F. Personnel Decontamination and Change Areas Two personnel decontamination areas are provided in the System 80+* design. One is located within the radiation access control area (RCA) and the other is located adjacent to RCA access point.      Protective clothing, respirators,        i shower and toilet facilities, lockers, and containers for contaminated clothing are provided in these areas.        Change areas are located near airlocks to minimize personnel traffic flow, distance travelled, and the potential for the spread of contamination.
O Amendment K 12.3-2                October 30, 1992
 
CESSAREn h ou G.                              Radiation Control Area (RCA)
The System 80+* design provides for a single point access into the RCA on elevation 91+9; however emergency egress is provided on all elevations.                                        The access area to                          the RCA provides a flexible and adaptable layout,                                                            a  large area    (40' x 100')
sufficient to accommodate outage work crews and enhance the availability of immediate interaction with radiation protection personnel stationed at this point.
H.                            Accessways and Entrances to High Radiation Areas
: 1. Labyrinths or shield doors                                      are  provided    at  the entrances to high radiation                                  areas to minimize the exposure due to scatter and streaming of radiation through entrances.
: 2. Shield plugs are provided as necessary to                                        provide shielding          during                        normal    operation    for    adjacent corridors.            These shield plugs are removable to permit components,                    such            as    heat  exchangers,    and    their internals to be pulled during maintenance activities.
: 3. High radiation areas are provided with locked doors to prevent inadvertent access by plant personnel.                                            K 12.3.1.2                                  Equipment and System Design Features for Control of Onsite Exposure System 80+*                            specifies the use of more reliable and simplistic equipment.                            This  reduces the frequency of maintenance and the                                    -
radiation exposure to plant personnel.                                                        The following section discusses                              equipment                      design        characteristics    utilized      in radioactive systems.
A.                      Pumps
: 1. Pumps and accociated piping are flanged to facilitate pump removal to a lower radiation area for maintenance or repair.              Pump internals are also removable.
: 2. All pump casings are provided with drain connections to facilitate decontamination.                            The drain connection are free of internal crevices to minimize accumulation of radioactive corrosion products (crud).
: 3.        Pump seals are easily serviceable without removal of the entire pump or motor.                              The reactor coolant pump coals are a cartridge type to facilitate removal for maintenance or repair.
Amendment K 12.3-3                October 30, 1992
 
CESSAR nuir"icari:n O
B. Ion Exchangers (Domineralizers)
: 1. Ion exchangers are designed for complete drainage.
: 2. Spent resin removal is designed to bo done remotely by hydraulic fluohing from the vessel to the Solid Waste Management System (SWMS).
: 3. Piping, strainers and resin screens are flushabic so that all spent resin is removed in the flush mode.
: 4. Fresh  resin  addition  is  accomplished  from  a  low radiation area abcVe the shielded compartment housing the ion exchanger.
: 5. Internal crevices are mirJmized to prevent accumulation of radioactive crud.
: 6. Ion exchanger manways are eacily accessible. Internal components are easily removed tl. rough manways requiring minimal disassembly.
C. Liquid Pilters K
: 1. Filter housings are provided with vents cannections and are designed for complete drainage.
: 2. Filter housings are designed with a minimum of internal crevices to minimize the accumulation of radioactive crud.
: 3. Filter housings and cartridges are designed to permit remote removal of filter elements.      Cartridge filter seals are an integral part of the filter cartridge so that seal removal is accomplished during cartridge removal.
: 4. Cartridge' filter housing closure heads are designed to swing free for the unobstructed removal of the cartridge.
D. Tanks
: 1. Tanks are designed for complete drainage;        free  of-internal crevices, and pockets.      The drain    line  is connected to the bottom.
: 2. Tanks are provided with at least one of the f ollo'cing means of decontaminating the tank internals:
Amendment K 12.3-4                October 30, 1992
 
CESSAR1!$Luia
  ;y~ -
  ;t
    \
: a. Ample space - is provided to permit decontamination-of the tank manway.
: b. Internal spray nozzles are provided on potentially.
highly                contaminated        tanks    for      internal-decontamination.
: c. Back flush capability is provided 'for tank inlet Screens.
: 3.            Tanks are - designed with a convex or_ sloped. bottom to        -
                                                                                                                  )
facilitate drainage and minimize the accumulation- of crud.                                                                              .
: 4.            Tanks are provided with vents to facilitate the. removal of potentially radioactive gases during maintenance._:
: 5.            Non pressurized                  tanks    are- provided -with overflows, a
routed to                    floor ' drain . pump      or other' su'itable collection            point to avoid. spillage            of_ radioactive fluids onto the floor or ground.' 'Tho'_ floor drain system is connected to the Liquid Waste Management
                            ' System for_further processing. prior to release to the environment.                                                                      .
E. Valves
: 1.            The      following _                '
discussion    summarizes-      ' valves:
specifications that minimize valve leakage,'as well:as extend valve-design-life.
                            -a.      Except for modulating.. valve =cipplications, packless:
valves are used on all valves two inches and'under.
in-diameter.
: b. Modulating.. valves and valves gieater than two' inches in diameter use live.'_ loading of_the packing by conical spring washers --or: equivalent means ; to maintain 'a . compressive force on the = packing where possible,
: c. Double. : stem _ packing - with. a leak-off = between . the packing-is used,for valves four inches and largeri.
as well as normally open= valves two to.four incnes--
in    diameter. _ _ Stem = -leakage Lis Lpiped to 'a n -
appropriate--drain-sump or' tank.-
: d.  -Valves utilizing stem packing are p r o v i d'e d ' w i t h        -
backseat capability.                                                      I
- [] -
  %}
Amendment K 12.3-5                  October ~ 30',_ 1992-.
 
CESSAR !!Nincueu O
: e. Radiation recistant seals, gaskets, and clastomers are utilized, when practicable, to extend the design life and reduce maintenance requirements.
: 2. Fully ported valves    are  used  to minimize    internal accumulation of crud.
: 3. Valves  requiring  removal  during    maintenance  and inspection activities are flanged.
: 4. Internal valve surfaces are designed free of crevices to minimize the accumulation of crud.
: 5. Valve wetted parts are made of austenitic stainless steel or corrosion resistant material.
: 6. Valves Pre designed so that they may          be  repacked without removing the yoke or topworks.
F. Piping and Penetrations
: 1. There is no field run piping.                              g
: 2. Rosin and concentrate piping is designed as follows:
: a. The length of pipe runs are minimized.                    ,
: b. Piping is routed through shielded pipe chases whenever possible to minimize routing through personnel access corridors,
: c. Large diameter piping (> 5 pipe diameters) is utilized to minimize the potential for clogging during slurry or resin transfer without violating minimum flow requirements,
: d. The number of pipe fittings- (e.g. , elbows, tees, etc.) are minimized to reduce the potential for radioactive crud accumulation,
: e. Low points, deadlegs, and vertical pipe runs are minimized.
: f. Pipe runs are    sloped and gravitationel flow is used where practicable,
: g. Crevices    on  piping    internal  surfaces    are minimized.
O Amendment K 12.3-6                October 30, 1992
 
CESSAR 8lMinemon
: h. Flushing capability is provided                      to  facilitate decontamination of piping.
: 1. Penetrations are located so that the source and the penetration are not in a direct line of sight.
This        minimizes          the    potential    for    perconnel exposure due to streaming.
G. lleat Exchangers
: 1. lleat  exchangers are                  designed  with  vents    and  for complete drainage.                                                              -
: 2. Internal wetted surfaces are designed crevices free to minimize the potential for accumulation of radioactive crud on internal surfaces.
: 3. Corrosion resistant materials are utill ed to minimize the need for replacement and reduce the frequency of maintenance required.
12.3.1.3          Source Term Control Source term control is an important aspect of the System 80+*                            g design. The following design features reduce the overall dose due to operation, maintenance, and inspection activities.
A. Fuel Performance The System 80+" design features assure low primary system sources with improved fuel clad Icakage performance of less                            -
than 0.1% fuel clad failures, as well as an extended fuel cycle.
B. Corrosion Product Control System 804* design includes design features that reduce corrosion product production in the primary system.
: 1. Primary System Materials The    System        80+*          design  specifies primary        system raterials with low corrosion rates and very low cobalt impurities.
Steam    generator                tubes    are  fabricated    to  relieve stresses to reduce stress corrosion cracking.                          This will reduce the probability of tube plugging activities and further reduce maintenance exposures.
Amendment K          -l  '
12.3-7                  October 30, 1992
 
CESSAR HMem O
Control rod drive materials are specified with      low cobalt alloys to reduce RCS exposures.
: 2. Primary System Chemistry Increased pil in the range of 6.9 to 7.4 reduces equilibrium corrosion rates and buildup of activated corrosion products on primary system surfaces.
12.3.1.4        Airborne Contamination Control In the System 80+" design, plant ventilation systems are designed so that flow is from areas of lower to areas of higher potential activity. This design minimizes the potential for the spread of contamination. In addition, the following confinement devices are utilized to minimize the spread of contamination:
A. Drip Containment Drip containment devicca are used to collect equipment leakage and prevent suspension of radioactive particulate into the air or volatile radioisotopes, such as noble gases and radiciodines.
B. Glove Bags Glove bags are used to perform maintenance activities, such as valve refurbishments, in an enclosed area.
C. Tents Tents provide a large enclosed area to perform work such as grinding or maintenance on large equipment. These tents are provided with ventilation capabilities and essentially provide for a local hot machine shop.
D. Hot Machine and Instrument Shops These areas provide a dedicated area where maintenance can be performed on radioactive and contaminated equipment.
12.3.1.5        Equipment Improvements A. The System 80+* RCPs incorporate a cartridge type of ' RCP seal which is a proven, reliable and easily replaceable seal design. The replacement is also facilitated by'the addition of platforms around the RCPs. This design allows the seal to be removed and repaired outside the crane wall or other low dose area. Therefore, the time required to perform maintenance on the RCP seals and maintenance exposure is reduced.
Amendment K 12.3-8              October 30, 1992
 
CESSARiniinema                                                                                                                                                  !
1 I
D.        Steam Generator Maintononco                                                                                              k                      f System 80+* design includes savoral features which onhance                                                                                        l accessibility during maintenanco and -inspection.                                                              Thoso features, described in Section b.4.2,                                        reduce the overall exposure      to        personnel            during          those          activitics.                      Those features includo i
: 1.      Use of automatic /robotic equipment for inspection and maintonaneo activitics
: 2.      Adoquato pull and laydown areas                                                                                                          -
: 3.      Platforms                                                                                                                                3
: 4.      llandholes                                                                                                                                ,
: 5.      Increased sizo of manways to 21"                                                                                                          '
: 6.      Uso  of          removable            insulation            to          facilitate                      wold                            .
inspection                                                                                                                                i
: 7.      Uso of Inconal 690 for tubes                                  to reduce                        corrosion product production.                                                                                                                      ,
Also, included in the System 80+" design are features which K
are important to achieving ALARA goals.                                      Those includo                                                        ,
s
: 1.      Cont        rations                for            equipment                              rollability, main      nability, and accessibility
              ;, /                    2.      Compoi.snt design, i.e., tank design, piping design and instrument design to minimizo particulato deposition
: 3.      System flushing and decontamination-capability                                                                                            !
: 4.      Radwasto          handling            oporations            (also discussed in                                                          't Sections 11.2 - 11.4)                                                                                                                    '
: 5.      Isolation            of    contaminated                  components                        and  proper shielding
: 6.      Controlled accous to high radiation area via locked                                                                          -'
doors i
: 7.      Piping containing radioactivo liquid, resins, of-gases
* are routed through shielded pipe chases.
i In order to maintain exposure ALARA and'to aid in the layout and                                                                                            ;
shielding desiy.1, the station is-divided into radiation zones.
;                            Theso zones indicato maximum doso - rates baned- on design                                                                                                  '
activitics only. Tho zone limits are summarized"in' Table 12.3-1.
j                            12.3.1.6                Radiation Zono Designat{on                                                                                                          {
!                            The- radiation- zones                      for      normal operating conditions aro-I                            designated in Tablo 12.3-2, as well-as the scociated Radiation J                                                                                            !
;-                          Zone Maps-illustrated in Figures 12.3-1 through 12.3-8.
i L
l Amendmont X
: i.                                                                              12.3-9'                                    October 30, 1908                                          -
m
    - - - =
                    +t r -v. u er-.- ,  & *,%  we    -.m..--,r    ,.,e ,e y-w ny-cv    -v. ,w, :y. +-y    ,r,-+,,,yr y +cy-.w,,,-2,.-+mr      -,yc-v  y  -yn-,-e-y,,-m    - y. 3
 
CESSAR l'!aibou O
12.3.1.7          General Declgn Considerationn to Keep Post-Accident Expotiuren ALARA Sampling capabilities with exposuren kept ALARA will incorporate a post-accident sampling system that meets the requirements of                                                        y liUREG-0737 and Regulatory Guide 1.97, Revision 2.
The area of the hydrogen monitors /recombiners will also require post-accident          access.        Projected            dose          rates    without                    the recombinera in operation is expected to be 0.5 to 2.5 mrom/hr.
Since the recombiners do not have to be operational until 72 hours after the DBA, dose rates attributable to the operation of                                                      3 the hydrogen recombiners will have dropped due to decay.                                                    Thus, the installed dose rate will be less than 5 rem /hr.                                                    While the dose rate would be greater than 5 rem /hr for an                                                            intact primary-degraded core event, the recombiners would not need to be installed since this event does not generate hydrogen inside of the containment.          If hydrogen generation was postulated, this would necessitate a break or opening in the primary system.                                                    The consequences of this scenario would                        lead to the doses noted above.
Therefore, considering direct and airborne sources, access can be                                                      3 provided to those vital areas necessary for the control of the plant ar.d personnel exposures will meet GDC 19 and NUREG-0737 guidelines.
12.3.1.8            Post-Accident Radiation Zones Radiation Zone maps were developed in accordance with NUREG-0737 to review access throughout the plant following a DBA.                                                        The layout assists in keeping occupaticna doses ALARA even following a DBA.      Required access to vi.tal areas and systems will not exceed 5 rem.      Source terms are discussed in Section 12.2.2.
Continuous      access    will        be  provided                  during    post-accident conditions with dose rates less or equal to 15 mrem /hr to the following vital areas:
A. Advanced Control Complex which includes:
Main Control Room                                                                                        y Technical Support Center Remote Shutdown Panel Computer system area Rooms    housing Instrument                and          Control      systems                  and equipment B. Diesel Generator Rooms Amendment J 12.3-10                                April 30, 1992
 
C E S S A R EM Rie m a
  >                                                                                                                                                  l
  \                                                                                                                                                  I C.      Ilydrogen Rocombiner Rooms                                                                                                          i D.      Process Control Sampling Panels E.      Primary Chemistry Labs F.      Main Steam Valvo llouses                                                                                              3 G.      Electr'ical System Arcas which includes                                                                                            i Vital AC Vital DC Motor Control Contors Battery Rooma Generic plant emorgency procedures were reviewed to identify the above vital, as well as the operation of the following systems                                                                            '
was considered:
A.      Annulus Ventilation System r
B.      Safety Injection System                                                                                                            <
C.      Containment Spray System D.      Shutdown cooling System                                                                                                I E.      Chemical and Volume Control System                                                                            -
                                                                                                                                                    +
F.      Post-Accident Sampling                                                                                                            ?
G.      Ilydrogen Recombiners H.      Subsphere Ventilation System A completo list of vital areas will bo.dovoloped by. the owner.
Operator based on site specific Emergency Procedures.
        -Tho' sono limits are summarized for the DBA LOCA in Table 12.3-3.
* The Radiation Zono designations, as well; as :tho4 Radiation' Zone Maps are shown 'in' Table' 12.3-4 and Figures 12.3-9 ' through                                                                            ,
12.3-16, respectively.                                                                                                                    4 12.3'.2                    SIIIELDING
                                                                                                                                                    ~
12.3.2.1                      Shielding ~ Analysis Calculations -to determine the adequacy of -thec station' shielding are: based on Section 12.2.1 source strengths - ~ and the methods- J-outlined below. . Dose points-'are selected inside and'outside-                                                                            *
  .u:                                                                                                                                              ,
Amendment J
                                                                                --12.3                              April:30,11992,            ,
                                                                                  -: _                          -              1--
    ~              - ~ . .        .-    _#...                - , . . . . . , ,            ,,,,,n. ., , . , , - , , . .  ,~L,          -. J .- y
 
CESSARni h ow O
cubicles containing r.            . active equipment.            Cubicle ceilings and floors are generally the same thickness as the cubicle walls.
Skynhine    from        the    station      is  negligible becauso          cubicles containing radioactivo material are shicided overhead.
The only major source in the station is the reactor core at full power. The codes ANISN, DOT, MORSE, and SABINE are used to verify the effectiveness of the primary shield.
Sources of gamma radiation are distributed throughout the reactor building subsphere and nuclear annex.                        The codes SHIELD and KAP-IV are used to verify gamma source shielding. The following sequence typifies a gamma source shic1 ding analysis:
A. Determine the mncentration of each principal nuclide in-the source medium.
B. Adjust the concentration to                    account      for  accumulation, dilution, decay, removal, etc.
C. Convert the          resulting        concentrations      into  gamma  source strength.
D. Select an idealized model or combination of models to represent the physical shape of the source container and all shields present.
E. Assemble the necessary data on attenuation properties of the source and the shield materials.
F. Perform the calculation for the desired dose point and tabulate the results for comparison with design objectivo dose rates.
Steps 1 through 3 are done with the code N237 BURP and data from Sections 11.2 through 11.4.                  Step 4 is self explanatory; tanks, domineralizers,          filters,        and pipes are modeled as a right circular cylinder, etc.                Except for inputing material densities, Stop 5 is code internal.                  Step 6 simply determines the adequacy of the shielding.
All of the computer codes necessary to perform the above analysis meet all NRC and industry standards.                    Typical computer codes are described below:
ANISN performs shielding calculations by discrete ordinates solution of the Boltzman equation in one direction.                        Through use of ~ transport theory with anisotropic scattering.                      ANISN is well suited    to deep          penetration problems. A 40 group coupled Amendment J 12.3-12                    April 30, 1992
 
CESSAR nuirlCATl3N e
(x cross-section set is utilized to account for both noutron attenuation and secondary gamma radiation. Calculations are made in cylindrical geometry.
SABINE solves neutron and gamma ray shielding problems with removal-diffusion methods.                  The neutron / gamma production is a specified fission distribution in the source region.                          The code calculates neutron attenuation through shields using nineteen removal energy groups that in turn food twenty-six groups for the diffusion calculation.        Secondary gamma production in each shield region is output as a polynomial curve fit.                    Gamma fluxos are also calculated.
KAP IV employs the point kernal technique to determine dose rates from complex sources whose geometries can be described by second order surface equations.                  An exponential attenuation function with buildup is employed for gammas.                        Neutron attenuation functions are also available.
SHIELD is a Duke Power Company code that calculatos fluxes at receiver points with integrals over simple geometries. The gamma spectrum is divided into six onergy groups. Input includes group specific source strength and average energy, nource and shield                              y geometrico, and material densitics.
(  average    energies changes, recalculated.
Whenover the spectrum of energy dependent parameters are The code contains energy dependent data on tissue flux-to-dose conversion factors, mass attenuation coefficients for common source / shield materials and Taylor-form buildup factor coefficients.      For    combined            shields  the  buildup          factor    is automatically based on the material with the greatest optical thickness in the lowest energy group.                  When calculations exceed code-internal data, appropriate warn:.ng statements are output.
MORSE is a multi-purposo neutron and gamma                      ray Monte Carlo transport code.        Through the use of multigroup cross-sections, either forward or adjoint solutions of neutron, gamma ray, or coupled  neutron-gamma ray problems                  may  be obtained.            Time dependonce    for    both shielding and              criticality problems is provided. Three dimensional as well as specialized geometry descriptions may be used. An albedo option is available at each material surface.
scattering up to a P goo available is isotropic or anisotropic expansion of the angular distribution.
DOT solves the Boltzman transport equation in two dimensional geometries    by use of the particles moving along discrete directions in each cell of a two dimensional mesh. Anisotropic scattering is treated using a Logrondre expansion of arbitrary _
order. Both homogeneous and external source problems can be p  solved. Albedo boundary conditions are available.
Amendment J 12.3-13              April 30, 1992 a  -      g- + . - -  y                        ih
 
CESSAR EBMemou O
N237 BURP        is  a  Duke Power Company code that calculates the accumulated activity on domineralizar resins or filters and the resultant activity of the process stream.                    This is accomplished by solving a pair of coupled, first order differential equations.
Required input is isotropic removal efficiencies and operation time. Gamma source strengths are obtained from the calculated specific activities by considering gamma yield and losses due to conversion electrons.            The nearly 300 individual gamma emissions            J of these isotopes are divided into six discrete energy groups.
Group boundaries remain fixed, but the average group onergy is calculated for each spectrum of isotopes.                  This allows reasonably precise selections of energy dependent shield material properties for attenuation properties.
12.3.2.2                Shielding Design The plant shielding shall be designed to achinvc the radiation zones designated in Tables 12.3-2 and 12.3-3 for normal operation and post-accident conditions respectively.
Transient sources of greater than 100 R/hr are considered in the System 804* shielding design to ensure adequate shielding is provided.            One such source is a spent fuel assembly.              During transfer of a spent fuel assembly through the fuel transfer tube, adjacent corridors may experience elevated radiation levels.
Streaming from this source up through the joint between the Reactor Building and the Nuclear Annex has been a concern for the current generatior, of nuclear plants.                    The System 80+" design      g utilizes a connected building design to reduce the potential for streaming.            In addition, a lead collar is provided around the fuel transfer tube,            as well as several feet of additional concrete shielding to maintain adjacent corridors radiation levels ALARA.          This permits personnel to perform maintenance and inspection activities in a lower radiation areas and reduces the potential for adverse radiation zones from impacting refueling outage schedules.            An inspection area is provide beneath the fuel transfer tube.            A labyrinth entrance and a lockable access point are    provided          to  minimize        personnel    exposure    and prevent inadvertent access to a high radiation area during fuel movement.
Figure 12.3-17 provide a three dimensional view of the fuel transfer tube, the shielding provided, and the adjacent areas.
12.3.3                VENTILATION The ventilation systems are discussed in detail in Section 9.4.
12.3.4                AREA RADIATION AND AIRBORNE RADIOACTIVITY MONITORING INSTRUHFNTATION l  The area radiation monitoring systems are discussed in detail in Section 11.5.
Amendment K 12.3-14                October 30, 1992 1
 
CESSAR fBMemon CliAPTER 16 TECHNICAL SplClflCATIONS PREFACE Technical Specifications are explicit restrictions on the operation of a commercial nuclear power plant. They are designed to preserve the validity of the plant safety analysis by ensuring that the plant is operated within the required conditions bounded by the analysis, and by ensuring that equipment assumed to be available for accident mitigation is operable.        Technical specifications preserve the primary    .
success path relied upon to detect and respond to accidents. They also complement          I the concept of defense in depth.
Section 182a of the Atomic Energy Act of 1954, as amended (the Act), 47 U.S.C. 2011, at 2232, provides the legislative framework within which technical specifications are required. Section 182a of the Act requires in part:
        "In connection with applications for licenses to operate production or utilization facilities, the applicant shall state such technical specifications, including information on the amount, kind, and source of special nuclear material required, the place of use, the specific characteristics of the facility, and such other information as the Commission may, by rule or regulation, deem necessary in order to enable it to find that the utilization or production of special nuclear material will... provide adequate protection to the health and safety of the public. Such O      technical specifications shall be a part of any license issued."
The regulatory framework implementing Section 182a of the Act is the NRC's regulation 10 CFR 50.36, " Technical Specifications." This regulation provides in part that each operating license:
          ...will include technical specifications ...(to) be derived from the analysis and evaluation included in the safety analysis report, and amendments thereto...and may also include such additional technical specifications as the Commission finds appropriate."
The Commission has issued an interim " Proposed Policy Statement on Technical Specification improvements for Nuclear Power Reactors," 52 FR 3788, february 6,1987.
This interim policy statement sets out specific criteria for the content of technical specifications. The interim policy statement specifically recognizes that:
        "The purpose of Technical Specifications is to impose conditions or limitations upon reactor operation necessary tc obviate the possibility of an abnormal situation or event giving rise to an immediate threat to the public health and safety by establishing those conditions of operation which cannot be changed without prior Commission approval and by identifying those features which are of controlling importance to safety."
This set of Restructured Standard Technical Specifications is based on NUREG 1432 and    K establishes these conditions and limitations for the System 80+ Standard Design. This set of technical specifications is intended to be used as a guide in the NRC's 0
f development of the plant-specific technical specifications issued with the operating license. The values provided in brackets [ ] are preliminary.
Amendment X October 30, 1992
 
l CESSAR En'acmon
* at 2 of 2o)
EFFECTIVP. l' ACE I.TSTING CllAl'TER 16 Table of contentn Igo                                                                                                      Amendment i                                                                                                                    K 11                                                                                                                  I lii                                                                                                                  I iv                                                                                                                  K v                                                                                                                    K vi                                                                                                                    K                                                                                                      :
v11                                                                                                                  K viii                                                                                                                  K ix                                                                                                                  K x                                                                                                                    K xi                                                                                                                    K Text l'ago                                                                                                  Amendment 16.1-1                                                                                                              K 16.1-11                                                                                                              K 16.1-111                                                                                                              K 16.1-iv                                                                                                              K 16.1-v                                                                                                                K 16.1-vi                                                                                                              K 16.1-vii                                                                                                              K 16.1-viii                                                                                                            K 16.1-ix                                                                                                              K 16.1-x                                                                                                                K 16.1-1                                                                                                                1 16.1-2                                                                                                                I 16.1-3                                                                                                                K 16.1-4                                                                                                                K 16.1-5                                                                                                                K 16,1-6                                                                                                                K 16.1-7                                                                                                                  I 16.1-8                                                                                                                K 16.1-9                                                                                                                K 16.1-10                                                                                                                I 16.1-11                                                                                                                K 16.1-12                                                                                                                I 16.1-13                                                                                                                1 Amendment K October 30, 1992
 
CESSAR E!'ib,2u                                                                                                      (Shoot 2 of 10)
O EPPEC"TIVH PAGE I,ISTJ HG (Cont'd)
CilAlrrER 16 Text (Cont'd)
Pago                                                Amendment 16.1-14                                                                                                          I 16.1-15                                                                                                          I 16.1-16                                                                                                          I 16.1-17                                                                                                          1 16.1-18                                                                                                          I 16.1-19                                                                                                          1 16.1-20                                                                                                        1 16.1-21                                                                                                        K 16.1-22                                                                                                        I 16.1-23                                                                                                        I 16.1-24                                                                                                        K 16.1-25                                                                                                        I 16.1-26                                                                                                        1 16.2-1                                                                                                          I 16.3-1                                                                                                          1 16,3-2                                                                                                          I 16,3-3                                                                                                        I 16.3-4                                                                                                        I 16.4-1                                                                                                        K 16.4-2                                                                                                        K 16.4-3                                                                                                        I 16.4-4                                                                                                        K 16.4-5                                                                                                      K 16.4-6                                                                                                      K 16.4-7                                                                                                        K 16.4-8                                                                                                        K 16.4-9                                                                                                        I 16.4-10                                                                                                      K 16.4-11                                                                                                      K 16.4-12                                                                                                      K 16.4-13                                                                                                      K 16.4-11                                                                                                      K 16.4-15                                                                                                      K 16.4-16                                                                                                        I 16.4-17                                                                                                        I 16.4-18                                                                                                      K 16.4-19                                                                                                      K 16.4-20                                                                                                      K 16.4-21                                                                                                      K 16.4-22                                                                                                      1 16.4-23                                                                                                      I Amendment K october 30, 1992
                      -p.        ,.                                                                              __                  c. %
 
    ~
CESSAR E!Nicui:n                                        (shoot 3 or 2o) x
[v\
EFFEC"I'1VE PAGP. LISTING (Cont'd) glAPTER 16 Text (Cont'd)                                                    ,
1 Mgo                                              Amendment 16.4-24                                              I 16.4-25                                              K 16.4-26                                              K 16.4-27                                              K 16.4-28                                              K 16.4-29                                              K 16.4-30                                              K 16.4-31                                              K 16.4-32                                              K 16.5-1                                                I 16.5-2                                                K 16.5-3                                                K 16.5-4                                                K 16.5-5                                                K
: g.      16.5-6                                                K
(        16.5-7                                                I
\        16.5-8                                                K 16.5-9                                                K 16.5-10                                              1 16.5-11                                              K 16.5-12                                              I 16.5-13                                              K 16.5-14                                              K 16.5-15                                                I 16.6-1                                                K 16.6-2                                                K 16.6-3                                                K 16.6-4                                              K 16.6-5                                                I 16.6-6                                              K 16.6-7                                                K 16.6-8                                                K 16 6-9                                                I 16.6-10                                              K 16.6-11                                              I 16.6-12                                              K 16.6-13                                              I 16.6-14                                              1 16.6-15                                              I 16.6-16                                              K 16.6-17                                              I
(])
Amendment K' October 30, 1992
 
CESS AR r".TiflCATl"N CL                                            (Sheet 4 of 10) i O
1:FFECTIVE l' AGE LISTING (Cont'd)
CilAM'ER 16 Text (cont'd)
I'ngo                                            Amendment 16.6-18                                                  K 16.6-19                                                  K 16.6-20                                                  I 16.6-21                                                  K 16.6-22                                                  1 16.6~23                                                  1 16.6-24                                                  K 16.6-25                                                    I 16.6-26                                                  K 16.6-27                                                  I 16.6-28                                                    K 16.6-29                                                    K 16.6-30                                                    K 16.6-31                                                    K 16.6-32                                                    I 16.6-33                                                    K 16.6-34                                                    K 16.6-35                                                    K 16.6-36                                                    I 16.6-37                                                    I 16.6-38                                                    I 16.6-39                                                    I 16.6-40                                                    K 16.6-41                                                    K i 16.6-42                                                    K l 16.6-43                                                    K 16.6-44                                                    K 16.6-45                                                    I i 16.6-46                                                    K 16.6-47                                                    K 16.6-48                                                    I 16.6-49                                                    K r 16.6-50                                                    I l
16.6-51                                                    I 16.6-52                                                    K 16.7-1                                                    1 16.7-2                                                    K 16.7-3                                                    K 16.7-4                                                    K 16.7-5                                                    K 16.7-6                                                    K l
Amendment K October 30, 1992
 
CESSAR ELL"icui:n                                (a ==t 5 or to)
_s LJ EFFECTIVE PAGE LISTING (Cont'd)
CilAl"fKR 16 Text (Cont'd)
Ngo                                        Amendment 16.7-7                                          K 16.7-8                                          K 16.7-9                                          1 16.7-10                                          K 16.7-11                                          K 16.7-12                                          K 16.7-13                                          K 16.7-14                                          K 16.7-15                                          K 16.7-16                                          K 16.7-17                                          K 16.7-18                                          I 16.7-19                                          K 16.7-20                                          I n            16.7-21                                          K
          /    l        16.7-22                                          K U              16.7-23                                          K 16.7-24                                          I 16.7-25                                          K 16.7-26                                          I 16.7-27                                          I 16.7-28                                          K 16.7-29                                          K 16.7-30                                          I 16.7-31                                          K 16.7-32                                          I 16.7-33                                          K 16.7-34                                          K 16.7-35                                          K 16.7-36                                          K 16.7-37                                          K 16.8-1                                          I 16.8-2                                          I 16.8-3                                          K 16.8-4                                          K 16.8-5                                          K 16.8-6                                          K 16.8-7                                          K 16.8-8                                          K 16.8-9                                          K f
        . Q,)
Arnendment K October 30, 1992 l
 
CESSAREBHncen                                      (Shoot 6 d 10)
O EFFECTIVE PAGE LISTING (Cont'd)
CilAlvflut 16 Text (cont'd)
Page                                        Amendment 16.9-1                                            1 16.9-2                                            I 16.9-3                                            K 16.9-4                                            K 16.9-5                                            I 16.9-6                                            I 16.9-7                                            I 16.9-8                                            1 16.9-9                                            1 16.9-10                                          1 16.9-11                                          I 16.9-12                                          K 16.9-13                                          I 16.9-14                                          I 16.9-15                                          K 16.9-16                                          I 16.10-1                                          I 16.10-2                                          I 16.10-3                                          I 16.10-4                                          I 16.10-5                                          K 16.10-6                                          I 16.10-7                                          1 16.10-8                                          K 16,10-9                                          I 16.10-10                                          K 16.10-11                                          K 16.10-12                                          K 16.10-13                                          K 16.10-14                                          I 16.10-15                                          K 16.10-16                                          I 16.10-17                                          K 16.10-18                                          K 16.10-19                                          K 16.10-20                                          K 16.10-21                                          K 16.10-22                                          K 16.10-23                                          K 16.10-24                                          K 16.10-25                                          K Amendment K October 30, 1992
 
CESSARE!Lben                                        (Sh at 7 " 2o) l'm)
  \  J EPPP.CTIVE PAGE LIST 1HC (Cont'd)
CilAPTER 16 Text (Cont'd)
Pago                                          Amendment 16.10-26                                            K 16.10-27                                            K 16.10-28                                            K 16.10-29                                            K 16.10-30                                            1 16.10-31                                            K 16.10-32                                            K 16.10-33                                            K 16.10-34                                            K 16.10-35                                            I
,        16.10-36                                            K 16.10-37                                            K 16.10-38                                            K 16.10-39                                            K 16.10-40                                          K
  ,e ]
j  16.11-1                                            K
(
V      16.11-2                                            K 16.11-3                                            1 16.11-4                                            1 16.11-5                                            K 16.11-6                                            K 16.11-7                                            I 16.11-8                                            I 16.11-9                                            I 16.11-10                                            1 16.11-11                                            1 16.11-12                                            K 16.11-13                                            I 16.11-14                                            K 16.11-lb                                            I 16.11-16                                            I 16.11-17                                            K 16.11-18                                            K 16.11-19                                            I 16.11-20                                            I 16.11-21                                            K 16.11-22                                            K 16.11-23                                            I 16.11-24                                            K 16.11-25                                            K
  /        16.11-26                                            K K.
Amendment K October 30, 1992
 
m CESSAR 8lnincuion                                                        (Shoot 8 of 10)
O EFFECTIVE PAGE LISTING (Cont'd)
CllAPTER 16 Text (Cont'd)
Pago                                                              Amendment 16.11-27                                                                I 16.11-28                                                                I 16.11-29                                                                K 16.11-30                                                                I 16.11-31                                                                I 16.11-32                                                                K 16.11-33                                                                K 16.11-34                                                                K 16.12-1                                                                  K 16.12-2                                                                  I 16.12-3                                                                  K 16.12-4                                                                  K 16.12-5                                                                  K 16.12-6                                                                K 16.12-7                                                                K 16.12-8                                                                K 16.12-9                                                                K 16.12-10                                                                K 16.13-1                                                                K 16.13-2                                                                  K 16.13-3                                                                  K 16.13-4                                                                  K 16.13-5                                                                  K 16.13-6                                                                  K 16.13-7                                                                  K 16.13-8                                                                  K 16.13-9                                                                  K 16.13-10                                                                K 16.13-11                                                                  K 16.13-12                                                                  K 16.13-13                                                                  K 16.13-14                                                                  K 16.13-15                                                                  K 16.14-1                                                                  K 16.14-2                                                                  K 16.14-3                                                                  K 16.14-4                                                                  K 16.14-5                                                                  K 16.15-1                                                                  K 16.15-2                                                                  K 16.15-3                                                                  K Amendment K October 30, 1992
_m - - _-_        -        _ - _ . - - - _ _ _      -  ______.-m-___  ____m_  _-__    - __ -. _ _ _ . _ _ _ _ - --
 
CESSAR 8!nificui:n                                        (Sh ot 9 of 10)
J EFFECTIVP. PAGE LISTING (Cont'd)
CilAPTKit 16 Text (Cont'd)
Page                                                Amendment 16.15-4                                                  K 16.15-5                                                  K 16.15-6                                                  K 16.15-7                                                  K 16.15-8                                                  K 16.15-9                                                  K 16.15-10                                                K 16.15-11                                                K 16.15-12                                                K 16.15-13                                                K 16.15-14                                                K 16.15-15                                                K 16.15-16                                                K 16.15-17                                                K 16.15-18                                                K
[s]
      't/
16.15-19 16.'15-20 K
K 16.15-21                                                K 16.15-22                                                K 16.15-23                                                K 16.15-24                                                K 16.15-25                                                K 16.15-26                                                  K 16.15-27                                                  K 16.15-28                                                  K 16.15-29                                                  K 16.15-30                                                K 16.15-31                                                K 16.15-32                                                K 16.15-33                                                K 16.15-34                                                K 16.15-35                                                K 16.15-36                                                K 16.15-37                                                K 16.15-38                                                K 16.15                                                K 16.15-40                                                K Tables                                      Amendment 1.1-1                                                    K
(~T                                                                        K
(      )          1.4-1 k/
Amendment K.
October 30, 1992
 
CESSAR ME"icuieu                                    (Sheet 10 of 10)
O EFFECTIVE PAGE LISTING (Cont'd)
CilAM'KR 16 Tablen (Cont'd)                          Amendment 3.1.11-1                                            K 3.1.11-2                                            K 3.1.11-3                                            K 3.1.11-4                                            K 3.1.11-5                                            K 3.3.1-1 (Sheet 1)                                  K 3.3.)-1 (Sheet 2)                                  I 3.3.2-1                                            1 3.3.4-1                                            I 3.3.7-1                                            I 3.3.10-1 (Sheet 1)                                  K 3.3.10-1 (Shoot 2)                                  I 3.3.10-1 (Shcot 3)                                  I 3.3.11-1                                            K 3.3.12-1                                            K 3.3.13-1 (Sheet 1)                                  I 3.3.13-1 (Shoot 2)                                  K 3.3.13-1 (Sheet 3)                                  K 3.3.14-1 (Shoot 1)                                  I 3.3.14-1 (Sheet 2)                                  I 3.3.14-1 (Sheet 3)                                  K 3.7.1-1                                            K 3.7.1-2                                            :I 3.8.1-1                                            1 3.8.1-2                                            1 3.8.6-1                                            I 5.2.2-1  (Sheet 1)                                K 5.2.2-1 (Sheet 2)                                  K 5.2.2-1  (Shoot 3)                                K Figuren                                Amendment 3.1.4-1                                            K 3.1.5-1                                            K 3.1.7-1                                            K 3.1.7-2                                            K 3.2.4-1                                              I 3.2.4-2                                            K 3.2.4-3                                            K 3.4.3-1A                                            K 3.4.3-1B                                            K 3.5.4-1                                            K 3.7.20                                              K 4.1-1                                              K 4.1-2                                              K Amendment K October 30, 1992
 
CESSAR USincamu m
TAHi.E OF CONTENTS CllAPTER 16 Section  Subject                                          Pago No.
16.1      CONTENTS, USE AND APPLICATION                    16.1-1 16.1.1    TABLE OF CONTEllTS                              16.1-1 16.1.2    1.0 USE AND APPLICATIONS                        16.1-1 16.1.2.1        _1.1 Definitions                          16.1-1 16.1.2.2        1.2 Logical Connectorn                    16.1-12 16.1.2.3        1.3 Completion Times                      16.1-14 16,1.2.4        1.4 Frequency                            16.1-22 16.1.2.5        1.5 Legal Conniderations                  16.1-25
  /h  16.2      2.0 SAFETY LIMITS                                16.2-1 O    16.3      3.0 APPLICABILITY                                16.3-1 16.3.1    LIMITING CONDITIONS FOR OPERATION (LCOs)        16.3-1 16.3.2    SURVEILLANCE REQUIREMENTS                        16.3-3 16.4      3.1 REACTIVITY CONTROL SYSTEMS                  16.4-1 16.4.1    3.1.1 SHUTDOWN MARGIll - T3yg > 135'T            16.4-1 g
16.4.2    3.1. 2 S!!UTDOWN MARGIN - T gyg s 135'F          16.4-2 16.4.3    3.1.3 REACTIVITY DALANCE                        '16.4-3 16.4.4    3.1.4-MODERATOR TEMPERATURE COEFFICIENT          16.4-5 (MTC) 16.4.5    3.1.5 CONTROL ELEMENT ASSEMBLY (CEA)            16.4-8 ALIGNMENT 16.4.6    3.1.6 SHUTDOWN CONTROL ELEMENT ASSEMBLY          16.4-13 (CEA) INSERTION LIMITS
  -i  16.4.7    3.3.7 REGULATING CONTROL ELEMENT-ASSEMBLY        16.4-15
'fw/ )          (CEA) INSERTION LIMITS Amendment K i              October-30,-1992
 
CESSARE!A! bio
=
0 TAllLP. OF CONTPRTil (Cont'd)
CilAPTER 16 flection      Dubject                                          Pago No.,
16.4.8      3.1.8 SPECI AL TEST EXCEPT1011S - SilUTDOWii      16.4-21 MARGIll 16.4.9    3.1.9 STE-MTC, GROUP llEIGilT, CEA IllSERTIOli    16.4-23 LIMITS, POWER DISTRIBUTIO!1 LIMITS, AllD CE! ITER CEA MISALICllMEllT 16.5    3. 2 POWER DISTRIBUTIOli LIMITS                  16.5-1 16.5.1  3.2.1 LIl1 EAR llEAT RATE (L11R)                  16.5-1 16.5.2  3.2.2 PLAllAR DADI AL PEAE111G FACTORS            16.5-3 16.5.3  3.2.3 AZIMUTilAL POWER TILT - T q                16.5-5 16.5.4    3.2.4 D11BR                                      16.5-9 16.5.5    3. 2. 5 AXI AL SilAPE IllDEX (ASI)                16.5-15 16.6      3.3 I11STRUMEtiTATIOli                            16.6-1 16.6.1    3. 3.1 RPS IllSTRUMEliTATIOll: PRESSURIZER,      16.6-1 CollTAlliMEllT, STEAM GEllERATOR, REACTOR COOLAllT FLOW, LOSS OF LOAD 16.6.2  3.3.2 DEPARTURE FROM llUCLEATE BOILIl1G          16.6-6 RATIO (DiiBR) AliD LOCAL POWER DEllSITY (LPD) REACTOR PROTECTIO!1 SYSTEM (RPS)
TRIPS 16.6.3  3.3.3 VARIADLE OVERPOWER                          16.6-10 16.6.4    3.3.4 LOGAR1TilMIC POWER LEVEL                    16.6-13 16.6.5    3.3.S CORE PROTECTIO!i CALCULATORS                16.6-18 16.6.6    3.3.6 CO!1 TROL ELEMENT ASSEMBLY CALCULATORS      16.6-22 15.6.7    3.3.7 REACTOR PROTECTIO!1 SYSTEM (RPS)            16.6-25 LOGIC 16.6.8  3.3.8 REACTOR TRIP CIRCUIT BREAKERS              16.6-28 Amendment I 11              December 21, 1990
  .im
 
CESSAR !!Ecuim                                                            ,
1 (G
Tall!.E OF CONTIOIT!! (Cont'd)
CilAl'TIGt 16 Dection  Dubject                                        M o No.
16.6.9    3.3.9 MANUAL REACTOR TRIP                      16.6-30 16.6.10  3.3.10 ENGINEERED SAFETY FEATURES ACTUATION    16.6-32 SYSTFM (ESFAS) INSTRUMENTATIOli 16.6.11  3.3.II ENGINEERED SAPCTY FEATURES ACTUATIOli    16,6-38 SYSTEM (ESFAS) LOGIC 16.6.12  3.3.12 ENGINEERED SAFETY FEATURES ACTUATION    16.6-42 SYSTEM (ESPAS) IllSTRUMENTATIOli - MANUAL ACTUATION 16.6.13  3. 3.13 REMOTE S!!UTDOW!! MONITORING            16.6-44 IllSTRUMENTATION 16.6.14  3.3.14 ACCIDENT MONITORING INSTRUMENTATION      16.6-48 i
\
16.7      3.4 REACTOR COOLANT SYSTEM                      16.7-1 16.7.1    3.4.1 RCS PRESSURE, TEMPERATURE, AND FLOW      16.7-1 DND LIMITS 16.7.2    3.4.2 RCS MINIMUM TEMPERATURE FOR              16.7-3 CRITICALITY 16.7.3    3.4.3 RCS PRESSURE AND TEMPERATURE (P/T)        16.7-4 LIMITS 16.7.4    3.4.4 RCS LOOP - MODES 1 AND 2                16.7-8 16.7.5    3.4.S RCS LOOPS - MODE 3                      16.7-9 16.7.6    3. 4. 6 RCS LOOPS - MODE 4                    16.7-11 16.7.7    3.4.7 REACTOR COOLANT LOOPS AND                16.7-13 CIRCULATION - MODE 5, LOOPS FILLED 16.7.8    3.4.8 RCS LOOPS AND CIRCULATION - MODE 5,      16 . '/ -16
            -LOOPS NOT FILLED 16.7.9    3.4.9 PRESSURIZER                              16.7-18 f-(  16.7.10  3.4.10 PRESSURIZER SAFETY VALVES              16.7-20 Amendment I 111            December 21, 1990
 
CESSAR 8lnb.
O TAllt.E Ol' CONTENTS (Cont'd)
CilAl'fER 16 Dection                        Subject                                                                                                                                                            Pago No.
16.7.11                          3.4.11 LOW TEMPERATURE OVERPRESSURE                                                                                                                                16.7-22 PROTECTION (LTOP) SYSTEM 16.7.12                            3.4.12 RCS OPERATIOllAL LEAKAGE                                                                                                                                      16.7-24 16.7.13                            3.4.13 RCS PRESSURE ISOLATION VALVE                                                                                                                                  16.7-26 (PIV) LEAKAGE 16.7.14                            3.4.14 RCS LEAKAGE DETECTION                                                                                                                                          16.7-29 I!!STRUMENTATION 16.7.15                              3.4.15 RCS SPECIFIC ACTIVITY                                                                                                                                          16.7-32 16.7.16                              3.4.16 RCS LOOPS - TEST EXCEPTION                                                                                                                                      16.7-34 16.7.17                              3.4.17 REACTOR COOLANT GAS VENT                                                                                                                                        16.7-36 SYSTEM 16.8                                  3_._5              SAFETY INJECTION SYSTEM (SIS)                                                                                                                      16.B-1 16.8.1                                  3.5.1 SAFETY INJECTION TANKS (SITS)                                                                                                                                    16.8-1 16.8.2                                  3. 5. 2 SIS DIVISIONS - OPERATIllG                                                                                                                                      16.8-3 16.8.3                                  3.5.3 SIS DIVISIONS - SHUTDOWN                                                                                                                                            16.8-5 16.8.4                                  3.5.4 IN-CONTAINMENT REFUELING WATER                                                                                                                                      16.8-6 STORAGE TAllK (IRWST) 16.B.5                                    3. 5. 5 TP.ISODIUM PilOSPHATE (TSP)                                                                                                                                        16.8-9                h
        -16.9                                      3.6 CONTAINMENT SYSTEMS                                                                                                                                                    16.9          16.9.1                                      3.6.1 CONTAINMENT                                                                                                                                                          16.9-1 16.9.2                                      3.6.2 CONTAINMENT PERSONNEL LOCKS                                                                                                                                          16.9-2 16.9.3                                      3.6.3 CONTAINMENT ISOLATION VALVES                                                                                                                                          16.9-5 16.9.4                                        3.6.4 CONTAINMENT PRESSURE                                                                                                                                                  16.9-10 16.9.5                                        3.6.5 CONTAINMENT AIR TEMPERATURE                                                                                                                                            16.9-11 i
Amendment K iv                                                                                                        October 30, 1992
    ..      -_  _--a-_--,--.___--u,,-,------,----,_._x-----._x--                    - - - _ - - _ - - - - - - - . -                w-,,-.--------------. _.-,----------_--___r--z.-_----,-.-        - - - - , . - _ .- _ - - - - , - - - - - _  ----._ms---
 
CESSAR E'!ificui u t
L-TAllLE Ol' @NTFJiTH (Cont'd)
CIIAl'TER 16 Unction    Stabject                                        l'ago No.
16.9.6    3.6.6 CONTAlllMENT SPRAY SYSTEMS                26.9-12 16.9.7    3.6.7 IlYDROGEN AllALYZERS                      '.6.9-14 16.9.0    3.6.8 REACTOR SilIELD BUILDIllG                16.9-15  lK 16.9.9    3. 6.9 ANNULUS VEllTIIATION SYSTEM              16.9-16 16.10      3.7 PLAllT SYSTEMS                              16.10-1 16.10.1    3.7.1 MAlli STEAM SAFETY VALVES                16.10-1 16.10.2    3.7.2 MAlli STEAM JSOLATION VALVES              16.10-5 16.10.3  3.7.3 MAIN FEEDWATER ISOLATION VALVES          16.10-7 16.10.4    3.7.4 EMERGENCY FEEDWATER                      16.10-9
  '%./
16.10.5    3.7.5 EMERGEllCY FEEDWATER STORAGE TA!1K        16.10-11 16.10.6  3.7.6 SEC0!!DARY SPECIFIC ACTIVITY              16.10-13 16.10.7  3.7.7 COMPONENT COOLING WATER SYSTEM            16.10-14 16.10.8    3.7.8 STATICN SERVICE WATER SYSTEM              16.10-16 16.10.9    3.7.9 ULTIMATE NEAT SINK                        16.10-18 16.10.10  3.'7.10 FUEL STORAGE POOL WATER LEVEL          16.10-19 16.10.11  3.7.11 ATMOSPilERIC DUMP VALVES                16.10-21 16.10.12  3.7.12 CONTROL BUILDING VENTILATION SYSTEM      16.10-22 16.10.13  3.7.13 CONTROL ROOM VENTILATION SYSTEM          16.10-25 lK 16.10.14  3.7.14 SUBSPl!ERE BUILDING VEliTILATION        16.10-28 SYSTEM 16.10.15  3.7.15 FUEL BUILDIllG VENTILATION EXilAUST      16.10-30 SYSTEM
/    \
(v  )
Amendment K V              October 30, 1992
 
CESSAREK 6a O
TAllLF. OF CONTENTS (Cont'd)
CilAPTER 16 Section  Subjoct                                        Pago No.
16.10.16  3.7.16 DIESEL BUILDING VENTILATION SYSTEM      16.10-32 16.10.17 3.7.17 ESSENTIAL CilILLED WATER SYSTEM        16.10-33 16.10.18 3.7.18 PLANT SYSTEMS                          16.10-35 16.10.19 3.7.19 FUEL STORAGE POOL BORON                16.10-37 CONCENTRATION 16.10.20 3.7.20 SPENT FUEL ASSEMBLY STORAGE              16.10-39 16.11    3.8 ELECTRICAL POWER SYSTEMS                    16.11-1 16.11.1  3.8.1 AC SOURCES - OPERATING                    16.11-1 16.11.2  3. 8. 2 AC SOURCES - SilUTDOWN                  16.11-17 I    I-16.11.3  3.8.3 DIESEL FUEL AND LUBRICATING OIL          16.11-19 16.11.4  3.8.4 DC SOURCES - OPERATING                  16.11-22    g 16.11.5  3.8.5 DC SOURCES - SilUTDOWN                  16.11-25 16.11.6  3.8.6 BATTERY CELL PARAMETERS                  16.11-27 16.11.7  3.8.7 DISTRIBUTION SYSTEMS - OPERATING        16.11-31 16.11.8  3.8.8 DISTRIBUTION SYSTEMS - SilUTDOWN        16.11-33 16.12    3.9 REFUELING OPERATIONS                      16.12-1 16.12.1  3.9.1 BORON CONCENTRATION                      16.12-1 16.12.2  3.9.2 NUCLEAR INSTRUMENTATION                  16.12-2 16.12.3  3.9.3 CONTAINMENT PENETRATIONS                  16.12-4 16.12.4  3.9.4 SIIUTDOWN COOLING (SDC) AND COOLANT      16.12-6 CIRCULATION - }{IGil WATER LEVEL 16.12.5  3.9.5 SHUTDOWN COOLING (SDC) AND COOLANT        16.12-8 CIRCULATION - LOW WATER LEVEL                            q Amendment K vi              October 30, 1992
 
CESSAR Eluhu0s TABLE OF CONT 10iTS (Cont'd)
CllAPT101 16 Section              Subject                                                  Pago No.
16.12.6              3.9.6 REFUELING WATER LEVEL                              16.12-10 16.13                3.10 REDUCED RCS INVENTORY OPERATIONS                    16.13-1 16.13.1              3.10.1 REACTOR TRIP CIRCUIT BREAKERS                      16.13-1        -
16.13.2              3.10.2 REDUCED RCS INVENTORY                              16.13-2 OPERATIONS - INSTRUME!1TATIO!1                                      K 16.13.3              3.10.3 REDUCED RCS INVENTORY                              16.13-5 OPERATIO!1S - VENT PATilS 16.13.4              3.10.4 REDUCED RCS INVE!1 TORY                            16.13-7 OPERATIONS - IIEAT REMOVAL 16.13.5              3.10.5 REDUCED RCS INVENTORY                              16.13-10 OPERATIONS - CONTAINMENT INTEGRITY 16.13.6              3.10.6 REDUCED RCS INVENTORY                              16.13-12 OPERATIONS - AC POWER AVAILABILITY 16.13.7              3.10.7 REDUCED RCS INVENTORY                              16.13-14 OPERATIONS - DC DISTRIBUTION                                              ,
15.14                4.0 DESIGN FEATURES                                      16.14-1 16.14.1              4.1 SITE                                                  16.14-1 16.14.2              4.2 REACTOR CORE                                          16.14-2 16.14.3              4.3 FUEL STORAGE                                          16.14-4 16.15                5.0 ADMINISTRATIVE CONTROLS                                16.15-1 16.15.1              5.1 RESPONSIBILITY                                        16.15-1 16.15.2              5.2 ORGANIZATION                                          16.15-2 16.15.3              5.3 UNIT STAFF QUALIFICATIONS                            16.15-8 16.15,4              S.4 TRAINING                                              16,15-0 16.15.5              5.5 REVIEWS AND AUDITS                                    16.15-10 Amendment F.
vii    October 30, 1992
 
CESSAR ElaAmou O
TAllt.H OF CONTENTS (Cont'd)
CitAlvn31 16 flection    Subject                                          Pago No.
16.15.6      5. 6 TECl!!4ICAL SPECIPICATIOllS (TS) BASES        16.15-16 CO!1 TROL 16.15.7      5.7 PROCEDURES, PROGRAMS, AND MANUALS              16.15-17 16.15.8      5. 8 SAFETY FUllCTIOli DETERMillAT1011            16.15-29 PROGRAM (SPDP)                                              K 16.15.9      5.9 REPORT 111G HEQUIREMEliTS                      16.15-31 16.15.10    5.10 RECORL RETENTION                              16.15-37 16.15.11    [5.11 ilIGli RADI ATIOli AREA)                    16.15-39 O
O-Amendment K viii                October 30, 1992
 
CESSAR EL"lCATION
,/'
    )
LIST OF TABLES CllAl'TER 16 Tablo      Subject 1.1-1      Modes 3.4-1      Examples 3.1.11-1  Required Monitoring Frequencies for Backup Boron Dilution Detection as a Function of Operating Charging Punps and Plant Operational Modes for Eggf > 0.98 3.1.11-2  Required Monitoring Frequencies for Backup Boron Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for 0.98 >Kggg > 0.97 3.1.11-3  Required Monitoring Frequencies for Backup Boron s              Dilution Detection as a Function of Operating
(                  Charging Pumps and Plant Operational Modes for                          K
      )
(d                0.97 3 Kggy > 0.96 3.1.11-4  Required Monitoring Frequencies for Backup Baron Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for 0.96 2 K ggf i 0.95 3.1.11-5  Required Monitoring Frequencies for Backup Boron Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for Kgff < 0.95 3.3.1-1    Reactor Protective Instrumentation Limiting Safety System Settings 3.3.2-1    Reactor Protective Instrumentation (DNBR and LPD)
Limiting Safety System Settings 3.3.4-1    Logarithmic Power Level Channel Requirements Limiting Safety System Settings 3.3.7-1    RPS Logic 3.3.10-1  ESPAS Instrumentation iQ V) l Amendment K ix                                October 30, 1992
 
CESSAR E!L"icavi:n O
LIST OF TAllLES C11Al"rER 16 Table    Subject 3.3.11-1  ESPAS Logic 3.3.12-1  ESPAS Instrumentation - Manual Actuation 3.3.13-1  Remote Shutdown Monitoring Instrumentation 3.3.14-1  Accident Monitoring Instrumentation 3.7.1-1  Variable Overpower Trip Sotpoint Versus Operable Main Steam Safety Va3ve 3.7.1-2  Main Steam Safety Valve Lift Settings 3.8.1-1  Diesel Generator Test Schedule 3.8.1-2  Additional Reliability Actions 3.8.6-1  Battery Electrolyte Requirements 5.2.2-1  Minimum Shift Crew Composition                      y O
Amendment K x                October 30, 1992
 
CESSAR E!SZeuim LIST OF FIGURES CILM*fER 16 Figuro    Gubject 3.1.4-1  Moderator Coefficient vs. Powor -
3.1.5-1  Required Power Roduction After CEA Deviation 3.1.7-1  CEA Insortion Limits vs. Power (JOLSS Inservice)
K 3.1.7-2  CEA Insertion Limits vs. Power (COLSS Not In Service) 3.2.4-1  COLSS DNBR Power Operating Limit Allowance for Both CEACs Inoperable 3.2.4-2  DNBR Margin Operating Limit Based on Core Protection Calculators 7- s\ 3.2.4-3  DNBR Margin Operating Limit Based on Core
(                Protection Calculators (COLSS Out of Service,
  \msl            CEACs Inoperable) 3.4.3-1A  RCS Pressure and Temperature Limits (Heat-Up) 3.4.3-13  RCS Pressure and Temperaturo LimitG (Cooldown) 3.5.4-1  Allowed IRWST Temperature vs. Containment Atmosphero Temperature 3.7.20    Discharge Burnup vs. Initial Enrichment for Region II Racks 4.1-1    Sito and Exclusion Area Boundarion 4.1-2    Low Population Zone
(~
(    )
N.s Amendment K Xi                October 30, 1992 l
o e-  -    .                                      -
 
CESSARE!Lben CONTENTS, USE AND APPLICATION
(~}
i
. i.
16.1
    ''/ 16.1.1          TABLE OF CONTENTS TABLE OF CQNTCNIS Page PREFACE      ......                                                  . .. ..                      .. ....                      ...        i TABLE OF CONTENTS                        .. .            .            . .                .. .. .... . . .                                    ii LIST OF TABLES          , . .. .                                          ., . ..... ...... ...                                                viii LIST OF FIGURES . ,              . ... ...                            . ..              .......                      .......                x LIST OF EFFECTIVE PAGES . . . .                                .          . . . , .......                                      . .            xvi 1.0 E_ANp APPLICATION 1.1  DEFINITIONS                    .          . .                          ..              .,. . . .... .                                1.1 1 ACTIONS      . , ...                                .                                            .        .. ... ..                      1.1 1-AXIAL SilAPE INDEX                      ..                  ..            .        .        .... ... ....                              1.1-1 AZIMUTilAL POWER TILT T,(Digital)                                            .. ... .., . .. .                                            1.1-l' AZIMUTilAL POWER T1LT - T,(Analog) .                                                ...... . .                          ....            1.1 1 Cil ANNEL CALIBRATION .... . ...                                                          .. ......                        ..            1.1 1
' /O                      CilANNEL CHECK .. . .                                                    .        .            .          . ......                    1.1-2 CilANNEL FUNCTIONAL TEST                                    ..                ..                  .              ..        ...          1.1-2 CONTAINMENT INTEGRITY .                                                ...                .......                    ..          .      1.1-3        a.
CONT ROLLED LEAKAGE . .                                                          . .                  .. . .. ...                        1.1-3        lh CORE ALTERATION                      . .            .          ... .                    .. .. .                    ...,                l.1-4 CORIi OPERATING LIMITS REPORT (COLR)                                                                  .... ... .                          1.1-4 D tVIS10N . . . . .          .                  ............. ..... . . .                . . ..                                          1.1-4          K
                        - DOSE EQUIVALENT l-131                            ....                        ,            .                              ...            1.1 4 s AVERAGE DISINTEGRATION ENERGY . ,                                                              ..          . . ..                      1.1-4 ENGINEEP.ED SAFETY FEATURE RESPONSE TIME                                                                  .. ......                      1.1-5 ESTIM ATED CRITICAL POSITION (ECP) ....                                                              ..        ... ..                  1.1-5        i IDENTIFIED LEAKAGE                      .            ..                  ...              ..                ..... ..                    1.1-5        lE Ky    .      . .. .,                    .              .                    ....                ... .                      ..        1.1-5        g LEAKAGE-CONTROLLED . . .                                                            .. ....                                ..          1.l.5        6 LEAKAGE-IDENTIFIED . .. .                                                  . .            . ..              . .              .        1.1-5 LEAKAGE-PRESSURE EOUNDARY                                          .        ..            ... .. .                                      1.1-6 LEAKAGE-UNIDENTIFIED ..                                                .                                .          .                      1.1-6 MID-LOOP ,                  . .            ,,          .                    .        . .            . . . . ..                        1.1 6 MODE,      .                . , . . . . . .                    ......                                              ,            . 1.1-6        lK OFFSITE DOSE CALCULATION MANUAL                                                      . . . .                            .                1.1-6 OPERABLE - OPERABILITY ,                                    . . . .                        ...                ...          .            1.1-7 PHYSICS TESTS                        ...                                            .                  ..                  ...          1.1-7 PRESSURE BOUNDARY LEAKAGE                                          ,.                    . . . ,,.                          ..        1.1 7
  /%
    -.        SYSTEM 80+                                                              i Amendment K 16.1-i                                                                        October 30,1992
 
CESSAR E'RICATCH O
1Al)l.B OF CONTENTS (continued)
Page 1.1  DEFINITIONS (continued)
PROCESS CONTROL PROGRAM . . . . .                        .......,.........                  1.1 8 RATED TilERM AL POWER . . . . . . . . . . ................                                  1.1 8 REACTOR PROTECTION SYSTEM RESPONSE TIME . . . . . . . . . .                                1.1-8 REACTOR SillELD BUILDING INTEGRITY . . . . . . . . . . . . . . , .                          1.1 8  J REDUCED RCS INVENTORY              .        .......... ...........                          1.1 9  lg REPORTABl.E EVENT . . . . . . .            .. ,............... ..                          1.1-9 SIIUTDOWN M ARGIN . . . . . . . . . . . . . . . . .............                            1.1-9 SITE BOUNDARY . . . . . . . . . ..                ...................                      1.1-9 SOFTWARE . . . . . . . . . . . . . .... ................                                    1.1-9 TilERMAL POWER ,          ...... .... ..................                                    1.1 9 TRAIN.........................................                                              1.1-9  lK U NID ENTI FI ED LEAK AG E . . . . . . . . . . . . . . . . . . . . . . . . ..              1.1-9 UNRODDED INTEGRATED RADIAL PEAKING FACTOR - F, . . . .                                      1.1 10 UNRODDED PLANAR RADIAL PEAKING FACTOR - F,,                                    . . . . . . 1.1 10 1.2 LOGICAL CONNECTORS . . . .............., ..... ..                                            1.1-12 1.3 COMPLET!ON TIMES .......... ...................                                              1.1-14 1.4  FREQUENCY , ............ .....................                                            1.1-22 1.5  LEGAL CONSIDERATIONS .                  ... ... ..... ... .,,..                            1.1-25 2.0 SAEETY 1.lMITS 2.1  SAFETY LIMITS . . ..... .....................            ...                              2-1 2.2 SAFETY LIMIT VIOLATION ... ....                                  ...... ........            2-1 3.0 APPLICABILITY Limiting Conditions for Operation (LCO3) . . .          .. ................                    3.0-1 Surveillance Requirements (SRs)    .......                    .................                3.0-3 3.1  REACTIVITY CONTROL SYSTEMS 3.1.1  Shutdown Margin - T, > 135*F                  . .... ....                .. .. 3.1-1      g 3.1.2 Shutdown Margin - T,, s; 135'F              ,.... .............                    3M 3.1.3 Reactivity Balance ... ..... . ............,....                                    3.1-3 3.1.4 Moderator Temperature Coefficient (MTC) . .. . ... ...                              3.1-5 3.1.5 Control Element Assembly (CEA) Alignment . . . . . . . .                    ... 3.1-8 3.1.6 Shutdawn CEA Insertion Limits                .. ........ .. .                        3.1-13 SYSTEM 80+                                        ii Amendment K 1 6 ,1 -11                                    October 30,1992
 
CESSAR E!MICATCH n
v TABLE OF CONTENTS (continued)
Page 3.1.7 Regulating CEA Insertion Limits . . . . . . . .                .. ..... ,.            3.1-15 3.1.8 Special Test Exception - Shutdown Margin . . . . .........                            3.1-21 3.1.9 Special Test Exception - hioderator Temperature Coefficient, Group Ileight, CEA Insertion. Power Distribution Limits, and Center CEA Misalignment ........... ............                                    3.1-23 3.1.10 Special Test Exception-CEDMS Testing . ..............                                3.1-25  g 3.1.11 Baron Dilution Alarnu              . .        . ..... .. . ...                      3.1-27 3.2 POWER DISTRIBUTION LIMITS 3.2.1 Linear lleat Rate (LilR) ......... . .............                                    3.2-1 3.2.2 Planar Radial Peaking Factors . . . .        ....,....... .. .                        3.2 3 3.2.3 Azimuthal Power Tilt - T, ........................                                    3.2-5 3.2.4 Departure from Nucleate Boiling Ration (DNBR) . . . . . . . . . .                      3.2-9 3.2.5 Axial Shape Index (ASI) .... ..... .. ....... ...                                      3.2 15
,CN          3.3  INSTRUMENTATION
\    )
  '''              3.3.1  Reactor Protective System Instrumentation: Pressuriur, Containment, Steam Generator, Reactor Coolant Flow, Loss of toad . . . . . . . . . . ... ................... .                                3.3-1 3.3.2 Departure from Nucleate Boiling Ratio (DNBR) and Local Power Density (LPD) Reactor Protection System (RPS) Trips                      . 3.36 3.3.3 Variable Overpower . . . . . . . . . .            . . ...........                    3.3-10 3.3.4 Logarithmic Power Level . . . . . . . .... ............                                3.3-13 3.3.5 Core Protection Calculators (CPCs) , , , , , , . . , ........                          3.3-18 3.3.6 Control Element Assembly Calculators (CEACs) ..,,,...,.                                3.3-22 3.3.7 Reactor Protection System (RPS) Logic ................                                3.3-25 3.3.8 Reactor Trip Circuit Breakers . ..... ...... .......                                  3.3-28 3.3.9 Manual Reactor trip . . , .      ... .. ... ....... ....                              3.3-30 3.3.10 Engineered Safety Feature Actuation System (ESFAS)
Instrumentation . . . . . .  ... ........ ...........                              3.3-32 3.3.11 Engineered Safety Feature Actuation System (EFAS) Imgic . . . .                      3.3-38 3.3.12 Engineered Safety Feature Actuation System (ESFAS)
Instrumentation - Manual Actuation . ............... .                              3.3-42 3.3.13 Remote Shutdown Monitoring Instrumentation (RSMI) . . . . .                      . 3.3-44 7 .L '4 Accident Monitoring Instrumentation (AMI) ...... .....                              3.3-48 3
h
' t ,/    SYSTEM 80+                                      iii Amendment K 16.1-lii                                    October 30,1992
 
CESSARE h ms O
TABlJi OF CONTENTS (continued) -
Page 3.4  REACTOR COOLANT SYSTEM 3.4,1  RCS Pressure. Temperature. and Flow DNB Limits                          ........        3.4-1 3.4.2 RCS Minimum Temperature for Criticality ..... .... .                                      3.4-3 3.4.3 RCS Pressure and Temperature (P/T) Limits . . . . . . . . . . . . .                        3.4 4 3.4.4 RCS Loops - MODES I and 2 . . . ..................                                        3.4 8 3.4.5 RCS loops MODE 3            ................ .........                                    3.4-9 3.4.6 RCS Loops - MODE 4              .. ...... ..... ... ....                                  3.4-11 3.4.7 RCS leops - MODE 5 - Loops Filled . ...............                                        3.4-13 3.4.8 RCS Loops - MODE 5 - Loops Not Filled . , .                            .......,.          3.4-16 3.4.9 Pressuri zer . . . . . . . . . . . . . . . . . . . .          ......... ...              3.4 18 3.4,10 Pressurizer Safety Valves ...... .................                                        3.4-20 3.4.11 1.cw Temperature Overpressure Protection (LTOP) System .                            .. 3.4-22 3.4.12 RCS Operational Leakage .              ...... . ....... ....                            3.4-24 3.4.13 RCS Pressure Isolation Valve (PlV) Leakage . ....... ..                                  3.4-26 3.4.14 RCS Leakage Detection Instrumentation . , , . . . . . . . . . .                        . 3.4-29 3.4.15 RCS Specific Activity . . .          ....            .............. .                    3.4 32 3.4.16 RCS RCS Loops - Test Exception ..                      .      .      .........          3.4 34 3.4.17 Reactor Coolant Oas Vent System . . . . . . . . . . .                                    3.4-36 lR 3.5  SAFETY INJECTION SYSTEM 1.5.1  Safety injection Tanks (SITS)        ... ......... .....                                3.5 1 3.5.2 Safety injection Divisions Operating . . . . . . . . . . . . . . . . .                    3.5-3 3.5.3 Safety injection Divisions - Shutdown . . ......... ....                                  3.5-5 3.5.4 In<ontainment Refueling Water Storage Tank (IRWST) . . . . .                              3.5-6 3.5.5 Trisodium Phosphate (TSP) . .. . .................                                        3.5-9 lR 3.6 CONTAINMENT SYSTEMS 3.6.1 Containment . . .      ..... ......                      ..        .. ........            3.6-1 3.6.2 Containment Personnel Locks                ........... ..... ..                          3.6-2 3.6.3 Containment isolation Valves .... .....                              . ........            3.6-5 3.6.4 Containment Pressure            .        .. ... ..............                            3.6-10 3.6.5 Containment Air Temperature .                ........ .. ... ...                          3.6-11 3.6.6 Containment Spray System              .      .              . . .... .                  . 3.6-12 3.6.7 Hydrogen Analyzers .          .      .      , , . .... ...                        ... 3.6-14 3.6.8  Reactor Shield Building        ..        .                    .. . .......              3.6-15 lK 3.6.9  Annulus Ventilation System                .. . .              .      ..... ..          3.6-16 SYSTEM 80 +                                        iv Amendment K 16.1-iv                                        October 30,1992
 
4 CESSAR E5E"lCAT13N i      r
    %./ )
  \
TABLE OF CONTENTS (continued)
Page 3.7 PLANT SYSTEMS 3.7.1  Main Steam Safety Valves (MSSVs) .                .        .. ........ .                      3.7 1 3.7.2 Main Steam Isolation Valves (MSIVs)                  .........      .....                        3.7-5 3.7.3 Main Feedwater Isolation Valves (MFIVs)                    ..  ..  ..                  ....      3.7-7 3.7,4 Emergency Feedwater (EFW) System . ..                              . .,.. . ,                    3.7-9 3.7.5 Emergency Feedwater Storage Tank (EFWST) . . . . . . .                                  . ..      3.7-11 3.7.6 Secondary Specific Activity ..                ... .. .. .                                  ... 3.7-13 3.7.7 Component Cooling Water System (CCW)                            ..            .      ...      3.7-14 3.7.8 Station Service Water System (SSWS) .                      .............                          3.7 16 3.7.9 Ultimate lleat Sink    .... . ............. . . ...                                              3.7-18 3.7.10 Fuel Storage Pool Water Level            .. . .                . ..... ....                    3.7-19 3.7.11 Atmospheric Dump Valves . .                    ...... ..                        .      ...      3.7-21 3.7.12 Contml Complex Ventilation System .                    . .            .... ... .                3.7-22  K 3.7.13 Control Rxm Ventilation System . . . .                            .. ..... .,                  3.7-25 3.7.14 Subsphere Building Ventilation System . . ...... .                                        .. 3.7-28 3.7.15 Fuel Building Ventilation Exhaust System . . .                                  .. ...          3.7-30 3
9                3.7.16 Diesel Building Ventilation System .                      . .            .  . ....              3.7-32
    '~
3.7.17 Essential Chilled Water System                . .                          .....            . 3.7-33 3.7.18 Nuclear Annes Ventilation System            ,.        .... . ... ....                          3.7 35 3.7.19 Fuel Storage Pool Boron Concentration                  .. . ... .                        . . 3.7-37  K 3.7.20 Spent Fuel Assembly Storage            .      .... . .                              . . .      3.7-39 3.8  ELECTRICAL POWER SYSTEMS 3.8.1  AC Sources - Operating      . .... ... . .... .... ..                                          3.8-1 3.8.2 AC Sources - Shutdown .          ...          .            ... . . ,,,.                        3.8 17 3.8.3 Diesel Fuel and Lubricating Oil .            .... .                ......                ... 3.8                          3.8.4 DC Sources - Operating . ,          . . ,.... . . . .....                                        3.8 22 3.8.5 DC Sources - S'autdown                  . . ...                              . .          ... 3.8-25 3.8.6 Battery Cell Parameters .......                      ...          ....... ..                    3.8-27 3.8.7 Distribution Systems - Operating                  .. ..              .          ..        . 3.8-31 3.3.8 Distnbution Systems - Shutdown              . ........                            ......        3.8-33 3.9  REFUELING OPERATIONS 3.9.1  Boron Concentration      .    . . . ..                  .          .. . ...                  3.9-1 3.9.2 Nuclear Instrumentation . .            ..        .                .                  .. .      3.9-2 3.9.3 Containment Penetrations . . ..                            ... ...                    . ..        3.9-4 3.9.4 Shutdown Cooling (SDC) and Coolant Circulation - High Water Level . . .      ..      .      ..        . . ........ ..                                3.9-6 m
  /      T i            SYSTEM 80+                                      v
,  wl-
~
Amendment K 16.1-v                                            October 30,1992
 
C E S S A R ESMienia O
I&BJE OF CONTENTS (continued)
Page 3.9.5 Shutdown Cooling (SDC) and Coolant Circulation - IAw Water Level . . ....... ......................                                    3.9-8 3.9.6 Refueling Water 1.cVel . . . . ......................                                3.9-10 3.10 REDUCED RCS INVENTORY OPERATIONS 3.10.1 Reactor Trip Circuit Breakers              ...... ...... ......                      3.10-1 3.10.2 Reduced RCS Inventory Operations - Instrumentation , , . . . . . .                  3.10-2 3.10.3 Reduced RCS Inventory Operations - Vent Paths ..........                            3.10-5 3.10.4 Reduced RCS Inventory Operations -lleat Removal ........                            3.10-7 3.10.5 Reduced RCS Inventory Operations - Containment Integrity . . . .                    3.10-10 3.10.6 Reduced RCS Inventory Operations - AC Power Availability . . .                      3.10-12 3.10.7 Reduced RCS Inventory Operations - DC Distribution System ..                        3.10-14 4.0 DESIGN FEATURFJ 4.1  SITE E
4.1.1    Site and Exclusion Area Boundaries            ..................                  4.0-1 4.1.2 Low Population Zone (LPZ) . . . . .                . ..... . ,. ,,,.                  4.0 1 4.2  REACTOR CORE 4.2.1  Fuel Assemblies      .    ..... . .... ........,....                              4.0-1 4.2.2 [ Control Rodl Assemblies . .            . .............. . ..                      4.0-1 4.3  FUEL STORAGE 4.3.1  Criticality  .. . ..                      .      .. ..............                4.0-4 4.3.2 Drainage . .        .      .. . ... . ................                              4.0 5 4.3.3 Capacity ...          ..        . ....            ............ ..                4.0-5 5.0 ADMINISTR ATIVE CONTROI.S 5.1  RESPONSIBILITY 5.2 ORGANIZATION 5.2.1  Onsite and Offsite Organizations                .      . ........ ...            5.0-2 5.2.2 Unit Staff . . . . . . . . . .    ..... ... ..... .. .....                          5.0-2 SYSTEM 80+                                          vi Amendment K 16.1-vi                                  October 30,1992
 
  ._            .-    .          - .        . .    .~            .      ,  .--          .- -                - . . - _ ...-            . . . .        .                -    . - . ...
CESSARinL mm                                                                                                                                                                            !
          ./                                                                                                                                              --
j t
            \
IAJRLOF CONTENTS (continued)
Page-5.3 UNIT STAFF QUALIFICATIONS                                  ...... ,.........,.....                                          5.0-8i                                .
5.4 TRAI N I NG , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.0-9 5.5 REVIEWS AND AUDITS . . . .                              . .......................                                          5.0-10 5.5.1  Plant Re views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    - 5.0 10-5.5.2 [Offsite) Review and Audit . . , . . . . . . , , , . . . . . . . . . . . .                                        . 5,0-12 5 . 5 . 3 Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                :
5.0-14                            .
5.6 TECIINICAL SPECIFICATIONS (TS) BASES CONTROL , . . . . . . .                                                              -5.0-16 5.7 PROCEDURES. PROGRAMS, AND hi ANUALS . . . . . . . . . . . . . .                                                                                    K 5.0 17 5.7.1 Procedures . . . . . . . .                        . ..        . . . . . . . . . . . .              . . ..            5.0-17' 5.7.2 Programs and Manuals                      . .... . . . . . . . . . . . . .......                                      5.0-18
              ,e                        5.8 SAFETY FUNCTION DETERMINATION PROGRAM (SFDP)                                                              . . . . .          5.0                                          5.9 REPORTING REQUIREMENTS 5.9.1 Routine Reports . . . . . . . . . . . . . . . .                                . . . . . . .......                  5.0-31 5.9.2 Special Reports . . . . . . ................                                                      . . . . .      :  5.0-35
                                      -5.10 RECORD RETENTION . . .. , . . . . . . . . . . . . . . . . . . . . . . . . .                                              ' 5.0                                        5.11 lilGil RADIATION AREA . . . .                              ....... . . . . . . . . .... o                                - 5.0-39 a
Q_                SYSTEM 80+                                                              vii -
                                                                                                                                                - Amendment K
                                                                                              - 16.1 vil                                        - October 30,1992                                            >
1 c.
8  't      <    q -t W:r    ti%        s-  er w1 --37-IP  n- Pw  w  e ++.c*t1-      p-7    --+-s--  ''w. me''  q    lq p w wwy    w y      w g- w      g-N      y        w--  t- 7 y %
 
CESSAR nainemOn O
LIST OF TABLES Table No,                                                                'T itig                                                                  Pars 1.1-1            hiodes      . . ,                  . ..                  .      . .. . .                      . ..... ..                    1.1-11 1.4-1            Examples          .                                                  .                      ... ..                    .        1.1 24 3.1.11-1          Required hionitoring Frequencies for Backup Boron Dilution Detection as a Function of Operating Charging Pumps and Plant Operational hiodes for K,n > 0.98                                .                . .                      .......                        .      3.1-30 3.1.11-2          Required hionitoring Frequencies for Backup Boron Dilution Detection as a Function of Operating Charging Pumps and Plant Operational hindes for 0.98 2 K,y > 0.97                    .        .-...                          ... .. .                    .......              3.1-30 3.1.11-3          Required hionitoring Frequencies for Backup Boron Dilution Detection as a                                                                                          K-Function of Operating Charging Pumps and Plant Operational hiodes for 0.97 2 K,y > 0.96        . .. .. ......                                        ,, . .. .                      .. ..          3.1-31 3.1.11-4          Required hionitoring Frequencies for Backup Boron Dilution Detection as a Function of Operatmg Charging Pumps and Plant Operational hiodes for 0.96 2 K,y > 0.95        .                    . .                                    .            ..                . .      3.1-31 3.1.11-5          Required hionitoring Frequencies for Backup Baron Dilution Detection as a Function of Operating Charging Pumps and Plant Operational hiodes for K,, s; 0.95                                                          .                .                    ... .              3.1-32 3.3.1-1          Reactor Protectise instrumentation Limiting Safety System Settings          .                            .          .              .        . .            .                            3.3-4 3.3.2-1          Reactor Protective Instr}}

Latest revision as of 19:20, 12 December 2024

Amend K to CESSAR - Design Certification. W/50 Oversize Encls
ML20126E619
Person / Time
Site: 05200002
Issue date: 10/30/1992
From:
ASEA BROWN BOVERI, INC.
To:
Shared Package
ML20126E615 List:
References
NUDOCS 9212290224
Download: ML20126E619 (940)


Text