ML20199G390: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:.                   _. _ _
{{#Wiki_filter:.
i l
i l
  .                                          ENCLOSURE 3 VOGTLE ELECTRIC GENERATING PLANT REQUEST TO REVISE TECIINICAL SPECIFICATIONS REACTOR TRIP SYSTEM AND ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION TRIP SETPOINTS MARKED-UP TECIINICAL SPECIFICATION AND BASES PAGES-i l
ENCLOSURE 3 VOGTLE ELECTRIC GENERATING PLANT REQUEST TO REVISE TECIINICAL SPECIFICATIONS REACTOR TRIP SYSTEM AND ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION TRIP SETPOINTS MARKED-UP TECIINICAL SPECIFICATION AND BASES PAGES-i l
The following pages from VEGP Unit I and Unit 2 TS LCOs 3.3.1 and 3.3.2 have been marked to show the proposed changes, in addition, clean typed pages reflecting the proposed changes have been provided.
The following pages from VEGP Unit I and Unit 2 TS LCOs 3.3.1 and 3.3.2 have been marked to show the proposed changes, in addition, clean typed pages reflecting the proposed changes have been provided.
9711250169 971120 "
9711250169 971120 "
PDR ADOCK 05000424 P                   PDR E3 I .
PDR ADOCK 05000424 P
PDR E3 I.


RTS Instrumentation 3.3.1 Table 3.3.1 1 (pepe 1 ef 8)
RTS Instrumentation 3.3.1 Table 3.3.1 1 (pepe 1 ef 8)
Reacter Trip system Instrasentation APPLICARLE M(2ES g)g OR OfMER PfCIFIED        REQUIRED                          SURVEILLANCE        ALLthdABLE            TRIP [n stTPo!WTCj CONDITIONS            REOUIREMENTs          VALUE FUNCT10N             CON 0lfl0Ns       CMANNELs
Reacter Trip system Instrasentation APPLICARLE M(2ES g)g OR OfMER TRIP [n stTPo!WTCj PfCIFIED REQUIRED SURVEILLANCE ALLthdABLE FUNCT10N CON 0lfl0Ns CMANNELs CONDITIONS REOUIREMENTs VALUE 1.
: 1. menust Reacter               1,2               2           3                 st 3.3.1.13             NA                 NA Trip JI '3, 4I '3, SI *I       2           C                 st 3.3.1.13             NA                 mA
menust Reacter 1,2 2
: 2. Power Renee
3 st 3.3.1.13 NA NA Trip J '3, 4 '3, S *I 2
              . heutron flun
C st 3.3.1.13 NA mA I
                ** High                     1,2               4           0                 st 3.3.1.1       s 111.31 RTP           1991 RTP st 3.3.1.2 st 3.3.1.7 st 3.3.1.11 SR 3.3.1.15 st 3.3.1.1       s 27.3% RTP       s 251 RTP
I I
: b.      Lew                1(b),2            4            E SR 3.3.1.8 st 3.3.1.11 st 3.3.1.15 I                                                                           g                 SR 3.3.1.7         s 6.3% RTP               1 RTP
2.
: 3. Power Renee                  1,2              4
Power Renee
,'                                                                                            st 3.3.1.11         with flee             th time seutron Flus Ni$                                                                                  constant           constant Positive Rate                                                                                                         a 2 sec t 2 see 1(b), 2I 'I                     F,G               st 3.3.1.1       s 31.11 RTP       s 251 RTP     -
. heutron flun
: 4. Intermediate Renee                            2 heutron Flun                                                                 st 3.3.1.3 st 3.3.1.11 2Id3               2           N               sa 3.3.1.1       s 31.11 RTP       s 251 RTP
** High 1,2 4
'                                                                                              st 3.3.1.s sa 3.3.1.11 j
0 st 3.3.1.1 s 111.31 RTP 1991 RTP st 3.3.1.2 st 3.3.1.7 st 3.3.1.11 SR 3.3.1.15 b.
Lew 1(b) 2 4
E st 3.3.1.1 s 27.3% RTP s 251 RTP SR 3.3.1.8 st 3.3.1.11 st 3.3.1.15 I
3.
Power Renee 1,2 4
g SR 3.3.1.7 s 6.3% RTP 1 RTP seutron Flus Ni$
st 3.3.1.11 with flee th time constant constant Positive Rate t 2 see a 2 sec 4.
Intermediate Renee 1(b), 2 'I 2
F,G st 3.3.1.1 s 31.11 RTP s 251 RTP I
heutron Flun st 3.3.1.3 st 3.3.1.11 2Id3 2
N sa 3.3.1.1 s 31.11 RTP s 251 RTP st 3.3.1.s sa 3.3.1.11 j
(continued) f (a) With Reactor Trip treekers (RTss) cleaed and Red Centret systes capable of red withdrawel.
(continued) f (a) With Reactor Trip treekers (RTss) cleaed and Red Centret systes capable of red withdrawel.
(b) DeLow the P 10 (Power Renee Woutron Flum) intertecks.
(b) DeLow the P 10 (Power Renee Woutron Flum) intertecks.
Line 41: Line 52:
(n) The Trip Selpids mcur k sd a coamfimk 4e Homiss' ulos os seaswy in depex fop 4d cadious.
(n) The Trip Selpids mcur k sd a coamfimk 4e Homiss' ulos os seaswy in depex fop 4d cadious.
l l
l l
l Vogtic Units 1 and 2                                3.3-14                         Amendment No. 96             (Unit 1)
3.3-14 Amendment No. 96 (Unit 1) l Vogtic Units 1 and 2 Amendment No. 74 (Unit 2)
Amendment No. 74             (Unit 2)


RTS Instrumentation 3.3.1 febte 3.3.1 1 (pese 2 of 83 asector Trip system instrumentation MM
RTS Instrumentation 3.3.1 febte 3.3.1 1 (pese 2 of 83 asector Trip system instrumentation MM
                                          #ST,g                 ataulatp                suavtILLAuct  AttouAsts      talp s*fc!FIED conDl710Ns   ataulatatuts     VALut     stfro!N Func730W                  couplTIOus          chamutts 1,J       Sa 3.3.1.1     s 1.4 E5   s 1.0 E5 2(d)                2                                                  eps
#ST,g s*fc!FIED ataulatp suavtILLAuct AttouAsts talp Func730W couplTIOus chamutts conDl710Ns ataulatatuts VALut stfro!N 2(d) 2 1,J Sa 3.3.1.1 s 1.4 E5 s 1.0 E5 5.
: 5. Source a m                                                               sa 3.3.1.8       ces toutten itua                                                             sa 3.3.1.11 sa 3.3.1.15 sa 3.3.1.1    s 1.4 E5      1.0 E5 3(*I,4(a),5(*)             2         J,E sa 3.3.1.7       ces         ces sa 3.3.1.11 sa 3.3.1.15 NA i
Source a m sa 3.3.1.8 ces eps toutten itua sa 3.3.1.11 sa 3.3.1.15 3(*I,4(a),5(*)
3('),4('3,5(')             1           L       sa 3.3.1.1         mA sa 3.3.1.11 l
2 J,E sa 3.3.1.1 s 1.4 E5 1.0 E5 sa 3.3.1.7 ces ces sa 3.3.1.11 sa 3.3.1.15 3('),4('3,5(')
4                   sa 3.3.1.1     Refer to   aefer to
1 L
: 6. Onetenswroture 4T                1,2                            I mete 1      mete 1 sa 3.3.1.3 sa 3.3.1.6       (Pese       (Pese sa 3.3.1.7     3.3 20)     3.3 20)
sa 3.3.1.1 mA NA i
Sa 3.3.1.10 sa 3.3.1.15 4           E       sa 3.3.1.1     Refer to   Refer to
sa 3.3.1.11 l
: 7. Overpower of                      1,2                                                    mete 2      mete 2 sa 3.3.1.7 sa 3.3.1.10     (Poes       (Pese sa 3.3.1.15     3.3 21)     3.3 21)
6.
{sentinued) l I               With aTSs closed and med Centrol system capable of red uithdrawel.
Onetenswroture 4T 1,2 4
I sa 3.3.1.1 Refer to aefer to sa 3.3.1.3 mete 1 mete 1 sa 3.3.1.6 (Pese (Pese sa 3.3.1.7 3.3 20) 3.3 20)
Sa 3.3.1.10 sa 3.3.1.15 7.
Overpower of 1,2 4
E sa 3.3.1.1 Refer to Refer to sa 3.3.1.7 mete 2 mete 2 sa 3.3.1.10 (Poes (Pese sa 3.3.1.15 3.3 21) 3.3 21)
{sentinued) l I
With aTSs closed and med Centrol system capable of red uithdrawel.
l (s)
l (s)
(d) Selow the P*6 (Intennediate tonee moutron flum) intertecks.
(d) Selow the P*6 (Intennediate tonee moutron flum) intertecks.
(e) With the af8s apen. In this condition, source rense function does not provide reactor trip but does provide trymat to the mich flist at shutdown t.Lorm system (Lc0 3.3.8) and indicetton.
In this condition, source rense function does not provide reactor trip but does provide (e) With the af8s apen.
trymat to the mich flist at shutdown t.Lorm system (Lc0 3.3.8) and indicetton.
(n) The Trip Setpoin's mr.y be set more conservative than the Nominal value as necessary in response to plant conditions.
(n) The Trip Setpoin's mr.y be set more conservative than the Nominal value as necessary in response to plant conditions.
i e
i e
l
l
\
\\
3.3-15               Amendment No. 96 (Unit 1)
3.3-15 Amendment No. 96 (Unit 1)
Vogtle Units 1 and 2                                                           Amendment No. 74   (Unit 2) l i
Vogtle Units 1 and 2 Amendment No. 74 (Unit 2) l i


I RTS Instrumentation 3.3.1 table 3.3.1 1 (pope 3 of 8)
I RTS Instrumentation 3.3.1 table 3.3.1 1 (pope 3 of 8)
Reactor trip system Instrumentation
Reactor trip system Instrumentation
                                                                                                                                                                                        ]
]
                                    ^"',',i^g(P"                                                                                                                           yowwAL.
^"',',i^g(P" yowwAL.
SPECIFIED         REsulRED                                         suaVEILLANCE                                     ALLOWAsLE         TRIP FUWCTION             CONDITIONS       ChAmWELS   Coelfl0NS                             REsulREMENTS                                       VALUE         SETPo!N
SPECIFIED REsulRED suaVEILLANCE ALLOWAsLE TRIP FUWCTION CONDITIONS ChAmWELS Coelfl0NS REsulREMENTS VALUE SETPo!N 8.
: 8. Pressuriser Pressure
Pressuriser Pressure a.
: a. Law                   1(I)               4           M                               st 3.3.1.1                                       1 IMO psis       a 1N0(8I sa 3.3.1.7                                                           pois BR 3.3.1.10 sa 3.3.1.15
Law 1(I) 4 M
: b. alsh                   1,2               4           I                             sa 3.3.1.1                                         s 23M pois         2385 pois sa 3.3.1.7 sa 3.3.1.10 SR 3.3.1.15
st 3.3.1.1 1 IMO psis a 1N0(8I sa 3.3.1.7 pois BR 3.3.1.10 sa 3.3.1.15 b.
: 9. Pressuriser Water           1(II               3           M                             st 3.3.1.1                                           s 73.91             921 Level - W t sh                                                                           SR 3.3.1.7 st 3.3.1.10
alsh 1,2 4
: 10. Reactor Coolant F low - Low
I sa 3.3.1.1 s 23M pois 2385 pois sa 3.3.1.7 sa 3.3.1.10 SR 3.3.1.15 9.
: e. sinste Loop           1(h)           3 per         N                           SR 3.3.1.1                                             t 89.41 Loop                                       sa 3.3.1.7 SR 3.3.1.10 sa 3.3.1.15
Pressuriser Water 1(II 3
: b. Two Loops             1(I)           3 per         M                           sa 3.3.1.1                                             a 39.41 toep                                     at 3.3.1.7 SR 3.3.1.10 SR 3.3.1.15 (continued)
M st 3.3.1.1 s 73.91 921 Level - W t sh SR 3.3.1.7 st 3.3.1.10
: 10. Reactor Coolant F low - Low e.
sinste Loop 1(h) 3 per N
SR 3.3.1.1 t 89.41 Loop sa 3.3.1.7 SR 3.3.1.10 sa 3.3.1.15 b.
Two Loops 1(I) 3 per M
sa 3.3.1.1 a 39.41 toep at 3.3.1.7 SR 3.3.1.10 SR 3.3.1.15 (continued)
(f) Above the P 7 (Lew Power Reactor Trips dicck) Interteck, ts) Time constants utill ed in the f eed tes controller for Pressuriser Pressure Lew are 10 seconds for lead and i second for ies.
(f) Above the P 7 (Lew Power Reactor Trips dicck) Interteck, ts) Time constants utill ed in the f eed tes controller for Pressuriser Pressure Lew are 10 seconds for lead and i second for ies.
(h) Above the Pas (Power Range heutron FluR) laterteck.
(h) Above the Pas (Power Range heutron FluR) laterteck.
(i) Above the Pa7 (Low Power Reactor trips stock) Interlock and below the Pas (Power Range Neutron Flum) interlock.
(i) Above the Pa7 (Low Power Reactor trips stock) Interlock and below the Pas (Power Range Neutron Flum) interlock.
(n) ne Trip Setpoints may be set more conservative than the Nominal value as necessary in response to plant conditions.
(n) ne Trip Setpoints may be set more conservative than the Nominal value as necessary in response to plant conditions.
Vogtle Units 1 and 2                                 3.3-16                                               Amendment No. 96                                 (Unit 1)
Vogtle Units 1 and 2 3.3-16 Amendment No. 96 (Unit 1)
Amendment No. 74                                 (Unit 2)
Amendment No. 74 (Unit 2)


__                                                      _                              . ~ . .
. ~..
1 RTS Instrumentation 3.3.1 Table 3.3.1 1 (pose 4 of 8)
RTS Instrumentation 3.3.1 Table 3.3.1 1 (pose 4 of 8)
Reactor Trip System Instrumentation 0 ME N
Reactor Trip System Instrumentation N
sPECIFIED       REGUIRED                 SURVEILLANCE   ALLOWAsLE         TRIPJg FUNCTION             COWITIONS       CNANNELS   CONDITIONS   REeulkEMENTS       VALUE       sETPOINF a
0 ME sPECIFIED REGUIRED SURVEILLANCE ALLOWAsLE TRIPJg FUNCTION COWITIONS CNANNELS CONDITIONS REeulkEMENTS VALUE sETPOINF a
: 11. Undervolteee                 tif)             2 per         M       SR 3.3.1.9 sa 3.3.1.10 t 9441 V    [9600V RCPs                                          bus sa 3.3.1.15
[9600V
: 12. Underfregaency                 1(f)           2 per         M       sa 3.3.1.9     t 57.1 Hz     a 57.3 Mr RCPs                                         bus                   at 3.3.1.10 sa 3.3.1.15
: 11. Undervolteee tif) 2 per M
: 13. steam                       1,2           4 per SG         E       sa 3.3.1.1       2 35.9%         37.8%
SR 3.3.1.9 t 9441 V RCPs bus sa 3.3.1.10 sa 3.3.1.15
Generator (SC)                                                     sa 3.3.1.7 Weter Level-Low                                                     S3 3.3.1.10 Low                                                                 st 3.3.1.15 (centinued) l l
: 12. Underfregaency 1(f) 2 per M
sa 3.3.1.9 t 57.1 Hz a 57.3 Mr RCPs bus at 3.3.1.10 sa 3.3.1.15 13.
steam 1,2 4 per SG E
sa 3.3.1.1 2 35.9%
37.8%
Generator (SC) sa 3.3.1.7 Weter Level-Low S3 3.3.1.10 Low st 3.3.1.15 (centinued) l l
(f) Above the P F (Low Power Reactor Tripe Block) Interlock.
(f) Above the P F (Low Power Reactor Tripe Block) Interlock.
l I    (n) The Trip Setpoints may be set more conservative than the Nominal value as necessary in response to plant conditions.
l (n) The Trip Setpoints may be set more conservative than the Nominal value as necessary in response to I
plant conditions.
l l
l l
I l
I l
l l
l l
l l
l l
!        Vogtle Units 1 and 2                               3.3-17               Amendment No. 96         (Unit 1) l                                                                                 Amendment No. 74         (Unit 2)
Vogtle Units 1 and 2 3.3-17 Amendment No. 96 (Unit 1) l Amendment No. 74 (Unit 2)


RTS Instrumentation 3.3.1 Table 3.3.1 1 (pose 5 of 8) teactor Trip system Instrumentation 0 nt N
RTS Instrumentation 3.3.1 Table 3.3.1 1 (pose 5 of 8) teactor Trip system Instrumentation N
SPECIFIED         REeutRED                       SURVEILLANCE                         ALLOW 4sLE                       TRIP fn FUNCTION               CoelTIONS         CM4mutLS   Comifl0NS         REOUIREMENTS                             VALUE                     SETPolNU'}
0 nt SETPolNU'}
: 14. Turbine Trip
TRIP fn SPECIFIED REeutRED SURVEILLANCE ALLOW 4sLE FUNCTION CoelTIONS CM4mutLS Comifl0NS REOUIREMENTS VALUE
: e. Lou Fluid Ott             10)                 3         0             st 3.3.1.10                         t 500 psis                     580 pois Pressure                                                                 st 3.3.1.16                                     e
: 14. Turbine Trip e.
: b. Turbine stop               10)                 4           P             st 3.3.1.10                             t 40e88>                       96.7%
Lou Fluid Ott 10) 3 0
SR 3.3.1.14                               open                       open Ve1ve CLoeure
st 3.3.1.10 t 500 psis 580 pois Pressure st 3.3.1.16 e
: 15. safety                               1,2           2 traine         e             at 3.3.1.13                                 mA                           mA Injection ($1)
b.
Turbine stop 10) 4 P
st 3.3.1.10 t 40e88>
96.7%
Ve1ve CLoeure SR 3.3.1.14 open open
: 15. safety 1,2 2 traine e
at 3.3.1.13 mA mA Injection ($1)
Irput from
Irput from
                . Engineered sefety foeture Actuation system (ESFAS)                                                                                                                                                   >
. Engineered sefety foeture Actuation system (ESFAS)
: 16. Reactor Trip system Interlocks
: 16. Reactor Trip system Interlocks o.
: o. Intermodlate             2(d)                 2         R             st 3.3.1.11                         2 6E 11 esp                     1E 10 og Renee neutron                                                           SR 3.3.1.12 Flux, P 6
Intermodlate 2(d) 2 R
: b. Low Power                   i             1 per         s             st 3.3.1.5                                 NA                           NA Reactor Trips                               train stock, P 7 4           s             st 3.3.1.11                         s 50.31 RTP                       481 RTP
st 3.3.1.11 2 6E 11 esp 1E 10 og Renee neutron SR 3.3.1.12 Flux, P 6 b.
: c. Power Renee                 g Woutron Flux,                                                           SR 3.3.1.12 P8 4           8             st 3.3.1.11                         s 52.3% RTP                   s 50% RTP
Low Power i
: d. Power Renee heutron Flux,                i                                          st 3.3.1.12 P9 4         R             SR 3.3.1.11                               (1,m)                       (t,m)
1 per s
: e. Power Renee Neutron Flux,             1,2                                         st 3.3.1.12 P 10 and loput to P T 2           s           SR 3.3.1.10                               s 12.3%                         10%
st 3.3.1.5 NA NA Reactor Trips train stock, P 7 4
Turbine lopulse             1                                         SR 3.3.1.12                               lopulse                     lopulse f.
s st 3.3.1.11 s 50.31 RTP 481 RTP c.
Pressure, P 13                                                                                                 Pressure                    Pressure E pivalent                   E pivelent turbine                     turbine (continued)
Power Renee g
Woutron Flux, SR 3.3.1.12 P8 d.
Power Renee 4
8 st 3.3.1.11 s 52.3% RTP s 50% RTP i
st 3.3.1.12 heutron Flux, P9 e.
Power Renee 4
R SR 3.3.1.11 (1,m)
(t,m)
Neutron Flux, 1,2 st 3.3.1.12 P 10 and loput to P T 2
s SR 3.3.1.10 s 12.3%
10%
f.
Turbine lopulse 1
SR 3.3.1.12 lopulse lopulse Pressure Pressure Pressure, P 13 E pivalent E pivelent turbine turbine (continued)
(d) setow the P 6 (Intermodlate Renee toutron Flux) interlocks.
(d) setow the P 6 (Intermodlate Renee toutron Flux) interlocks.
I (j) Above the P 9 (Power Renee Neutron Flux) Interlock.                                     QQ 101 RTP.
I (j) Above the P 9 (Power Renee Neutron Flux) Interlock.
(t)I     for the P 10 Irpu? to P 7, the Attowebte Vetue la 512.3% RTP and the rip setpoint is t
QQ (t)I for the P 10 Irpu? to P 7, the Attowebte Vetue la 512.3% RTP and the rip setpoint is 101 RTP.
(m) for the Power Renee Neutron Flux, P 10, the Atloweb's Vetue is t 7.7% RTP and the, Trip setpoint is 101 RTP.                                                                                                                 g (n) The Trip Setpoints may be set more conservative than the Nominal value as necessary in response to plant conditions.
t (m) for the Power Renee Neutron Flux, P 10, the Atloweb's Vetue is t 7.7% RTP and the, Trip setpoint is 101 RTP.
Vogtle Units 1 and 2                                     3 3-18                     Amendment No. 96                                             (Unit 1)
g 6
Amendment No. 74                                             (Unit 2)           l
(n) The Trip Setpoints may be set more conservative than the Nominal value as necessary in response to plant conditions.
Vogtle Units 1 and 2 3 3-18 Amendment No. 96 (Unit 1)
Amendment No. 74 (Unit 2) l


RTS Instrumentation 3.3.1 table 3.3.1 1 (pose 6 of 8)
RTS Instrumentation 3.3.1 table 3.3.1 1 (pose 6 of 8)
Rewtor f elp System Instrumentstion YE                                                     ALLOWASLE        TRIP SPECIFIED       REGUIRED                 SURVEILLANCE                               83 REeulREMENTS        VALUE      SETPOIN        %
Rewtor f elp System Instrumentstion YE SPECIFIED REGUIRED SURVEILLANCE ALLOWASLE TRIP 83 FUNCTION CONDif10NS CNAeufLS CONDIT!DNS REeulREMENTS VALUE SETPOIN
CONDif10NS       CNAeufLS   CONDIT!DNS FUNCTION NA 1,2           2 tralm       1,Y       SR 3.3.1.4             NA
: 17. Reactor 1[lp 1,2 2 tralm 1,Y SR 3.3.1.4 NA NA treekersi 3 3(a), g(e),$(s) 2 trains C
: 17. Reactor 1[lp treekersi 3                                                         st 3.3.1.4            NA            NA 3(a), g(e),$(s)     2 trains         C SR 3.3.1.4             NA           NA
st 3.3.1.4 NA NA
: 18. Reacter trip                     1,2           1 each       U,V treeker                                     per RTS Uruterveltage and                                                                                         nA thet Trip             3(*I, 4(*I, 5(*I     1 each         C       st 3.3.1.6             NA tochantees                                   Mr RTB NA 19 Automatic Trip                   1.2           2 treins     e,y       sa 3.3.1.5             NA Letic                                                               sa 3.3.1.5            NA            NA 3(a), 4(a), 5(*I     2 trains       C (0) With RTBs cieced end Red Centret System capable of red withdrawal.
: 18. Reacter trip 1,2 1 each U,V SR 3.3.1.4 NA NA treeker per RTS Uruterveltage and thet Trip 3(*I, 4(*I, 5(*I 1 each C
(k) including any reacter trip bypees breakers that are rocked in and cleted for imiessing en A78.             ,
st 3.3.1.6 NA nA tochantees Mr RTB 19 Automatic Trip 1.2 2 treins e,y sa 3.3.1.5 NA NA Letic 3(a), 4(a), 5(*I 2 trains C
sa 3.3.1.5 NA NA (0) With RTBs cieced end Red Centret System capable of red withdrawal.
(k) including any reacter trip bypees breakers that are rocked in and cleted for imiessing en A78.
(n) The Trip Setpoints may be set more conservative than the Nominal value as necesery in response to plant conditions.
(n) The Trip Setpoints may be set more conservative than the Nominal value as necesery in response to plant conditions.
Vogtle Units I and 2                                3.3-19               Amendment No. 96           (Unit 1)
3.3-19 Amendment No. 96 (Unit 1)
Amendment No. 74           (Unit 2)
Vogtle Units I and 2 Amendment No. 74 (Unit 2)


RTS Instrumentation L                                                                                                                                                                 3.3.1 febte 3.3.1 1 (pose 7 of 8) teactor Trip system Instru'entation hate it owetemperatuee Dette*T 041M ip Setpoint defined t,y the following The Overtemperature Dette.T pmetion Alloweble Vetue shall not exceed the esatten by more then 2.25% of RTP.
RTS Instrumentation L
3.3.1 febte 3.3.1 1 (pose 7 of 8) teactor Trip system Instru'entation 041M hate it owetemperatuee Dette*T The Overtemperature Dette.T pmetion Alloweble Vetue shall not exceed the ip Setpoint defined t,y the following esatten by more then 2.25% of RTP.
(1
(1
* f4SI          1 g      AT (1 * ? tSI    1 g ,g               7                         -T' - Ka>#-PI- f (AFD) t A1, (1
* f SI 1
AT (1 * ? SI 1
g 3
g
,g 7
-T' - Ka>#-PI-f (AFD) 4 t
t II
* T *I, II
* T e SI j
A1, (1
* v gs) 11
* v gs) 11
* t a*8 3
* t a*8 t
II
Idhere:
* Tt *I , II
41 seesured loop specific RC$ differentist temperature, degrees F Indicated loop speelfic BCS differentist et RTP, degrees F AT, l'igt need leg cenpensator en sensured differentist temperature 1*t go time constents utitlaed in Leed Les compensetor for dif forentist toeperatures eg a 8 seconds, ti e 's e, s 3 seconds 1
* T e SI                                      j Idhere:     41           seesured loop specific RC$ differentist temperature, degrees F AT,            Indicated loop speelfic BCS differentist et RTP, degrees F l'igt         need leg cenpensator en sensured differentist temperature 1*t go time constents utitlaed in Leed Les compensetor for dif forentist toeperatures eg a 8 seconds, ti e 's e , s 3 seconds 1
L*# 88'pensator en enesured differentist tosperature 1 *' 38 T,
1 *' 38 L*# 88'pensator en enesured differentist tosperature T,           time constant utillred 1 og compensator for difforentist temperature, s 2 seconds Ki            fwuammentet setpoint,             121 ITP modi'ler f or temperature, a 2.241 RTP per degree f K2 1.*241 1*fgs         tsed tog cempensetor on dynamic tanperature cempensetien te, fg time constants utilized in Leed Leg campensator for temperature compensations fe t 28 secones, f6 3 4 seconds T
time constant utillred 1 og compensator for difforentist temperature, s 2 seconds K
fwuammentet setpoint, 121 ITP i
modi'ler f or temperature, a 2.241 RTP per degree f K2 1.*241 1*fgs tsed tog cempensetor on dynamic tanperature cempensetien time constants utilized in Leed Leg campensator for temperature compensations fe t 28 te, fg 3 4 seconds secones, f6 T
measured loop specific RCS everage temperature, destees F 1
measured loop specific RCS everage temperature, destees F 1
tag compensator en asseured everage temperature 1*Tes time constant utilized in Les compensator for everage tosperature, e 0 seconds to indicated Loop specific RC everage toeperature et RTP,                                     4 degrees F T'
tag compensator en asseured everage temperature 1*Tes time constant utilized in Les compensator for everage tosperature, e 0 seconds to T'
Kg modifier for pressure, 0.1151 RTP per pois P
indicated Loop specific RC everage toeperature et RTP, 4 degrees F Kg modifier for pressure, 0.1151 RTP per pois P
esesured RCS pressuriter pr sure, psig P'             reference pressure,           2235 pais e              Leptoce transform verlebte, inwree seconds fg(AFD)       modifier for Amlet flui Olfference (AFD):                                                               *
esesured RCS pressuriter pr sure, psig P'
: 1. for AFD between 321 and *101, = 01 RTP
reference pressure, 2235 pais Leptoce transform verlebte, inwree seconds e
: 2. for each 1 AFD is below 321, the trip setpoint shett be redJced by 3.251 RTP
fg(AFD) modifier for Amlet flui Olfference (AFD):
: 3. for each 1 AFD la abow *101, the trip setpoint shett be reeaced by 2.71 RTP 3.3-20                                   Amendment No. 96 (Unit 1)
1.
Vogtle Units 1 and 2                                                                                       Amendment No. 74                       (Unit 2)
for AFD between 321 and *101, = 01 RTP for each 1 AFD is below 321, the trip setpoint shett be redJced by 3.251 RTP 2.
for each 1 AFD la abow *101, the trip setpoint shett be reeaced by 2.71 RTP 3.
3.3-20 Amendment No. 96 (Unit 1)
Vogtle Units 1 and 2 Amendment No. 74 (Unit 2)


l                                                                                                            RTS Instrurtentetion I                                                                                                                                                         3.3.1 f                                                                                 .
RTS Instrurtentetion l
I 3.3.1 f
l febte 3.3.1 1 (pope 8 of 8)
l febte 3.3.1 1 (pope 8 of 8)
Reactor Trip System instrumentation este 2r oveetmsee Delta T 8fl The Overpower Dette T Function ALLOW 48LE VALut shall not exceed the Trip setpoint defined ty the following ogastion by more then 2.851 of RTP.
Reactor Trip System instrumentation 8fl este 2r oveetmsee Delta T The Overpower Dette T Function ALLOW 48LE VALut shall not exceed the Trip setpoint defined ty the following ogastion by more then 2.851 of RTP.
1 T - K,T        -T # -f (AFD) 2 100s .#     " * 'o u . g . K[4-Kg n .,,o n .,,                                  u . ..e           , o .es Weret        af                measured loop specific RCS differentist temperature, degrees F ATg Indicated loop specific BCS differentist et ATP, degrees F J,.+1g1           leeJ tes compensator en sessured differentist temperature 1+vas tg, v2 time constents util(tod in teed tog compeneetor for dif ferentist temperatures fg a 8 seconds, e s 3 secones 1
1 100.# " * 'o u. g. K[4-Kg n.,,o u...e
1+13e too compensator on measured dif ferentist temperature flee constant utillied         og compensator for dif f erentlet temperature, s 2 seconds
, o.es T
                  'a K4                forusementet setpoint.     09.51 2TP modifier for temperature change:        21 RTP per degree F for increasing temperature, t 01 RTP Kg per degree F for decreasing tempe ture
- K,T
                  .!.11.
-T
1+tys             rate tes conpensator en dynamic temperature compensation ty tieu constant utilised in rate los compensator for temperature compensation, t to seconds i
-f (AFD) 2 s n.,,
measured loop speelfic RCS ewrese temperature, degrees F i
measured loop specific RCS differentist temperature, degrees F Weret af Indicated loop specific BCS differentist et ATP, degrees F ATg J,.+1g1 leeJ tes compensator en sessured differentist temperature 1+v s a
too compermator en meesured over       temperature 1+v.s time constant utill ed in tag suponsetor for eversee temperature, = 0 seconds To endifler f or tosperature:       0.205 RTP per degree F for i > T'       = 01 tTP for i s T' K,
time constents util(tod in teed tog compeneetor for dif ferentist temperatures fg a 8 seconds, tg, v2 e s 3 secones 1
88.4 degrees F T'                indicated loop specific RCS eversee temperature et RTP, s                  Leptoce transform variebte, inverse seconds f 2(AFD)          modiller for Aalet Flut Dif ference (AFD), m 01 RTP for ett Att 3.3-21                     Amendment No. 96                                 (Unit 1)
1+13e too compensator on measured dif ferentist temperature
Vogtle Units 1 and 2                                                                     Amendment No. 74                                 (Unit 2)
'a flee constant utillied og compensator for dif f erentlet temperature, s 2 seconds K
forusementet setpoint.
09.51 2TP 4
21 RTP per degree F for increasing temperature, t 01 RTP K
modifier for temperature change:
g per degree F for decreasing tempe ture
.!.11.
1+tys rate tes conpensator en dynamic temperature compensation tieu constant utilised in rate los compensator for temperature compensation, t to seconds ty measured loop speelfic RCS ewrese temperature, degrees F i
i 1+v.s too compermator en meesured over temperature time constant utill ed in tag suponsetor for eversee temperature, = 0 seconds To K,
endifler f or tosperature:
0.205 RTP per degree F for i > T'
= 01 tTP for i s T' indicated loop specific RCS eversee temperature et RTP, 88.4 degrees F T'
Leptoce transform variebte, inverse seconds s
modiller for Aalet Flut Dif ference (AFD), m 01 RTP for ett Att f (AFD) 2 3.3-21 Amendment No. 96 (Unit 1)
Vogtle Units 1 and 2 Amendment No. 74 (Unit 2)


ESFAS Instrumentation 3.3.2 febte 3.3.2 1 (pese 1 of 7)
ESFAS Instrumentation 3.3.2 febte 3.3.2 1 (pese 1 of 7)
Engineered Safety f eature Actuetten system Instrumentation APPLICA8LE 1 3 SPECIFIED    REOUIRED                  SLmVEILLANCE      ALLOWA8LE          ft!P /*
Engineered Safety f eature Actuetten system Instrumentation APPLICA8LE 1 3 SETPo!NT4}
fuMCTION             CONDITIONS   CNANNELS     CONDITIONS   REaulatnENTS         VALUE         SETPo!NT4}
ft!P /*
: 1. Safetyinjection
SPECIFIED REOUIRED SLmVEILLANCE ALLOWA8LE fuMCTION CONDITIONS CNANNELS CONDITIONS REaulatnENTS VALUE 1.
: s. honust inittetten       1,2,3,4       2           s       SR 3.3.2.6             m               M
Safetyinjection s.
: b. Automatic               1,2,3,4       2           C       SR 3.3.2.2             M               M Actuation teste                                             SR 3.3.2.3 and Actuation                                               SR 3.3.2.5 teleys
honust inittetten 1,2,3,4 2
: c. Centairment             1,2,3         3           D       SR 3.3.2.1       5 4.4 pois     s   .8 pois Pressure - Mish 1                                           sa 3.3.2.4 SR 3.3.2.7 la 3.3.2.8
s SR 3.3.2.6 m
: d. Pressuriser           1,2,3(e)       4           0       Sa 3.3.2.1     t 1854 pois   t 1870 pois Pressure - Low                                             SR 3.3.2.4 SR 3.3.2.7 SR 3.3.2.8 i
M b.
: e. Steam Line             1,2,3(e)     3 per           D       SR 3.3.2.1           570N       t N
Automatic 1,2,3,4 2
Pressure Law                       steen                   SR 3.3.2.4                           pois Line                   SR 3.3.2.7       [psig SR 3.3.2.8 (setinuse)
C SR 3.3.2.2 M
M Actuation teste SR 3.3.2.3 and Actuation SR 3.3.2.5 teleys c.
Centairment 1,2,3 3
D SR 3.3.2.1 5 4.4 pois s
.8 pois Pressure - Mish 1 sa 3.3.2.4 SR 3.3.2.7 la 3.3.2.8 d.
Pressuriser 1,2,3(e) 4 0
Sa 3.3.2.1 t 1854 pois t 1870 pois Pressure - Low SR 3.3.2.4 SR 3.3.2.7 SR 3.3.2.8 e.
Steam Line 1,2,3(e) 3 per D
SR 3.3.2.1 570N N
i t
pois
[psig Pressure Law steen SR 3.3.2.4 Line SR 3.3.2.7 SR 3.3.2.8 (setinuse)
(e) Above the P 11 (Pressuriser Pressure) interteck.
(e) Above the P 11 (Pressuriser Pressure) interteck.
(b) flee constants med in the Leed/tes contretter are tg a 50 seconds eruf t2 s 5 secoruss.
(b) flee constants med in the Leed/tes contretter are tg a 50 seconds eruf t2 s 5 secoruss.
Theconditions.
The Trip Setpoints may be set more conservative than the Nominal value as necessary in resp plant conditions.
plant  Trip Setpoints   may be set more conservative than the Nominal value as necessary in respo Vogtle Units 1 and 2                               3.3-30                 Amendment No. 96         (Unit 1)
Vogtle Units 1 and 2 3.3-30 Amendment No. 96 (Unit 1)
Amendment No. 74         (Unit 2)-
Amendment No. 74 (Unit 2)-


ESFAS Instrumentation 3.3.2 Table 3.3.2 1 (pose 2 of 7)
ESFAS Instrumentation 3.3.2 Table 3.3.2 1 (pose 2 of 7)
Enstneered safety Feature Actuation System Instrumentation APPLICAsLE NEn REsulRED                 SURVEILLANCE   ALLOWAsLE               TRsP SPECIFIED CONDITIONS                         CHANNELS   CDMDITIONs     REeulREMEWis     VALUE             stTPCINT FUNCTIDW
Enstneered safety Feature Actuation System Instrumentation APPLICAsLE NEn SPECIFIED REsulRED SURVEILLANCE ALLOWAsLE TRsP FUNCTIDW CONDITIONS CHANNELS CDMDITIONs REeulREMEWis VALUE stTPCINT 2.
: 2. Contalrument sprey
Contalrument sprey e.
: e. mareast inittetton             1,2,3,4                       2           I         st 3.3.2.6         NA                   mA
mareast inittetton 1,2,3,4 2
: b. Autenstic                   1,2,3,4                       2           C         sa 3.3.2.2         MA                   mA Actuation Logic                                                                 sa 3.3.2.3 and Actuetten                                                                   SR 3.3.2.5 Reteys
I st 3.3.2.6 NA mA b.
: c.       Centalrument
Autenstic 1,2,3,4 2
.                  Pressure 1,2,3                   4           E         st 3.3.2.1     5 22.4 pais         s 21.5 psis
C sa 3.3.2.2 MA mA Actuation Logic sa 3.3.2.3 and Actuetten SR 3.3.2.5 Reteys c.
                    # f sh - 3 sa 3.3.2.4 sa 3.3.2.7 sa 3.3.2.8 (continued)
Centalrument Pressure
    ,.5 The Trip Setpoints may be set more conservative than the Nominal value as necessary in response to
# f sh - 3 1,2,3 4
(),J    plant conditions.
E st 3.3.2.1 5 22.4 pais s 21.5 psis sa 3.3.2.4 sa 3.3.2.7 sa 3.3.2.8 (continued)
Vogtle Units 1 and 2                                                     3.3-31                 Amendment No. 96 (Unit 1)
,.5
Ar.sndment No. 74             (Unit 2)
(),J The Trip Setpoints may be set more conservative than the Nominal value as necessary in response to plant conditions.
Vogtle Units 1 and 2 3.3-31 Amendment No. 96 (Unit 1)
Ar.sndment No. 74 (Unit 2)


1 l
1 l
ESFAS Instrumentation 3.3.2 febte 3.3.2 1 (pose 3 of 7)
ESFAS Instrumentation 3.3.2 febte 3.3.2 1 (pose 3 of 7)
Engineered Saf ety feature Actuotton System instrumentetlun I
Engineered Saf ety feature Actuotton System instrumentetlun I
APPLICA4LE NODES OR ppg lhh        ,
ppg lhh APPLICA4LE NODES OR DTHER SPECIFIED REOUIRED SURVEILLANCE ALLOWA8LE TalP FUNCfION CONDITIONS CMANNEL5 COND1TIONS REGUIaEMENf5 VALUE StTPOINT 3.
DTHER                                                                             TalP SURVEILLANCE             ALLOWA8LE SPECIFIED      REOUIRED REGUIaEMENf5               VALUE     StTPOINT CONDITIONS      CMANNEL5      COND1TIONS FUNCfION
Phase A Centainment leetetten (a) menuel Initiation 1,2,3,4 2
: 3.         Phase A Centainment leetetten sa 3.3.2.6                   mA         mA 1,2,3,4          2            s (a) menuel Initiation 1,2,3,6       2 trains         C         st 3.3.2.2                   NA         NA (b) Automatic                                                            sa 3.3.2.3 Actuation Logic and Actuotten sa 3.3.2.5 meteys (c) Safety injection       Refer to F mction 1 (lefety injection) for ELL inittstion functions eM rooJirements.
s sa 3.3.2.6 mA mA (b) Automatic 1,2,3,6 2 trains C
: 4.         Stees Line teoletim NA
st 3.3.2.2 NA NA sa 3.3.2.3 Actuation Logic sa 3.3.2.5 and Actuotten meteys (c) Safety injection Refer to F mction 1 (lefety injection) for ELL inittstion functions eM rooJirements.
: e. herual Initiation       1,2(c) 3(c)
4.
                                                  ,            2             7       sa 3.3.2.6                   NA NA
Stees Line teoletim e.
: b. Automatic               1,2(c) 3(c)           2           G       so 3.3.2.2                 NA Actuellen Logic st 3.3.2.3 and Actuation                                                        sa 3.3.2.5 Retsys (continued)
herual Initiation 1,2(c) 3(c) 2 7
(c) Encept when one win eteem isolation volve and essectated bypees (seletion velve per steem tine is closed.
sa 3.3.2.6 NA NA b.
Automatic 1,2(c) 3(c) 2 G
so 3.3.2.2 NA NA st 3.3.2.3 Actuellen Logic sa 3.3.2.5 and Actuation Retsys (continued)
Encept when one win eteem isolation volve and essectated bypees (seletion velve per steem tine is closed.
(c)
The Trip 5etpoints may be set more conservative than the Nominal value as necessary in response to plant conditions.
The Trip 5etpoints may be set more conservative than the Nominal value as necessary in response to plant conditions.
(
(
3.3-32                   Amendvent No. 96               (Unit 1)
3.3-32 Amendvent No. 96 (Unit 1)
Vogtle Units I and 2                                                             Amendment No. 74               (Unit 2)
Vogtle Units I and 2 Amendment No. 74 (Unit 2)


ESFAS Instrumentation 3.3.2 f ebte 3.3.21 (pspe 4 of 7)
ESFAS Instrumentation 3.3.2 f ebte 3.3.21 (pspe 4 of 7)
Instreered letety Iesture Actuetten Svstem Instrumentetten APPLitASLt tute fIIP FUNCflok SPtClIlft CouDittout itDUIRfD CNAustLS   COM0!fl0NS
Instreered letety Iesture Actuetten Svstem Instrumentetten APPLitASLt tute
                                                                                                        $UtVIILLANCE REtulatMENTS ALLOWA4LE VALut       SETPolW     )
)
4    iione ti- isoisii.
SPtClIlft itDUIRfD
(centiruJed) 1.P(8I,                                   3         0         et 3.3.2.1       s 15.4 pals   14.5 pels
$UtVIILLANCE ALLOWA4LE fIIP FUNCflok CouDittout CNAustLS COM0!fl0NS REtulatMENTS VALut SETPolW 4
: 8. Centelement Preneure - Nigh 2                                                                      sa 3.3.2.6 3gg)                                                         sa 3.3.2.7 to 3.3.2.8
iione ti-isoisii.
: d. Steen Lire Pressure                                                                                                                   .
(centiruJed) 8.
1,2(8I,                                 3 per       0         se 3.3.2.1         1 $70 (DI     585 (b)
Centelement 1.P(8I, 3
(1) Lew                                                                                                    puts        pels 3(gggg)                                steen                 la 3.3.2.4 Line                 la 3.3.2.7 la 3.3.2.8 (2) Weoettve           3(8I(8I                                 3 per       0         sa 3.3.2.1       s 125 I'I      100 I'I Rote = Wish                                               stoon                 la 3.3.2.4         pel/6ec     rel/ set tlne                 at 3.3.2.7 ta 3.3.2.8 teens triese) to) above the P*11 (Pressurtser Pressure) intertect.
0 et 3.3.2.1 s 15.4 pals 14.5 pels sa 3.3.2.6 Preneure - Nigh 2 3gg) sa 3.3.2.7 to 3.3.2.8 d.
Steen Lire Pressure (1) Lew 1,2(8I, 3 per 0
se 3.3.2.1 1 $70 (DI 585 (b) steen la 3.3.2.4 puts pels 3(gggg)
Line la 3.3.2.7 la 3.3.2.8 I'I 100 I'I (2) Weoettve 3(8I(8I 3 per 0
sa 3.3.2.1 s 125 Rote = Wish stoon la 3.3.2.4 pel/6ec rel/ set tlne at 3.3.2.7 ta 3.3.2.8 teens triese) to) above the P*11 (Pressurtser Pressure) intertect.
(b) flee cenetents used in the need/tes controtter are tg a 50 seconds and te s 5 sece.
(b) flee cenetents used in the need/tes controtter are tg a 50 seconds and te s 5 sece.
(c) Escs.st when ern sein steem tootetten volve and essectated trypass tsetetten volve per steen line is closed.
(c) Escs.st when ern sein steem tootetten volve and essectated trypass tsetetten volve per steen line is closed.
Line 222: Line 324:
(e) Time constant utilised in the rete /tes controlter is * $0 seconde.
(e) Time constant utilised in the rete /tes controlter is * $0 seconde.
($) The Trip Setpoints may be set more conservative than the Nominal value as necessary in res plant conditions.
($) The Trip Setpoints may be set more conservative than the Nominal value as necessary in res plant conditions.
Vogtle Units 1 and 2                                                         3.3-33                 Amendment No. 96       (Unit 1)
Vogtle Units 1 and 2 3.3-33 Amendment No. 96 (Unit 1)
Amendment No. 74       (Unit 2)
Amendment No. 74 (Unit 2)


b-                                                                                                                     ESFAS Instrumentation 3.3.2 table 3.3.2 1 tpose 5 of 7)
b-ESFAS Instrumentation 3.3.2 table 3.3.2 1 tpose 5 of 7)
Engineered lefety f eature Actuotten Systee Instrumentation APPLICABLt i a setCIFl[D     RtaVittD                             suavtlLLANCE                   ALLtWAsLt   falP / -
Engineered lefety f eature Actuotten Systee Instrumentation APPLICABLt i a setCIFl[D RtaVittD suavtlLLANCE ALLtWAsLt falP / -
REOUIREMfMTS                      VALUE    stTPolNt, FUNCil0N               CON 0lfl0NS     CHANNELS   CONDifl0NS
FUNCil0N CON 0lfl0NS CHANNELS CONDifl0NS REOUIREMfMTS VALUE
: 5. Turbine Irlp and                                                                                                   .
: stTPolNt, 5.
Fosesster isoletten
Turbine Irlp and Fosesster isoletten 0I 2 trela N
: a. Automatic                  1,2 0I       2 trela         N                   sa 3.3.2.2                         NA       NA Actuetten Logic                                                              sa 3.3.2.3 and actuetten                                                                et 3.3.2.5 3.te,.
sa 3.3.2.2 NA NA a.
f
Automatic 1,2 sa 3.3.2.3 Actuetten Logic et 3.3.2.5 and actuetten 3.te,.
: b. Low RCS tavs              1,2 0I           4           I                   sa 3.3.2.1                     2 541.5 't hSM 'F M 3.3.2.4 sa J.3.2.7 Coincident with       Refer to f atten ne for ELL P 4 rewirements.
f hSM 'F 0I 4
Seector trip, P 4 1,2 0I       4 per SG       l                   sa 3.3.2.1                     s 87.9%     36.01
I sa 3.3.2.1 2 541.5 't b.
: c. 30 Water sa 3.3.2.4 LoveL - Nish Mith (P 14)                                                                       sa 3.3.2.7 sa 3.3.2.s W. Safety injection     befer to f atten t (sofety injectlan) for ett initletten f atione and rewirements.
Low RCS tavs 1,2 M 3.3.2.4 sa J.3.2.7 Coincident with Refer to f atten ne for ELL P 4 rewirements.
: 6. Aunillery f eechester
Seector trip, P 4 0I 4 per SG l
: s. Automat ic                 1,2,3       2 treine         G                   sa 3.3.2.2                         mA       mA Actuetten Losic                                                             sa 3.3.2.3 and Actuet ten                                                              sa 3.3.2.5 teleys 1,2,3       4 per sc         0                   sa 3.3.2.1                     a 35.91     37.81
sa 3.3.2.1 s 87.9%
: b. 50 Water sa 3.3.2.4 Level - Lew Low at 3.3.2.7 sa 3.3.2.s (centinued)
36.01 c.
(f) tacept whei, one MFly er MFtV, and its essectated bypots volve per feedseter Line le closed and aloectivoted or tsetated by a cleted snartel volve.
30 Water 1,2 LoveL - Nish Mi h sa 3.3.2.4 t
(P 14) sa 3.3.2.7 sa 3.3.2.s W.
Safety injection befer to f atten t (sofety injectlan) for ett initletten f atione and rewirements.
6.
Aunillery f eechester s.
Automat ic 1,2,3 2 treine G
sa 3.3.2.2 mA mA Actuetten Losic sa 3.3.2.3 sa 3.3.2.5 and Actuet ten teleys b.
50 Water 1,2,3 4 per sc 0
sa 3.3.2.1 a 35.91 37.81 sa 3.3.2.4 Level - Lew Low at 3.3.2.7 sa 3.3.2.s (centinued) tacept whei, one MFly er MFtV, and its essectated bypots volve per feedseter Line le closed and aloectivoted (f) or tsetated by a cleted snartel volve.
(d) The Trip Setpoints may be set more conservative than the Nominal value as necessary in tupo plant conditions.
(d) The Trip Setpoints may be set more conservative than the Nominal value as necessary in tupo plant conditions.
Vogtle Units 1 and 2                                 3.3-34                           Amendment No. 96                   (Unit 1)
Vogtle Units 1 and 2 3.3-34 Amendment No. 96 (Unit 1)
Amendment No. 74                   (Unit 2)
Amendment No. 74 (Unit 2)


ESFAS Instrumentation 3.3.2 Table 3.3.2 1 (pape 6 of 73 Ergineered Safety f eature Actuotten Erstem Instrumentation                                             I l
ESFAS Instrumentation 3.3.2 Table 3.3.2 1 (pape 6 of 73 Ergineered Safety f eature Actuotten Erstem Instrumentation I
APPLICASLE i a b
APPLICASLE b
ALLinABLE          TRIP SPttiflED     Ritultt0                         SutVtlLLANCE MTPolv CnAustLS     ConDifl0NS         RiegletMtwfs     yAtut FWCfl0W                ConDifl0ml
i a SPttiflED Ritultt0 SutVtlLLANCE ALLinABLE TRIP FWCfl0W ConDifl0ml CnAustLS ConDifl0NS RiegletMtwfs yAtut MTPolv 6.
: 6. Awillery f eesheeter                                                                                                               l (eentirased)
Awillery f eesheeter (eentirased) c.
: c. Safetyinjection         Refer to function 1 (Safety injectlan) for all inittetten fimettens and rewireemets.
Safetyinjection Refer to function 1 (Safety injectlan) for all inittetten fimettens and rewireemets.
1 per           J             ta 3.3.2.4         4A               mA
d.
: d. Telp of all kein              1.2(83 f oesheeter Paes                         map
Telp of all kein 1.2(83 1 per J
: 7.     Seel.outsestic Switchever to Centairement See h4                mA
ta 3.3.2.4 4A mA f oesheeter Paes map 7.
: e. Automet h               1,2,3,4(h)       2             C             se 3.3.2.2 Act ~..en Logic                                                       sa 3.3.2.3                                          i and Actuetten                                                         at 3.3.2.5                                          l seleye t 364.9 in. 275.3 in.             l
Seel.outsestic Switchever to Centairement See e.
: b. Refueling Weter            1,2,3,4      &              E            sa 3.3.2.1 storeee lenk sa 3.3.2.4
Automet h 1,2,3,4(h) 2 C
(# WET) trvel - Low at 3.3.2.7 Low sa 3.3.2.8 Coincleont with         gefer to function 1 (lefety injection) for ett initletion Safety injection       timettens and rosestrosents.
se 3.3.2.2 h4 mA i
sa 3.3.2.3 Act ~..en Logic at 3.3.2.5 and Actuetten seleye b.
Refueling Weter 1,2,3,4 E
sa 3.3.2.1 t 364.9 in.
275.3 in.
sa 3.3.2.4 storeee lenk at 3.3.2.7
(# WET) trvel - Low sa 3.3.2.8 Low Coincleont with gefer to function 1 (lefety injection) for ett initletion Safety injection timettens and rosestrosents.
tcentirmsso)
tcentirmsso)
(g) When the kein f eesheeter System 8a operating to empty the $Gs.
(g) When the kein f eesheeter System 8a operating to empty the $Gs.
(h)      In IGE 4, only 1 train is rosesired to be OPitASLE to sweert emeleeutsenstic evitchever for the RNA puup that is rossaired to be OPERABLE in eccertence with Specification 3.5.3 Eccs.shuteewn.
In IGE 4, only 1 train is rosesired to be OPitASLE to sweert emeleeutsenstic evitchever for the RNA puup (h) that is rossaired to be OPERABLE in eccertence with Specification 3.5.3 Eccs.shuteewn.
        .1 l 'the Trip Setpoints may be set more conservative than the Nominal value as necessary in tesponse to (4  '
.1 (4
plant conditions.
l 'the Trip Setpoints may be set more conservative than the Nominal value as necessary in tesponse to plant conditions.
Vogtle Units 1 and 2                                    3.3-30                           Amendment No. 96     (Unit 1)
3.3-30 Amendment No. 96 (Unit 1)
Amendment No. 74     (Unit 2)
Vogtle Units 1 and 2 Amendment No. 74 (Unit 2)


ESFAS Instrumentation 3.3.2 fette 3.3.t 1 (nepe ? ef 7)
ESFAS Instrumentation 3.3.2 fette 3.3.t 1 (nepe ? ef 7)
Insineered Sefety Feeture actuetien systom Instrumentetten APPLICA4LE OtME                                                                                       H0MtML SPECIFit0         Attu1 BED                 SURVIILLANCE                     ALLOWASLE             TRIP   l FUNCflou                 Couplfl0ml         CMAWWELS   COM0!fl0NS   RFOU18tMWil                         VALUE             BETPolN /
Insineered Sefety Feeture actuetien systom Instrumentetten APPLICA4LE H0MtML OtME SPECIFit0 Attu1 BED SURVIILLANCE ALLOWASLE TRIP l
FUNCflou Couplfl0ml CMAWWELS COM0!fl0NS RFOU18tMWil VALUE BETPolN /
: 8. ISFAB Intertecks
: 8. ISFAB Intertecks
: a. Reector felp, P 4                 1,2,3           1 per         F         M 3.3.2.9                             mA                 siA train, 2 treins
: a. Reector felp, P 4 1,2,3 1 per F
: b. Pressuriser Pressure,             1,2,3             3           L         st 3.3.2.4                   s 2010 pais           2000 pois P+11                                                                       M 3.3.2.7 f .1 I / j The Trip Serpoints may be set more conservative than the Nominal value as necessary in response to k       plant conditions.
M 3.3.2.9 mA siA train, 2 treins
Vogtle Units 1 and 2                                           3.3-36               Amendment No. 96                             (Unit 1)
: b. Pressuriser Pressure, 1,2,3 3
Amendment No. 74                             (Unit 2)
L st 3.3.2.4 s 2010 pais 2000 pois P+11 M 3.3.2.7 f.1 I / j The Trip Serpoints may be set more conservative than the Nominal value as necessary in response to k
plant conditions.
Vogtle Units 1 and 2 3.3-36 Amendment No. 96 (Unit 1)
Amendment No. 74 (Unit 2)


          .                                                                                                                      RTS Instrumentaticn                                           [
RTS Instrumentaticn
                                                                            ,                                                                                                B 3.3.1 i
[
BASES                                                                                                                                                               i l                                                                                                                                                                                               i SACKGROUND                         Reactor Trin Switchaear (continued)                                                                                               ;
B 3.3.1 i
                                                                        .                                        -                                                                            i i                                                            trip mechanism is sufficient by itself, thus providing a                                                                         ;
BASES i
diverse trip mechanism.                                                                                                          .
l i
The decision logic matrix fun tions are described in the-                                                                       !
SACKGROUND Reactor Trin Switchaear (continued) i trip mechanism is sufficient by itself, thus providing a i
functional diagrams included ha Reference 1. In addition to the reactor trip or ESF, these diagrams also describe the                                                                         !
diverse trip mechanism.
4 various "pemissive interlocks" that are associated with                                                                         'i unit conditions. Each train has a built in testing device                                                                     _ l that can automatically test the decision logic matrix                                                                           !
The decision logic matrix fun tions are described in the-functional diagrams included ha Reference 1.
Functions and the actuation devices while t3e unit is at                                                                         *
In addition to the reactor trip or ESF, these diagrams also describe the various "pemissive interlocks" that are associated with
:                                                            power. When any one train is taken out of service for i
'i 4
testing, the other train is capable of providing unit                                                                             i monitoring and protection until the testing has been                                                                               i
unit conditions.
                      -                                      completed. The testing device is semiautomatic to minimize                                                                       :
Each train has a built in testing device l
L                                                            testing time.
that can automatically test the decision logic matrix Functions and the actuation devices while t3e unit is at power. When any one train is taken out of service for testing, the other train is capable of providing unit i
APPLICABLE'                        The RTS functions to maintain the SLs duri mitigatestheconsequencesofDBAsinallballA00sandES in LCO, and SAFETY ANALYSES,                                                                                                                                                       l l                        LCO, and                           which the RTBs are closed.
i monitoring and protection until the testing has been i
APPLICABILITY
completed. The testing device is semiautomatic to minimize L
:                                                            Each of the analyzed accidents and transients can be L                                                           detected by one or more RTS Functions.                     The accident
testing time.
:                                                            analysis described in Reference 3 takes credit for most RTS
The RTS functions to maintain the SLs duri APPLICABLE' mitigatestheconsequencesofDBAsinallballA00sandES in LCO, and l SAFETY ANALYSES, l
                                                            . trip Functions. RTS trip Functions not spccifically                                                                               !
LCO, and which the RTBs are closed.
credited in the accident analysis are qualitatively credited                                                                       ,
APPLICABILITY Each of the analyzed accidents and transients can be L
in the safety analysis and the NRC staff approved licensing basis for the unit. These RTS trip Functions may provide protection for conditions that do not require dynamic transient analysis to demonstrate Function perfomance.                                                                            .
detected by one or more RTS Functions.
They may & Iso serve as backups to RTS trip Functions that 1
The accident analysis described in Reference 3 takes credit for most RTS
were credited in the accident analysis.                                                                                             '
. trip Functions.
1 The LC0 requires all instrumentation performing an RTS                                                                             '
RTS trip Functions not spccifically credited in the accident analysis are qualitatively credited in the safety analysis and the NRC staff approved licensing basis for the unit.
,                                                            Function, listed in Table 3.3.1-1 in the accompanying LCO, c                                                            to be OPERABLE. Failure of any instrument renders the j                                                           affected channel (s) inoperable and reduces the reliability
These RTS trip Functions may provide protection for conditions that do not require dynamic transient analysis to demonstrate Function perfomance.
They may & Iso serve as backups to RTS trip Functions that were credited in the accident analysis.
1 1
The LC0 requires all instrumentation performing an RTS Function, listed in Table 3.3.1-1 in the accompanying LCO, to be OPERABLE.
Failure of any instrument renders the c
j affected channel (s) inoperable and reduces the reliability
:of the affected Functions. A
:of the affected Functions. A
                  /h N                                       The LCO generally requires hPERABILITY of four or three 7                                                            channels in each instrumentation Function, two channels of Manual Reactor Trip in each logic Function, and two trains in each Automatic Trip Logic Function. Four OPERABLE I
/h N The LCO generally requires hPERABILITY of four or three channels in each instrumentation Function, two channels of 7
(continued) l Vogtle. Units 1 and 2                                   B 3.3-7                                                                   Revision No. O
Manual Reactor Trip in each logic Function, and two trains in each Automatic Trip Logic Function.
___ _._                                          ._. _ _ _u -    .._ __        _ _ _ _ _ _ _ . - . . _ . _ . _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _              _          -
Four OPERABLE (continued)
Vogtle. Units 1 and 2 B 3.3-7 Revision No. O u -


INSERT FOR llASES PAGE H 3.3-7
INSERT FOR llASES PAGE H 3.3-7
    'lhe Nominal Trip Setpoint column is modified by a Note that allows the Trip Setpoint to be set more conservatively than the nominal value. The conservative directic" is established by the direction of the inequality applied to the Allowable Value. For example, the Power Range Neutron Flux Iligh trip setpoint may be set to a value less than 109 % during initial startup following a refueling outage until a sufficiently high reactor power is achieved so that the power range channels may be calibrated, in addition, certain Required Actions may require that the Power Range Neutron Flux liigh trip setpoints be reduced based on plant conditions.
'lhe Nominal Trip Setpoint column is modified by a Note that allows the Trip Setpoint to be set more conservatively than the nominal value. The conservative directic" is established by the direction of the inequality applied to the Allowable Value. For example, the Power Range Neutron Flux Iligh trip setpoint may be set to a value less than 109 % during initial startup following a refueling outage until a sufficiently high reactor power is achieved so that the power range channels may be calibrated, in addition, certain Required Actions may require that the Power Range Neutron Flux liigh trip setpoints be reduced based on plant conditions.


RTS Instrumentation
RTS Instrumentation B 3.3.1 BASES APPLICABLE 6.
                                                                                        .-                                                                                        B 3.3.1 BASES APPLICABLE                       6.                     Overtemperature AT                             (continued)
Overtemperature AT (continued)
SAFETY ANALYSES, LCO, and                                                 This results in a two-out-of-four trip logic. Section APPLICABILITY                                             7.2.2.3 of Reference 1 discusses control and protection system interactions for this function. Note that this Function also provides a signal to generate a turbine runback prior to reaching the Trip Setpoint.
SAFETY ANALYSES, LCO, and This results in a two-out-of-four trip logic.
A turbine runback will reduce turbine power and reactor power. A reduction in power will normally alleviate the Overtemperature AT condition and may                                                                             ;
Section APPLICABILITY 7.2.2.3 of Reference 1 discusses control and protection system interactions for this function. Note that this Function also provides a signal to generate a turbine runback prior to reaching the Trip Setpoint.
prevent a reactor trip.
A turbine runback will reduce turbine power and reactor power. A reduction in power will normally alleviate the Overtemperature AT condition and may prevent a reactor trip.
Delta T , as : sed in the overtemperature and overpower AT trip,s, represents the 100% RTP value as measured                                                                           '
Delta T, as : sed in the overtemperature and overpower AT trip,s, represents the 100% RTP value as measured for each loop. This norinalizes each loop's AT trips to the actual operating conditions existing at the time of measurement, thus forcing tha trip to reflect i
.                                                                            for each loop. This norinalizes each loop's AT trips
the equivalent full power condit<ons as assumed in the accident analyses. These differences in RCS loop AT can be due to several factors, e.g., differences in RCS loop flows and slightly asymmetric power-distributions between quadrants. While RCS loop flows are not expected to change with cycle life, radial power redistribution between quadrants may occur, resulting in small changes in loop sr 41fic AT values.
;                                                                            to the actual operating conditions existing at the i
Therefore, loop specific AT, values are measured as no6ded to ensure they represent actual core conditions.
time of measurement, thus forcing tha trip to reflect                                                                           '
he L.C0 requires all four channels of the M/JMY Overtemperature AT trip Function to be OPERABLE.i Note l
the equivalent full power condit<ons as assumed in the accident analyses. These differences in RCS loop AT can be due to several factors, e.g., differences in                                                                             ,
9 that the Overtemperature AT Function receives input f/
RCS loop flows and slightly asymmetric power-
from channels shared with other RTS Functions.
,                                                                            distributions between quadrants. While RCS loop flows are not expected to change with cycle life, radial
.!                                                                            power redistribution between quadrants may occur, resulting in small changes in loop sr 41fic AT values.
Therefore, loop specific AT, values are measured as no6ded to ensure they represent actual core conditions.                                                                                                                     ,
he L.C0 requires all four channels of the M/JMY                                                         Overtemperature AT trip Function to be OPERABLE.i Note l                         9                                                 that the Overtemperature AT Function receives input f/                                                 from channels shared with other RTS Functions.
Failures that affect multiple Functions require entry into the Conditions applicable to all affected Functions.
Failures that affect multiple Functions require entry into the Conditions applicable to all affected Functions.
In M00E 1 or 2 the Overtemperature AT trip must be OPERABLE to prevent DNB.                             In MODE 3, 4, 5, or 6, this                                               i trip Function does not have to be OPER%LE because the reactor is not operating and there is insufficient                                                                             :
In M00E 1 or 2 the Overtemperature AT trip must be OPERABLE to prevent DNB.
heat production to be concerned about DNB.
In MODE 3, 4, 5, or 6, this i
trip Function does not have to be OPER%LE because the reactor is not operating and there is insufficient heat production to be concerned about DNB.
4 4
4 4
(continued)
(continued)
Vogtle-units 1 and 2                                                       B 3.3-16                                           Revision No. 0
Vogtle-units 1 and 2 B 3.3-16 Revision No. 0
  . .,__., _ .,.._..__i     .~ ... __ , _ .         -., .., ... _ _. .._..            .L.. __ ._..__._,_.__....__.,_.,__m..                    . _ , . . . . . . - , , . - . . . . , . , . . _ . - -  .
..,__., _.,.._..__i
.~... __, _.
.L..
._..__._,_.__....__.,_.,__m..


INSERT FOR llASES PAGE B 3.3-16 i
INSERT FOR llASES PAGE B 3.3-16 i
The values for K i, K .2 K), T', and P' may be treated as nominal values (br the purpose of   l performing a CilANNEl, CAllBRATION. The direction of conservatism for these values is as follows:
The values for K, K. K), T', and P' may be treated as nominal values (br the purpose of l
Ki sidentified Value             K22 Identified Value         K 32 Identified Value T' s identified Value             P' % Identified Value Note that K i is the principle setpoint gain, since it defines the function offset. K 2and K3 define the temperature gain and pressure gain respectively. The values for T' and P' are key reference parameters corresponding directly to plant safety analyses initial conditions assumptions for the Overtemperature AT Function. The as left settings for these parameters should be as close as possible or conservative with respect to tne identified values, in order to ensure that the Overtemperature AT setpoint is consistent with the assumptions of the safety analyses,it is necessary to verify during the CilANNEL OPERATIONAL TEST, that the Overtemperature AT setpoint is within the appropriate calibration tolerances for conditions where the temperature input is equal to T' and the pressure input is equal to P', and that appropriate penalties are generated to reduce the setpoint for a temperature input greater than T', and again for a pressure input less than P' (Ref. 9)
i 2
performing a CilANNEl, CAllBRATION. The direction of conservatism for these values is as follows:
Ki sidentified Value K 2 Identified Value K 2 Identified Value 2
3 T' s identified Value P' % Identified Value Note that K is the principle setpoint gain, since it defines the function offset. K and K3 i
2 define the temperature gain and pressure gain respectively. The values for T' and P' are key reference parameters corresponding directly to plant safety analyses initial conditions assumptions for the Overtemperature AT Function. The as left settings for these parameters should be as close as possible or conservative with respect to tne identified values, in order to ensure that the Overtemperature AT setpoint is consistent with the assumptions of the safety analyses,it is necessary to verify during the CilANNEL OPERATIONAL TEST, that the Overtemperature AT setpoint is within the appropriate calibration tolerances for conditions where the temperature input is equal to T' and the pressure input is equal to P', and that appropriate penalties are generated to reduce the setpoint for a temperature input greater than T', and again for a pressure input less than P' (Ref. 9)


l RTS Instrumentatien 8 3.3.1 t
l RTS Instrumentatien 8 3.3.1 t
BASES f             APPL 1.'4LE                               7.               Overoower AT               (continued)
BASES f
SAFET', ANALYSES,
APPL 1.'4LE 7.
-            LCO, and                                                     Delta-T , as used in the overtemperature and overpower
Overoower AT (continued)
:            APPLICABILITY                                               AT trip,s, represents the 100% RTP value as measured
SAFET', ANALYSES, LCO, and Delta-T, as used in the overtemperature and overpower APPLICABILITY AT trip,s, represents the 100% RTP value as measured for each loop. This nomalizes each loop's AT trips to the actual operating conditions existing at the time of measurement, thus forcing the trip to reflect the equivalent full power conditions ns assumed in the accident analyses.
#                                                                          for each loop. This nomalizes each loop's AT trips to the actual operating conditions existing at the time of measurement, thus forcing the trip to reflect
These differences in RCS loop AT c n be due to several factors, e.g., difference in RCS loop flows and slightly asymmetric power distributions between quadrants. While RCS loop flows are not expected to change with cycle life, radial power redirtribution between quadrants may occur, resulting in small changes in loop specific AT values.
'                                                                          the equivalent full power conditions ns assumed in the accident analyses.               These differences in RCS loop AT c n be due to several factors, e.g., difference in RCS loop flows and slightly asymmetric power distributions between quadrants. While RCS loop flows are not
Therefore, loop specific AT, values are measured as needed to ensure they represent actual core conditions.
:                                                                          expected to change with cycle life, radial power redirtribution between quadrants may occur, resulting in small changes in loop specific AT values.
r The LCO requires four channels of the Over>ower AT
Therefore, loop specific AT, values are measured as
/N5/N trip Function to be OPERABLE.\\ Note that tie Overpower
'                                                                          needed to ensure they represent actual core conditions.
~
r                                                                                                                                                                               '
AT trip Function receives input frna channels shared d/M with other RTS Functions.
            ~                                                              The LCO requires four channels of the Over>ower AT
Failures that affect multiple Functions require entry into the Conditions applicable to all affected Functions.
                /N5/N                                                       trip Function to be OPERABLE.\ Note that tie Overpower AT trip Function receives input frna channels shared Failures that affect d/M                                                         with other RTS Functions.
In M00E 1 or 2, the Overpower AT trip Function must be OPERABLE. These are the only times that enough heat is generated in the fuel to be concerned about the In heat generation rates and overheating of the fuel.
multiple Functions require entry into the Conditions applicable to all affected Functions.
MODE 3, 4, 5, or 6 this trip Function does not have to be OPERABLE because the reactor is not operating i
In M00E 1 or 2, the Overpower AT trip Function must be OPERABLE. These are the only times that enough heat is generated in the fuel to be concerned about the heat generation rates and overheating of the fuel. In MODE 3, 4, 5, or 6 this trip Function does not have to be OPERABLE because the reactor is not operating i
and there is insufficient heat productica to be concerned about fuel overheating and fuel damage.
  '                                                                          and there is insufficient heat productica to be concerned about fuel overheating and fuel damage.
: 8.                Pressurizer Pressure
)
)
The same sensors (PI-0455A, 8. & C. PI-0456 PI-0456A, l
8.
PI-0457. PI-0457A, PI-0458 PI-0458A) provide input to the Pressurizer Pressure - High and - Low trips and
Pressurizer Pressure The same sensors (PI-0455A, 8. & C. PI-0456 PI-0456A, l
"                                                                            the Overtemperature AT trip. Since the Pressurizer Pressure channels are also used to provide input to 1
PI-0457. PI-0457A, PI-0458 PI-0458A) provide input to the Pressurizer Pressure - High and - Low trips and the Overtemperature AT trip.
the Pressurizer Pressure Control System, the actuation logic must be able to withstand an input failure to (continued) 8 3.3-18                                 Revision No. 0 Vogtle Units 1 and 2
Since the Pressurizer Pressure channels are also used to provide input to the Pressurizer Pressure Control System, the actuation 1
logic must be able to withstand an input failure to (continued)
Vogtle Units 1 and 2 8 3.3-18 Revision No. 0
 
INSERT FOR IIASES PAGE 113.318 The values for K, K, K, and T" may be treated as nominal values for the purpose of 4
3 6
perfonning a CilANNEL CAllllRATION. The dircetion of conservatism for these values is as follows:
K s identified Value K 2 Identified Value K hidentified Value 4
3 6
T" sidentified Value Note that for K in the case of decreasing temperature, the gain setting must be > 0 to 5
prevent generating setpoint margin on decreasing temperature rates. Similarly, the setting for K is required to be equal to O for conditions where T s T". The value for T" is a key 6
reference parameter corresponding directly to plant safety analyses initial conditions assumptions for the Overpower AT Function. The as left settings for these parameters should be as close as possible or conservative with respect to the identified values. In order to ensure that the Overpower AT setpoint is consistent with the assumptions of the safety analyses, it is necessary to verify during the Cil ANNEL OPERATIONAL TEST, that the Overpower AT setpoint is within the appropriate calibration tolerances for conditions where the temperature input is equal to T", and that the appropriate penalties are generated to reduce the setpoint for a temperature input greater than T" (Ref. 9).


INSERT FOR IIASES PAGE 113.318 The values for K 4, K ,3 K ,6 and T" may be treated as nominal values for the purpose of perfonning a CilANNEL CAllllRATION. The dircetion of conservatism for these values is as follows:
ESFAS Instrumentaticn 8 3.3.2 BASES BACKGROUND Seouencer Outout Relavs (continued) sequencer and are part of the control circuitry of these ESF loads.
K 4 s identified Value                                                        K32 Identified Value  K6hidentified Value T" sidentified Value Note that for K in 5
There are two independent trains of sequencers and each is powered by the respective train of 120-Vac ESF electrical power supply.
the case of decreasing temperature, the gain setting must be > 0 to prevent generating setpoint margin on decreasing temperature rates. Similarly, the setting for K 6is required to be equal to O for conditions where T s T". The value for T" is a key reference parameter corresponding directly to plant safety analyses initial conditions assumptions for the Overpower AT Function. The as left settings for these parameters should be as close as possible or conservative with respect to the identified values. In order to ensure that the Overpower AT setpoint is consistent with the assumptions of the safety analyses, it is necessary to verify during the Cil ANNEL OPERATIONAL TEST, that the Overpower AT setpoint is within the appropriate calibration tolerances for conditions where the temperature input is equal to T", and that the appropriate penalties are generated to reduce the setpoint for a temperature input greater than T" (Ref. 9).
The power supply for the output relays is the secuencer power supply.
* ESFAS Instrumentaticn                 1 8 3.3.2 BASES BACKGROUND                   Seouencer Outout Relavs     (continued) sequencer and are part of the control circuitry of these ESF loads. There are two independent trains of sequencers and each is powered by the respective train of 120-Vac ESF electrical power supply. The power supply for the output relays is the secuencer power supply. The applicable output relays are testec                                                 and in the slavewith in particular, in conjunction     relay  testing the       procedures, specific   slave re lay also required to actuate to energize the applicable ESF load.                                                                               l l
The applicable output and relays are testec in the slave relay testing procedures, lay in particular, in conjunction with the specific slave re also required to actuate to energize the applicable ESF load.
APPLICABLE                   Each of the analyzed accidents can be detected by one or SAFETY ANALYSES, more ESFAS Functions. One of the ESFAS Functions is the LCO, AND                     primary actuation signal for that accident.       An ESFAS APPLICABILITY                 Function may be the primary actuation signal for more than one type of accident. An ESFAS Function may also be a secondary, or backup, actuation signal for one or more other accidents. For example Pressurizer Pressure - Low is a rimaryactuationsignalforsmalllossofcoolantaccidents g7Ag Mfhp[7f/p                                 LOCAs) and a backup actuation signal for steam line breaks                       ,
APPLICABLE Each of the analyzed accidents can be detected by one or SAFETY ANALYSES, more ESFAS Functions. One of the ESFAS Functions is the LCO, AND primary actuation signal for that accident.
                                            /           SLBs) outside containment. Functions such as manual
An ESFAS APPLICABILITY Function may be the primary actuation signal for more than one type of accident. An ESFAS Function may also be a secondary, or backup, actuation signal for one or more other accidents.
                $~ g / p v/4 [ G /h p 4                 nitiation, not specifically credited in the accident safety
For example Pressurizer Pressure - Low is a rimaryactuationsignalforsmalllossofcoolantaccidents g7Ag Mfhp[7f/p LOCAs) and a backup actuation signal for steam line breaks
.                      '                          I analysis, are qualitatively credited in the safety analysis                     .
/
j             p[ kd/t f.J.2-/                           and the NRC staff approved licensing basis for the unit.
SLBs) outside containment.
Functions such as manual
$~ / p v/4 [ G /h p 4 nitiation, not specifically credited in the accident safety g
analysis, are qualitatively credited in the safety analysis I
j p[ kd/t f.J.2-/
and the NRC staff approved licensing basis for the unit.
These Functions may provide protection for conditions that
These Functions may provide protection for conditions that
                /3 No/I'//e,tT A,jj(                   do not require dynamic transient analysis to demonstrate Function performance. These Functions may also serve as
/3 No/I'//e,tT A,jj(
                /\/,/t h f 4 // w J l                      backups to Functions that were credited in the accidene analysis (Ref. 3).
do not require dynamic transient analysis to demonstrate Function performance. These Functions may also serve as
kl ffit N}0ieb f            r            The LCO requires all instrumentation performing an ESFAS f /4g $g[jyort.-                         Function to be OPERABLE. Failure of any instrument renders JL       the affected channel (s) inoperable and reduces the d34.54tV4///l               TN#I     reliabilityoftheaffectedFunctions.J Nf UW/4/! !W'                           The LC0 generally requires OPERABILITY of four or three
/\\/,/t h f 4 // w J backups to Functions that were credited in the accidene l
                  $ f @ ggr yg/j,g,                     channels in each instrumentation function and two channels in each logic and manual initiation function. The C///CC//f4 /J                         two-out-of-three and the two-out-of-four configurations gg/gf//,5 $ u                         allow one channel to be tripped during maintenance or testing without causing an ESFAS initiation. If an
analysis (Ref. 3).
                                            /                                                                                             '
kl ffit N}0ieb The LCO requires all instrumentation performing an ESFAS f
instrument channel is equipped with installed bypass M t d//tC//f4 capability, such .that no jumpers or lifted leads are g g j4f //                                                      -
r f /4g $g[jyort.-
ap y It w 4             Me jf// N d h d f d W6 9                                                                         (continued)
Function to be OPERABLE.
Vogtle Units 1 and 2                           8 3.3-66                           Revision No. 0
Failure of any instrument renders JL the affected channel (s) inoperable and reduces the d34.54tV4///l TN#I reliabilityoftheaffectedFunctions.J Nf UW/4/!
!W' The LC0 generally requires OPERABILITY of four or three
$ f @ ggr yg/j,g, channels in each instrumentation function and two channels in each logic and manual initiation function.
The C///CC//f4 /J two-out-of-three and the two-out-of-four configurations gg/gf//,5 $ u allow one channel to be tripped during maintenance or
/
testing without causing an ESFAS initiation.
If an M t d//tC//f4 instrument channel is equipped with installed bypass g g j4f
//
capability, such.that no jumpers or lifted leads are ap y It w 4 M e jf// N d h d f d W6 9 (continued)
Vogtle Units 1 and 2 8 3.3-66 Revision No. 0


RTS Instrumentation
RTS Instrumentation B 3.3.1 BASES REFERENCES 2.
                                  .                                                  B 3.3.1 BASES REFERENCES     2. FSAR, Chapter 6.
FSAR, Chapter 6.
(continued)
(continued) 3.
: 3. FSAR, Chapter 15.
FSAR, Chapter 15.
: 4. IEEE-279-1971.
4.
: 5. 10 CFR 50.49.
IEEE-279-1971.
: 6. WCAP-11269, Westinghouse Setpoint Methodology for Protection Systems.
5.
: 7. WCAP-10271-P-A, Supplement 2, Rev. 1. June 1990.
10 CFR 50.49.
: 8. FSAR, Chapter 16.
6.
4 (Ales llnabDuri h#er GP-16696. NoendwS, in2 a                                             '
WCAP-11269, Westinghouse Setpoint Methodology for Protection Systems.
t Vogtle Units 1 and 2               B 3.3-60                               Revision No. 0
7.
WCAP-10271-P-A, Supplement 2, Rev. 1. June 1990.
8.
FSAR, Chapter 16.
4 (Ales llnabDuri h#er GP-16696. NoendwS, in2 a
t Vogtle Units 1 and 2 B 3.3-60 Revision No. 0


1 ESFAS Instrumentation B 3.3.2               i BASES SURVEILLANCE       SR 3.3.2.8     (continued)
1 ESFAS Instrumentation B 3.3.2 i
REQUIREMENTS verification of these devices every 18 months. The 18 month Frequency is consistent with the typical refueling cycle and is based on unit operating experience, which shows that random failures of instrumentation components causing serious response time degradation, but not channel failure, are infrequent occurrences.
BASES SURVEILLANCE SR 3.3.2.8 (continued)
REQUIREMENTS verification of these devices every 18 months.
The 18 month Frequency is consistent with the typical refueling cycle and is based on unit operating experience, which shows that random failures of instrumentation components causing serious response time degradation, but not channel failure, are infrequent occurrences.
This SR is modified by a Note that clarifies that the turbine driven AFW pus) is tested within 24 hours after reaching 900 psig in tie SGs.
This SR is modified by a Note that clarifies that the turbine driven AFW pus) is tested within 24 hours after reaching 900 psig in tie SGs.
1 3.3.2.9 SR                                                                                            i SR 3.3.2.9 is the perfomance of a TADOT as described in SR 3.3.2.6 for the P-4 Reactor Trip Interlock, and the l
1 SR 3.3.2.9 i
Frequency is once per 18 months. This Frequency is based on operating experience. The SR is modified by a note that excludes verification of setpoints during the TADOT. The function tested has no associated setpoint.
SR 3.3.2.9 is the perfomance of a TADOT as described in SR 3.3.2.6 for the P-4 Reactor Trip Interlock, and the Frequency is once per 18 months. This Frequency is based on operating experience. The SR is modified by a note that excludes verification of setpoints during the TADOT.
REFERENCES         1. FSAR, Chapter 6.
The function tested has no associated setpoint.
: 2. FSAR, Chapter 7.
REFERENCES 1.
: 3. FSAR, Chapter 15,
FSAR, Chapter 6.
: 4. IEEE-279-1971.
2.
: 5. 10 CFR 50.49.
FSAR, Chapter 7.
: 6. WCAP-11269. Westinghouse Setpoint Methodology for                                     .
3.
Protection Systems.
FSAR, Chapter 15, 4.
: 7. WCAP-10271-P-A, Supplement 2, Rev. 1. June 1990.
IEEE-279-1971.
: 8. FSAR, Chapter 16,
5.
: 9. Wish/towsc f.t//W M- IC&K AldmberS Mf2                 '
10 CFR 50.49.
V B 3.3-109                                     Revision No. O Vogtle Units:1 and 2
6.
WCAP-11269. Westinghouse Setpoint Methodology for Protection Systems.
7.
WCAP-10271-P-A, Supplement 2, Rev. 1. June 1990.
8.
FSAR, Chapter 16, 9.
Wish/towsc f.t//W M-IC&K AldmberS Mf2 V
B 3.3-109 Revision No. O Vogtle Units:1 and 2


RTS Instrumentation 3.3.1 9
RTS Instrumentation 3.3.1 9
isble 3.3.1 1 (pese 1 of 8)
isble 3.3.1 1 (pese 1 of 8)
Reacter irlp System Instroentation Futtil0N                           APeticaaLE N ets           REeulRE0           coNolitous suaVEILLANCE                 ALLOW 8LE           WoNINAL l       ;
Reacter irlp System Instroentation Futtil0N APeticaaLE N ets REeulRE0 coNolitous suaVEILLANCE ALLOW 8LE WoNINAL l
                                                                                                                                                                                                  ~
OR OTNEa CNANNELS REGUltENENTS VALUE TRIP
REGUltENENTS                     VALUE               TRIP SfiPolNT W OR OTNEa            CNANNELS SPECIFIED                                                                                                     l CONelitous i
~
1,2                                           SR 3.3.1.13                       NA                 NA
W SPECIFIED SfiPolNT l
: 1. Manuel Reactor                                                              2                8 l
CONelitous i
Trip 3I  '),   A I *), $ *)
l 1.
I              2               c     SR 3.3.1.13                       NA                 hA
Manuel Reactor 1,2 2
: 2. Power R Neutron f wa Nigh                                         1,2                     4               0     SR 3.3.1.1               s 111.3% RTP           109% RTP l a.
8 SR 3.3.1.13 NA NA Trip I
De 3.3.1.2                                                         !
I I
la 3.3.1.7 sa 3.3.1.11
3 '),
'                                                                                                                            SR 3.3.1.15
A *), $ *)
: b.     Low                                       1(b) 2,                  4               E     sa 3.3.1.1                 s 27.3% RTP             25% RTP l sa 3.3.1.8                                                         .
2 c
Sa 3.3.1.11 sa 3.3.1.15                                                         l l
SR 3.3.1.13 NA hA 2.
: 3. Power Renes                                           1,2                     4               E     SR 3.3.1.7                 s 6.3% RTP             5% RTP l t.ith time 1
Power R Neutron f wa a.
1                        Neutron Flum Nlsh                                                                                   SR 3.3.1.11                 Ntth time Peeltive Rete                                                                                                                     cinstant           constant t 2 see           t 2 sec
Nigh 1,2 4
: 4. Intermodlate Renee                           1(b), II *I                   2             FG     SR 3.3.1.1                 s 31.1% RTP             25% RTP l       ,
0 SR 3.3.1.1 s 111.3% RTP 109% RTP l
i-                       Neutron Flum-                                                                                       sa 3.3.1.8                                                         .
De 3.3.1.2 la 3.3.1.7 sa 3.3.1.11 SR 3.3.1.15 b.
Sa 3.3.1.11 2(d)                     2               N     SR 3.3.1.1                 s 31.11 RTP             25% RTP l
Low 1(b) 2 4
'                                                                                                                            SR 3.3.1.8 sa 3.3.1.11 (contlnued)
E sa 3.3.1.1 s 27.3% RTP 25% RTP l
sa 3.3.1.8 Sa 3.3.1.11 sa 3.3.1.15 l
l
: 3. Power Renes 1,2 4
E SR 3.3.1.7 s 6.3% RTP 5% RTP l
1 1
Neutron Flum Nlsh SR 3.3.1.11 Ntth time t.ith time Peeltive Rete cinstant constant t 2 see t 2 sec 4.
Intermodlate Renee 1(b), I *I 2
FG SR 3.3.1.1 s 31.1% RTP 25% RTP l
I i-Neutron Flum-sa 3.3.1.8 Sa 3.3.1.11 2(d) 2 N
SR 3.3.1.1 s 31.11 RTP 25% RTP l
SR 3.3.1.8 sa 3.3.1.11 (contlnued)
(a) With Reactor Trlp Brookers (RTBs) closed and Rod Control System capable of rod ulthdrawal, (b) Detow the P 10 (Power Renee Neutron Flual interlocks.
(a) With Reactor Trlp Brookers (RTBs) closed and Rod Control System capable of rod ulthdrawal, (b) Detow the P 10 (Power Renee Neutron Flual interlocks.
s (c)' Above the P-6 (Intermediate Renee Neutron Flus) Interlocks.                                                                                                                 ,
s (c)' Above the P-6 (Intermediate Renee Neutron Flus) Interlocks.
(d) Delow the P 6 (Intermodlate Renee Neutron Flua) Interlocks.
(d) Delow the P 6 (Intermodlate Renee Neutron Flua) Interlocks.
(n) . The Trip letpelnte may be set more conservative then the nominst value es necessary in response to plant cendttione.
(n). The Trip letpelnte may be set more conservative then the nominst value es necessary in response to plant cendttione.
i Vogtle Uatts l'and 2-                                                                 3.3-14                     Amendment No.                   (Unit 1)
i Vogtle Uatts l'and 2-3.3-14 Amendment No.
Amendment No.                   (Unit 2) t
(Unit 1)
  ,,      . . . . .      . - _ _ _ . _ , _ . _ - - . . - - . . . - ._                          m._.-     . . _ _    . - .-    . , - . -            .            .._.__.:__ . - _ .      ,_.a.-
Amendment No.
(Unit 2) t
: m..-
,_.a.-


RTS Instrumentation 3.3.1 l
RTS Instrumentation 3.3.1 l
l table 3.3.1 1 (pe,)e 2 of 8)                                                                       i Reactor Trip System Instrumentation -
i table 3.3.1 1 (pe,)e 2 of 8)
l FWWCTION             APPLICABLE NODES         REOJIRED - CONDilloul       SURVtlLLANCE               ALLOWABLE               WOMINAL     l OR diner         CHANNELS                   REQUIV MENTS                 VALUE                     TRIP SPfCIFIED                                                                                         StiPolNT Ud  l CouDI1lowl
Reactor Trip System Instrumentation -
: 5.         Source Renee                     2(d)                 2             1.J       SR 3.3.1.1                 s 1.4 t$               1.0 El cps   l Woutron flun                                                                 $R 3.3.1.8                     cpe SR 3.3.1.11 st 3.3.1.15 3I '), 4(a), $(a)           2             J,K       SR 3.3.1.1                 s 1.4 15               1.0 E5 eps   l
l FWWCTION APPLICABLE NODES REOJIRED - CONDilloul SURVtlLLANCE ALLOWABLE WOMINAL l
                                                                                              $R 3.3.1.7                     cpe
OR diner CHANNELS REQUIV MENTS VALUE TRIP Ud SPfCIFIED StiPolNT l
                                                                                              $R 3.3.1.11 SR 3.3.1.15 3('), 4''), 5(')             1               L     SR 3.3.1.1                       NA                       NA SR 3.3.1.11
CouDI1lowl 5.
: 6.         Overte p reture AT               1,2                 4               t     tR 3.3.1.1                 Refer to               Refer to le 3.3.1.3                   Note 1               Note 1 (Page la 3.3.1.6                   (Pape                 3.3 20) sa 3.3.1.7                 3.3 20)
Source Renee 2(d) 2 1.J SR 3.3.1.1 s 1.4 t$
SR 3.3.1.10 SR 3.3.1.15
1.0 El cps l
: 7.         Overpower AT                     1,2                 4               t     $R 3.3.1.1                 Refer to               Refer to SR 3.3.1.7                   Note 2               Note 2 (Page
Woutron flun
,                                                                                              SR 3.3.1.10                   (Page                 3.3 21)
$R 3.3.1.8 cpe SR 3.3.1.11 st 3.3.1.15 3 '), 4(a), $(a) 2 J,K SR 3.3.1.1 s 1.4 15 1.0 E5 eps l
SR 3.3.1.15                 3.3 21)
I
$R 3.3.1.7 cpe
$R 3.3.1.11 SR 3.3.1.15 3('), 4''), 5(')
1 L
SR 3.3.1.1 NA NA SR 3.3.1.11 6.
Overte p reture AT 1,2 4
t tR 3.3.1.1 Refer to Refer to le 3.3.1.3 Note 1 Note 1 (Page la 3.3.1.6 (Pape 3.3 20) sa 3.3.1.7 3.3 20)
SR 3.3.1.10 SR 3.3.1.15 7.
Overpower AT 1,2 4
t
$R 3.3.1.1 Refer to Refer to SR 3.3.1.7 Note 2 Note 2 (Page SR 3.3.1.10 (Page 3.3 21)
SR 3.3.1.15 3.3 21)
(continued)
(continued)
(a) With RTBs closed and Rod Control System capable of rod withdrawal.
(a) With RTBs closed and Rod Control System capable of rod withdrawal.
(d) Below the P 6 (Intermedlete Renee Neutron Flum) interlocks.
(d) Below the P 6 (Intermedlete Renee Neutron Flum) interlocks.
(e) With the Rits open. In this condition, source ranee F metion does not provide reactor trip but does provide input to the Niyh Flux et shutdown Alarm System (LC0 3.3.8) and indication.
(e) With the Rits open. In this condition, source ranee F metion does not provide reactor trip but does provide input to the Niyh Flux et shutdown Alarm System (LC0 3.3.8) and indication.
(n) The Trip Setpoints may be set more conservative than the nominal value as necessary in resposite to plant                                             l l
(n) The Trip Setpoints may be set more conservative than the nominal value as necessary in resposite to plant l
                                      ~
conditions.
conditions.
Vogtle Units 1 and 2                                       3.3-15                   Amendment No.                                 (Unit 1)
~
Amendment No.                                 (Unit 2)
l Vogtle Units 1 and 2 3.3-15 Amendment No.
      , . . , .        . . . . . ,            n                            ..n-~ .-,.n,-     -  . - - - , . .            . . - - - - . , -      . . . . .
(Unit 1)
Amendment No.
(Unit 2) n
..n-~
.-,.n,-


RTS Instrumentation 3.3.1 Table 3.3.1+1 (page 3 of 8) teactor Trip $rstem Instrunentation FUNC110N         APPLICA8LE MODES                 ttouintD                                                 CON 011. t 1 $URVtlLLANct   ALLOWABLE             WOMINAL l
RTS Instrumentation 3.3.1 Table 3.3.1+1 (page 3 of 8) teactor Trip $rstem Instrunentation FUNC110N APPLICA8LE MODES ttouintD CON 011. t 1
REQUlttMEWil     VALUE                 TRIP On OlNER                    CHANNELS
$URVtlLLANct ALLOWABLE WOMINAL l
                                                                                                                                                                            $tfP0lWT W
On OlNER CHANNELS REQUlttMEWil VALUE TRIP W
                                    $PECIFIED                                                                                                                                            l CON 0lil0NS
$PECIFIED
: 8. Pressuriser Pressure
$tfP0lWT l
: e. Low                     1(I)                                         4                                         M       SR 3.3.1.1     t 1950 psig               1960%'   l SR 3.3.1.7                               psig SR 3.3.1.10 SR 3.3.1.15
CON 0lil0NS 8.
: b. High                     1,2                                           4                                         E       sn 3.3.1.1     s 2395 psig             2385 psig   l SR 3.3.1.7 SR 3.3.1.10 SR 3.3.1.15
Pressuriser Pressure e.
: 9. Pressuriser Water             IIII                                           3                                       M       SR 3.3.1.1 SR 3.3.1.7 s 93.9%                 92%       l Level = Hlsh sa 3.3.1.10
Low 1(I) 4 M
: 10. Reactor Coolant flow -Low
SR 3.3.1.1 t 1950 psig 1960 '
: a. Single Loop             IIh3                                 3 per                                             N       SR 3.3.1.1       t 89.4%                 90%     l toop                                                   SR 3.3.1.7
l SR 3.3.1.7 psig SR 3.3.1.10 SR 3.3.1.15 b.
                                                                                                                                        $t 3.3.1.10
High 1,2 4
                                                                                                                                        $2 3.3.1.15
E sn 3.3.1.1 s 2395 psig 2385 psig l
: b. Two Loopa               1(II                                 3 per                                             M       st 3.3.1.1       t 89.4%                 90%       l l cop                                                 SR 3.3.1.7 tt 3.3.1.10                                           i st 3.3.1.15 1
SR 3.3.1.7 SR 3.3.1.10 SR 3.3.1.15 9.
(continued)
Pressuriser Water IIII 3
(f) Above the P 7 (Low Power Reactor irlps Block) inttrlock.
M SR 3.3.1.1 s 93.9%
(g) time constante utilised in the lead leg controller for Pressuriter Pressure Low are '                                                                   ands for lead and 1 second for lag.
92%
l Level = Hlsh SR 3.3.1.7 sa 3.3.1.10
: 10. Reactor Coolant flow -Low a.
Single Loop IIh3 3 per N
SR 3.3.1.1 t 89.4%
90%
l toop SR 3.3.1.7
$t 3.3.1.10
$2 3.3.1.15 b.
Two Loopa 1(II 3 per M
st 3.3.1.1 t 89.4%
90%
l l cop SR 3.3.1.7 tt 3.3.1.10 i
st 3.3.1.15 (continued) 1 (f) Above the P 7 (Low Power Reactor irlps Block) inttrlock.
(g) time constante utilised in the lead leg controller for Pressuriter Pressure Low are '
ands for lead and 1 second for lag.
(h) Above the P 8 (Power Range Neutron flum) interlock.
(h) Above the P 8 (Power Range Neutron flum) interlock.
(I) Above the P 7 (Low Power teactor Tripe Block) Interit.ck and below the P 8 (Power Range Neutron Flux) Interlock.
(I) Above the P 7 (Low Power teactor Tripe Block) Interit.ck and below the P 8 (Power Range Neutron Flux) Interlock.
(n) The trip Setpoints may be set more conservative than the nominal value as necessary in response to plant conditions.
(n) The trip Setpoints may be set more conservative than the nominal value as necessary in response to plant conditions.
Vogtle Units 1 and 2                                                                           3.3-16                             Amendment No.               (Unit 1)
Vogtle Units 1 and 2 3.3-16 Amendment No.
Amendment No.               (Unit 2)
(Unit 1)
Amendment No.
(Unit 2)


l I
i RTS Instrumentation 3.3.1 febte 3.3.1 1 (pope 4 of 8) teactor Trip System Instenanntation i
i RTS Instrumentation 3.3.1 febte 3.3.1 1 (pope 4 of 8) teactor Trip System Instenanntation i
l APPLICA4LE 11388     kleulRED   ConDIllows   SURVEILLAmCC   ALLOWASLE       NON!hAL   l FUNC180M OR Otuta         CNAmetLS-               REGUIREMENTS     VALUE           TRIP H         l SPEtifitt                                                             OffPOINT   l
l FUNC180M APPLICA4LE 11388 kleulRED ConDIllows SURVEILLAmCC ALLOWASLE NON!hAL l
'                                    Couplilout
OR Otuta CNAmetLS-REGUIREMENTS VALUE TRIP H SPEtifitt OffPOINT l
: 11. Undervettees-                 III)             2 per         M       SR 3.3.1.9     a 9481 Y         9600 V l       '
l Couplilout
RCPs                                           bus -               st 3.3.1.10                                       '
: 11. Undervettees-III) 2 per M
SR 3.3.1.15
SR 3.3.1.9 a 9481 Y 9600 V l
: 12. Underfrequency               1(f)             2 per         M       ta 3.3.1.9     t 57.1 N         57.3 Na l         j BCPs                                           bue                 sa 3.3.1.10                                     -
RCPs bus -
SR 3.3.1.15
st 3.3.1.10 SR 3.3.1.15
: 13. Steen                         1,2           4 per to       t       sa 3.3.1.1       2 35.9K       -37.8%   l Generator (SG)                                                     SR 3.3.1.7                                     '
: 12. Underfrequency 1(f) 2 per M
Weter Level - Low                                                   te 3.3.1.10 Low                                                                 $4 3.3.1.15
ta 3.3.1.9 t 57.1 N 57.3 Na l
                                                                                                            -(continued)
j BCPs bue sa 3.3.1.10 SR 3.3.1.15
(f) . Above the P.T (Low Power Reactor felps Block) Interlock.
: 13. Steen 1,2 4 per to t
(n) The Trip tetpoints may be set more conservettve then the nominal .value as necessary in response to plant       l conditions.                                                                                                   I i
sa 3.3.1.1 2 35.9K
-37.8%
l Generator (SG)
SR 3.3.1.7 Weter Level - Low te 3.3.1.10 Low
$4 3.3.1.15
-(continued)
. Above the P.T (Low Power Reactor felps Block) Interlock.
(f)
(n) The Trip tetpoints may be set more conservettve then the nominal.value as necessary in response to plant l
conditions.
I i
1 1
1 1
Y t
Y t
3-Vogtle Units 1 end 2                               3.3             Amendment No.         (Unit 1)
3-Vogtle Units 1 end 2 3.3 Amendment No.
Amendment No.         (Unit 2)
(Unit 1)
                                                                                    .:      = _:-_--                    ,-
Amendment No.
(Unit 2)
=


RTS Instrumentation 3.3.1 table 3.3.1 1 (pase 5 of 8)
RTS Instrumentation 3.3.1 table 3.3.1 1 (pase 5 of 8)
Reactor irlp system Instrumentation FUNCilow                   APPLICAttt le0 des     Atoultto   CouDiflows   SURVilLLANCE   ALLOW 48LE         WOMihAL     l OR Othf R         CHAWW(LS               Rt0VIREMENTS         VALUE           TRIP W
Reactor irlp system Instrumentation FUNCilow APPLICAttt le0 des Atoultto CouDiflows SURVilLLANCE ALLOW 48LE WOMihAL l
                                                    $PitiffED                                                                   SETP0 INT l
OR Othf R CHAWW(LS Rt0VIREMENTS VALUE TRIP W
$PitiffED SETP0 INT l
Couplilows
Couplilows
: 14. Turbine trip
: 14. Turbine trip a.
: a. Low fluid olt                   1(II                 3         0       SR 3.3.1.10   t 500 pels         580 psip     l Pressure                                                                 SR 3.3.1.16
Low fluid olt 1(II 3
: b. Turbine Stop                   IIII                 4         P       st 3.3.1.10   t 90% open       96.7% open     l Valwe Ciosure                                                           SR 3.3.1.14
0 SR 3.3.1.10 t 500 pels 580 psip l
: 15. Safety                                   1,2             2 tralne       e       SR 3.3.1.13             NA             NA Injectlen($1)
Pressure SR 3.3.1.16 b.
Turbine Stop IIII 4
P st 3.3.1.10 t 90% open 96.7% open l
Valwe Ciosure SR 3.3.1.14
: 15. Safety 1,2 2 tralne e
SR 3.3.1.13 NA NA Injectlen($1)
Ityut from Engineered Safety f eature Actuation System (ESFAS)
Ityut from Engineered Safety f eature Actuation System (ESFAS)
: 16. Reector trip System Interlocks
: 16. Reector trip System Interlocks a.
: a. Intermodlate                   2(d)                 2         R       sa 3.3.1.11   t 6t 11 anp         it 10 amp     l Renee neutron                                                           $t 3.3.1.12 flun, P 6
Intermodlate 2(d) 2 R
: b. Low Power                         1               1 per       s       SR 3.3.1.5             h4             NA Reactor trips                                     train Olet t, P T
sa 3.3.1.11 t 6t 11 anp it 10 amp l
: c. Power tense                                              4          s       sp 3.3.1.11   s 50.3% RTP           48% RTP     l j
Renee neutron
heutron Ftum,                                                           st 3.3.1.12 P8
$t 3.3.1.12 flun, P 6 b.
: d. Power Renee                                         4         5       SR 3.3.1.11   s 52.3% RTP           50% RTP     l Neutron ftun,                     1                                     SR 3.3.1.12 P9
Low Power 1
: e. Power Range                                         4         R       SR 3.3.1.11           (1,m)         (t,m)
1 per s
Neutron Flux,                   1,2                                     SR 3.3.1.12 P*10 and input to P*T 2         $      SR 3.3.1.10         s 12.3%             10%     l
SR 3.3.1.5 h4 NA Reactor trips train Olet t, P T 4
: f. Turbine lopulse                   1                                     st 3.3.1.12         Impulse       lopulse Pressure, P 13                                                                           Pressure       Pressure Equivalent       Equivalent turbine         turbine (continued)
s sp 3.3.1.11 s 50.3% RTP 48% RTP l
c.
Power tense j
heutron Ftum, st 3.3.1.12 P8 d.
Power Renee 4
5 SR 3.3.1.11 s 52.3% RTP 50% RTP l
Neutron ftun, 1
SR 3.3.1.12 P9 e.
Power Range 4
R SR 3.3.1.11 (1,m)
(t,m)
Neutron Flux, 1,2 SR 3.3.1.12 P*10 and input to P*T 2
SR 3.3.1.10 s 12.3%
10%
l f.
Turbine lopulse 1
st 3.3.1.12 Impulse lopulse Pressure, P 13 Pressure Pressure Equivalent Equivalent turbine turbine (continued)
(d) Below the P 6 (Intermediate Renee heutron flux) Interlocks.
(d) Below the P 6 (Intermediate Renee heutron flux) Interlocks.
(j) Above the P 9 (Power Renee Neutron Flux) Interlock.
(j) Above the P 9 (Power Renee Neutron Flux) Interlock.
(L) For the P 10 tryut to P 7, the Alloweble VeLue is 512.3% RTP and the Nominal fl ip $etpoint is 10% RTP.                           l
(L) For the P 10 tryut to P 7, the Alloweble VeLue is 512.3% RTP and the Nominal fl ip $etpoint is 10% RTP.
        ' (m) For the Power Ranee heutron Flus, P 10, the Allowable Value is t 7.7% RTP and the Nominal Trip Setpoint is 10% RTP.
l
' (m) For the Power Ranee heutron Flus, P 10, the Allowable Value is t 7.7% RTP and the Nominal Trip Setpoint is 10% RTP.
(n) The Trip setpoints may be set more conservative than the nombat value as recessary in response to plant conditions.
(n) The Trip setpoints may be set more conservative than the nombat value as recessary in response to plant conditions.
Vogtle Units 1 and 2-                                           3.3-18               Amendment No.             (Unit 1)
Vogtle Units 1 and 2-3.3-18 Amendment No.
Amendment No.             (Unit 2)
(Unit 1)
E w .-,y             --                -ws- - -, .                                           -
Amendment No.
y -- ,
(Unit 2)
E w
.-,y
-ws- - -,.
-r y


                                                                                        . - _ =   .__        _ .--      - -
. - _ =
0 RTS Instrumentation 3.3.1 table 3.3.1 1 (pape 6 of 8)
0 RTS Instrumentation 3.3.1 table 3.3.1 1 (pape 6 of 8)
Reactor trip System Instrsmentation FUNCil0N           APPLICABLE MONS       REQUIRED   ConDiflous   tuRVIILLANCE       ALLOWABLE       NOMihAL     l Rt0UltiMEN15         VALUE           1 RIP OR OTHER        CHANNELS MTP0lNT W
Reactor trip System Instrsmentation FUNCil0N APPLICABLE MONS REQUIRED ConDiflous tuRVIILLANCE ALLOWABLE NOMihAL l
9PECIFit0                                                                                 l Couplil0ml
OR OTHER CHANNELS Rt0UltiMEN15 VALUE 1 RIP W 9PECIFit0 MTP0lNT l
: 17. . keector gp                     1,2           2 trains       7,V     tR 3.3.1.4             WA             hA Dreakers 3I 'I, 4I '), $I *)   2 trains         C       $R 3.3.1.4             h4             hA
Couplil0ml
: 18. Reector trip                     1,2             1 each       U,Y       st 3.3.1.4             NA             h4 Brooker                                       per Rip undervoltese and o u t Trip             3(a),4(e),$(s)         1 each         C       st 3.3.1.4             NA             h4 Itechenless                                   per RTS 19 Autenstle Trip                   1,2           2 tralne       0,Y       SR 3 3.1.$             NA             NA Leelt 3I 'I, 4(e), $I *I   2 trains         C       SR 3.3.1.5             WA             NA GB (4) With Rits closed and Rod Control System capable of rod withdrawal.
: 17.. keector gp 1,2 2 trains 7,V tR 3.3.1.4 WA hA Dreakers 3 'I, 4 '), $ *)
2 trains C
$R 3.3.1.4 h4 hA I
I I
: 18. Reector trip 1,2 1 each U,Y st 3.3.1.4 NA h4 Brooker per Rip undervoltese and o u t Trip 3(a),4(e),$(s) 1 each C
st 3.3.1.4 NA h4 Itechenless per RTS 19 Autenstle Trip 1,2 2 tralne 0,Y SR 3 3.1.$
NA NA Leelt 3 'I, 4(e), $ *I 2 trains C
SR 3.3.1.5 WA NA I
I GB (4) With Rits closed and Rod Control System capable of rod withdrawal.
(6) including any reactor trip bypass breakers that are rocked in and closed for bypassing en RTI.
(6) including any reactor trip bypass breakers that are rocked in and closed for bypassing en RTI.
(e) the trip letpoints may be set more conservative then ths noelnel value es necessary in response to plant                 l conditione,                                                                                                             i Vogtle Units 1 and 2                                 3.3-19               Amendment No.                 (Unit 1)
(e) the trip letpoints may be set more conservative then ths noelnel value es necessary in response to plant l
Amendment No.                 (Unit 2)
conditione, i
Vogtle Units 1 and 2 3.3-19 Amendment No.
(Unit 1)
Amendment No.
(Unit 2)


  +
+
RTS Instrument 8 tion 3.3.1                 ,
RTS Instrument 8 tion 3.3.1 febte 3.3.1 1 (pese T of 4)
febte 3.3.1 1 (pese T of 4)
Reactor Trip system instrumentetton i
Reactor Trip system instrumentetton                                               i mate it overt-                                                 eture bette T The Overtemperature Dette f Fmetlen Allowable Value sheit not exceed the Nominst Trip letpoint defined by the                                                                                                               l feltowIre opetten by more then 2.25% of ATP.
mate it overt-eture bette T The Overtemperature Dette f Fmetlen Allowable Value sheit not exceed the Nominst Trip letpoint defined by the l
I                ''          I 100.#."##'                                                      J Kg -K,"o +,,'o   t a + ,,o
feltowIre opetten by more then 2.25% of ATP.
                                                                                                                                                                              .f'
Kg -K,"o +,,'o 100.#."##'
                                                                                                                                                                                  - KaIP *PI*f t(AfD) n o + ,,w n + ,,o Where:     41                                                                       measured loop specific RCs differentlet temperature, degrees F 470 Indicated loop specific RCs differentist et RTP, degrees F lttit                                                                     lead tes cogensator on sneeured dif ferential temperature 1+fge t i , fg                                                                 time constante utill ed in teed les cooperm. tor for differentist temperatures e, t 8 seconde, fa a 3 seconds.
I I
i 1+fas                                                                     top compensator on measured dif forential temperature fa                                                                       time constant utillied in tog ccmpeneetor for dif ferentist togerature, s 2 seconde Kg                                                                 -fundamentet setpoint, 112% RTP                                                                                                             g Kg                                                                       modiffer for temperature, 2.24% RTP per degree F                                                                                       g 1*148 1+fte                                                                      teed tes cogeneetor on dynamic temperature compensation f 4 , f,                                                                 time constante utilf red in lead leg compensator for temperature compensations f4 t 28 seconde, es s 4 seconde i                                                                       measured loop specific RC$ eversee temperature, degrees F 1
t
1+tes                                                                     tog tegensator on meessred eversee temperature to                                                                       time constant utilf red in leg compensator for everage temperature, = 0 seconds le                                                                         trulicated loop specific RCS aversee temperature et RTP, $88.4 degrees F K3                                                                      modifier for pressure, 0.115% RTP per pels l
.f' - KaIP *PI*f (AfD)
P                                                                        measured C8 presourtser pressure, pelg P'                                                                       reference pressure, 2235 pelg I
J t
s                                                                         Laplace transform verlebte, inverse seconds fg(AFD)                                                                   modifier for Axlet Flum Difference (AFD):
a +,,o n o +,,w n +,,o Where:
: 1.                           for AFD between 32% and +10%,             0% RTP
41 measured loop specific RCs differentlet temperature, degrees F Indicated loop specific RCs differentist et RTP, degrees F 470 lttit lead tes cogensator on sneeured dif ferential temperature 1+fge t, fg time constante utill ed in teed les cooperm. tor for differentist temperatures e, t 8 seconde, i
: 2.                             for each X AFD is belou 32%, the trip setpoint shall be reduced by 3.25% RTP
fa a 3 seconds.
: 3.                             for each 1 AFD.ls above +10%, the trip setpoint shall be reduced by 2.7% RTP Vogtle Units 1 and 2                                                                                                                                 3.3-20                 Amendment No.       (Unit 1)
i 1+fas top compensator on measured dif forential temperature fa time constant utillied in tog ccmpeneetor for dif ferentist togerature, s 2 seconde Kg
Amendment No.       .(Unit 2)
-fundamentet setpoint, 112% RTP g
Kg modiffer for temperature, 2.24% RTP per degree F g
1*148 1+f e teed tes cogeneetor on dynamic temperature compensation t
f, f, time constante utilf red in lead leg compensator for temperature compensations f4 t 28 4
s 4 seconde seconde, es i
measured loop specific RC$ eversee temperature, degrees F 1
1+tes tog tegensator on meessred eversee temperature to time constant utilf red in leg compensator for everage temperature, = 0 seconds le trulicated loop specific RCS aversee temperature et RTP, $88.4 degrees F K
modifier for pressure, 0.115% RTP per pels 3
l P
measured C8 presourtser pressure, pelg P'
reference pressure, 2235 pelg I
s Laplace transform verlebte, inverse seconds fg(AFD) modifier for Axlet Flum Difference (AFD):
1.
for AFD between 32% and +10%,
0% RTP 2.
for each X AFD is belou 32%, the trip setpoint shall be reduced by 3.25% RTP 3.
for each 1 AFD.ls above +10%, the trip setpoint shall be reduced by 2.7% RTP Vogtle Units 1 and 2 3.3-20 Amendment No.
(Unit 1)
Amendment No.
.(Unit 2)


e RTS Instrumentation 3.3.1 febte 3.3.1 1 (page 8 of 8) keector Trip $rstem Instrumentation hote Pt Dvgicower Dette T The Overpower Dette T Fmetton ALLOWAtt! VALUE shalt not exceed the Nominst Trip Setpoint defined by the following                         l egantion ty eore then 2.85% of ATP.
e RTS Instrumentation 3.3.1 febte 3.3.1 1 (page 8 of 8) keector Trip $rstem Instrumentation hote Pt Dvgicower Dette T The Overpower Dette T Fmetton ALLOWAtt! VALUE shalt not exceed the Nominst Trip Setpoint defined by the following l
Ifys)                         1
egantion ty eore then 2.85% of ATP.
                                                                                                              - Ty -f 2(AIDI 100 M (1+ti s) 1 1
i 1
s K4- K, II
Ifys) 1 1
* f SI Il ' V 83 1 -K e I SO II
100 M (1+t s) 1
* Yt *I II
-K I
* f3"I                 7           8       , I *fel Whores     41         measure] toop specific tt$ differentlet temperature, degrees F AT O        Indicated loop specific RCS differentlet et RTP, degrees F l'1,3       teed tog compensator on eessured dif forentist teaterature 1+tge t,13 i
- Ty -f (AIDI s K4-K, II
time constante utill ed in lead tes ccmpensator for dif ferentist tenperatures vi t 8 seconds, e s 3 seconds i
* f SI Il ' V 83 I *fel 2
l''as       les conpensator on sensured dif ferentist tenperature v3 time constant utillied in tog conpensator for dif ferentlet tenperature, s 2 seconds fundamentet setpoint,109.5% RTP                                                                                   l K4 Kg          sodifier for temperature change: 21 RTP per degree F for increasing tenperature, t 0% tiP per l degree F for decreeping tenperature
e II
                  .1?L t+tye       rate leg ccmpensator on dynamic tenperature conpensation ey           ties constant uttllied in rete +tep conpensator for tenperature conpensation, t 10 seconds i           eensured loop specific RCS everage tenperature, degrees F 1
* Y *I II
1+fge       leg conpensator on sessured everage tenterature to           time constant utilized In tag ccmpensator for everage toeperature, O socords Ke sodifier for temperature: 0.20% RTP per degree F foi i e 18, = 0% RTP for i s 18                                   l 18         indicated loop specific kCS everage teaterature et RTP, $88.6 degrees F                                           l s           Laplete transfore verlebte, inverse seconds i g(AFD)   modifier for Aalel flux Difference (AFD), s 0% RTP for ett AFD Vogtle Units 1 and 2                                       3.3-21                   Amendment No.                     (Unit 1)
* f "I SO 7
Amendment No.                     (Unit 2)
8 t
3 Whores 41 measure] toop specific tt$ differentlet temperature, degrees F AT Indicated loop specific RCS differentlet et RTP, degrees F O
l'1,3 teed tog compensator on eessured dif forentist teaterature 1+tge time constante utill ed in lead tes ccmpensator for dif ferentist tenperatures vi t 8 seconds, t,13 i
e s 3 seconds i
l''as les conpensator on sensured dif ferentist tenperature v3 time constant utillied in tog conpensator for dif ferentlet tenperature, s 2 seconds fundamentet setpoint,109.5% RTP l
K4 K
sodifier for temperature change: 21 RTP per degree F for increasing tenperature, t 0% tiP per l g
degree F for decreeping tenperature
.1?L t+tye rate leg ccmpensator on dynamic tenperature conpensation ey ties constant uttllied in rete +tep conpensator for tenperature conpensation, t 10 seconds i
eensured loop specific RCS everage tenperature, degrees F 1
1+fge leg conpensator on sessured everage tenterature to time constant utilized In tag ccmpensator for everage toeperature, O socords Ke sodifier for temperature: 0.20% RTP per degree F foi i e 18, = 0% RTP for i s 18 l
18 indicated loop specific kCS everage teaterature et RTP, $88.6 degrees F l
s Laplete transfore verlebte, inverse seconds i (AFD) modifier for Aalel flux Difference (AFD), s 0% RTP for ett AFD g
Vogtle Units 1 and 2 3.3-21 Amendment No.
(Unit 1)
Amendment No.
(Unit 2)


ESFAS Instrumentation 3.3.2 febte 3.3.2 1 (page 1 of 7)
ESFAS Instrumentation 3.3.2 febte 3.3.2 1 (page 1 of 7)
Engineered Safety feature Actuetten System Instrumentation -
Engineered Safety feature Actuetten System Instrumentation -
PUNCil0N             APPLICANT   ateUlst0   Coupl110Nt   tuRVilLLANCE     ALLOWASLE   IKallhAL - l INDES OR   CHANNELS                 REGUlstelttil       VALUE     TalP SETPOINI N
PUNCil0N APPLICANT ateUlst0 Coupl110Nt tuRVilLLANCE ALLOWASLE IKallhAL -
01sta                                                                       l BPEClfit0 CouDIT10N3
l INDES OR CHANNELS REGUlstelttil VALUE TalP N 01sta SETPOINI l
: 1. Safety injectlen
BPEClfit0 CouDIT10N3 1.
: e. 16ernmL initletten       1,2,3,4         2           e       la 3.3.2.6             NA       NA
Safety injectlen e.
: b. Automatic               1,2,3,4         2           C       sa 3.3.2.2           NA         NA Actuntlen logic                                             sa   3.3.2.3-and Actuation                                               M 3.3.2.5 Relays
16ernmL initletten 1,2,3,4 2
: c. Centelreent               1,2,3         !!          O       ta 3.3.2.1       s 4.4 pels   3.8 pois   l Pressure - Nigh 1                                           ta 3.3.2.4 la 3.3.2.7 -
e la 3.3.2.6 NA NA b.
Automatic 1,2,3,4 2
C sa 3.3.2.2 NA NA Actuntlen logic sa 3.3.2.3-and Actuation M 3.3.2.5 Relays c.
Centelreent 1,2,3 O
ta 3.3.2.1 s 4.4 pels 3.8 pois l
Pressure - Nigh 1 ta 3.3.2.4 la 3.3.2.7 -
sa 3.3.2.8
sa 3.3.2.8
          ~ d. Prosaurlier             1,2,3(*)         4           0       la 3.3.2.1     t 1856 pels   1870 pois   l Pressure Lew                                                 Sa 3.3.2.4 la 3.3.2.7 sa 3.3.2.8 e, steen Line             1,2,3(a)     3 per         0       SR 3.3.2.1         1 570(b) $g5(b) p.g, l Pressure . Lou                       steen                 la 3.3.2.6           pets line                 sa 3.3.2.7 la 3.3.2.8 (continued)
~ d.
Prosaurlier 1,2,3(*)
4 0
la 3.3.2.1 t 1856 pels 1870 pois l
Pressure Lew Sa 3.3.2.4 la 3.3.2.7 sa 3.3.2.8 e,
steen Line 1,2,3(a) 3 per 0
SR 3.3.2.1 1 570(b)
$g5(b) p.g, l
Pressure. Lou steen la 3.3.2.6 pets line sa 3.3.2.7 la 3.3.2.8 (continued)
(a) Above the P.11 (Prosouriser Pressure) interts.V
(a) Above the P.11 (Prosouriser Pressure) interts.V
    -(b) fles constante used in the toed /tes controller are t, t 50 seconde and t, s 5 seconk.
-(b) fles constante used in the toed /tes controller are t, t 50 seconde and t, s 5 seconk.
(l) The trip letpointe may be set more conservative then the naminal value as necessary in response to plant conditlene.
(l) The trip letpointe may be set more conservative then the naminal value as necessary in response to plant conditlene.
Vogtle Units'l and 2                               3.3-30                 Amendment ~No.       (Unit 1)
Vogtle Units'l and 2 3.3-30 Amendment ~No.
Amendment No.         (Unit 2)
(Unit 1)
Amendment No.
(Unit 2)


ESFAS Instrumentation 3.3.2 I
ESFAS Instrumentation I
inble 3.3.21 (page 2 of 7)
3.3.2 inble 3.3.21 (page 2 of 7)
Engineered $sfety f eature Actuation System Instrumentation FUNCil0N                                   APPLICABLE   R10Ulkt0     CONDlil0NS   SURVilLLANCE           ALLOWABLE       NOMINAL   l MODES OR   CHAhWELS                 REQUIREMthil             VALUE         TRIP OTHER                                                                   StiPolNI N    l
Engineered $sfety f eature Actuation System Instrumentation FUNCil0N APPLICABLE R10Ulkt0 CONDlil0NS SURVilLLANCE ALLOWABLE NOMINAL l
                                                              $PEClfl[D CONDifl0NS
MODES OR CHAhWELS REQUIREMthil VALUE TRIP N OTHER StiPolNI l
: 2. Contalrwent Spray
$PEClfl[D CONDifl0NS 2.
: e. Maruel Initiation                             1,2,3,4         2           e       st 3.3.2.6                 NA           NA
Contalrwent Spray e.
: b. Automatic                                     1,2,3,4         2           C       $t 3.3.2.2                 NA             NA Actuation Logic                                                                     SR 3.3.2.3 and Actuation                                                                       st 3.3.2.5 Relays
Maruel Initiation 1,2,3,4 2
: c. Cont eirment Pressure H i gh - 3                                       1,2,3         4           E       $R 3.3.2.1           s 22.6 pels     21.5 psig   l SR 3.3.2.4
e st 3.3.2.6 NA NA b.
                                                                                                    $R 3.3.2.7 SR 3.3.2.8 (continued)
Automatic 1,2,3,4 2
(1) The Irlp Setpointe may be set more conservative then the nominal value as necessary in response to plant                                       l ;
C
i conditione.                                                                                                                                   I Vogtle Units 1 and 2                                                       3.3-31                 Amendment No.                 (Unit 1)
$t 3.3.2.2 NA NA Actuation Logic SR 3.3.2.3 and Actuation st 3.3.2.5 Relays c.
Amendment No.                 (Unit 2)
Cont eirment Pressure H i gh - 3 1,2,3 4
E
$R 3.3.2.1 s 22.6 pels 21.5 psig l
SR 3.3.2.4
$R 3.3.2.7 SR 3.3.2.8 (continued)
(1) The Irlp Setpointe may be set more conservative then the nominal value as necessary in response to plant l
conditione.
I i
Vogtle Units 1 and 2 3.3-31 Amendment No.
(Unit 1)
Amendment No.
(Unit 2)


1 ESFAS Instrumentation               l 3.3.2 febte h $.2 1 (pose 3 cf 7)
ESFAS Instrumentation 3.3.2 febte h $.2 1 (pose 3 cf 7)
Engineered Safety Feature Actuetten System instroentation ConDiflows                                                   tu VtlLLAhCE           ALLOWABLE   NOMihAL         l <
Engineered Safety Feature Actuetten System instroentation funcitou APPLicasLE hieUIRED ConDiflows tu VtlLLAhCE ALLOWABLE NOMihAL l
funcitou              APPLicasLE      hieUIRED IRIP NODil DA       CHAWWELS                                                                                                                 tieUIREMENTS             VAtut OTME                                                                                                                                                                     $tiPolNI N        l l r
NODil DA CHAWWELS tieUIREMENTS VAtut IRIP OTME
SPECIFitD CouDifl0bl
$tiPolNI l
: 3. Phe6e A Centalement lootetten (a) menuel initiation             1,2,3,4                         2                                                                   8                                   64 3.3.2.6                 NA         NA (b) Automatic                     1,2,3,4       2 tralne                                                                             C                                   sa 3.3.2.2                 NA         NA Actuellen Logic                                                                                                                                                   la 3.3.2.3                                           ;
l N
and Actuetten                                                                                                                                                     sa 3.3.2.5 Releye (c) Safety injection           Ref er to function 1 (Safety injection) for all Initiation fum tione and requiremente.
r SPECIFitD CouDifl0bl 3.
: 4.     Steam Line Isolation
Phe6e A Centalement lootetten (a) menuel initiation 1,2,3,4 2
: e.       Manuel Initletion     1,2I83,3I8)                       2                                                                     F                                 st 3.3.2.6                 NA         NA
8 64 3.3.2.6 NA NA (b) Automatic 1,2,3,4 2 tralne C
: b.        Automatic            1,2I 'I 3I 'I                     2                                                                   G                                   sa 3.3.2.2                 NA         NA Actuellen Loste                                                                                                                                                   la 3.3.2.3 and Actuetten                                                                                                                                                     sa 3.3.2.5 Releys (continued)
sa 3.3.2.2 NA NA Actuellen Logic la 3.3.2.3 and Actuetten sa 3.3.2.5 Releye (c) Safety injection Ref er to function 1 (Safety injection) for all Initiation fum tione and requiremente.
4.
Steam Line Isolation e.
Manuel Initletion 1,2I83,3I8) 2 F
st 3.3.2.6 NA NA I
I 1,2 'I 3 'I 2
G sa 3.3.2.2 NA NA b.
Automatic Actuellen Loste la 3.3.2.3 and Actuetten sa 3.3.2.5 Releys (continued)
(c) tacept when ore main steen lactation velve and associated bypass isolation volve per steen line is closed.
(c) tacept when ore main steen lactation velve and associated bypass isolation volve per steen line is closed.
(I) The Trip Setpointo may be set more conservative then tie nominal value es necessary in response to plant conditions.
(I) The Trip Setpointo may be set more conservative then tie nominal value es necessary in response to plant conditions.
Vogtle Units 1 and 2                                                                     3.3                                                                                               Amendment No.     (Unit 1)
Vogtle Units 1 and 2 3.3 Amendment No.
Amendment No.     (Unit 2) l
(Unit 1)
Amendment No.
(Unit 2) l


i ESFAS Instrumentation                   !
i ESFAS Instrumentation 3.3.2 febte 3.3.2 1 (pose 4 of F)
3.3.2 febte 3.3.2 1 (pose 4 of F)
Engitwered Safety feature Actuotton system Instrumentation FUNCTION APPLICABLE RfeUlktD CONDITIONS SURytlLLANCE ALLOW 48tt h0MINAL l
Engitwered Safety feature Actuotton system Instrumentation                                           >
MODil OR CNAthtLS RiOUIREMENTS VALUE TRIP N Ofutt SETP0lNT l
FUNCTION               APPLICABLE RfeUlktD       CONDITIONS SURytlLLANCE         ALLOW 48tt     h0MINAL     l MODil OR   CNAthtLS                 RiOUIREMENTS           VALUE           TRIP SETP0lNT N
SPECIFIED CONDITIONS I
Ofutt                                                                                 l SPECIFIED CONDITIONS I
4.
: 4. tteen Line lootetten (conttrwed)
tteen Line lootetten (conttrwed) c.
: c. ContcInsent               1,2(8) ,        3             0   SR 3.3.2.1           s 15.4 pels     14.5 psig   -l Pressure - Nigh 2          3gg) la 3.3.2.4 st 3.3.2.7 SR 3.3.2.8
ContcInsent 1,2(8) 3 0
: d. steen Line Pr essure 1,2(*),     3 per                 $R 3.3.2.1           t 570 (b)       $gg (b)     l (1) Low                                                  D psig steen                 SR 3.3.2.4               pela 3(e)(c)       IIne                 SR 3.3.2.T SR 3.3.2.8 100 (')    !
SR 3.3.2.1 s 15.4 pels 14.5 psig
(2) seestive             3(d)(8)       3 per             D   st 3.3.2.1           s 125 (*)
-l la 3.3.2.4 Pressure - Nigh 2 3gg) st 3.3.2.7 SR 3.3.2.8 d.
Rete - NIsh                       ateen                 st 3.3.2.6             pel/see       pel/see tine                 SR 3.3.2.7 SR 3.3.2.8 (continued)
steen Line Pr essure (1) Low 1,2(*),
3 per D
$R 3.3.2.1 t 570 (b)
$gg (b) l steen SR 3.3.2.4 pela psig 3(e)(c)
IIne SR 3.3.2.T SR 3.3.2.8 (2) seestive 3(d)(8) 3 per D
st 3.3.2.1 s 125 (*)
100 (')
Rete - NIsh ateen st 3.3.2.6 pel/see pel/see tine SR 3.3.2.7 SR 3.3.2.8 (continued)
(a) Above the P.11 (Pressurlaer Pressure) Interlock.
(a) Above the P.11 (Pressurlaer Pressure) Interlock.
(b) flee constants usec in the teed /tes controlter are t, t 50 seconds and t, s 5 seconds.
(b) flee constants usec in the teed /tes controlter are t, t 50 seconds and t, s 5 seconds.
Line 618: Line 957:
(d) Below the P 11-(Pressuriter Pressure) interlock.
(d) Below the P 11-(Pressuriter Pressure) interlock.
(e) Time constant utill ed in the rete /tes controtter is t 50 seconde.
(e) Time constant utill ed in the rete /tes controtter is t 50 seconde.
(1) The Trip letpoints may be set more conservative then the nominst value as necessary in response to plant                 l conditions.
(1) The Trip letpoints may be set more conservative then the nominst value as necessary in response to plant l
Vogt!? Units 1 and 2                                   3.3-33               Amendment No.                 (Unit 1)
conditions.
Amendment No.                 (Unit 2)
Vogt!? Units 1 and 2 3.3-33 Amendment No.
(Unit 1)
Amendment No.
(Unit 2)


ESFAS Instrumentation
ESFAS Instrumentation 3.3.2 table 3.3.2 1 (page 5 of 7)
* 3.3.2 table 3.3.2 1 (page 5 of 7)
Engineered safety f eature Actuetten system Instrtamentation FUNCil0N APPLICABLE REQUIRID CONDITIOWs
Engineered safety f eature Actuetten system Instrtamentation
$URVElLLANCE Alt 0WABLE NOMINAL l
                                                                                        $URVElLLANCE   Alt 0WABLE       NOMINAL             l APPLICABLE      REQUIRID    CONDITIOWs
MODis OR CHANNELS REQUIREMtWfs VALUE TRIP
'                        FUNCil0N                                                        REQUIREMtWfs       VALUE           TRIP MODis OR      CHANNELS
$[1PolWi "
                                                                                                                        $[1PolWi "
l i
i l
Ot h(R SPECif tt0 COND1110Ns 5.
Ot h(R SPECif tt0 COND1110Ns
turbine irlp and f eedwater isoletten III 2 tralne N
: 5. turbine irlp and f eedwater isoletten 1,2 III       2 tralne       N       st 3.3.2.2           kA             WA
st 3.3.2.2 kA WA e.
: e. Automatic                                                       st 3.3.2.3 Actuation Logic                                                 sa 3.3.2.5 and Actuation Retore st 3.3.2.1     t 561.5 *f         $64 'F             l
Automatic 1,2 st 3.3.2.3 Actuation Logic sa 3.3.2.5 and Actuation Retore b.
: b. Low RCS f avs 1,2(II          &            I
Low RCS f avs 1,2(II I
                                                                                          $R 3.3.2.4 st 3.3.2.7 Coincident with       Refer to function 8e for ett P.4 recpirements.
st 3.3.2.1 t 561.5 *f
Reactor trip, P.4 st 3.3.2.1       s 87.9%         86.0%               l
$64 'F l
: c. 50 Water                 1,2(II        4 per SG        I SR 3.3.2.4 Level - Niph Nigh                                               SR 3.3.2.7 (P.14)                                                         st 3.3.2.8
$R 3.3.2.4 st 3.3.2.7 Coincident with Refer to function 8e for ett P.4 recpirements.
: d. safety injection      Refer to fmetton 1 (se.'ety injection) f or ett inittetton funetione and requiremente.
Reactor trip, P.4 1,2(II 4 per SG I
: 6. AuxlLlery f eedwater NA 1,2,3       2 tralne         G     st 3.3.2.2           NA
st 3.3.2.1 s 87.9%
: a. Autreat ic                                                      SR 3.3.2.3 Actuation Logic                                                 st 3.3.2.5 and Acteation Retsya st 3.3.2.1       t 35.9%         37.8%               l 1,2,3      4 per SG          D b,    so Water                                                        $R 3.3.2.4 tevet Low Low                                                   SR 3.3.2.7 st 3.3.2.8 (continued)
86.0%
(f) Estept when one MFIV or MFRV, and its associated bypass valve per feedwater line le closed and deactivated or laoleted by a closed manuel volve.
l c.
(t) The Irlp setpoints may be set more conservative than the nominal veLue se necessary in response to plant conditione.
50 Water SR 3.3.2.4 Level - Niph Nigh SR 3.3.2.7 (P.14) st 3.3.2.8 Refer to fmetton 1 (se.'ety injection) f or ett inittetton d.
Vogtle Units 1 and 2                                   3.3-34               Amendment No.             (Unit 1)
safety injection funetione and requiremente.
Amenciment No.             (Unit 2)
6.
AuxlLlery f eedwater a.
Autreat ic 1,2,3 2 tralne G
st 3.3.2.2 NA NA SR 3.3.2.3 Actuation Logic st 3.3.2.5 and Acteation Retsya b,
so Water 1,2,3 4 per SG D
st 3.3.2.1 t 35.9%
37.8%
l
$R 3.3.2.4 tevet Low Low SR 3.3.2.7 st 3.3.2.8 (continued)
Estept when one MFIV or MFRV, and its associated bypass valve per feedwater line le closed and deactivated (f) or laoleted by a closed manuel volve.
The Irlp setpoints may be set more conservative than the nominal veLue se necessary in response to plant (t) conditione.
Vogtle Units 1 and 2 3.3-34 Amendment No.
(Unit 1)
Amenciment No.
(Unit 2)


ESFAS Instrumentation 3.3.2 Table 3.3.2*1 (page 6 of 2)
ESFAS Instrumentation 3.3.2 Table 3.3.2*1 (page 6 of 2)
Engineered $4fety f eature Actuation System Instrumentation FUNCil0N             APPLICABLE                         REQUIRED   CONDIT10Nl   SURVEILLANCE     ALL0aABLE     WOMINAL       l MODES OR                         CHAWWELS                 REQUIREM Wil     VALUE         TRIP OTHER                                                                              SETPolNT'"     l SPEClflED CONDITIONS
Engineered $4fety f eature Actuation System Instrumentation FUNCil0N APPLICABLE REQUIRED CONDIT10Nl SURVEILLANCE ALL0aABLE WOMINAL l
: 6. Aunittery Feochester (cont trued)
MODES OR CHAWWELS REQUIREM Wil VALUE TRIP SETPolNT'"
: c. Safety injection       Refer to Fmetion 1 (sofety injection) for att initiation functions and requirements.
l OTHER SPEClflED CONDITIONS 6.
: d. Trip of att Main             1,2(8)                       1 per         J         st 3.3.2.6         NA           NA feedwater Pupps                                             puip
Aunittery Feochester (cont trued) c.
: 2. Feel.outomatic Switchover to Contaltunent Susp
Safety injection Refer to Fmetion 1 (sofety injection) for att initiation functions and requirements.
: a. Autcastic               1,2,3,4(h)                           2           C         SR 3.3.2.2         NA           NA Actuation Logic                                                                     SR 3.3.2.3 and Actuation                                                                     SR 3.3.2.5 meteys Refueling Water             1,2,3,4                         4           K         $R 3.3.2.1     t 264.9 in. 275.3 in.     l b.
d.
Storage lenk                                                                      SR 3.3.2.4 (RW51) Level - Low                                                                 SR 3.3.2.T Low
Trip of att Main 1,2(8) 1 per J
                                                                                                        $R 3.3.2.8 Coincident with       Refer to Function 1 (lefety injection) for all initiation safetyinjection           functions and requirements.
st 3.3.2.6 NA NA feedwater Pupps puip 2.
Feel.outomatic Switchover to Contaltunent Susp a.
Autcastic 1,2,3,4(h) 2 C
SR 3.3.2.2 NA NA Actuation Logic SR 3.3.2.3 and Actuation SR 3.3.2.5 meteys b.
Refueling Water 1,2,3,4 4
K
$R 3.3.2.1 t 264.9 in.
275.3 in.
l SR 3.3.2.4 Storage lenk (RW51) Level - Low SR 3.3.2.T
$R 3.3.2.8 Low Coincident with Refer to Function 1 (lefety injection) for all initiation safetyinjection functions and requirements.
(continued)
(continued)
(g) When the Main feedwater System is operating to supply tho SCs.
(g) When the Main feedwater System is operating to supply tho SCs.
(h) In Mabt 4, only 1 train is required to be OPERABLE to support semi automatic switchover for the RHR pufp that is regJired to be OPERABLE in accordance with specification 3.5.3, Eccs shutdcun.
(h) In Mabt 4, only 1 train is required to be OPERABLE to support semi automatic switchover for the RHR pufp that is regJired to be OPERABLE in accordance with specification 3.5.3, Eccs shutdcun.
(1) the Trip Satpoints may be set more conservative than the nominal vetue as necessary in response to plant                                   l I
(1) the Trip Satpoints may be set more conservative than the nominal vetue as necessary in response to plant l
ronditions.
I ronditions.
Vogtle Units 1 and 2                                                       3.3-35               Amendment No.         (Unit 1)
Vogtle Units 1 and 2 3.3-35 Amendment No.
Amendment No.         (Unit 2)
(Unit 1)
Amendment No.
(Unit 2)


9 ESFAS Instrumentation f          .
9 f
3.3.2 feble 3.3.2 1 (page 7 of 7)
ESFAS Instrumentation 3.3.2 feble 3.3.2 1 (page 7 of 7)
Engineered Safety f eature Actuetton System Instrumentation fubC110N                 APPLICABLE                               tt0VittD   CON 0lil043 tutVEILLANCE   ALLOWABLE   NOMik t. l 140 DES OR                           CHAhWELS                 RtoultfMthil     VALUC       itlP 01Mt                                                                           StiPolki"'   l
Engineered Safety f eature Actuetton System Instrumentation fubC110N APPLICABLE tt0VittD CON 0lil043 tutVEILLANCE ALLOWABLE NOMik t.
                                                        $PECiftt0 CON 0lfl0NS
l 140 DES OR CHAhWELS RtoultfMthil VALUC itlP 01Mt StiPolki"'
l
$PECiftt0 CON 0lfl0NS
: 8. EstAs interlocks
: 8. EstAs interlocks
: a. Reactor Trlp P 4                           1,2,3                         1 per       f         SR 3.3.2.9         kA       NA train, 2 trains
: a. Reactor Trlp P 4 1,2,3 1 per f
: b. Presourtser Prt$wre,                         1,2,3                         3         L         st 3.3.2.4   s 2010 ps:s 2000 pels   l Pall                                                                                             $t 3.3.2.7 (1) The trip Setpoints my be set more conssrvettve than the nom!nal value as necessary in re:ponse to plant                                     l I
SR 3.3.2.9 kA NA train, 2 trains
conditions.
: b. Presourtser Prt$wre, 1,2,3 3
Vogtle Units 1 and 2                                                               3.3-36                 Amendment No.     (Unit 1)
L st 3.3.2.4 s 2010 ps:s 2000 pels l
Amendment No.     (Unit 2)
Pall
$t 3.3.2.7 (1) The trip Setpoints my be set more conssrvettve than the nom!nal value as necessary in re:ponse to plant l
I conditions.
Vogtle Units 1 and 2 3.3-36 Amendment No.
(Unit 1)
Amendment No.
(Unit 2)


RTS Instrumentation B 3.3.1 BASES BACKGROUND         Reactor Trio Switchaear (continued)                                 .
RTS Instrumentation B 3.3.1 BASES BACKGROUND Reactor Trio Switchaear (continued) trip mechanism is sufficient by itself, thus providing a diverse trip mechanism.
trip mechanism is sufficient by itself, thus providing a diverse trip mechanism.
The decision logic matrix Functions are described in the functional diagrams included in Reference-1.
The decision logic matrix Functions are described in the functional diagrams included in Reference-1. In addition to the reactor trip or ESF, these diagrams also describe the various " permissive interlocks" that are associated with unit conditions. Each train has a built in testing device that can automatically test the decision logic matrix Functions and the actuation devices while the unit is at power. When any one train is taken out of service for testing, the other train is capable of providing unit monitoring and protection until the testing has been completed. The testing device is semiautomatic to minimize testing time.
In addition to the reactor trip or ESF, these diagrams also describe the various " permissive interlocks" that are associated with unit conditions. Each train has a built in testing device that can automatically test the decision logic matrix Functions and the actuation devices while the unit is at power. When any one train is taken out of service for testing, the other train is capable of providing unit monitoring and protection until the testing has been completed. The testing device is semiautomatic to minimize testing time.
APPLICABLE         The RTS functions to maintain the SLs during all A00s and           -
APPLICABLE The RTS functions to maintain the SLs during all A00s and SAFETY ANALYSES, mitigates the consequences of DBAs in all MODES in LCO, and LCO, and which the RTBs are closed.
SAFETY ANALYSES, mitigates the consequences of DBAs in all MODES in LCO, and LCO, and           which the RTBs are closed.
APPLICABILITY Each of the analyzed accidents and transients can be detected by one or more RTS Functions. The accident analysis described in Reference 3 takes credit for most DTS trip Functions. RTS trip Functions not specifically credited in the accident analysis are qualitatively credited in the safety analysis and the NRC staff approved licensing basis for the unit. These RTS trip Functions may provide protection for conoittons that do not require dynamic transient analysis to demonstrate Function performance.
APPLICABILITY Each of the analyzed accidents and transients can be detected by one or more RTS Functions. The accident analysis described in Reference 3 takes credit for most DTS trip Functions. RTS trip Functions not specifically credited in the accident analysis are qualitatively credited in the safety analysis and the NRC staff approved licensing basis for the unit. These RTS trip Functions may provide protection for conoittons that do not require dynamic transient analysis to demonstrate Function performance.
They may also serve as backups to RTS trip Functions that were credited in the accident analysis.
They may also serve as backups to RTS trip Functions that were credited in the accident analysis.
The LCO requires all instrumantation performing an RTS Function, listed in Table 3.3.1-1 in the accompanying LCO, to be OPERABLE. Failure of any instrument renders the affected channel (s) inoperable and reduces the reliability of tha affected Functions. The Nominal Trip Setpoint column is modified by a Note that allows the Trip Setpoint to be set more conservatively than the nominal value. The conservative direction is established by the direction of (continued)
The LCO requires all instrumantation performing an RTS Function, listed in Table 3.3.1-1 in the accompanying LCO, to be OPERABLE.
Vogtle Units 1 and 2                           B 3.3-7               Revision No.
Failure of any instrument renders the affected channel (s) inoperable and reduces the reliability of tha affected Functions. The Nominal Trip Setpoint column is modified by a Note that allows the Trip Setpoint to be set more conservatively than the nominal value. The conservative direction is established by the direction of (continued)
Vogtle Units 1 and 2 B 3.3-7 Revision No.


4 RTS Instrumentation B 3.3.1 BASES APPLICABLE         the inequality applied to the Allowable Value. For example, SAFETY ANALYSES,   the Power Range Neutron Flux High trip setpoint may be set LCO, and           to a value less than 109% during initial startup following a APPLICABILITY     refueling outage until a sufficiently high reactor power is (continued)     achieved so that the power range channels may be calibrated.
4 RTS Instrumentation B 3.3.1 BASES APPLICABLE the inequality applied to the Allowable Value.
For example, SAFETY ANALYSES, the Power Range Neutron Flux High trip setpoint may be set LCO, and to a value less than 109% during initial startup following a APPLICABILITY refueling outage until a sufficiently high reactor power is (continued) achieved so that the power range channels may be calibrated.
in addition, certain Required Actions may require that the Power Range Neutron Flux High trip setpnints be reduced based on plant conditions.
in addition, certain Required Actions may require that the Power Range Neutron Flux High trip setpnints be reduced based on plant conditions.
The LCO generally requires OPERABILITY of four or three channels in each instrumentation Fs;;ction, two channels of Manual Reactor Trip in each logic Function, and two trains in each Automatic Trip Logic Function. Four OPERABLE (continued)
The LCO generally requires OPERABILITY of four or three channels in each instrumentation Fs;;ction, two channels of Manual Reactor Trip in each logic Function, and two trains in each Automatic Trip Logic Function.
Vogtle Units 1 and 2                 B 3.3-7a                     Revision No,
Four OPERABLE (continued)
Vogtle Units 1 and 2 B 3.3-7a Revision No,


                          . .. _ _ _    .  .-_    .,_      , .                ._._ .._  .. .  ..__ . - -                _m.  . . . .
_m.
4e-         ,
4e-M*
              =#
RTS Instrumentation:
RTS Instrumentation:
M*
=#
B 3.3.1-                         ,
B 3.3.1-BASES; a
BASES; a
1 1
1 1
This page intentionally left blank.
This page intentionally left blank.
3 n
3 n
4 (covitinued)
4 (covitinued)
D Vogtle-Units 1 and 2;                   B 3.3-7b                                   Revis',on No.
D Vogtle-Units 1 and 2; B 3.3-7b Revis',on No.
0-h
0-h
        +             e             -    ,    ,-                . . - - - ,                            .-      . . . , *        + ,
+
e
+,


l   ..
l I
I ,
_RTS Instrumentation B-3.3.1 BASES APPLICABLE 6.
_RTS Instrumentation B-3.3.1 BASES APPLICABLE       6. Overtemoerature AT (continued)
Overtemoerature AT (continued)
SAFETY ANALYSES, LCO, and               This results in a two-out-of-four trip logic.                                         Section
SAFETY ANALYSES, LCO, and This results in a two-out-of-four trip logic.
,      APPLICABILITY           7.2.2.3 of Reference I discusses control and protection system interactions for this function. Note that this Function also provides a signal to generate a turbine runback prior to reaching the Trip Setpoint.
Section APPLICABILITY 7.2.2.3 of Reference I discusses control and protection system interactions for this function. Note that this Function also provides a signal to generate a turbine runback prior to reaching the Trip Setpoint.
A turbine runback will reduce turbine power and-rea: tor power. A reduction in power will_ normally alleviate the Overtemperature AT condition and may prevent a reactor trip.
A turbine runback will reduce turbine power and-rea: tor power. A reduction in power will_ normally alleviate the Overtemperature AT condition and may prevent a reactor trip.
Delta-T , as used in the overtemperature and overpower AT trips, represents the 100% RTP value as measured for each loop. This normalizes each loop's AT trips to the actual operating conditions existing at the time of measurement, thus forcing the trip to reflect the equivalent full power conditions as assumed in the accident analyses. These differences in RCS loop AT can be due to several factors, e.g., differences in RCS loop flows and slightly asymmetric power distributions between quadrants. While RCS loop flows are not expected to change with cycle life, radial power redistribution between quadrants may occur, resulting in small changes in loop specific AT values.
Delta-T, as used in the overtemperature and overpower AT trips, represents the 100% RTP value as measured for each loop. This normalizes each loop's AT trips to the actual operating conditions existing at the time of measurement, thus forcing the trip to reflect the equivalent full power conditions as assumed in the accident analyses. These differences in RCS loop AT can be due to several factors, e.g., differences in RCS loop flows and slightly asymmetric power distributions between quadrants. While RCS loop flows are not expected to change with cycle life, radial power redistribution between quadrants may occur, resulting in small changes in loop specific AT values.
Therefore, loop specific AT, values are measured as needed to ensure they represent actual core conditions.
Therefore, loop specific AT, values are measured as needed to ensure they represent actual core conditions.
The values for K i , K,, K3 , T', and P' may be treated as nominal values for the purpose of performing a CHANNEL-CALIBRATION. The direction of conservatism for these values is as follows:
The values for K,
K,, K, T', and P' may be treated as i
3 nominal values for the purpose of performing a CHANNEL-CALIBRATION. The direction of conservatism for these values is as follows:
K, f Identified Value K,2 Identified Value K,2 Identified Value T' s Identified-Value
K, f Identified Value K,2 Identified Value K,2 Identified Value T' s Identified-Value
                              - P' 2-Identified Value Note that K is the principle setpoint gain, since it 3
- P' 2-Identified Value Note that K is the principle setpoint gain, since it 3
defines the function offset. K,. and K                         3 define the temperature gain and pressure gain respectively.                                           The values for T' and P' are key reference parameters corresponding directly to plant safety analyses (continued)
defines the function offset.
Vogtle Units-1 and 2                   B 3.3-16                                                           Revision No.
K,. and K define the 3
temperature gain and pressure gain respectively.
The values for T' and P' are key reference parameters corresponding directly to plant safety analyses (continued)
Vogtle Units-1 and 2 B 3.3-16 Revision No.


RTS Instrumentation B 3.3.1 BASES APPLICABLE       6. Overtemoerature AT (continued)
RTS Instrumentation B 3.3.1 BASES APPLICABLE 6.
SAFETY ANALYSES, LCO, and             initial conditions assumptions for the Overtemperature APPLICABILITY       AT Function. The as left settings for these parameters should be as close as possible or conservative with respect to the identified values.
Overtemoerature AT (continued)
SAFETY ANALYSES, LCO, and initial conditions assumptions for the Overtemperature APPLICABILITY AT Function. The as left settings for these parameters should be as close as possible or conservative with respect to the identified values.
In order to ensure that the Overtemperature AT setpoint is consistant with the assumptions of the safety analyses, it is necessary to verify during the CHANNEL OPERATIONAL TEST, that the Overtemperature AT setpoint is within the appropriate calibration tolerances for condit:;ns where the temperature input is equal to T' and the pressure input is equal to P',
In order to ensure that the Overtemperature AT setpoint is consistant with the assumptions of the safety analyses, it is necessary to verify during the CHANNEL OPERATIONAL TEST, that the Overtemperature AT setpoint is within the appropriate calibration tolerances for condit:;ns where the temperature input is equal to T' and the pressure input is equal to P',
and that appropriate penalties are generated to reduce I
and that appropriate penalties are generated to reduce I
r the setpoint for a temperature input greater than T',
the setpoint for a temperature input greater than T',
l                            and again for a pressure input less than P' (Ref. 9).
r and again for a pressure input less than P' (Ref. 9).
The LCO requires all four channels of the Overtemperature AT trip Function to be OPERABLE. Note that the Overtemperature AT Function receives input from channels shared with other RTS Functions.
l The LCO requires all four channels of the Overtemperature AT trip Function to be OPERABLE. Note that the Overtemperature AT Function receives input from channels shared with other RTS Functions.
l Failures that affect multiple Functions requira entry l
l Failures that affect multiple Functions requira entry l
l l
l l
L (continued)
L (continued)
Vogtle Units 1 and.2               B 3.3-16a                     Revision No.
Vogtle Units 1 and.2 B 3.3-16a Revision No.


RTS Instrumentation B 3.3.1 BASES APPLICABLE         6. Overtemoerature AT -(continued)-
RTS Instrumentation B 3.3.1 BASES APPLICABLE 6.
Overtemoerature AT -(continued)-
SAFETY ANALYSES.-
SAFETY ANALYSES.-
    - LCO, and .
- LCO, and into the Conditions applicable to all affected APPLICABILITY Functions.
into the Conditions applicable to all affected APPLICABILITY         Functions.
In MODE 1 or 2, the Overtemperature AT trip must be OPERABLE to prevent DNB.
In MODE 1 or 2, the Overtemperature AT trip must be         .
In MODE 3, 4, 5, or 6, this trip Function ~does not have to be OPERABLE because the reactor is not operating and there is insufficient heat production to be concerned about DNB.
OPERABLE to prevent DNB. In MODE 3, 4, 5, or 6, this trip Function ~does not have to be OPERABLE because the reactor is not operating and there is insufficient heat production to be concerned about DNB.                   ;
4 (continued)
4 (continued)
Vogtle Units 1 and 2-               B 3.3-16b                     Revision No.
Vogtle Units 1 and 2-B 3.3-16b Revision No.
---a ---


RTS. Instrumentation                   j B 3.3.11               ,
RTS. Instrumentation j
            ' BASES-APPLICABLE       .        7.       Overnower AT                                                                   ,
B 3.3.11
            - SAFETY ANALYSES,.
' BASES-APPLICABLE 7.
,            LCO, and-                           The Overpower AT trip Function (TDI-0411B,.TDI-04218, APPLICABILITY =                     TDI-04318. TDI-0441B, TDI-0411A, TDI-0421A, TDI-0431A .                       1
Overnower AT
                ' (continued)                     TDI-0441A) ensures that protection is provided to ensure the integrity of the fuel-(i.e., no fuel pellet melting and .less than 1% cladding strainL under'all possible overpower. conditions. This trip Function also limits the required range.'of the Overtemperature -
- SAFETY ANALYSES,.
LCO, and-The Overpower AT trip Function (TDI-0411B,.TDI-04218, APPLICABILITY =
TDI-04318. TDI-0441B, TDI-0411A, TDI-0421A, TDI-0431A.
1
' (continued)
TDI-0441A) ensures that protection is provided to ensure the integrity of the fuel-(i.e., no fuel pellet melting and.less than 1% cladding strainL under'all possible overpower. conditions. This trip Function also limits the required range.'of the Overtemperature -
AT trip Function and provides a backup to the Power.
AT trip Function and provides a backup to the Power.
* Range Neutron Flux - High Setpoint trip. The Overpower
Range Neutron Flux - High Setpoint trip.
                                                  -AT trip Function ensures that the allowable heat generation rate (kW/ft) of the fuel is' not exceeded.                           '
The Overpower
it uses the AT of.each loop-as a measure of reactor power with a setpoint that is automatically varied
-AT trip Function ensures that the allowable heat generation rate (kW/ft) of the fuel is' not exceeded.
.                                                  with the following parameters:
it uses the AT of.each loop-as a measure of reactor power with a setpoint that is automatically varied with the following parameters:
                                                  *    -reactor coolant average temperature - the Trip Setpoir.t is varied to correct for changes in coolant density and specific heat capacity with 1
-reactor coolant average temperature - the Trip Setpoir.t is varied to correct for changes in coolant density and specific heat capacity with changes-in coolant temperature; and 1
changes-in coolant temperature; and
rate of change of reactor coolant average temperature -including dynamic compensation for RTD response time delays.
* rate of change of reactor coolant average                                 >
:-                                                      temperature -including dynamic compensation for RTD response time delays.
The Overpower AT trip Function is calculated for each loop as per Note 2 of Table 3.3.1-1.- Trip occurs if -
The Overpower AT trip Function is calculated for each loop as per Note 2 of Table 3.3.1-1.- Trip occurs if -
Overpower AT is indicated in two loops. Since the temperature signals are used for other control functions, the actuation logic must be able to withstand an input failure to the control system, which may then require the protection function actuation and a single failure in the remaining channels providing the protection function actuation.
Overpower AT is indicated in two loops. Since the temperature signals are used for other control functions, the actuation logic must be able to withstand an input failure to the control system, which may then require the protection function actuation and a single failure in the remaining channels providing the protection function actuation.
This results in a-two-out-of-four trip logic.         Section.
This results in a-two-out-of-four trip logic.
Section.
7.2.2.3 of Reference 1 discusses control and
7.2.2.3 of Reference 1 discusses control and
                                                  - protection' system interactions for this function.
- protection' system interactions for this function.
Note that this Function also provides a signal to-
Note that this Function also provides a signal to-
                                                  - generate a turbine-runback prior to reaching the Allowable Value. A turbine runback will-reduce turbine power and reactor power. A-reduction in_ power
- generate a turbine-runback prior to reaching the Allowable Value. A turbine runback will-reduce turbine power and reactor power.
                                                  'wil1 normally alleviate the Overpower AT condition:and
A-reduction in_ power
.                                                may prevent a reactor trip.
'wil1 normally alleviate the Overpower AT condition:and may prevent a reactor trip.
(continued)                   ,
(continued)
Vogtle Units 1 and 2                               B 3.3-17                         Revision No. O.
Vogtle Units 1 and 2 B 3.3-17 Revision No. O.
          '                      u--*-                                           -         e*= --                ---t- --p "vf
y e-
-r-1P-e r
im
-k m
me--
w9.
u--*-
-t w
r---
g C
e-9-m-e e*=
e i-me
---t-
--p "vf


RTS Instrumentatien B 3.3.1 BASES APPLICABLE           7. Overoower AT     (continued)
RTS Instrumentatien B 3.3.1 BASES APPLICABLE 7.
SAFETY ANALYSES, LCO, and               Delta-T., as used in the overtemperature and overpower APPLICABILITY           AT trips, represents the 100% RTP value as measured for each loop. This normalizes each loop's AT trips to the actual operating conditions existing at the time of measurement, thus forcing the trip to reflect the equivalent full power conditions as assumed in the accident analyses. These differences in RCS loop AT can be due to several factors, e.g., difference in RCS loop flows and slightly asymmetric power distributions between quadrants. While RCS loop flows are not expected to change with cycle life, radial power redistribution between quadrants may occur, resulting in small changes in loop specific AT values.
Overoower AT (continued)
SAFETY ANALYSES, LCO, and Delta-T., as used in the overtemperature and overpower APPLICABILITY AT trips, represents the 100% RTP value as measured for each loop. This normalizes each loop's AT trips to the actual operating conditions existing at the time of measurement, thus forcing the trip to reflect the equivalent full power conditions as assumed in the accident analyses. These differences in RCS loop AT can be due to several factors, e.g., difference in RCS loop flows and slightly asymmetric power distributions between quadrants. While RCS loop flows are not expected to change with cycle life, radial power redistribution between quadrants may occur, resulting in small changes in loop specific AT values.
Therefore, loop specific AT values are measured as needed to ensure they represent actual core conditions.
Therefore, loop specific AT values are measured as needed to ensure they represent actual core conditions.
The values for K., K., K., and T" may be treated as nominal values for the purpose of performing a CHANNEL CAllBRATION. The direction of conservatism for these values is as follows:
The values for K., K., K., and T" may be treated as nominal values for the purpose of performing a CHANNEL CAllBRATION.
The direction of conservatism for these values is as follows:
K, s Identified Value K.1 Identified Value K.1 identified Value T" s Identified Value Note that for K, in the case of decreasing temperature, the gain setting must be 2 0 to prevent generating setpoint margin on decreasing temperature rates.
K, s Identified Value K.1 Identified Value K.1 identified Value T" s Identified Value Note that for K, in the case of decreasing temperature, the gain setting must be 2 0 to prevent generating setpoint margin on decreasing temperature rates.
Similarly, the setting for K, is required to be equal to 0 for conditions where T s T". The value for T" is a key reference parameter corresponding directly to plant safety analyses initial conditions assumptions for the Overpower AT Function. The as left settings for these parameters should be as close as possible or conservative with respect to the identified values, in order to ensure that the Overpower AT setpoint is consistent with the assumptions of the safety analyses, it is necessary to verify during the CHANNEL OPERATIONAL TEST, that the Overpower AT setpoint is within the appropriate calibration tolerances for conditions where the temperature input is equal to T",
Similarly, the setting for K, is required to be equal to 0 for conditions where T s T".
The value for T" is a key reference parameter corresponding directly to plant safety analyses initial conditions assumptions for the Overpower AT Function. The as left settings for these parameters should be as close as possible or conservative with respect to the identified values, in order to ensure that the Overpower AT setpoint is consistent with the assumptions of the safety analyses, it is necessary to verify during the CHANNEL OPERATIONAL TEST, that the Overpower AT setpoint is within the appropriate calibration tolerances for conditions where the temperature input is equal to T",
and that the appropriate penalties are generated to (continued)
and that the appropriate penalties are generated to (continued)
Vogtle Units 1 and 2                   B 3.3-18                                           Revision No.
Vogtle Units 1 and 2 B 3.3-18 Revision No.


RTS Instrumentation B 3.3.1 I
RTS Instrumentation B 3.3.1 I
BASES APPLICABLE         7. Overoower AT (continued)
BASES APPLICABLE 7.
SAFETY ANALYSES, LCO, and               reduce the cet;>oint for a temperature input greater APPLICABILITY         than T" (Ref. 9).
Overoower AT (continued)
The LC0 requires four channels of the Overpower AT trip Function to be OPERABLE. Note that the Overpower AT trip . i .. tion receives input from channels shared with other RTS Functions.       Failures that affect multiple Functions require entry into the Conditions applicable to all affected Functions.
SAFETY ANALYSES, LCO, and reduce the cet;>oint for a temperature input greater APPLICABILITY than T" (Ref. 9).
In MODE 1 or 2, the Overpower AT trip Function must be OPERABLE. These are the only times that enough heat is generated in the fuel to be concerned about the heat generation rates and overheating of the fuel. In MODE 3, 4, 5, or 6, this trip Function does not have to be OPERABLE because the reactor is not operating and there is insufficient heat production to be concerned about fuel overheating and fuel damage.
The LC0 requires four channels of the Overpower AT trip Function to be OPERABLE.
: 8. Pressurizer Pressure The same sensors (PI-0455A, B, & C, PI-0456, PI-0456A, PI-0457, PI-0457A, PI-0458, PI-0458A) provide input to the Pressurizer Pressure - High and - Low trips and the Overtemperature AT trip. Since the Pressurizer Pressure channels are also used to provide input to the Pressurizer Pressure Control System, the actuation logic must be able to withstand an input failure to (continued)
Note that the Overpower AT trip. i.. tion receives input from channels shared with other RTS Functions.
Vogtle Units 1 and 2                   B 3.3-18a                                   Revision No.
Failures that affect multiple Functions require entry into the Conditions applicable to all affected Functions.
In MODE 1 or 2, the Overpower AT trip Function must be OPERABLE. These are the only times that enough heat is generated in the fuel to be concerned about the heat generation rates and overheating of the fuel.
In MODE 3, 4, 5, or 6, this trip Function does not have to be OPERABLE because the reactor is not operating and there is insufficient heat production to be concerned about fuel overheating and fuel damage.
8.
Pressurizer Pressure The same sensors (PI-0455A, B, & C, PI-0456, PI-0456A, PI-0457, PI-0457A, PI-0458, PI-0458A) provide input to the Pressurizer Pressure - High and - Low trips and the Overtemperature AT trip.
Since the Pressurizer Pressure channels are also used to provide input to the Pressurizer Pressure Control System, the actuation logic must be able to withstand an input failure to (continued)
Vogtle Units 1 and 2 B 3.3-18a Revision No.


I RTS Instrumentation:
I RTS Instrumentation:
    '-.                                                                                                                  B 3.3.1:1                                                       i l
B 3.3.1:1 i
r BASES-t
l BASES-r t
                                      . (This page intentionally left blank.)
. (This page intentionally left blank.)
1 i
1 i
i E.
i E.
i (continued) ._
i (continued)._
:Vogtle' Units 1 and 2                           B 3.3-18b-                                 Revision No.
:Vogtle' Units 1 and 2 B 3.3-18b-Revision No.
4 a   - ,    - ~ - -     __ ________.
4 a
__________m  ____._____________.____._.___.________1____m. . _ . _ _ _ _ _ . _ _ . _ _ _ _ _ _ _ _ . _ _ _
- ~ - -
m 1
: m..


4 RTS Instrumentation B 3.3.1 BASES REFERENCES           2. FSAR, Chapter 6.
RTS Instrumentation 4
(continued) 3.- .FSAR, Chapter 15.
B 3.3.1 BASES REFERENCES 2.
: 4. IEEE-279-1971.
FSAR, Chapter 6.
: 5. 10 CFR 50.49.
(continued) 3.-
: 6. WCAP-ll269, Westinghouse Setpoint Methodology for                                                           -
.FSAR, Chapter 15.
Protection Systems.
4.
: 7. -WCAP-10271-P-A, Supplement 2, Rev. 1, June 1990.
IEEE-279-1971.
: 8. FSAR, Chapter 16.
5.
: 9. Westinghouse Letter GP-16696, November 5, 1997.                                                         l t
10 CFR 50.49.
6.
WCAP-ll269, Westinghouse Setpoint Methodology for Protection Systems.
7.
-WCAP-10271-P-A, Supplement 2, Rev. 1, June 1990.
8.
FSAR, Chapter 16.
9.
Westinghouse Letter GP-16696, November 5, 1997.
l t
l i
l i
I.
I.
I l
I l
L i- ~
L i-
              .Vogtle Units .1 and 2 -               B 3.3-60                                                                     Revision No.
.Vogtle Units.1 and 2 -
l     + - -                                                 . - - -  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
B 3.3-60 Revision No.
~
l
+ - -


O ESFAS Instrumentation B 3.3.2 BASES BACKGROUND         Seauencer Output Relty.1 (continued) sequencer and are part of the control circuitry of these ESF loads. There are two independent trains of sequencers and each is powered by the respective train of 120-Vac ESF electrical )ower supply. The power supply fo the output relays is tie secuencer power supply. The applicable output relays are testec in the slave relay testing procedures, and in particular, in conjunction with the specific slave relay also required to actuate to energize the applicable ESF load.
O ESFAS Instrumentation B 3.3.2 BASES BACKGROUND Seauencer Output Relty.1 (continued) sequencer and are part of the control circuitry of these ESF loads. There are two independent trains of sequencers and each is powered by the respective train of 120-Vac ESF electrical )ower supply. The power supply fo the output relays is tie secuencer power supply.
APPLICABLE         Each of the analyzed accidents can be detected by one or SAFETY ANALYSES, more ESFAS Functions. One of the ESFAS Functions is the LCO, AND           primary actuation signal for that accident. An ESFAS APPLICABILITY     Function may be the primary actuation signal for more than one type of accident. An ESFAS Function may also be a secondary, or backup, actuation signal for one or more other accidents. For example, Pressurizer Pressure - Low is a primary actuation signal for small loss of coolant accidents (LOCAs) and a backup actuation signal for steam line breaks (SLBs) outside containment. Functions such as manual iaitiation, not specifically credited in the accident safety analysis, are qualitatively credited in the safety analysis and the NRC staff approved licensing basis for the unit.
The applicable output relays are testec in the slave relay testing procedures, and in particular, in conjunction with the specific slave relay also required to actuate to energize the applicable ESF load.
These Functions may provide protection for conditions that do not require dynamic transient analysis to demonstrate Function performance. These Functions may also serve as backups to functions that were credited in the accident analysis (Ref. 3).
APPLICABLE Each of the analyzed accidents can be detected by one or SAFETY ANALYSES, more ESFAS Functions. One of the ESFAS Functions is the LCO, AND primary actuation signal for that accident. An ESFAS APPLICABILITY Function may be the primary actuation signal for more than one type of accident. An ESFAS Function may also be a secondary, or backup, actuation signal for one or more other accidents.
The LCO requires all instrumentation performing an ESFAS Function to be OPERABLE. Failure of any instrument renders the affected channel (s) inoperable and reduces the reliability of the affected Functions. The Nominal Trip Setpoint column of Table 3.3.2-1 is modified by a note that allows the Trip Setpoints to be set more conservatively than the nominal value. The conservative direction is established by the direction of the inequality applied to the Allowable Value.
For example, Pressurizer Pressure - Low is a primary actuation signal for small loss of coolant accidents (LOCAs) and a backup actuation signal for steam line breaks (SLBs) outside containment.
Functions such as manual iaitiation, not specifically credited in the accident safety analysis, are qualitatively credited in the safety analysis and the NRC staff approved licensing basis for the unit.
These Functions may provide protection for conditions that do not require dynamic transient analysis to demonstrate Function performance.
These Functions may also serve as backups to functions that were credited in the accident analysis (Ref. 3).
The LCO requires all instrumentation performing an ESFAS Function to be OPERABLE.
Failure of any instrument renders the affected channel (s) inoperable and reduces the reliability of the affected Functions. The Nominal Trip Setpoint column of Table 3.3.2-1 is modified by a note that allows the Trip Setpoints to be set more conservatively than the nominal value. The conservative direction is established by the direction of the inequality applied to the Allowable Value.
(continued)
(continued)
Vogtle Units 1 and 2                 B 3.3-66                       Revision No.
Vogtle Units 1 and 2 B 3.3-66 Revision No.


o o
o ESFAS Instrumentation o
ESFAS Instrumentation B 3.3.2 BASES
B 3.3.2 BASES
        ' APPLICABLE       The LCO generally requires OPERABILITY of four or three SAFETY ANALYSIS, channels in each instrumentation function and two channels LCO, AND         in each logic and manual initiation function. - The APPLICABILITY     two-out-of-three and the two-out-of-four configurations (continued)     allow one channel.to be tripped durir>g maintenance or testing without causing an ESFAS initiation. If :n-instrument channel is equipped with installed bypass capability, such that no jumpers or lifted leads are (continued)
' APPLICABLE The LCO generally requires OPERABILITY of four or three SAFETY ANALYSIS, channels in each instrumentation function and two channels LCO, AND in each logic and manual initiation function. - The APPLICABILITY two-out-of-three and the two-out-of-four configurations (continued) allow one channel.to be tripped durir>g maintenance or testing without causing an ESFAS initiation.
Vogtle Units 1 and 2-             B 3.3-66a                       Revision No.
If :n-instrument channel is equipped with installed bypass capability, such that no jumpers or lifted leads are (continued)
: m. _                          _  .          .                  - - , ,
Vogtle Units 1 and 2-B 3.3-66a Revision No.
: -. i#'                                                                     ESFAS Instrumentation B 3.3.2 BASES-i 4
 
m.
- i#'
ESFAS Instrumentation B 3.3.2 BASES-i 4
4 4
4 4
(This page intentionally left blank.)
(This page intentionally left blank.)
Line 827: Line 1,259:
m F
m F
t (continued)
t (continued)
Vogtle Units 1.and 2:                 B 3.3-66b                           . Revision No.
Vogtle Units 1.and 2:
t ,
B 3.3-66b
t                v             -c   v-   .  .,--+e -w--.. --. ,-                      - , - - - -        , - . -
. Revision No.
* ESFAS Instrumentation B 3.3.2 l
t t
BASES SURVEILLANCE                                         SR               3.3.2.8     (continued)
v
REQUIREMENTS verification of these devices every 18 months. The 18 month Frequency is consistent with the typical refueling cycle and is based on unit operating experience, which shows that random failures of instrumentation components causing serious response time degradation, but not channel failure, are infrequent occurrences.
-c v-
.,--+e
-w--..
 
ESFAS Instrumentation B 3.3.2 l
BASES SURVEILLANCE SR 3.3.2.8 (continued)
REQUIREMENTS verification of these devices every 18 months.
The 18 month Frequency is consistent with the typical refueling cycle and is based on unit operating experience, which shows that random failures of instrumentation components causing serious response time degradation, but not channel failure, are infrequent occurrences.
This SR is modified by a Note that clarifies that the turbine driven AFW pum) is tested within 24 hours after reaching 900 psig in tie SGs.
This SR is modified by a Note that clarifies that the turbine driven AFW pum) is tested within 24 hours after reaching 900 psig in tie SGs.
SR       3.3.2.9 SR 3.3.2.9 is the performance of a TAD 0T as described in SR 3.3.2.6 for the P-4 Reactor Trip Interlock, and the Frequency is once per 18 months. This Frequency is based on operating experience. The SR is modified by a note that                                                                             {
SR 3.3.2.9 SR 3.3.2.9 is the performance of a TAD 0T as described in SR 3.3.2.6 for the P-4 Reactor Trip Interlock, and the Frequency is once per 18 months. This Frequency is based on operating experience.
excludes verification of setpoints during the TA00T. The function tested has no associated setpoint.                                                                                     ;
The SR is modified by a note that
REFERENCES                                                         1. FSAR, Chapter 6.
{
: 2. FSAR, Chapter 7.
excludes verification of setpoints during the TA00T. The function tested has no associated setpoint.
: 3. FSAR, Chapter 15.
REFERENCES 1.
: 4. IEEE-279-1971.
FSAR, Chapter 6.
: 5. 10 CFR 50.49.
2.
: 6. WCAP-ll269, Westinghouse Setpoint Methodology for Protection Systems.
FSAR, Chapter 7.
: 7. WCAP-10271-P-A, Supplement 2, Rev.1, June 1990.
3.
: 8. FSAS, Chapter 16.
FSAR, Chapter 15.
: 9. Westinghouse Letter GP-16696, November 5, 1997.                                                                         l Vogtle Units 1 and 2                                                                       B 3.3-109                                                                   Revision No.
4.
_ _ _ _ _                                            . _ _ _ . . _ _ _ _ _ _ .                    -__            _ _ _ _ _ _ _ _ _ __ _ _ _ - _ _ _ _ _ _ _ _ _ _  _            __ __ _ _ _ _}}
IEEE-279-1971.
5.
10 CFR 50.49.
6.
WCAP-ll269, Westinghouse Setpoint Methodology for Protection Systems.
7.
WCAP-10271-P-A, Supplement 2, Rev.1, June 1990.
8.
FSAS, Chapter 16.
9.
Westinghouse Letter GP-16696, November 5, 1997.
l Vogtle Units 1 and 2 B 3.3-109 Revision No.
_}}

Latest revision as of 07:34, 10 December 2024

Proposed Tech Specs Facilitating Treatment of Trip Setpoints as Nominal Values & Correct Certain Typos
ML20199G390
Person / Time
Site: Vogtle  Southern Nuclear icon.png
Issue date: 11/20/1997
From:
SOUTHERN NUCLEAR OPERATING CO.
To:
Shared Package
ML20199G377 List:
References
NUDOCS 9711250169
Download: ML20199G390 (55)


Text

.

i l

ENCLOSURE 3 VOGTLE ELECTRIC GENERATING PLANT REQUEST TO REVISE TECIINICAL SPECIFICATIONS REACTOR TRIP SYSTEM AND ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION TRIP SETPOINTS MARKED-UP TECIINICAL SPECIFICATION AND BASES PAGES-i l

The following pages from VEGP Unit I and Unit 2 TS LCOs 3.3.1 and 3.3.2 have been marked to show the proposed changes, in addition, clean typed pages reflecting the proposed changes have been provided.

9711250169 971120 "

PDR ADOCK 05000424 P

PDR E3 I.

RTS Instrumentation 3.3.1 Table 3.3.1 1 (pepe 1 ef 8)

Reacter Trip system Instrasentation APPLICARLE M(2ES g)g OR OfMER TRIP [n stTPo!WTCj PfCIFIED REQUIRED SURVEILLANCE ALLthdABLE FUNCT10N CON 0lfl0Ns CMANNELs CONDITIONS REOUIREMENTs VALUE 1.

menust Reacter 1,2 2

3 st 3.3.1.13 NA NA Trip J '3, 4 '3, S *I 2

C st 3.3.1.13 NA mA I

I I

2.

Power Renee

. heutron flun

    • High 1,2 4

0 st 3.3.1.1 s 111.31 RTP 1991 RTP st 3.3.1.2 st 3.3.1.7 st 3.3.1.11 SR 3.3.1.15 b.

Lew 1(b) 2 4

E st 3.3.1.1 s 27.3% RTP s 251 RTP SR 3.3.1.8 st 3.3.1.11 st 3.3.1.15 I

3.

Power Renee 1,2 4

g SR 3.3.1.7 s 6.3% RTP 1 RTP seutron Flus Ni$

st 3.3.1.11 with flee th time constant constant Positive Rate t 2 see a 2 sec 4.

Intermediate Renee 1(b), 2 'I 2

F,G st 3.3.1.1 s 31.11 RTP s 251 RTP I

heutron Flun st 3.3.1.3 st 3.3.1.11 2Id3 2

N sa 3.3.1.1 s 31.11 RTP s 251 RTP st 3.3.1.s sa 3.3.1.11 j

(continued) f (a) With Reactor Trip treekers (RTss) cleaed and Red Centret systes capable of red withdrawel.

(b) DeLow the P 10 (Power Renee Woutron Flum) intertecks.

(c) Above the P 6 (Intermediate Renee heutron Flux) intertecks.

(d) Below the P 6 (Intermediate Renee toutron FLw) intertecks.

(n) The Trip Selpids mcur k sd a coamfimk 4e Homiss' ulos os seaswy in depex fop 4d cadious.

l l

3.3-14 Amendment No. 96 (Unit 1) l Vogtic Units 1 and 2 Amendment No. 74 (Unit 2)

RTS Instrumentation 3.3.1 febte 3.3.1 1 (pese 2 of 83 asector Trip system instrumentation MM

  1. ST,g s*fc!FIED ataulatp suavtILLAuct AttouAsts talp Func730W couplTIOus chamutts conDl710Ns ataulatatuts VALut stfro!N 2(d) 2 1,J Sa 3.3.1.1 s 1.4 E5 s 1.0 E5 5.

Source a m sa 3.3.1.8 ces eps toutten itua sa 3.3.1.11 sa 3.3.1.15 3(*I,4(a),5(*)

2 J,E sa 3.3.1.1 s 1.4 E5 1.0 E5 sa 3.3.1.7 ces ces sa 3.3.1.11 sa 3.3.1.15 3('),4('3,5(')

1 L

sa 3.3.1.1 mA NA i

sa 3.3.1.11 l

6.

Onetenswroture 4T 1,2 4

I sa 3.3.1.1 Refer to aefer to sa 3.3.1.3 mete 1 mete 1 sa 3.3.1.6 (Pese (Pese sa 3.3.1.7 3.3 20) 3.3 20)

Sa 3.3.1.10 sa 3.3.1.15 7.

Overpower of 1,2 4

E sa 3.3.1.1 Refer to Refer to sa 3.3.1.7 mete 2 mete 2 sa 3.3.1.10 (Poes (Pese sa 3.3.1.15 3.3 21) 3.3 21)

{sentinued) l I

With aTSs closed and med Centrol system capable of red uithdrawel.

l (s)

(d) Selow the P*6 (Intennediate tonee moutron flum) intertecks.

In this condition, source rense function does not provide reactor trip but does provide (e) With the af8s apen.

trymat to the mich flist at shutdown t.Lorm system (Lc0 3.3.8) and indicetton.

(n) The Trip Setpoin's mr.y be set more conservative than the Nominal value as necessary in response to plant conditions.

i e

l

\\

3.3-15 Amendment No. 96 (Unit 1)

Vogtle Units 1 and 2 Amendment No. 74 (Unit 2) l i

I RTS Instrumentation 3.3.1 table 3.3.1 1 (pope 3 of 8)

Reactor trip system Instrumentation

]

^"',',i^g(P" yowwAL.

SPECIFIED REsulRED suaVEILLANCE ALLOWAsLE TRIP FUWCTION CONDITIONS ChAmWELS Coelfl0NS REsulREMENTS VALUE SETPo!N 8.

Pressuriser Pressure a.

Law 1(I) 4 M

st 3.3.1.1 1 IMO psis a 1N0(8I sa 3.3.1.7 pois BR 3.3.1.10 sa 3.3.1.15 b.

alsh 1,2 4

I sa 3.3.1.1 s 23M pois 2385 pois sa 3.3.1.7 sa 3.3.1.10 SR 3.3.1.15 9.

Pressuriser Water 1(II 3

M st 3.3.1.1 s 73.91 921 Level - W t sh SR 3.3.1.7 st 3.3.1.10

10. Reactor Coolant F low - Low e.

sinste Loop 1(h) 3 per N

SR 3.3.1.1 t 89.41 Loop sa 3.3.1.7 SR 3.3.1.10 sa 3.3.1.15 b.

Two Loops 1(I) 3 per M

sa 3.3.1.1 a 39.41 toep at 3.3.1.7 SR 3.3.1.10 SR 3.3.1.15 (continued)

(f) Above the P 7 (Lew Power Reactor Trips dicck) Interteck, ts) Time constants utill ed in the f eed tes controller for Pressuriser Pressure Lew are 10 seconds for lead and i second for ies.

(h) Above the Pas (Power Range heutron FluR) laterteck.

(i) Above the Pa7 (Low Power Reactor trips stock) Interlock and below the Pas (Power Range Neutron Flum) interlock.

(n) ne Trip Setpoints may be set more conservative than the Nominal value as necessary in response to plant conditions.

Vogtle Units 1 and 2 3.3-16 Amendment No. 96 (Unit 1)

Amendment No. 74 (Unit 2)

. ~..

RTS Instrumentation 3.3.1 Table 3.3.1 1 (pose 4 of 8)

Reactor Trip System Instrumentation N

0 ME sPECIFIED REGUIRED SURVEILLANCE ALLOWAsLE TRIPJg FUNCTION COWITIONS CNANNELS CONDITIONS REeulkEMENTS VALUE sETPOINF a

[9600V

11. Undervolteee tif) 2 per M

SR 3.3.1.9 t 9441 V RCPs bus sa 3.3.1.10 sa 3.3.1.15

12. Underfregaency 1(f) 2 per M

sa 3.3.1.9 t 57.1 Hz a 57.3 Mr RCPs bus at 3.3.1.10 sa 3.3.1.15 13.

steam 1,2 4 per SG E

sa 3.3.1.1 2 35.9%

37.8%

Generator (SC) sa 3.3.1.7 Weter Level-Low S3 3.3.1.10 Low st 3.3.1.15 (centinued) l l

(f) Above the P F (Low Power Reactor Tripe Block) Interlock.

l (n) The Trip Setpoints may be set more conservative than the Nominal value as necessary in response to I

plant conditions.

l l

I l

l l

l l

Vogtle Units 1 and 2 3.3-17 Amendment No. 96 (Unit 1) l Amendment No. 74 (Unit 2)

RTS Instrumentation 3.3.1 Table 3.3.1 1 (pose 5 of 8) teactor Trip system Instrumentation N

0 nt SETPolNU'}

TRIP fn SPECIFIED REeutRED SURVEILLANCE ALLOW 4sLE FUNCTION CoelTIONS CM4mutLS Comifl0NS REOUIREMENTS VALUE

14. Turbine Trip e.

Lou Fluid Ott 10) 3 0

st 3.3.1.10 t 500 psis 580 pois Pressure st 3.3.1.16 e

b.

Turbine stop 10) 4 P

st 3.3.1.10 t 40e88>

96.7%

Ve1ve CLoeure SR 3.3.1.14 open open

15. safety 1,2 2 traine e

at 3.3.1.13 mA mA Injection ($1)

Irput from

. Engineered sefety foeture Actuation system (ESFAS)

16. Reactor Trip system Interlocks o.

Intermodlate 2(d) 2 R

st 3.3.1.11 2 6E 11 esp 1E 10 og Renee neutron SR 3.3.1.12 Flux, P 6 b.

Low Power i

1 per s

st 3.3.1.5 NA NA Reactor Trips train stock, P 7 4

s st 3.3.1.11 s 50.31 RTP 481 RTP c.

Power Renee g

Woutron Flux, SR 3.3.1.12 P8 d.

Power Renee 4

8 st 3.3.1.11 s 52.3% RTP s 50% RTP i

st 3.3.1.12 heutron Flux, P9 e.

Power Renee 4

R SR 3.3.1.11 (1,m)

(t,m)

Neutron Flux, 1,2 st 3.3.1.12 P 10 and loput to P T 2

s SR 3.3.1.10 s 12.3%

10%

f.

Turbine lopulse 1

SR 3.3.1.12 lopulse lopulse Pressure Pressure Pressure, P 13 E pivalent E pivelent turbine turbine (continued)

(d) setow the P 6 (Intermodlate Renee toutron Flux) interlocks.

I (j) Above the P 9 (Power Renee Neutron Flux) Interlock.

QQ (t)I for the P 10 Irpu? to P 7, the Attowebte Vetue la 512.3% RTP and the rip setpoint is 101 RTP.

t (m) for the Power Renee Neutron Flux, P 10, the Atloweb's Vetue is t 7.7% RTP and the, Trip setpoint is 101 RTP.

g 6

(n) The Trip Setpoints may be set more conservative than the Nominal value as necessary in response to plant conditions.

Vogtle Units 1 and 2 3 3-18 Amendment No. 96 (Unit 1)

Amendment No. 74 (Unit 2) l

RTS Instrumentation 3.3.1 table 3.3.1 1 (pose 6 of 8)

Rewtor f elp System Instrumentstion YE SPECIFIED REGUIRED SURVEILLANCE ALLOWASLE TRIP 83 FUNCTION CONDif10NS CNAeufLS CONDIT!DNS REeulREMENTS VALUE SETPOIN

17. Reactor 1[lp 1,2 2 tralm 1,Y SR 3.3.1.4 NA NA treekersi 3 3(a), g(e),$(s) 2 trains C

st 3.3.1.4 NA NA

18. Reacter trip 1,2 1 each U,V SR 3.3.1.4 NA NA treeker per RTS Uruterveltage and thet Trip 3(*I, 4(*I, 5(*I 1 each C

st 3.3.1.6 NA nA tochantees Mr RTB 19 Automatic Trip 1.2 2 treins e,y sa 3.3.1.5 NA NA Letic 3(a), 4(a), 5(*I 2 trains C

sa 3.3.1.5 NA NA (0) With RTBs cieced end Red Centret System capable of red withdrawal.

(k) including any reacter trip bypees breakers that are rocked in and cleted for imiessing en A78.

(n) The Trip Setpoints may be set more conservative than the Nominal value as necesery in response to plant conditions.

3.3-19 Amendment No. 96 (Unit 1)

Vogtle Units I and 2 Amendment No. 74 (Unit 2)

RTS Instrumentation L

3.3.1 febte 3.3.1 1 (pose 7 of 8) teactor Trip system Instru'entation 041M hate it owetemperatuee Dette*T The Overtemperature Dette.T pmetion Alloweble Vetue shall not exceed the ip Setpoint defined t,y the following esatten by more then 2.25% of RTP.

(1

AT (1 * ? SI 1

g 3

g

,g 7

-T' - Ka>#-PI-f (AFD) 4 t

t II

  • T *I, II

A1, (1

  • v gs) 11
  • t a*8 t

Idhere:

41 seesured loop specific RC$ differentist temperature, degrees F Indicated loop speelfic BCS differentist et RTP, degrees F AT, l'igt need leg cenpensator en sensured differentist temperature 1*t go time constents utitlaed in Leed Les compensetor for dif forentist toeperatures eg a 8 seconds, ti e 's e, s 3 seconds 1

L*# 88'pensator en enesured differentist tosperature 1 *' 38 T,

time constant utillred 1 og compensator for difforentist temperature, s 2 seconds K

fwuammentet setpoint, 121 ITP i

modi'ler f or temperature, a 2.241 RTP per degree f K2 1.*241 1*fgs tsed tog cempensetor on dynamic tanperature cempensetien time constants utilized in Leed Leg campensator for temperature compensations fe t 28 te, fg 3 4 seconds secones, f6 T

measured loop specific RCS everage temperature, destees F 1

tag compensator en asseured everage temperature 1*Tes time constant utilized in Les compensator for everage tosperature, e 0 seconds to T'

indicated Loop specific RC everage toeperature et RTP, 4 degrees F Kg modifier for pressure, 0.1151 RTP per pois P

esesured RCS pressuriter pr sure, psig P'

reference pressure, 2235 pais Leptoce transform verlebte, inwree seconds e

fg(AFD) modifier for Amlet flui Olfference (AFD):

1.

for AFD between 321 and *101, = 01 RTP for each 1 AFD is below 321, the trip setpoint shett be redJced by 3.251 RTP 2.

for each 1 AFD la abow *101, the trip setpoint shett be reeaced by 2.71 RTP 3.

3.3-20 Amendment No. 96 (Unit 1)

Vogtle Units 1 and 2 Amendment No. 74 (Unit 2)

RTS Instrurtentetion l

I 3.3.1 f

l febte 3.3.1 1 (pope 8 of 8)

Reactor Trip System instrumentation 8fl este 2r oveetmsee Delta T The Overpower Dette T Function ALLOW 48LE VALut shall not exceed the Trip setpoint defined ty the following ogastion by more then 2.851 of RTP.

1 100.# " * 'o u. g. K[4-Kg n.,,o u...e

, o.es T

- K,T

-T

-f (AFD) 2 s n.,,

measured loop specific RCS differentist temperature, degrees F Weret af Indicated loop specific BCS differentist et ATP, degrees F ATg J,.+1g1 leeJ tes compensator en sessured differentist temperature 1+v s a

time constents util(tod in teed tog compeneetor for dif ferentist temperatures fg a 8 seconds, tg, v2 e s 3 secones 1

1+13e too compensator on measured dif ferentist temperature

'a flee constant utillied og compensator for dif f erentlet temperature, s 2 seconds K

forusementet setpoint.

09.51 2TP 4

21 RTP per degree F for increasing temperature, t 01 RTP K

modifier for temperature change:

g per degree F for decreasing tempe ture

.!.11.

1+tys rate tes conpensator en dynamic temperature compensation tieu constant utilised in rate los compensator for temperature compensation, t to seconds ty measured loop speelfic RCS ewrese temperature, degrees F i

i 1+v.s too compermator en meesured over temperature time constant utill ed in tag suponsetor for eversee temperature, = 0 seconds To K,

endifler f or tosperature:

0.205 RTP per degree F for i > T'

= 01 tTP for i s T' indicated loop specific RCS eversee temperature et RTP, 88.4 degrees F T'

Leptoce transform variebte, inverse seconds s

modiller for Aalet Flut Dif ference (AFD), m 01 RTP for ett Att f (AFD) 2 3.3-21 Amendment No. 96 (Unit 1)

Vogtle Units 1 and 2 Amendment No. 74 (Unit 2)

ESFAS Instrumentation 3.3.2 febte 3.3.2 1 (pese 1 of 7)

Engineered Safety f eature Actuetten system Instrumentation APPLICA8LE 1 3 SETPo!NT4}

ft!P /*

SPECIFIED REOUIRED SLmVEILLANCE ALLOWA8LE fuMCTION CONDITIONS CNANNELS CONDITIONS REaulatnENTS VALUE 1.

Safetyinjection s.

honust inittetten 1,2,3,4 2

s SR 3.3.2.6 m

M b.

Automatic 1,2,3,4 2

C SR 3.3.2.2 M

M Actuation teste SR 3.3.2.3 and Actuation SR 3.3.2.5 teleys c.

Centairment 1,2,3 3

D SR 3.3.2.1 5 4.4 pois s

.8 pois Pressure - Mish 1 sa 3.3.2.4 SR 3.3.2.7 la 3.3.2.8 d.

Pressuriser 1,2,3(e) 4 0

Sa 3.3.2.1 t 1854 pois t 1870 pois Pressure - Low SR 3.3.2.4 SR 3.3.2.7 SR 3.3.2.8 e.

Steam Line 1,2,3(e) 3 per D

SR 3.3.2.1 570N N

i t

pois

[psig Pressure Law steen SR 3.3.2.4 Line SR 3.3.2.7 SR 3.3.2.8 (setinuse)

(e) Above the P 11 (Pressuriser Pressure) interteck.

(b) flee constants med in the Leed/tes contretter are tg a 50 seconds eruf t2 s 5 secoruss.

The Trip Setpoints may be set more conservative than the Nominal value as necessary in resp plant conditions.

Vogtle Units 1 and 2 3.3-30 Amendment No. 96 (Unit 1)

Amendment No. 74 (Unit 2)-

ESFAS Instrumentation 3.3.2 Table 3.3.2 1 (pose 2 of 7)

Enstneered safety Feature Actuation System Instrumentation APPLICAsLE NEn SPECIFIED REsulRED SURVEILLANCE ALLOWAsLE TRsP FUNCTIDW CONDITIONS CHANNELS CDMDITIONs REeulREMEWis VALUE stTPCINT 2.

Contalrument sprey e.

mareast inittetton 1,2,3,4 2

I st 3.3.2.6 NA mA b.

Autenstic 1,2,3,4 2

C sa 3.3.2.2 MA mA Actuation Logic sa 3.3.2.3 and Actuetten SR 3.3.2.5 Reteys c.

Centalrument Pressure

  1. f sh - 3 1,2,3 4

E st 3.3.2.1 5 22.4 pais s 21.5 psis sa 3.3.2.4 sa 3.3.2.7 sa 3.3.2.8 (continued)

,.5

(),J The Trip Setpoints may be set more conservative than the Nominal value as necessary in response to plant conditions.

Vogtle Units 1 and 2 3.3-31 Amendment No. 96 (Unit 1)

Ar.sndment No. 74 (Unit 2)

1 l

ESFAS Instrumentation 3.3.2 febte 3.3.2 1 (pose 3 of 7)

Engineered Saf ety feature Actuotton System instrumentetlun I

ppg lhh APPLICA4LE NODES OR DTHER SPECIFIED REOUIRED SURVEILLANCE ALLOWA8LE TalP FUNCfION CONDITIONS CMANNEL5 COND1TIONS REGUIaEMENf5 VALUE StTPOINT 3.

Phase A Centainment leetetten (a) menuel Initiation 1,2,3,4 2

s sa 3.3.2.6 mA mA (b) Automatic 1,2,3,6 2 trains C

st 3.3.2.2 NA NA sa 3.3.2.3 Actuation Logic sa 3.3.2.5 and Actuotten meteys (c) Safety injection Refer to F mction 1 (lefety injection) for ELL inittstion functions eM rooJirements.

4.

Stees Line teoletim e.

herual Initiation 1,2(c) 3(c) 2 7

sa 3.3.2.6 NA NA b.

Automatic 1,2(c) 3(c) 2 G

so 3.3.2.2 NA NA st 3.3.2.3 Actuellen Logic sa 3.3.2.5 and Actuation Retsys (continued)

Encept when one win eteem isolation volve and essectated bypees (seletion velve per steem tine is closed.

(c)

The Trip 5etpoints may be set more conservative than the Nominal value as necessary in response to plant conditions.

(

3.3-32 Amendvent No. 96 (Unit 1)

Vogtle Units I and 2 Amendment No. 74 (Unit 2)

ESFAS Instrumentation 3.3.2 f ebte 3.3.21 (pspe 4 of 7)

Instreered letety Iesture Actuetten Svstem Instrumentetten APPLitASLt tute

)

SPtClIlft itDUIRfD

$UtVIILLANCE ALLOWA4LE fIIP FUNCflok CouDittout CNAustLS COM0!fl0NS REtulatMENTS VALut SETPolW 4

iione ti-isoisii.

(centiruJed) 8.

Centelement 1.P(8I, 3

0 et 3.3.2.1 s 15.4 pals 14.5 pels sa 3.3.2.6 Preneure - Nigh 2 3gg) sa 3.3.2.7 to 3.3.2.8 d.

Steen Lire Pressure (1) Lew 1,2(8I, 3 per 0

se 3.3.2.1 1 $70 (DI 585 (b) steen la 3.3.2.4 puts pels 3(gggg)

Line la 3.3.2.7 la 3.3.2.8 I'I 100 I'I (2) Weoettve 3(8I(8I 3 per 0

sa 3.3.2.1 s 125 Rote = Wish stoon la 3.3.2.4 pel/6ec rel/ set tlne at 3.3.2.7 ta 3.3.2.8 teens triese) to) above the P*11 (Pressurtser Pressure) intertect.

(b) flee cenetents used in the need/tes controtter are tg a 50 seconds and te s 5 sece.

(c) Escs.st when ern sein steem tootetten volve and essectated trypass tsetetten volve per steen line is closed.

(d) setow the P*11 (Pressurtter Pressure) interteck.

(e) Time constant utilised in the rete /tes controlter is * $0 seconde.

($) The Trip Setpoints may be set more conservative than the Nominal value as necessary in res plant conditions.

Vogtle Units 1 and 2 3.3-33 Amendment No. 96 (Unit 1)

Amendment No. 74 (Unit 2)

b-ESFAS Instrumentation 3.3.2 table 3.3.2 1 tpose 5 of 7)

Engineered lefety f eature Actuotten Systee Instrumentation APPLICABLt i a setCIFl[D RtaVittD suavtlLLANCE ALLtWAsLt falP / -

FUNCil0N CON 0lfl0NS CHANNELS CONDifl0NS REOUIREMfMTS VALUE

stTPolNt, 5.

Turbine Irlp and Fosesster isoletten 0I 2 trela N

sa 3.3.2.2 NA NA a.

Automatic 1,2 sa 3.3.2.3 Actuetten Logic et 3.3.2.5 and actuetten 3.te,.

f hSM 'F 0I 4

I sa 3.3.2.1 2 541.5 't b.

Low RCS tavs 1,2 M 3.3.2.4 sa J.3.2.7 Coincident with Refer to f atten ne for ELL P 4 rewirements.

Seector trip, P 4 0I 4 per SG l

sa 3.3.2.1 s 87.9%

36.01 c.

30 Water 1,2 LoveL - Nish Mi h sa 3.3.2.4 t

(P 14) sa 3.3.2.7 sa 3.3.2.s W.

Safety injection befer to f atten t (sofety injectlan) for ett initletten f atione and rewirements.

6.

Aunillery f eechester s.

Automat ic 1,2,3 2 treine G

sa 3.3.2.2 mA mA Actuetten Losic sa 3.3.2.3 sa 3.3.2.5 and Actuet ten teleys b.

50 Water 1,2,3 4 per sc 0

sa 3.3.2.1 a 35.91 37.81 sa 3.3.2.4 Level - Lew Low at 3.3.2.7 sa 3.3.2.s (centinued) tacept whei, one MFly er MFtV, and its essectated bypots volve per feedseter Line le closed and aloectivoted (f) or tsetated by a cleted snartel volve.

(d) The Trip Setpoints may be set more conservative than the Nominal value as necessary in tupo plant conditions.

Vogtle Units 1 and 2 3.3-34 Amendment No. 96 (Unit 1)

Amendment No. 74 (Unit 2)

ESFAS Instrumentation 3.3.2 Table 3.3.2 1 (pape 6 of 73 Ergineered Safety f eature Actuotten Erstem Instrumentation I

APPLICASLE b

i a SPttiflED Ritultt0 SutVtlLLANCE ALLinABLE TRIP FWCfl0W ConDifl0ml CnAustLS ConDifl0NS RiegletMtwfs yAtut MTPolv 6.

Awillery f eesheeter (eentirased) c.

Safetyinjection Refer to function 1 (Safety injectlan) for all inittetten fimettens and rewireemets.

d.

Telp of all kein 1.2(83 1 per J

ta 3.3.2.4 4A mA f oesheeter Paes map 7.

Seel.outsestic Switchever to Centairement See e.

Automet h 1,2,3,4(h) 2 C

se 3.3.2.2 h4 mA i

sa 3.3.2.3 Act ~..en Logic at 3.3.2.5 and Actuetten seleye b.

Refueling Weter 1,2,3,4 E

sa 3.3.2.1 t 364.9 in.

275.3 in.

sa 3.3.2.4 storeee lenk at 3.3.2.7

(# WET) trvel - Low sa 3.3.2.8 Low Coincleont with gefer to function 1 (lefety injection) for ett initletion Safety injection timettens and rosestrosents.

tcentirmsso)

(g) When the kein f eesheeter System 8a operating to empty the $Gs.

In IGE 4, only 1 train is rosesired to be OPitASLE to sweert emeleeutsenstic evitchever for the RNA puup (h) that is rossaired to be OPERABLE in eccertence with Specification 3.5.3 Eccs.shuteewn.

.1 (4

l 'the Trip Setpoints may be set more conservative than the Nominal value as necessary in tesponse to plant conditions.

3.3-30 Amendment No. 96 (Unit 1)

Vogtle Units 1 and 2 Amendment No. 74 (Unit 2)

ESFAS Instrumentation 3.3.2 fette 3.3.t 1 (nepe ? ef 7)

Insineered Sefety Feeture actuetien systom Instrumentetten APPLICA4LE H0MtML OtME SPECIFit0 Attu1 BED SURVIILLANCE ALLOWASLE TRIP l

FUNCflou Couplfl0ml CMAWWELS COM0!fl0NS RFOU18tMWil VALUE BETPolN /

8. ISFAB Intertecks
a. Reector felp, P 4 1,2,3 1 per F

M 3.3.2.9 mA siA train, 2 treins

b. Pressuriser Pressure, 1,2,3 3

L st 3.3.2.4 s 2010 pais 2000 pois P+11 M 3.3.2.7 f.1 I / j The Trip Serpoints may be set more conservative than the Nominal value as necessary in response to k

plant conditions.

Vogtle Units 1 and 2 3.3-36 Amendment No. 96 (Unit 1)

Amendment No. 74 (Unit 2)

RTS Instrumentaticn

[

B 3.3.1 i

BASES i

l i

SACKGROUND Reactor Trin Switchaear (continued) i trip mechanism is sufficient by itself, thus providing a i

diverse trip mechanism.

The decision logic matrix fun tions are described in the-functional diagrams included ha Reference 1.

In addition to the reactor trip or ESF, these diagrams also describe the various "pemissive interlocks" that are associated with

'i 4

unit conditions.

Each train has a built in testing device l

that can automatically test the decision logic matrix Functions and the actuation devices while t3e unit is at power. When any one train is taken out of service for testing, the other train is capable of providing unit i

i monitoring and protection until the testing has been i

completed. The testing device is semiautomatic to minimize L

testing time.

The RTS functions to maintain the SLs duri APPLICABLE' mitigatestheconsequencesofDBAsinallballA00sandES in LCO, and l SAFETY ANALYSES, l

LCO, and which the RTBs are closed.

APPLICABILITY Each of the analyzed accidents and transients can be L

detected by one or more RTS Functions.

The accident analysis described in Reference 3 takes credit for most RTS

. trip Functions.

RTS trip Functions not spccifically credited in the accident analysis are qualitatively credited in the safety analysis and the NRC staff approved licensing basis for the unit.

These RTS trip Functions may provide protection for conditions that do not require dynamic transient analysis to demonstrate Function perfomance.

They may & Iso serve as backups to RTS trip Functions that were credited in the accident analysis.

1 1

The LC0 requires all instrumentation performing an RTS Function, listed in Table 3.3.1-1 in the accompanying LCO, to be OPERABLE.

Failure of any instrument renders the c

j affected channel (s) inoperable and reduces the reliability

of the affected Functions. A

/h N The LCO generally requires hPERABILITY of four or three channels in each instrumentation Function, two channels of 7

Manual Reactor Trip in each logic Function, and two trains in each Automatic Trip Logic Function.

Four OPERABLE (continued)

Vogtle. Units 1 and 2 B 3.3-7 Revision No. O u -

INSERT FOR llASES PAGE H 3.3-7

'lhe Nominal Trip Setpoint column is modified by a Note that allows the Trip Setpoint to be set more conservatively than the nominal value. The conservative directic" is established by the direction of the inequality applied to the Allowable Value. For example, the Power Range Neutron Flux Iligh trip setpoint may be set to a value less than 109 % during initial startup following a refueling outage until a sufficiently high reactor power is achieved so that the power range channels may be calibrated, in addition, certain Required Actions may require that the Power Range Neutron Flux liigh trip setpoints be reduced based on plant conditions.

RTS Instrumentation B 3.3.1 BASES APPLICABLE 6.

Overtemperature AT (continued)

SAFETY ANALYSES, LCO, and This results in a two-out-of-four trip logic.

Section APPLICABILITY 7.2.2.3 of Reference 1 discusses control and protection system interactions for this function. Note that this Function also provides a signal to generate a turbine runback prior to reaching the Trip Setpoint.

A turbine runback will reduce turbine power and reactor power. A reduction in power will normally alleviate the Overtemperature AT condition and may prevent a reactor trip.

Delta T, as : sed in the overtemperature and overpower AT trip,s, represents the 100% RTP value as measured for each loop. This norinalizes each loop's AT trips to the actual operating conditions existing at the time of measurement, thus forcing tha trip to reflect i

the equivalent full power condit<ons as assumed in the accident analyses. These differences in RCS loop AT can be due to several factors, e.g., differences in RCS loop flows and slightly asymmetric power-distributions between quadrants. While RCS loop flows are not expected to change with cycle life, radial power redistribution between quadrants may occur, resulting in small changes in loop sr 41fic AT values.

Therefore, loop specific AT, values are measured as no6ded to ensure they represent actual core conditions.

he L.C0 requires all four channels of the M/JMY Overtemperature AT trip Function to be OPERABLE.i Note l

9 that the Overtemperature AT Function receives input f/

from channels shared with other RTS Functions.

Failures that affect multiple Functions require entry into the Conditions applicable to all affected Functions.

In M00E 1 or 2 the Overtemperature AT trip must be OPERABLE to prevent DNB.

In MODE 3, 4, 5, or 6, this i

trip Function does not have to be OPER%LE because the reactor is not operating and there is insufficient heat production to be concerned about DNB.

4 4

(continued)

Vogtle-units 1 and 2 B 3.3-16 Revision No. 0

..,__., _.,.._..__i

.~... __, _.

.L..

._..__._,_.__....__.,_.,__m..

INSERT FOR llASES PAGE B 3.3-16 i

The values for K, K. K), T', and P' may be treated as nominal values (br the purpose of l

i 2

performing a CilANNEl, CAllBRATION. The direction of conservatism for these values is as follows:

Ki sidentified Value K 2 Identified Value K 2 Identified Value 2

3 T' s identified Value P' % Identified Value Note that K is the principle setpoint gain, since it defines the function offset. K and K3 i

2 define the temperature gain and pressure gain respectively. The values for T' and P' are key reference parameters corresponding directly to plant safety analyses initial conditions assumptions for the Overtemperature AT Function. The as left settings for these parameters should be as close as possible or conservative with respect to tne identified values, in order to ensure that the Overtemperature AT setpoint is consistent with the assumptions of the safety analyses,it is necessary to verify during the CilANNEL OPERATIONAL TEST, that the Overtemperature AT setpoint is within the appropriate calibration tolerances for conditions where the temperature input is equal to T' and the pressure input is equal to P', and that appropriate penalties are generated to reduce the setpoint for a temperature input greater than T', and again for a pressure input less than P' (Ref. 9)

l RTS Instrumentatien 8 3.3.1 t

BASES f

APPL 1.'4LE 7.

Overoower AT (continued)

SAFET', ANALYSES, LCO, and Delta-T, as used in the overtemperature and overpower APPLICABILITY AT trip,s, represents the 100% RTP value as measured for each loop. This nomalizes each loop's AT trips to the actual operating conditions existing at the time of measurement, thus forcing the trip to reflect the equivalent full power conditions ns assumed in the accident analyses.

These differences in RCS loop AT c n be due to several factors, e.g., difference in RCS loop flows and slightly asymmetric power distributions between quadrants. While RCS loop flows are not expected to change with cycle life, radial power redirtribution between quadrants may occur, resulting in small changes in loop specific AT values.

Therefore, loop specific AT, values are measured as needed to ensure they represent actual core conditions.

r The LCO requires four channels of the Over>ower AT

/N5/N trip Function to be OPERABLE.\\ Note that tie Overpower

~

AT trip Function receives input frna channels shared d/M with other RTS Functions.

Failures that affect multiple Functions require entry into the Conditions applicable to all affected Functions.

In M00E 1 or 2, the Overpower AT trip Function must be OPERABLE. These are the only times that enough heat is generated in the fuel to be concerned about the In heat generation rates and overheating of the fuel.

MODE 3, 4, 5, or 6 this trip Function does not have to be OPERABLE because the reactor is not operating i

and there is insufficient heat productica to be concerned about fuel overheating and fuel damage.

)

8.

Pressurizer Pressure The same sensors (PI-0455A, 8. & C. PI-0456 PI-0456A, l

PI-0457. PI-0457A, PI-0458 PI-0458A) provide input to the Pressurizer Pressure - High and - Low trips and the Overtemperature AT trip.

Since the Pressurizer Pressure channels are also used to provide input to the Pressurizer Pressure Control System, the actuation 1

logic must be able to withstand an input failure to (continued)

Vogtle Units 1 and 2 8 3.3-18 Revision No. 0

INSERT FOR IIASES PAGE 113.318 The values for K, K, K, and T" may be treated as nominal values for the purpose of 4

3 6

perfonning a CilANNEL CAllllRATION. The dircetion of conservatism for these values is as follows:

K s identified Value K 2 Identified Value K hidentified Value 4

3 6

T" sidentified Value Note that for K in the case of decreasing temperature, the gain setting must be > 0 to 5

prevent generating setpoint margin on decreasing temperature rates. Similarly, the setting for K is required to be equal to O for conditions where T s T". The value for T" is a key 6

reference parameter corresponding directly to plant safety analyses initial conditions assumptions for the Overpower AT Function. The as left settings for these parameters should be as close as possible or conservative with respect to the identified values. In order to ensure that the Overpower AT setpoint is consistent with the assumptions of the safety analyses, it is necessary to verify during the Cil ANNEL OPERATIONAL TEST, that the Overpower AT setpoint is within the appropriate calibration tolerances for conditions where the temperature input is equal to T", and that the appropriate penalties are generated to reduce the setpoint for a temperature input greater than T" (Ref. 9).

ESFAS Instrumentaticn 8 3.3.2 BASES BACKGROUND Seouencer Outout Relavs (continued) sequencer and are part of the control circuitry of these ESF loads.

There are two independent trains of sequencers and each is powered by the respective train of 120-Vac ESF electrical power supply.

The power supply for the output relays is the secuencer power supply.

The applicable output and relays are testec in the slave relay testing procedures, lay in particular, in conjunction with the specific slave re also required to actuate to energize the applicable ESF load.

APPLICABLE Each of the analyzed accidents can be detected by one or SAFETY ANALYSES, more ESFAS Functions. One of the ESFAS Functions is the LCO, AND primary actuation signal for that accident.

An ESFAS APPLICABILITY Function may be the primary actuation signal for more than one type of accident. An ESFAS Function may also be a secondary, or backup, actuation signal for one or more other accidents.

For example Pressurizer Pressure - Low is a rimaryactuationsignalforsmalllossofcoolantaccidents g7Ag Mfhp[7f/p LOCAs) and a backup actuation signal for steam line breaks

/

SLBs) outside containment.

Functions such as manual

$~ / p v/4 [ G /h p 4 nitiation, not specifically credited in the accident safety g

analysis, are qualitatively credited in the safety analysis I

j p[ kd/t f.J.2-/

and the NRC staff approved licensing basis for the unit.

These Functions may provide protection for conditions that

/3 No/I'//e,tT A,jj(

do not require dynamic transient analysis to demonstrate Function performance. These Functions may also serve as

/\\/,/t h f 4 // w J backups to Functions that were credited in the accidene l

analysis (Ref. 3).

kl ffit N}0ieb The LCO requires all instrumentation performing an ESFAS f

r f /4g $g[jyort.-

Function to be OPERABLE.

Failure of any instrument renders JL the affected channel (s) inoperable and reduces the d34.54tV4///l TN#I reliabilityoftheaffectedFunctions.J Nf UW/4/!

!W' The LC0 generally requires OPERABILITY of four or three

$ f @ ggr yg/j,g, channels in each instrumentation function and two channels in each logic and manual initiation function.

The C///CC//f4 /J two-out-of-three and the two-out-of-four configurations gg/gf//,5 $ u allow one channel to be tripped during maintenance or

/

testing without causing an ESFAS initiation.

If an M t d//tC//f4 instrument channel is equipped with installed bypass g g j4f

//

capability, such.that no jumpers or lifted leads are ap y It w 4 M e jf// N d h d f d W6 9 (continued)

Vogtle Units 1 and 2 8 3.3-66 Revision No. 0

RTS Instrumentation B 3.3.1 BASES REFERENCES 2.

FSAR, Chapter 6.

(continued) 3.

FSAR, Chapter 15.

4.

IEEE-279-1971.

5.

10 CFR 50.49.

6.

WCAP-11269, Westinghouse Setpoint Methodology for Protection Systems.

7.

WCAP-10271-P-A, Supplement 2, Rev. 1. June 1990.

8.

FSAR, Chapter 16.

4 (Ales llnabDuri h#er GP-16696. NoendwS, in2 a

t Vogtle Units 1 and 2 B 3.3-60 Revision No. 0

1 ESFAS Instrumentation B 3.3.2 i

BASES SURVEILLANCE SR 3.3.2.8 (continued)

REQUIREMENTS verification of these devices every 18 months.

The 18 month Frequency is consistent with the typical refueling cycle and is based on unit operating experience, which shows that random failures of instrumentation components causing serious response time degradation, but not channel failure, are infrequent occurrences.

This SR is modified by a Note that clarifies that the turbine driven AFW pus) is tested within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> after reaching 900 psig in tie SGs.

1 SR 3.3.2.9 i

SR 3.3.2.9 is the perfomance of a TADOT as described in SR 3.3.2.6 for the P-4 Reactor Trip Interlock, and the Frequency is once per 18 months. This Frequency is based on operating experience. The SR is modified by a note that excludes verification of setpoints during the TADOT.

The function tested has no associated setpoint.

REFERENCES 1.

FSAR, Chapter 6.

2.

FSAR, Chapter 7.

3.

FSAR, Chapter 15, 4.

IEEE-279-1971.

5.

10 CFR 50.49.

6.

WCAP-11269. Westinghouse Setpoint Methodology for Protection Systems.

7.

WCAP-10271-P-A, Supplement 2, Rev. 1. June 1990.

8.

FSAR, Chapter 16, 9.

Wish/towsc f.t//W M-IC&K AldmberS Mf2 V

B 3.3-109 Revision No. O Vogtle Units:1 and 2

RTS Instrumentation 3.3.1 9

isble 3.3.1 1 (pese 1 of 8)

Reacter irlp System Instroentation Futtil0N APeticaaLE N ets REeulRE0 coNolitous suaVEILLANCE ALLOW 8LE WoNINAL l

OR OTNEa CNANNELS REGUltENENTS VALUE TRIP

~

W SPECIFIED SfiPolNT l

CONelitous i

l 1.

Manuel Reactor 1,2 2

8 SR 3.3.1.13 NA NA Trip I

I I

3 '),

A *), $ *)

2 c

SR 3.3.1.13 NA hA 2.

Power R Neutron f wa a.

Nigh 1,2 4

0 SR 3.3.1.1 s 111.3% RTP 109% RTP l

De 3.3.1.2 la 3.3.1.7 sa 3.3.1.11 SR 3.3.1.15 b.

Low 1(b) 2 4

E sa 3.3.1.1 s 27.3% RTP 25% RTP l

sa 3.3.1.8 Sa 3.3.1.11 sa 3.3.1.15 l

l

3. Power Renes 1,2 4

E SR 3.3.1.7 s 6.3% RTP 5% RTP l

1 1

Neutron Flum Nlsh SR 3.3.1.11 Ntth time t.ith time Peeltive Rete cinstant constant t 2 see t 2 sec 4.

Intermodlate Renee 1(b), I *I 2

FG SR 3.3.1.1 s 31.1% RTP 25% RTP l

I i-Neutron Flum-sa 3.3.1.8 Sa 3.3.1.11 2(d) 2 N

SR 3.3.1.1 s 31.11 RTP 25% RTP l

SR 3.3.1.8 sa 3.3.1.11 (contlnued)

(a) With Reactor Trlp Brookers (RTBs) closed and Rod Control System capable of rod ulthdrawal, (b) Detow the P 10 (Power Renee Neutron Flual interlocks.

s (c)' Above the P-6 (Intermediate Renee Neutron Flus) Interlocks.

(d) Delow the P 6 (Intermodlate Renee Neutron Flua) Interlocks.

(n). The Trip letpelnte may be set more conservative then the nominst value es necessary in response to plant cendttione.

i Vogtle Uatts l'and 2-3.3-14 Amendment No.

(Unit 1)

Amendment No.

(Unit 2) t

m..-

,_.a.-

RTS Instrumentation 3.3.1 l

i table 3.3.1 1 (pe,)e 2 of 8)

Reactor Trip System Instrumentation -

l FWWCTION APPLICABLE NODES REOJIRED - CONDilloul SURVtlLLANCE ALLOWABLE WOMINAL l

OR diner CHANNELS REQUIV MENTS VALUE TRIP Ud SPfCIFIED StiPolNT l

CouDI1lowl 5.

Source Renee 2(d) 2 1.J SR 3.3.1.1 s 1.4 t$

1.0 El cps l

Woutron flun

$R 3.3.1.8 cpe SR 3.3.1.11 st 3.3.1.15 3 '), 4(a), $(a) 2 J,K SR 3.3.1.1 s 1.4 15 1.0 E5 eps l

I

$R 3.3.1.7 cpe

$R 3.3.1.11 SR 3.3.1.15 3('), 4), 5(')

1 L

SR 3.3.1.1 NA NA SR 3.3.1.11 6.

Overte p reture AT 1,2 4

t tR 3.3.1.1 Refer to Refer to le 3.3.1.3 Note 1 Note 1 (Page la 3.3.1.6 (Pape 3.3 20) sa 3.3.1.7 3.3 20)

SR 3.3.1.10 SR 3.3.1.15 7.

Overpower AT 1,2 4

t

$R 3.3.1.1 Refer to Refer to SR 3.3.1.7 Note 2 Note 2 (Page SR 3.3.1.10 (Page 3.3 21)

SR 3.3.1.15 3.3 21)

(continued)

(a) With RTBs closed and Rod Control System capable of rod withdrawal.

(d) Below the P 6 (Intermedlete Renee Neutron Flum) interlocks.

(e) With the Rits open. In this condition, source ranee F metion does not provide reactor trip but does provide input to the Niyh Flux et shutdown Alarm System (LC0 3.3.8) and indication.

(n) The Trip Setpoints may be set more conservative than the nominal value as necessary in resposite to plant l

conditions.

~

l Vogtle Units 1 and 2 3.3-15 Amendment No.

(Unit 1)

Amendment No.

(Unit 2) n

..n-~

.-,.n,-

RTS Instrumentation 3.3.1 Table 3.3.1+1 (page 3 of 8) teactor Trip $rstem Instrunentation FUNC110N APPLICA8LE MODES ttouintD CON 011. t 1

$URVtlLLANct ALLOWABLE WOMINAL l

On OlNER CHANNELS REQUlttMEWil VALUE TRIP W

$PECIFIED

$tfP0lWT l

CON 0lil0NS 8.

Pressuriser Pressure e.

Low 1(I) 4 M

SR 3.3.1.1 t 1950 psig 1960 '

l SR 3.3.1.7 psig SR 3.3.1.10 SR 3.3.1.15 b.

High 1,2 4

E sn 3.3.1.1 s 2395 psig 2385 psig l

SR 3.3.1.7 SR 3.3.1.10 SR 3.3.1.15 9.

Pressuriser Water IIII 3

M SR 3.3.1.1 s 93.9%

92%

l Level = Hlsh SR 3.3.1.7 sa 3.3.1.10

10. Reactor Coolant flow -Low a.

Single Loop IIh3 3 per N

SR 3.3.1.1 t 89.4%

90%

l toop SR 3.3.1.7

$t 3.3.1.10

$2 3.3.1.15 b.

Two Loopa 1(II 3 per M

st 3.3.1.1 t 89.4%

90%

l l cop SR 3.3.1.7 tt 3.3.1.10 i

st 3.3.1.15 (continued) 1 (f) Above the P 7 (Low Power Reactor irlps Block) inttrlock.

(g) time constante utilised in the lead leg controller for Pressuriter Pressure Low are '

ands for lead and 1 second for lag.

(h) Above the P 8 (Power Range Neutron flum) interlock.

(I) Above the P 7 (Low Power teactor Tripe Block) Interit.ck and below the P 8 (Power Range Neutron Flux) Interlock.

(n) The trip Setpoints may be set more conservative than the nominal value as necessary in response to plant conditions.

Vogtle Units 1 and 2 3.3-16 Amendment No.

(Unit 1)

Amendment No.

(Unit 2)

i RTS Instrumentation 3.3.1 febte 3.3.1 1 (pope 4 of 8) teactor Trip System Instenanntation i

l FUNC180M APPLICA4LE 11388 kleulRED ConDIllows SURVEILLAmCC ALLOWASLE NON!hAL l

OR Otuta CNAmetLS-REGUIREMENTS VALUE TRIP H SPEtifitt OffPOINT l

l Couplilout

11. Undervettees-III) 2 per M

SR 3.3.1.9 a 9481 Y 9600 V l

RCPs bus -

st 3.3.1.10 SR 3.3.1.15

12. Underfrequency 1(f) 2 per M

ta 3.3.1.9 t 57.1 N 57.3 Na l

j BCPs bue sa 3.3.1.10 SR 3.3.1.15

13. Steen 1,2 4 per to t

sa 3.3.1.1 2 35.9K

-37.8%

l Generator (SG)

SR 3.3.1.7 Weter Level - Low te 3.3.1.10 Low

$4 3.3.1.15

-(continued)

. Above the P.T (Low Power Reactor felps Block) Interlock.

(f)

(n) The Trip tetpoints may be set more conservettve then the nominal.value as necessary in response to plant l

conditions.

I i

1 1

Y t

3-Vogtle Units 1 end 2 3.3 Amendment No.

(Unit 1)

Amendment No.

(Unit 2)

=

RTS Instrumentation 3.3.1 table 3.3.1 1 (pase 5 of 8)

Reactor irlp system Instrumentation FUNCilow APPLICAttt le0 des Atoultto CouDiflows SURVilLLANCE ALLOW 48LE WOMihAL l

OR Othf R CHAWW(LS Rt0VIREMENTS VALUE TRIP W

$PitiffED SETP0 INT l

Couplilows

14. Turbine trip a.

Low fluid olt 1(II 3

0 SR 3.3.1.10 t 500 pels 580 psip l

Pressure SR 3.3.1.16 b.

Turbine Stop IIII 4

P st 3.3.1.10 t 90% open 96.7% open l

Valwe Ciosure SR 3.3.1.14

15. Safety 1,2 2 tralne e

SR 3.3.1.13 NA NA Injectlen($1)

Ityut from Engineered Safety f eature Actuation System (ESFAS)

16. Reector trip System Interlocks a.

Intermodlate 2(d) 2 R

sa 3.3.1.11 t 6t 11 anp it 10 amp l

Renee neutron

$t 3.3.1.12 flun, P 6 b.

Low Power 1

1 per s

SR 3.3.1.5 h4 NA Reactor trips train Olet t, P T 4

s sp 3.3.1.11 s 50.3% RTP 48% RTP l

c.

Power tense j

heutron Ftum, st 3.3.1.12 P8 d.

Power Renee 4

5 SR 3.3.1.11 s 52.3% RTP 50% RTP l

Neutron ftun, 1

SR 3.3.1.12 P9 e.

Power Range 4

R SR 3.3.1.11 (1,m)

(t,m)

Neutron Flux, 1,2 SR 3.3.1.12 P*10 and input to P*T 2

SR 3.3.1.10 s 12.3%

10%

l f.

Turbine lopulse 1

st 3.3.1.12 Impulse lopulse Pressure, P 13 Pressure Pressure Equivalent Equivalent turbine turbine (continued)

(d) Below the P 6 (Intermediate Renee heutron flux) Interlocks.

(j) Above the P 9 (Power Renee Neutron Flux) Interlock.

(L) For the P 10 tryut to P 7, the Alloweble VeLue is 512.3% RTP and the Nominal fl ip $etpoint is 10% RTP.

l

' (m) For the Power Ranee heutron Flus, P 10, the Allowable Value is t 7.7% RTP and the Nominal Trip Setpoint is 10% RTP.

(n) The Trip setpoints may be set more conservative than the nombat value as recessary in response to plant conditions.

Vogtle Units 1 and 2-3.3-18 Amendment No.

(Unit 1)

Amendment No.

(Unit 2)

E w

.-,y

-ws- - -,.

-r y

. - _ =

0 RTS Instrumentation 3.3.1 table 3.3.1 1 (pape 6 of 8)

Reactor trip System Instrsmentation FUNCil0N APPLICABLE MONS REQUIRED ConDiflous tuRVIILLANCE ALLOWABLE NOMihAL l

OR OTHER CHANNELS Rt0UltiMEN15 VALUE 1 RIP W 9PECIFit0 MTP0lNT l

Couplil0ml

17.. keector gp 1,2 2 trains 7,V tR 3.3.1.4 WA hA Dreakers 3 'I, 4 '), $ *)

2 trains C

$R 3.3.1.4 h4 hA I

I I

18. Reector trip 1,2 1 each U,Y st 3.3.1.4 NA h4 Brooker per Rip undervoltese and o u t Trip 3(a),4(e),$(s) 1 each C

st 3.3.1.4 NA h4 Itechenless per RTS 19 Autenstle Trip 1,2 2 tralne 0,Y SR 3 3.1.$

NA NA Leelt 3 'I, 4(e), $ *I 2 trains C

SR 3.3.1.5 WA NA I

I GB (4) With Rits closed and Rod Control System capable of rod withdrawal.

(6) including any reactor trip bypass breakers that are rocked in and closed for bypassing en RTI.

(e) the trip letpoints may be set more conservative then ths noelnel value es necessary in response to plant l

conditione, i

Vogtle Units 1 and 2 3.3-19 Amendment No.

(Unit 1)

Amendment No.

(Unit 2)

+

RTS Instrument 8 tion 3.3.1 febte 3.3.1 1 (pese T of 4)

Reactor Trip system instrumentetton i

mate it overt-eture bette T The Overtemperature Dette f Fmetlen Allowable Value sheit not exceed the Nominst Trip letpoint defined by the l

feltowIre opetten by more then 2.25% of ATP.

Kg -K,"o +,,'o 100.#."##'

I I

t

.f' - KaIP *PI*f (AfD)

J t

a +,,o n o +,,w n +,,o Where:

41 measured loop specific RCs differentlet temperature, degrees F Indicated loop specific RCs differentist et RTP, degrees F 470 lttit lead tes cogensator on sneeured dif ferential temperature 1+fge t, fg time constante utill ed in teed les cooperm. tor for differentist temperatures e, t 8 seconde, i

fa a 3 seconds.

i 1+fas top compensator on measured dif forential temperature fa time constant utillied in tog ccmpeneetor for dif ferentist togerature, s 2 seconde Kg

-fundamentet setpoint, 112% RTP g

Kg modiffer for temperature, 2.24% RTP per degree F g

1*148 1+f e teed tes cogeneetor on dynamic temperature compensation t

f, f, time constante utilf red in lead leg compensator for temperature compensations f4 t 28 4

s 4 seconde seconde, es i

measured loop specific RC$ eversee temperature, degrees F 1

1+tes tog tegensator on meessred eversee temperature to time constant utilf red in leg compensator for everage temperature, = 0 seconds le trulicated loop specific RCS aversee temperature et RTP, $88.4 degrees F K

modifier for pressure, 0.115% RTP per pels 3

l P

measured C8 presourtser pressure, pelg P'

reference pressure, 2235 pelg I

s Laplace transform verlebte, inverse seconds fg(AFD) modifier for Axlet Flum Difference (AFD):

1.

for AFD between 32% and +10%,

0% RTP 2.

for each X AFD is belou 32%, the trip setpoint shall be reduced by 3.25% RTP 3.

for each 1 AFD.ls above +10%, the trip setpoint shall be reduced by 2.7% RTP Vogtle Units 1 and 2 3.3-20 Amendment No.

(Unit 1)

Amendment No.

.(Unit 2)

e RTS Instrumentation 3.3.1 febte 3.3.1 1 (page 8 of 8) keector Trip $rstem Instrumentation hote Pt Dvgicower Dette T The Overpower Dette T Fmetton ALLOWAtt! VALUE shalt not exceed the Nominst Trip Setpoint defined by the following l

egantion ty eore then 2.85% of ATP.

i 1

Ifys) 1 1

100 M (1+t s) 1

-K I

- Ty -f (AIDI s K4-K, II

  • f SI Il ' V 83 I *fel 2

e II

  • Y *I II

8 t

3 Whores 41 measure] toop specific tt$ differentlet temperature, degrees F AT Indicated loop specific RCS differentlet et RTP, degrees F O

l'1,3 teed tog compensator on eessured dif forentist teaterature 1+tge time constante utill ed in lead tes ccmpensator for dif ferentist tenperatures vi t 8 seconds, t,13 i

e s 3 seconds i

las les conpensator on sensured dif ferentist tenperature v3 time constant utillied in tog conpensator for dif ferentlet tenperature, s 2 seconds fundamentet setpoint,109.5% RTP l

K4 K

sodifier for temperature change: 21 RTP per degree F for increasing tenperature, t 0% tiP per l g

degree F for decreeping tenperature

.1?L t+tye rate leg ccmpensator on dynamic tenperature conpensation ey ties constant uttllied in rete +tep conpensator for tenperature conpensation, t 10 seconds i

eensured loop specific RCS everage tenperature, degrees F 1

1+fge leg conpensator on sessured everage tenterature to time constant utilized In tag ccmpensator for everage toeperature, O socords Ke sodifier for temperature: 0.20% RTP per degree F foi i e 18, = 0% RTP for i s 18 l

18 indicated loop specific kCS everage teaterature et RTP, $88.6 degrees F l

s Laplete transfore verlebte, inverse seconds i (AFD) modifier for Aalel flux Difference (AFD), s 0% RTP for ett AFD g

Vogtle Units 1 and 2 3.3-21 Amendment No.

(Unit 1)

Amendment No.

(Unit 2)

ESFAS Instrumentation 3.3.2 febte 3.3.2 1 (page 1 of 7)

Engineered Safety feature Actuetten System Instrumentation -

PUNCil0N APPLICANT ateUlst0 Coupl110Nt tuRVilLLANCE ALLOWASLE IKallhAL -

l INDES OR CHANNELS REGUlstelttil VALUE TalP N 01sta SETPOINI l

BPEClfit0 CouDIT10N3 1.

Safety injectlen e.

16ernmL initletten 1,2,3,4 2

e la 3.3.2.6 NA NA b.

Automatic 1,2,3,4 2

C sa 3.3.2.2 NA NA Actuntlen logic sa 3.3.2.3-and Actuation M 3.3.2.5 Relays c.

Centelreent 1,2,3 O

ta 3.3.2.1 s 4.4 pels 3.8 pois l

Pressure - Nigh 1 ta 3.3.2.4 la 3.3.2.7 -

sa 3.3.2.8

~ d.

Prosaurlier 1,2,3(*)

4 0

la 3.3.2.1 t 1856 pels 1870 pois l

Pressure Lew Sa 3.3.2.4 la 3.3.2.7 sa 3.3.2.8 e,

steen Line 1,2,3(a) 3 per 0

SR 3.3.2.1 1 570(b)

$g5(b) p.g, l

Pressure. Lou steen la 3.3.2.6 pets line sa 3.3.2.7 la 3.3.2.8 (continued)

(a) Above the P.11 (Prosouriser Pressure) interts.V

-(b) fles constante used in the toed /tes controller are t, t 50 seconde and t, s 5 seconk.

(l) The trip letpointe may be set more conservative then the naminal value as necessary in response to plant conditlene.

Vogtle Units'l and 2 3.3-30 Amendment ~No.

(Unit 1)

Amendment No.

(Unit 2)

ESFAS Instrumentation I

3.3.2 inble 3.3.21 (page 2 of 7)

Engineered $sfety f eature Actuation System Instrumentation FUNCil0N APPLICABLE R10Ulkt0 CONDlil0NS SURVilLLANCE ALLOWABLE NOMINAL l

MODES OR CHAhWELS REQUIREMthil VALUE TRIP N OTHER StiPolNI l

$PEClfl[D CONDifl0NS 2.

Contalrwent Spray e.

Maruel Initiation 1,2,3,4 2

e st 3.3.2.6 NA NA b.

Automatic 1,2,3,4 2

C

$t 3.3.2.2 NA NA Actuation Logic SR 3.3.2.3 and Actuation st 3.3.2.5 Relays c.

Cont eirment Pressure H i gh - 3 1,2,3 4

E

$R 3.3.2.1 s 22.6 pels 21.5 psig l

SR 3.3.2.4

$R 3.3.2.7 SR 3.3.2.8 (continued)

(1) The Irlp Setpointe may be set more conservative then the nominal value as necessary in response to plant l

conditione.

I i

Vogtle Units 1 and 2 3.3-31 Amendment No.

(Unit 1)

Amendment No.

(Unit 2)

ESFAS Instrumentation 3.3.2 febte h $.2 1 (pose 3 cf 7)

Engineered Safety Feature Actuetten System instroentation funcitou APPLicasLE hieUIRED ConDiflows tu VtlLLAhCE ALLOWABLE NOMihAL l

NODil DA CHAWWELS tieUIREMENTS VAtut IRIP OTME

$tiPolNI l

l N

r SPECIFitD CouDifl0bl 3.

Phe6e A Centalement lootetten (a) menuel initiation 1,2,3,4 2

8 64 3.3.2.6 NA NA (b) Automatic 1,2,3,4 2 tralne C

sa 3.3.2.2 NA NA Actuellen Logic la 3.3.2.3 and Actuetten sa 3.3.2.5 Releye (c) Safety injection Ref er to function 1 (Safety injection) for all Initiation fum tione and requiremente.

4.

Steam Line Isolation e.

Manuel Initletion 1,2I83,3I8) 2 F

st 3.3.2.6 NA NA I

I 1,2 'I 3 'I 2

G sa 3.3.2.2 NA NA b.

Automatic Actuellen Loste la 3.3.2.3 and Actuetten sa 3.3.2.5 Releys (continued)

(c) tacept when ore main steen lactation velve and associated bypass isolation volve per steen line is closed.

(I) The Trip Setpointo may be set more conservative then tie nominal value es necessary in response to plant conditions.

Vogtle Units 1 and 2 3.3 Amendment No.

(Unit 1)

Amendment No.

(Unit 2) l

i ESFAS Instrumentation 3.3.2 febte 3.3.2 1 (pose 4 of F)

Engitwered Safety feature Actuotton system Instrumentation FUNCTION APPLICABLE RfeUlktD CONDITIONS SURytlLLANCE ALLOW 48tt h0MINAL l

MODil OR CNAthtLS RiOUIREMENTS VALUE TRIP N Ofutt SETP0lNT l

SPECIFIED CONDITIONS I

4.

tteen Line lootetten (conttrwed) c.

ContcInsent 1,2(8) 3 0

SR 3.3.2.1 s 15.4 pels 14.5 psig

-l la 3.3.2.4 Pressure - Nigh 2 3gg) st 3.3.2.7 SR 3.3.2.8 d.

steen Line Pr essure (1) Low 1,2(*),

3 per D

$R 3.3.2.1 t 570 (b)

$gg (b) l steen SR 3.3.2.4 pela psig 3(e)(c)

IIne SR 3.3.2.T SR 3.3.2.8 (2) seestive 3(d)(8) 3 per D

st 3.3.2.1 s 125 (*)

100 (')

Rete - NIsh ateen st 3.3.2.6 pel/see pel/see tine SR 3.3.2.7 SR 3.3.2.8 (continued)

(a) Above the P.11 (Pressurlaer Pressure) Interlock.

(b) flee constants usec in the teed /tes controlter are t, t 50 seconds and t, s 5 seconds.

(c) Encept then one main steem isolation valve end associated bypass isolation volve per steem line is closed.

(d) Below the P 11-(Pressuriter Pressure) interlock.

(e) Time constant utill ed in the rete /tes controtter is t 50 seconde.

(1) The Trip letpoints may be set more conservative then the nominst value as necessary in response to plant l

conditions.

Vogt!? Units 1 and 2 3.3-33 Amendment No.

(Unit 1)

Amendment No.

(Unit 2)

ESFAS Instrumentation 3.3.2 table 3.3.2 1 (page 5 of 7)

Engineered safety f eature Actuetten system Instrtamentation FUNCil0N APPLICABLE REQUIRID CONDITIOWs

$URVElLLANCE Alt 0WABLE NOMINAL l

MODis OR CHANNELS REQUIREMtWfs VALUE TRIP

$[1PolWi "

l i

Ot h(R SPECif tt0 COND1110Ns 5.

turbine irlp and f eedwater isoletten III 2 tralne N

st 3.3.2.2 kA WA e.

Automatic 1,2 st 3.3.2.3 Actuation Logic sa 3.3.2.5 and Actuation Retore b.

Low RCS f avs 1,2(II I

st 3.3.2.1 t 561.5 *f

$64 'F l

$R 3.3.2.4 st 3.3.2.7 Coincident with Refer to function 8e for ett P.4 recpirements.

Reactor trip, P.4 1,2(II 4 per SG I

st 3.3.2.1 s 87.9%

86.0%

l c.

50 Water SR 3.3.2.4 Level - Niph Nigh SR 3.3.2.7 (P.14) st 3.3.2.8 Refer to fmetton 1 (se.'ety injection) f or ett inittetton d.

safety injection funetione and requiremente.

6.

AuxlLlery f eedwater a.

Autreat ic 1,2,3 2 tralne G

st 3.3.2.2 NA NA SR 3.3.2.3 Actuation Logic st 3.3.2.5 and Acteation Retsya b,

so Water 1,2,3 4 per SG D

st 3.3.2.1 t 35.9%

37.8%

l

$R 3.3.2.4 tevet Low Low SR 3.3.2.7 st 3.3.2.8 (continued)

Estept when one MFIV or MFRV, and its associated bypass valve per feedwater line le closed and deactivated (f) or laoleted by a closed manuel volve.

The Irlp setpoints may be set more conservative than the nominal veLue se necessary in response to plant (t) conditione.

Vogtle Units 1 and 2 3.3-34 Amendment No.

(Unit 1)

Amenciment No.

(Unit 2)

ESFAS Instrumentation 3.3.2 Table 3.3.2*1 (page 6 of 2)

Engineered $4fety f eature Actuation System Instrumentation FUNCil0N APPLICABLE REQUIRED CONDIT10Nl SURVEILLANCE ALL0aABLE WOMINAL l

MODES OR CHAWWELS REQUIREM Wil VALUE TRIP SETPolNT'"

l OTHER SPEClflED CONDITIONS 6.

Aunittery Feochester (cont trued) c.

Safety injection Refer to Fmetion 1 (sofety injection) for att initiation functions and requirements.

d.

Trip of att Main 1,2(8) 1 per J

st 3.3.2.6 NA NA feedwater Pupps puip 2.

Feel.outomatic Switchover to Contaltunent Susp a.

Autcastic 1,2,3,4(h) 2 C

SR 3.3.2.2 NA NA Actuation Logic SR 3.3.2.3 and Actuation SR 3.3.2.5 meteys b.

Refueling Water 1,2,3,4 4

K

$R 3.3.2.1 t 264.9 in.

275.3 in.

l SR 3.3.2.4 Storage lenk (RW51) Level - Low SR 3.3.2.T

$R 3.3.2.8 Low Coincident with Refer to Function 1 (lefety injection) for all initiation safetyinjection functions and requirements.

(continued)

(g) When the Main feedwater System is operating to supply tho SCs.

(h) In Mabt 4, only 1 train is required to be OPERABLE to support semi automatic switchover for the RHR pufp that is regJired to be OPERABLE in accordance with specification 3.5.3, Eccs shutdcun.

(1) the Trip Satpoints may be set more conservative than the nominal vetue as necessary in response to plant l

I ronditions.

Vogtle Units 1 and 2 3.3-35 Amendment No.

(Unit 1)

Amendment No.

(Unit 2)

9 f

ESFAS Instrumentation 3.3.2 feble 3.3.2 1 (page 7 of 7)

Engineered Safety f eature Actuetton System Instrumentation fubC110N APPLICABLE tt0VittD CON 0lil043 tutVEILLANCE ALLOWABLE NOMik t.

l 140 DES OR CHAhWELS RtoultfMthil VALUC itlP 01Mt StiPolki"'

l

$PECiftt0 CON 0lfl0NS

8. EstAs interlocks
a. Reactor Trlp P 4 1,2,3 1 per f

SR 3.3.2.9 kA NA train, 2 trains

b. Presourtser Prt$wre, 1,2,3 3

L st 3.3.2.4 s 2010 ps:s 2000 pels l

Pall

$t 3.3.2.7 (1) The trip Setpoints my be set more conssrvettve than the nom!nal value as necessary in re:ponse to plant l

I conditions.

Vogtle Units 1 and 2 3.3-36 Amendment No.

(Unit 1)

Amendment No.

(Unit 2)

RTS Instrumentation B 3.3.1 BASES BACKGROUND Reactor Trio Switchaear (continued) trip mechanism is sufficient by itself, thus providing a diverse trip mechanism.

The decision logic matrix Functions are described in the functional diagrams included in Reference-1.

In addition to the reactor trip or ESF, these diagrams also describe the various " permissive interlocks" that are associated with unit conditions. Each train has a built in testing device that can automatically test the decision logic matrix Functions and the actuation devices while the unit is at power. When any one train is taken out of service for testing, the other train is capable of providing unit monitoring and protection until the testing has been completed. The testing device is semiautomatic to minimize testing time.

APPLICABLE The RTS functions to maintain the SLs during all A00s and SAFETY ANALYSES, mitigates the consequences of DBAs in all MODES in LCO, and LCO, and which the RTBs are closed.

APPLICABILITY Each of the analyzed accidents and transients can be detected by one or more RTS Functions. The accident analysis described in Reference 3 takes credit for most DTS trip Functions. RTS trip Functions not specifically credited in the accident analysis are qualitatively credited in the safety analysis and the NRC staff approved licensing basis for the unit. These RTS trip Functions may provide protection for conoittons that do not require dynamic transient analysis to demonstrate Function performance.

They may also serve as backups to RTS trip Functions that were credited in the accident analysis.

The LCO requires all instrumantation performing an RTS Function, listed in Table 3.3.1-1 in the accompanying LCO, to be OPERABLE.

Failure of any instrument renders the affected channel (s) inoperable and reduces the reliability of tha affected Functions. The Nominal Trip Setpoint column is modified by a Note that allows the Trip Setpoint to be set more conservatively than the nominal value. The conservative direction is established by the direction of (continued)

Vogtle Units 1 and 2 B 3.3-7 Revision No.

4 RTS Instrumentation B 3.3.1 BASES APPLICABLE the inequality applied to the Allowable Value.

For example, SAFETY ANALYSES, the Power Range Neutron Flux High trip setpoint may be set LCO, and to a value less than 109% during initial startup following a APPLICABILITY refueling outage until a sufficiently high reactor power is (continued) achieved so that the power range channels may be calibrated.

in addition, certain Required Actions may require that the Power Range Neutron Flux High trip setpnints be reduced based on plant conditions.

The LCO generally requires OPERABILITY of four or three channels in each instrumentation Fs;;ction, two channels of Manual Reactor Trip in each logic Function, and two trains in each Automatic Trip Logic Function.

Four OPERABLE (continued)

Vogtle Units 1 and 2 B 3.3-7a Revision No,

_m.

4e-M*

RTS Instrumentation:

=#

B 3.3.1-BASES; a

1 1

This page intentionally left blank.

3 n

4 (covitinued)

D Vogtle-Units 1 and 2; B 3.3-7b Revis',on No.

0-h

+

e

+,

l I

_RTS Instrumentation B-3.3.1 BASES APPLICABLE 6.

Overtemoerature AT (continued)

SAFETY ANALYSES, LCO, and This results in a two-out-of-four trip logic.

Section APPLICABILITY 7.2.2.3 of Reference I discusses control and protection system interactions for this function. Note that this Function also provides a signal to generate a turbine runback prior to reaching the Trip Setpoint.

A turbine runback will reduce turbine power and-rea: tor power. A reduction in power will_ normally alleviate the Overtemperature AT condition and may prevent a reactor trip.

Delta-T, as used in the overtemperature and overpower AT trips, represents the 100% RTP value as measured for each loop. This normalizes each loop's AT trips to the actual operating conditions existing at the time of measurement, thus forcing the trip to reflect the equivalent full power conditions as assumed in the accident analyses. These differences in RCS loop AT can be due to several factors, e.g., differences in RCS loop flows and slightly asymmetric power distributions between quadrants. While RCS loop flows are not expected to change with cycle life, radial power redistribution between quadrants may occur, resulting in small changes in loop specific AT values.

Therefore, loop specific AT, values are measured as needed to ensure they represent actual core conditions.

The values for K,

K,, K, T', and P' may be treated as i

3 nominal values for the purpose of performing a CHANNEL-CALIBRATION. The direction of conservatism for these values is as follows:

K, f Identified Value K,2 Identified Value K,2 Identified Value T' s Identified-Value

- P' 2-Identified Value Note that K is the principle setpoint gain, since it 3

defines the function offset.

K,. and K define the 3

temperature gain and pressure gain respectively.

The values for T' and P' are key reference parameters corresponding directly to plant safety analyses (continued)

Vogtle Units-1 and 2 B 3.3-16 Revision No.

RTS Instrumentation B 3.3.1 BASES APPLICABLE 6.

Overtemoerature AT (continued)

SAFETY ANALYSES, LCO, and initial conditions assumptions for the Overtemperature APPLICABILITY AT Function. The as left settings for these parameters should be as close as possible or conservative with respect to the identified values.

In order to ensure that the Overtemperature AT setpoint is consistant with the assumptions of the safety analyses, it is necessary to verify during the CHANNEL OPERATIONAL TEST, that the Overtemperature AT setpoint is within the appropriate calibration tolerances for condit:;ns where the temperature input is equal to T' and the pressure input is equal to P',

and that appropriate penalties are generated to reduce I

the setpoint for a temperature input greater than T',

r and again for a pressure input less than P' (Ref. 9).

l The LCO requires all four channels of the Overtemperature AT trip Function to be OPERABLE. Note that the Overtemperature AT Function receives input from channels shared with other RTS Functions.

l Failures that affect multiple Functions requira entry l

l l

L (continued)

Vogtle Units 1 and.2 B 3.3-16a Revision No.

RTS Instrumentation B 3.3.1 BASES APPLICABLE 6.

Overtemoerature AT -(continued)-

SAFETY ANALYSES.-

- LCO, and into the Conditions applicable to all affected APPLICABILITY Functions.

In MODE 1 or 2, the Overtemperature AT trip must be OPERABLE to prevent DNB.

In MODE 3, 4, 5, or 6, this trip Function ~does not have to be OPERABLE because the reactor is not operating and there is insufficient heat production to be concerned about DNB.

4 (continued)

Vogtle Units 1 and 2-B 3.3-16b Revision No.

---a ---

RTS. Instrumentation j

B 3.3.11

' BASES-APPLICABLE 7.

Overnower AT

- SAFETY ANALYSES,.

LCO, and-The Overpower AT trip Function (TDI-0411B,.TDI-04218, APPLICABILITY =

TDI-04318. TDI-0441B, TDI-0411A, TDI-0421A, TDI-0431A.

1

' (continued)

TDI-0441A) ensures that protection is provided to ensure the integrity of the fuel-(i.e., no fuel pellet melting and.less than 1% cladding strainL under'all possible overpower. conditions. This trip Function also limits the required range.'of the Overtemperature -

AT trip Function and provides a backup to the Power.

Range Neutron Flux - High Setpoint trip.

The Overpower

-AT trip Function ensures that the allowable heat generation rate (kW/ft) of the fuel is' not exceeded.

it uses the AT of.each loop-as a measure of reactor power with a setpoint that is automatically varied with the following parameters:

-reactor coolant average temperature - the Trip Setpoir.t is varied to correct for changes in coolant density and specific heat capacity with changes-in coolant temperature; and 1

rate of change of reactor coolant average temperature -including dynamic compensation for RTD response time delays.

The Overpower AT trip Function is calculated for each loop as per Note 2 of Table 3.3.1-1.- Trip occurs if -

Overpower AT is indicated in two loops. Since the temperature signals are used for other control functions, the actuation logic must be able to withstand an input failure to the control system, which may then require the protection function actuation and a single failure in the remaining channels providing the protection function actuation.

This results in a-two-out-of-four trip logic.

Section.

7.2.2.3 of Reference 1 discusses control and

- protection' system interactions for this function.

Note that this Function also provides a signal to-

- generate a turbine-runback prior to reaching the Allowable Value. A turbine runback will-reduce turbine power and reactor power.

A-reduction in_ power

'wil1 normally alleviate the Overpower AT condition:and may prevent a reactor trip.

(continued)

Vogtle Units 1 and 2 B 3.3-17 Revision No. O.

y e-

-r-1P-e r

im

-k m

me--

w9.

u--*-

-t w

r---

g C

e-9-m-e e*=

e i-me

---t-

--p "vf

RTS Instrumentatien B 3.3.1 BASES APPLICABLE 7.

Overoower AT (continued)

SAFETY ANALYSES, LCO, and Delta-T., as used in the overtemperature and overpower APPLICABILITY AT trips, represents the 100% RTP value as measured for each loop. This normalizes each loop's AT trips to the actual operating conditions existing at the time of measurement, thus forcing the trip to reflect the equivalent full power conditions as assumed in the accident analyses. These differences in RCS loop AT can be due to several factors, e.g., difference in RCS loop flows and slightly asymmetric power distributions between quadrants. While RCS loop flows are not expected to change with cycle life, radial power redistribution between quadrants may occur, resulting in small changes in loop specific AT values.

Therefore, loop specific AT values are measured as needed to ensure they represent actual core conditions.

The values for K., K., K., and T" may be treated as nominal values for the purpose of performing a CHANNEL CAllBRATION.

The direction of conservatism for these values is as follows:

K, s Identified Value K.1 Identified Value K.1 identified Value T" s Identified Value Note that for K, in the case of decreasing temperature, the gain setting must be 2 0 to prevent generating setpoint margin on decreasing temperature rates.

Similarly, the setting for K, is required to be equal to 0 for conditions where T s T".

The value for T" is a key reference parameter corresponding directly to plant safety analyses initial conditions assumptions for the Overpower AT Function. The as left settings for these parameters should be as close as possible or conservative with respect to the identified values, in order to ensure that the Overpower AT setpoint is consistent with the assumptions of the safety analyses, it is necessary to verify during the CHANNEL OPERATIONAL TEST, that the Overpower AT setpoint is within the appropriate calibration tolerances for conditions where the temperature input is equal to T",

and that the appropriate penalties are generated to (continued)

Vogtle Units 1 and 2 B 3.3-18 Revision No.

RTS Instrumentation B 3.3.1 I

BASES APPLICABLE 7.

Overoower AT (continued)

SAFETY ANALYSES, LCO, and reduce the cet;>oint for a temperature input greater APPLICABILITY than T" (Ref. 9).

The LC0 requires four channels of the Overpower AT trip Function to be OPERABLE.

Note that the Overpower AT trip. i.. tion receives input from channels shared with other RTS Functions.

Failures that affect multiple Functions require entry into the Conditions applicable to all affected Functions.

In MODE 1 or 2, the Overpower AT trip Function must be OPERABLE. These are the only times that enough heat is generated in the fuel to be concerned about the heat generation rates and overheating of the fuel.

In MODE 3, 4, 5, or 6, this trip Function does not have to be OPERABLE because the reactor is not operating and there is insufficient heat production to be concerned about fuel overheating and fuel damage.

8.

Pressurizer Pressure The same sensors (PI-0455A, B, & C, PI-0456, PI-0456A, PI-0457, PI-0457A, PI-0458, PI-0458A) provide input to the Pressurizer Pressure - High and - Low trips and the Overtemperature AT trip.

Since the Pressurizer Pressure channels are also used to provide input to the Pressurizer Pressure Control System, the actuation logic must be able to withstand an input failure to (continued)

Vogtle Units 1 and 2 B 3.3-18a Revision No.

I RTS Instrumentation:

B 3.3.1:1 i

l BASES-r t

. (This page intentionally left blank.)

1 i

i E.

i (continued)._

Vogtle' Units 1 and 2 B 3.3-18b-Revision No.

4 a

- ~ - -

m 1

m..

RTS Instrumentation 4

B 3.3.1 BASES REFERENCES 2.

FSAR, Chapter 6.

(continued) 3.-

.FSAR, Chapter 15.

4.

IEEE-279-1971.

5.

10 CFR 50.49.

6.

WCAP-ll269, Westinghouse Setpoint Methodology for Protection Systems.

7.

-WCAP-10271-P-A, Supplement 2, Rev. 1, June 1990.

8.

FSAR, Chapter 16.

9.

Westinghouse Letter GP-16696, November 5, 1997.

l t

l i

I.

I l

L i-

.Vogtle Units.1 and 2 -

B 3.3-60 Revision No.

~

l

+ - -

O ESFAS Instrumentation B 3.3.2 BASES BACKGROUND Seauencer Output Relty.1 (continued) sequencer and are part of the control circuitry of these ESF loads. There are two independent trains of sequencers and each is powered by the respective train of 120-Vac ESF electrical )ower supply. The power supply fo the output relays is tie secuencer power supply.

The applicable output relays are testec in the slave relay testing procedures, and in particular, in conjunction with the specific slave relay also required to actuate to energize the applicable ESF load.

APPLICABLE Each of the analyzed accidents can be detected by one or SAFETY ANALYSES, more ESFAS Functions. One of the ESFAS Functions is the LCO, AND primary actuation signal for that accident. An ESFAS APPLICABILITY Function may be the primary actuation signal for more than one type of accident. An ESFAS Function may also be a secondary, or backup, actuation signal for one or more other accidents.

For example, Pressurizer Pressure - Low is a primary actuation signal for small loss of coolant accidents (LOCAs) and a backup actuation signal for steam line breaks (SLBs) outside containment.

Functions such as manual iaitiation, not specifically credited in the accident safety analysis, are qualitatively credited in the safety analysis and the NRC staff approved licensing basis for the unit.

These Functions may provide protection for conditions that do not require dynamic transient analysis to demonstrate Function performance.

These Functions may also serve as backups to functions that were credited in the accident analysis (Ref. 3).

The LCO requires all instrumentation performing an ESFAS Function to be OPERABLE.

Failure of any instrument renders the affected channel (s) inoperable and reduces the reliability of the affected Functions. The Nominal Trip Setpoint column of Table 3.3.2-1 is modified by a note that allows the Trip Setpoints to be set more conservatively than the nominal value. The conservative direction is established by the direction of the inequality applied to the Allowable Value.

(continued)

Vogtle Units 1 and 2 B 3.3-66 Revision No.

o ESFAS Instrumentation o

B 3.3.2 BASES

' APPLICABLE The LCO generally requires OPERABILITY of four or three SAFETY ANALYSIS, channels in each instrumentation function and two channels LCO, AND in each logic and manual initiation function. - The APPLICABILITY two-out-of-three and the two-out-of-four configurations (continued) allow one channel.to be tripped durir>g maintenance or testing without causing an ESFAS initiation.

If :n-instrument channel is equipped with installed bypass capability, such that no jumpers or lifted leads are (continued)

Vogtle Units 1 and 2-B 3.3-66a Revision No.

m.

- i#'

ESFAS Instrumentation B 3.3.2 BASES-i 4

4 4

(This page intentionally left blank.)

e.

t 5

m F

t (continued)

Vogtle Units 1.and 2:

B 3.3-66b

. Revision No.

t t

v

-c v-

.,--+e

-w--..

ESFAS Instrumentation B 3.3.2 l

BASES SURVEILLANCE SR 3.3.2.8 (continued)

REQUIREMENTS verification of these devices every 18 months.

The 18 month Frequency is consistent with the typical refueling cycle and is based on unit operating experience, which shows that random failures of instrumentation components causing serious response time degradation, but not channel failure, are infrequent occurrences.

This SR is modified by a Note that clarifies that the turbine driven AFW pum) is tested within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> after reaching 900 psig in tie SGs.

SR 3.3.2.9 SR 3.3.2.9 is the performance of a TAD 0T as described in SR 3.3.2.6 for the P-4 Reactor Trip Interlock, and the Frequency is once per 18 months. This Frequency is based on operating experience.

The SR is modified by a note that

{

excludes verification of setpoints during the TA00T. The function tested has no associated setpoint.

REFERENCES 1.

FSAR, Chapter 6.

2.

FSAR, Chapter 7.

3.

FSAR, Chapter 15.

4.

IEEE-279-1971.

5.

10 CFR 50.49.

6.

WCAP-ll269, Westinghouse Setpoint Methodology for Protection Systems.

7.

WCAP-10271-P-A, Supplement 2, Rev.1, June 1990.

8.

FSAS, Chapter 16.

9.

Westinghouse Letter GP-16696, November 5, 1997.

l Vogtle Units 1 and 2 B 3.3-109 Revision No.

_