ML23115A082: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
Line 19: Line 19:


=Text=
=Text=
{{#Wiki_filter:Comparison Table of SAR for Type JRC-80Y-20T before                                                        after          note SAFETY ANALYSIS REPORT                                    SAFETY ANALYSIS REPORT FOR                                                          FOR JRC-80Y-20T                                                    JRC-80Y-20T JAPAN ATOMIC ENERGY AGENCY                                  JAPAN ATOMIC ENERGY AGENCY
{{#Wiki_filter:}}
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                                                                                    after                                                            note CONTENTS                                                                                                                CONTENTS Chapter I : Package description                                                                                          Chapter I : Package description A. Introduction ********************************************************************************** (I)-1                A. Introduction ********************************************************************************** (I)-1 B. Type of package ***************************************************************************** (I)-2                  B. Type of nuclear fuel package *********************************************************** (I)-2          Refinement of C. Package description-packaging ******************************************************** (I)-5                          C. Package description-packaging ******************************************************** (I)-5            description D. Contents of package *********************************************************************** (I)-41                    D. Contents of package *********************************************************************** (I)-41 Chapter II : Safety analyses **************************************************************** (II)-1                    Chapter II : Safety analyses **************************************************************** (II)-1 A. Structural analysis ************************************************************************* (II)-A-1                A. Structural analysis ************************************************************************ (II)-A-1 A.1 Structural design*********************************************************************** (II)-A-1                    A.1 Structural design ********************************************************************** (II)-A-1 A.1.1 General description ************************************************************** (II)-A-1                        A.1.1 General description************************************************************** (II)-A-1 A.1.2 Design ******************************************************************************** (II)-A-2                  A.1.2 Design ******************************************************************************* (II)-A-2 A.2 Weight and center of gravity ******************************************************* (II)-A-28                      A.2 Weight and center of gravity ******************************************************* (II)-A-27        Changes of page A.3 Mechanical property of material ************************************************** (II)-A-29                        A.3 Mechanical property of material************************************************** (II)-A-29          number A.4 Standard for package ***************************************************************** (II)-A-37                    A.4 Standard for nuclear fuel package *********************************************** (II)-A-37          Refinement of A.4.1 Chemical and electrical reactions ******************************************* (II)-A-37                            A.4.1 Chemical and electrical reactions ******************************************* (II)-A-37          description A.4.2 Low-temperature strength **************************************************** (II)-A-37                            A.4.2 Low-temperature strength **************************************************** (II)-A-37          Changes of page A.4.3 Containment system ************************************************************ (II)-A-50                          A.4.3 Containment system ************************************************************ (II)-A-51        number A.4.4 Lifting device ********************************************************************** (II)-A-50                    A.4.4 Lifting device ********************************************************************** (II)-A-51  Same as above A.4.5 Tie-down device (influence of tie-down device upon package) ****** (II)-A-87                                      A.4.5 Tie-down device (influence of tie-down device upon package) ***** (II)-A-89                      Same as above A.4.6 Pressure ***************************************************************************** (II)-A-96                  A.4.6 Pressure ***************************************************************************** (II)-A-98 Same as above A.4.7 Vibration **************************************************************************** (II)-A-97                  A.4.7 Vibration **************************************************************************** (II)-A-99 Same as above A.5 Normal conditions of transport **************************************************** (II)-A-99                        A.5 Normal conditions of transport *************************************************** (II)-A-102        Same as above A.5.1 Thermal test *********************************************************************** (II)-A-99                    A.5.1 Thermal test *********************************************************************** (II)-A-102  Same as above A.5.1.1 Summary of pressure and temperature ***************************** (II)-A-99                                      A.5.1.1 Summary of pressure and temperature ***************************** (II)-A-102                Same as above A.5.1.2 Thermal expansion ********************************************************* (II)-A-103                          A.5.1.2 Thermal expansion********************************************************* (II)-A-106        Same as above A.5.1.3 Stress calculation *********************************************************** (II)-A-115                        A.5.1.3 Stress calculation *********************************************************** (II)-A-119    Same as above A.5.1.4 Comparison of allowable stress***************************************** (II)-A-116                              A.5.1.4 Comparison of allowable stress **************************************** (II)-A-120          Same as above A.5.2 Water spray ************************************************************************ (II)-A-122                    A.5.2 Water spray ************************************************************************ (II)-A-127  Same as above A.5.3 Free drop **************************************************************************** (II)-A-123                  A.5.3 Free drop *************************************************************************** (II)-A-128 Same as above A.5.4 Stacking test *********************************************************************** (II)-A-123                  A.5.4 Stacking test*********************************************************************** (II)-A-128  Same as above A.5.5 Penetration ************************************************************************* (II)-A-132                  A.5.5 Penetration ************************************************************************ (II)-A-137  Same as above A.5.6 Drop of square and edge******************************************************** (II)-A-133                        A.5.6 Drop of square and edge ******************************************************* (II)-A-138      Same as above A.5.7 Summary and evaluation of the results *********************************** (II)-A-133                                A.5.7 Summary and evaluation of the results ********************************** (II)-A-138              Same as above A.6 Accident conditions of transport*************************************************** (II)-A-136                      A.6 Accident conditions of transport ************************************************** (II)-A-141        Same as above A.6.1 Mechanical test  drop test I (9 m drop) ********************************** (II)-A-137                            A.6.1 Mechanical test  drop test I (9 m drop) ********************************* (II)-A-142            Same as above A.6.1.1 Vertical drop ****************************************************************** (II)-A-171                      A.6.1.1 Vertical drop ***************************************************************** (II)-A-176  Same as above A.6.1.2 Horizontal drop ************************************************************** (II)-A-214                        A.6.1.2 Horizontal drop ************************************************************* (II)-A-208    Same as above A.6.1.3 Corner drop ******************************************************************* (II)-A-263                      A.6.1.3 Corner drop******************************************************************* (II)-A-249    Same as above A.6.1.4 Oblique drop ****************************************************************** (II)-A-267                      A.6.1.4 Oblique drop ***************************************************************** (II)-A-253    Same as above A.6.1.5 Summary of the results *************************************************** (II)-A-268                            A.6.1.5 Summary of the results*************************************************** (II)-A-254        Same as above
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                                                                                    after                                                              note A.6.2 Strength test  drop test II (1m drop) ************************************* (II)-A-269                            A.6.2 Strength test  drop test II (1m drop)************************************* (II)-A-255              Same as above A.6.2.1 Summary of the result **************************************************** (II)-A-279                            A.6.2.1 Summary of the result **************************************************** (II)-A-265          Same as above A.6.3 Thermal test *********************************************************************** (II)-A-280                    A.6.3 Thermal test *********************************************************************** (II)-A-266    Same as above A.6.3.1 Summary of temperature and pressure****************************** (II)-A-280                                    A.6.3.1 Summary of temperature and pressure ***************************** (II)-A-266                    Same as above A.6.3.2 Thermal expansion ********************************************************* (II)-A-280                          A.6.3.2 Thermal expansion********************************************************* (II)-A-266          Same as above A.6.3.3 Comparison of allowable stress***************************************** (II)-A-286                              A.6.3.3 Comparison of allowable stress **************************************** (II)-A-272              Same as above A.6.4 Water immersion ***************************************************************** (II)-A-301                        A.6.4 Water immersion ***************************************************************** (II)-A-287        Same as above A.6.5 Summary and evaluation of the results *********************************** (II)-A-302                                A.6.5 Summary and evaluation of the results ********************************** (II)-A-288                Same as above A.7 Enhanced water immersion test ************************************************** (II)-A-322                          A.7 Enhanced water immersion test ************************************************** (II)-A-308              Same as above A.8 Radioactive contents ****************************************************************** (II)-A-331                  A.8 Radioactive contents****************************************************************** (II)-A-317        Same as above A.9 Package containing fissile material ********************************************** (II)-A-333                        A.9 Package containing fissile material********************************************** (II)-A-319            Same as above A.9.1 Package containing fissile material normal conditions of                                                            A.9.1 Package containing fissile material normal conditions of                                            Same as above transport ************************************************************************************ (II)-A-333                transport ************************************************************************************ (II)-A-319 A.9.1.1 Water spray ****************************************************************** (II)-A-319      Refinement of A.9.1.2 0.3 m drop test ************************************************************* (II)-A-319        description A.9.1.3 Stacking test and 6 kg bar penetration****************************** (II)-A-319 A.9.2 Package containing fissile material accident conditions of                                                          A.9.2 Package containing fissile material accident conditions of transport ************************************************************************************ (II)-A-335                transport ************************************************************************************ (II)-A-321 Refinement of A. 9.2.1 Normal test conditions *************************************************** (II)-A-321          description A. 9.2.2 0.9 m drop test************************************************************** (II)-A-321 A. 9.2.3 1 m drop test **************************************************************** (II)-A-324 A. 9.2.4 Thermal test***************************************************************** (II)-A-324 A. 9.2.5 0.9 m immersion *********************************************************** (II)-A-324 A. 9.2.6 Summary of damage state of nuclear fuel package ************* (II)-A-325 A.10 Appendix ******************************************************************************** (II)-A-340                A.10 Appendix ******************************************************************************** (II)-A-326    Changes of page A.10.1 Appendix-1                                                                                                        A.10.1 Appendix-1                                                                                        number Mechanical property of material used for drop impact analysis *********** (II)--341                                      Mechanical property of material used for drop impact analysis ********** (II)--327                      Same as above A.10.2 Appendix-2                                                                                                        A.10.2 Appendix-2                                                                                        Same as above Drop impact analysis of fins using dynamic analysis code LS-DYNA                                                          Drop impact analysis of fins using dynamic analysis code LS-DYNA                                          Same as above and comparison with impact tests ************************************************** (II)--345                            and comparison with impact tests ************************************************** (II)--331            Same as above A.10.3 Appendix-3                                                                                                        A.10.3 Appendix-3                                                                                        Same as above Strength analysis of lifting instrument ******************************************* (II)--361                            Strength analysis of lifting instrument ******************************************* (II)--347            Same as above A.10.4 Appendix-4                                                                                                        A.10.4 Appendix-4 Compatibility with the ASME Code under design conditions ************** (II)--362                                        Compatibility with the ASME Code under design conditions ************** (II)--348                        Same as above A.10.5 Appendix-5                                                                                                        A.10.5 Appendix-5 Strength of the packaging when the external pressure equivalent                                                          Strength of the packaging when the external pressure equivalent to the water depth of 5,000 m acts ************************************************** (II)--378                          to the water depth of 5,000 m acts************************************************** (II)--364          Same as above A.10.6 Appendix-6                                                                                                        A.10.6 Appendix-6 References ********************************************************************************** (II)--384                  References ********************************************************************************** (II)--370  Same as above B. Thermal analysis ********************************************************************* (II)-B-1                        B. Thermal analysis ********************************************************************* (II)-B-1        Same as above Omission                                                                                                              Omission C. Containment analysis ********************************************************************* (II)-C-1                  C. Containment analysis********************************************************************* (II)-C-1
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                                                                                  after                                                              note Omission                                                                                                              Omission D. Shielding analysis ************************************************************************** (II)-D-1              D. Shielding analysis ************************************************************************* (II)-D-1 D.1 Summary ********************************************************************************* (II)-D-1                  D.1 Summary********************************************************************************* (II)-D-1 D.2 Source specifications ****************************************************************** (II)-D-3                  D.2 Source specifications ***************************************************************** (II)-D-3 D.2.1 Gamma source ******************************************************************** (II)-D-8                        D.2.1 Gamma source ******************************************************************** (II)-D-7      Changes of page D.2.2 Neutron source ******************************************************************** (II)-D-10                      D.2.2 Neutron source ******************************************************************* (II)-D-9    number D.3 Model specifications ******************************************************************* (II)-D-13                  D.3 Model specifications ****************************************************************** (II)-D-12    Same as above D.3.1 Analytical model ****************************************************************** (II)-D-13                      D.3.1 Analytical model ***************************************************************** (II)-D-12    Same as above D.3.2 Atomic number density in each region of                                                                            D.3.2 Atomic number density in each region of shielding analytical model ************************************************************* (II)-D-20                      shielding analytical model ************************************************************ (II)-D-19    Same as above D.4 Evaluation of shielding ************************************************************** (II)-D-23                    D.4 Evaluation of shielding ************************************************************** (II)-D-22    Same as above D.5 Summary of the results and the evaluation *********************************** (II)-D-32                            D.5 Summary of the results and the evaluation ********************************** (II)-D-31              Same as above D.5.1 Shielding Design Features ******************************************* (II)-D-31                  Refinement of description D.5.2 Results and evaluation ************************************************* (II)-D-31 D.6 Appendix ********************************************************************************** (II)-D-35                                                                                                                        Changes of page D.6 Appendix ********************************************************************************* (II)-D-34 D.6.1 Appendix-1 Neutron yields due to (.n) reaction******************* (II)-D-36                                                                                                                                            number D.6.1 Appendix-1 Neutron yields due to (.n) reaction ****************** (II)-D-35 D.6.2 Appendix-2        Gamma streaming calculation ************************** (II)-D-39                                                                                                                                      Same as above D.6.2 Appendix-2      Gamma streaming calculation ************************* (II)-D-38 D.6.3 Appendix-3 References ***************************************************** (II)-D-53                                                                                                                                    Same as above D.6.3 Appendix-3 References***************************************************** (II)-D-52 E. Criticality analysis************************************************************************* (II)-E-1 E. Criticality analysis ************************************************************************* (II)-E-1 E.1 Summary ********************************************************************************* (II)-E-1 E.1 Summary ********************************************************************************* (II)-E-1                                                                                                                          Changes of page E.2 Analytical object *********************************************************************** (II)-E-2 E.2 Analytical object ************************************************************************ (II)-E-3                                                                                                                          number E.2.1 Contents **************************************************************************** (II)-E-2 E.2.1 Contents ***************************************************************************** (II)-E-3                                                                                                                          Same as above E.2.2 Packaging ************************************************************************** (II)-E-5 E.2.2 Packaging *************************************************************************** (II)-E-7                                                                                                                          Same as above E.2.3 Neutron poison******************************************************************** (II)-E-5 E.2.3 Neutron poison ******************************************************************** (II)-E-7                                                                                                                            Same as above E.3 Model specification ******************************************************************** (II)-E-7 E.3 Model specification ******************************************************************** (II)-E-8                                                                                                                            Same as above E.3.1 Analytical model****************************************************************** (II)-E-7 E.3.1 Analytical model ****************************************************************** (II)-E-8 E.3.1.1 Analytical model of nuclear fuel package in isolation*****(II)-E-7 Refinement of E.3.1.2 Analytical model of nuclear fuel package in array *********(II)-E-7                        description E.3.2 Atomic number density in each region of analytical model ********* (II)-E-27                                      E.3.2 Atomic number density in each region of analytical model ********* (II)-E-18                    Changes of page E.4 Subcriticality evaluation ************************************************************ (II)-E-29                    E.4 Subcriticality evaluation ************************************************************ (II)-E-20    number E.4.1 Analytical condition************************************************************** (II)-E-29                      E.4.1 Analytical condition ************************************************************* (II)-E-20    Same as above E.4.2 Water immersion into the package ***************************************** (II)-E-29                              E.4.2 Water immersion into the package ***************************************** (II)-E-20            Same as above E.4.3 Calculation method ************************************************************** (II)-E-30                        E.4.3 Calculation method ************************************************************** (II)-E-21    Same as above E.4.4 Calculation results *************************************************************** (II)-E-31                      E.4.4 Calculation results ************************************************************** (II)-E-22    Same as above E.5 Benchmark experiments ************************************************************* (II)-E-32                      E.5 Benchmark experiments ************************************************************ (II)-E-23        Same as above E.6 Summary of the results and the evaluation *********************************** (II)-E-34                            E.6 Summary of the results and the evaluation*********************************** (II)-E-25              Same as above E.7 Appendix ********************************************************************************** (II)-E-35              E.7 Appendix ********************************************************************************* (II)-E-26 Same as above E.7.1 Appendix-1                                                                                                        E.7.1 Appendix-1 Safety of the package under routine conditions of transport *************** (II)-E-36                                    Safety of the package under routine conditions of transport *************** (II)-E-27                Same as above E.7.2 Appendix-2                                                                                                        E.7.2 Appendix-2
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                                                                                  after                                                                      note Safety of the package during the loading of the fuel elements ************* (II)-E-38                                    Safety of the package during the loading of the fuel elements ************ (II)-E-29                            Same as above E.7.3 Appendix-3                                                                                                        E.7.3 Appendix-3 Safety of the package under accident conditions ******************************* (II)-E-46                                Safety of the package under accident conditions ******************************* (II)-E-35                      Same as above E.7.4 Appendix-4                                                                                                        E.7.4 Appendix-4 Investigation of the optimum water density in the criticality                                                            Investigation of the optimum water density in the criticality evaluation *********************************************************************************** (II)-E-50                evaluation ********************************************************************************** (II)-E-38        Same as above E.7.5 Appendix-5                                                                                                        E.7.5 Appendix-5 References ********************************************************************************** (II)-E-51                  References ********************************************************************************** (II)-E-39        Same as above F. Consideration of Aging of Nuclear Fuel Package ********************************************** (II)-F-1              Addition of Consideration of aging F.1 Aging Factors to be Considered ****************************************************************** (II)-F-1 of nuclear fuel package F.2 Evaluation of Necessity of Considering Aging in Safety Analysis ******************** (II)-F-2 due to the revision of F.3 Aging Considerations in Safety Analysis ***************************************************** (II)-F-7 the regulations F.4 Appendix ************************************************************************************************ (II)-F-7 F.4.1 Appendix - 1 References ***************************************************************** (II)-F-7 Deletion due to moving to another chapter Chapter III : Basic policy for quality management ********************************** (III)-A-1 A. Quality management system *********************************************************** (III)-A-1 B. Applicants responsibilities *************************************************************** (III)-B-1 C. Education and training ******************************************************************* (III)-C-1 D. Design control ******************************************************************************* (III)-D-1 E. Manufacturing order of the packaging, etc. **************************************** (III)-E-1 F. Handling and Maintenance ************************************************************** (III)-F-1 Chapter IV : Maintenance conditions of transport packaging and                                                          Chapter III : Maintenance conditions of transport packaging and                                                      Modification for proper handling method of package **************************************************************** (IV)-A-1                    handling method of package **************************************************************** (III)-A-1                description due to A. Handling method *************************************************************************** (IV)-A-1                  A. Handling method *************************************************************************** (III)-A-1            deletion of the previous A.1 Loading method ************************************************************************ (IV)-A-1                    A.1 Loading method ************************************************************************ (III)-A-1              chapter A.2 Prior to shipping inspection of package ***************************************** (IV)-A-3                          A.2 Prior to shipping inspection of nuclear fuel package *********************** (III)-A-4                        Same as above A.3 Unloading method ********************************************************************* (IV)-A-6                    A.3 Unloading method ********************************************************************* (III)-A-7              Same as above A.4 Preparation of empty packaging ************************************************** (IV)-A-7                          A.4 Preparation of empty packaging ************************************************** (III)-A-8                    Same as above B. Maintenance conditions ****************************************************************** (IV)-B-1                    B. Maintenance conditions ****************************************************************** (III)-B-1              Same as above B.1 Visual inspections********************************************************************** (IV)-B-1                  B.1 Visual inspections ********************************************************************* (III)-B-1            Same as above B.2 Internal pressure inspections ****************************************************** (IV)-B-1                      B.2 Internal pressure inspections****************************************************** (III)-B-1                  Same as above B.3 Leakage inspection ******************************************************************** (IV)-B-1                    B.3 Leakage inspection ******************************************************************** (III)-B-1              Same as above B.4 Shielding inspection******************************************************************* (IV)-B-1                    B.4 Shielding inspection ****************************************************************** (III)-B-1              Same as above B.5 Subcriticality inspection ************************************************************* (IV)-B-2                    B.5 Subcriticality inspection************************************************************* (III)-B-2              Same as above B.6 Thermal inspection ******************************************************************** (IV)-B-2                    B.6 Thermal inspection ******************************************************************* (III)-B-2              Same as above B.7 Lifting inspection ********************************************************************** (IV)-B-2                  B.7 Lifting inspection ********************************************************************** (III)-B-2            Same as above B.8 Operational inspection *************************************************************** (IV)-B-2                    B.8 Operational inspection *************************************************************** (III)-B-2              Same as above
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                                                                                  after                                                              note B.9 Maintenance of auxiliary system ************************************************* (IV)-B-2                          B.9 Maintenance of auxiliary system ************************************************* (III)-B-2          Same as above B.10 Maintenance of valve and gasket, etc., of containment vessel ********* (IV)-B-3                                    B.10 Maintenance of valve and gasket, etc., of containment vessel********* (III)-B-3                      Same as above B.11 Storage of transport packaging ************************************************** (IV)-B-3                        B.11 Storage of transport packaging ************************************************** (III)-B-3          Same as above B.12 Storage of records ******************************************************************** (IV)-B-3                  B.12 Storage of records ******************************************************************** (III)-B-3    Same as above B.13 Others ************************************************************************************ (IV)-B-3              B.13 Others *********************************************************************************** (III)-B-3 Same as above Chapter V-I : Fabrication of packaging ************************************************** (V)-I-A-1                    Chapter IV-I : Fabrication of packaging ************************************************ (IV)-I-A-1        Modification for proper Chapter V-II : Modification of packaging *********************************************** (V)-II-A-1                    Chapter IV-II : Modification of packaging ********************************************** (IV)-II-A-1        description due to deletion of the previous chapter
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                                                                          after                                                            note LIST OF FIGURES                                                                                                  LIST OF FIGURES
()-Fig.A.1  Package transport condition ************************************************ (I)-4                ()-Fig.A.1    Transport condition of nuclear fuel package ***************************** (I)-4          Refinement of description
()-Fig.C.1  The external appearance of the package ******************************** (I)-7                    ()-Fig.C.1    The external appearance of the nuclear fuel package ************** (I)-7
()-Fig.C.2  The general view of the packaging ************************************** (I)-8                    ()-Fig.C.2    The general view of the packaging ************************************** (I)-8
()-Fig.C.3  Tie down device *************************************************************** (I)-9            ()-Fig.C.3    Tie down device *************************************************************** (I)-9
()-Fig.C.4  The containment boundary of the packaging ************************* (I)-10                        ()-Fig.C.4    The containment boundary of the packaging ************************ (I)-10
()-Fig.C.5  The sectional view of the packaging ************************************ (I)-13                  ()-Fig.C.5    The sectional view of the packaging ************************************ (I)-13
()-Fig.C.6  The sectional view of lateral fin ****************************************** (I)-14              ()-Fig.C.6    The sectional view of lateral fin ***************************************** (I)-14
()-Fig.C.7  Bottom fin and base plate *************************************************** (I)-15              ()-Fig.C.7    Bottom fin and base plate *************************************************** (I)-15
()-Fig.C.8  Configuration of bottom fin ************************************************ (I)-16              ()-Fig.C.8    Configuration of bottom fin *********************************************** (I)-16
()-Fig.C.9  The sectional view of vent and drain valves ************************** (I)-17                    ()-Fig.C.9    The sectional view of vent and drain valves ************************* (I)-17
()-Fig.C.10 The plan of vent and drain valves (without protection cover) **** (I)-18                          ()-Fig.C.10 The plan of vent and drain valves (without protection cover) **** (I)-18
()-Fig.C.11 Drain valve protection cover ************************************************ (I)-19              ()-Fig.C.11 Drain valve protection cover *********************************************** (I)-19
()-Fig.C.12 Body lifting lug ***************************************************************** (I)-20          ()-Fig.C.12 Body lifting lug***************************************************************** (I)-20
()-Fig.C.13 The sectional view of the lid ************************************************ (I)-23              ()-Fig.C.13 The sectional view of the lid************************************************ (I)-23
()-Fig.C.14 The plan of the lid ************************************************************* (I)-24          ()-Fig.C.14 The plan of the lid ************************************************************* (I)-24
()-Fig.C.15 Configuration of top fin ****************************************************** (I)-25            ()-Fig.C.15 Configuration of top fin ****************************************************** (I)-25
()-Fig.C.16 Leak test hole and plug ***************************************************** (I)-26              ()-Fig.C.16 Leak test hole and plug **************************************************** (I)-26
()-Fig.C.17 Vent valve protection cover ************************************************* (I)-27              ()-Fig.C.17 Vent valve protection cover ************************************************* (I)-27
()-Fig.C.18 Lid lifting lug ******************************************************************* (I)-28        ()-Fig.C.18 Lid lifting lug ******************************************************************* (I)-28
()-Fig.C.19 Basket for box type fuel ****************************************************** (I)-30            ()-Fig.C.19 Basket for box type fuel ***************************************************** (I)-30
()-Fig.C.20 The general view of the basket for box type fuel ******************** (I)-31                      ()-Fig.C.20 The general view of the basket for box type fuel ******************** (I)-31
()-Fig.C.21 Basket for MNU type fuel ************************************************** (I)-32                ()-Fig.C.21 Basket for MNU type fuel ************************************************* (I)-32
()-Fig.C.22 The general view of the basket for MNU type fuel ***************** (I)-33                          ()-Fig.C.22 The general view of the basket for MNU type fuel ***************** (I)-33
()-Fig.C.23 Configuration of the adapter *********************************************** (I)-34                ()-Fig.C.23 Configuration of the adapter *********************************************** (I)-34 Deletion of JRR-3
()-Fig.D.1  JRR-3 Standard Aluminide Type Fuel *********************************** (I)-42                    ()-Fig.D.1    JRR-3 Standard Silicide Type Fuel ************************************** (I)-42          aluminide fuel and
()-Fig.D.2  JRR-3 Standard Silicide Type Fuel *************************************** (I)-43                  ()-Fig.D.2    JRR-3 Follower Silicide Type Fuel *************************************** (I)-43        JRR-4 fuel Changes of
()-Fig.D.3  JRR-4 Low Enrichment Silicide Type Fuel ***************************** (I)-44                      ()-Fig.D.3    JRR-3 MNU Type Fuel (Top, Middle Fuel)***************************** (I)-44              drawing number and
()-Fig.D.4  JRR-4 High Enrichment Instrumented Fuel (HEU) **************** (I)-45                            ()-Fig.D.4    JRR-3 MNU Type Fuel (Bottom Fuel)*********************************** (I)-45              page number due to
()-Fig.D.5  JRR-3 Follower Aluminide Type Fuel ************************************ (I)-46                                                                                                                            deletion of drawings
()-Fig.D.6  JRR-3 Follower Silicide Type Fuel **************************************** (I)-47
()-Fig.D.7  JRR-3 MNU Type Fuel (Top, Middle Fuel) ***************************** (I)-48
()-Fig.D.8  JRR-3 MNU Type Fuel (Bottom Fuel) *********************************** (I)-49 (II)-Fig.A.1 Center of gravity of the package ******************************************* (II)-A-27            (II)-Fig.A.1  Center of gravity of the nuclear fuel package************************** (II)-A-27        Refinement of (II)-Fig.A.2 Temperature dependency of mechanical property of SA-182                                            (II)-Fig.A.2  Temperature dependency of mechanical property of SA-182                                  description Type F304 and SA-240 Type 304 (equivalent to SUS304) ********* (II)-A-31                                        Type F304 and SA-240 Type 304 (equivalent to SUS304) ********* (II)-A-31 (II)-Fig.A.3 Temperature dependency of mechanical property of SA-564 ****** (II)-A-32                          (II)-Fig.A.3  Temperature dependency of mechanical property of SA-564 ****** (II)-A-32 (II)-Fig.A.4 Yield stress of A1100-H14 **************************************************** (II)-A-33          (II)-Fig.A.4  Yield stress of A1100-H14 *************************************************** (II)-A-33
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                                                                        after                                                            note (II)-Fig.A.5  High temperature strength of A 1050 ************************************ (II)-A-34            (II)-Fig.A.5  High temperature strength of A 1050 ************************************ (II)-A-34 (II)-Fig.A.6  Proof stress of A6061-T6 and AG3NE ************************************ (II)-A-35              (II)-Fig.A.6  Proof stress of A6061-T6 and AG3NE ************************************ (II)-A-35 (II)-Fig.A.7  Yield stress of metallic natural uranium ******************************** (II)-A-36            (II)-Fig.A.7  Yield stress of metallic natural uranium ******************************** (II)-A-36 (II)-Fig.A.8  Low temperature impact value of metallic materials **************** (II)-A-39                  (II)-Fig.A.8  Low temperature impact value of metallic materials *************** (II)-A-39 (II)-Fig.A.9  Mechanical property of Aluminum alloy 1050 due to temperature (II)-A-39                        (II)-Fig.A.9  Mechanical property of Aluminum alloy 1050 due to temperature (II)-A-39 (II)-Fig.A.10 Analytical model for fracture toughness of lid bolt ******************* (II)-A-42              (II)-Fig.A.10 Analytical model for fracture toughness of lid bolt ****************** (II)-A-42 (II)-Fig.A.11 Thermal expansion analytical model for hollow cylinder ********* (II)-A-43                    (II)-Fig.A.11 Thermal expansion analytical model for hollow cylinder ********* (II)-A-43 (II)-Fig.A.12 Temperature distribution of the inner and outer surface of                                    (II)-Fig.A.12 Temperature distribution of the inner and outer surface of the shell under ambient temperature -40 ************************** (II)-A-48                                the shell under ambient temperature -40 ************************* (II)-A-49            Changes of page (II)-Fig.A.13  Temperature distribution in the basket for                                                    (II)-Fig.A.13  Temperature distribution in the basket for                                              number box type fuel under ambient temperature -40********************** (II)-A-49                                  box type fuel under ambient temperature -40 ********************* (II)-A-50            Same as above (II)-Fig.A.14  Details of the body lifting lug for 2-point lifting ******************** (II)-A-52            (II)-Fig.A.14  Details of the body lifting lug for 2-point lifting ******************* (II)-A-53      Same as above (II)-Fig.A.15  Details of the hole of the body lifting lug for 2-point lifting ***** (II)-A-56              (II)-Fig.A.15  Details of the hole of the body lifting lug for 2-point lifting **** (II)-A-57          Same as above (II)-Fig.A.16  Load on the package lifted by one body lifting lug ***************** (II)-A-55                (II)-Fig.A.16  Load on the package lifted by one body lifting lug **************** (II)-A-58          Same as above (II)-Fig.A.17  Details of the body lifting lug for one point lifting ***************** (II)-A-59            (II)-Fig.A.17  Details of the body lifting lug for one point lifting **************** (II)-A-60        Same as above (II)-Fig.A.18  Details of the body lifting lug for one-point lifting ***************** (II)-A-62            (II)-Fig.A.18  Details of the body lifting lug for one-point lifting **************** (II)-A-63        Same as above (II)-Fig.A.19  State lifting the package ************************************************** (II)-A-66        (II)-Fig.A.19  State lifting the package ************************************************** (II)-A-68  Same as above (II)-Fig.A.20  Details of the lid lifting lug for 2-point lifting *********************** (II)-A-67          (II)-Fig.A.20  Details of the lid lifting lug for 2-point lifting ********************** (II)-A-69    Same as above (II)-Fig.A.21  Details of the lid lifting lug for 2-point lifting *********************** (II)-A-70          (II)-Fig.A.21  Details of the lid lifting lug for 2-point lifting ********************** (II)-A-72    Same as above (II)-Fig.A.22  Geometry of the lid bolt **************************************************** (II)-A-72      (II)-Fig.A.22  Geometry of the lid bolt *************************************************** (II)-A-74  Same as above (II)-Fig.A.23  Lead angle of the bolt ****************************************************** (II)-A-74      (II)-Fig.A.23  Lead angle of the bolt ****************************************************** (II)-A-76 Same as above (II)-Fig.A.24  Analytical model of the thread groove ********************************* (II)-A-77            (II)-Fig.A.24  Analytical model of the thread groove ******************************** (II)-A-79        Same as above (II)-Fig.A.25  State of lifting the lid by one lid lifting lug ************************** (II)-A-79          (II)-Fig.A.25  State of lifting the lid by one lid lifting lug ************************** (II)-A-81    Same as above (II)-Fig.A.26  Details of the lid lifting lug for one point lifting ******************** (II)-A-80          (II)-Fig.A.26  Details of the lid lifting lug for one point lifting ******************* (II)-A-82      Same as above (II)-Fig.A.27  Details of fastening parts of the tie-down device ******************* (II)-A-88              (II)-Fig.A.27  Details of fastening parts of the tie-down device ****************** (II)-A-90          Same as above (II)-Fig.A.28  Contact area of the fin shoe ********************************************** (II)-A-90        (II)-Fig.A.28  Contact area of the fin shoe ********************************************** (II)-A-92  Same as above (II)-Fig.A.29  Geometry and analytical model of the packaging                                                (II)-Fig.A.29  Geometry and analytical model of the packaging supporting bottom fin ******************************************************* (II)-A-92                      supporting bottom fin ****************************************************** (II)-A-94  Same as above (II)-Fig.A.30  Shock absorbing stand of the tie-down device ********************** (II)-A-92                (II)-Fig.A.30  Shock absorbing stand of the tie-down device ********************** (II)-A-94          Same as above (II)-Fig.A.31  Geometry of the shock absorbing stand to the traveling direction (II)-A-93                    (II)-Fig.A.31  Geometry of the shock absorbing stand to the traveling direction (II)-A-95              Same as above (II)-Fig.A.32  Geometry of the shock absorbing stand to the lateral direction (II)-A-94                      (II)-Fig.A.32  Geometry of the shock absorbing stand to the lateral direction (II)-A-96                Same as above (II)-Fig.A.33  Analytical model of the bottom fin ************************************* (II)-A-95            (II)-Fig.A.33  Analytical model of the bottom fin ************************************* (II)-A-97      Same as above (II)-Fig.A.34  Relationship between amplification factor and vibration ratio (II)-A-101                Addition of a drawing (II)-Fig.A.34  Temperature distribution of the packaging                                                    (II)-Fig.A.35  Temperature distribution of the packaging                                              for aging assessment (Normal conditions of transport) **************************************** (II)-A-100                        (Normal conditions of transport) **************************************** (II)-A-103    Changes of drawing (II)-Fig.A.35  Temperature distribution in the basket for box type fuel ******** (II)-A-101                  (II)-Fig.A.36  Temperature distribution in the basket for box type fuel ******* (II)-A-104            and page number (II)-Fig.A.36  Temperature distribution in the basket for MNU type fuel ***** (II)-A-102                    (II)-Fig.A.37  Temperature distribution in the basket for MNU type fuel **** (II)-A-105                Same as above (II)-Fig.A.37  Analytical model of the packaging ************************************* (II)-A-105            (II)-Fig.A.38  Analytical model of the packaging ************************************* (II)-A-108      Same as above (II)-Fig.A.38 Mises equivalent stress contours (Normal conditions of transport) (II)-A-106                  (II)-Fig.A.39 Mises equivalent stress contours (Normal conditions of transport) (II)-A-109              Same as above (II)-Fig.A.39  Deformation (Normal conditions of transport) ********************** (II)-A-107                (II)-Fig.A.40  Deformation (Normal conditions of transport) ********************* (II)-A-110          Same as above (II)-Fig.A.40  Longitudinal stress contours of the lid bolt                                                  (II)-Fig.A.41  Longitudinal stress contours of the lid bolt (Normal conditions of transport) **************************************** (II)-A-108                          (Normal conditions of transport) **************************************** (II)-A-111    Same as above
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                                                                        after                                                              note (II)-Fig.A.41  Location of stress classification lines************************************ (II)-A-117      (II)-Fig.A.42  Location of stress classification lines *********************************** (II)-A-121  Same as above (II)-Fig.A.42  Deformation of the contact surface of the lid and the body ******* (II)-A-120                (II)-Fig.A.43  Deformation of the contact surface of the lid and the body ****** (II)-A-125            Same as above (II)-Fig.A.43  Analytical model of the shell ********************************************** (II)-A-124      (II)-Fig.A.44  A8nalytical model of the shell ******************************************** (II)-A-129  Same as above (II)-Fig.A.44  Shape and dimensions of bottom fin for                                                      (II)-Fig.A.45  Shape and dimensions of bottom fin for supporting the packaging ************************************************** (II)-A-125                      supporting the packaging ************************************************* (II)-A-130    Same as above (II)-Fig.A.45  Analytical model of the bottom plate under compression ******** (II)-A-127                  (II)-Fig.A.46  Analytical model of the bottom plate under compression ******* (II)-A-132                Same as above (II)-Fig.A.46  Contact surfaces of the body and the lid ****************************** (II)-A-131          (II)-Fig.A.47  Contact surfaces of the body and the lid ***************************** (II)-A-136        Same as above (II)-Fig.A.47  Analytical model for 9 m top vertical drop analysis **************** (II)-A-142              (II)-Fig.A.48  Analytical model for 9 m top vertical drop analysis **************** (II)-A-147          Same as above (II)-Fig.A.48  Deformation of the package when the maximum                                                  (II)-Fig.A.49  Deformation of the package when the maximum displacement occurs in 9 m top vertical drop (at 6.9 ms) ********** (II)-A-143                              displacement occurs in 9 m top vertical drop (at 6.9 ms) ********** (II)-A-148            Same as above (II)-Fig.A.49  Time history of displacement in the drop direction                                          (II)-Fig.A.50  Time history of displacement in the drop direction in 9 m top vertical drop***************************************************** (II)-A-144                    in 9 m top vertical drop **************************************************** (II)-A-149 Same as above (II)-Fig.A.50  Time history of velocity in the drop direction                                              (II)-Fig.A.51  Time history of velocity in the drop direction in 9 m top vertical drop***************************************************** (II)-A-145                    in 9 m top vertical drop **************************************************** (II)-A-150 Same as above (II)-Fig.A.51  Time history of deceleration in the drop direction                                          (II)-Fig.A.52  Time history of deceleration in the drop direction in 9 m top vertical drop***************************************************** (II)-A-146                    in 9 m top vertical drop **************************************************** (II)-A-151 Same as above (II)-Fig.A.52  Analytical model for 9 m bottom vertical drop analysis ********** (II)-A-148                (II)-Fig.A.53  Analytical model for 9 m bottom vertical drop analysis ********* (II)-A-153              Same as above (II)-Fig.A.53  Deformation of the package when the maximum displacement occurs                              (II)-Fig.A.54  Deformation of the package when the maximum displacement occurs in 9 m bottom vertical drop (at 4.9ms) ********************************** (II)-A-149                        in 9 m bottom vertical drop (at 4.9ms) ********************************** (II)-A-154      Same as above (II)-Fig.A.54  Time history of displacement of top fin in the drop direction                                (II)-Fig.A.55  Time history of displacement of top fin in the drop direction in 9 m bottom vertical drop ************************************************* (II)-A-150                    in 9 m bottom vertical drop ************************************************ (II)-A-155  Same as above (II)-Fig.A.55  Time history of velocity in the drop direction                                              (II)-Fig.A.56  Time history of velocity in the drop direction in 9 m bottom vertical drop *********************************************** (II)-A-151                      in 9 m bottom vertical drop *********************************************** (II)-A-156  Same as above (II)-Fig.A.56  Time history of deceleration in the drop direction                                          (II)-Fig.A.57  Time history of deceleration in the drop direction in 9 m bottom vertical drop *********************************************** (II)-A-152                      in 9 m bottom vertical drop *********************************************** (II)-A-157  Same as above (II)-Fig.A.57  Analytical model for 9 m horizontal drop analysis ****************** (II)-A-154              (II)-Fig.A.58  Analytical model for 9 m horizontal drop analysis ***************** (II)-A-159          Same as above (II)-Fig.A.58  Deformation of the package when the maximum displacement occurs                              (II)-Fig.A.59  Deformation of the package when the maximum displacement occurs in 9 m horizontal drop analysis (at 15.2 ms)*************************** (II)-A-155                          in 9 m horizontal drop analysis (at 15.2 ms) ************************** (II)-A-160        Same as above (II)-Fig.A.59  Time history of displacement in the drop direction                                          (II)-Fig.A.60  Time history of displacement in the drop direction in 9 m horizontal drop******************************************************** (II)-A-156                    in 9 m horizontal drop ******************************************************* (II)-A-161 Same as above (II)-Fig.A.60  Time history of velocity in the drop direction                                              (II)-Fig.A.61  Time history of velocity in the drop direction in 9 m horizontal drop******************************************************** (II)-A-157                    in 9 m horizontal drop ******************************************************* (II)-A-162 Same as above (II)-Fig.A.61  Time history of deceleration in the drop direction                                          (II)-Fig.A.62  Time history of deceleration in the drop direction in 9 m horizontal drop******************************************************** (II)-A-158                    in 9 m horizontal drop ******************************************************* (II)-A-163 Same as above (II)-Fig.A.62  Analytical model for 9 m top corner drop analysis ****************** (II)-A-160              (II)-Fig.A.63  Analytical model for 9 m top corner drop analysis ***************** (II)-A-160          Same as above (II)-Fig.A.63  Deformation of the package when the maximum displacement occurs                              (II)-Fig.A.64  Deformation of the package when the maximum displacement occurs                          Same as above in 9 m top corner drop analysis (at 20.4 ms)*************************** (II)-A-161                          in 9 m top corner drop analysis (at 20.4 ms) ************************** (II)-A-166 (II)-Fig.A.64  Time history of displacement in the drop direction                                          (II)-Fig.A.65  Time history of displacement in the drop direction                                      Same as above in 9 m top corner drop ****************************************************** (II)-A-162                    in 9 m top corner drop ****************************************************** (II)-A-167 (II)-Fig.A.65  Time history of velocity in the drop direction                                              (II)-Fig.A.66  Time history of velocity in the drop direction                                          Same as above in 9 m top corner drop ****************************************************** (II)-A-163                    in 9 m top corner drop ****************************************************** (II)-A-168 (II)-Fig.A.66  Time history of deceleration in the drop direction                                          (II)-Fig.A.67  Time history of deceleration in the drop direction                                      Same as above
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                                                                            after                                                                note in 9 m top corner drop ******************************************************** (II)-A-164                      in 9 m top corner drop ******************************************************* (II)-A-169 (II)-Fig.A.67  Analytical model for bottom corner drop analysis ******************* (II)-A-166                  (II)-Fig.A.68  Analytical model for bottom corner drop analysis ****************** (II)-A-171              Same as above (II)-Fig.A.68  Deformation of the package when the maximum displacement occurs                                  (II)-Fig.A.69  Deformation of the package when the maximum displacement occurs in 9 m bottom corner drop analysis (at 17.7 ms) ********************* (II)-A-167                                in 9 m bottom corner drop analysis (at 17.7 ms) ********************* (II)-A-172              Same as above (II)-Fig.A.69  Time history of displacement in the drop direction                                              (II)-Fig.A.70  Time history of displacement in the drop direction in 9 m bottom corner drop*************************************************** (II)-A-168                          in 9 m bottom corner drop ************************************************** (II)-A-173      Same as above (II)-Fig.A.70  Time history of velocity in the drop direction                                                  (II)-Fig.A.71  Time history of velocity in the drop direction in 9 m bottom corner drop*************************************************** (II)-A-169                          in 9 m bottom corner drop ************************************************** (II)-A-174      Same as above (II)-Fig.A.71  Time history of deceleration in the drop direction                                              (II)-Fig.A.72  Time history of deceleration in the drop direction in 9 m bottom corner drop*************************************************** (II)-A-170                          in 9 m bottom corner drop ************************************************** (II)-A-175      Same as above (II)-Fig.A.72  Equivalent plastic strain generated in the lid flange                                            (II)-Fig.A.73  Equivalent plastic strain generated in the lid flange after top vertical drop ******************************************************** (II)-A-173                      after top vertical drop******************************************************** (II)-A-178    Same as above (II)-Fig.A.73  Equivalent plastic strain generated in the body flange                                          (II)-Fig.A.74  Equivalent plastic strain generated in the body flange after top vertical drop ******************************************************** (II)-A-174                      after top vertical drop******************************************************** (II)-A-179    Same as above (II)-Fig.A.74  Time history of the axial stress in the lid bolt                                                (II)-Fig.A.75  Time history of the axial stress in the lid bolt during 9 m top vertical drop ************************************************ (II)-A-175                        during 9 m top vertical drop *********************************************** (II)-A-180      Same as above (II)-Fig.A.75  Equivalent plastic strain generated in the lid flange                                            (II)-Fig.A.76  Equivalent plastic strain generated in the lid flange after bottom vertical drop *************************************************** (II)-A-177                        after bottom vertical drop ************************************************** (II)-A-182      Same as above (II)-Fig.A.76  Equivalent plastic strain generated in the body flange                                          (II)-Fig.A.77  Equivalent plastic strain generated in the body flange after bottom vertical drop *************************************************** (II)-A-178                        after bottom vertical drop ************************************************** (II)-A-183      Same as above (II)-Fig.A.77  Time history of the axial stress in the lid bolt during                                          (II)-Fig.A.78  Time history of the axial stress in the lid bolt during 9 m bottom vertical drop **************************************************** (II)-A-179                        9 m bottom vertical drop **************************************************** (II)-A-184      Same as above (II)-Fig.A.78  Drain valve ********************************************************************* (II)-A-180    (II)-Fig.A.79  Drain valve ********************************************************************* (II)-A-185 Same as above (II)-Fig.A.79  Valve main bolt **************************************************************** (II)-A-181      (II)-Fig.A.80  Valve main bolt *************************************************************** (II)-A-186  Same as above (II)-Fig.A.80  Valve protection cover bolt ************************************************* (II)-A-183        (II)-Fig.A.81  Valve protection cover bolt ************************************************* (II)-A-188    Deletion due to re-(II)-Fig.A.81  Analytical model of the neutron poison of the basket                                                                                                                                                          evaluation for box type fuel **************************************************************** (II)-A-187                                                                                                                  Changes of page (II)-Fig.A.82  Basket for MNU fuel type ************************************************** (II)-A-190          (II)-Fig.A.82  Basket for MNU fuel type************************************************** (II)-A-193        number due to addition (II)-Fig.A.83  Geometry of JRR-3 MNU type fuel ************************************** (II)-A-203                (II)-Fig.A.83  Geometry of JRR-3 MNU type fuel ************************************** (II)-A-201            and deletion of (II)-Fig.A.84  Boundary condition for drop to the A-direction ********************** (II)-A-205                (II)-Fig.A.84  Boundary condition for drop to the A-direction ********************** (II)-A-203            drawings (II)-Fig.A.85  Stress for drop to the A-direction ***************************************** (II)-A-206          (II)-Fig.A.85  Stress for drop to the A-direction **************************************** (II)-A-204      Same as above (II)-Fig.A.86  Boundary condition for drop to the B-direction ********************** (II)-A-208                (II)-Fig.A.86  Boundary condition for drop to the B-direction********************** (II)-A-206              Same as above (II)-Fig.A.87  Stress for drop to the B-direction **************************************** (II)-A-209          (II)-Fig.A.87  Stress for drop to the B-direction **************************************** (II)-A-207      Same as above (II)-Fig.A.88  Equivalent plastic strain generated in the lid flange                                            (II)-Fig.A.88  Equivalent plastic strain generated in the lid flange after horizontal drop ********************************************************* (II)-A-216                      after horizontal drop ********************************************************* (II)-A-210    Same as above (II)-Fig.A.89  Equivalent plastic strain generated in the body flange                                          (II)-Fig.A.89  Equivalent plastic strain generated in the body flange after horizontal drop ********************************************************* (II)-A-217                      after horizontal drop ********************************************************* (II)-A-211    Same as above (II)-Fig.A.90  Time history of axial stress in the lid bolt                                                    (II)-Fig.A.90  Time history of axial stress in the lid bolt during 9 m horizontal drop ************************************************* (II)-A-218                          during 9 m horizontal drop ************************************************ (II)-A-212        Same as above (II)-Fig.A.91  Valve main bolt **************************************************************** (II)-A-220      (II)-Fig.A.91  Valve main bolt *************************************************************** (II)-A-214  Same as above (II)-Fig.A.92  Valve protection cover bolt ************************************************* (II)-A-222        (II)-Fig.A.92  Valve protection cover bolt ************************************************* (II)-A-216    Same as above (II)-Fig.A.93  Horizontal drop direction of the basket for box type fuel********** (II)-A-224                  (II)-Fig.A.93  Horizontal drop direction of the basket for box type fuel ********* (II)-A-218              Same as above
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                                                                          after                                                                note (II)-Fig.A.94  Analytical model of the basket for box type fuel                                                (II)-Fig.A.94  Analytical model of the basket for box type fuel at the X-direction drop******************************************************* (II)-A-227                      at the X-direction drop ****************************************************** (II)-A-221  Same as above (II)-Fig.A.95  Deformation of the basket for box type fuel when                                                (II)-Fig.A.95  Deformation of the basket for box type fuel when deceleration 167 g is acting ************************************************ (II)-A-228                        deceleration 167 g is acting ************************************************ (II)-A-222    Same as above (II)-Fig.A.96  Deformation of the basket for box type fuel                                                      (II)-Fig.A.96  Deformation of the basket for box type fuel after deceleration 167 g acting ******************************************** (II)-A-229                        after deceleration 167 g acting******************************************** (II)-A-223      Same as above (II)-Fig.A.97  Equivalent plastic strain generated in the basket for box type fuel                              (II)-Fig.A.97  Equivalent plastic strain generated in the basket for box type fuel after deceleration 167 g acting ******************************************** (II)-A-230                        after deceleration 167 g acting******************************************** (II)-A-224      Same as above (II)-Fig.A.98  Analytical model of the basket for box type fuel                                                (II)-Fig.A.98  Analytical model of the basket for box type fuel at the Y-direction drop ******************************************************* (II)-A-232                      at the Y-direction drop ****************************************************** (II)-A-226  Same as above (II)-Fig.A.99  Result of stress analysis of the basket for box type fuel                                        (II)-Fig.A.99  Result of stress analysis of the basket for box type fuel at the Y-direction drop ***************************************************** (II)-A-233                        at the Y-direction drop ***************************************************** (II)-A-227    Same as above (II)-Fig.A.100  Analytical model at the weld zone of the basket                                                (II)-Fig.A.100  Analytical model at the weld zone of the basket for box type fuel ************************************************************** (II)-A-235                    for box type fuel************************************************************** (II)-A-229 Same as above (II)-Fig.A.101  Analytical model at the weld zone in the frame                                                (II)-Fig.A.101  Analytical model at the weld zone in the frame of the basket for box type fuel ******************************************** (II)-A-238                        of the basket for box type fuel ******************************************* (II)-A-232    Same as above (II)-Fig.A.102  Analytical model of the basket for MNU type fuel **************** (II)-A-239                  (II)-Fig.A.102  Analytical model of the basket for MNU type fuel **************** (II)-A-233              Same as above (II)-Fig.A.103  Horizontal drop direction of the basket for MNU type fuel ***** (II)-A-240                    (II)-Fig.A.103  Horizontal drop direction of the basket for MNU type fuel **** (II)-A-234                Same as above (II)-Fig.A.104  Extent of the square shape pipe supported by one support plate                                (II)-Fig.A.104  Extent of the square shape pipe supported by one support plate of the basket for MNU type fuel ***************************************** (II)-A-245                            of the basket for MNU type fuel **************************************** (II)-A-239        Same as above (II)-Fig.A.105  Analytical model of the support plate of the basket                                            (II)-Fig.A.105  Analytical model of the support plate of the basket for MNU type fuel *********************************************************** (II)-A-246                        for MNU type fuel *********************************************************** (II)-A-240  Same as above (II)-Fig.A.106  Horizontal drop direction of                                                                                                                                                                              Deletion of JRR-3 JRR-3 standard aluminide type fuel *********************************** (II)-A-249                                                                                                                          aluminide fuel (II)-Fig.A.107  Horizontal drop direction of                                                                  (II)-Fig.A.106  Horizontal drop direction of                                                              Changes of drawing JRR-3 standard silicide type fuel **************************************** (II)-A-251                          JRR-3 standard silicide type fuel *************************************** (II)-A-243      number and page (II)-Fig.A.108  Horizontal drop direction of                                                                                                                                                                              number due to addition JRR-3 follower aluminide type fuel ************************************* (II)-A-252                                                                                                                        and deletion of (II)-Fig.A.109  Horizontal drop direction of                                                                  (II)-Fig.A.107  Horizontal drop direction of                                                              drawings JRR-3 follower silicide type fuel ***************************************** (II)-A-255                          JRR-3 follower silicide type fuel***************************************** (II)-A-245      Same as above (II)-Fig.A.110  Analytical model of JRR-3 MNU type fuel                                                        (II)-Fig.A.108  Analytical model of JRR-3 MNU type fuel at the time of the horizontal drop *************************************** (II)-A-257                          at the time of the horizontal drop*************************************** (II)-A-247      Same as above (II)-Fig.A.111  Stress in the Y-direction of                                                                  (II)-Fig.A.109  Stress in the Y-direction of JRR-3 MNU type fuel at the time of the horizontal drop********* (II)-A-258                                      JRR-3 MNU type fuel at the time of the horizontal drop ******** (II)-A-248                Same as above (II)-Fig.A.112  Horizontal drop direction of JRR-4 low enrichment silicide type fuel ******************************* (II)-A-260                                                                                                                        Deletion of JRR-4 (II)-Fig.A.113  Horizontal drop direction of JRR-4 high enrichment instrumented fuel (HEU) ***************** (II)-A-262                                                                                                                                Changes of drawing (II)-Fig.A.114  Equivalent plastic strain generated in the lid flange                                          (II)-Fig.A.110  Equivalent plastic strain generated in the lid flange                                    number and page after 9 m top corner drop ************************************************** (II)-A-264                        after 9 m top corner drop ************************************************** (II)-A-250    number due to addition (II)-Fig.A.115  Equivalent plastic strain generated                                                            (II)-Fig.A.111  Equivalent plastic strain generated                                                      and deletion of in the body flange after 9 m top corner drop ************************* (II)-A-265                              in the body flange after 9 m top corner drop************************* (II)-A-251          drawings
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                                                                            after                                                              note (II)-Fig.A.116    Time history of axial stress in the lid bolt                                                  (II)-Fig.A.112    Time history of axial stress in the lid bolt during 9 m top corner drop ************************************************ (II)-A-266                            during 9 m top corner drop *********************************************** (II)-A-252      Same as above (II)-Fig.A.117    Analytical model for case where the packaging directly                                        (II)-Fig.A.113    Analytical model for case where the packaging directly hits the mild steel bar ***************************************************** (II)-A-270                          hits the mild steel bar **************************************************** (II)-A-256    Same as above (II)-Fig.A.118    Bending of the shell of the packaging ******************************** (II)-A-272              (II)-Fig.A.114    Bending of the shell of the packaging ******************************* (II)-A-258          Same as above (II)-Fig.A.119    Analytical model for the case when the                                                        (II)-Fig.A.115    Analytical model for the case when the bottom plate directly hits the mild steel bar ************************ (II)-A-274                                bottom plate directly hits the mild steel bar *********************** (II)-A-260          Same as above (II)-Fig.A.120    Situation for case where the valve protection                                                  (II)-Fig.A.116    Situation for case where the valve protection cover directly hits the mild steel bar ********************************** (II)-A-276                              cover directly hits the mild steel bar ********************************* (II)-A-262        Same as above (II)-Fig.A.121    Analytical model of the valve protection valve ********************* (II)-A-278                (II)-Fig.A.117    Analytical model of the valve protection valve ********************* (II)-A-264          Same as above (II)-Fig.A.122    Temperature distribution of the packing                                                        (II)-Fig.A.118    Temperature distribution of the packing (30 minutes after occurrence of the fire accident) ****************** (II)-A-282                                  (30 minutes after occurrence of the fire accident) ****************** (II)-A-268          Same as above (II)-Fig.A.123    Deformation                                                                                    (II)-Fig.A.119    Deformation (30 minutes after occurrence of the fire accident ) ****************** (II)-A-283                                (30 minutes after occurrence of the fire accident ) ***************** (II)-A-269            Same as above (II)-Fig.A.124    Equivalent plastic strain distribution                                                        (II)-Fig.A.120    Equivalent plastic strain distribution (30 minutes after occurrence of the fire accident) ****************** (II)-A-284                                  (30 minutes after occurrence of the fire accident) ****************** (II)-A-270          Same as above (II)-Fig.A.125    Longitudinal stress contours of the lid bolt                                                  (II)-Fig.A.121    Longitudinal stress contours of the lid bolt (30 minutes after occurrence of the fire accident) ****************** (II)-A-285                                  (30 minutes after occurrence of the fire accident) ****************** (II)-A-271          Same as above (II)-Fig.A.126    Deformation of the contact surface of                                                          (II)-Fig.A.122    Deformation of the contact surface of the lid and the body ******************************************************** (II)-A-288                          the lid and the body ******************************************************* (II)-A-274    Same as above (II)-Fig.A.127    Thermal expansion analytical model of the hollow cylinder **** (II)-A-291                      (II)-Fig.A.123    Thermal expansion analytical model of the hollow cylinder *** (II)-A-277                  Same as above (II)-Fig.A.128    Temperature history of the basket for box type fuel contained                                  (II)-Fig.A.124    Temperature history of the basket for box type fuel contained JRR-3 standard aluminide type fuel *********************************** (II)-A-295                                  fuel element A ************************************************************* (II)-A-281  Same as above (II)-Fig.A.129    Temperature distribution model to thermal expansion analysis of                                (II)-Fig.A.125    Temperature distribution model to thermal expansion analysis of the body at the time of fire accident *********************************** (II)-A-296                              the body at the time of fire accident ********************************** (II)-A-282        Same as above (II)-Fig.A.130    Temperature distribution in the basket for box type fuel                                      (II)-Fig.A.126    Temperature distribution in the basket for box type fuel (35 hours after occurrence of the fire ) ********************************* (II)-A-298                            (35 hours after occurrence of the fire ) ******************************** (II)-A-284      Same as above (II)-Fig.A.131    Analytical model of the shell ******************************************* (II)-A-322          (II)-Fig.A.127    Analytical model of the shell ******************************************* (II)-A-308      Same as above (II)-Fig.A.132    Analytical model of the bottom plate ********************************* (II)-A-324              (II)-Fig.A.128    Analytical model of the bottom plate ******************************** (II)-A-310          Same as above (II)-Fig.A.133    The part of the O-ring and the leak tight test groove *********** (II)-A-330                  (II)-Fig.A.129    The part of the O-ring and the leak tight test groove *********** (II)-A-316              Same as above (II)-Fig.A.10.1-1    Stress -strain curves *************************************************** (II)-A-344        (II)-Fig.A.10.1-1    Stress -strain curves *************************************************** (II)-A-330  Changes of page (II)-Fig.A.10.2-1    Stress -strain curves *************************************************** (II)-A-347        (II)-Fig.A.10.2-1    Stress -strain curves *************************************************** (II)-A-333  number (II)-Fig.A.10.2-2    Test piece form ************************************************************ (II)-A-349    (II)-Fig.A.10.2-2    Test piece form *********************************************************** (II)-A-335 Same as above (II)-Fig.A.10.2-3    Deformation of test piece ********************************************** (II)-A-350        (II)-Fig.A.10.2-3    Deformation of test piece********************************************** (II)-A-336    Same as above (II)-Fig.A.10.2-4    Analytical model ********************************************************* (II)-A-351      (II)-Fig.A.10.2-4    Analytical model ********************************************************* (II)-A-337  Same as above (II)-Fig.A.10.2-5    Analytical conditions *************************************************** (II)-A-352        (II)-Fig.A.10.2-5    Analytical conditions *************************************************** (II)-A-338  Same as above (II)-Fig.A.10.2-6    Deformation of analytical model 1 ********************************** (II)-A-355            (II)-Fig.A.10.2-6    Deformation of analytical model 1 ********************************* (II)-A-341        Same as above (II)-Fig.A.10.2-7    Time history of displacement of the fin**************************** (II)-A-356              (II)-Fig.A.10.2-7    Time history of displacement of the fin *************************** (II)-A-342        Same as above (II)-Fig.A.10.2-8    Time history of impact force generated on the fin ************** (II)-A-357                (II)-Fig.A.10.2-8    Time history of impact force generated on the fin ************* (II)-A-343            Same as above (II)-Fig.A.10.2-9    Deformation of analytical model 2 ********************************** (II)-A-358            (II)-Fig.A.10.2-9    Deformation of analytical model 2 ********************************* (II)-A-344        Same as above (II)-Fig.A.10.2-10    Time history of displacement of the fin ************************** (II)-A-359              (II)-Fig.A.10.2-10    Time history of displacement of the fin ************************* (II)-A-345          Same as above (II)-Fig.A.10.2-11    Time history of impact force generated on the fin ************ (II)-A-360                  (II)-Fig.A.10.2-11    Time history of impact force generated on the fin************ (II)-A-346              Same as above
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                                                                            after                                                              note (II)-Fig.A.10.4-1  Geometry of the packaging******************************************** (II)-A-367          (II)-Fig.A.10.4-1    Geometry of the packaging ******************************************* (II)-A-353      Same as above (II)-Fig.A.10.4-2  Geometry of the lid ****************************************************** (II)-A-368    (II)-Fig.A.10.4-2    Geometry of the lid ***************************************************** (II)-A-354  Same as above (II)-Fig.A.10.4-3  Geometry of the lid bolt ************************************************ (II)-A-369      (II)-Fig.A.10.4-3    Geometry of the lid bolt *********************************************** (II)-A-355    Same as above (II)-Fig.A.10.4-4  Geometry of the valve disc ******************************************** (II)-A-370        (II)-Fig.A.10.4-4    Geometry of the valve disc******************************************** (II)-A-356      Same as above (II)-Fig.A.10.4-5  Geometry of the valve main bolt ************************************ (II)-A-372          (II)-Fig.A.10.4-5    Geometry of the valve main bolt ************************************ (II)-A-358        Same as above (II)-Fig.A.10.4-6  Geometry of the valve protection cover bolt********************** (II)-A-374              (II)-Fig.A.10.4-6    Geometry of the valve protection cover bolt ********************* (II)-A-360          Same as above (II)-Fig.A.10.5-1 Analytical model of the shell ******************************************** (II)-A-378      (II)-Fig.A.10.5-1 Analytical model of the shell ******************************************* (II)-A-364      Same as above (II)-Fig.A.10.5-2 Analytical model of the bottom plate ********************************* (II)-A-381          (II)-Fig.A.10.5-2 Analytical model of the bottom plate ******************************** (II)-A-367          Same as above (II)-Fig.B.1  The general view of the analytical model of the package                                        (II)-Fig.B.1  The general view of the analytical model of the package containing the basket for box type fuel (In case of containing                                                containing the basket for box type fuel (In case of containing JRR-3 standard aluminide type fuel) ********************************** (II)-B-15                              fuel element A) *************************************************************** (II)-B-15  Change of description (II)-Fig.B.2  The longitudinal sectional view of the analytical model                                        (II)-Fig.B.2  The longitudinal sectional view of the analytical model containing the basket for box type fuel (In case of containing                                                containing the basket for box type fuel (In case of containing JRR-3 standard aluminide type fuel) *********************************** (II)-B-16                            fuel element A) ****************************************************************** (II)-B-16 Same as above (II)-Fig.B.3  The radial sectional view of the analytical model containing                                  (II)-Fig.B.3  The radial sectional view of the analytical model containing the basket for box type fuel(In case of containing                                                            the basket for box type fuel(In case of containing JRR-3 standard aluminide type fuel) *********************************** (II)-B-17                            fuel element A) **************************************************************** (II)-B-17  Same as above (II)-Fig.B.4  The general view of the analytical model of the package containing                            (II)-Fig.B.4  The general view of the analytical model of the package containing the basket for MNU type fuel (In case of containing                                                          the basket for MNU type fuel (In case of containing JRR-3 MNU type fuel) ******************************************************* (II)-B-19                        JRR-3 MNU type fuel) ****************************************************** (II)-B-19 (II)-Fig.B.5  The longitudinal sectional view of the analytical model containing                            (II)-Fig.B.5  The longitudinal sectional view of the analytical model containing the basket for MNU type fuel (In case of containing                                                          the basket for MNU type fuel (In case of containing JRR-3 MNU type fuel) ******************************************************** (II)-B-20                      JRR-3 MNU type fuel) ******************************************************** (II)-B-20 (II)-Fig.B.6  The radial sectional view of the analytical model containing                                  (II)-Fig.B.6  The radial sectional view of the analytical model containing the basket for MNU type fuel (In case of containing                                                          the basket for MNU type fuel (In case of containing JRR-3 MNU type fuel) ******************************************************** (II)-B-21                      JRR-3 MNU type fuel) ******************************************************** (II)-B-21 (II)-Fig.B.7  Temperature in the absence of solar insolation in case of containing                          (II)-Fig.B.7  Temperature in the absence of solar insolation in case of containing JRR-3 standard aluminide type fuel                                                                            fuel element A (Longitudinal cross section) ************************************************ (II)-B-27                      (Longitudinal cross section) *********************************************** (II)-B-27      Same as above (II)-Fig.B.8    Temperature in the absence of solar insolation in case of containing                        (II)-Fig.B.8    Temperature in the absence of solar insolation in case of containing JRR-3 standard aluminide type fuel (Radial cross section) ******* (II)-B-28                                  fuel element A (Radial cross section) ************************************ (II)-B-28        Same as above (II)-Fig.B.9    Temperature in the absence of solar insolation in case of containing                        (II)-Fig.B.9    Temperature in the absence of solar insolation in case of containing JRR-3 MNU type fuel (Longitudinal cross section) **************** (II)-B-29                                  JRR-3 MNU type fuel (Longitudinal cross section) *************** (II)-B-29 (II)-Fig.B.10    Temperature in the absence of solar insolation in case of containing                        (II)-Fig.B.10    Temperature in the absence of solar insolation in case of containing JRR-3 MNU type fuel (Radial cross section) ************************** (II)-B-30                              JRR-3 MNU type fuel (Radial cross section)************************** (II)-B-30 (II)-Fig.B.11    Temperature in solar insolation in case of containing                                        (II)-Fig.B.11    Temperature in solar insolation in case of containing JRR-3 standard aluminide type fuel                                                                            fuel element A (Longitudinal cross section) ************************************************ (II)-B-34                      (Longitudinal cross section) *********************************************** (II)-B-34      Same as above (II)-Fig.B.12    Temperature in solar insolation in case of containing                                        (II)-Fig.B.12    Temperature in solar insolation in case of containing JRR-3 standard aluminide type fuel (Radial cross section) **** (II)-B-35                                    fuel element A (Radial cross section) *********************************** (II)-B-35        Same as above (II)-Fig.B.13    Temperature in solar insolation in case of containing                                        (II)-Fig.B.13    Temperature in solar insolation in case of containing
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                                                                          after                                                              note JRR-3 MNU type fuel (Longitudinal cross section) ***************** (II)-B-36                                  JRR-3 MNU type fuel (Longitudinal cross section) ***************** (II)-B-36 (II)-Fig.B.14  Temperature in solar insolation in case of JRR-3 MNU type fuel                                (II)-Fig.B.14  Temperature in solar insolation in case of JRR-3 MNU type fuel (Radial cross section)********************************************************* (II)-B-37                      (Radial cross section) ******************************************************** (II)-B-37 (II)-Fig.B.15  Points shown in temperature history figures *********************** (II)-B-50                  (II)-Fig.B.15  Points shown in temperature history figures *********************** (II)-B-50 (II)-Fig.B.16  Temperature history in case of containing                                                      (II)-Fig.B.16  Temperature history in case of containing JRR-3 standard aluminide type fuel ************************************ (II)-B-51                              fuel element A ***************************************************************** (II)-B-51 Same as above (II)-Fig.B.17  Temperature history in case of containing                                                      (II)-Fig.B.17  Temperature history in case of containing JRR-3 standard aluminide type fuel ************************************ (II)-B-52                              fuel element A ***************************************************************** (II)-B-52 Same as above (II)-Fig.B.18  Temperature history in case of containing                                                      (II)-Fig.B.18  Temperature history in case of containing JRR-3 standard aluminide type fuel *********************************** (II)-B-53                              fuel element A ***************************************************************** (II)-B-53 Same as above (II)-Fig.B.6.1  Heat transfer in the package ********************************************* (II)-B-59          (II)-Fig.B.6.1  Heat transfer in the nuclear fuel package**************************** (II)-B-59          Same as above (II)-Fig.B.6.2  JRR-3 standard aluminide type fuel in the basket *************** (II)-B-62                    (II)-Fig.B.6.2  State of fuel element A in the fuel basket *************************** (II)-B-62          Same as above (II)-Fig.B.6.3  Direction of heat transfer in                                                                (II)-Fig.B.6.3  Direction of heat transfer in JRR-3 standard aluminide type fuel *********************************** (II)-B-64                              fuel element A **************************************************************** (II)-B-64 Same as above (II)-Fig.B.6.4  Air area where convection is dominant                                                        (II)-Fig.B.6.4  Air area where convection is dominant in the basket for box type fuel ****************************************** (II)-B-68                          in the basket for box type fuel ***************************************** (II)-B-68 (II)-Fig.B.6.5  Heat transfer in the package ********************************************* (II)-B-76          (II)-Fig.B.6.5  Heat transfer in the nuclear fuel package**************************** (II)-B-76          Same as above (II)-Fig.B.6.6  Heat transfer at the outer surface of the package ****************** (II)-B-80                (II)-Fig.B.6.6  Heat transfer at the outer surface of the package ***************** (II)-B-80 (II)-Fig.B.6.7  Surface where geometrical factor is 1.0 ****************************** (II)-B-84              (II)-Fig.B.6.7  Surface where geometrical factor is 1.0 ***************************** (II)-B-84 (II)-Fig.B.6.8  Explanation of fin and ambient air ************************************* (II)-B-85            (II)-Fig.B.6.8  Explanation of fin and ambient air************************************* (II)-B-85 Omission                                                                                                      Omission (II)-Fig.D.1  Gamma shielding analytical model                                                                (II)-Fig.D.1  Gamma shielding analytical model with basket for box type fuel (In case of containing                                                          with basket for box type fuel (In case of containing JRR-3 standard silicide type fuel) **************************************** (II)-D-16                          JRR-3 standard silicide type fuel) **************************************** (II)-D-15      Changes of page (II)-Fig.D.2  Neutron shielding analytical model with basket                                                  (II)-Fig.D.2  Neutron shielding analytical model with basket                                              number for box type fuel (In case of containing                                                                      for box type fuel (In case of containing JRR-4 low enrichment silicide type fuel) ******************************* (II)-D-17                            fuel element B)***************************************************************** (II)-D-16  Change of description (II)-Fig.D.3  Gamma shielding analytical model with                                                          (II)-Fig.D.3  Gamma shielding analytical model with basket for MNU type fuel (In case of containing                                                                basket for MNU type fuel (In case of containing JRR-3 MNU type fuel) ******************************************************* (II)-D-18                        JRR-3 MNU type fuel) ******************************************************* (II)-D-17      Changes of page (II)-Fig.D.4  Neutron shielding analytical model with basket                                                  (II)-Fig.D.4  Neutron shielding analytical model with basket                                              number for MNU type fuel (In case of containing                                                                      for MNU type fuel (In case of containing JRR-3 MNU type fuel) ******************************************************* (II)-D-19                        JRR-3 MNU type fuel) ******************************************************* (II)-D-18      Same as above (II)-Fig.D.5  Gamma dose equivalent rate [Basket for                                                          (II)-Fig.D.5  Gamma dose equivalent rate [Basket for box type fuel (Axial direction)] (In case of containing                                                        box type fuel (Axial direction)] (In case of containing JRR-3 standard silicide type fuel) **************************************** (II)-D-25                          JRR-3 standard silicide type fuel) **************************************** (II)-D-24      Same as above (II)-Fig.D.6  Gamma dose equivalent rate [Basket for                                                          (II)-Fig.D.6  Gamma dose equivalent rate [Basket for box type fuel (Radial direction)] (In case of containing                                                      box type fuel (Radial direction)] (In case of containing JRR-3 standard silicide type fuel) **************************************** (II)-D-26                          JRR-3 standard silicide type fuel) **************************************** (II)-D-25      Same as above
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                                                                          after                                                              note (II)-Fig.D.7  Gamma dose equivalent rate [Basket for                                                        (II)-Fig.D.7  Gamma dose equivalent rate [Basket for MNU type fuel (Axial direction)](In case of containing                                                      MNU type fuel (Axial direction)](In case of containing JRR-3 MNU type fuel) ******************************************************* (II)-D-27                      JRR-3 MNU type fuel) ******************************************************* (II)-D-26    Same as above (II)-Fig.D.8  Neutron dose equivalent rate [Basket for                                                      (II)-Fig.D.8  Neutron dose equivalent rate [Basket for box type fuel (Axial direction)] (In case of containing                                                    box type fuel (Axial direction)] (In case of containing JRR-4 low enrichment silicide type fuel) ******************************* (II)-D-30                          fuel element B)***************************************************************** (II)-D-29 Change of description (II)-Fig.D.9  Neutron dose equivalent rate [Basket for                                                      (II)-Fig.D.9  Neutron dose equivalent rate [Basket for MNU type fuel (Axial direction)] (In case of containing                                                    MNU type fuel (Axial direction)] (In case of containing JRR-3 MNU type fuel) ******************************************************* (II)-D-31                      JRR-3 MNU type fuel) ******************************************************* (II)-D-30    Changes of page (II)-Fig.D.2.1    Evaluated Location of Gamma Streaming**************************** (II)-D-40                (II)-Fig.D.2.1  Evaluated Location of Gamma Streaming *************************** (II)-D-39              number (II)-Fig.D.2.2    Streaming analytical model for the drain hole ********************* (II)-D-42              (II)-Fig.D.2.2  Streaming analytical model for the drain hole ******************** (II)-D-41            Same as above (II)-Fig.D.2.3    Gap between the body and the lid ************************************* (II)-D-46          (II)-Fig.D.2.3  Gap between the body and the lid ************************************* (II)-D-45        Same as above (II)-Fig.D.2.4    Three routes of leakage *************************************************** (II)-D-47      (II)-Fig.D.2.4  Three routes of leakage ************************************************** (II)-D-46    Same as above (II)-Fig.D.2.5    Gamma streaming analytical model for (B) ************************ (II)-D-48                (II)-Fig.D.2.5  Gamma streaming analytical model for (B) ************************ (II)-D-47              Same as above (II)-Fig.D.2.6    Gamma streaming analytical model for (C) ************************ (II)-D-48                (II)-Fig.D.2.6  Gamma streaming analytical model for (C) ************************ (II)-D-47              Same as above (II)-Fig.D.2.7    Gamma streaming analytical model of the vent hole ************ (II)-D-51                  (II)-Fig.D.2.7  Gamma streaming analytical model of the vent hole *********** (II)-D-50                  Same as above (II)-Fig.E.1 Analytical model of undamaged and damaged packages in array,                                    (II)-Fig.E.1 Analytical model of undamaged and damaged packages in array,                                Deletion of JRR-3 containing the basket for box type fuel (Axial direction)                                                  containing the basket for box type fuel (Axial direction)                                  aluminide fuel
[In case of containing                                                                                      [In case of containing                                                                    Changes of drawing JRR-3 standard aluminide or silicide type fuel] ********************** (II)-E-11                            JRR-3 silicide type fuel] ***************************************************** (II)-E-10  number and page (II)-Fig.E.2 Analytical model of undamaged and damaged packages in array,                                    (II)-Fig.E.2 Analytical model of undamaged and damaged packages in array,                                number due to addition containing the basket for box type fuel (Cross section of basket)                                          containing the basket for box type fuel (Cross section of basket)                          and deletion of
[In case of containing                                                                                      [In case of containing                                                                    drawings JRR-3 standard aluminide or silicide type fuel] ********************** (II)-E-12                            JRR-3 silicide type fuel] ***************************************************** (II)-E-11 (II)-Fig.E.3 Cross section of JRR-3 standard aluminide type fuel ***************** (II)-E-13                (II)-Fig.E.3 Cross section of JRR-3 standard silicide type fuel ********************* (II)-E-12 (II)-Fig.E.4 Cross section of JRR-3 standard silicide type fuel********************** (II)-E-14                                                                                                                        Deletion of JRR-4 (II)-Fig.E.5 Analytical model of undamaged and damaged packages in array, containing the basket for box type fuel (Axial direction)
[In case of containing JRR-4 low enrichment silicide type fuel] ******************************* (II)-E-15 (II)-Fig.E.6 Analytical model of undamaged and damaged packages in array, containing the basket for box type fuel (Cross section of basket)
[In case of containing JRR-4 low enrichment silicide type fuel] ******************************* (II)-E-16 (II)-Fig.E.7 Cross section of JRR-4 low enrichment silicide type fuel************* (II)-E-17 (II)-Fig.E.8 Analytical model of undamaged and damaged packages in array, containing the basket for box type fuel (Axial direction)
[In case of containing JRR-4 high enrichment instrumented fuel (HEU)] ****************** (II)-E-18 (II)-Fig.E.9 Analytical model of undamaged and damaged packages in array, containing the basket for box type fuel (Cross section of basket)
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                                                                          after                                                              note
[In case of containing JRR-4 high enrichment instrumented fuel (HEU)] ******************* (II)-E-19 (II)-Fig.E.10 Cross section of JRR-4 high enrichment instrumented fuel (HEU) ******************* (II)-E-20 (II)-Fig.E.11 Analytical model of undamaged and damaged packages in array,                                    (II)-Fig.E.4 Analytical model of undamaged and damaged packages in array,                                Deletion of JRR-3 containing the basket for box type fuel (Axial direction)                                                      containing the basket for box type fuel (Axial direction)                                  aluminide fuel
[In case of containing                                                                                        [In case of containing                                                                    Changes of drawing JRR-3 follower aluminide or silicide type fuel] ************************ (II)-E-21                            JRR-3 follower silicide type fuel] ****************************************** (II)-E-13    number and page (II)-Fig.E.12 Analytical model of undamaged and damaged packages in array,                                    (II)-Fig.E.5 Analytical model of undamaged and damaged packages in array,                                number due to addition containing the basket for box type fuel (Cross section of basket)                                              containing the basket for box type fuel (Cross section of basket)                          and deletion of
[In case of containing                                                                                        [In case of containing                                                                    drawings JRR-3 follower aluminide or silicide type fuel] ************************ (II)-E-22                            JRR-3 follower silicide type fuel] ****************************************** (II)-E-14    Same as above (II)-Fig.E.13      Cross section of JRR-3 follower aluminide type fuel *********** (II)-E-23 (II)-Fig.E.14      Cross section of JRR-3 follower silicide type fuel **************** (II)-E-24              (II)-Fig.E.6        Cross section of JRR-3 follower silicide type fuel *************** (II)-E-15          Same as above (II)-Fig.E.15      Analytical model of undamaged and damaged packages in array,                              (II)-Fig.E.7        Analytical model of undamaged and damaged packages in array, containing the basket for MNU type fuel (Axial direction)                                                      containing the basket for MNU type fuel (Axial direction)
[In case of containing JRR-3 MNU type fuel] ********************** (II)-E-25                                  [In case of containing JRR-3 MNU type fuel]********************** (II)-E-16            Same as above (II)-Fig.E.16      Analytical model of undamaged and damaged packages in array,                              (II)-Fig.E.8        Analytical model of undamaged and damaged packages in array, containing the basket for MNU type fuel (Cross section of basket)                                              containing the basket for MNU type fuel (Cross section of basket)
[In case of containing                                                                                        [In case of containing JRR-3 MNU type fuel] **************************************************** (II)-E-26                            JRR-3 MNU type fuel]**************************************************** (II)-E-17      Same as above (II)-Fig.E.17      Arrangement plan of the core ***************************************** (II)-E-33          (II)-Fig.E.9        Arrangement plan of the core***************************************** (II)-E-24      Same as above (II)-Fig.E.2.1      Analytical model in case of containing the basket                                          (II)-Fig.E.2.1      Analytical model in case of containing the basket for box type fuel (Axial direction)[In case of containing                                                      for box type fuel (Axial direction)[In case of containing JRR-3 standard aluminide or silicide type fuel]******************* (II)-E-41                                  JRR-3 standard silicide type fuel] ************************************ (II)-E-31      Same as above (II)-Fig.E.2.2      Analytical model in case of containing the basket                                                                                                                                                    Deletion of JRR-4 for box type fuel (Axial direction) [In case of containing                                                                                                                                            Deletion of JRR-3 JRR-4 low enrichment silicide type or                                                                                                                                                                  aluminide fuel high enrichment instrumented fuel]********************************** (II)-E-42              (II)-Fig.E.2.2      Analytical model in case of containing the basket                                    Changes of drawing (II)-Fig.E.2.3      Analytical model in case of containing the basket                                                            for box type fuel (Axial direction) [In case of containing                              number and page for box type fuel (Axial direction) [In case of containing                                                    JRR-3 follower silicide type fuel] ************************************** (II)-E-32    number due to addition JRR-3 follower aluminide or silicide type fuel] ******************** (II)-E-43              (II)-Fig.E.2.3      Analytical model in case of containing                                                and deletion of (II)-Fig.E.2.4      Analytical model in case of containing                                                                      the basket for MNU type fuel ****************************************** (II)-E-33      drawings the basket for MNU type fuel ******************************************* (II)-E-44          (II)-Fig.E.3.1      Maximum displacement of basket for box type fuel (II)-Fig.E.3.1      Maximum displacement of basket for box type fuel                                                            after 9 m drop test ********************************************************* (II)-E-36 Changes of page after 9 m drop test ********************************************************* (II)-E-48      (II)-Fig.E.3.2      Analytical model of basket for box type fuel                                          number (II)-Fig.E.3.2      Analytical model of basket for box type fuel                                                                after 9 m drop test (Cross section of basket) *********************** (II)-E-37        Same as above after 9 m drop test (Cross section of basket) *********************** (II)-E-49              (II)-Fig.E.4.1      Influence of water density on effective (II)-Fig.E.4.1      Influence of water density on effective                                                                      multiplication coefficient (Keff) **************************************** (II)-E-38    Same as above multiplication coefficient (Keff) **************************************** (II)-E-50 Same as above
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                                                            after          note (III)-Fig.B.1  Quality assurance organization for design of                                                                                        Deletion due to moving the packaging, etc. ********************************************************* (III)-B-4                                              to another chapter
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                                                                                      after                                                                    note LIST OF TABLES                                                                                                              LIST OF TABLES (I)-Table D.1  Specification of contents ....................................................... (I)-50                  (I)-Table D.1  Specification of contents ........................................................ (I)-46            Changes of page (I)-Table D.2  Quantities of major radionuclides (per package) ................. (I)-51                                  (I)-Table D.2  Quantities of major radionuclides (per package) .................. (I)-47                            number (II)-Table A.1  Structural design conditions and analysis method                                                          (II)-Table A.1  Structural design conditions and analysis method Requirements of package1                    .................................... (II)-A-5                            Requirements of package1 .................................... (II)-A-5 (II)-Table A.2  Weight of Package ................................................................. (II)-A-28              (II)-Table A.2  Weight of nuclear fuel package ............................................. (II)-A-28                Refinement of (II)-Table A.3  Mechanical property of material ......................................... (II)-A-30                        (II)-Table A.3  Mechanical property of material ......................................... (II)-A-30                  description (II)-Table A.4  Dissimilar materials contacting ......................................... (II)-A-37                        (II)-Table A.4  Dissimilar materials contacting .......................................... (II)-A-37 (II)-Table A.5  Standard usage for respective material of packings .......... (II)-A-40                                    (II)-Table A.5  Standard usage for respective material of packings ........... (II)-A-40 (II)-Table A.6  Loading condition, allowable stress and safety factor of                                                  (II)-Table A.6  Loading condition, allowable stress and safety factor of lifting lug ............................................................................. (II)-A-51                        lifting lug .............................................................................. (II)-A-52  Changes of page (II)-Table.A.7  The maximum force applied to one bottom fin ..................... (II)-A-89                                (II)-Table.A.7  The maximum force applied to one bottom fin ..................... (II)-A-91                          number (II)-Table A.8  Summary of pressure and temperature                                                                        (II)-Table A.8  Summary of pressure and temperature (Normal conditions of transport) ........................................ (II)-A-103                                      (Normal conditions of transport) ......................................... (II)-A-106                Same as above (II)-Table A.9  Thermal expansion in the longitudinal direction of each                                                    (II)-Table A.9  Thermal expansion in the longitudinal direction of each basket and the packaging, safety factor and safety margin                                (II)-A-110                      basket and the packaging, safety factor and safety margin                                  (II)-A-113 Same as above (II)-Table.A.10 Stress in Basket .................................................................. (II)-A-112            (II)-Table.A.10 Stress in Basket ................................................................... (II)-A-116      Same as above (II)-Table A.11 Maximum thermal stress generated in each basket .......... (II)-A-114                                      (II)-Table A.11 Maximum thermal stress generated in each basket ........... (II)-A-118                                Same as above (II)-Table A.12 Thermal expansion in the radial direction of each                                                          (II)-Table A.12 Thermal expansion in the radial direction of each basket and the packaging, safety factor and safety margin                                (II)-A-114                      basket and the packaging, safety factor and safety margin . (II)-A-118                                Same as above (II)-Table A.13 Stress of lid bolt .................................................................... (II)-A-119        (II)-Table A.13 Stress of lid bolt ..................................................................... (II)-A-124  Same as above (II)-Table A.14 The analysis conditions of the drop analysis........................ (II)-A-139                            (II)-Table A.14 The analysis conditions of the drop analysis ........................ (II)-A-144                      Same as above (II)-Table A.15 Material characteristics of JRR-3 MNU type fuel ............... (II)-A-202                                (II)-Table A.15 Material characteristics of JRR-3 MNU type fuel ................ (II)-A-200                          Same as above (II)-Table A.16 Maximum stress, safety factor and safety margin of                                                        (II)-Table A.16 Maximum stress, safety factor and safety margin of JRR-3 MNU type fuel for the drop to A-direction .............. (II)-A-204                                                  JRR-3 MNU type fuel for the drop to A-direction ............... (II)-A-202                            Same as above (II)-Table A.17 Maximum stress, safety factor and safety margin of                                                        (II)-Table A.17 Maximum stress, safety factor and safety margin of JRR-3 MNU type fuel for the drop to B-direction .............. (II)-A-207                                                  JRR-3 MNU type fuel for the drop to B-direction ............... (II)-A-205                            Same as above (II)-Table A.18 Maximum impact deceleration of drop test-I ....................... (II)-A-268                              (II)-Table A.18 Maximum impact deceleration of drop test-I........................ (II)-A-254                        Same as above (II)-Table A.19 Summary of pressure and temperature (at fire accident) ... (II)-A-286                                      (II)-Table A.19 Summary of pressure and temperature (at fire accident) .... (II)-A-272                                Same as above (II)-Table A.20 Result of structural analysis (Requirements of package) .... (II)-A-304                                    (II)-Table A.20 Result of structural analysis (Requirements of package) ..... (II)-A-290                              Same as above (II)-Table A.21 Evaluation of the strain at the containment boundary                                                      (II)-Table A.21 Evaluation of the strain at the containment boundary between the lid and the shell flange under accident                                                                        between the lid and the shell flange under accident conditions of transport ........................................................ (II)-A-321                                conditions of transport ......................................................... (II)-A-307          Same as above (II)-Table A.22 Damage state of the package under normal conditions                                                        (II)-Table A.22 Damage state of the package under normal conditions of transport for packages containing fissile material ......... (II)-A-334                                                of transport for packages containing fissile material ......... (II)-A-320                            Same as above (II)-Table A.23 Drop posture and procedure of sequence drop tests ........... (II)-A-337                                  (II)-Table A.23 Drop posture and procedure of sequence drop tests ........... (II)-A-323                              Same as above (II)-Table A.24 Accumulated displacement value and impact deceleration                                                    (II)-Table A.24 Accumulated displacement value and impact deceleration of 9 m drop test .................................................................... (II)-A-337                          of 9 m drop test .................................................................... (II)-A-323      Same as above (II)-Table A.25 Damage state of the package under the accident                                                            (II)-Table A.25 Damage state of the package under the accident conditions of transport for package containing                                                                              conditions of transport for package containing fissile material....................................................................... (II)-A-339                          fissile material ..................................................................... (II)-A-325    Same as above
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                                                                                        after                                                                  note (II)-Table A10.2-1    Peak load and deformation value of the fin                                                            (II)-Table A10.2-1    Peak load and deformation value of the fin
( Test results) ................................................................... (II)-A-349                              ( Test results) ................................................................... (II)-A-335  Same as above (II)-Table A.10.4-1 Comparison between the allowable value and                                                              (II)-Table A.10.4-1 Comparison between the allowable value and the actual size.................................................................. (II)-A-377                                the actual size .................................................................. (II)-A-363    Same as above Omission                                                                                                                    Omission (II)-Table D.1 Specification of fuel elements contained in the packaging .... (II)-D-6                                      (II)-Table D.1 Specification of fuel elements contained in the packaging .... (II)-D-5                                Same as above (II)-Table D.2 Specification of fuel elements used in the shielding analysis (II)-D-7                                        (II)-Table D.2 Specification of fuel elements used in the shielding analysis (II)-D-6                                  Same as above (II)-Table D.3 Gamma source intensity......................................................... (II)-D-9                      (II)-Table D.3 Gamma source intensity ......................................................... (II)-D-8              Same as above (II)-Table D.4 Neutron source intensity ...................................................... (II)-D-11                    (II)-Table D.4 Neutron source intensity ....................................................... (II)-D-10              Same as above (II)-Table D.5 Neutron source spectrum ...................................................... (II)-D-12                      (II)-Table D.5 Neutron source spectrum ...................................................... (II)-D-11                Same as above (II)-Table D.6 Volume ratio of materials in source region used in                                                            (II)-Table D.6 Volume ratio of materials in source region used in gamma shielding analysis .................................................... (II)-D-21                                      gamma shielding analysis ..................................................... (II)-D-20              Same as above (II)-Table D.7 Element density of each region used in gamma shielding                                                        (II)-Table D.7 Element density of each region used in gamma shielding analysis ................................................................................. (II)-D-21                        analysis .................................................................................. (II)-D-20 Same as above (II)-Table D.8 Volume ratio of materials in source region used                                                              (II)-Table D.8 Volume ratio of materials in source region used in gamma shielding analysis ................................................ (II)-D-21                                      in gamma shielding analysis ................................................. (II)-D-20              Same as above (II)-Table D.9 Atomic number density in each region used in neutron                                                          (II)-Table D.9 Atomic number density in each region used in neutron shielding analysis ................................................................... (II)-D-22                            shielding analysis .................................................................... (II)-D-21    Same as above (II)-Table D.10 Density of materials used in shielding analysis .................. (II)-D-22                                (II)-Table D.10 Density of materials used in shielding analysis ................... (II)-D-21                          Same as above (II)-Table D.11 Conversion coefficient of unit gamma flux into air absorbed                                                  (II)-Table D.11 Conversion coefficient of unit gamma flux into air absorbed dose equivalent rate .............................................................. (II)-D-24                                dose equivalent rate .............................................................. (II)-D-23        Same as above (II)-Table D.12    Conversion coefficient of neutron dose equivalent rate ... (II)-D-29                                    (II)-Table D.12    Conversion coefficient of neutron dose equivalent rate .... (II)-D-28                              Same as above (II)-Table D.13    Maximum dose equivalent rate in transport of the package                                                (II)-Table D.13    Maximum dose equivalent rate in transport of the package with basket for box type fuel ............................................ (II)-D-33                                        with basket for box type fuel ............................................. (II)-D-32              Same as above (II)-Table D.14    Maximum dose equivalent rate in transport of the package                                                (II)-Table D.14    Maximum dose equivalent rate in transport of the package with basket for MNU type fuel ......................................... (II)-D-34                                            with basket for MNU type fuel .......................................... (II)-D-33                Same as above (II)-Table D.2.1    Dose equivalent rate at each point of packaging ............. (II)-D-39                                  (II)-Table D.2.1    Dose equivalent rate at each point of packaging .............. (II)-D-38                          Same as above (II)-Table D.2.2    Gamma flux at point P1 .................................................... (II)-D-41                    (II)-Table D.2.2    Gamma flux at point P1 ..................................................... (II)-D-40            Same as above (II)-Table D.2.3    Gamma flux at point-P2 .................................................... (II)-D-43                    (II)-Table D.2.3    Gamma flux at point-P2 ..................................................... (II)-D-42            Same as above (II)-Table D.2.4    Gamma flux at point-P3 .................................................... (II)-D-44                    (II)-Table D.2.4    Gamma flux at point-P3 ..................................................... (II)-D-43            Same as above (II)-Table D.2.5    Linear attenuation coefficient µ ......................................... (II)-D-45                    (II)-Table D.2.5    Linear attenuation coefficient µ.......................................... (II)-D-44              Same as above (II)-Table D.2.6    Gamma flux at point-P4 .................................................... (II)-D-45                    (II)-Table D.2.6    Gamma flux at point-P4 ..................................................... (II)-D-44            Same as above (II)-Table D.2.7    Dose equivalent rate at point-P4 ....................................... (II)-D-46                      (II)-Table D.2.7    Dose equivalent rate at point-P4 ....................................... (II)-D-45                Same as above (II)-Table D.2.8    Summary of streaming dose equivalent rate ................... (II)-D-49                                  (II)-Table D.2.8    Summary of streaming dose equivalent rate .................... (II)-D-48                          Same as above (II)-Table D.2.9    Gamma flux at each point ................................................ (II)-D-50                      (II)-Table D.2.9    Gamma flux at each point ................................................. (II)-D-49              Same as above (II)-Table D.2.10 Dose equivalent rate on the surface of the vent hole ....... (II)-D-52                                    (II)-Table D.2.10 Dose equivalent rate on the surface of the vent hole ........ (II)-D-51                              Same as above (II)-Table E.1    Fuel element contained in the packaging ........................... (II)-E-5                              (II)-Table E.1    Fuel element contained in the packaging ........................... (II)-E-3                        Same as above (II)-Table E.2    Specification of fuel element used in the criticality                                                      (II)-Table E.2    Specification of fuel element used in the criticality analysis ................................................................................ (II)-E-6                          analysis ................................................................................ (II)-E-4  Same as above
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                                                                                  after                                                                  note (II)-Table E.3  Atomic number density of each region ............................... (II)-E-28                        (II)-Table E.3  Atomic number density of each region ................................ (II)-E-19                Same as above (II)-Table E.4  Calculation results ................................................................ (II)-E-31        (II)-Table E.4  Calculation results ................................................................ (II)-E-22 Same as above (II)-Table E.2.1 Atomic number density used in the criticality analysis                                                (II)-Table E.2.1 Atomic number density used in the criticality analysis in case of containing the basket for MNU type fuel ........... (II)-E-45                                              in case of containing the basket for MNU type fuel ............ (II)-E-34                      Same as above (II)-Table F.1  Anticipated usage during the planned period of use ............ (II)-F-1                      ddition of (II)-Table F.2  Evaluation of necessity of considering aging in                                                Consideration of aging safety analysis (1/3) ............................................................... (II)-F-3 of nuclear fuel package (II)-Table F.2  Evaluation of necessity of considering aging in                                                due to the revision of safety analysis (2/3) ............................................................... (II)-F-5 the regulations (II)-Table F.2  Evaluation of necessity of considering aging in safety analysis (3/3) ............................................................... (II)-F-6 (IV)-Table A.1  Prior to shipping inspection points....................................... (IV)-A-4                  (III)-Table A.1  Prior to shipping inspection points ....................................... (III)-A-5          Modification for proper (IV)-Table B.1  Periodical inspection points ................................................ (IV)-B-4                (III)-Table B.1 Periodical inspection points ................................................. (III)-B-4        description due to deletion of the previous chapter
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                                                              after                                                      note Chapter  : Package description                                                                  Chapter  : Package description A. Introduction                                                                                A. Introduction This packaging is dry type, and is named JRC-80Y-20T. The transportation                          This packaging is dry type, and is named JRC-80Y-20T. The transportation appearance is appearance is shown in ()-Fig.A.1.                                                              shown in ()-Fig.A.1.
The JRC-80Y-20T packaging is used to transport spent fuels from reactors for                      The JRC-80Y-20T packaging is used to transport spent fuels from reactors for research research (JRR-3, JRR-4) of Japan Atomic Energy Agency (former Japan Atomic Energy                (JRR-3) of Japan Atomic Energy Agency (former Japan Atomic Energy Research Institute) to Deletion of JRR-4 Research Institute) to reprocessing plants in foreign countries.                                  reprocessing plants in foreign countries.
A.1. Name of the packaging:                          JRC-80Y-20T                              A.1. Name of the packaging:                          JRC-80Y-20T A.2. Type:                                            Type B(U) package for fissile material    A.2. Type:                                          Type B(U) package for fissile material A.3. Allowable number of packages and allowable arrangement of packages                        A.3. Allowable number of packages and allowable arrangement of packages Allowable number of packages :                No restriction                                      Allowable number of packages :              Unlimited Allowable arrangement of packages :            No restriction                                    Allowable arrangement of packages :          No restriction A.4. Transport index and criticality safety index                                              A.4. Transport index and criticality safety index Transport index :                              Less than 5.8                                      Transport index :                            Less than 5.8 Criticality safety index :                    0                                                  Criticality safety index :                  0 A.5. Maximum weight of the package:                                                              A.5. Maximum weight of the package:                                                                Modification for 23.2 x  103 kg (at loading the basket for box type fuel)                                          Less than 23.2 tons (at loading the basket for box type fuel)                            proper description A.6. Size of the packaging (at body lifting lug):      Diameter approx. 1.9m                    A.6. Size of the packaging (at body lifting lug):    Diameter approx. 1.9m Height:                                      approx. 2.1m                                        Height:                                    approx. 2.1m A.7. Maximum weight of the packaging:                                                            A.7. Maximum weight of the packaging:                                                              Modification for 22.8 x 103  kg (at loading the basket for box type fuel)                                          Less than 22.8 tons (at loading the basket for box type fuel)                            proper description A.8. Materials                                                                                    A.8. Materials
: 1)    Main parts : Stainless steel (SA-182 Grade F304)                                            1)    Main parts : Stainless steel (SA-182 Grade F304)
: 2)    Basket : Stainless steel (SA-182 Grade F304, SA-240 Type304), Boral plate                  2)    Basket : Stainless steel (SA-182 Grade F304, SA-240 Type304), Boral plate
: 3)    Fin (for heat dissipation and shock absorbing) :Stainless steel (SA-240 Type 304)          3)    Fin (for heat dissipation and shock absorbing) :Stainless steel (SA-240 Type 304)
A.9. Component of the packaging                                                                A.9. Component of the packaging
: 1)    Body                                                                                        1)    Body
: 2)    The basket (The following baskets are used for the fuel types below.)                      2)    The basket (The following baskets are used for the fuel types below.)
The basket for box type fuel                                                                    The basket for box type fuel The basket for MNU type fuel                                                                    The basket for MNU type fuel A.10. Fuel elements contained in the packaging.                                                A.10. Fuel elements contained in the packaging.
The name and number of fuel elements contained in the packaging are as follows;                  Type, number of assemblies, and number of rods to be loaded in the transport container Modification for The basket for box type fuel                  40 pieces (maximum)                                are shown below sorted by fuel basket:                                                  proper description
: 1) JRR-3 standard aluminide type fuel                                                            The basket for box type fuel                40 pieces (maximum)
: 2) JRR-3 standard silicide type fuel                                                                                                                                                      Deletion of JRR-3
: 3) JRR-4 low enrichment silicide type fuel                                                        1) JRR-3 standard silicide type fuel                                                    Aluminide
: 4) JRR-4 high enrichment instrumented fuel (HEU)                                                                                                                                          Deletion of JRR-4
: 5) JRR-3 follower aluminide type fuel
: 6) JRR-3 follower silicide type fuel                                                              2) JRR-3 follower silicide type fuel                                                    Changes of
: 7) Fuels combined the above fuels 1) through 6)                                                  3) Fuels combined the above fuels 1) through 2)                                          drawing number (Herein, these fuel elements 1) through 4) are called box type fuel elements,                        (Herein, the fuel element 1) is called the standard type fuel element, and the fuel due to deletion of
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                                                                after                                                        note and these fuel elements 5) and 6) are called follower type fuel elements)                              element 2) is called the follower type fuel element)                                drawings The basket for MNU type fuel              160 pieces                                          The basket for MNU type fuel                160 pieces
: 1) JRR-3 MNU* type fuel                                                                        1) JRR-3 MNU* type fuel A.11. Planned years of use                                                                        Addition of
: 1) Planned years of use: 70 years                                                          evaluation of
: 2) Number of times used for transport per year: once or less                                Consideration of
: 3) Number of days required per transport: 365 days or less                                  aging of nuclear Omission                                                                                      Omission                                                                                                fuel package due to the revision of C. Package description - packaging                                                            C. Package description - packaging                                                                    the regulations Omission                                                                                      Omission C.2.3 Basket                                                                                    C.2.3 Basket (Omission)                                                                                      (Omission)
As shown in (I)-Fig.D.1 to (I)-Fig.D.6, the size in the section of the follower fuel      As shown in (I)-Fig.D.1 to (I)-Fig.D.2, the size in the section of the follower fuel elements which elements which are loaded with the basket for box type fuel is smaller than that of the      are loaded with the basket for box type fuel is smaller than that of the standard type fuel standard type fuel elements. A large space (19mm when the fuel element is put aside      elements.      A large space (19mm when the fuel element is put aside in the lodgement.) arises in the lodgement.) arises between the inside of the basket lodgment and the fuel            between the inside of the basket lodgment and the fuel elements.Therefore, when follower type elements. Therefore, when the follower type fuel elements are loaded with the basket    fuel elements are loaded in a basket for box type fuel, an aluminum alloy spacer shown in (I)-Fig. Modification for for type fuel, the adapter made of aluminum alloy shown in (I)-Fig.C.23 is inserted          C.23 shall be placed between a fuel element and a fuel element insertion hole for the purpose of proper description between the fuel element and the basket lodgement.                                          using it as a heat transfer component and reducing fuel shaking during transportation.
Omission                                                                                      Omission C.3.4 Basket (for box type fuel)                                                                  C.3.4 Basket (for box type fuel)
(1) Neutron poison                                              Boron carbide                  (1) Neutron poison                                                Boron carbide (2) Frame                                                        Stainless steel                (2) Frame                                                          Stainless steel (3) Bottom plate                                                Stainless steel                (3) Bottom plate                                                  Stainless steel (4) Compartment plate                                            Stainless steel,              (4) Compartment plate                                              Stainless steel, Boral plate                                                                                      Boral plate (5) Partition plate                                              Stainless steel                (5) Partition plate                                                Stainless steel As supplementary part,                                                                                                                                                                          Modification for (6) Adapter                                                      Aluminum alloy                (6) Adapter                                                        Aluminum alloy              proper description Omission                                                                                      Omission C.5. Weight                                                                                  C.5. Weight (a) Body (with fins)                                          a : 13.8x103 kg                  (a) Body (with fins)                                            a : 13.8x103 kg (b) Lid, lid bolt                                                                              (b) Lid, lid bolt (1) Lid (with fins)                                          b1 :    6.7x103 kg                (1) Lid (with fins)                                            b1 :  6.7x103 kg (2) Lid bolt                                                b2 :  0.2x103 kg                  (2) Lid bolt                                                  b2 :  0.2x103 kg (c) Basket                                                                                      (c) Basket (1) Basket for box type fuel                                c1 :  2.1x103 kg                  (1) Basket for box type fuel                                  c1 :  2.1x103 kg (2) Basket for MNU type fuel                                c2 :  0.7x103 kg                  (2) Basket for MNU type fuel                                  c2 :  0.7x103 kg (3) Spacer (40 pieces)                                        c3 :  0.13x103 kg (d) Tie down device                                            d  : 1.9x103 kg                (d) Tie down device                                              d  : 1.9x103 kg                Addition of spacer (e) Lifting device                                            e  :  0.2x103 kg                (e) Lifting device                                              e  :  0.2x103 kg              weight
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                                                            after                                                        note (f) Fuel element                                                                              (f) Fuel element (1) Standard type fuel element                        40 pieces  f1 : 0.4x103 kg              (1) Standard type fuel element                          40 pieces  f1 : 0.4x103 kg (2) Follower type fuel element (with the adapters)    40 pieces  f2 : 0.4x103 kg              (2) Follower type fuel element (with the adapters)      40 pieces  f2 : 0.4x103 kg (3) JRR-3 MNU type fuel element                    160 pieces  f3 : 1.6x103 kg              (3) JRR-3 MNU type fuel element                      160 pieces    f3 : 1.6x103 kg Omission                                                                                    Omission D. Contents of package                                                                        D. Contents of package Contents of the package are spent fuel elements of JRR-3 and JRR-4.                        Contents of the package are spent fuel elements of JRR-3.                                      Deletion of JRR-4 The fuel meats of uranium aluminum or uranium silicone aluminum dispersion                The fuel plates of standard type and follower type fuel elements are the fuel meats of uranium Modification for type or uranium aluminum alloy in the fuel plates of standard type and follower type          silicone aluminum dispersion type alloy covered with aluminum alloy.                              proper description fuel element are all covered with aluminum alloy.                                                The metallic natural uranium of JRR-3 MNU type fuel element is covered with aluminum due to deletion of The metallic natural uranium of JRR-3 MNU type fuel element is covered with            alloy. The fuel elements are shown in ()-Fig.D.1 through () -Fig.D.4.        The standard type fuel aluminum alloy. The fuel elements are shown in ()-Fig.D.1 through () -Fig.D.8.          fuel element, the follower type fuel element and JRR-3 MNU type fuel element are shown in Changes of The standard type fuel element, the follower type fuel element and JRR-3 MNU type            ()-Fig.D.1, ()-Fig.D.2 and ()-Fig.D.3 through () -Fig.D.4 respectively.                        drawing number fuel element are shown in ()-Fig.D.1 through () -Fig.D.4, ()-Fig.D.5 through () -                                                                                                            due to deletion of Fig.D.6 and ()-Fig.D.7 through () -Fig.D.8, respectively.                                        The standard type fuel elements are cut off its top and bottom portions which do not contain drawings The standard type fuel elements except JRR-4 high enrichment instrumented fuel          uranium, so as to be a prescribed length, before being loaded in the container, and then inserted Deletion of JRR-4 (HEU) are cut off its top and bottom portions which do not contain uranium, before being      into the fuel basket.
loaded in the packaging. JRR-4 high enrichment instrumented fuel (HEU) is cut off only              The follower type fuel elements are not cut off, and are loaded in the basket. JRR-3 MNU its bottom portion which does not contain uranium, before being loaded in the                type fuels elements are cut into 3 pieces from the connection, and are loaded in the basket.
packaging. The follower type fuel elements are not cut off, and are loaded in the basket.
JRR-3 MNU type fuels elements are cut into 3 pieces from the connection, and are loaded in the basket.
()-Fig.D.1 JRR-3 Standard Aluminide Type Fuel                                                                                                                                                      Deletion of JRR-3
()-Fig.D.2 JRR-3 Standard Silicide Type Fuel                                                ()-Fig.D.1 JRR-3 Standard Silicide Type Fuel                                                          Aluminide
()-Fig.D.3 JRR-4 Low Enrichment Silicide Type Fuel                                                                                                                                                  Changes of
()-Fig.D.4 JRR-4 High Enrichment Instrumented Fuel (HEU)                                                                                                                                            drawing number
()-Fig.D.5 JRR-3 Follower Aluminide Type Fuel                                                                                                                                                      due to deletion of
()-Fig.D.6 JRR-3 Follower Silicide Type Fuel                                                ()-Fig.D.2 JRR-3 Follower Silicide Type Fuel                                                          drawings
()-Fig.D.7 JRR-3 MNU Type Fuel (Top, Middle Fuel)                                            ()-Fig.D.3 JRR-3 MNU Type Fuel (Top, Middle Fuel)                                                    Deletion of JRR-4
()-Fig.D.8 JRR-3 MNU Type Fuel (Bottom Fuel)                                                ()-Fig.D.4 JRR-3 MNU Type Fuel (Bottom Fuel)                                                          Changes of (Fig. omitted)                                                                                (Fig. omitted)                                                                                        drawing number due to deletion of drawings
 
Comparison Table of SAR fOr T)pe JRC80Y20T befor(,                                                                                                                                                                                                      after ModiacatiOn for proper description due to deletion of RR 3 alun nide g
JRR3                        RR3                                                      fuel and deletion
                                                                                                                                                                                                                                                                                                                                                                      ,RR3 ofJRR 4 fuel
                                                                                                                                                              ¨ (picce)
                                ¨
(%)1)
                                                                                                                                                                                                                                                    /piece) l
(
(g/piccc)l nttP (dly) q/
ekagc)
(P
(  /plckage)
(  )
(kE/piccc)
::REttil :(la,d dilicide ty nde1 8 0 11  er  d    1lowe, [licid cr  1            typ  luel elemer  tHan (,ad  d ioECtileJ in one t!  ,, 
                                                                                                                                                                                                                                                                                                                                                                                          )o!
1)Thg v itt in thJ                lucir sp!c'li atio how  u,per v whith co!td il 1 !icn i 1l t lo(11 tt 2)Bun u        (              ((All d ,1 tich w ilhi 1 ) (InitiJl wcixh j
J nt ))x 190 3)Tl    di,oel,siOn        of th c()1    tJ10Cd lucl is wihin trl dimc! i pe licd in(1)1'il D l thio                ,iti: Dl
                                                                                                                                                                                                                                                                                                                                                =h(1)
(I)    Table I)l Speciacation oFcontents
 
Comparison Table of SAR fOr ttpe          RC80 20T befor(,                                                                                        after Mod catiOn for proper descript  on due to deletion of JRR 3  aluminide Cla a cation Basket              Box t ,c              Box t ,e( th  Adapters)  MNUt pe  fuel and deletion Reactor            RR 3                          RR 3                RR  3 of RR 4 fuel
 
pe element    Standard sihcide t            Fouower dttcide t)e        MNUt ,c
¨ Noble gas,etc
¨ 3
Kr85 1 129 1131 Xe131m
 
Heavy element Pu238 Pu239 Pu240 Pu241 Am241 Cm242 Cm244 RP Sr89 Sr90 Y90 Y91 Zr95 Nb95 Ru103 Ru106 Te129m (Ds  134 Cs137 Ba140 Ce141 Pr143 (De144 Pm147 Others Total (I)Table D 2 0uantities of maio4 radionuchdes tte4 packaFre)
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                            after                                                        note Chapter  : Safety analyses                                                                        Chapter  : Safety analyses This package is designed to comply with the IAEA Regulations for the Safe Transport                This package is designed to comply with the IAEA Regulations for the Safe Transport of Radioactive Material 2012 Edition concerning Type B(U) package containing fissile              of Radioactive Material 2012 Edition concerning Type B(U) package containing fissile material. This chapter shows the summary of each analysis for the package.                      material. This chapter shows the summary of each analysis for the package.
(1) Structural analysis                                                                            (1) Structural analysis In the structural analysis of the package, the evaluation of the thermal stress and              In the structural analysis of the package, the evaluation of the thermal stress and internal pressure under normal and accident conditions of transport is performed by                internal pressure under normal and accident conditions of transport is performed by means of finite element method code ABAQUS etc.        Also, the evaluation for drop tests is    means of finite element method code ABAQUS etc.        Also, the evaluation for drop tests is performed by numerical analysis using finite element method code LS-DYNA.                          performed by numerical analysis using finite element method code LS-DYNA.
As the results, it is confirmed that the package sufficiently satisfies all the                  As the results, it is confirmed that the package sufficiently satisfies all the requirements specified in the regulation. Namely, the following is assured.                        requirements specified in the regulation. Namely, the following is assured.
Even if the package is subject to the pressure difference between inside and outside              Even if the package is subject to the pressure difference between inside and outside of the packaging and thermal loads under normal and accident conditions of transport,              of the packaging and thermal loads under normal and accident conditions of transport, the package has sufficiently the containment and shielding performance required in the            the package has sufficiently the containment and shielding performance required in the regulation, and there is no change of the configuration which affects the criticality and          regulation, and there is no change of the configuration which affects the criticality and thermal analysis.                                                                                  thermal analysis.
It is confirmed that there is no deformation which affects criticality analysis and              It was confirmed that there is no deformation affecting the configuration which is the Modification for thermal analysis except the basket for box type fuels which suffers a slight plastic              base for criticality analysis and thermal analysis, except the basket for box type fuel which proper description deformation partially in 9m horizontal drop. For the basket for box type fuels which              suffers a slight plastic deformation partially in 9 m horizontal drop of the package.
suffers a slight plastic deformation, it is confirmed that there is no influence which causes          It was confirmed that even under test conditions for package containing fissile criticality in the critically analysis.                                                            material, as the analytical results, there is no impact on the configuration which is the Even under test conditions for package containing fissile material, as the analytical        base for the evaluation of the subcriticality, except the basket for box type fuel.
results, there is no change of the configuration which affects the evaluation of the subcriticality except the basket for box type fuels. For the basket for box type fuels which suffers a slight plastic deformation partially under the condition, it is confirmed that there is no influence on criticality also in a criticality analysis considered the plastic deformation.                                                                                  (2)  Thermal analysis (2)  Thermal analysis                                                                                      In the thermal analysis of the package, the temperature evaluation of each portion In the thermal analysis of the package, the temperature evaluation of each portion            under normal and accident conditions of transport is performed by using ABAQUS code.
under normal and accident conditions of transport is performed by using ABAQUS code.                    As the results, it was confirmed that the package satisfies the criteria specified in the Same as above As the results, it is confirmed that the package satisfies the criteria specified in the      regulation under normal and accident conditions of transport, and the temperature of regulation under normal and accident conditions of transport, and the temperature of              each portion does not significantly affect the structural strength, the containment and each portion does not affect significantly the structural strength, the containment and            shielding performance.
shielding performance.                                                                        (3)  Containment analysis (3)  Containment analysis                                                                                  In the containment analysis of the package, the radioactive concentration in air inside In the containment analysis of the package, the radioactive concentration in air inside      the package is assumed to be 3.7x10-6TBq/m3 and the leakage value of radioactive gas is the package is assumed to be 3.7x10-6TBq/m3 and the leakage value of radioactive gas is            obtained by using the equation shown in ANSI - N 14.5 1997 edition.
obtained by using the equation shown in ANSI - N 14.5 1997 edition.                                    As the results, it was confirmed that under normal and accident conditions of Same as above As the results, it is confirmed that the obtained leakage values are very smaller than        transport, the obtained leakage values satisfied the criteria of radioactive material the criteria of radioactive material leakage value specified in the regulation.                    leakage value specified in the regulation and notification.
(4) Shielding analysis                                                                            (4) Shielding analysis In the shielding analysis of the package, the source intensity of the package is                  In the shielding analysis of the package, the source intensity of the package is
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                            after                                                        note calculated by using the ORNL isotope generation and depletion code ORIGEN or                      calculated by using the ORNL isotope generation and depletion code ORIGEN or ORIGEN-JR.      Also, the gamma and neutron shielding calculation are performed by                ORIGEN-JR.      Also, the gamma and neutron shielding calculation are performed by using the point kernel code QAD-CGGP2R and two dimensional discrete ordinates                    using the point kernel code QAD-CGGP2R and two dimensional discrete ordinates transport code DOT 3.5, respectively.                                                            transport code DOT 3.5, respectively.
As the results, it is confirmed that the dose equivalent ratios on the surface of the            As the results, it was confirmed that the dose equivalent ratios on the surface of the Same as above package and at points of 1 m from its surface are very small as compared with the criteria        package and at points of 1 m from its surface are sufficiently small compared with the of each case specified in the regulations under routine, normal and accident conditions of        criteria of each case specified in the regulations under routine, normal and accident transport.                                                                                        conditions of transport.
(5)  Criticality analysis                                                                        (5)  Criticality analysis The criticality analysis is performed by using the three dimensional multigroup                  The criticality analysis is performed by using the three dimensional multigroup Monte Carlo KENO-Va code.                                                                        Monte Carlo KENO-Va code.
As the results, it is confirmed that the subcriticality of the package in isolation is            As the results, it was demonstrated that there is no deformation, etc. of the structure Same as above maintained under routine, normal and accident conditions of transport pertaining to              affecting subcriticality evaluation under normal conditions of transport pertaining to package containing fissile material. And it is also confirmed that the subcriticality of the      package containing fissile material, and it was confirmed that the subcriticality is package arrays is maintained under normal and accident conditions of transport                    maintained for the nuclear fuel package under routine conditions of transport, for the pertaining to package containing fissile material.                                                nuclear fuel package in isolation, and for the package in isolation and in array under the normal and accident conditions of transport pertaining to package containing fissile material.
(6)  Consideration of Aging of Nuclear Fuel Package                                                Addition of evaluation As a result of the evaluation of aging effects due to the factors such as heat, radiation, and of Consideration of chemical changes under the conditions of use expected during the planned period of use, aging of nuclear fuel it was confirmed that such effects need not be considered in confirming compliance            package due to the with the technical criteria. For the lifting and containment devices, it is necessary to revision of the consider aging effects due to fatigue as stress will be generated repeatedly. For the lifting regulations and containment devices, each fatigue was evaluated considering the conservative repeat count expected during the period of use, and it was confirmed that there is no impact on compliance with the technical criteria as fatigue failure does not occur.
The details of each analysis and the evaluations are described in Chapter A through        Modification for Chapter F.                                                                                    proper description For the purpose of conservative evaluation, the safety analysis assumes the cases where Changes of description following fuel elements are loaded, which will pose more severe conditions than the current due to deletion of JRR-contents.                                                                                          3 aluminide fuel and
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                  after                                              note Fuel Element A: JRR-3 Standard Aluminide Type Fuel Element (decay heat, maximum JRR-4 fuel temperature)
Fuel Element B: JRR-4 Low Enrichment Type Fuel Element (LEU) (Neutron source intensity)
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                              After        note A. Structural analysis                    A. Structural analysis omission                                omission                              Deletion due to re-evaluation
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                              After          note Deletion of JRR-3 aluminide fuel and change due to moving from separate items descriptions
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                              After          note Move of descriptions to separate lines and deletion of JRR-3 aluminide fuel
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                              After        note Deletion of JRR-4 fuel Changes of drawing number
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                              After        note Deletion of JRR-4 fuel
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                              After        note Deletion of JRR-3 aluminide fuel Changes of drawing number
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                              After          note Deletion of JRR-3 aluminide fuel and JRR-4 fuel Deletion due to moving to separate items descriptions Changes of drawing number
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                              After        note Changes of drawing number
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                              After        note Changes of drawing number
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                              After        note Changes of drawing number
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                              After        note omission                    omission Modification for proper description Deletion of JRR-3 aluminide fuel and JRR-4 fuel
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                              After                                                      note omission                                                                                        omission A.4.2  Low-temperature strength                                                                  A.4.2    Low-temperature strength omission                                                                                        omission a    Clearance between the shell and the basket under the ambient temperature -40.              a    Clearance between the shell and the basket under the ambient temperature -40.
The temperature distribution obtained by thermal analysis under ambient                        The temperature distribution obtained by thermal analysis under ambient temperature temperature -40 of the package is applied.        The temperature distribution of the          of -40 of the nuclear fuel package is applied. The temperature distribution of the inner inner and the outer surface of the shell is shown in (II)-Fig A.12, and the temperature          and the outer surface of the shell is shown in (II)-Fig A.12, and the temperature Modification for distribution of the basket is shown in (II)-Fig A.13.            (II)-Fig.A.13 shows the        distribution of the basket is shown in (II)-Fig A.13. Here, for the basket, in order to proper description temperature distribution of the basket for box type fuel, which has the maximum                  conduct a more conservative evaluation than in the case of the contents, it shows the due to deletion of expansion value, in the case of JRR-3 standard aluminide type fuel being contained.              temperature distribution of the basket for box type fuel containing a fuel element JRR-3 aluminide assumed to have the largest expansion amount under normal conditions (hereinafter fuel referred to as fuel element A). Therefore, the evaluation for the relation between the displacement (expansion) of the basket and the displacement (shrink) of the shell is (omission                                                                                            made as follows.
      )    Clearance in the radial direction r between the shell and the basket Accordingly, the clearance r between the body and the basket is given as              omission follows ;                                                                                    )    Clearance in the radial direction r between the shell and the basket r = 10.2640.492 = 0.244 (mm)                                                                Accordingly, the clearance r between the body and the basket is given as follows ;
Therefore, a clearance between the body and the basket at the                                r = 10.2640.492 = 0.244 (mm)                                                          Addition of ambient      temperature of -40 is 0.244 mm.                                                      Therefore, a clearance between the body and the basket at the ambient temperature evaluation of of -40 is 0.244 mm. And even when considering the expected ambient temperature Consideration of change during transportation (from -40 to 38), since there will be no change in the aging of nuclear fuel No stress due to constraint will occur in each basket.                                    temperature range for the same material, there is no difference in the expansion amount package due to omission                                                                                            of the transport container body nor that of the fuel basket, and no change in the amount revision of the A.4.4  Lifting device                                                                                of gap either.                                                                              regulations omission                                                                                              No stress due to constraint will occur in each basket.
In the design fatigue curve, the allowable number of cycles N corresponding to the omission value S'alt is as follows.                                                                    A.4.4    Lifting device N = 7.4x105 times                                                                    omission On the other hand, the number of cycles n of the lifting lug used during the life of the          In the design fatigue curve, the allowable number of cycles N corresponding to the packaging is as follows.                                                                          value S'alt is as follows.                                                                  Modification for N=  7.4x105  times                                                              proper description On the other hand, assuming that the expected service life is 70 years, the frequency on the evaluation of n =x104    times                                                                      of use is once a year, and the number of handling times per transportation is 100 times, "Consideration of Therefore, the safety factor (RF) and the safety margin (MS) of the fatigue strength of      the repeat count of lifting (n) will be n = 7000 times. Here, to conservatively consider the aging of nuclear fuel the body lifting lug are as follows.                                                              repeat count of lifting, the value to be used in the calculation will be                    package" due to 7.4 x 10 5                                                                            n =x104 times                                                                        revision of the RF =              = 74 1 x 10 4                                                                            Therefore, the safety factor (RF) and the safety margin (MS) of the fatigue strength regulations MS = 741 = 73                                                                          of the body lifting lug are as follows.
Therefore, The integrity of the body lifting lug can be assured, since the allowable                          7.4 x 10 5 RF =              = 74 number of cycles of the body lifting lug N is sufficiently greater than the number of cycles                        1 x 10 4 during the life of the packaging n.                                                                        MS = 741 = 73
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                          After                                                        note Therefore, The integrity of the body lifting lug can be assured, since the allowable number of cycles of the body lifting lug N is sufficiently greater than the number of cycles during the life of the packaging n. Based on the above, as a result of the fatigue evaluation Modification for by setting the repeat count conservatively, it was confirmed that fatigue failure did not proper description occur.
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                              After                                                          note omission                                                                                          omission A.4.6  Pressure                                                                                  A.4.6    Pressure omission                                                                                          omission The change on the stress corresponding to the increase in the internal pressure is                  The change on the stress corresponding to the increase in the internal pressure is obtained from the result of stress calculation due to only the internal pressure in                obtained from the result of stress calculation due to only the internal pressure in paragraph A.5.1.3. The maximum stress (stress intensity) occurs in the inner surface at            paragraph A.5.1.3.      The maximum stress (stress intensity) occurs in the inner surface at the center of the body bottom plate, and the value is 0.077 MPa (= 0.06x2.270.06).                the center of the body bottom plate, and the value is 0.077 MPa (= 0.06x2.270.06).              Modification for Therefore, if the ambient pressure is reduced to 6.0x104  Pa , the effect of the pressure          Therefore, if the ambient pressure is reduced to  6.0x104  Pa , the effect of the pressure proper description reduction upon the packaging can be ignored.                                                      reduction upon the packaging can be ignored.                                                      due to re-evaluation As shown in paragraph (  )-C.3.1 2, the leaktightness test of the packaging is                In addition, in the evaluation of the strain level of the lid sealing boundary for the special performed at the internal pressure of greater than 0.42 MPaG and has been verified that            test conditions shown in (II)-Table A.21, it was confirmed that the sealing property was the containment of the packaging is secured. Therefore, the safety of the packaging can            maintained since the recovery of the initial clamping stress was confirmed and the mouth be secured without affecting its containment.                                                      opening was less than 2.01 mm for an initial clamping allowance of 3 mm.
A.4.7  Vibration                                                                                    A.4.7 Vibration omission                                                                                        omission Therefore,                                                                                    Therefore, f1 = 999 Hz 1  999 Hz Since the natural frequency of the package is about 999 Hz against the maximum effective Modification for Since the natural frequency of the package is about 999 Hz against the maximum frequency (approx. 50 Hz)15) which is predicted during transportation, there will be no proper description effective frequency (approx. 50 Hz)15) which is predicted during transport, there will be no resonance during transportation.
resonance during transport.
The relationship24) between the amplification factor and the ratio of frequencies is given Modification for Therefore, various bolts used for the packaging will not cause resonance, and they will by the curve shown in (II)-Fig. A.34. Here, since the expected frequency of vibrations proper description not become loose because they are provided with antirotation keys.
during transportation is about 50 Hz, the amplification factor will be obtained as follows:      on the evaluation of Ratio of frequencies  f / fn                                                                "Consideration of 0.05                                                                            aging of nuclear fuel Where, fnNatural frequency of the package                                                        package" due to f: Frequency of vibrations during transportation                                        revision of the Therefore,                                                                                        regulations Amplification factor  1 Therefore, since there is no influence of load amplification due to vibrations during transportation, in addition, in the stacking evaluation ((II)-A.5.4) under the normal test conditions, considering the fact that the transport container will not be deformed even when it is subjected to five times its own weight + its own weight load, there is no risk of cracks, damages, etc. to the transport container due to vibrations during transportation.
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                              After note
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                              After                                                note omission                                                                                        omission
.5.1    Thermal test                                                                                .5.1    Thermal test The results of thermal analysis of the package conducted under the normal conditions of            The results of thermal analysis of the nuclear fuel package conducted under the normal transport are summarized as shown in (II)-B.4.                                                  test conditions are summarized as shown in (II)-B.4.
: 1)    The maximum temperature and the maximum internal pressure are generated in                    1)  The maximum temperature and maximum internal pressure will occur, when            Modification for an environment under the solar insolation when JRR-3 standard aluminide type fuel with            considering conservatively, under the environment where the fuel element As which have proper description the maximum decaying heat is contained.                                                            the greatest decay heat are contained and are subjected to the solar radiation heat.      due to deletion of omission                                                                                        omission                                                                                      JRR-3 aluminide
.5.1.1 Summary of pressure and temperature                                                            .5.1.1 Summary of pressure and temperature                                              fuel omission                                                                                        omission The temperature distribution of the packaging and basket is shown in (II)-Fig.A.34                  The temperature distribution of the packaging and basket is shown in (II)-Fig.A.34 through Fig.A.36. The temperature distribution of the components of the packaging              through Fig.A.36. The temperature distribution of the components of the packaging shown in (II)-Fig.A.34 denotes the values of the maximum temperature gradient when fuel            shown in (II)-Fig.A.34 denotes the values of the maximum temperature gradient when elements are contained in the packaging.                                                          fuel elements are contained in the packaging.
The contained fuel is the JRR-3 standard aluminide type fuel which is thermally                  The contained fuel was the fuel element A which was thermally analyzed under the analyzed under the conditions in an environment at 38 without the solar insolation.              conditions in an environment at 38 without the solar insolation.                        same as above same as above omission
.5.1.2  Thermal expansion                                                                      omission
: 1.      Thermal stress and deformation of the packaging                                          .5.1.2    Thermal expansion omission                                                                                    1.        Thermal stress and deformation of the packaging The maximum internal pressure      5.17'104  PaG (the value of the basket for box type    omission fuel, when the JRR-3 standard aluminide type fuel is contained, shown in (II)-Table A.8),                The maximum internal pressure of 5.17x104 PaG when the fuel element A is contained is rounded conservatively as 6.0 '104 PaG. Temperature distribution is used in which                  (the value of the basket for box type fuel shown in (II)-Table A.8) was rounded same as above the greatest thermal stress is expected. Thus, the value having the greatest temperature          conservatively as 6.0 x104 PaG. The temperature distribution in which the greatest gradient (when under 38°C of ambient temperature and JRR-3 standard aluminide type                    thermal stress would be expected, that is, temperature gradient would be the greatest fuel is contained in the packaging the absence of insolation) is used.                                (under ambient temperature of 38°C, without solar insolation and containing fuel same as above omission                                                                                            element A) was used.
The result of the analysis is as follows;.
b <0 +  body (1.44 mm < 4.526 mm)                                                omission Therefore, it becomes the following in any basket.                                                  The result of the analysis is as follows;.
b <0 +  body                                                                                  b <0 +  body (1.44 mm < 4.526 mm)
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                            After                                                      note Therefore, the basket is not restricted between the bottom plate of the body and the            Therefore, it becomes the following in any basket.
internal surface of the lid. Therefore, the stress generated in the basket is caused by the                b <0 +    body temperature gradient of the basket itself.                                                            And even when considering the expected ambient temperature changes during transportation (from -40 to 38), since there is no change in the temperature range of the same material, there is no difference in the expansion amount of the transport Addition of container body nor that of the fuel basket, and no change in the amount of gap either. evaluation of Therefore, the basket is not restricted between the bottom plate of the body and the Consideration of internal surface of the lid. Therefore, the stress generated in the basket is caused by the aging of nuclear fuel temperature gradient of the basket itself.                                                    package due to revision of the regulations
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                            After                                                      note omission                                                                                        omission As a result of the calculation obtained by the above expressions, the elongations rb              As a result of the calculation obtained by the above expressions, the elongations rb in the radial direction of the basket are shown in (II)-Table A.12. In the Table, the initial    in the radial direction of the basket are shown in (II)-Table A.12. In the Table, the initial gap g0 at the room temperature, the safety factor, and the safety margin are also shown.          gap g0 at the room temperature, the safety factor, and the safety margin are also shown.
Therefore, as apparent from the Table, there is still a gap between each basket and              Therefore, as apparent from the Table, there is still a gap between each basket and the internal surface of the packaging even after thermal expansion. For this reason, the      the internal surface of the packaging even after thermal expansion. For this reason, the Addition of stress due to restriction is not generated in each basket.                                        stress due to restriction is not generated in each basket.                                    evaluation of And even when considering the expected ambient temperature changes during                Consideration of transportation (from -40 to 38), since there is no change in the temperature range of      aging of nuclear fuel the same material, there is no difference in the expansion amount of the transport            package due to omission                                                                                            container body nor that of the fuel basket, and no change in the amount of gap either.        revision of the A.5.1.4 Comparison of allowable stress                                                            omission                                                                                        regulations (omission                                                                                      A.5.1.4 Comparison of allowable stress Therefore, the safety factor (RF) and the safety margin (MS) on the stress                omission classification line A of the body and the lid are as follows;                                        Therefore, the safety factor (RF) and the safety margin (MS) on the stress 411                                                                              classification line A of the body and the lid are as follows; RF =        = 6.9 59.4 411 MS = 6.9  1 = 5.9                                                                                =
59.4
                                                                                                                            = 6.9 Therefore, the structural integrity of the packaging is maintained, because the stress which is generated on each part of the packaging is within the allowable stress.                            = 6.9 - 1 = 5.9 Therefore, the structural integrity of the packaging is maintained, because the stress which is generated on each part of the packaging is within the allowable stress.
In addition, the temperature change from room temperature (20) to 105 was Addition of studied. When considering the lowest ambient temperature of -40 expected during evaluation of transportation, the temperature difference between -40 and 105 is 145. The stress Consideration of in this case will be aging of nuclear fuel 59.4 x 145/85  101.3  102 MPa                                                    package due to Therefore, the safety factor RF and the margin factor MS are as follows:
revision of the 411                                                                        regulations
                                                                                                                =        = 4.0 102
                                                                                                                = 4.0 - 1 = 3.0 Then, there is no risk of cracks or failures, etc. even when ambient temperature omission changes expected during transportation are considered.
On the other hand, the number of operating cycles n during the life of the packaging omission is 100 cycles.
On the other hand, the number of operating cycles n during the life of the packaging is The safety factor (RF) and the safety margin (MS) of the fatigue strength of the lid 300 cycles.
bolt are as follows;                                                                                                                                                                            Changes due to re-The safety factor (RF) and the safety margin (MS) of the fatigue strength of the lid 3400                                                                                                                                                                            evaluation of RF =        = 34                                                                        bolt are as follows; 100                                                                                                                                                                            "Consideration of MS = 34  1 = 33                                                                                      3400                                                                            aging of nuclear fuel
                                                                                                              =        = 11.3 Therefore, the allowable number of cycles of the lid bolt is sufficiently greater than                    300                                                                            package" due to the number of operating cycles during the life of the packaging, and the fatigue failure                  = 11.3 - 1 = 10.3                                                                  revision of the dose not occur in the lid bolt.                                                                                                                                                                regulations
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                          After                                                        note Therefore, the allowable number of cycles of the lid bolt is sufficiently greater than the number of operating cycles during the life of the packaging, and the fatigue failure omission                                                                                            dose not occur in the lid bolt.
A.6.1    Mechanical test  drop test I (9 m drop)
* Times of use N = 4/yearx70 yearsxmargin  300 times omission                                                                                    omission (2) The total mass of the package is a maximum when the basket for box type fuel such as A.6.1        Mechanical test  drop test I (9 m drop)
JRR-3 standard aluminide type fuel is contained.      The maximum total mass of the      omission package 23.2 x  103 kg is used as the total mass in the analysis.                          (2) The total mass of the package will be a maximum when the basket for box type fuel omission                                                                                                    (contents: JRR-3 standard Silicide type fuel element, etc.) is contained. The          Modification for A.6.1.1 Vertical drop                                                                                  maximum total mass of 23.2 x 10 kg is used in the analysis.
3 proper description omission                                                                                  omission                                                                                          due to deletion of
: 1. Containment at the contact surface of the lid and the body                                  A.6.1.1 Vertical drop                                                                          JRR-3 aluminide 1.1 Top vertical drop                                                                          omission                                                                                      fuel 1.2 Bottom vertical drop                                                                        1. Containment at the contact surface of the lid and the body
: 2. Strength of the valve                                                                      1.1 Top vertical drop
: 3. Strength of the baskets                                                                    1.2 Bottom vertical drop 3.1 Basket for box type fuel                                                                    2. Strength of the valve 3.2 Basket for MNU type fuel                                                                    3. Strength of the baskets
: 4. Strength of the fuel elements                                                              3.1 Basket for box type fuel 4.1 JRR-3 standard aluminide type fuel                                                          3.2 Basket for MNU type fuel 4.2 JRR-3 standard silicide type fuel                                                            4. Strength of the fuel elements 4.3 JRR-3 follower aluminide type fuel 4.4 JRR-3 follower silicide type fuel                                                              4.1  JRR-3 standard silicide type fuel 4.5 JRR-3 MNU type fuel 4.6 JRR-4 low enrichment silicide type fuel                                                        4.2  JRR-3 follower silicide type fuel                                                    Change of item 4.7 JRR-4 high enrichment instrumented fuel (HEU)                                                  4.3  JRR-3 MNU type fuel                                                                  number due to deletion of JRR-3 omission                                                                                                                                                                                            aluminide fuel 3.1 Strength of the basket for box type fuel                                                    omission                                                                                          same as above 3.1.1 Strength of the basket                                                                    3.1 Strength of the basket for box type fuel omission                                                                              3.1.1 Strength of the basket                                                                        Deletion    of JRR-4 Accordingly, the safety factor (RF) and the safety margin (MS) against buckling are as        omission                                                                                  fuel follows;                                                                                              Accordingly, the safety factor (RF) and the safety margin (MS) against buckling are 801                                                                                as follows; RF =        = 20 40.0 801 M.S = 201 = 19                                                                                        =
40.0
                                                                                                                                = 20 Therefore, no buckling will occur in the basket for box type fuel due to the vertical
                                                                                                                    = 20 - 1 = 19 drop.
Therefore, no buckling will occur in the basket for box type fuel due to the vertical Modification for drop. In addition, as shown in "(I) C. Transport Container," the neutron absorber is proper description surrounded by basket dividers, which means it will not be crushed and have no effect on subcriticality.
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                After          note 3.1.2 Strength of the neutron poison                                                                                                              Deletion due to re-The neutron poison is as shown in (II)-Fig.A.81.                                                                                        evaluation It has length of 925mm, width of 314.5mm and thickness of 4.5mm.
In the case of vertical drop, the compressive stress occurs in the neutron poison due to inertia force.
This compressive stress (c) is given by the following formula.
F  WgGv c =    =
A    A F
4.5 925 (Unit : mm)
F      314.5 (II)-Fig.A.81          Analytical model of the neutron poison of the basket for box type fuel where, c              : Compressive stress (MPa)
A        : Pressure area of the neutron poison to the vertical direction
                                = 314.5 x 4.5 =1.41 x 103 (mm2)
F        : Inertia force of the neutron poison
                                =WgGv (N)
W        : Mass of the neutron poison Since the density of neutron poison () is 2.67 x 10-6 kg/ mm3, the mass is given as follows; W = 2.67 x 10-6 x 925 x 314.5 x 4.5 = 3.50 (kg) g        : Gravitational acceleration          = 9.8 (m/sec2)
Gv      : Impact deceleration = 445 (g)
Therefore, the compressive stress (c) on the neutron poison is given as follows; 3.50 x 9.8 x 445 c =                    = 10.9 MPa 1.41 x 103 The allowable compressive stress (ca) of the neutron poison is given as follows; ca= 1.5 x y = 1.5 x 44.1 = 66.1 MPa Therefore, the safety factor (RF) and the safety margin (MS) of neutron poison are as follows; 66.1 RF =            = 6.0 10.9 MS = 6.01 = 5.0 Consequently, the neutron poison is never crushed due to the vertical drop, and no influence is brought about to the subcriticality.
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                After        note
: 4. Strength of the fuel element 4.1 Strength of JRR-3 standard aluminide type fuel                                                                                          Deletion  of  JRR-3 The inertia force due to the vertical drop acts on the fuel element at the drop.                                                  aluminide fuel This paragraph shows that the fuel side plate has the sufficient strength enough to be resistible against the such inertia force, and further that the fuel plate never fall.
4.1.1 Strength of the fuel side plate The compressive stress (c) generated at the fuel side plate due to drop is given by the following equation.
F    WgGv c =    =
A          A where, c        : Compressive stress (MPa)
A      : Pressure area of the fuel side plate to the vertical direction
                            = 76.2 x 4.8 x 2 = 7.31 x 102 (mm2)
F      : Inertia force of the fuel element = WgGv (N)
W      : Mass of the fuel element = 8 (kg) g      : Gravitational acceleration = 9.8 (m/sec2)
Gv      : Impact deceleration = 445 (g)
Consequently, the compressive stress (c) on the fuel side plate is as follows; 8 x 9.8 x 445 c =                  = 47.8 MPa 7.31 x 102 In this case, the yield stress (y) of 46 MPa of material A6061-T6 is used, since the yield stress of material A6061-T6 at the operating temperature of 240 is less than that of material AG3NE as shown in (II)-Fig.A.6.
Therefore, the allowable compressive stress (ac) of fuel element of the temperature of 240 is given as follows; ac = 1.5 x y = 1.5 x 46 = 69 MPa Therefore, the safety factor (RF) and the safety margin (MS) are as follows; 69 RF =            = 1.4 47.8 MS = 1.41 = 0.4 Therefore, the fuel side plate has the sufficient strength against the compressive stress due to the vertical drop.
4.1.2 Evaluation of the fuel plate for falling The fuel plate is fixed to two fuel side plates by using ro11 swage method.
The impact force (F) applied to the fuel plate due to the vertical drop is given by the following equation; F = W x g x Gv where, W      : Mass of fuel element = 8.0 (kg)
Gv      : Maximum deceleration at the time of vertical drop = 445 (g)
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                          After                                                        note Consequently, the following is given; F = 8.0 x 9.8 x 445 = 3.49 x 104 N On the other hand, the anchoring force (Fr) of fuel plate fixed to the fuel side plate by using roll swage method is given as follows; Fr = nLq where, n      : Number of fuel plate = 20 (pieces)
L      : Length of the fuel plate = 770 (mm) q      : Anchoring force of the fuel plate for each unit length in the fuel production specification = more than 26.5 (N/mm)
Consequently, the following is given; Fr = 20 x 770 x 26.5 = 4.08 x 105 N Therefore, the safety factor (RF) and the safety margin (MS) against fixation of the fuel plate are as shown below; Fr      4.08 x 105 RF =        =            = 11 F      3.49 x 104 MS = 111 = 10 Therefore, the fuel plate is retained without falling.
Changes of item 4.1  Strength of JRR-3 standard silicide type fuel 4.2 Strength of JRR-3 standard silicide type fuel                                                                                                                                                number and The inertia force due to the vertical drop acts on the fuel element.
The inertia force due to the vertical drop acts on the fuel element in the same                                                                                                          description due to This paragraph shows that the fuel side plate has the sufficient strength enough to manner as the JRR-3 standard aluminide type fuel.                                                                                                                                            deletion of JRR-3 be resistible against the such inertia force, and further that the fuel plate never fall.
This paragraph shows that the fuel side plate has the sufficient strength enough                                                                                                          aluminide fuel 4.1.1    Strength of the fuel side plate to be resistible against the such inertia force, and further that the fuel plate never (No change fall.                                                                                                                                                                                        same as above 4.1.2    Evaluation of the fuel plate for falling No change 4.2.1  Strength of the fuel side plate                                                                                                                                                          same as above No change 4.2.2  Evaluation of the fuel plate for falling                                                                                                                                                Deletion    of JRR-3 (No change                                                                                                                                                                                      aluminide fuel 4.3 Strength of JRR-3 follower aluminide type fuel The inertia force acts on the fuel element in the case of the vertical drop in the same manner as JRR-3 standard aluminide type fuel.
This paragraph shows that the fuel side plate has the sufficient strength enough to be resistible against the such inertia force, and further that the fuel plate never fall.
4.3.1 Strength of the fuel side plate The compressive stress (c) generated at the fuel side plate due to drop is given by the following equation.
F      WgGv c =      =
A            A where,        c      : Compressive stress (MPa)
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                              After note A        : Pressure area of the fuel side plate to the vertical direction
                          = 63.6 x 4.8 x 2 = 6.10 x 102 (mm2)
F        : Inertia force of the fuel element = WgGv (N)
W        : Mass of the fuel element = 5.2 (kg) g        : Gravitational acceleration = 9.8 (m/sec2)
Gv      : Impact deceleration = 445 (g)
Consequently, the compressive stress (c) on the fuel side plate is as follows; 5.2 x 9.8 x 445 c =                      = 37.2 MPa 6.10 x 102 In this case, the yield stress (y) of 46 MPa of material A6061-T6 is used, since the yield stress of material A6061-T6 at the temperature of 240 is smaller than that of material AG3NE as shown in (II)-Fig.A.6.
Therefore, the allowable compressive stress (ac) of fuel element of the temperature of 240 is given as follows; ac = 1.5 x y = 1.5 x 46 = 69 MPa Therefore, the safety factor (RF) and the safety margin (MS) are as follows; 69 RF =          = 1.8 37.2 MS = 1.81 = 0.8 Therefore, the fuel side plate has the sufficient strength against the compressive stress due to the vertical drop.
4.3.2 Evaluation of the fuel plate for falling The fuel plate is fixed to two fuel side plates by using ro11 swage method.
The impact force (F) applied to the fuel plate due to the vertical drop is given by the following equation; F = W x g x Gv where, W        : Mass of fuel element = 5.2 (kg)
Gv      : Maximum deceleration at the time of vertical drop = 445 (g)
Consequently, the following is given; F = 5.2 x 9.8 x 445 = 2.27 x 104 N On the other hand, the anchoring force (Fr) of fuel plate fixed to the fuel side plate by using roll swage method is given as follows; Fr = nLq where, n        : Number of fuel plate = 16 (pieces)
L        : Length of the fuel plate = 770 (mm) q  : Anchoring force of the fuel plate for each unit length in the fuel production specification = more than 26.5 (N/mm)
Consequently, the following is given;
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                            After                                                    note Fr = 16 x 770 x 26.5 = 3.26 x 105 N Therefore, the safety factor (RF) and the safety margin (MS) against fixation of the fuel plate are as shown below; Fr    3.26 x 105 RF =        =            = 14 F      2.27 x 104 MS = 141 = 13 Therefore, the fuel plate can be retained without falling.
4.2  Strength of JRR-3 follower silicide type fuel 4.4 Strength of JRR-3 follower silicide type fuel                                                          The inertia force due to the vertical drop acts on the fuel element in the same manner Changes of item The inertia force due to the vertical drop acts on the fuel element in the same manner      as JRR-3 standard silicide type fuel element.                                              number and as JRR-3 standard aluminide type fuel.                                                                This paragraph shows that the fuel side plate has the sufficient strength enough to description due to This paragraph shows that the fuel side plate has the sufficient strength enough to be      be resistible against the such inertia force, and further that the fuel plate never fall. deletion of JRR-3 resistible against the such inertia force, and further that the fuel plate never fall.                                                                                                      aluminide fuel 4.2.1    Strength of the fuel side plate 4.4.1 Strength of the fuel side plate                                                                No change                                                                                same as above No change                                                                                      4.2.2    Evaluation of the fuel plate for falling 4.4.2 Evaluation of the fuel plate for falling                                                        No change                                                                                same as above No change
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                        After                  note 4.5 Strength of JRR-3 MNU type fuel                                                                      4.3  Strength of JRR-3 MNU type fuel    No change Modification for omission                                                                                                                                                    proper description 4.6 Strength of JRR-4 low enrichment silicide type fuel                                                                                                      due to deletion of The inertia force due to the vertical drop acts on the fuel element in the same manner                                                              JRR-3 aluminide as JRR-3 standard aluminide type fuel.                                                                                                                  fuel This paragraph shows that the fuel side plate has the sufficient strength enough to be                                                              Deletion  of  JRR-4 resistible against the such inertia force, and further that the fuel plate never fall.                                                                  fuel 4.6.1 Strength of the fuel side plate The compressive stress (c) generated at the fuel side plate due to drop is given by the following equation.
F    WgGv c =      =
A          A where, c      : Compressive stress (MPa)
A      : Pressure area of the fuel side plate to the vertical direction
                            = 80 x 4.8 x 2 = 7.68 x 102 (mm2)
F      : Inertia force of the fuel element = WgGv (N)
W      : Mass of the fuel element = 5.6 (kg) g      : Gravitational acceleration = 9.8 (m/sec2)
Gv      : Impact deceleration = 445 (g)
Consequently, the compressive stress (c) on the fuel side plate is as follows; 5.6 x 9.8 x 45 c =                      = 31.8 MPa 7.68 x 102 In this case, the yield stress (y) of 46 MPa of material A6061-T6 is used, since the yield stress of material A6061-T6 at the temperature of 240 is smaller than that of material AG3NE as shown in (II)-Fig.A.6.
Therefore, the allowable compressive stress (ac) of fuel element of the temperature of 240 is given as follows; ac = 1.5 x y = 1.5 x 46 = 69 MPa Therefore, the safety factor (RF) and the safety margin (MS) are as follows; 69 RF =          = 2.1 31.8 MS = 2.11 = 1.1 Therefore, the fuel side plate has the sufficient strength against the compressive stress due to the vertical drop.
4.6.2 Evaluation of the fuel plate for falling The fuel plate is fixed to two fuel side plates by using ro11 swage method.
The impact force (F) applied to the fuel plate due to the vertical drop is given by the following equation; F = W x g x Gv
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                After        note where, W        : Mass of fuel element = 5.6 (kg)
Gv      : Maximum deceleration at the time of vertical drop = 445 (g)
Consequently, the following is given; F = 5.6 x 9.8 x 445 = 2.45 x 104 N On the other hand, the anchoring force (Fr) of fuel plate fixed to the fuel side plate by using roll swage method is given as follows; Fr = nLq where, n        : Number of fuel plate = 15 (pieces)
L          : Length of the fuel plate = 630 (mm) q          : Anchoring force of the fuel plate for each unit length in the fuel production specification = more than 26.5 (N/mm)
Consequently, the following is given; Fr = 15 x 630 x 26.5 = 2.50 x 105 N Therefore, the safety factor (RF) and the safety margin (MS) against fixation of the fuel plate are as shown below; Fr      2.50 x 05 RF =        =              = 10 F        2.45 x 104 MS = 101 = 9 Therefore, the fuel plate is retained without falling.
4.7 Strength of JRR-4 high enrichment instrumented fuel (HEU)
The inertia force due to the vertical drop acts on the fuel element in the same manner as JRR-3 standard aluminide type fuel.
This paragraph shows that the fuel side plate has the sufficient strength enough to be                                            Deletion  of JRR-4 resistible against the such inertia force, and further that the fuel plate never fall.                                                  fuel 4.7.1 Strength of the fuel side plate The compressive stress (c) generated at the fuel side plate due to drop is given by the following equation.
F    WgGv c =      =
A            A where, c        : Compressive stress (MPa)
A        : Pressure area of the fuel side plate to the vertical direction
                            = 80 x 4.8 x 2 = 7.68 x 102 (mm2)
F        : Inertia force of the fuel element = WgGv (N)
W        : Mass of the fuel element = 6.0 (kg) g        : Gravitational acceleration = 9.8 (m/sec2)
Gv      : Impact deceleration = 445 (g)
Consequently, the compressive stress (c) on the fuel side plate is as follows; 6.0 x 9.8 x 445 c =                      = 34.1 MPa 7.68 x 102
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                After note In this case, the yield stress (y) of 46 MPa of material A6061-T6 is used, since the yield stress of material A6061-T6 at the temperature of 240 is smaller than that of material AG3NE as shown in (II)-Fig.A.6.
Therefore, the allowable compressive stress (ac) of fuel element of the temperature of 240 is given as follows; ac = 1.5 x y = 1.5 x 46 = 69 MPa Therefore, the safety factor (RF) and the safety margin (MS) are as follows; 69 RF =            = 2.0 34.1 MS = 2.01 = 1.0 Therefore, the fuel side plate has the sufficient strength against the compressive stress due to the vertical drop.
4.7.2 Evaluation of the fuel plate for falling The fuel plate is fixed to two fuel side plates by using ro11 swage method.
The impact force (F) applied to the fuel plate due to the vertical drop is given by the following equation; F = W x g x Gv where, W        : Mass of fuel element = 6.0 (kg)
Gv      : Maximum deceleration at the time of vertical drop = 445 (g)
Consequently, the following is given; F = 6.0 x 9.8 x 445 = 2.62 x 104 N On the other hand, the anchoring force (Fr) of fuel plate fixed to the fuel side plate by using roll swage method is given as follows; Fr = nLq where, n        : Number of fuel plate = 15 (pieces)
L      : Length of the fuel plate = 630 (mm)
Removing 6 width 5mm cuttings for measurement on the fuel plate, the net length of fuel plate comes to L=630-6 x 5=600mm q          : Anchoring force of the fuel plate for each unit length in the fuel production specification = more than 26.5 (N/mm)
Consequently, the following is given; Fr = 15 x 600 x 26.5 = 2.39 x 105 N Therefore, the safety factor (RF) and the safety margin (MS) against fixation of the fuel plate are as shown below; Fr        2.39 x 105 RF =        =                =9 F        2.62 x 104 MS = 91 = 8 Therefore, the fuel plate is retained without falling.
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                                After                                                      note
.6.1.2    Horizontal drop                                                                            .6.1.2    Horizontal drop                                                                      Changes of item omission                                                                                            omission                                                                                      number due to
: 4. Strength of the fuel elements                                                                      4. Strength of the fuel elements                                                          deletion of JRR-3 4.1 JRR-3 standard aluminide type fuel                                                                                                                                                            aluminide fuel 4.2 JRR-3 standard silicide type fuel                                                                  4.1  JRR-3 standard silicide type fuel 4.3 JRR-3 follower aluminide type fuel                                                                                                                                                            same as above 4.4 JRR-3 follower silicide type fuel                                                                  4.2  JRR-3 follower silicide type fuel                                                  same as above 4.5 JRR-3 MNU type fuel                                                                                4.3  JRR-3 MNU type fuel                                                                Deletion    of JRR-4 fuel 4.6 JRR-4 low enrichment silicide type fuel 4.7 JRR-4 high enrichment instrumented fuel (HEU) omission omission 3.1 Basket for box type fuel 3.1 Basket for box type fuel                                                                          3.1.1 Strength of the compartment plate and the partition plate 3.1.1 Strength of the compartment plate and the partition plate                                                  The stress calculation for the horizontal drop of the basket for box type fuel is made The stress calculation for the horizontal drop of the basket for box type fuel is made          for case when the basket drops to two directions of the X-direction and the Y-direction as for case when the basket drops to two directions of the X-direction and the Y-direction as            shown in (II)-Fig.A.93.
shown in (II)-Fig.A.93.                                                                                    The stress calculation for the basket is made by using the general-purpose finite The stress calculation for the basket is made by using the general-purpose finite                element program ABAQUS.
element program ABAQUS.                                                                                    The analysis is also made on the shearing strength at the weld zone between the The analysis is also made on the shearing strength at the weld zone between the                  compartment plate and the partition plate.
compartment plate and the partition plate.                                                                  Strength for the drop to the X-direction a)  Strength for the drop to the X-direction                                                                In the analysis, the inertia force of the basket itself, the fuel element and the  Modification for In the analysis, the inertia force of the basket itself, the fuel element and the neutron        neutron poisons generated by the deceleration are taken into.                                proper description poisons generated by the deceleration are taken into.                                              The partition plate and the compartment plate are modeled with the shell element. As          due to deletion of The partition plate and the compartment plate are modeled with the shell element. As                the mass of the fuel element in the analysis, the largest mass of standard type fuel          JRR-3 aluminide the mass of the furl element in the analysis, the largest mass of standard type fuel                element is used. JRR-3 standard silicide type fuel is assumed as a representative.            fuel element is used. It is assumed JRR-3 standard aluminide type fuel as a                              omission representative.                                                                                          b)  Strength for the drop to the Y-direction omission                                                                                                Strength evaluation at the Y-direction drop is carried out. In the analysis, it is b)    Strength for the drop to the Y-direction                                                        modeled in the same manner as the X-direction drop. Namely, the partition plate and Strength evaluation at the Y-direction drop is carried out.        In the analysis, it is      the compartment plate are modeled with the shell element, and the fuel element, whose modeled in the same manner as the X-direction drop. Namely, the partition plate and                  cross-sectional form is a rectangle (76.2 mmx76.2 mm), is modeled with the solid element the compartment plate are modeled with the shell element, and the fuel element, whose                that has equivalent stiffness. As the mass of the fuel element in the analysis, the largest cross-sectional form is a rectangle (76.2 mm x 76.2 mm), is modeled with the solid                    mass of standard type fuel element is used. JRR-3 standard silicide type fuel is assumed same as above element that has equivalent stiffness. JRR-3 standard aluminide type fuel that has the            as a representative.
largest mass is used again as the fuel element in the analysis.                                omission omission
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                        After                                                        note
: 4. Strength of the fuel elements 4.1 Strength of JRR-3 standard aluminide type fuel                                                                                                                                                Deletion of JRR-3 As the horizontal drop direction, the X-direction and the Y-direction as shown in (II)-                                                                                                  aluminide fuel Fig.A.106 are considered. Since the pressure area of the fuel element to the X-direction is small as compared with that to the Y-direction, the drop to the X-direction is severer than that of the Y-direction.      Consequently, this paragraph shows the compressive strength of the fuel side plate at the drop to the X-direction.
The compressive stress (c) due to the inertia force is given by the following equation; WgGH c =
A where,    W    : Mass of the fuel element = 8.0 (kg) g    : Gravitational acceleration = 9.8 (m/sec2)
GH    : Impact deceleration = 167 (g)
A    : Cross-sectional area of the fuel side plate
                          = 4.8x770x2 = 7.39x103 (mm2)
Therefore, the following is given; 8.0x9.8x167 c =                    = 1.78 MPa 7.39x103 In this case, since the yield stress of material A6061-T6 at the temperature of 240 is less than that of material AG3NE, the yield stress of material A6061-T6 is used.
Consequently, the allowable compressive stress (ac) of the fuel element at the temperature of 240 is as follows; ac = 1.5xy = 1.5x46 = 69 MPa Consequently, the safety factor (RF) and the safety margin (MS) are as follows; 69 RF =          = 38 1.78 MS = 38  1 = 37 As the above result, the fuel side plate of the fuel element has the sufficient strength against the compressive stress due to 9 m horizontal drop (II)-Fig.A.106  Horizontal drop direction of JRR-3 standard aluminide type fuel Fig. omitted 4.2 Strength of JRR-3 standard silicide type fuel The horizontal drop direction of JRR-3 standard silicide type fuel is considered to the    4.1    Strength of JRR-3 standard silicide type fuel X-direction and the Y-direction as shown in (II)-Fig.A.107 in the same manner as JRR-3                The horizontal drop direction of JRR-3 standard silicide type fuel is considered to the standard aluminide type fuel.      The drop to the X-direction is severe, since the pressure      X-direction and the Y-direction as shown in (II)-Fig.A.106. The drop to the X-direction is Changes of item area to the X-direction is smaller than that to the Y-direction.                                  severe, since the pressure area to the X-direction is smaller than that to the Y-direction. number and drawing Accordingly, this paragraph describes the compressive strength against the fuel side            Accordingly, this paragraph describes the compressive strength against the fuel side    number due to plate at the drop to the X-direction.                                                            plate at the drop to the X-direction.                                                        deletion of JRR-3 omission                                                                                                                                                                                    aluminide fuel 4.3 Strength of JRR-3 follower aluminide type fuel                                                omission The horizontal drop direction of JRR-3 follower aluminide type fuel is considered to                                                                                                    Deletion of JRR-3 the X-direction and the Y-direction as shown in (II)-Fig.A.108 in the same manner as JRR-                                                                                                    aluminide fuel
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                          After                                                    note 3 standard aluminide type fuel. The drop to the X-direction is severe, since the pressure area to the X-direction is smaller than that to the Y-direction.
Accordingly, this paragraph describes the compressive strength against the fuel side plate at the drop to the X-direction.
The compressive stress (c) due to the inertia force is given as follows; WgGH c =
A where,    W    : Mass of the fuel element = 5.2 (kg) g    : Gravitational acceleration = 9.8 (m/sec2)
GH    : Impact deceleration = 167 (g)
A    : Cross-sectional area of the fuel side plate (mm2)
                          = 4.8x770x2 = 7.39x103 (mm2)
Therefore, the following is given; 5.2x9.8x167 c =                    = 1.16 MPa 7.39x103 In this case, the yield stress (y) of material AG3NE at the temperature of 240  is less than that of material A6061-T6, therefore, the yield stress (y) of 46 MPa of material AG3NE is used.      Consequently, the allowable compressive stress (ac) at the temperature of 240 is given as follows ;
ab = 1.5xy = 1.5x46 = 69 MPa Consequently, the safety factor (RF) and the safety margin (MS) are as follows; 69 RF =          = 59 1.16 MS = 59  1 = 58 As the above result, the fuel side plate has the sufficient strength against the compressive stress due to 9 m horizontal drop.
(II)-Fig.A.108    Horizontal drop direction of JRR-3 follower aluminide type fuel Fig. omitted 4.4 Strength of JRR-3 follower silicide type fuel                                                    4.2    Strength of JRR-3 follower silicide type fuel The horizontal drop direction of JRR-3 follower silicide type fuel is considered to the          The inertia force due to the vertical drop acts on the fuel element in the same manner X-direction and the Y-direction as shown in (II)-Fig.A.109 in the same manner as JRR-3          as JRR-3 standard silicide type fuel element. The horizontal drop direction of JRR-3 standard aluminide type fuel.      The drop to the X-direction is severe, since the pressure    follower silicide type fuel element is considered to the X-direction and the Y-direction as area to the X-direction is smaller than that to the Y-direction.                                shown in (II)-Fig.A.107 in the same manner as JRR-3 standard silicide type fuel element.
Accordingly, this paragraph describes the compressive strength against the fuel side        The drop to the X-direction is severe, since the pressure receiving area to the X-direction Changes of item plate at the drop to the X-direction.                                                            is smaller than that to the Y-direction in terms of compressive stress on fuel elements. number and drawing No change in description below                                                                omission                                                                                    number due to 4.5 Strength of JRR-3 MNU type fuel                                                                  4.3    Strength of JRR-3 MNU type fuel                                                      deletion of JRR-3 No change in description below                                                                omission                                                                                    aluminide fuel 4.6 Strength of JRR-4 low enrichment silicide type fuel The horizontal drop direction of JRR-4 low enrichment type fuel is considered to the                                                                                                    Modification for X-direction and the Y-direction as shown in (II)-Fig.A.112 in the same manner as JRR-3                                                                                                      proper description due to deletion of
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                            After        note standard aluminide type fuel.      The drop to the X-direction is severe, since the pressure                                        JRR-3 aluminide area to the X-direction is smaller than that to the Y-direction.                                                                    fuel Accordingly, this paragraph describes the compressive strength against the fuel side plate to the horizontal drop of the X-direction.                                                                                    Deletion  of JRR-4 The compressive stress (c) due to the inertia force is given by the following equation;                                      fuel WgGH c =
A where,    W    : Mass of the fuel element = 5.6 (kg) g    : Gravitational acceleration = 9.8 (m/sec2)
GH    : Impact deceleration = 167 (g)
A    : Cross-sectional area of the fuel side plate (mm2)
                            = 4.8x630x2 = 6.04x103 (mm2)
Therefore, 5.6x9.8x167 c =                    = 1.52 MP 6.04x103 In this case, the yield stress (y) of material A6061-T6 at the temperature of 240 is less than that of material AG3NE, therefore, the yield stress (y) of 46 MPa of material A6061-T6 is used.
Consequently, the allowable compressive stress (ac) at the temperature of 240  is given as follows ;
ac = 1.5xy = 1.5x46 = 69 MPa Consequently, the safety factor (RF) and the safety margin (MS) are given as follows; 69 RF =          = 45 1.52 MS = 45  1 = 44 As the result, the fuel side plate has the sufficient strength against the compressive stress at the time of 9 m horizontal drop.                                                                                          Deletion  of JRR-4 (II)-Fig.A.112 Horizontal drop direction of JRR-4 low enrichment silicide type fuel                                              fuel Fig. omitted 4.7 Strength of JRR-4 high enrichment instrumented fuel (HEU)
The horizontal drop direction of JRR-4 low enrichment type fuel is considered to the X-direction and the Y-direction as shown in (II)-Fig.A.113 in the same manner as JRR-3 standard aluminide type fuel.      The drop to the X-direction is severe, since the pressure area to the X-direction is smaller than that to the Y-direction.
Accordingly, this paragraph describes the compressive strength against the fuel side plate to the horizontal drop of the X-direction.
The compressive stress (c) due to the inertia force is given by the following equation; WgGH c =
A where,    W    : Mass of the fuel element = 6.0 (kg) g    : Gravitational acceleration = 9.8 (m/sec2)
GH    : Impact deceleration = 167 (g)
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                            After note A    : Cross-sectional area of the fuel side plate (mm2)
                            = 4.8x630x2 = 6.04x103 (mm2)
Therefore, 6.0x9.8x167 c =                    = 1.63 MP 6.04x103 In this case, the yield stress (y) of material A6061-T6 at the temperature of 240 is less than that of material AG3NE, therefore, the yield stress (y) of 46 MPa of material A6061-T6 is used.
Consequently, the allowable compressive stress (ac) at the temperature of 240  is given as follows ;
ac = 1.5xy = 1.5x46 = 69 MPa Consequently, the safety factor (RF) and the safety margin (MS) are given as follows; 69 RF =          = 42 1.63 MS = 42  1 = 41 As the result, the fuel side plate has the sufficient strength against the compressive stress at the time of 9 m horizontal drop.
(II)-Fig.A.113 Horizontal drop direction of JRR-4 high enrichment instrumented fuel (HEU)
Fig. omitted
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                                    After                                                      note omission                                                                                                omission A.6.3.3      Comparison of allowable stress                                                              A.6.3.3      Comparison of allowable stress omission                                                                                                omission
: 4.      Thermal expansion of the shell and the basket generated during the fire accident                  4.      Thermal expansion of the shell and the basket generated during the fire accident a) Clearance between the shell and the basket generated during the fire accident                          a) Clearance between the shell and the basket generated during the fire accident              Modification for This paragraph shows the examination of JRR-3 standard aluminide fuel                                                This section examines the case of a basket for box type fuel, assuming    proper description contained for box type fuel in which the heat generated by the contents is maximized                      that it is loaded with fuel elements that have a higher calorific value than the contents due to deletion of and the clearance between the shell and the basket is minimized.                                          and a minimum gap between the container body and the fuel basket (hereinafter            JRR-3 aluminide omission                                                                                                        referred to as fuel element A) in order to make the analysis more conservative.          fuel (II)-Fig.A.128 Temperature history of the basket for box type fuel contained JRR-3 standard                  omission aluminide type fuel                                            (II)-Fig.A.124 Temperature history of the basket for box type fuel containing fuel element A Fig. omitted                  Fig. omitted                                                                              Same as above omission                                                                                                omission A.6.4    Water immersion                                                                                  A.6.4    Water immersion Since this nuclear fuel package is a package containing nuclear fuel material, etc. with an amount of radioactivity exceeding 100,000 times A2 value (the ratio of the Modification for radioactivity of the contents to be loaded to the 100,000 times A2 value is proper description approximately 4.5 so exceeds 1), it will be evaluated whether the containment device is not damaged for the 200m immersion test.
It has been confirmed that permanent deformation does not occur and containment                            It has been confirmed that permanent deformation does not occur and containment can be maintained at the water depth of 200 m (2.0MPa).                                                    can be maintained at the water depth of 200 m (2.0MPa).
Therefore the packaging has enough strength and containment capacity at the water                          Therefore the packaging has enough strength and containment capacity at the water depth of 15m because the condition of immersion at the water depth of 200m is more severe                  depth of 15m because the condition of immersion at the water depth of 200m is more than at the water depth of 15m.                                                                            severe than at the water depth of 15m.
omission                                                                                                omission A.6.5    Summary and evaluation of the results                                                          A.6.5      Summary and evaluation of the results This paragraph shows summary and the evaluation of the results under accident                              This paragraph shows summary and the evaluation of the results under accident condition of transport in accordance with each test item.            (II)-Table A.20 shows the            condition of transport in accordance with each test item.            (II)-Table A.20 shows the summary of the results of the structural analysis.                                                        summary of the results of the structural analysis.
: 1. Drop test (9 m drop)                                                                                  1. Drop test (9 m drop)
This item shows the summary of the result of the test.                                                      This item shows the summary of the result of the test.
(1) In the packaging, the gasket portion of the lid flange is the severest part, where is                  (1) In the packaging, the gasket portion of the lid flange is the severest part, where is still in the state of the elasticity in any drop attitude, and the stress of the lid bolt is              still in the state of the elasticity in any drop attitude, and the stress of the lid bolt restored after drop to the initial fastening stress. Therefore, the containment at the                  is restored after drop to the initial fastening stress. Therefore, the containment at contact surface of the lid and the body is maintained and the shielding performance                        the contact surface of the lid and the body is maintained and the shielding is not lost.                                                                                              performance is not lost.
(Refer to , ,  and  of (II )-Table A.20.)                                                              (Refer to , ,  and  of (II )-Table A.20.)
(2) In any drop attitude, the stress generated on the lid bolt is less than the yield stress              (2) In any drop attitude, the stress generated on the lid bolt is less than the yield stress Changes of item of the material and the initial fastening stress is maintained after drop.                                of the material and the initial fastening stress is maintained after drop.                number (Refer to , ,  and  of (II )-Table A.20.)                                                              (Refer to , ,  and  of (II )-Table A.20.)
(3)    Among the baskets, though a slight plastic deformation occurs partially on the                      (3)    Among the baskets, though a slight plastic deformation occurs partially on the Same as above basket for the box type fuel in the horizontal drop, in a criticality analysis that                        basket for the box type fuel in the horizontal drop, in a criticality analysis that
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                          After                                                        note considers that plastic deformation, no influence is brought about to the subcriticality        considers that plastic deformation, no influence is brought about to the as showing in appendix 3 of (II)-E.7.3.                                                        subcriticality as showing in appendix 3 of (II)-E.7.3.
(Refer to  and  of (II )-Table A.20.)                                                        (Refer to  and  of (II )-Table A.20.)
(4) Among the fuel elements, the severest stress is generated in JRR-3 MNU type fuel                (4)  Among the fuel elements, the severest stress is generated in JRR-3 MNU type Same as above contained in the basket during the vertical drop.      Even in this case, it has the          fuel contained in the basket during the vertical drop. Even in this case, it has the sufficient strength, since the safety factor against the stress is 1.2.                                          sufficient strength, since the safety factor against the stress is 1.2.
(Refer to , , ,  and  of (II )-Table A.20.)                                                                                (Refer to , ,  and  of (II )-Table A.20.)
Same as above
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                            After                                                      note
: 2. Drop test-II (penetration test)                                                              2. Drop test-II (penetration test)
The severest stress is generated when the mild steel bar directly hits the protection            The severest stress is generated when the mild steel bar directly hits the protection cover.                                                                                            cover.
Since the safety factor against the stress is 1.08, the mild steel bar will not                  Since the safety factor against the stress is 1.08, the mild steel bar will not penetrate the packaging.                                                                          penetrate the packaging.
Accordingly, the containment of the packaging can be maintained.                                  Accordingly, the containment of the packaging can be maintained.
(Refer to  and  of (II )-Table A.20.)                                                          (Refer to  of (II )-Table A.20.)                                                    Same as above
: 3. Thermal test                                                                                3. Thermal test The severest stress due to the maximum temperature gradient is generated on lid                  The severest stress due to the maximum temperature gradient is generated on lid bolt.                                                                                            bolt.
The safety factor against the stress is 1.58.                                                    The safety factor against the stress is 1.58.
Therefore, the packaging will not be damaged, and the containment can be                          Therefore, the packaging will not be damaged, and the containment can be maintained.                                                                                      maintained.
(Refer to  of (II )-Table A.20.)                                                                (Refer to and  of (II )-Table A.20.)                                                Same as above
: 4. Water immersion test                                                                        4. Water immersion test The containment against the external pressure (0.15MP) equivalent to the water                    The containment against the external pressure (0.15MP) equivalent to the water depth of 15 m can be sufficiently maintained.                                                    depth of 15 m can be sufficiently maintained.
(Refer to  of (II )-Table A.20.)                                                                (Refer to  of (II )-Table A.20.)                                                    Same as above
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                              After        note Modification for proper description due to deletion of JRR-3 aluminide fuel
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                              After        note Deletion of JRR-4 fuel
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                              After        note Deletion of JRR-4 fuel
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                              After        note Deletion of JRR-3 aluminide and JRR-4 fuel
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                                  After                                                          note omission                                                                                                omission A.7    Enhanced water immersion test                                                                    A.7    Enhanced water immersion test The integrity of containment of the package at the water depth of 200m should be                        Since this nuclear fuel package is a package containing nuclear fuel material, etc. Modification for maintained because this package has more than 10 thousand times radioactivity of A2                      with an amount of radioactivity exceeding 100,000 times A2 value (the ratio of the proper description value.                                                                                                    radioactivity of the contents to be loaded to the 100,000 times A2 value is approximately 4.5 so exceeds 1), it will be evaluated whether the containment device is not damaged for the 200m immersion test.
omission                                                                                                omission                                                                                                Modification for A.8      Radioactive contents                                                                            A.8      Radioactive contents                                                                            proper description The contents of the package are seven kinds as follows.                                                  The contents of the package are three kinds as follows.                                        due to deletion of
: 1) JRR-3 standard aluminide type fuel                                                                                                                                                                JRR-3 aluminide
: 2) JRR-3 standard silicide type fuel                                                                      1) JRR-3 standard silicide type fuel                                                      fuel
: 3) JRR-3 follower aluminide type fuel                                                                                                                                                                Same as above
: 4) JRR-3 follower silicide type fuel                                                                      2) JRR-3 follower silicide type fuel
: 5) JRR-3 MNU type fuel                                                                                    3) JRR-3 MNU type fuel                                                                    Deletion of JRR-4
: 6) JRR-4 low enrichment silicide type fuel
: 7) JRR-4 high enrichment instrumented fuel (HEU)
JRR-3 standard aluminide type fuel and JRR-3 follower aluminide type fuel are plate-type fuels where the fuel meats of uranium aluminum dispersion type are covered with                          JRR-3 standard silicide type fuel and JRR-3 follower silicide type fuel are plate-type Modification for aluminum alloy. JRR-3 standard silicide type fuel, JRR-3 follower silicide type fuel and              fuels where the fuel meats of uranium silicon aluminum dispersion type are covered with proper description JRR-4 low enrichment type fuel, are plate-type fuels where the fuel meats of uranium                      aluminum alloy.                                                                                    due to deletion of silicon aluminum dispersion type are covered with aluminum alloy. JRR-4 high                                                                                                                                  JRR-3 aluminide enrichment instrumented fuel (HEU) is plate-type fuels where the fuel meats of uranium                                                                                                                        fuel and JRR-4 aluminum dispersion type are covered with aluminum alloy                                                      Also, JRR-3 MNU type fuel is a cylindrical fuel which is the metallic natural uranium Also, JRR-3 MNU type fuel is a cylindrical fuel which is the metallic natural uranium              covered with aluminum alloy.
covered with aluminum alloy.                                                                                  JRR-3 standard silicide type fuel are cut off its top and bottom portions, which do not JRR-3 standard aluminide type fuel, JRR-3 standard silicide type fuel, JRR-4 low                    contain uranium, before being loaded in the packaging.
enrichment silicide type fuel are cut off its top and bottom portions, JRR-4 high enrichment                  The weight of those fuel elements are shown in paragraph (I)-C-5, (f), and the instrumented fuel are cut off its bottom portion, which do not contain uranium, before being              configurations are shown in (I)-Fig.D.1 loaded in the packaging.
The weight of those fuel elements are shown in paragraph (I)-C-5, (f), and the configurations are shown in (I)-Fig.D.1 through (I)-Fig.D.4.
A.10.4  Appendix-4                                                                                      A.10.4  Appendix-4
: 12. Cycle                                                                                                12. Cycle As shown below, all requirements specified in NE 3221-5 (d) in the reference [7] are satisfied.          As shown below, all requirements specified in NE 3221-5 (d) in the reference [7] are satisfied.
Consequently, no analysis is required.                                                                    Consequently, no analysis is required.
12.1  Cycle between atmospheric pressure and operating pressure                                          12.1  Cycle between atmospheric pressure and operating pressure Sa = 3 x 137 = 411 MPa (42 kgf/ mm2)                                                                    Sa = 3 x 137 = 411 MPa (42 kgf/ mm2)
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                                    After                                                          note According to Fig. I-9.2.1 in the reference [1], the number of cycles corresponding to the above          According to Fig. I-9.2.1 in the reference [1], the number of cycles corresponding to the above Sa value is about 13,000 cycles.                                                                          Sa value is about 13,000 cycles.
Since the maximum predicted number of cycles used is 100 cycles, it follows that the                      Since the maximum predicted number of cycles used is 300 cycles, it follows that the Modification for requirements in the ASME Code are satisfied.                                                              requirements in the ASME Code are satisfied.                                                        proper description
 
Comparison Table of SAR for Type JRC-80Y-20T B. Thermal analysis                                                                          B. Thermal analysis B.1 Summary                                                                                    B.1 Summary omission                                                                                    omission Each fuel element has different decay heat as shown in ()-Table B.4.      The decay          Each fuel element has different decay heat as shown in ()-Table B.4.          In the Modification for heat of the package has a maximum value 2.25 kW, when 40 pieces of JRR-3 standard            evaluation, assuming a case where 40 assemblies of more conservative fuel element proper description due aluminide type fuel are contained. These decay heats are calculated by using ORIGEN        (hereafter referred to as fuel element A) than the contents are loaded so as to maximize to deletion of JRR-3 and ORIGEN-JR code.                                                                          the decay heat per nuclear fuel package, the value was set to 2.25 kW. These decay heats aluminide fuel The results of thermal analysis are summarized as follows.                              are calculated by using ORIGEN and ORIGEN-JR code.
(1) Normal conditions of transport                                                                The results of thermal analysis are summarized as follows.
The maximum temperature of the outer surface of this package without insolation        (1) Normal conditions of transport is 70  at ambient temperature of 38  when JRR-3 standard aluminide type fuels                    The maximum temperature of the outer surface of this package without insolation is Same as above are contained. This value does not exceed 85 , the standard value specified in the          70  at ambient temperature of 38  when Fuel element As are contained. The IAEA Regulations. The maximum temperature of the contents in the solar insolation              maximum temperature of the contents in the solar insolation is 223  when Fuel Same as above is 223  when JRR-3 standard aluminide type fuels are contained and this is less than          element As are contained and this is less than melting point of Aluminum alloy, 660 ,
melting point of Aluminum alloy, 660 , that is used for fuel cladding.                        that is used for fuel cladding.
omission                                                                                    omission (2)  Accident conditions of transport                                                        (2)  Accident conditions of transport The temperatures rise up to 298  at the fuel element, 384  at the outer surface of          The temperatures rise up to 298  at the fuel element, 384  at the outer surface of  Same as above the package, 182  at the containment boundary of the drain valve when JRR-3 standard        the package, 182  at the containment boundary of the drain valve when Fuel element As aluminide type fuels are contained under the accident conditions of transport.                are contained under the accident conditions of transport.
omission                                                                                    omission The maximum thermal stresses and thermal deformation of the package,                        The maximum thermal stresses and thermal deformation of the package,              Same as above occurring in the case of containing JRR-3 standard aluminide type fuel in the absence of      occurring in the case of containing Fuel element A in the absence of insolation under insolation under normal conditions of transport and in the case of containing JRR-3          normal conditions of transport and in the case of containing JRR-3 MNU type fuel MNU type fuel under accident conditions of transport, are far less than the allowable        under accident conditions of transport, are far less than the allowable values.
values.                                                                                  omission omission
 
Comparison Table of SAR for Type JRC-80Y-20T B.4.1.1 Analytical model                                                                        B.4.1.1 Analytical model omission                                                                                          omission
()-Table B.4 Total decay heat Deletion of JRR-3 aluminide fuel and JRR-4 fuel Modification for proper description due to deletion of JRR-3 aluminide fuel 3 Analytical model 3 Analytical model This packaging can contain seven kinds of fuel elements in three types of baskets.                                                                                                      Same as above This packaging can contain three kinds of fuel elements in three types of baskets.
The basket for box type fuel is used to transport JRR-3 standard aluminide type fuel, The basket for box type fuel is used to transport JRR-3 standard silicide type fuel and JRR-3 standard silicide type fuel, JRR-3 follower aluminide type fuel, JRR-3 follower JRR-3 follower silicide type fuel. The basket for MNU type fuel is used to transport silicide type fuel, JRR-4 low enrichment silicide type fuel and JRR-4 high enrichment JRR-3 MNU type fuel. Namely, the package has two kinds of basket.
instrumented type fuel (HEU). The basket for MNU type fuel is used to transport JRR-3 MNU type fuel. Namely, the package has two kinds of basket.
omission omission                                                                                                                                                                                      Modification for 3.1 Analytical model when the basket for box type fuel installed 3.1 Analytical model when the basket for box type fuel installed.                                                                                                                      proper description due Two kinds of fuel elements, JRR-3 standard silicide type fuel and JRR-3 follower Six kinds of fuel elements, JRR-3 standard aluminide type fuel, JRR-3 standard                                                                                                          to deletion of JRR-3 silicide type fuel, are contained in the basket for box type fuel.
silicide type fuel, JRR-3 follower aluminide type fuel, JRR-3 follower silicide type fuel,                                                                                                  aluminide fuel JRR-4 low enrichment silicide type fuel and JRR-4 high enrichment instrumented type omission fuel (HEU) are contained in the basket for box type fuel.
The fuel element used for the analytical model is Fuel element A that has the omission                                                                                                                                                                                      Same as above maximum decay heat as the fuel elements contained in the basket for box type fuel.
The fuel element used for the analytical model is JRR-3 standard aluminide type fuel that has the maximum decay heat as the fuel elements contained in the basket for      ()-Fig.B.1 The general view of the analytical model of the package containing                  Same as above box type fuel.                                                                              the basket for box type fuel (In case of containing Fuel element A)
No change of drawing
()-Fig.B.1 The general view of the analytical model of the package containing                  ()-Fig.B.2 The longitudinal sectional view of the analytical model containing the basket for box type fuel (In case of containing Fuel element A)                                        Same as above the basket for box type fuel (In case of containing JRR-3 standard aluminide type fuel)
No change of drawing
()-Fig.B.2 The longitudinal sectional view of the analytical model containing the basket        ()-Fig.B.3 The radial sectional view of the analytical model containing the basket for box Same as above for box type fuel (In case of containing JRR-3 standard aluminide type fuel)                    type fuel (In case of containing Fuel element A)
No change of drawing
()-Fig.B.3 The radial sectional view of the analytical model containing the basket for box type fuel (In case of containing JRR-3 standard aluminide type fuel)                            omission Fig. omitted                                              4.1 Heat transfer in the package when the basket for box type fuel installed omission                                                                                              In solid material, heat transfer takes place by conduction. For air gap in the package, Same as above 4.1 Heat transfer in the package when the basket for box type fuel installed.              heat transfer takes place by either convection or conduction and by radiation. For In solid material, heat transfer takes place by conduction.                                instance, for the basket containing Fuel element A, the convection is dominant in the For air gap in the package, heat transfer takes place by either convection or              lodgement for neutron source near center axis and the air gap above the fuel, and at other
 
Comparison Table of SAR for Type JRC-80Y-20T conduction and by radiation. For instance, for the basket containing JRR-3 standard        locations the conduction is superior to the convection.
aluminide type fuel, the convection is dominant in the lodgement for neutron source near center axis and the air gap above the fuel, and at other locations the conduction is superior to the convection.
 
Comparison Table of SAR for Type JRC-80Y-20T omission                                                                                    omission B.4.2 Maximum temperature                                                                    B.4.2 Maximum temperature This paragraph shows about i) the evaluation in the absence of insolation and ii) the    1 Temperature evaluation in the absence of solar insolation.
evaluation of the maximum temperature.                                                        In this evaluation, the steady-state thermal analysis when the package is exposed to 1 Temperature evaluation in the absence of solar insolation.                            ambient temperature of 38  in the absence of solar insolation is performed.
In this evaluation, the steady-state thermal analysis when the package is exposed to    The results obtained for the two kinds basket are shown in ()-Table B.5.
ambient temperature of 38  in the absence of        solar insolation is performed. The    The temperature distributions on the main parts of the analytical model of the basket for results obtained for the two kinds basket are shown in ()-Table B.5.                        the box type fuel containing Fuel element A and the basket for MNU type fuel containing Modification for The temperature distributions on the main parts of the analytical model of the basket  JRR-3 MNU type fuel are shown in ()-Fig.B.7, ()-Fig.B.8 and ()-Fig.B.9, through ()- proper description due for the box type fuel containing JRR-3 standard aluminide type fuel and the basket for      Fig.B.10 respectively.                                                                    to deletion of JRR-3 MNU type fuel containing JRR-3 MNU type fuel are shown in ()-Fig.B.7, ()-Fig.B.8                                                                                                      aluminide fuel and ()-Fig.B.9, through ()-Fig.B.10 respectively.                                            As a result, the maximum temperature at the outer surface of the packaging is 70 As a result, the maximum temperature at the outer surface of the packaging is            at the center of the body bottom plate in case of containing Fuel element A which has    Same as above 70  at the center of the body bottom plate in case of containing JRR-3 standard              the maximum decay heat.
aluminide type fuel which has the maximum decay heat.
Same as above
 
Comparison Table of SAR for Type JRC-80Y-20T
()-Fig.B.7 Temperature in the absence of solar insolation in case of containing JRR-3      ()-Fig.B.7 Temperature in the absence of solar insolation in case of containing Fuel    Same as above standard aluminide type fuel (Longitudinal cross section)                                  element A (Longitudinal cross section)
Fig. omitted                                                                    No change of drawing
()-Fig.B.8 Temperature in the absence of solar insolation in case of containing Fuel    Same as above
()-Fig.B.8 Temperature in the absence of solar insolation in case of containing JRR-3      element A (Radial cross section) standard aluminide type fuel (Radial cross section)                                                                                                          No change of drawing Fig. omitted
 
Comparison Table of SAR for Type JRC-80Y-20T 2 Evaluation of the maximum temperature                                                        2 Evaluation of the maximum temperature omission                                                                                    omission The temperature distributions on the main parts of the analytical model of the basket          The temperature distributions on the main parts of the analytical model of the basket Modification for for box type fuel containing JRR-3 standard aluminide type fuel are shown in ()-              for box type fuel containing Fuel element As are shown in ()-Fig.B.11 and ()-Fig.B.12. proper description due Fig.B.11 and (  )-Fig.B.12. The temperature distributions on the main parts of the            The temperature distributions on the main parts of the analytical model of the basket for to deletion of JRR-3 analytical model of the basket for MNU type fuel containing JRR-3 MNU type fuel are            MNU type fuel containing JRR-3 MNU type fuel are shown in ()-Fig.B.13 and ()- aluminide fuel shown in ()-Fig.B.13 and ()-Fig.B.14.                                                        Fig.B.14.
Summarizing the results, the maximum temperature of the package is 223  at the                  Summarizing the results, the maximum temperature of the package is 223  at the Same as above fuel cladding when JRR-3 standard aluminide type fuel which is the maximum decay              fuel cladding when Fuel element A which is the maximum decay heat are contained. The heat are contained. The value is lower than the melting point of the fuel cladding            value is lower than the melting point of the fuel cladding made of aluminum alloy, 660 .
made of aluminum alloy, 660 .                                                              omission omission Same as above
()-Fig.B.11 Temperature in solar insolation in case of containing JRR-3 standard              ()-Fig.B.11 Temperature in solar insolation in case of containing Fuel element A              Same as above aluminide type fuel (Longitudinal cross section)                                                (Longitudinal cross section)
Fig. omitted                                                                                        No change of drawing
()-Fig.B.12 Temperature in solar insolation in case of containing Fuel element A              Same as above
()-Fig.B.12 Temperature in solar insolation in case of containing JRR-3 standard (Radial cross section) aluminide type fuel (Radial cross section)
No change of drawing Fig. omitted
 
Comparison Table of SAR for Type JRC-80Y-20T omission                                                                                      omission B.4.4 Maximum internal pressure                                                                  B.4.4 Maximum internal pressure This package is sealed up after the verification that it is under the thermal                    This nuclear fuel package is sealed up after the verification that it is under the Modification for equilibrium after containing the fuels.                                                          thermal equilibrium after containing the fuels.                                                proper description due Therefore, the maximum internal pressure of the package under the normal                      Therefore, the maximum internal pressure of the package under the normal conditions of      to deletion of JRR-3 conditions of transport occurs by the internal temperature difference between at the time        transport occurs by the internal temperature difference between at the time of sealing up      aluminide fuel of sealing up under solar insolation. The details are shown in appendix paragraph ()-        under solar insolation. The details are shown in appendix paragraph ()-B.6.3. The results B.6.3. The results obtained are shown in (  )-Table B.6.        The maximum internal        obtained are shown in ()-Table B.6. The maximum internal pressure occurs when Fuel            Modification based on pressure occurs when JRR-3 standard aluminide type fuels are contained, and is 0.0517            element As are contained, and is 0.0517 MPaG. In addition, even when considering the          the evaluation in MPaG. This valve is much smaller than the test pressure of 0.98 MPaG (10 kgf    /cm2G). ambient temperature change expected during transportation (from -40 to 38), it is            "Consideration of aging Therefore, it is assured that no problem of pressure rise exists under the normal                0.0460 MPaG. This value is sufficiently small compared to the pressure proof test pressure    of Nuclear Fuel conditions of transport.                                                                        of 0.98 MPaG (10  kgf/cm2G) or higher, then there is no problem due to pressure increase      package" due to under general test conditions for this nuclear fuel package, and there is no risk of cracks or revision of the B.4.5 Maximum thermal stress                                                                      failures to the package.                                                                      regulations The maximum thermal stress of this package occur at the center of the body bottom                                                                                                          Modification for proper plate under the normal conditions of transport in the absence of insolation when JRR-3                                                                                                          description standard aluminide type fuels are contained, and the value of the stress is 59.4 MPa and the safety margin MS is 5.9.                                                                  B.4.5 Maximum thermal stress The stress of the lid bolts (due to the initial fastning force + the maximum internal            The maximum thermal stress of this package occur at the center of the body bottom Modification for pressure + the thermal load) is 115 MPa, and the safety margin MS is 3.3.      There is no      plate under the normal conditions of transport in the absence of insolation when Fuel proper description due problem of the containment for the contact surface between the body and the lid.                element As are contained, and the value of the stress is 59.4 MPa and the safety margin to deletion of JRR-3 The maximum thermal expansion of the basket occurs when JRR-3 standard                      MS is 5.9.                                                                                    aluminide fuel aluminide type fuels are contained in the same as the maximum thermal stress. In this                The stress of the lid bolts (due to the initial fastning force + the maximum internal case, the expansion of the basket in the longitudinal direction and the radial direction are    pressure + the thermal load) is 115 MPa, and the safety margin MS is 3.3.          There is no 1.44 mm and 0.981 mm respectively.        For the above values, the gap in the longitudinal      problem of the containment for the contact surface between the body and the lid.
direction is 4.526 mm.                                                                                The maximum thermal expansion of the basket occurs when Fuel element As are Same as above contained in the same as the maximum thermal stress. In this case, the expansion of B.4.6 Summary of the results and the evaluation under normal conditions of transport              the basket in the longitudinal direction and the radial direction are 1.44 mm and 0.981
: 1. Surface temperature in the absence of solar insolation                                  mm respectively. For the above values, the gap in the longitudinal direction is 4.526 The maximum surface temperature of the package in the absence of solar insolation          mm.
is 70  when the packaging contains JRR-3 standard aluminide type fuels generating the maximum decay heat.      The value is below 85  specified in the technical standard. B.4.6 Summary of the results and the evaluation under normal conditions of transport            Same as above
: 2. Maximum temperature (Melting)                                                          1. Surface temperature in the absence of solar insolation The maximum temperature of each location of the package under the normal                          The maximum surface temperature of the package in the absence of solar insolation conditions of transport is 223  at the fuel element when the packaging contains JRR-                is 70  when the packaging contains Fuel element A generating the maximum 3 standard aluminide type fuel. This value is much below 660 , melting point of the              decay heat. The value is below 85  specified in the technical standard.
fuel cladding, made of aluminum alloy, and also much below 1400 , melting point of            2. Maximum temperature (Melting) main parts of the packaging made of stainless steel.                                                    The maximum temperature of each location of the package under the normal              Same as above 3  Maximum internal pressure, maximum thermal stress and thermal expansion                  conditions of transport is 223  at the fuel element when the packaging contains Fuel (deformation)                                                                                    element A. This value is much below 660 , melting point of the fuel cladding, made of
        )  The maximum internal pressure of this package under normal conditions of              aluminum alloy, and also much below 1400  , melting point of main parts of the transports is 0.0517 MPaG when the packaging contains JRR-3 standard aluminide type              packaging made of stainless steel.
 
Comparison Table of SAR for Type JRC-80Y-20T fuel. This value is much below the hydro test pressure of 0.98 MPaG (10 kgf/cm2G).              3 Maximum internal pressure, maximum thermal stress and thermal expansion Same as above (deformation)
                                                                                              )  The maximum internal pressure of this package under normal conditions of transports is 0.0517 MPaG when the packaging contains Fuel element A. This value is much below the hydro test pressure of 0.98 MPaG (10 kgf/cm2G).
 
Comparison Table of SAR for Type JRC-80Y-20T omission                                                                                      omission B.5.1.1 Analytical model                                                                        B.5.1.1 Analytical model omission                                                                                      omission
: 3. Analytical model                                                                          3. Analytical model The analytical model is the same model as that used under normal conditions of              The analytical model is the same model as that used under normal conditions of transport.                                                                                      transport.
The thermal analysis under this conditions is performed by using two kinds of              The thermal analysis under this conditions is performed by using two kinds of analytical Modification for analytical models, namely, the analytical models of the basket for box type fuel containing    models, namely, the analytical models of the basket for box type fuel containing Fuel proper description due JRR-3 standard aluminide type fuels and the basket for MNU type fuel containing JRR-            element As and the basket for MNU type fuel containing JRR-3 MNU type fuels.              to deletion of JRR-3 3 MNU type fuels.                                                                                                                                                                          aluminide fuel JRR-3 standard aluminide type fuel, which is the maximum decay heat among seven                As a fuel element to be analyzed in the evaluation of temperature distribution kinds of fuel elements and where the maximum temperature of the package occurs under            and maximum internal pressure, the JRR-3 standard silicide type fuel element has          Same as above the normal conditions of transports, is used in the evaluation of the temperature              the largest decay heat among the three types, but more conservatively, we consider a fuel distribution and the maximum internal pressure.      JRR-3 standard aluminide type fuel        element A, which has the highest temperature distribution in the maximum temperature and JRR-3 MNU type fuel are used in the evaluation of the maximum thermal stress.              evaluation under normal conditions of transport. Fuel element A and JRR-3 MNU type fuel are used in the evaluation of the maximum thermal stress.
omission B.5.3 Temperature of the package                                                              omission The result of analysis under this condition, the values obtained for each portion of    B.5.3 Temperature of the package the package are shown in ()-Table B.8 collectively. Also the temperature history of the        The result of analysis under this condition, the values obtained for each portion of the main portion (refer to ()-Fig.B.15) is shown in ()-Fig.B.16 through ()-Fig.B.18.            package are shown in ()-Table B.8 collectively. Also the temperature history of the As a result of the analysis, the maximum temperature of each portion of the package        main portion (refer to ()-Fig.B.15) of the analytical model of the basket for box type    Same as above occurs when the packaging contains JRR-3 standard aluminide type fuel generating the            fuel containing Fuel element A is shown in ()-Fig.B.16 through ()-Fig.B.18.
maximum decay heat. In this case, the maximum temperature of each portion of the                    As a result of the analysis, the maximum temperature of each portion of the package Same as above package is 298  in the fuel, 216  in the basket, 783  in the edge of the fins, 384          occurs when the packaging contains Fuel element A generating the maximum decay heat.
in the outer surface of the body bottom plate and 182  in the packing of the                  In this case, the maximum temperature of each portion of the package is 298  in the containment boundary, drain valve.                                                              fuel, 216  in the basket, 783  in the edge of the fins, 384  in the outer surface of the body bottom plate and 182  in the packing of the containment boundary, drain B.5.4 Maximum internal pressure                                                                  valve.
The maximum internal pressure is considered in the same way as that of the normal conditions of transport. The calculation method of the maximum internal pressure is          B.5.4 Maximum internal pressure shown in paragraph ()-B.6.6. of the appendix. The maximum internal pressure occurs                  The maximum internal pressure is considered in the same way as that of the normal when the packaging contains JRR-3 standard aluminide type fuels, which is 0.0747                conditions of transport. The calculation method of the maximum internal pressure is Same as above MPaG. The result obtained is shown in ()-Table B.8 collectively.                          shown in paragraph ()-B.6.6. of the appendix. The maximum internal pressure occurs when the packaging contains Fuel element As, which is 0.0747 MPaG.              The result obtained is shown in ()-Table B.8 collectively.
 
Comparison Table of SAR for Type JRC-80Y-20T Modification for proper description due to deletion of JRR-3 aluminide fuel omission                                                                                      omission
()-Fig.B.16 Temperature history in case of containing JRR-3 standard aluminide type fuel      ()-Fig.B.16 Temperature history in case of containing Fuel element A                          Same as above Fig. omitted                                                                        No change of drawing
()-Fig.B.16 Temperature history in case of containing JRR-3 standard aluminide type fuel      ()-Fig.B.17 Temperature history in case of containing Fuel element A                          Same as above Fig. omitted                                                                        No change of drawing
()-Fig.B.16 Temperature history in case of containing JRR-3 standard aluminide type fuel      ()-Fig.B.18 Temperature history in case of containing Fuel element A                          Same as above Fig. omitted                                                                        No change of drawing omission                                                                                      omission B.5.5 Maximum thermal stress                                                                    B.5.5 Maximum thermal stress omission                                                                                      omission In the basket for box type fuel, which has the maximum thermal stress under the              In the basket for box type fuel, which has the maximum thermal stress under the accident conditions of transport, the safety margin for the heat stress is 0.45 even if the    accident conditions of transport, the safety margin for the heat stress is 0.45 even if the conservative assumption is applied. The minimum gap of 0.152 mm between the shell            conservative assumption is applied. The minimum gap of 0.152 mm between the shell body and the basket under the accident conditions of transport is caused in 35 hours after      body and the basket under the accident conditions of transport is caused in 35 hours        Same as above fire breakout when the packaging contains JRR-3 standard aluminide type fuels, which            after fire breakout when the packaging contains Fuel element As, which have the have the maximum heat decay.      Therefore, the basket is not restrained.                      maximum heat decay. Therefore, the basket is not restrained.
Therefore, there is no problem with this package against the maximum thermal                Therefore, there is no problem with this nuclear fuel package against the maximum stress and the maximum thermal expansion.                                                      thermal stress and the maximum thermal expansion.
 
Comparison Table of SAR for Type JRC-80Y-20T B.5.6    Summary of the result and the evaluation under the accident conditions of              B.5.6    Summary of the result and the evaluation under the accident conditions of transport                                                                                        transport omission                                                                                        omission
: 2. Maximum temperature (Melting)                                                          2. Maximum temperature (Melting)
The maximum temperature of each location of the package under the accident                        The maximum temperature of each location of the package under the accident Modification for conditions of transport occurs when the packaging contains JRR-3 standard aluminide              conditions of transport occurs when the packaging contains Fuel element A.            The value proper description due type fuel. The value is 298  at the fuel element. It is much below 660 , melting              is 298  at the fuel element. It is much below 660 , melting point of the fuel cladding to deletion of JRR-3 point of the fuel cladding made of aluminum alloy.        Also, the maximum temperature of      made of aluminum alloy.      Also, the maximum temperature of the packaging occurs at the aluminide fuel the packaging occurs at the top of the fin made of stainless steel which is the main              top of the fin made of stainless steel which is the main material of the packaging, and the material of the packaging, and the value is 783, which is much below 1400 , melting            value is 783, which is much below 1400 , melting point of the stainless steel.
point of the stainless steel.
omission                                                                                        omission B.6.1 Appendix-1 Details relating to heat transfer in the package                                B.6.1 Appendix-1 Details relating to heat transfer in the package omission                                                                                        omission 1.1 Heat transfer in the fuel elements                                                            1.1  Heat transfer in the fuel elements The standard type fuel element and the follower type fuel element have the sectional              The standard type fuel element and the follower type fuel element have the sectional configuration, where more than ten thin fuel plates are put between two fuel side plates,        configuration, where more than ten thin fuel plates are put between two fuel side plates, and the heat transfer is not constant in circumference.            The evaluation of the heat    and the heat transfer is not constant in circumference.            The evaluation of the heat transfer in JRR-3 standard aluminide type fuel, which has the maximum decay heat, is              transfer in Fuel element A, which has the maximum decay heat, is performed                      Same as above performed                                                                                              First of all, the heat transfer of the air layer in the fuel element is examined.
First of all, the heat transfer of the air layer in the fuel element is examined.              The thin air layers exist in the space of fuel plates in the fuel element. Therefore, it is The thin air layers exist in the space of fuel plates in the fuel element. Therefore, it is    examined which is dominant in the air layer, convection or conduction. ()-Fig.B.6.2            Same as above examined which is dominant in the air layer, convection or conduction. ()-Fig.B.6.2              shows the position of Fuel element A in the basket.
shows the position of JRR-3 standard aluminide type fuel in the basket.                        omission omission                                                                                      ()-Fig.B.6.2 Fuel element A in the basket                                                          Same as above
()-Fig.B.6.2 JRR-3 standard aluminide type fuel in the basket                                                                                                              no change of drawing Fig. omitted    omission omission                                                                                              Secondly, the heat transfer in the fuel is examined.
Secondly, the heat transfer in the fuel is examined.                                              It is examined whether the heat transfer of the decay heat to the basket is dominant It is examined whether the heat transfer of the decay heat to the basket is dominant        in the direction of the fuel side plate, or the fuel plate. The condition putting Fuel element Same as above in the direction of the fuel side plate ,or the fuel plate.      The condition putting JRR-3    A in the basket is shown in ()-Fig.B.6.3.
standard aluminide type fuel in the basket is shown in ()-Fig.B.6.3.                          omission omission                                                                                    )-Fig.B.6.3 Direction of heat transfer in Fuel element A                                          Same as above
()-Fig.B.6.3 Direction of heat transfer in JRR-3 standard aluminide type fuel                                                                                                no change of drawing Fig. omitted  omission omission                                                                                          1.2 Air convection in the basket 1.2 Air convection in the basket                                                                      Which is dominant, either convection or conduction, in the air layer which exists in Which is dominant, either convection or conduction, in the air layer which exists in        the basket except for the portion of the fuel element is examined by the same way as the basket except for the portion of the fuel element is examined by the same way as              mentioned in the previous paragraph, and the heat transfer coefficient is calculated for mentioned in the previous paragraph, and the heat transfer coefficient is calculated for          the air layer which the convection is dominant.
the air layer which the convection is dominant.                                                        As the representation of the examination, the results for            Fuel element As are Same as above As the representation of the examination, the results for JRR-3 standard aluminide          presented.
 
Comparison Table of SAR for Type JRC-80Y-20T type fuel are presented.                                                                      omission omission
()-Table B.6.1 Heat transfer coefficient of convection (In case of containing Fuel element      Same as above
()-Table B.6.1 Heat transfer coefficient of convection (In case of containing JRR-3            A) standard aluminide type fuel)                                                                                                                                          no change of drawing
( Table omission      omission omission                                                                                        1.4 Heat transfer between the bottom end surface of the fuel element and the upper 1.4 Heat transfer between the bottom end surface of the fuel element and the upper                    basket bottom plate basket bottom plate                                                                              A slight air layer exists between the fuel element and the upper basket bottom plate, A slight air layer exists between the fuel element and the upper basket bottom plate,      which is evaluated as follows.
which is evaluated as follows.                                                                        The heat transfer area is considered as only the sectional area of the fuel side plate. Modification for The heat transfer area is considered as only the sectional area of the fuel side plate. The thickness of the air layer is considered as the gap that occurs when the fuel element proper description due The thickness of the air layer is considered as the gap that occurs when the fuel element        is inclined to the utmost physically possible limit in the basket lodgment. For instance, in to deletion of JRR-3 is inclined to the utmost physically possible limit in the basket lodgement. For instance,    case of Fuel element A, the inclination angle is 0.487 &deg; and the maximum air layer aluminide fuel in case of JRR-3 standard aluminide type fuel, the inclination angle is 0.487 &deg; and the          thickness is 0.65 mm, and the mean value is 0.33 mm.            Therefore, as the air layer maximum air layer thickness is 0.65 mm, and the mean value is 0.33 mm.        Therefore, as    thickness, the mean value (0.33 mm) is used.
the air layer thickness, the mean value (0.33 mm) is used.                                  omission omission                                                                                          B.6.3. Calculation of the maximum internal pressure under the normal conditions of B.6.3. Calculation of the maximum internal pressure under the normal conditions of transport transport                                                                                                This package is sealed after loading the fuel elements and achieving thermal This package is sealed after loading the fuel elements and achieving thermal                equilibrium. Since there is only the air as the internal fluid in the package, the maximum equilibrium. Since there is only the air as the internal fluid in the package, the          internal pressure is obtained by calculating only the pressure increase due to the Same as above maximum internal pressure is obtained by calculating only the pressure increase due to          temperature increase between the temperature of the internal air in the packaging under the temperature increase between the temperature of the internal air in the packaging            the absence of insolation and that under solar insolation.        For instance, when Fuel under the absence of insolation and that under solar insolation.        For instance, when      element A is contained, the minimum temperature of the internal air is considered to be JRR-3 standard aluminide type fuel is contained, the minimum temperature of the                  equal to the temperature of the inner wall of the body in the results of Temperature internal air is considered to be equal to the temperature of the inner wall of the body in      evaluation in the absence of solar insolation, 56  (refer to ()-Fig. B.7).
the results of Temperature evaluation in the absence of solar insolation, 56  (refer to    omission
()-Fig. B.7).                                                                                      In addition, when the ambient temperature change expected during transportation          Changes based on the omission                                                                                            (-40&deg;C to 38&deg;C) is considered, it is assumed that the fuel is loaded in a -40&deg;C environment re- evaluation of B.6.5. Details with regard to calculation of the maximum temperature in the fuel element          and pressure is adjusted in a -40 &deg;C environment. The internal temperature during "Consideration of aging under the accident conditions of transport                                                  pressure adjustment is determined by subtracting the ambient temperature change from of nuclear fuel package" omission                                                                                        the average temperature inside the container:                                                due to revision of the
: 1. In case that the basket for box type fuel is contained (in case of containing JRR-              200 + 91                                                                            regulations 78  68 3 standard aluminide type fuel in the packaging)                                                            2 The temperature histories of each location under the accident conditions of transport        On the other hand, if the maximum temperature of internal air when subjected to the are shown in ()-Fig.B.16 through ()-Fig.B.18, when the packaging contains JRR-3                  solar radiation heat in the same manner as in the maximum internal pressure standard aluminide type fuel.                                                                      calculation, is set to 223&deg;C assuming it is equal to the maximum temperature of the fuel omission                                                                                          element in the maximum temperature evaluation results, then the internal pressure at B.6.6. Calculation of the maximum internal pressure under the accident conditions of                this time will be transport The maximum internal pressure under the accident condition is evaluated in the
 
Comparison Table of SAR for Type JRC-80Y-20T same way as that under the normal conditions of transport.
0.1013x1 x496 The case that JRR-3 standard aluminide type fuels are contained is described. From              2 341x2 Equation  of paragraph B.6.4.
0.1473 (MPa abs) 0.0460 (MPaG)
Since this is smaller than the calculated maximum internal pressure under normal conditions of transport, this will be covered by the above results, then even when considering the ambient temperature changes expected during transportation, this nuclear fuel package does not have a problem due to pressure increase under normal conditions of transport.
omission B.6.5. Details with regard to calculation of the maximum temperature in the fuel element Modification for under the accident conditions of transport                                          proper description due omission                                                                                to deletion of JRR-3
: 1. In case that the basket for box type fuel is contained (in case of containing Fuel aluminide fuel element A in the packaging)
The temperature histories of each location under the accident conditions of transport are shown in ()-Fig.B.16 through ()-Fig.B.18, when the packaging contains Fuel element A.
omission B.6.6. Calculation of the maximum internal pressure under the accident conditions of      Same as above transport The maximum internal pressure under the accident condition is evaluated in the same way as that under the normal conditions of transport.
The case that Fuel element As are contained is described.        From Equation  of paragraph B.6.4.
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                                                              after                                                      note
. Containment analysis                                                                        C. Containment analysis omission                                                                                    omission C.2.1 Containment system                                                                      C.2.1 Containment system omission                                                                                    omission
: 4. Pressure and temperature                                                                    4. Pressure and temperature As shown in ()-B Thermal Analysis, the pressure and temperature of this                      The pressure and temperature of this nuclear fuel package, as shown in (II)-B Thermal Modification for package containing forty JRR-3 standard aluminide type fuel becomes severest                  Analysis, will be the severest conditions under normal and accident conditions of transport proper under normal and accident conditions of transport.                                            when 40 fuel assemblies which have higher pressure and temperature (hereinafter referred description due omission                                                                                          to as fuel element A) than the fuel elements to be loaded are loaded to make the evaluation to deletion of more conservative.                                                                          JRR-3 omission                                                                                          aluminide fuel Same as above omission C.3 Normal conditions of transport                                                          omission Since the leakage of radioactive materials from this package under normal          C.3 Normal conditions of transport conditions of transport must be evaluated conservatively, JRR-3 standard aluminide                  Since the leakage of radioactive materials from this package under normal conditions type fuel that has maximum thermal condition is assumed to be contained in the                of transport must be evaluated conservatively, fuel element A that has maximum thermal Same as above package.                                                                                      condition is assumed to be contained in the package.
omission C.3.2 Pressurizing the containment system                                                  omission omission                                                                                    C.3.2 Pressurizing the containment system
        )    Temperature rise of the air temperature                                              omission This package shall be sealed hermetically after loading fuel elements and                )    Temperature rise of the air temperature achieving thermal equilibrium. At this time, the temperature of inner gases is 56              This package shall be sealed hermetically after loading fuel elements and achieving
        &#xba;C (which shall be the lowest temperature of inner wall of packaging) when the                thermal equilibrium. At this time, the temperature of inner gases is 56 &#xba;C (which shall be packaging contains JRR-3 standard aluminide type fuel generating maximum                      the lowest temperature of inner wall of packaging) when the packaging contains fuel element Same as above decay heat. Under the normal condition of transport, the inner gas temperature                A generating maximum decay heat. Under the normal condition of transport, the inner gas is raised to 223 &#xba;C (which shall be the maximum temperature of fuel element) due              temperature is raised to 223 &#xba;C (which shall be the maximum temperature of fuel element) to solar heat. This temperature rise results in the pressurization of 0.0517 MPaG.            due to solar heat. This temperature rise results in the pressurization of 0.0517 MPaG.
To sum up, the maximum inner pressure of the package shall be 0.0517 MPaG                      To sum up, the maximum inner pressure of the package shall be 0.0517 MPaG when Same as above when the packaging contains JRR-3 standard aluminide type fuel.                                the packaging contains fuel element A.
omission                                                                                    omission
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                                                          after                                                        note C.4.1 Fission product gas                                                                    C.4.1 Fission product gas omission                                                                                omission
: 2. Discussion and results of case when the temperature rise of fuel element                  2. Discussion and results of case when the temperature rise of fuel element causes causes the fuel cladding to melt.                                                            the fuel cladding to melt.
The maximum temperature (298 ) of the fuel element in fire condition occurs                The maximum temperature (298 ) of the fuel element in fire condition occurs by the    Modification for by the loading of JRR-3 standard aluminide type fuel element which generates                loading of fuel element A which generates maximum decay heat.      Since the melting point  proper maximum decay heat. Since the melting point of fuel cladding (aluminum alloy) is            of fuel cladding (aluminum alloy) is 660 , the fuel cladding does not melt in this          description due 660 , the fuel cladding does not melt in this condition.                                    condition.                                                                                  to deletion of In manufacturing uranium aluminum dispersion type fuel such as JRR-3 standard aluminide In manufacturing uranium aluminum dispersion type fuel such as fuel element A and so on, the JRR-3 type fuel and so on, the element is held at 450  for an hour and its integrity is confirmed element is held at 450  for an hour and its integrity is confirmed by the blister test. According to aluminide fuel by the blister test. According to the data concerning the temperature at which blisters are the data concerning the temperature at which blisters are formed on irradiated fuel elements, the formed on irradiated fuel elements, the blister generating temperature is about 450  blister generating temperature is about 450  600  even for the maximum local fission density 600  even for the maximum local fission density of 1.0x1021 fiss/cm3, which corresponds of 1.0x1021 fiss/cm3, which corresponds to fuel element A.        This is shown in ()-Fig.C.8.          Same as above to JRR-3 standard aluminide type fuel. This is shown in ()-Fig.C.8.
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                                                    after                                                                note D. Shielding analysis                                                                                                        D. Shielding analysis omission                                                                                                                    omission                                                                                                          Modification for D.2      Source specifications                                                                                                D.2    Source specifications                                                                                proper description Seven kinds of the fuel elements are contained in the packaging. The burnup, the                                              Three kinds of the fuel elements are contained in the packaging. The burnup, the                            due to deletion of power density and the cooling time of each fuel element are shown in ()-Table D.1.                                          power density and the cooling time of each fuel element are shown in ()-Table D.1.                            JRR-3 aluminide fuel The specifications of the fuel element used for the shielding analysis are shown in ()-                                      The specifications of the fuel element used for the shielding analysis are shown in ()-                    and deletion of JRR-4 Table D.2.                                                                                                                    Table D.2. In addition, in order to make the shielding analysis more conservative, the                          fuel evaluation was performed assuming the case where the fuel elements with a higher source intensity (hereinafter referred to as fuel element B) than the fuel elements to be In the JRR-3 (standard aluminide type fuel and follower aluminide type fuel), one cycle of                                loaded are loaded.                                                                                              Deletion of JRR-3 operation time is 35 days (27 days of operation and 8 days of shutdown). The packaging can                                                                                                                                                    aluminide fuel contain 40 fuel elements of after burnup of 5 cycles at the maximum power 29.0MW. The minimum cooling time is 300 days.                      Four fuels cooled for 35 days longer thereafter are contained in the case of the standard aluminide type fuel, and two fuels cooled for 35 days longer thereafter are contained in the case of the follower aluminide type fuel respectively.
29.0MW 27 days          27 days          27 days        27 days          27 days  Cooling time300+35(n-1) days Standard type: n=1, 2, ,
0MW          8 days            8 days          8 days            8 days              10 Follower type: n=1, 2, ,
20 Cycle omission                                                                                                                    omission In the JRR-4 (low enrichment silicide type fuel), the one cycle of operation time is 7 days                                  In the Fuel element B, the one cycle of operation time is 7 days (operation of 7 hours a (operation of 7 hours a day from Tuesday till Friday), and 42 cycles in a year. In the                                        day from Tuesday till Friday), and 42 cycles in a year. In the calculation, the one cycle of calculation, the one cycle of operation period is assumed to be 365 days (49 days of                                          operation period is assumed to be 365 days (49 days of operation, 316 days of shutdown) Modification for operation, 316 days of shutdown) by collecting the portion of 42 cycles. The packaging                                        by collecting the portion of 42 cycles. The packaging can contain 40 fuel elements of after proper description can contain 40 fuel elements of after burnup of 8 cycles at the maximum power 4.7355MW.                                      burnup of 8 cycles at the maximum power 4.7355MW. The minimum cooling time is 110 due to deletion of The minimum cooling time is 110 days.                                                                                        days.                                                                                                          JRR-4 fuel 4.7355MW 49 days          49 days            49 days        49 days          49 days          49 days                      4.7355MW 49 days        49 days          49 days    49 days          49 days          49 days Cooling time                                                                                                        Cooling time 0MW          316days          316 days                          316 days        316 days              110days              0MW        316days        316 days                    316 days        316 days              110days Cycle                                                                                                                  Cycle In the JRR-4 (high enrichment instrumented fuel (HEU)), the one cycle of operation time is 7 days (operation of 7 hours a day from Tuesday till Friday), and 42 cycles in a Deletion of JRR-4 year. In the calculation, the one cycle of operation period is assumed to be 365 days (49 fuel days of operation, 316 days of shutdown) by collecting the portion of 42 cycles.                                The packaging can contain 40 fuel elements of after burnup of 2 cycles at the maximum power 4.032MW.            The minimum cooling time is 10000 days.
4.032MW 49 days          49 days Cooling time 0MW          316days                  10000days Cycle omission omission
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                              after          note Modification for proper description due to deletion of JRR-3 aluminide fuel and deletion of JRR-4 fuel Same as above omission                    omission
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                        after                                                    note Modification for proper description due to deletion of JRR-3 aluminide fuel and deletion of JRR-4 fuel omission                                                                                        omission Same as above omission omission                                                                                        D.3.1 Analytical model D.3.1 Analytical model                                                                          (1)  Basket for box type fuel                                                              Modification for (1)  Basket for box type fuel                                                                    This basket can be loaded with 2 kinds of fuel elements.                                  proper description This basket can be loaded with 6 kinds of fuel elements.                                        For the gamma shielding calculation, JRR-3 standard silicide type fuel is used in the due to deletion of For the gamma shielding calculation, JRR-3 standard silicide type fuel is used in the analysis  analysis because it has the maximum gamma source intensity per unit length.                JRR-3 aluminide fuel because it has the maximum gamma source intensity per unit length.                                And for the neutron shielding analysis, in order to make the evaluation more conservative, and deletion of JRR-4 For the neutron shielding calculation, JRR-4 low enrichment silicide type fuel is used in the  the case will be studied where the fuel element Bs, which are assumed to have a higher fuel analysis because it has the maximum neutron source intensity per unit length.                    neutron source intensity per unit length than the contents, are loaded.
omission                                                                                      omission
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                            after                                                    note
()-Fig.D.2 Neutron shielding analytical model with basket for box type fuel                            ()-Fig.D.2 Neutron shielding analytical model with basket for box type fuel        Modification for (In case of containing JRR-4 low enrichment silicide type fuel)                                                  (In case of containing Fuel element B)                          proper description Fig. omitted                                                                              Fig. omitted  due to deletion of omission                                                                                                omission                                                                                    JRR-4 fuel D.5.2 Results and evaluation                                                                            D.5.2 Results and evaluation The results are shown in ()-Table D.13 and ()-Table D.14 for each basket.                            The results are shown in ()-Table D.13 and ()-Table D.14 for each basket.
The maximum gamma dose equivalent rate of the package occurs when JRR-3                                The maximum gamma dose equivalent rate of the nuclear fuel package occurs when standard silicide type fuels which has the maximum source intensity per unit length are                JRR-3 standard silicide type fuels which has the maximum source intensity per unit length contained in the basket for box type fuel. The maximum neutron dose equivalent rate                    are contained in the basket for box type fuel.
occurs when JRR-4 low enrichment silicide type fuel which has the maximum source                          The maximum neutron dose equivalent rate occurs when fuel element B which has the Same as above intensity per unit length.                                                                          maximum source intensity per unit length.
omission                                                                                                omission D.6.1 Appendix-1 Neutron yields due to (,n) reaction                                                    D.6.1 Appendix-1 Neutron yields due to (,n) reaction (omission                                                                                              omission Element                                              Ni JRR-3        JRR-3      JRR-4        JRR-4        JRR-3      JRR-3    JRR-3                                                                                                          Modification for Standard                    Low          High                                                                                                                                            proper description Standard                              Follower    Follower aluminide                enrichment enrichment                              MNU                                                                                                            due to deletion of silicide                              aluminide    silicide type                  silicide instrumented                            type type type    type (HEU)      type        type                                                                                                                    JRR-3 aluminide fuel 5.20x1022 and deletion of JRR-4 Aluminum    4.80x1022    3.11x1022  3.80x1022                4.80x1022  3.11x1022      0 0
fuel Silicon        0      8.23x1021    6.03x1021                    0      8.23x1021      0 Uranium    5.67x1021  1.23x1022    9.05x1021    1.55x1021    5.67x1021  1.23x1022 4.96x1022 omission Ymix JRR-3      JRR-3        JRR-4        JRR-4      JRR-3      JRR-3    JRR-3                omission Alpha                                            High Standard                    Low emitter              Standard                enrichment Follower Follower aluminide                enrichment                                        MNU type silicide silicide instrumented aluminide silicide type                                                                                                              Same as above type                  type (HEU)      type        type type Pu-238  7.39x10-7  6.03x10-7    6.50x10-7    7.39x10-7  7.39x10-7  6.03x10-7    0.0 Pu-239    3.74x10-7  3.07x10-7    3.30x10-7    3.74x10-7  3.74x10-7  3.07x10-7    0.0 Pu-240    3.80x10-7  3.12x10-7    3.35x10-7    3.80x10-7  3.80x10-7  3.12x10-7    0.0 Am-241    7.28x10-7  5.94x10-7    6.40x10-7    7.28x10-7  7.28x10-7  5.94x10-7    0.0 Cm-242    1.80x10-6  1.47x10-6    1.58x10-6    1.80x10-6  1.80x10-6  1.47x10-6    0.0 Cm-244    1.14x10-6  9.31x10-7    1.00x10-6    1.14x10-6  1.14x10-6  9.31x10-7    0.0
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                              after          note Q (Bq=/package)                                                                                  Modification for JRR-3      JRR-3    JRR-4        JRR-4      JRR-3    JRR-3    JRR-3                                                      proper description Alpha Low          High due to deletion of emitter Standard Standard                            Follower Follower aluminide silicide enrichment enrichment aluminide silicide MNU                                                      JRR-3 aluminide fuel silicide instrumented                          type type      type              type (HEU)    type      type                                                                and deletion of JRR-4 type fuel Pu-238 1.39x1012 4.30x1012 6.79x1011      5.83x109  8.76x1011 2.75x1012 1.06x1011 Pu-239 2.72x1011 4.80x1011 1.51x1011      1.67x109  1.73x1011 3.07x1011 2.60x1012 Pu-240 3.53x1011 7.40x1011 2.26x1011      4.80x108  2.24x1011 4.73x1011 9.31x1011 Am-241  5.93x1010  1.99x1011 3.48x1010    2.43x108  5.03x1010 1.27x1011 1.63x1011 Cm-242 1.47x1011 4.44x1011 2.83x1012      6.59x104  5.68x1010 2.84x1011 1.35x108 Cm-244 1.49x10 8.09x1010 5.24x109 10 1.08x104  9.22x109 5.17x1010 3.34x107 QYmix (n/s/ package)
JRR-3      JRR-3    JRR-4        JRR-4      JRR-3    JRR-3    JRR-3                                                      Same as above Alpha Standard                  Low        High emitter            Standard                          Follower Follower aluminide            enrichment enrichment                          MNU silicide                        aluminide silicide type              silicide instrumented                        type type                type (HEU)    type      type type Pu-238 1.03x106    2.59x106  4.41x105    4.31x103  6.47x105  1.66x106      0.0 Pu-239 1.02x105    1.48x105  4.99x104    6.25x102  6.47x104  9.43x104      0.0 Pu-240 1.34x105    2.31x105  7.58x104    1.82x102  8.51x104  1.48x105      0.0 Am-241 4.32x104    1.18x105  2.23x104    1.77x102  3.66x104  7.55x104      0.0 Cm-242 2.65x105    6.51x105  4.47x106    1.19x10-1  1.02x105  4.16x105      0.0 Cm-244 1.70x104    7.53x104  5.25x103    1.23x10-2  1.05x104  4.81x104      0.0 Total  1.59x106  3.82x106  5.07x106    5.29x103  9.47x105  2.44x106      0.0
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                                After                                                          note E. Criticality analysis                                                                              E. Criticality analysis omission                                                                                              omission E.2.1 Contents                                                                                        E.2.1 Contents Seven kinds of the fuel elements, which are shown in ()-Table E.1, are contained                      Three kinds of the fuel elements, which are shown in ()-Table E.1, are contained in the packaging.      These fuel elements are contained in the two kinds of the baskets.              in the packaging. These fuel elements are contained in the two kinds of the baskets. Modification for These two baskets with the fuel elements are analyzed individually.                                    These two baskets with the fuel elements are analyzed individually.                              proper description The fuel specifications used for the criticality analysis are shown in ()-Table E.2.                  The fuel specifications used for the criticality analysis are shown in ()-Table E.2.      due to deletion of With regard to the basket for box type fuel, the analyses are performed when JRR-                      With regard to the basket for box type fuel, the analyses are performed when JRR- JRR-3 aluminide fuel 3 standard aluminide type fuel, JRR-3 standard silicide type fuel, JRR-4 low enrichment                3 standard silicide type fuel and JRR-3 follower silicide type fuel are contained in the and deletion of JRR-4 silicide type fuel, JRR-4 high enrichment instrumented fuel (HEU), JRR-3 follower                      packaging respectively. The maximum number of contained fuel elements is 40.                    fuel aluminide type fuel and JRR-3 follower silicide type fuel are contained in the packaging                    JRR-3 follower silicide type fuel are loaded with adapters.
respectively. The maximum number of contained fuel elements is 40.
JRR-3 follower aluminide type fuel and JRR-3 follower silicide type fuel are loaded with adapters.
With regard to the basket for MNU type fuel, the analysis is performed when JRR-                      With regard to the basket for MNU type fuel, the analysis is performed when JRR-3 MNU type fuels are contained in the packaging.            The maximum number of contained            3 MNU type fuels are contained in the packaging.          The maximum number of contained fuel elements is 160.                                                                                  fuel elements is 160.
The extremities of JRR-3 standard aluminide and silicide type fuel, and JRR-4 low                      The extremities of JRR-3 standard silicide type fuel where no fuel meat exists, are Same as above enrichment silicide type fuel, where no fuel meat exists, are cut off before these fuel                cut off before these fuel elements are contained into the packaging.
elements are contained into the packaging.
The bottom extremities of JRR-4 high enrichment instrumented fuel (HEU), where no fuel meat exists, are cut off before these fuel elements are contained into the packaging.
The configurations of the fuel elements after cut off are as follows.      JRR-3 standard            The configurations of the fuel elements after cut off are as follows.                JRR-3 Same as above aluminide type fuel and JRR-3 standard silicide type fuel element are 80 cm long and its              standard silicide type fuel element are 80 cm long and its extremities of 2.5 cm in length extremities of 2.5 cm in length are fuel structural materials.            JRR-4 low enrichment        are fuel structural materials.
silicide type fuel is 66 cm long and its top extremity of 3.5 cm and bottom extremity of 2.5 cm in length are fuel structural materials. JRR-4 high enrichment instrumented fuel (HEU) is 84.0 cm long and its top extremity of 21.5 cm and bottom extremity of 2.5 cm in length are fuel structural materials.
JRR-3 follower aluminide type fuel and JRR-3 follower silicide type fuel are 88 cm                    JRR-3 follower silicide type fuel are 88 cm long and its bottom extremity of 9.05 long and its bottom extremity of 9.05 cm and its top extremity of 3.95 cm in length are                cm and its top extremity of 3.95 cm in length are fuel structural materials. JRR-3 fuel structural materials.      JRR-3 MNU type fuel is 93.3 cm long and its bottom                    MNU type fuel is 93.3 cm long and its bottom extremity of 2.8 cm and its top extremity extremity of 2.8 cm and its top extremity of 2.17 cm in length are fuel structural                    of 2.17 cm in length are fuel structural materials.
materials.
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                              After          note Modification for proper description due to deletion of JRR-3 aluminide fuel and deletion of JRR-4 fuel
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                        After                                                        note Modification for proper description due to deletion of JRR-3 aluminide fuel and deletion of JRR-4 fuel omission                                                                                      omission E.2.3 Neutron poison                                                                          E.2.3 Neutron poison omission                                                                                    omission The size and the positions to the basket lodgement are confirmed before installation.            The size and the positions to the basket lodgement are confirmed before Therefore, the validity of the analytical models and the number densities shown in            installation. Therefore, the validity of the analytical models and the number densities paragraph.E.3 is assured.                                                                      shown in paragraph.E.3 is assured.
Furthermore, an evaluation will be made on the loss rate of 10B in a hypothetical case Changes due to re-of receiving neutron irradiation from the contents for 100 years to show that the boral evaluation of plates do not lose their efficacy.                                                          "Consideration of 10B  absorbs thermal neutrons and produces    10B (n, )7Li reaction.                    aging of nuclear fuel The neutron absorption loss rate of 10B is expressed by the following equation:            package" due to (Neutron absorption loss rate) = (Neutron irradiation dose)                            revision of the x (Absorption reaction cross-section of 10B)                                            regulations For the neutron irradiation dose for 100 years, using the value for fuel element B, which has the maximum source intensity per unit length, as shown in (II)-Table D.4, it will be:
1.03x105 x100x365x24x3600  3.25x1014 n/cm2 Here, considering Absorption cross-section of 10B: 3837 x 10-24 (cm2) Note 1 Then, 3.25x1014 x 3837x10-24 x100  1.3x10-4 This means that the loss of 10B is negligible and the neutron absorbing ability of the boral Cadmium wire is used as the neutron poison for JRR-3 standard silicide type fuel, plate will not be lost.
and JRR-3 follower silicide type fuel, but this material is ignored in the analysis to              Cadmium wire is used as the neutron poison for JRR-3 standard silicide type fuel, evaluate conservatively.                                                                      and JRR-3 follower silicide type fuel, but this material is ignored in the analysis to evaluate conservatively.
Reference description Note 1: Radioisotope Pocket Data Book, 12th Edition (published by the Japan Radioisotope based on re-valuation
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                              After note Association)
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                          After                                                    note omission                                                                                          omission E.3.1.2 Analytical model of packages in array                                                      E.3.1.2 Analytical model of packages in array omission                                                                                        omission (1)  Basket for box type fuel                                                                    (1)  Basket for box type fuel The analytical models used in the criticality analysis are shown in ()-Fig.E.1 through            The analytical models used in the criticality analysis are shown in ()-Fig.E.1 through    Changes for drawing
()-Fig.E.14. The model mainly consists of 3 parts.                                            ()-Fig.E.6. The model mainly consists of 3 parts.                                          number omission                                                                                            omission position of the fuel elements                                                                    position of the fuel elements The fuel elements are assumed to lean towards the center of the basket as shown                  The fuel elements are assumed to lean towards the center of the basket as shown in ()-Fig. E.2, E.6, E.9 and E.12. This assumption is conservative, since the critical      in ()-Fig. E.2 and E.6. This assumption is conservative, since the critical size is size is assumed to be smaller.                                                                    assumed to be smaller.
()-Fig.E.1 Analytical model of containing the basket for box type fuel                            ()-Fig.E.1 Analytical model of containing the basket for box type fuel (Axial direction) [In case of containing JRR-3 standard aluminide or silicide type fuel]          (Axial direction) [In case of containing JRR-3 standard silicide type fuel]                  Changes due to Fig. omitted                                                                          (No change of drawing) deletion of JRR-3
()-Fig.E.2 Analytical model of containing the basket for box type fuel (Cross section of          ()-Fig.E.2 Analytical model of containing the basket for box type fuel (Cross section of    aluminide fuel and basket)[In case of containing JRR-3 standard aluminide or silicide type fuel]                      basket)[In case of containing JRR-3 standard silicide type fuel] (No change of drawing)      JRR-4 fuel Fig. omitted    ()-Fig.E.3 Cross section of JRR-3 standard silicide type fuel      (No change of drawing)
()-Fig.E.3 Cross section of JRR-3 standard aluminide type fuel (Fig. omitted
()-Fig.E.4 Cross section of JRR-3 standard silicide type fuel Fig. omitted
()-Fig.E.5 Analytical model of containing the basket for box type fuel          (Fig. omitted (Axial direction) [In case of containing JRR-4 low enrichment silicide type fuel]
(Fig. omitted)
()-Fig.E.6 Analytical model of containing the basket for box type fuel (Cross section of basket)    [In case of containing JRR-4 low enrichment silicide type fuel]
(Fig. omitted)
()-Fig.E.7 Cross section of JRR-4 low enrichment silicide type fuel              (Fig. omitted)
()-Fig.E.8 Analytical model of containing the basket for box type fuel (Axial direction) [In case of containing JRR-4 high enrichment instrumented fuel (HEU)]
(Fig. omitted)
()-Fig.E.9 Analytical model of containing the basket for box type fuel (Cross section of basket) [In case of containing JRR-4 high enrichment instrumented fuel (HEU)]
(Fig. omitted)
()-Fig.E.10 Cross section of JRR-4 high enrichment instrumented fuel (HEU)
(Fig. omitted)
()-Fig.E.11 Analytical model of containing the basket for box type fuel                          ()-Fig.E.4 Analytical model of containing the basket for box type fuel (Axial direction) [In case of containing JRR-3 follower aluminide or silicide type fuel]          (Axial direction) [In case of containing JRR-3 follower aluminide or silicide type fuel]
(Fig. omitted)                                                                        (No change of drawing)
()-Fig.E.12 Analytical model of containing the basket for box type fuel (Cross section of        ()-Fig.E.5 Analytical model of containing the basket for box type fuel (Cross section of basket) [In case of containing JRR-3 follower aluminide or silicide type fuel]                    basket) [In case of containing JRR-3 follower aluminide or silicide type fuel]
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                          After                                      note (Fig. omitted)                                                                (No change of drawing)
()-Fig.E.13 Cross section of JRR-3 follower aluminide type fuel (Fig. omitted)
()-Fig.E.14 Cross section of JRR-3 follower silicide type fuel (Fig. omitted) ()-Fig.E.6 Cross section of JRR-3 follower silicide type fuel (No change of drawing)
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                      After                                                      note omission                                                                                      omission E.3.2 Atomic number density in each region of analytical model                                E.3.2 Atomic number density in each region of analytical model The atomic number densities of the elements in each region used in the analytical              The atomic number densities of the elements in each region used in the analytical models are shown in ()-Table E.3.                                                            models are shown in ()-Table E.3.
The boron content in the boral plate is conservatively assumed to be 75% of the                The boron content in the boral plate is conservatively assumed to be 75% of the minimum guarantee value, 12.4 wt%.                                                            minimum guarantee value, 12.4 wt%.                                                    Changes due to JRR-4 low enrichment silicide type fuel has fifteen fuel plates.      Though the                                                                                                deletion of JRR-4 fuel uranium content in 13 pieces of the inside fuel plate is greater than that in 2 pieces of the outside fuel plate, all of 15 pieces are conservatively assumed to be the inside fuel plate in the analysis.
Modification for proper description due to deletion of JRR-3 aluminide fuel and deletion of JRR-4 fuel omission omission
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                          After                                                    note E.4.4 Calculation results                                                                      E.4.4 Calculation results Modification for proper description due to deletion of JRR-3 aluminide fuel and deletion of JRR-4 fuel omission E.7.1 Appendix-1                                                                              omission Safety of the package under routine conditions of transport                                    E.7.1 Appendix-1 The criticality safety is examined for the routine conditions of transport. Under the      Safety of the package under routine conditions of transport routine conditions of transport, the analysis is performed when there is no water inside            The criticality safety is examined for the routine conditions of transport. Under the and outside the packaging.                                                                      routine conditions of transport, the analysis is performed when there is no water inside and outside the packaging.
Basket for box type fuel The analytical models are the same as those shown in ()-Fig.E.1 through ()-                Basket for box type fuel Fig.E.14. The density of the space region shown in ()-Table E.3 is assumed to be that of          The analytical models are the same as those shown in ()-Fig.E.1 through ()-
air. The KENO-Va code is used for the analysis.                                                Fig.E.6. The density of the space region shown in ()-Table E.3 is assumed to be that Changes for drawing The results of the analysis are as follows;                                                of air. The KENO-Va code is used for the analysis.                                        number The results of the analysis are as follows; JRR-3 standard aluminide type fuel (in case of containing 40 fuel elements)                                                                                                            Changes due to keff              = 0.124                                                                                                                                                          deletion of JRR-3
                            = 0.0002                                                                                                                                                          aluminide fuel keff + 3        = 0.124 JRR-3 standard silicide type fuel (in case of containing 40 fuel elements)                      JRR-3 standard silicide type fuel (in case of containing 40 fuel elements)
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                        After                                                        note keff            = 0.175                                                                      keff            = 0.175
                        = 0.0002                                                                                      = 0.0002 keff + 3        = 0.176                                                                      keff + 3        = 0.176 Changes due to JRR-4 low enrichment silicide type fuel (in case of containing 40 fuel elements)              fuel element B (in case of containing 40 fuel elements)                                deletion of JRR-3 keff            = 0.101                                                                      keff            = 0.101                                                            aluminide fuel and
                        = 0.0002                                                                                      = 0.0002                                                          JRR-4 fuel keff + 3        = 0.101                                                                      keff + 3        = 0.101 JRR-4 high enrichment instrumented fuel (HEU) (in case of containing 40 fuel elements) keff            = 0.068
                        = 0.0001 keff + 3        = 0.069 JRR-3 follower aluminide type fuel (in case of containing 40 fuel elements) keff            = 0.084
                        = 0.0001 keff + 3        = 0.084 JRR-3 follower silicide type fuel (in case of containing 40 fuel elements)
JRR-3 follower silicide type fuel (in case of containing 40 fuel elements) keff            = 0.124 keff            = 0.124
                                                                                                                      = 0.0002
                        = 0.0002 keff + 3        = 0.124 keff + 3        = 0.124 From the above results, it can be concluded that the criticality safety is sufficiently From the above results, it can be concluded that the criticality safety is sufficiently kept.
kept.
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                            After                                                      note omission                                                                                        omission E.7.2 Appendix-2                                                                                E.7.2 Appendix-2 Safety of the package during the loading of the fuel elements                                    Safety of the package during the loading of the fuel elements When the fuel element is being loaded in this packaging, the lid is opened and the fuel          When the fuel element is being loaded in this packaging, the lid is opened and the element is perfectly surrounded by the water.      In this state, the criticality safety is    fuel element is perfectly surrounded by the water. In this state, the criticality safety is examined for each fuel basket.                                                                  examined for each fuel basket.                                                              Changes due to Basket for box type fuel                                                                    Basket for box type fuel                                                                  deletion of JRR-3 The axial model of this basket is shown in ()-Fig.E.2.1 through ()-Fig.E.2.3.                  The axial model of this basket is shown in ()-Fig.E.2.1 through ()-Fig.E.2.2.        aluminide fuel and The model of the fuel element region is the same as that shown in ()-Fig.E.2 , E.6,              The model of the fuel element region is the same as that shown in ()-Fig.E.2 ~E.5. JRR-4 fuel E.9 and E.12. Also, the model of the cross section of each fuel element is the same as that      Also, the model of the cross section of each fuel element is the same as that shown in ()-
shown in ()-Fig.E.3, E.4, E.7, E.10, E.13 and E.14, respectively.      The density of each      Fig.E.3 and E.6, respectively. The density of each component is the same as that shown component is the same as that shown in ()-Table E.3.                                            in ()-Table E.3.
The thickness of surrounding water region is assumed to be 30 cm around the package,              The thickness of surrounding water region is assumed to be 30 cm around the assuming the lid closed. The KENO-Va code is used for the analysis.                              package, assuming the lid closed. The KENO-Va code is used for the analysis.
The results of the analysis are as follows;                                                      The results of the analysis are as follows; JRR-3 standard aluminide type fuel (in case of containing 40 fuel elements)                                                                                                              Changes due to keff            = 0.736                                                                                                                                                            deletion of JRR-3
                            = 0.0008                                                                                                                                                            aluminide fue keff + 3        = 0.738 JRR-3 standard silicide type fuel (in case of containing 40 fuel elements)
JRR-3 standard silicide type fuel (in case of containing 40 fuel elements) keff            = 0.868 keff            = 0.868
                                                                                                                              = 0.0010
                            = 0.0010 keff + 3        = 0.870 keff + 3        = 0.870 JRR-4 low enrichment silicide type fuel (in case of containing 40 fuel elements)                                                                                                        Changes due to keff            = 0.767                                                                                                                                                            deletion of JRR-3
                            = 0.0009                                                                                                                                                            aluminide fuel and keff + 3        = 0.769                                                                                                                                                            JRR-4 fuel JRR-4 high enrichment instrumented fuel (HEU) (in case of containing 40 fuel elements) keff            = 0.699
                            = 0.0009 keff + 3        = 0.702 JRR-3 follower aluminide type fuel (in case of containing 40 fuel elements) keff            = 0.573
                            = 0.0008 keff + 3        = 0.576
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                          After                                                        note JRR-3 follower silicide type fuel (in case of containing 40 fuel elements)                      JRR-3 follower silicide type fuel (in case of containing 40 fuel elements) keff              = 0.695                                                                        keff              = 0.695
                              = 0.0008                                                                                        = 0.0008 keff + 3        = 0.697                                                                        keff + 3        = 0.697 From the above results, it can be concluded that the criticality safety is sufficiently          From the above results, it can be concluded that the criticality safety is sufficiently kept.                                                                                            kept.
omission                                                                                    omission
()-Fig.E.2.1 Analytical model in case of containing the basket for box type fuel                ()-Fig.E.2.1 Analytical model in case of containing the basket for box type fuel (Axial direction) [In case of containing JRR-3 standard aluminide or silicide type fuel]        (Axial direction) [In case of containing JRR-3 standard silicide type fuel]
Fig omitted                                                                          (No change of drawing)
Changes due to
()-Fig.E.2.2 Analytical model in case of containing the basket for box type fuel deletion of JRR-3 (Axial direction) [In case of containing JRR-4 low enrichment silicide type or high aluminide fuel and enrichment instrumented fuel]
JRR-4 fuel Fig omitted
()-Fig.E.2.3 Analytical model in case of containing the basket for box type fuel                ()-Fig.E.2.2 Analytical model in case of containing the basket for box type fuel (Axial direction) [In case of containing JRR-3 follower aluminide or silicide type fuel]        (Axial direction) [In case of containing JRR-3 follower silicide type fuel]
Fig omitted                                                                          (No change of drawing)
()-Fig.E.2.4 Analytical model in case of containing the basket for MNU type fuel                ()-Fig.E.2.4 Analytical model in case of containing the basket for MNU type fuel Fig                                                                                (No change of drawing) omitted
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                            After                                                      note omission                                                                                        omission E.7.3 Appendix-3                                                                                  E.7.3 Appendix-3 Safety of the package under accident conditions of transport                                      Safety of the package under accident conditions of transport The basket for box type fuel of the package has very small deformation at 9 m drop                The basket for box type fuel of the package has very small deformation at 9 m drop test under accident condition of transport. The criticality safety of the package under      test under accident condition of transport. The criticality safety of the package under this condition is confirmed.                                                                      this condition is confirmed.
As shown in ()-A.9.2, the basket for box type fuel deforms 0.7 mm in maximum                    As shown in ()-A.9.2, the basket for box type fuel deforms 0.7 mm in maximum under 9 m drop test. Fig. ()-E.3.1 shows the maximum displacement after having 9                under 9 m drop test. Fig. ()-E.3.1 shows the maximum displacement after having 9 m drop test, and the criticality calculation model of the basket for box type fuel after 9        m drop test, and the criticality calculation model of the basket for box type fuel after 9 m drop test is shown in Fig. ()-E.3.2. The model is same with the model shown in Fig.            m drop test is shown in Fig. ()-E.3.2. The model is same with the model shown in Changes due to
()-E.1 through E.14 except the deformation of the basket. Calculations were performed            Fig. ()-E.1 through E.8 except the deformation of the basket. Calculations were deletion of JRR-3 by KENO-Va.                                                                                      performed by KENO-Va.                                                                      aluminide fuel and The results of the analysis are as follows;                                                      The results of the analysis are as follows;                                          JRR-4 fuel JRR-3 standard aluminide type fuel (in case of containing 40 fuel elements) keff            = 0.737
                            = 0.0009 keff + 3        = 0.740 JRR-3 standard silicide type fuel (in case of containing 40 fuel elements)
JRR-3 standard silicide type fuel (in case of containing 40 fuel elements) keff            = 0.869 keff            = 0.869
                                                                                                                              = 0.0009
                            = 0.0009 keff + 3        = 0.872 keff + 3        = 0.872 JRR-4 low enrichment silicide type fuel (in case of containing 40 fuel elements) keff            = 0.770
                            = 0.0009 keff + 3        = 0.772 JRR-4 high enrichment instrumented fuel (HEU) (in case of containing 40 fuel elements) keff            = 0.698
                            = 0.0009 keff + 3        = 0.700 JRR-3 follower aluminide type fuel (in case of containing 40 fuel elements) keff            = 0.575
                            = 0.0008 keff + 3        = 0.577 JRR-3 follower silicide type fuel (in case of containing 40 fuel elements)                        JRR-3 follower silicide type fuel (in case of containing 40 fuel elements) keff            = 0.697                                                                          keff            = 0.697
                            = 0.0009                                                                                        = 0.0009 keff + 3        = 0.700                                                                          keff + 3        = 0.700
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                      After                                                note From the results above, it can be concluded that the criticality safety is sufficiently      From the results above, it can be concluded that the criticality safety is sufficiently kept.                                                                                        kept.
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                    After                                      note omission                                                                                omission E.7.4 Appendix-4                                                                          E.7.4 Appendix-4 Investigation of the optimum water density in the criticality evaluation                  Investigation of the optimum water density in the criticality evaluation omission                                                                                omission                                                                Changes to the figure due to deletion of JRR-3 aluminide fuel and deletion of JRR-4 fuel
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                          after                                                  note F Consideration of Aging of Nuclear Fuel Package                                            Newly added chapter This chapter describes the matters which are to be considered in the safety analysis in Chapter (II) with regard to aging of nuclear fuel package component materials during the planned period of use of the transport container.
F.1 Aging Factors to be Considered For the nuclear fuel package, based on the anticipated conditions of use as shown in (II)-Table F.1, possible aging factors to be considered for the component materials of the transport container are thermal degradation, degradation due to irradiation, degradation due to chemical changes, and fatigue due to repeated stresses during container storage, before shipment, and during transportation.
The period of use of this package is 70 years from the time of manufacture, the frequency of use is once per year, and the number of days required for transport per transportation is conservatively 365 days. Assuming the number of handling times per transportation is 100 times, the total number of planned lifting times throughout the planned period of use is 7,000 times (100 times x 70 years) (A.4.4).
II)-Table F.1 Conditions of use anticipated during the planned period of use Status        contents                          Conditions of use Transport containers are stored indoors.
In order to confirm that the performance of the transport container is maintained, a periodic voluntary inspection based on "Chapter (III) Maintenance of In storage          No transport containers and handling methods of nuclear fuel packages" described in the application for design approval of nuclear fuel packages (Appendix-1) is to be performed at least once a year.
Nuclear fuel packages are to be stored indoors within the controlled area of the facility for up to three months from the time the contents are loaded to the Before                          time they are transported.
Yes transportation                Before shipment of the package, a pre-shipment inspection based on "Chapter (III) Maintenance of transport containers and handling methods of nuclear fuel packages" is to be conducted.
The package is to be transported by transport vehicle or During                          vessel.
Yes transportation                The package is to be securely tied to the vehicle or vessel so that it can withstand the shock and vibration
 
Comparison Table of SAR for Type JRC-80Y-20T EHIRUH                                                          DIWHU                                            QRWH
expected during transportation.
The period of transportation is expected to be about 2 months.
After transportation, a visual inspection is to be After                          conducted in controlled area (indoor) of the facility to No transportation                  confirm the integrity of the transport container.
Transport containers are stored indoors.
F.2 Evaluation of Necessity of Considering Aging in Safety Analysis Based on the aging factors shown in F.1, the necessity of considering the aging of each component material of the nuclear fuel package was evaluated with regard to thermal, radiation, and chemical changes that are expected during the planned period of use.
Fatigue evaluation was also conducted for the lifting device, which is subjected to loads during handling, and for the sealing device, which is subjected to loads due to changes in internal pressure. The results of these evaluations are shown in (II)-Table F.2.
The Thhe component materials of this nuclear fuel package are shown in Chapter (I) C.
Transport container, 3. Materials. Among these materials, those for which aging is to be considered are listed below.
Stainless Steel Stainless
                          %RURQ &DUELGH
                        %RURQ&DUELGH Aluminum alloy (spacer Aluminum A                (sspacer Note that aging of O-rings is not considered because they are replaced with each transportation.
Also, that aging of contents is not consider because they changes with each transportation.
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                          after                                            note (II)-Table F.2 Evaluation of necessity of considering aging in safety analysis (1/3)
Component        Aging Evaluation material        factors Although there may be mechanical property degradations such as creep, etc. (deformation) by high temperature embrittlement due to exposure to a high temperature environment, the results of thermal analysis indicate that the temperature near the fuel basket center axis is 200 (the highest temperature during Heat transportation is 223 for the fuel elements) (B.4.2), which is below the temperature (425 or higher) (1) at which deformation due to creep, etc. may occur. Based on the above, there is no need to consider the effect of aging in confirming compliance with the technical criteria.
Although there may be effects on the mechanical properties due to microstructural changes (embrittlement, etc.) caused by neutron irradiation, the maximum neutron irradiation dose during the period of use is 2.27 x 1014 n/cm2, which is less than Radiation the dose of 1016 n/cm2(1) that may cause microstructural changes (embrittlement, etc.). Based on the above, there is no need to consider the effect of aging in confirming compliance with the technical criteria.
Although there may be effects of corrosion on material Stainless strength, embrittlement, etc., stainless steel is a material that Steel forms a passive film on its surface and is not susceptible to corrosion. The depth of corrosion in air is estimated to be 1m Chemical    (0.001mm)(2) per year with the maximum of 0.07mm during the changes    period of use, which is a negligible amount of corrosion compared to the thicknesses of the component materials (310mm for a transport container body). Based on the above, there is no need to consider the effect of aging in confirming compliance with the technical criteria.
(1) Lifting device Assuming the frequency of handling of the lifting device is 100 times per year, the realistic assumed number of lifting times during the period of use will be 7,000 times. However, the number of lifting times in compliance with the technical Fatigue    criteria is conservatively assumed to be 10,000 times, and the repeat count of 10,000 times covers the assumed number of uses. Based on the above, fatigue is evaluated with the repeat count being conservatively set to confirm that fatigue failure does not occur (A.4.4).
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                      after                                            note (2) Sealing device Assuming the frequency of handling of sealing devices is 4 times per year, the repeat count in 70 years will be 280 times.
However, the repeat count in compliance with the technical criteria is conservatively assumed to be 300 times, and this repeat count of 300 times covers the assumed number of uses.
Based on the above, fatigue is evaluated with the repeat count being conservatively set to confirm that fatigue failure does not occur (A.5.1.4).
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                          after                                            note (II)-Table F.2 Evaluation of necessity of considering aging in safety analysis (2/3)
Component        Aging Evaluation material      factors Although there may be a functional degradation to maintain subcriticality due to microstructural changes caused by exposure to a high temperature environment, the results of the thermal analysis indicate that the maximum temperature during Heat transportation is 223 (B.4.2), which is below the temperature at which this material melts (2450) (B.2). Based on the above, there is no need to consider the effect of aging in confirming compliance with the technical criteria.
Although there may be a functional degradation to maintain subcriticality due to loss of 10B caused by neutron irradiation, Boron                    the neutron irradiation dose is 3.25 x 1014 n/cm2 assuming Carbide                  conservatively the period of use of 100 years, the loss of 10B is Radiation estimated to be about 0.00013% (E.2.3), which means that the loss of 10B due to neutron irradiation is negligible. Based on the above, there is no need to consider the effect of aging in confirming compliance with the technical criteria.
Although there may be a functional degradation to maintain subcriticality due to corrosion, corrosion does not occur because Chemical    it is in a sealed space within the basket dividers (stainless changes    steel), and does not come in contact with the outside air. Based on the above, there is no need to consider the effect of aging in confirming compliance with the technical criteria.
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                          after                                          note (II)-Table F.2 Evaluation of necessity of considering aging in safety analysis (3/3)
Component        Aging Evaluation material      factors Although there may be effects on the heat transfer performance due to the microstructural changes caused by exposure to a high temperature environment, the results of the thermal analysis indicate that the maximum temperature Heat during transportation is 223(B.4.2), which is below the temperature at which this material melts (660) (B.2). Based on the above, there is no need to consider the effect of aging in confirming compliance with the technical criteria.
Although there may be effects on the heat transfer performance due to microstructural changes (embrittlement, etc.) caused by neutron irradiation, the maximum neutron Aluminum irradiation dose during the period of use is 2.27 x 1014 n/cm2, alloy          Radiation which is less than the dose of 1021 n/cm2(1) that may cause microstructural changes (embrittlement, etc.). Based on the above, there is no need to consider the effect of aging in confirming compliance with the technical criteria.
Although there may be effects on the heat transfer performance due to corrosion, aluminum alloys form an oxide film on its surface and are not susceptible to corrosion (3). In Chemical addition, it is put to use after confirming that there are no changes abnormalities in its appearance before shipment. Based on the above, there is no need to consider the effect of aging in confirming compliance with the technical criteria.
 
Comparison Table of SAR for Type JRC-80Y-20T before                                                          after                                              note F.3 Aging Considerations in Safety Analysis As described in F.2, the necessity of considering aging effects was evaluated for the component materials of the nuclear fuel package. As a result of the evaluation of aging effects, with regard to the factors of heat, radiation, and chemical changes, under the conditions of use expected during the planned period of use, it was confirmed that there is no need to consider their effects in confirming compliance with the technical criteria. For the lifting device and sealing device, it is necessary to consider aging effects due to fatigue because of repeated stresses. As a result of the evaluations of fatigue of the lifting device and sealing device, considering the conservative repeat count expected during the period of use, it was confirmed that fatigue failure did not occur, and therefore, there was no effect on conformance to the technical criteria.
F.4 Appendix F.4.1 Appendix-1 References (1) Transportation Technology Advisory Board, "Measures to Ensure Safety of Post-Storage Transportation for Interim Storage of Spent Fuel" (2010).
(2) Nikkan Kogyo Shimbun, Ltd. "Stainless Steel Handbook" (1979).
(3) Sumitomo Light Metal Industries, Ltd., "Aluminum Handbook (3rd Edition)" (1985).
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                        after                  note Changes due to Chapter IV : Maintenance conditions of transport Chapter III : Maintenance conditions of transport deletion of the previous chapter packaging and handling method of package            packaging and handling method of package
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                                                                    after                                                        note Chapter IV : Maintenance conditions of transport packaging and handling method of      Chapter III : Maintenance conditions of transport packaging and handling method of package                                                                                package                                                                                          to F), the pre-With regard to the maintenance of transport containers and the handling methods          shipment inspection at of nuclear fuel packages that conform to the safety design of nuclear fuel packages            each transportation to (including consideration of aging), based on the results of the safety analysis ((II)-A to F), confirm the integrity the pre-shipment inspection at each transportation to confirm the integrity of nuclear fuel    of nuclear fuel packages and the periodic voluntary inspection to ensure the performance of transport          packages and the containers for the planned period of use will be conducted. The details are shown below.      periodic voluntary omission                                                                              omission                                                                                        inspection to ensure the performance Addition of items for evaluation
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                              after note omission omission
 
Comparison Table of SAR for Type JRC-80Y-20T Before                                              after          note Addition of items for inspection Addition of description of spacer
 
Comparison Table of SAR for Type JRC-80Y-20T Newly added chapters APP Type JRC-80Y-20T nuclear fuel Transport Package Basic policy for the quality management
 
Comparison Table of SAR for Type JRC-80Y-20T Basic policy for quality management                                                          Newly added chapters This quality management system stipulates the requirements for quality assurance activities by reference to the Rules of Quality Assurance for Safety of Nuclear Power Plants (JEAC4111-2009).
A. Quality management system A.1 General requirements (1) An organization shall establish, document, implement, and maintain a quality management system for transportation, etc. An organization shall also continue to improve the effectiveness of this quality management system.
(2) An organization shall implement the following matters:
(a) Clarifying processes required for a quality management system and their application to an organization.
(b) Clarifying the order and correlation of the processes.
(c) Defining required judgment criteria and methods to ensure that both operation and management of the processes are effective.
(d) Ensuring that the resources and information required to operate and monitor the processes are available.
(e) Monitoring, measuring, and analyzing the processes. However, the measurement can be skipped when it is difficult to measure.
(f) For the processes, taking measures required to obtain results as planned and continue to improve them.
(g) Matching the processes and the organization with a quality management system.
(h) Promoting work based on the knowledge of social science and behavioral science.
A.2 Requirements for documentation A.2.1 General The quality management system documents shall be each item of the following:
(1) Quality policy and quality objective (2) Primary document (quality assurance program)
(3) Secondary document (documents required by primary documents and documents such as rules determined necessary by an organization)
(4) Tertiary documents (documents such as procedures and guides determined necessary by an organization other than primary documents and secondary documents)
(5) Records required by documents of (1) to (4)
 
Comparison Table of SAR for Type JRC-80Y-20T A.2.2 Quality assurance plan                                                                Newly added chapters The Director General shall develop, review as necessary, and maintain a quality assurance plan that includes the followings:
(1) Matters related to planning, implementation, evaluation, and improvement of the quality management system (2) Scope of application of the quality management system (3) Established "documented procedures" for the quality management system or information that makes it possible to refer to them (4) A description of the interrelationships among the processes of the quality management system.
A.2.3 Document management A director general and a manager (research reactor accelerator administration manager.
The same shall apply hereinafter) shall define procedures for the document and record management to certainly implement the following matters:
(1) Managing documents required by a quality management system. However, although records are a kind of documents, they are managed in accordance with the requirements specified in A.3 Record management.
(2) Specifying the management required for the following activities:
(a) Approving documents prior to the issuance from the viewpoint of whether they are appropriate.
(b) Reviewing, renewing as necessary, and reapproving documents.
(c) Clarifying the identification of document changes and the identification state of the currently effective version, by a management ledger, etc.
(d) Ensuring that the appropriate version of the corresponding document is available when and where it is required, by a management ledger, etc.
(e) Ensuring that documents can be easily read and easily distinguishable.
(f) Clarifying external documents determined to be required for the quality management system planning and operation and ensuring that their distribution is managed by a management ledger, etc.
(g) Preventing an abolished document from being used by mistake. Also, identifying it appropriately when it is retained for a certain purpose.
A.3 Quality record management A director general and a manager shall define procedures for the document and record
 
Comparison Table of SAR for Type JRC-80Y-20T management to certainly implement the following matters:                                    Newly added chapters (1)Clarifying the target for creating records and maintaining them to provide evidence of conforming to requirements and effectively operating a quality management system.
(2)Making records easy to read, easily distinguishable, and retrievable.
(3)Specifying the management required for identification, storage, protection, retrieval, storage time, and disposal of records.
 
Comparison Table of SAR for Type JRC-80Y-20T B. An applicant's responsibilities                                                            Newly added chapters B.1 Commitment A director general shall conduct the following matters as the top's commitment to construct and implement a quality management system and continue to improve its effectiveness:
(1) Making it public in an organization to observe laws and ordinances and regulatory requirements.
(2) Setting up a quality policy.
(3) Promoting activities for fostering nuclear safety.
(4) Ensuring that quality objectives are set up.
(5) Conducting a management review.
(6) Ensuring that resources are available.
B.2 Emphasis on nuclear safety A director general shall give top priority to nuclear safety, determine requirements for work, and ensure that they are met.
B.3 Quality policy and quality objective B.3.1 Quality record A director general shall certainly conduct the following matters concerning the quality policy related to transportation, etc.:
(1) Being appropriate in regard to Article 4 of the Act on the Japan Atomic Energy Agency, Independent Administrative Agency (Purpose of the agency.)
(2) Being appropriate in regard to the quality policy concerning nuclear safety specified by the chief director.
(3) Incorporating the commitment to conform to requirements and continue to improve the effectiveness of a quality management system.
(4) Giving the framework for set-up and review of quality objectives.
(5) Making them transmitted to and understood by the whole organization.
(6) Reviewing to maintain their adequacy.
B.3.2 Quality objective The Director General should establish manuals for the management of quality objectives to ensure that the followings are implemented.
(1) The Director General shall have the Director set quality objectives. Such quality objectives shall include those necessary to meet the requirements for the work, if any.
(2) The quality objectives shall be consistent with the quality policy and the degree of the
 
Comparison Table of SAR for Type JRC-80Y-20T achievement of those objectives shall be judgeable.                                            Newly added chapters B.4 Responsibility and authority B.4.1 Structure The quality assurance organization for work concerning transportation containers, etc. is shown in (c)-Fig. B.2.
B.4.2 Responsibility and authority The following persons have responsibility and authority in the matters described for each:
(1) Director general A director general integrates and promotes quality assurance activities for transportation, etc. carried out at the research institute.
(2) Person in charge of quality assurance control A person in charge of quality assurance control has the following responsibility and authority:
(a) To ensure that a process required for a quality management system is established, implemented, and maintained.
(b) To report to a director general on the quality management system's implementation status and whether improvements need to be made.
(c) To ensure that the consciousness of compliance with applicable laws and ordinances and nuclear safety is enhanced across the organization.
(3) Manager A manager integrates and promotes quality assurance activities for transportation, etc. in a department under his/her jurisdiction.
(4) Section chief A section chief conducts quality assurance activities for transportation, etc. in a department under his/her jurisdiction.
(5) Quality assurance promotion committee The quality assurance promotion committee reviews important matters for promoting quality assurance activities and for quality assurance activities in the research institute and matters inquired by a director general.
(6) Safety review committee for nuclear facilities and safety review committee for facilities used The safety review committee for nuclear facilities and the safety review committee for facilities used review important matters for promoting operational safety activities and for operational safety activities in the research institute and matters inquired by a director general.
 
Comparison Table of SAR for Type JRC-80Y-20T Newly added chapters B.4.3 Internal communication An organization shall use meetings, business communication memorandums, etc. to ensure information exchange to allow better internal communication. It shall also ensure that the information about the effectiveness of a quality management system is exchanged.
B.5 Management review A director general shall define procedures for the management review to certainly implement the following matters:
B.5.1 General (1) For the work concerning transportation, etc., a director general shall conduct a management review at least once a year to confirm that a quality management system continues to function appropriately, validly, and effectively.
(2) In this review, the evaluation of opportunities for improving a quality management system and the evaluation of the necessity for changes of a quality management system including a quality policy shall be conducted.
(3) Records of the result of a management review shall be maintained.
B.5.2 Input to a management review A person in charge of quality assurance control shall incorporate the following matters in the input to a management review:
(a) Audit results (b) How outsiders view the achievement of nuclear safety (c) Implementation status of a process (including the achievement status of quality objectives) and inspection and test results (d) Implementation status of activities for fostering the nuclear safety culture (e) Status of compliance with applicable laws and ordinances (f) Status of preventative measures and corrective actions (g) Follow-up to results of previous management reviews (h) Changes which may affect a quality management system (i) Proposals for improvement B.5.3 Output from a management review A director general shall incorporate the decisions and measures on the following matters in the output from a management review:
 
Comparison Table of SAR for Type JRC-80Y-20T (a) Improvement of the effectiveness of a quality management system and its processes Newly added chapters (b) Improvements required for work planning and implementation (c) Necessity for resources
 
Comparison Table of SAR for Type JRC-80Y-20T Newly added chapters (C)-Fig. B.2 Quality assurance organization concerning design, etc. of nuclear fuel package
 
Comparison Table of SAR for Type JRC-80Y-20T C. Education and training                                                                      Newly added chapters A manager shall define procedures for the education and training management to certainly implement the following matters:
(1) To clarify the competence required for the personnel engaged in the work.
(2) To assign a person capable of carrying out the work, using the required education, training, skills, and experience as the basis of judgment.
(3) To carry out education and training or OJT, etc. so that personnel can have the required competence.
(4) To evaluate the effectiveness of conducted education and training, etc.
(5) To make personnel recognize the meaning and importance of their activities and how they can contribute to achieving quality objectives.
(6) To maintain records concerning education and training track records, skills, and experience.
D. Design management D.1 Design and development program (1) A manager shall define procedures for design and development management to clarify processes required for designing and developing a transportation container (including a prototype container).
(2) A section chief shall formulate and manage a design and development program in accordance with the procedures for design and development management.
(3) A section chief shall clarify the following matters in the design and development program:
(a) Stage of design and development (b) Review, verification, and validation suitable for each stage of design and development (c) Responsibility and authority for design and development (4) The design and development program shall incorporate the following matters and clearly indicate them to those who carry out design and development (employees, etc. and contractors):
(a) To clarify design/development requirements, such as applicable laws and ordinances, standards, and design/development conditions, persons in charge of the review, approval, etc., and required design analysis, design verification, etc., as design documents.
(b) To define procedures for selecting the components important for transportation containers functions and the construction method applied to them and evaluating the validity, etc., and evaluate them.
(c) To define procedures for selecting, documenting, and approving an appropriate
 
Comparison Table of SAR for Type JRC-80Y-20T disposition method when a change (including a deviation) from design and development  Newly added chapters requirements arises.
(d) To assign those who have appropriate experience and knowledge to the design and development work and make the required information and means available.
(e) To allow the persons other than an original designer to evaluate design and development documents.
(5) A section chief shall clarify the following matters and operate and manage the interface between the organizations involved in design and development to ensure effective communication and clear assignment of responsibility. It shall incorporate the design interface with a section in charge of manufacturing transportation containers and a section in charge of maintaining transportation containers. The interface shall also be provided with contractors as necessary.
(a) Interface between organizations or between contractors (i) Clarifying the responsibility for the interface of design and development (ii) Clarifying methods for creating, reviewing, approving, issuing, distributing, and revising design documents on the interface of design and development and responsible organizations (b) Communication between organizations or between contractors (i) Clarifying methods to position, examine, and approve the information about design and development information communication (ii) Clarifying the interface between the organization carrying out design and development and the one related to each stage of procurement, manufacturing, and maintenance (or the external organization)
(6) A section chief shall renew the program formulated in accordance with the progress of design and development as appropriate.
D.2 Input to design and development (1) A section chief shall clarify the requirement-related input, reflect it in design and development, and keep and manage the records. The following matters shall be incorporated in the input:
(a) Requirements for the function and performance of a transportation container (including a prototype container)
(b) Requirements, such as applicable laws and ordinances (c) Requirements for a quality assurance program (d) Information obtained from a previous similar design when applicable (e) Other requirements essential for design and development
 
Comparison Table of SAR for Type JRC-80Y-20T (2) A section chief shall clarify in writing and implement the method for review and approval  Newly added chapters to prevent inappropriate data use in clarifying design and development requirements.
(3) A section chief shall review the input's adequacy. It shall be noted that there is no omission, no ambiguity, and no incompatibility in requirements.
D.3 Output from design and development (1) A section chief shall present the output from design and development in the form of a drawing, a specification, a report, a check sheet, etc. to allow the verification comparing it with the input to design and development. In that case, it shall be ensured that the output from design and development is in the following states:
(a) The requirements given in the input to design and development are satisfied.
(b) The information suitable for performing procurement and work is provided.
(c) The characteristics of a transportation container essential for safe use and proper use are clarified.
(d) When a demonstration test and manufacturing of prototype containers are outsourced for the validation of design and development, the judgment of acceptance of the related inspection and test is incorporated, or it is referenced.
(2) A section chief shall approve the output from design and development before proceeding to the next stage.
D.4 Review of design and development (1) A section chief shall perform a systematic review as planned, aiming at the following matters at an appropriate design and development stage. In this review, those who have screening skills, such as experts in other departments, shall be included, as necessary.
(a) To evaluate whether design and development results can satisfy the requirements.
(b) To clarify problems and propose necessary measures.
(2) A section chief shall keep and manage review result records and disposition records if any disposition is required.
D.5 Design and development verification (1) A section chief shall perform a verification as planned to ensure that the output from design and development satisfies the requirements given in the input to design and development at an appropriate design and development stage, considering the following matters:
(a) Method of design and development verification (i) The verification for one or more designs and developments, such as a review of design
 
Comparison Table of SAR for Type JRC-80Y-20T and development, alternative calculation, a demonstration test, and the comparison        Newly added chapters with previous similar designs, are performed as appropriate.
(ii) Design and development are verified by the persons other than an original designer.
(b) Alternative calculation The design and development requirements, the adequacy of a calculation code, etc. are confirmed as well as an original design.
(c) Demonstration test Tests, such as a verification test and a performance test, are carried out considering the structural material and the structural system of a transportation container, environmental conditions, etc.
(d) Comparison with previous similar designs and development The comparison with design and development requirements, a structural system, a calculation code, etc. for a comparison target is performed to confirm the validity of design and development.
(2) A section chief shall keep verification result records and disposition records if any disposition is required.
D.6 Validation of design and development (1) A section chief shall perform a validation as planned at an appropriate stage of design and development to ensure that the design documents as a result of design and development (including safety analysis reports) satisfy the requirements according to the designated use or the intended use. Whenever feasible, a validation shall be completed prior to delivering or providing design documents (including safety analysis reports).
(2) A section chief shall keep validation result records and disposition records if any disposition is required.
D.7 Change management of design and development (1) When changing design and development, an organization shall clarify the reasons for change, sections changed, changed contents, the existence of the influence due to the change, circumstances of the change, etc. before changing them, appropriately perform a review, verification, and validation, and approve the change before implementation in accordance with the procedure for design and development management.
(a) Changing design and development (i) Design and development are changed by the same management method of design and development as the one applied to the original design.
(ii) The influence of the change in design and development on the safety of a transportation
 
Comparison Table of SAR for Type JRC-80Y-20T container (including components, etc.) and design documents (including safety analysis Newly added chapters reports) and the validity are evaluated.
(b) Transmitting changes of design and development The information concerning design change is transmitted to related organizations in writing as specified by a design and development program.
(2) An organization shall keep change review result records and disposition records if any disposition is required.
 
Comparison Table of SAR for Type JRC-80Y-20T E. Manufacturing order of a transportation container                                            Newly added chapters E.1 Procurement management A director general shall define procedures for the procurement management to ensure the following matters:
E.1.1 Procurement process (1) An organization shall ensure that procured products, etc. comply with specified procurement requirements.
(2) The method and degree of management for suppliers, procured products, etc. shall be defined depending on the influence of procured products, etc. on nuclear safety.
(3) An organization shall evaluate and select a supplier, using the supplier's capability of supplying procured products, etc. in accordance with the organization's requirements as the basis of judgment, based on the criteria of selection, evaluation, and reevaluation defined in the procedure for procurement management.
(4) An organization shall keep evaluation result records and disposition records if any disposition is required by the evaluation.
(5) An organization shall define the method for obtaining the technical information concerning nuclear safety required for maintenance or operation after the procurement of procured products, etc. and the method for the necessary disposition when sharing them with other departments.
E.1.2 Procurement requirements (1) A section chief shall clarify the requirements for procured products, etc. and include the relevant items among the following when necessary:
(a) Requirements for the approval of a product, a procedure, a process, and equipment (b) Requirements for qualification confirmation of personnel (c) Requirements for a quality management system (d) Requirements for a nonconformity report and nonconformity disposition (e) Matters necessary for activities to foster a nuclear safety culture (f) Matters for information management (g) Other matters necessary for procured products, etc.
(2) An organization shall ensure that specified procurement requirements are valid before transmitting them to a supplier.
E.1.3 Verification of procured products (1) A section chief shall define and perform required inspections or other activities to ensure that procured products satisfy specified procurement requirements.
 
Comparison Table of SAR for Type JRC-80Y-20T (2) When a verification is performed at a supplier's facility, a section chief shall clarify the Newly added chapters verification procedure and procured products release method (permission for shipment) in procurement requirements.
(3) When receiving procured products, an organization shall make a procured products supplier submit a document recording the conformity status to procurement requirements.
F. Handling and maintenance An organization shall plan and conduct the handling and maintenance management of a transportation container in accordance with the following:
(1) Considering the following matters, a manager shall define a procedure for handling transportation containers to prevent erroneous operation of and damage on a transportation container while handling a transportation container under his/her jurisdiction.
(a) Inspection of handling equipment and preventive measures against erroneous operation of and damage on a transportation container during handling (b) Handling conditions of a transportation container (c) The shipping in/out conditions and method of a transportation container from a storage facility (d) Person responsible for handling (2) A section chief shall clearly indicate requirements while handling a transportation container and reflect them in preventing erroneous operation of and damage on a transportation container in accordance with a procedure for handling transportation containers.
(3) Considering the following matters, a manager shall define a procedure for maintenance management of a transportation container to maintain the design performance of a transportation container under his/her jurisdiction.
(a) Requirements of laws and ordinances, design documents, authorized or licensed matters, etc.
(b) Inspection method and procedure for a transportation container (c) Damage prevention measures in storage (d) Setting up storage method and storage areas considering environmental conditions, etc.
(e) Person responsible for maintenance and storage (4) A section chief shall clarify requirements of applicable laws and ordinances/regulations, design documents, authorized or licensed matters, etc. and reflect them in maintenance management of transportation containers in accordance with a procedure for maintenance management of transportation containers.
 
Comparison Table of SAR for Type JRC-80Y-20T (5) A section chief shall clarify and manage persons responsible for work to those who      Newly added chapters perform maintenance or storage (employees, etc. and contractors).
(6) When maintenance work of transportation containers is outsourced, a section chief shall make a contractor submit management manuals clarifying the following matters and manage them after obtaining the manager's approval, as necessary.
(a) Requirements of laws and ordinances/regulations, etc.
(b) Persons responsible for approval, review, work instructions, etc. of rules, manuals, instructions, etc. required for management (7) Considering safety importance, etc., a section chief shall conduct witness confirmation and record confirmation in the maintenance inspection of transportation containers (including components).
G. Measurement, analysis and improvement G.1 General (1) Organization shall plan and implement the process for monitoring, measurement and improvement required for the following matters:
a) Verify conformity of requirements for the duties.
b) Ensure conformity of the quality management system.
c) Continuously improve effectiveness of the quality management system.
(2) This shall include statistical methods, applicable methods, and determination on the extent to which they are used.
G.2 Internal audit The Director General shall establish manuals for internal audits to ensure the following.
(1) The Director General shall conduct an internal audit at least once a year on transportation and other activities during the relevant fiscal year to verify whether the following items of the quality management system are fulfilled:
a) Whether the quality management system conforms to the plan of operations, the requirements of the quality assurance plan, and the quality management system requirements determined by the organization.
b) Whether the quality management plan has been effectively operated and maintained.
(2) The Director General should implement the internal program which specifies the following matters by taking into account the process to be the audited, its importance, the past audit results etc.
a) Criteria, scope and methods of audit b) Objectivity and fairness shall be ensured in selecting the auditor and implementing the
 
Comparison Table of SAR for Type JRC-80Y-20T audit. Further, the auditor shall not audit his or her own duty.                                Newly added chapters (3) The manual for internal audits shall specify responsibilities and authorities (authority to order special internal audits) and requirements for planning and conducting audits, reporting results, and management of records.
(4) Records of audits and the results of them shall be retained.
(5) The person responsible for the audited area shall ensure that the necessary corrective and preventive actions are taken without delay to eliminate the nonconformity found and its cause. The follow-up shall include the verification of the actions taken and the report of the verification result.
G.3 Nonconformity control The Director General shall establish manuals for nonconformity management and corrective and preventive actions to ensure the followings:
(1) The organization shall ensure that nonconformities are identified and controlled to prevent them from being left unresolved. The manuals for nonconformity and corrective and preventive actions shall specify the controls over the handling of nonconformities and the responsibilities and authorities related thereto. The manual for internal audits shall specify the controls over, and the responsibility and authority for, the handling of nonconformities in quality assurance activities identified during internal audits.
(2) The organization shall take actions for nonconformity in either of the following ways:
a) Take action to remove detected nonconformity.
b) An authorized person may determine its use, release, or acceptance by special employment.
c) Take action to prevent its original intended use or application d) If a nonconformity is detected after delivery, the organization should take an appropriate action for the effects or possible effects of the nonconformity.
(3) The organization should maintain records of the nature of the nonconformity.
(4) When nonconformities are corrected, the organization shall reverify them to demonstrate conformance to the requirements.
(5) If a nonconformity is detected after delivery, the organization shall take appropriate action to address the effects or potential effects of the nonconformity.
G.4 Corrective actions The Director General shall establish manuals for nonconformity management and corrective and preventive actions, and for internal audits to ensure the followings.
(1) The organization shall take action to eliminate the causes of nonconformities to prevent
 
Comparison Table of SAR for Type JRC-80Y-20T recurrence.                                                                                  Newly added chapters (2) Corrective actions shall be commensurate with the impact of the nonconformity that has been found.
(3) The following requirements shall be specified in the manuals for nonconformity management and corrective and preventive actions:
a) Confirmation of the nonconformity details b) Identification of the cause of nonconformity c) Evaluation of the necessity of the actions to certainly prevent nonconformity from occurring again d) Decision and performance of necessary actions e) Record of the results of the investigation and the corrective actions taken based on those results, when an investigation is conducted into corrective actions.
f) Review of activities performed in corrective actions (4) The following requirements shall be specified in the manual for internal audits:
a) Confirmation of the nonconformity details b) Identification of the cause of nonconformity c) Decision and performance of necessary actions d) Record of the results of actions that have been taken G.5 Preventative actions The Director General should establish manuals for nonconformity management and corrective and preventive actions, as well as manuals for horizontal deployment, to ensure the following.
(1) The organization should determine actions to eliminate the causes of possible nonconformities, including the acquisition and utilization of knowledge obtained through the implementation of safety activities and technical information obtained from inside and outside the institute, in order to prevent the occurrence of possible nonconformity. This utilization includes sharing the knowledge obtained through the implementation of nuclear safety and security-related activities with other organizations.
(2) Preventive actions shall be commensurate with the impact of possible problems.
(3) The organization shall specify requirements for the followings.
a) Identification of possible nonconformity and its cause b) Assessment of necessity of actions to ensure the prevention of non-conformity c) Determination and performance of necessary actions d) Record of the results of the investigation and the preventive actions taken based on those results, when an investigation is conducted into preventive actions.
 
Comparison Table of SAR for Type JRC-80Y-20T e) Review of activities performed in preventive actions Newly added chapters}}

Revision as of 19:21, 14 November 2024

Enclosure 4-1, Comparison Table of the 2019 Safety Evaluation Report (SAR) (J/61/B(U)F-96) and the 2023 SAR (J/2045/B(U)F) for the Model No. JRC-80Y-20T (Non-Proprietary)
ML23115A082
Person / Time
Site: 07103035
Issue date: 04/03/2023
From: Boyle R, Neely R
Edlow International Co
To:
Division of Fuel Management
Shared Package
ML23115A059 List:
References
CAC 001794, EPID L-2023-DOT-0006
Download: ML23115A082 (134)


Text