ML20199H407

From kanterella
Jump to navigation Jump to search
Non-proprietary,Rev 1 to WCAP-14733, Probabilistic Analysis of Reduction in Turbine Valve Test Frequency for Nuclear Plants W/W BB-269 Turbines W/Steam Chests
ML20199H407
Person / Time
Site: North Anna Dominion icon.png
Issue date: 06/30/1997
From: Fowler S, Haessler R, Remlinger D
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML17339A053 List:
References
WCAP-14733, WCAP-14733-R01, WCAP-14733-R1, NUDOCS 9711260105
Download: ML20199H407 (102)


Text

('

.a,,.

j,l -

g.,

'. (-

eQ,, ' ' ' *k},

,.,, ', [ g N /i!

['

" '.3...:.,.

,. p. i..

.,..Y..%

[*e

e.,

e

. 1, e

e e.

, p

y. y a...

y-4

, y (.

i.

'8

',..,'.'f; f, '.,

M ', '

i. ')'-

.t s'.

M r,

, p,d ' '.,... n,(

-4 w., "..;.'.. -

s

[,

,s

, *,y

.g

[

'l

'r. '. 1,

' j '., d g,

g

,,.'.f c j '

.3 s

j

.v

- 4 4

",.4'e.

s-i..

g t

A. ') %

t' ' y s

4 g. '*-

,.,I

.q-

, ' * \\ '

..f

.. s i

i' -

1*.

g s.

y-

.o

's

.;* $ e a'

a,

N

',' 9

- ' -. :. g, i

3-

l
  • ,... -[ 'g....

'.,.t.,< g.....

..r L,j%.., ' y ;.... '.

1.

.., j'.

a.

=

e s,

.f.

, c' s

j 4.,

. @, e.

.,'e

,ac " j. g

,,I*

5 e. f,6

.,I.

'.j,

sN'

.*7,s s.

e

,, pj

.q b-

s.,C

.8

,...N

,1. i s; ' + q '. '

1-

  • . u."- '

',, ?'j go',

}(jk[,,, **," r. *,

C.

's

,y..A'-

1 f, '*. \\

.g

.*'4

..'m.

',l<-

1,. ;

...q.'..,, '* ',i "

0;'j '"

'g

[,

.s s l

~

L s e

, e i, ;* :..,

8 s y,., -

'!,h

%'s-

')W.',.3. O. ',, [ ' " '_,.,

g,".

~ e' i

.p

, A l ),,

m_-

,:.4 g:

a.i..

g 4, ; * $

',h /, d (,. j5Pf . ', j}4, s

?.,,.,[if.

.q'>..)

- -.. 1

)

./

'.%;:,.. % u :f*b, [ ' f. f.

  • +{,+h.

q.

3

'. [':'M ' l:. 4.

oi

,9 V],

,5 :c.. a v

' * ',,{ G p ' f

.e !,.

..'L

  • l; e 4

. ~.

g.

l'.?.'

fu,.

'*t'

. ' '. g, ( ' ' - ' f,, ; '; ;, '. _*..f t%

i

, ]. 4.,',

..., d

,f T 9 p 1, '.

[,,i',,.

a

, [.g

./

)

1, ",

4 4-

.y,

\\,

, f,.

....'b.,.. * -

0i y,

.rs,s *,

4

d
4

,[h.,.-.. t ; y, *,%; ',. - '..

./

"i* *.. *

.~.y..,','r.

, 'g e *. j -4. :. > yg.'

'3 d.

J-N. 'i g*(j.

,s a ',,1 g :* e% ;../4 8

4; F.*,'

i, /.c,' ' A e,

s i.. < g g

. '.,, t..y.....,..c

-3. i l M ' y,

.. l. N..,. 7. 9. a '.

,,, t 't,

,-[..

f*..,.,,t',

' g1n,

'.,...*.*,'.l,,

a

,, g,,o,,,0:'f -

,,. g.,

e.

.. 3

=

x.

',.A...I

,, '* /';\\ '.l...l. n, A... f . *.-

, ^. '.

',._..\\

1'.

ff**r * ' fi_/G _' A ^

.s

.,,L J.O '.

  • s-

',., l.S *._, ' <'l " ;.a*- ',t

.d

..i,'

i e

e

...J,p,~. ;* ", ' k.

N...

,..'p-

'. h ',,,

~,

.s.-

. ]

O*

q &t -

, e s q.

. ; 1 ' %,*..

.... f...Q.- , f f. , ',.

  • q\\..o, p ;'sk -. ~..

...,~4

y

'.'0.,+6 es-.

e,,

... f. c. y.,,,,'t.,,

.g.

w' i

( e g,,..';.

,s s.

e t..

c.

, 'n i. - -

' ',..,h

...<e

,,,,...*, G,..

gl y.

^

I'.'.

_ gl,....,,

... b-

Q \\,

l-i 7,

...e...-

..,s

,. '...',p*: '

', j. 'h '. s * *.. ;*

,".js V - ;,y, ','r 5. l '. ; {'l.i

...W.

s -..h'.. $ '.l', * -

,}

'e D

. ' $.,, y ' li.. ?::

n

. ;.'. s 1..'

a

. I, y

p.+.,

.,,.,e

. s.... '

s.

,..l-(*.,,., (

j,.'......<,

+

/

y

. h.:.g,41J ' [i, d,{ ]

. 7 ' l; 4

.;> '- i.

I,

- s c

,,, 3 m(, (.). '

[' ',

d

' k d, ' (* '

J. j j.I..

.9 i.,

jj,5

.: ',,, h II, ' ' ? -. *

{ :,'. %.gp

,, ((

t. ~p,.',

V g.f' d e h,\\,,',I f i'g

' . ' j*, ;, l.,[',e A - ];.',,9 ', j"*' ' [. ' T,l. ',N a, l '. S%);,, '. *, '

/

q, l.\\ ' l l ' ' ' I -l

.,('

'[,

i.

e

+g,.o

,-

  • J, e -

. ' ' d'*'

2 v

. ' *. e d

,- [ g

w..,., 't. ;. y c p.

4 *,' *

!;9

=.

i,,

.s e

[. e.. -,

',. j. -

[' 'q

., i., ' '.

h sl ; 5 l,,,,

', (

'a :.,.,

,., y, ; ( [ l.

4 l,,-

. 3,,

-wl.c

,.t:: y %., 8.,.l. ')', i '. ' ; '. '

C:

_ / '..

....-l

.', Y

  1. ,. r(p *,4

. V e. J' a. /

m.-.'

't.

,. #! 4.

3 ~/-

  • l*

- 4 t: ' 'L.,'

f.. r / 'c ;,'. -. -;.., *

< c,. ' a y, '. ' 1:

a A

,i?.

j i, 4

u-j

g',

fi.(y;N '

%,., 3..p f.,.

9., ' ^ i 9,

- r g,

r tp.

O.

...,i

~.. ;. ;r,,g'

l., *y

,s j'

; m

,1

- Q'.,.). '

.l J.

.. '.{. ' '

_.; l g q ) ;. -

.e s

'. l &'l.I,,;!?l.,'Q 6'T: n:

/[

5i y 'j'.1

,?... L '. 4, ' ~'; y,p. 9;.'. [

9 & t %

. ? y..

' ls;

  • l N

'N' . 3 i.},,'. [ f h k

, ' E., * $.

7 4. ', ','\\ g.' '.,, l '. > M. I .l [, 4 ' l ' .i', j ' } " i,.*,]

,*P ',

/ - k '-

4. -,'.':,

? 'd,'..f, \\,ii ' I' NY G.:' R:.l;..Q ' ? ',..&.,k.y,,'y,',,y.g lltQ j ;'.;, J m

.,i,

%^ 4. t(%,4

..y ['. 'lk, /{J'.. '.'<t

  • ~. ~

fl

7. "

i%..

,\\<

M.

[.*,,,$

rQ Ri a...

I

. '[

.fa.-

+ '.f '.[b, y

[ f,, '.f..

4, '.'

j f.,y'.. '.., [t. '..

/... '

,. q q$;i' t

'[

4:

,..a t

- '(.

., *.-j,

,t

';glfk,'.

...g.*-

.,j 4.

  • .,E, p. /'..f! ' i M.e -l ; '

'3:, N [c.:..-

. w o

,s',

a...

g,).* ~.'..' Q ' C.,3. ' Yd en, :.'

3,

f;I

  • *F e

.,.Q ; k,

'g'.. ' g ' :',~ t zg, > 4 P ' 8 S Wf.4 4, /.. <c qW.

.1 q. g

& ; L,. f: %,./. W 0,;: '.

,i< '.

si'.

. *h.'..]:y j';-

y *g;, I -1.4 y.'

. y) t

.e n

,s.. v 6,., ' 3

,,;.. :,...'s. gj

,8 9.

t

+

.'sps s

sy,

, n.,,,+e e-e s

.*e w,

- sg /,g

$f j ' $pp i 3

(.2/

'$ i.k ' W ' 2I f.dy... '!..' d'.3,. gd.M 'D M,,d.t -

J.

t. :;

..j g

W.. M

.)'JI 7{gh [Pf * *Q

.f/ 9 '

','.y g ',. l h '[D.$, Pz ', [J 'p... p. A4 3)y',,'[b

'4 c.

h@d. **Ki. f

't,6 2

Q,.%' ff;/.

4 NyS k.

..*,c

..i..

M '.'L. ct )3,. A i v -7. ;

  • i,Q g,l,f c :,.' ',

.'1

< =. :*.

  • s 9.1. t /,;ti. '

e.

f4 w

ei' w

',q l 3:

.y.

3[4n. d;,.'g:&.. % g.

i,

.. f * < E.c..,, pc $. '. '. n

.f.

t

?,

c

$* ' l + f,. t t,{ c.Y6.h *.(L k: ;J (; i.'

.4 h,

I' y,, s$c,.. (.8. l,,. 6. (*1, w *m/ i '%:

+4.' %., k ',i,f::.'cL.

l.

ty i JJ %

  • 4

, W t.. e. ; -

v - -.

b

. n. *

,,e

  • .y u ?,e

. 3.m

..s m.-

Q sa.3

,..p. g*, :f** n; u g.,.

% 3. 'a ; ; +,;.

,ra, A s

  • N.%p..,; % Q,... ; es pe,, A,.y,p' y),. @ -. T [' ~

w:, k.i * \\a*

~

S. 4 W e. 3 zy=

'x:,

  • w mb. c

',..:.;..d,. q l',r

. '. ' 'a ;7,.

e ' :,:. ; q.p */ W.;f /k q " 'k-s J; 1 e.

  • t 4

M

.'.:( 4

.4-3 b

.,.4 i ' 'ni. T :py,..,q, q;,/ g,,, g p,

(1

.M

.Js A.,,:

  • ,*..v..s t-s p f.. :.s$ g,.y9]f,.% paw.c; ;;; ' ; h,,.%:p r ;' Qy y

p

.4

  • '. : "4,,q 2,w, / i e,..JV,]y['7
.c. -

a :p

+.

,f

, s.

t f.,M d j#:. ' %

-,*; 1

'4 s

IMM;h M,,.

v.A, ; t.m u w.q;a'.c,.yh,.

[

7 p'*g-S. ^..' .

1 f

1

. pp,ss 4,!

41

.. y 4 i. p. :.. c q. m

,,s f

  • a

~.n,'y~.h' unn%.M$~. 7h ' ~,( D ( 5':i u$j / g.f.d..;,'[p~^ $'N,,

n.

n%m.;h.,. E.

n'.

h.

W

'..<,,.,.r. w.. v 7, a,M. p%..)pY.JhQ ?kAhn%. -A, m:qM,:):

7.: N. m" 3.

p' ta w d

i,'s.,.:w g :

.c.wn, c.

n

. sc4. E. p Q W w o m:n g p#w p.%.

wy. J,

.g e

j x.r..

. g edp w v,g -

e w

q

< N4, r.

g wg Mh. vsd g% w:

M

. " :.. i. m f.4.q 4;a, 1

NS%g w

- A,3 J.s q.

.:q,g nv

.e g

2.~

w.

mp,e m; W O 3< s.;

u 3.N.,.p? p < # n;,. 3:

y M. :a c,..

L, w

on.

ri. g. q..A Q. l.4..p h(Q % g;.J,Q,.

y w e. sd M h. m;F,; w;.k u.,.dc. q

/p* T.Rm%

1... 3 n w

., M. y: w s

o

..o-m.

J.Q. u ds aw w

gi

%g s

pb...ggy.y:.q /Qyph', lK:3;t4be. 4 4,y

. ; q %.s

(,,

y$7A., e..mi:

9

.. i.

.gy.-..

yc.;. g

.... g n, n.

g._,

= :4 o

.i,.,;

g. n.p -

.g vg a.,

.y#

).,

/..

@s $. M. M @w.-Qm.W, @ M.k,$$Na@iMW d

d

$m~%eu 4 anw,;wa,pm mg y p..

c

w.m.a i

Westinghouse Non Propriotwy Class 3

)

l WCAP 14733 l

Revision 1 1

i Probabilistic Analysis I

of Reduction in l

Turbine Valve Test j

Frequency for Nuclear Plants with j

Westinghouse BB-296 i

Turbines with 4

Steam Chests l

j o

4 j

Westing h ou se Energ y Systems

[.

9 7 1 I c'h U l C 5 9 71 1 [ L)

~

^

D f?

ADOCK 05000138

{

WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-14733 Revision 1 Probabilistic Analysis of Reduction in Turbine Valve Test Frequency for Nuclear Plants with Westinghouse BB-296 Turbines with Steam Chests R. L Hoessler D. P. Remlinger J. C. Bellows June 1997 Approved by:

Mow [r, Manager, Reliabikty and Risk Assessment o

Westinghouse Electric Corporation Energy System Business Unit P.0, Box 355 Pittsburgh, PA 15230-0355 01997 Westinghouse Electric Corporation All Rights Reserved OV097w riort1b o61297

W:stinghouse Non Propr':tary Class 3 11 LEOAL NOTICE This report was prepared by Westinghouse as an account of work sponsored by the Westinghouse Owners Group (WOG) BB 296 Turbine Valve Test Frequency (TVTF) Mini Group. Neither the WOG BB 296 TVTF Mini Group, any rnember of the WOG BB 296 TVTF Mini Group, Westinghouse, nor any person acting on behalf of any of them:

(A)

Makes any warranty or representation whatsoever, express or implied, (1) with respect to the use of any information, apparatus, method, process, or similar item disclosed in this report, including mercharitability and fitness for a particular purpose, (ll) that sucrt 4

use does not infringe on or interfere with pnvately owned rights, including any party's 1

intellectual property, or (lll) that this report is suitable to any particular user's l

circumstance; or (B)

Assumes responsibility for any damages or other liability whatsoever (including any consequential damages, even if the WOG BB 296 TVTF Mini Group or any WOG BB 296 TVTF Mini Group representative has been advised of the possibility of such damages) reeutting from any selection or use of this report or any information apparatus, method, process, or similar item disclosed in this report.'

4 r

4 i

CA3097w nortib 061291 June 1997

W:stingnouse Non Proprietar/ Class 3 Ill i

FOREWORD This document contains Westinghouse Electric Corporation proprietary information and data which has been identified by brackets. Coding associated with the brackets sets forth the basis cn which the information is considered proprietary. These codes are listed with their meanings in WCAP 7211.

The proprietary information and data contained in this report were obtained at considerable l

Westinghouse expense and its release could seriously affect our competitive position. This Information is to be withheld from public disclosure in accordance with th9 Rules of Practice 10 CFR 2.790 and the information presented herein be safeguarded in accordance with 10 CFR E.')03. Withholding of this information does not adversely affect the public interest.

This information has been provided for your internal use only and should not be released to 4

i persons or organizations outcide the Directorate of Regulation and the ACRS without the express written approval of Westinghouse Electric Corporation. Should it become necessary i

to release this information to such persons as part of the review procedure, please contact Westinghouso Electnc Corporation, which will make the necessary arrangements required to protect the Corporation's proprietary interests.

4 The proprietary informaton es deleted in the unclassified version of this report (WCAP.14733).

b l

b o:0097w.rgrtib061297 June 1997 i

._..-_._-_.._._.__._____.-__..._.___.m__,__._____._..

Wostinghouse Non ProprietDry Ct2ss 3 IV ABSTRACT i

The objective of this program is to provide the probabilistic justification for extending the test intervals of the turbine governor valves and throttle valves. This program applies to nuclear power plants with Westinghouse BB 296 turbines with steam chests, increasing the valve test

]

interval increases the calculated valve failure protability, which is a major contributor to the probability of turbine overspeed. The annual frequency of missile ejection due to turbine overspeed is examir'9d and compared to acceptance criterion from the U.S. Nuclear l'

Regulatory Commission.

I 1

l t

1

?

b i

I k

l 4

F P

. oM7w.nortitr061297 June 1997

.... w.

.. _ _,.... _.. _ _.. _ -.. _. ~. _.. _,. _., _ _. _ _ _ _,, _. _ _,, _ _. _..

_...m__

. Westinghouw Non Proprietary COss 3 y

ACNNOWLEDGEMENTS The authors gratefuly acknowledge J.D. Campbell, R.G. Thompson, D.A. Dmach, and f

J. R. McCracken for their guidance and contributions to this project, I

i f

i t

1 P

i i

I i

4 i

i i

i J

1

!l i

i T

r i

i 0 0097w.rmrtit@1297 June 1997 v

..._c_-,........,_._....._,_,,,

....,,..a-..,._,...,_,,

,.,,,,___._,__,,e

,....,.m_.,

. _, ~,., _..

W:stinghouse Non Propriet:ry Class 3 vi l

i i

TABLE OF CONTENTS l

t i

1.0

' INT ROOUCTION.............................................. 1 1 L

- 2.0 REVIEW OF PLANT SPECIFIC TURlllNE INFORMATION................. 21 3.0 REVISION OF BB 296 TURBINE VALVE FAILURE RATES............... 31

[

4.0 REVIEW OF DESIGN AND INTERMEDIATE OVERSPEED MISSILE EJECTION PROBABILITIES................................ 41 i

5.0 QUANTIFICATION OF DESTRUCTIVE OVERSPEED.................... 51 l

- 6.0 CALCULATION OF SYSTEM SEPARATION

.......................... 61.

7.0 TURBINE MISSILE EJECTION FnEQUENCY RESULTS AN D C ONC LU SION S............................................ 7 1 7

8.0 REFERENCES

............................................81 APPENDIX A E H FLUlO SYSTEM & LUBE DIAGRAMS.................. A 1 APPENDIX B DESTRUCTIVE OVERSPEED FAULT TREES FOR VARIATION 7 AND VARIATION 8...........,........... B 1 APPENDlX C VANDELLOS 2 LDK ROTOR ASSESSMENT................. C 1 i

i h

0.0097w.non 1tM1297

- June 1997 5

+-v-Wwgudwm4

-gy+

se4.-,y y

+w--a

---g--?

,+

--,,+-m---

3-g m-+-7---g g-,z----7 p-g-t 2:

T-t"*NN--T em v --N mvrPvt--'--9*6mrW--t t'we 't wt TWNW+-+

t-f%*W7P-P-

Westinghouse tJon Preprietary Class 3 vi!

usT oF TAsuis i

Table 11 WOG BB 296 TVTF Mini Group Members.......................

1e?

I Table 21 BB 296 TVTF Mini Group Design Variation....................... 2 2 l

Table 31 Solenoid Valve Failure Rates....................,,......,... 3 2

- Table 51 Conditional Probability of Destructive overspeed.............,..... 5 2 l

Table 5 2 Dominant Contributors to Destructive Overspeed......... s......... 5 3 i

Table 71 Annual Frequency of Missile Ejection........................... 7 2

[

4 i

e J

5 l

i 4

i;.

i

?

i i

I i

4 4

1 I

l t

b i

i a

5 OA3097wmcib 061297

. June 1997, r

- ~

.. ~ -.

Westinghouso Non Pror<1etary Class 3 vill UST OF FIGURES liguro 71 BB 296 Turbino MisJe Ejoction............................... 7 ')

o 009' w,rm i6061297 June 1997

Westinghouse Non Propriet:ry Class 3 11 1

INTRODUCTION Historically, Westinghouse has tscommended that turbine valves be tested at periodic intervals. For some plants the technical specifications require weekly testing, for others i

monthly testing, and for others no technical specification requirement exists. Periodic valve testing requires a temporary power reduction that results in lost electrical generation, in addition, inadvertent reactor trip can become more likely during the transient power reduction and increase, in recognition of the effects of turbine valve testing on plant equipment and electrical power i

generation, a Westinghouse Owners Group mini group was established to perform an evaluation of turbine valve test frequency (TVTF) for nuclear power plants with Westinghouse BB 296 turbines. Several early BB 296 units were built without the steam chest design, using BB 95/96 turbine valves. These units are not part of the BB 296 steam chest mini group.

This report contains the results of extending the test interval of turbine valves on the annual probability of turbine missile ejection due to overspeed, using BB 296 turbine throttle and governor valve failure rates and system separation frequency. The turbine missile ejection frequencies for varying valve test intervals presented in this report were calculated following the applied basic methoPlogy described in the 1987 Westinghouse report WCAP 11525, "Probabilistic Evaluation of Reduction in Turbine Valve Test Frequency" (Reference 1).

After publishing WCAP 11525, severalincidents of sticking of governor and throttle valves in Westinghouse BB 296 steam chests in late 1987 and in 1988 resulted in the determination that the turbine valve failure rates used in WCAP 11525 for BB 296 steam chests were no longer valid. The failure rates for BB 296 steam chests were recalculated in 1988 and the resultant probabilities of turbine destructive overspeed we'e sent to all operating plants with BB 296 steam chests in Westinghouse Operations and Maintenance Memo 093 (OMM 093, Reference 2), included in this report are revised failure rates for BB 296 steam chest valves for the operating years since the 1988 study. Six years, 1990-1995, have been used for data collection. Using the most recent six years takes credit for improvements in design and maintenance while retaining adequate time for rare eventa to occur. The methodology for revising BB 296 steam chest valve failure rates is consistent with the methodology presented in OMM 093 and WCAP 11525.

The methodology developed to calculate the probability of missilc ejection due to overspeed ovents applied in WCAP 11525 is employed in this study. WCAP 11525, Section 5.2, identifies three turbine overspeed events that can result from the failure of turbine valves to close following a system separation or a totalloss of load. These overspeed events are design overspeed (approximately 120% of rated turbine spoed), intermediate overspeed (approximately 130%), and destructive overspeed (runaway speed in excess of approximately introduction June 1997 o \\3097w.fmit>061297 4

, _.. -_.. ~..

W;stinghouso Non Proprietpry Cl:ss 3 12 180%). Design overspood is assumed when a system separation occurs and a turbino trip does not occur at evont initiation, ono or moro governor valves or two or more reheat interceptor valves fail to close immediately, and a successful overspoed trip closes the throttle valvos and the rehoat stop valves. Intermediate overspeed is assumed to occur when there is O system separation and one or more alignments of rehoat stop valves and rohoat interceptor valvos fail to close. Dostructive overspood is assumed to occur when a system separation occurs and at lear,t one governor valvo and one throttle valvo in the same steam chest fall to closo.

The missilo ejection frequency results in WCAP 11525, for BB 296 steam chests, indicate that the design and informediate overspeed failure probabilities ato not major contrioutors to turbino missilo ejection probability for plants with fully integral or heavy disc keyplate low pressure rotors. Thorofore, this study focuses on calculating the probability of dor;tructive overspeed. Generic values for the probability of design and intermediate overspeed are based upon the results for 88 296 steam chest models presented in WCAP 11525.

Vandollos 2 has light disc keyway low pressure rotors. Design and intermediate overspood probabilitics for Vandollos 2 are prosented in Appendix C.

The analysos reported heroin woro authorized by the following utilities and are specific to tho turbinos and valvos at their respectivo nuclear plant sites as indicated in Tablo 1-1.

Table 1 1 WOG BB-296 TVTF Mini Group Members Utility Plant Asociacion Nuclear ASCO ASCO Units 1 & 2 Baltimoro Electric & Gas Calvert Cliffs Unit 2 Contral Nuclear do Almaraz Almaraz Units 1 & 2 Contral Nuclear Vandellos il Vandellos 2 Commonwealth Edison Byron Units 1 & 2 Draidwood Units 1 & 2 Duke Power McGuire Units 1 & 2 Virginia Power North Anna Units 1 & 2 Washington Public Power Supply System Washington Nuclear Plant 2 This report providos a description of the analysis and deta used for WOG BB-296 mini group.

Throughout the report, references are made to the detailed information in WCAP 11525. The methodology described in WCAP 11525 was reviewed and approved by the NRC (Reference 3).

Introduction June 1997 o uo07w.non itro61297

I Wostinghouse Non Proprietary C40ss 3 21 2

REVIEW OF PLANT-SPECIFIC TURBlNE INFORMATION l

Sections 4 and 5 of WCAP 11525 describe in detail turbine valves, control systems, and i

turbine classifications for overspeed analysis. The information in Sections 4 and 5 was compared to plant specific information supplied by BB 296 mini group members to select the appropriate plant variation category and fault tree model.

As illustrated and discussed in WCAP 11525, the BG 296 unit has two steam chests, one on each side of the high pressure turbine, in each steam ehest there are two throttle valves with i

two governor valves downstream. All plants in the BB 296 TVTF mini group have this steam chest valve arrangement. WCAP 11523 also discusses two types of overspeed control and tnp systems; the 300 psi system and variations of the Electrohydraulic (EH) control system.

All plants in the BB 2961VTF mini group have the EH control system design.

The EH control system has several orders of overspeed and trip redundancy and diversity.

There are two overspeed protection control solenold dump valves (201 OPC and 20 2 OPC),

either of which will dump the control emergency trip fluid (ETF) line on overspeed, closing the interceptor valves and the govemor valves. The control oil system has a mechanical overspeed inp valve and a 20 AST solenoid valve, either of which dumps the autostop oil and initiates a turbine trip at overspeed conditions. The dump of the autostop oil opens an oil-operated interface valvo and a 20/ET solenoid valve, either of which dumps the governor and throttle valve emergency trip fluid.

WCAP 11525 uses a variation number to classify plants according to inlet valve arrangement and control and inp system type. The classification of the BB-296 mini group plants by variation number f.um WCAP 11525 is given in Table 21. All plants in the mini group are either Variation 7 or 8.

Differences between Variation 7 and 8 concern the electrical overspeed trip mechanisms.

Variation 7 contains an electrical trip mechanism consisting of a solenoid and plunger valve (20AST 1) that will activate with system ocparation due to a generator trip signal. The plunger valve drains the autostop oil which causes the interface valves to open and the turbine valves to close. Throttle, governor, reheat stop, and reheat interceptor valves close on this signal.

On BB 296 steam chests, the solenoid valve is also activated by an overspeed signal of approximately 111 percent. Some plants include, for backup, an additional autostep oil solenoid dump valve (20AST 2) which is redundant to 20AST 1. Instead of a one or two valve 20-AbiT system, Variation 8 has an electrical trip system consisting of four 20/AST solenoid dump valves. The opening of two of the four solenoid valves results in draining of the emergency trip headers and the closure of the turbine valves.

Review of Plant-Specific Turbine information June 1997 oM097w.nortit>061297 f

6

,,__,.m,

Westinghouse Non Proprietary Class 3 22 Table 21 88 296 TVTF Mini Group Design Variation Plant Variation Almaraz Units 1 & 2 7

ASCO Units 1 & 2 7

Braidwood Units 1 and 2 7

Dyron Units 1 and 2 7

Calvert Cliffs Unit 2 7

McGuire Units 1 and 2 7

Nodh Anna Units 1 and 2 7

Washington Nuclear Plant 2 7

Vandollos 2 8(1)

(1) Vandellos 2 is similar to Variation 8, but has three low pressure turbines with a total of six reheat stop valves and six interceptor valves.

For plants in the mini group, variations exist in the number of roheat stop and interceptor valvos. Some plants havo four rehoat stop valves and four interceptor valves leading to two low pressuro (LP) turbines. Other plants have six reheat stop valves and six interceptor valves leading to three low pressure turbinos. Variations in the number of reheat stop and interceptor valves affect the analysis for the design and intermediate overspeed events.

Section 4 discussos the treatment of desiri and intermediato overspeed events. The E. H. Fluid System & Lubo Diagrams for the plants in the mini group are in Appendix A.

Review of Plant Specific Turbine Information June 199h o \\3097w non:1t> 061297

W:stinghouse Non Propriettry Class 3 31 i

3 REVISION OF BB 296 TURBINE VALVE FAILURE RATES BB 296 failure rates for governor and throttle valves were updated using the most recent valve failuru and operating data. The data base contains governor valve and throttle valve data for operating nuclear plants with Westinghouse BB 29G turbines with steam chests. The determination of the failure rates for governor and throttle valves was based upon the methodology used in WCAP 11525 and OMM 93.

Data for the failure of throttle and governor valves to close has been collected by Westinghouse. The plant specific data used in this program was reviewed by the utilities in the mini group for accuracy and completeness. The collection period includes the time from January 1,1990 through December 31,1995. This time period provides failure rates based on current valve design and mainte.iance practices while retalning adequate time for rare events to occur. The data indic'ates [

)+" C failures in 4,266,679 operating hours.

The govemor valve failure rate is calculated as [

]+8

  • failures per hour.

I

+ a,C I

]+a c The throttle valve failuro rate is then

[

J+a.c failures per hour. This calculation is also equivalent to the result obtained by using Bayesian statistical methods, [

] + "

There is a known condition of potential thermal binding of BB 296 throttle valves during prosynchronization valve testing. The factors common to all binding incidents are described in CAL 87 03, titled 'BB296 Throttle Valves," dated August 24,1987. The recommendations to minimize the potential for binding are listed in OMM 091, titled " Maintenance of BB296/0296 Throttle Valves,' dated November 18,1988, so past thermal binding failutes are not included as random failures to close on demand. Users of this study are cautioned to follow the recommendations in the documents listed above to minimize the potential for binding of the throttle valves.

Failure rates for other components modeled in the f ault trees are the same as those in WCAP 11525, Section 7, with the exception of the failure rates for the 20/ET and 20/OPC solenoid valves. The c&noid valve model incorporates additional common cause failures of the EH trip system 20/ET and 20/OPC solenold valves compared to the model in WCAP 11525. The revised modeling resulted from a review of overspeed events that occurred at the Salem and St. Lucie stations in 1991 and 1992. Revised solenoid valve Revision of BB 296 Turbine Valve Failure Rates June 1997 o:\\3097w nortit461297

W;stinghouse Non Propriet:ry Cliss 3 32 failure rates have also been incorporated into the model. A maximum solenoid failure rate of 1.0E 5 por hour was selected from NUREG/CR 2815 (Reference 7). This is approximately 2b times grea'er than the faliure rate used in WCAP.11525. The solenoid valvo failure rates used in the revised model are summarized in Table 31.

Table 31 So6enoid Valve Failure Rates Failure Mode Failure Rate (per hour) 201/OPC solenoid valve fails to open (random) 1.CE S 20 2/OPC solenoid valve falls to open (random) 1.0E 5 20'ET solenoid valve fails to open (random) 1.0E 5 201/OPC & 20 2/OPC SOVs fall due to common cause 2.0E 6 201/OPC & 20ET SOVs fail duo to common cause 2.0E 6 20 2/OPC & 20E1 SOVs fall duo to common cause 2.0E 6 201/OPC,20 2/OPC and 20/ET SOVs fall due to common 2.0E 6 cause Revision of 08-296 Turbine Valve Failure Rates June 1997 o \\3097w.non.1b 061297

Westinghouse Non-Proprietary Class 3 41 4

REVIEW OF DESIGN AND INTERMEDIATE OVERSPEED MISSILE EJECTION PROBABILITIES Probabilities of turbine missile ejection at design and intermediate overspeed are not explicitly calculated for this study. All plants examined in the mini group have reheat stop and interceptor valves, and design and intermediate overspeeds are 120 and 130 percent of rated speed, respectively.

Missile ejection at design or intermediate overspeed can only occur if a crack of sufficient size is present in the LP rotor discs. The fully integral rotor construction greatly reduces the chance of forr-on of stress corrosion cracks that can lead to turbine missiles. This results in design and intermediate overspeed probabilities of less than (

)+8#, even with inspection inwrvals up to 30 years of operrtion (Reference 4). Typically, plants in the mini group witn shrunk-on discs (heavy disc keyplates) perform periodic inspections of the LP rotor discs using ultrasonic methods at 5 year intervals, or in accordance with Westinghouse recommendations. These Inspections detect and monitor crack growth, if any, and eliminate the possibility of operation with a disc crack of entical or near-critical size. The inspection and monitoring of cracks assures that the probability of missile ejection at design and intermediate overspeed is sufficiently smali for turbines with shrunk-on discs that the impacts of these events are small in comparison to the impact of destruct"ca overspeed. Note that Almaraz Units 1 and 2 have replaced their low pressure rotors. An evaluation by Siemens has concluded that the probability for misslie generation of the new rotors is bounded by that for the Westinghouse rotors. Therefore, the ce'culation of the annual probability of destructive overspeed provides a good estimate of the total annual probability of turbine missile ejection.

An allowance for the torbine overspeed missile ejection probability for design and intermediate overspeed is based upon the BB 296 steam chest models in WCAP-11525 for heavy disk and keyplate LP rotors. The allowance is discussed further in Section 7. Vandellos 2 has three light disc keyway low-pressure rotors which are addressed in Appendix C.

Rsview of Design and intermediate Overspeed Missile Ejection Probabilities June 1997 o \\3097w non.itro61297.

Westinghouse Non Proprietory Class 3 51 5

OUANTIFICATION OF DESTRUCTIVE OVERSPEED The destructive overspood model, davoloped in WCAP 11525, assumes that upon a loss of load or system separation, failure to isolato one of the four steam paths to the high pressure turbine is sufficient to cause the destructive overspeed event. Given that dottructive overspeed occurs, all LP rotor types, incluttng fully integrated rotors, are assumed to experienco ductile failuro of at least one disc, or disc section and ojection of a turbine missilo through the turbino casing.

The St. Lucio EH and control oil diagrams were the basis for developing the destructive overspeed fault troo for Variation 7 in WCAP 11525. Updatos to the EH fluid system dump logic and overspeed protoction control solonoid valvo (OPC) common cause modeling have been mado. These updatos are included in the dustructive overspeed fault trees used in this study. In addition, tho basic event that represents the frequency of system separation was removed from the fault troo. System so.naration frequency is applied as described in Section 7.

Analogous to Variation 7, the Shearon Harris EH and control oil diagrams ware the basis for developing the destructive overspood fault tree for variation 8 in WCAP 11525. The Variation 8 destructive overspeed fault tree irom WCAP 11525 is used in this study with changes rnado to the fault tree logic to model valvo closure on the dump of EH fluid through the drain path fron the valves to the top of the cylinder. In addition, the basic event that represents the frequency of system separation was removed from the fault tree. System separation frequency is applied as described in Section 7.

The following items apply to destructive overspeed fault tree quantification:

Destructive overspeed occurs when one govemor valvo and one throttie valve in the same steam chest fail to close after a system separation.

All destructive overspeed probability resWts are calculated for BB 296 turbines with two throttle valves and two governor valves per steam chest, with two steam chests per turbino, and an EH control system.

Calculatlons woro performed for turbino valve test intervals of 1 week,1 month, 3 months,6 months, and 12 months.

The failure probabilny for the governor and throttle valves is time-related and is the fraction of timo that the component is in a failed state. As discussed in WCAP-11525 Section 7.3, the unavellability is determined using the following formula:

Quantification of Destructive Overspeed June 1997 oWTw nortit>-061297

M..

Westinghouse Non-Proprietary Class 3 5-2 unavailability = 0.5M where A failure rate in failures per hour

=

time interval between tests in hours t

=

The occurrence of componen' failures in time is assumed to be random, therefore, it is modeled by a constant failure rate A. Because A is constant, the average or expected downtime of the component is one half of the time interval, thus the coefficient of 0.5 in the unavailability formula.

Destructive overspeed probabilities are presented as conditional probabilities given that system separation occurs.

For components in the destructive overspeed fault tree which are assumed to be tested once every refueling outage, a 24 month refueling cycle was assumed. This conservatively bounds shorter refueling cycles.

Probabilities of destructive overspeed, given a system separation has occurred, are presented in Table 5-1. The results are presented for various turbine valve test intervals.

_ (+a,c)

Table 5-1 Condmanal Probability of Destructive Ove.pd I

Typical destructive overspeed probabilities for test intervals of one to three months range from

[

}* * 'C. Note that because the LP rotor is assumed to eject a missile through the turbine casing when destructive overspeed is reached, the conditional destructive overspeed probabihecs in Table 5-1 are also the conditional turbine missile ejection probabilities due to destructive overspeed. The destructive overspeed fault trees used to quantify the overspeed probabilities are in Appendix B.

Quantification results indicate the governor valve failures are the dominant contributors to destructive overspeed probability and that in comparison to valve failures, the failures of individual elements of EH, control oil, and trip systems have a smaller impact. The exception to this is the plugging failure of the common drain lines. Table 5-2 lists the combination of Quantification of Destructive Overspeed June 1997 o \\3097w.nortitrO61297

Westinghouss Non Propri::t:ry Class 3 53 failures that contribute significantly to the destructive overspeed event for each variation, as well as their percent contribution to destructive overspeed probability (based on the results calculated for a three-month test interval),

Table 5 2 Dominant Contributors to Destructive Overspeed Percent Contribution to Destructive Overspeed Probability (3-Month Variation Event (s)

Vane Test interval) 7 A govemor valve fails to close anc' 52 the ETF drain line clogs (causing the throttle valves to rema;n open).

7 A governor valve fab to close and a 22 throttle valve fails to close (in the same steam chest).

8 A govemor valve falls to close and 55 ETF drain line clogs (causing the throttle valves to remain open).

8 A governor valve fails to close and a 23 throttle valve fails to close (in the same steam chest).

Quantification of Destructive Overspeed June 1997 o:\\3097w.rcrti b-061297

W:stinghouse Non-Proprttary Ctss 3 61 6

CALCULATION OF SYSTEM SEPARATION System separation is defined as the sudden and total loss of load on the generator, such as the load loss that is experienced if the generator output breakers opened while the plant is at full power.

The sources of generator trip data were the Westinghouse Individual Plant Examination initiating Event Reactor Trip Database program and the institute for Nuclear Power Operations database containing the Licensing Event Reports (LERs) for generator trip data. Generator trip data was obtained for nuclear power plants with Westinghouse BB-296 steam chests. The data collected represents 24 domestic units and 5 intemational units. The data covers the time period from January 1986 through September of 1995. Generator trip data for the applicable international plants was supplied by the international utilities.

Generator service time refers to the time that the plant's turbine generator is operating. This parameter is important because system separation frequency (per year) is a function of the time that the generator is in service or operating. NUREG-0020 (Reference 5) contains plant information for generator on-line houra. Generator service hours were available for all domestic plants with the BB-296 steam chest design. The hours were totaled from January 1986 through September 1995. Service hours for the international plants were supplied by the international utilities.

System Seoaration Frecuency Results System separation is calculated using the followirig formula:

System Separation Frequency = (# generator trips / generator hours)*8760 (hrs /yr)

There were 49 generator trips reported during 1,492,038 service hours. The resulting frequericy of system separation for all plants with BB 296 turbines is estimated at.29 separations per year.

Calculation of System Separation June 1997 oMo97w nortit>061297

W:stinghous2 Non Proprttary CI:ss 3 7-1 7

TURBINE MISSILE EJECTION FREQUENCY RESULTS AND CONCLUSIONS The updated BB 296 turbine valve failure rates, system separation frequency, probability of destructive overspeed, and annual missile ejection probability presented in this report are applicable to all the BB-296 TVTF mini group plants.

In verifying the suitability of turbine valve test interval, it is recommended that the general NRC acceptance criteria for turbine missile ejection (Reference 6) be used. The general acceptance ciitoria states that the annual probability of turbine missile ejection should not exceed 1.0E-05 per year for unfavorably oriented turbines and 1.0E-04 for favorably-oriented turbines. To be consistent with the methodology of WCAP-11525 and good engineering judgement, it is suggested that an allowance be set aside to account for the fact that a complete analysis of missile ejection at design and intermediate overspeed has not been conducted. In addition, the allowance accounts for the effects of the extraction nonretum valves. Closure of these valves isolates the extraction lines and feedwater heaters from the turbine and prevents reverse flow of steam through the lines which might cause the turbine to overspeed Section 8.4 of WCAP-11525 discusses these valves in detail. The suggested allowance is [

]**

  • per year. Evaluations performed for this study indicate that the allowance of [

]**

  • per year conservatively covers the missile ejection probabilities at design and intermediate overspeed and provides margin for uncertainties in the model and for the effects of the extraction nonretum valves. This allowance does not apply to the Vandellos 2 light disc keyway rotors. Refer to Appendix C for the missile ejection probabilities for those rotors.

The destructive overspeed model was constructed assuming that a loss of load or system separation had occurred Section 6 calculates the anttual frequency of system separation to be.29 per year. However, a more conservative value of.4 for system separation is used.

Therefore, destructive overspeed probabilities should be multiplied by.4 to obtain the annual probability of destructive overspeed and the frequency of missile ejection per year.

To correctly assess the frequency of missile ejection for a given turbine valve test frequency the following steps are taken:

1)

Add the allowance of (

]+as to the destructive overspeed probabilities in Table 5-1 to obtain the conditional probability of missile ejection from overspeed.

2)

Multiply the conditional probability of missile ejection by.4, the frequency of system separation. The result is the frequency of missile ejection per year.

3)

Compare the frequency of missile ejection tn the acceptance criteria of 1.0E-05.

Turbine Missile Ejection Frequency Results and Conclusions June 1997 cdKr37w non:1b-061297

Westinghouss Non-Propri:tary Cl:ss 3 72 Applying steps 1 and 2 to the results presented in Table 5-1 gives the turbine rnissile ejection frequency for varying test intervals. The missile ejection frequencies are shown in Table 71.

(+a,c)

Table 71 Annual Frequency of Missile Ejection ummmmmmmmmmmmmmmmu The missile ejection frequencies for both variations are almost the same. Therefore, to represent them in graphical form, the slightly more limiting results for Variation 7 are plotted in Figure 7-1. The missile ejection frequencies shown in Figure 7-1 meet the acceptance critorion of 1.0E-5 per year for all test intervals analyzed. These results include conservative values for the system separation frequency and the allowance for design and intermediate overspeed probabilities. The governor and throttle valve failure rates are based on plant operating experience (primarily monthly testing). Although extending the valve test interval is not expected to dramatically increr 3 tho valve failure rates, sufficient failure information at longer tests intervals does not cue.atly exist. It is therefore prudent to conservatively interpret the missile ejection frequency results es supporting quarterly testing until reasonable failure rate data can be accumulated based on quarterly testing. The missile ejection frequencies for the Vandellos 2 light disc keyway rotors also support quarterly testing as discussed in Appendix C.

The results presented in this report supersede the results in WCAP-11525 and OMM-093.

TVTF mini group plants that currently use WCAP 11525 or OMM 093 as a basis for determining the appropriate turbine valve test intervals should use the information provided in this report as the new probabilistic basis for determining the turbine valve test interval.

Turbine Missile Ejection Frequency Results and Conclusions June 1997 l

oA3097w rvn16061297

Wcstinghouse Non Proprietary Class 3 73

(+a,c)

Figure 7-1 BB-296 Turbine Missile Ejection Turbine Missile Ejection Frequency Results and Conclusions June 1997 c:V097w.non.1b@1297

Westinghouss Non Propriet:ry Cliss 3 81 i

8 REFERENCES 1.

WCAP-11525, "Probabilistic Evaluation of Reduction in Turbine Valve Test Frequency,"

June 1987.

2.

OMM-093, '8B296 & BB0296 Destructive Overspeed Protection,' November 1988.

3.

Letter from D.C. Dilanni (USNRC) to D.M. Musolf (Northern States Power Co.), Docket Nos. 50-282 ana 50-306, " Amendments Nos. 86 and 79 to Facility Operating Licenses Nos. DPR-42 and DPR-60: Turbine Valve Test Frequency Reduction (TACS nos.

66867 and 66868)," February 7,1989.

4.

WSTG-4 P, " Analysis of the Probability of the Generation of Missiles from Fully Integrated Low Pressure Rotors," October 1984.

5.

NUREG 0200, "Licersed Operating Reactors Status Summary Report."

6.

Letter from C.E. Rossi of U.S. Nuclear Regulatory Commission to J.A. Martin of Westinghouse Electric Corp., February 2,1987.

7.

NUREG/CR-2815, "Probabilistic Safety Analysis Procedures Guide," Volume 1 Revision 1, Section 5, Appendix C, August 1985.

8.

CT-24926," Turbine Missile Report, Results of Probability Analyses of Disc Rupture and Missile Generation,' Vandellos Unit No. II, Revision 1, January,1982.

References June 1997 c:\\3097w.nortib-061297

Westinghouse Non-Propuetary Class 3 APPENDIX A E.H. FLUID SYSTEM & LUBE DIAGRAMS Electro Hydraulic Fluid System and Lubrk:ation Diagrarns Figurr, Number Plant A1 Almaraz Units 1 & 2 A2 ASCO Units 1 & 2 Braidwood Units 1 & 2 A-3 Byron Units 1& 2 A-4 Calvert Cliffs Unit 2 A5 McGuire Units 1 & 2 A-6 North Anna Units 1 & 2 A-7 Washington Nuclear Plant 2 A-8 Vandellos 2 Appendix A June 1997 o \\3097w,non:1b-061297

Westinghouss Non-Propriotary Class 3 APPENDIX B DESTRUCTIVE OVERSPEED FAULT TREES FOR VARIATION 7 AND VARIATION 8 Appendix B June 1997 o:\\3097w.non;1b-061297

Westinghouss Non Proprietary Class 3 i

DESTRUCTIVE OVERSPEED FAULT TREE FOR VARIATION 7 l

AppendixB June 1997 oA3097w.non:1t>CS1297

J

=.

,a.k&*

n.

.r>sA...

m A-k a sL1 x

a nu A nR. A.kx new--- A, ws L, mis,,

mL aa l

i 1

^

l g :-

_- ) t

-g-m r

,<3.

i

>E e

a r

.g

,I z..

r

,e I

gi

' gI g.

f [.

1=

gg i

i w

s.

i c-et s

r.

7 r

e V

F F

7 r

1 en p

f!"i ~

T l

g

. le c_

q.

i

.e i

d. '-

.. !v i

i u

1;..

se il val: x

.=O

=L

&~

sv r

r 1

r r'

r a 1

aj.

. f.y

- Es!

r rg o

Ie I

.r a,

- vp.

as b-g*#*

~

v5

  1. ~

8 5

  • I' 8

r r.

r, I;I I

22 i

- =

. j L.g,

- pg :

e.

I.

l. :

L L,i

1.1 h..il

~

r 5

b b,

a I

W!!

kf 3

. !!f C.

~ ij:

bgl E

L

E55,

$d i r

1 I

0 i

g1 rd E ;Y

  • ~

f 4

II s b

p r,,

r f*,$.

_ g.!.

g g5 5

asy,

kw,

di,

9

. 5

. hj; e

's= :

I*s:

Is d -

JII y elvv 4]QJu ns r

r..

r r

7 r

r r

r sw v

rg r

gjg

- s!!! C f.y C

IL o-

!e y.

r a, s'.

Ig.

g:s.

E l-g22 C lz.

P

~ dI L

L L,i 35 Es 3N! s

,35Es og" 3

3

i b

.:IE I*

a sS
  • f.

.I *

.I 3.I a!'

g-o 33 e

j:31

f-
w. I
  • T.s r

r I&g E

3.

os -

Eh

$e t

.=-

db 353Es

y

.e a.

m i-*-s4_

n--4 W_

J_,44 1

b

$--a,__64-AI. rz-i+f&3, y-

.+-p--

+-w.b en e--e_d, n-A>-

.da s.

6,.h_=

.g.

$)

II

't

.-a f E*

3rl b

I

&L 5

g

[jdi f.r C

i O

$!f

)li E

istr>

da,

C r

em r

r, T

T

<E 1*

2 8e f-sbv ts o 4415 7 s!'

L-

  • E

. f s.*,

. v,i

. =e..

w v

een m

re C

rg eEt E!!

hz t ;)I

[5's Bed,

i L

li:Eis

ll at a2?).,

il r-a s r.

's

'e o

thEE E!

Ee el I!

g e

W52d 3

. bg a

. *d v

. =2 W*

4

. Or

  • B.

u!5

!5 E~y le

$Eles, ET L

t.1 L

r,3, f4

.d (I_f K,5 l,

5

<=

!==

t

- ghg

. i

- ;,1

- e:

3p:

- age a

- ys g

sis,N d:"L ask,

15 s, ig L 3ai 3, gekg In tj bt?

.n m

9 k2 8

{lg VW

  • id 3

i.8 ilI sij n

2

[rr,

a jif ails.

aut L

[X!

(E I

- age t

g

- age 4.

bRg b2?

Seiei, its is 313 L m

r,,

r, r

15, r

VW gjg gt h,! 7 if C. sj?

8 W-

  1. 1!

5.5 kI -

. j33

. b N$

N!

I f

b

$5h Nk

!v.

eL and,

ad.:

m.

C C

1st i.

T*

b.

55 18

  1. E
  • n l'.

5lE 2

I s

T 3

m$$5 )

a m

W

. bgg 3

(I !

5 sX mbw n.s r

m r

I Y

Hf

' t

!!il ch,

x ru

T" e.'

1:Jt

}C-

'l

' t.

m.

b F =7 8

ist AL>

h.I Ed3 W

kau.l Ido g

es-3sd ;

$;iL,

leie s

7 i

g ge as-i o

f f.n,,

  • v r

e a

s b(s

$ggNs

$k!$hs yg,

rr g

a

=4 J

.e 4

J.-+.

_A.

.A 2

-2h-a 85da L

.A

..4_4 a.

mk-a.

,-+4.ab_,%4 h,

+

i.

i f

. 1--

I-25 1 ::

- jt.

-i !

.-5..l.-

<. {

3 3:.

1,1 P

1 3

b I

e d

I 3

Eg I

J$l.

o; igg

. [- _

. jgt bd s

7,-

m-6 d'

d b,

&*~

f

~

u

+

a

,.=4, s.

n.

s.

ei u om

,,_.44..w

.e.-a.u-,

,,,i.>>.ses

.a a.

A.u.+.yh.am.yn.-

.,-aJ+r I:

3 *8 i

-s 3-IO

.a f.

I b

& 4 I

Es

~

I6,uL

,I 2

g I-l t

, J

. -i sI!

b blveg I

b

'I F

VI,,

I 2

il!j:

. Tvg 2

C

~

~

fi8 ul s3 :i o

o e!!

b

- !pf

- iva C

e fO::

59i!s M'II,

. !*.I -

. rd s

. SiI 4:-

3 rs n-r-

dlL st a!L.

O GE

=

W EW I

3

~I yi:.9 v_.,,

I E2WW to_Y wt-as os w

a r

r r-r r

S Y

I b

.e.

_.1

, 5!.

fe f=

vtj 3

. g,.

w d

5 5

s:i,'

I-hj C::

agt m

L as

. -,..., ~. ~ - - ~ ~

e--~n.-

a u _n.. -_,

n

.,_-,u.w c

..a.

- a n.~.

4.

T 1

f F

.~.A_

g:

J5

. it i

s :-

aE-a u

1 Li 6

f

?

Ee L.

R

  1. 3

~

l!

elgl

<]:

. z E

rd m

S-t I

WIE 2

R WWa fI ih C.. i ";

~

}i :i! Es L

lil v

Ifo I

W

~

3L in;

. !I.

. rd

. *dl qt p"

  • Ir.

r.'-

MIl s II 3

in i J !s J*

Es o

r r-r N

I.

E' L

d s

- A$i <]!

-,4j <]s l!:

15,,

!:d r

MI !s li!I ;

Ide s

l c

r, as-rg r

gw VIE

[.

i Id I*

- mfa i-4:

l

.5 IES

  • I..

Q i.

g.2_

L_I gg 3 1g4 E!5ls v.

r s-r,a l

C AL.

e ;

1-

e

~.

tI 1:e vt

~

m sq s

s

  • k I

I*

. Ef,f"g S (1 j

zge g

I.r,e n-zeg i.;I 35s litse s

m e s F

1 E

7 I

! C.

I fj,I.

ig.

Lg slrs!

<3 i~

t glr a!eiI C

ri!

U I

g re ie,

r r

r, I

- t $.

l l! :

eii

-2 Mi.l 3%g 21Eils e

m e

r, r,

Tg V

o d

i. ' I.

. 's id f'

f.

..E

. 'I a

Tg

).

ma 8=

g5 5 E85 Ifd*

g,E L

.; as L

si, E s 4

.s: s r

b I

r.W r~g~-

et fe;l!

sv.:

e Zyg

a g

j,g Egg I

W15 Sie L_w 3%l s r,

r, V

F

. Yd E

. if

~

f5 =

ebp gm e

-8 s

s*

5s r

g r,,

r.,

r g".

a

  • cr f-

. r!!:

. t;N D$

<]3

&[l <]T

(-

g:'

g3=

ru er ditl,,.

s 3:n,

49 5

3rf,

s r

r r;g, r

f Ye5 6$

E5 5

j l!

- I Sg (b

~ y 5 (!

los; 11,:

5

8:d M5y en v

@j;.,,,L

$0sg aeE* ; ;

os

.s r".

r r

r r

r r

r,,

r:

Tg V

gr z5*

f:

!e

!=

r a,

,; g,

(,

- v:

e

,gg r ~

E

- E sv

- s Ile$

  • I.

e fg5 f*.

"g fe

=

er L

D_s is" r'g =

m.i ibhD r~;

1.e:!

d va e ;

L css,

x z,

$t 3L ss: s

6-

.,,nm.-

a-o----<b 4._dE, L,%-,6 J.,,,

b, Ar nWk,,-h,-&,

=a wer m e

-<b

amu,

..d&-

__A 4

p.

4,u,,-,.a JA.,,

p

-e

_,K 4

Lem+m.-

6mde

,,um 4

e m a -, eM-A4,,

s I

J

- ;l h

1:

i

,o

? l:

a

!).

k.,

$!h 1

r r

o

. !j i

. I.f (I Ze I

E E

M n!.,a L"g

i

.s r

r r

r_

r_,

Wg W

(3 p!

I I'

'h (I

g hL L

LL I!!.

L.

b

. h.I C

b5

- f a

!!j C

Iajl 1 E
,

L i so,

e 8 y Egg mL an

- l'l- @y,

- [f! <]s

.a:

ue, xi i,.

~

r r.

9-l11 n,!-E!l

<]I

- d,4l <]E 8!

i 40:

Litt,

Leb,,.

m r

r-Wg-V E

55 T g;

. se 1,o

!o

!=

I!e -

. rry

-e E

r fr (-

Y::q r!

E:

8 4

s;i,E

L,5 L

2 Elfl$2 s

,n,.

. -. - - ~

e

i~

s 1-lt i2.I

.D 3$...

se I

.i.

F r,

1 g-==a 80

- Mtk

~I*

t-a sz a

{s~s y46'. C I

EIL siijf g ::

a

. dd <]a

. d a.

- x, IS~s

  • 5 SE Es GL r~D r.

t'd h "t'I' i

  • 5 (,

.it

_..s.

h f,be 5

l a

O wtt*8s

I n*

i=

I*

i8

  • l

.-D 5

C i

3',

F 7

Y

, b,,%

  • g y.-.

35N Jd']s.

dt f8s m

.n-5 s

leg

- N a

n.-

la, wg ad: s,,

e x:t

4:

$22 58

  • 4 5

2 1

11!

e,,

<3 e.

g

{eN DJ E-'

E g

rv h

me, L.

r r

- i;$ Q-h*!"

s say di" lle}d,

sq

.L r

.4

' bES se.s

)

_p ii

<8

%g-I LkIL 9

8 g

EE F

'L,.,

r pe.

i J

w-c..

1*

i5

't

' E I '. :

m 8.

I 1

Wh

<3k Nis

!s>

!N !

m s.

r IV T

g gJE4

!o"*

la E

  • g.

!81 ebs u

b J-p k

>m-an-A 1

AA.>6 4

d&a.-..45

-asas,-

4+-

6

-ome, eredMan mL--

m k-,

?

- = _

+;<.

t e

l L

'~ _.

r

-g %--

II.

f

_ -; g:

mg-

$ g^

s g

-h-b 6

o s

t 4

5 1

i F,,

1

~h

- (I SIL -

m,.

'I J g..

=

p&

$~

ohj, g

WI

- _j <]!

o il5d EE" d

d b-.

b3 R

!y ~

ag

!- 6 583 - G

^

I f-

. wo r.

IJ fr.

v-r

~

!).

El i

Eiii, m- - -

m.

m

,g',

m

..E',

=-w--

==.-

'll*"

b a

1~

_{.

')-

-g.:-

l t}

} IL

)t'

.w

.i}g.!

?

I E

~

+

4L e r

dll o

Ep.

Agg jg i

4 hW53 L

bo2C s F

r ry.

b i.-

f*

m

~

Y

~

~

D,, 5 j'

f'

'8

D J..

...han.

,ma,,-

-4&,

MA-s.

An-

-,4,,

-.6A

,,_u

_a_

= = - -

-=_

')

k.),

i

-1

. g '

.. a.

1 2

- t

'.: g

. i g-

-

  • sc j s 3-

- i r

<I' b

3

<35 s.

WE t

$3 IIl

<]3 l*d wYC 3

s r

. WWg 2'

I~B.

j las IJ IES

- 3i

- Iga E

!p t

id m E:-:iL e

8 E

b 2

I' T. r*:

5 55 4 q~s I

!!9 C

3,*:

II L

Eh%E,

bht,

.b.i e

3

' 9t.

gis-s

-jf8- <25

' v:.. <35 -

fg 5

i;u-

' rw.

-!ol-51

$$$5s

$2

.s r.

)'

r, r,

I.k*l -7 Al" g

lW!.

d-e ni,

, rij i

Sc,

r

. d. s..

d, v (d

,a 3-,.g 3EYIda

\\

W=tinghouse Non Proprietary Class 3 DESTRUCTIVE OVERSPEED FAULT TREE FOR VARIATION 8 Appendix B 0:\\3097w.nort1M)01297

1 I

i I

$2 11 18 r

m m

  • l )'j[

37 f

e

. FI I

I I

I g-j,.2 giI Eh P"

i,i C

se ! ;

t

.o r

r r

r r

r n

II II;I g

7I L

,1

k.,I

, f Id g

, gj d

E*s.

  • IId I

I.*

.,~

O L;,

t ER er Ys ie el C(d 3:

4

.e

\\

..a r

m r

r g

g

. hS g (g W.=, u e

i ist.

el se u av 1

o J: cs end s

[

]

" e) '

'g

=

g b$g y

.$g j

g

. :Q, "5

g.

h.. :

!~E ti V

O hy 5?

hIr.__.i 9

m r

m r

(

r TI r

bI g

v

- If V

?

- YE

  • &G-l.

I h

O e

2*!

E 8

1s;.

L at J!y 1!!:.

y r

r, a

Yd Y

a kgI Il l

W ll $s r

r s

r r

bb E

Ef I

l

. $*g$.

I!ji C

(*l

" sed

. 3

. he t

a IE.?

I fe:

8 a

e ad..vs o

s:s! ;

Jin ;

cm.

r r

er

. m!!.!

V.

E r

=

. nu e

a gi i

l!:

le e efrv

  • t :

l'i :

.ssle niy 5:

t, arv 8) os r..

r r

.D Q 8..

.. e.

f s.G bIuPt2

..g i

,i 4; -

i'nt,e I

i

==

r[,e I:s L:s 4s 1: !,

w a-s s es r>

-w a

s v.

s w.

I

1

)2;t

'hl*m.

l 11 IL uI.

e I. I ear.

GkJ r

mi

=

es b* g

g I

,2 idL n.5!!L

- -, - - - -, - - - - - -, ~, - -, -, - - -, -, - - ----,, - -,, - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

T I

i:

j1 it

'tII l'-

i P

j

\\

e Es SyYa Eh tard Miel J.

t ea m

r, b

E{.

. tF 5

- ir; e

sis

,, y:,

- g i

a

_ r.

3 E:

L)

C

!!i 10 >

$L L

.-,.u

--..A.-

-se a-LaL s

a-,+_..

,.J l

i g

J1 1

i8 l

Yl IB i!,

n NI s

llj re..

hkBill m

9.,.

t,.

' IT'$

I.

8 g.

ide Y

Eyg4 l

JP!L


.--.---.-----.-------.,.--.----------,--,--.-----------------------y h

t 3

1 II 4

  • E
  • s lS l

.n.

m 4 I

r --

r r

l 8

r, g

st at a;L y

fa

[

@t

. gy

- go a

. Weg f.l.

l I

Ii g

i st

- ro a

~

tiI*

C r!

2

!$a II Ji; Iveis 2E_L l

r r,'!li i 9 3-g;Ir 4,

b,

=

i ri

}!i!!s ftdis s

f~,~,1.$

5 6

n.rs

. n '.

g5 Ef Ere C

re i

b

$$grt!;

}!! s b;

si da

. nj e

. nij Ei I!i Ei L

$5.! L g55 IO

. s?*!

tib( T.. ?tb t

g ig. t to Cj 55!.E

$55 L s

HEE

  • gr

. Ig!e l

.653(g1

/

. n!g a

tI ti lia 33i$it

$55 s li8Is m

r,,

nt

. ntt f

. ]g

. n,l

. n g.

r""~'

. n!

I y

2

g Ify-Isj C

ti lif C

tis

$Ii.;

L bp L

IIS fi$Es s

1 I;.

it ss

  • hl'

!)i)-

r te (E

lir, tio.

m h5

- IIl <]8

.li.a.,

r rg b

8g.

Ih

. [I

[

r 3

If.,

P.

,5 ks h:Ik r g!!, @L

=

I II, d.

l f m.

e

I t

If

}I s

i 8E

  • u ic1

'd '

- N5 L

Bf f[j

<]8

' hi

<]3

' !!,l 48

~

I!! L

M >. sllL.

I E" ili.

11 d!L

'!g'ili I!

[]

8 8

h.

I i

j, iI 5l

'B I*.

..!oI

)

5

- 55 E

Ls$

s W

da

- 3 g

v.

N w

A A,.u-a

_au._...

_t.4_m..u___

AAA.===-2._

me._4 s..m.,_m u.a.

__mm.4 m _.u2 u__A-A o

_u.__

a___mua---.,_weA+a_-~4ss-.m

,e2-4-am-a.,_.a-a_a4..m-.m6

)

l 1

i I

k f

!n

  • 8

?

8 f

I5!

a$

~

g*g Qi l, i

h. -

1, ie

<L.

,ft,,i g

h 1,

"g I

l.i r

, Y]

{

af.,

J i

l n

' f, I

- If!.,

I

- fhj di I

ti !I

te, ka h,

h.-

ss n:

r,.

E

-..-.;-_=---

-n-=.a.w.+s,.

.s e. s

.- - - ~. + - - -.

...suua~~--xa._.u, s-.a.

. s a s s u -... e.a

-wa.

u x - n A n. a-

.su.a.---n.--

,a n-a..-

a-.u

- e.. s. a -> ~ na. n I.

f I

p J 1 l

}t-5l i

i

  • g 1

t I

l a

f

?

4.

m r

t.

fti,

<p

<p ir i.'

ij l e,hl i!!L i

i L

ut wt ij.

til

<]5 5

h._l b.

2 IIE.D

.bV i

Erl 5-

- d" E-Ili El

<]E j-th;

.E.

dl g

7 II*

yg-V 6

e!-

jgi 9

Id

. 3 LL LJ IB il ni

.r

+ -,

,%A.....--.

',--,r-wr----.,r-,,-.--.e-----,

1-..

,.'#w....u.e.-ww

-.-..a..-r..-im.

.--e w,--.,--

v-rw-...-.---.,v-5%,.

.p

+

-a-

+,

.x..w-u

--n

,aa

~n 2

_,s...a

.m

._w-~s

+

& a

.___x.a.

-a

+

l l

i i

l' i

l1 J !

i jI m

r r

h b

'sI

. <d I

Wg fl I

. I' s

. gP g

i Ll I

7 r

i r.

i

. it'l r

ees n

. as se na S

l*

I

'I b

b'I 1' 'Ib*

a b

b' '**

I 2

l

[

is, b2

[

r,, u r

..i -

L

LL taL.

d

- i!

i

. :ii }

Al L

r m

r m

O r

t L

is n.

o[

,i:

g e

t li

-is!

li e,

J!r! >1 tii-LL U

n is, p

. Iji 7

[i b

. i'

. Ii a

- r a

r; c_ r ei:

i,I e

- I,

~i.

er w

v l.

L iL E 68 3 m

r g

8 g

- 85 5

I

- 6:!e I

- 3i la e

  • 1 tj E

JN b,

dad

}l5 s

!!:n e- :.1 5

c s

5

- *5 r o-a r4! C-is, l,.

,1

1. e Es Ite dilb L

lib J.!w N Es lii l.

m m.

aa_.

I 5:

1;t 1f

  • 1, i

i 3

e I:1

. ns E!!

amt "1

F il r 10 I

- s a-- <a g!

C i.E!

s ras 3%q L'l >.J

m.

e 4

A-i l>

l 1

t ai g.

f I

f 7

I;S

?

$b{ s

. 6, I b.,8 li.f,

I ~r

,e

,.r 2 k$

Z$NBJ J

r r

r

. b; a

. bu e

. b, a

Ig*

1;t' lif b

LEI!L lii!Is

[I "3

'3

. b 3

. bflg

. b, l

. b,f m

g G.

lin K-

!i; 16!,

mi! >

dLL

<rl.
JRni,

,w I

1 1

i8

'I

  • B g t,J1 i

Ce

- b'

(!

lir.

wo.

Jr,.f; e

rg Egg

- [$

i liiii r-t e

$8 I

' I!l, I

ilml, 10 i,

I 4

1 i8

8. E I_e

=

!, t e

e.lin me, m

Ig le!j

<]E Itid!!L.

EER

' E

.:l!!it b

I I.g i

e 8

I

?

I-l,io

't

1..

I, I

'd 'r ti; r

I!L b

' !!l C

' h[

<]I dhi <]i IEL fi L. Igl.

s!'E If;:

iI

' I I

e a, L e

u$L cm Els i!

I i

9 I

it it

  • h:

1>

GB df r

. s:

'g W

We E -- 3

'I IS ?s 1.

siO

4

-4 1%A-J.a&#hh4,s_As_m.,,e.sh._,__.ge

._w#2A+_.J.S c

de d.

44.J, hahsa_,A,a6A m#M pa,&

.m.m Ams 9p.Ah.h_A.,__.mym,. m u&4aAma_._

$_-M-&&--iAgrw-6,sguA,,

3 434h44._.

t 9

i l

5o x

l 5.

i a

f

,t I

I I

l t

I P%

r pr

Iti, i

k<):

J ; <):

..u t

pl,-

a.

!! h I1b

[

ih h !!

m a

it

-p' i

j wi

[ ( Q"jg

__.._~.-._u.-___...-_r._t.._____.,.._:___

.=.r.

_wsuAA<

aa 4

e

_a34a a

4 Am.m A.

mm.A.u3, 1

,1A.aA..

__a 4.4,._w.4a.._

g.

AAa awda,e.m.a,ma44 me,4 a_

4M Amy 2..4Wa__,3

=_4p.m4,r

,A.h.m.,4__z,..

i,;

l i

I;x

'c'5 b.

[

a I:s I

i ht i

f 4

.

  • I di-Il <!

lL,

!e 8

I M

r r

b_1 bo.

1 I

i lil d

'If$L.

h l

t L

n'*

o niit

W:stinghouse Non Propriet ry Class 3 C1 APPENDIX C VANDELLOS 2 LDK ROTOR ASSESSMENT The ovaluation of tho Donoric allowanco for design and intermediato overspood missilo ejoction probabilities, prosented in Sections 4 and 7, was bas 0d on heavy disc kayplato low pressure rotors. Vandollos 2 has throo light disc keyway (LDK) rotors which have higher missilo ejection probabilitics given an overspood condition. This appendix prosents the assessment performod to dotormir,o the design and intermediate overspood missilo ejection probabilities, and the total annual rnissilo ejection frequoney, for Vanc'ellos 2.

As described in WCAP 11525 (Reference 1), the total missilo ejection probability is the sum of the design, intermediato, an't destructivo overspood missilo ojection probabilities. The annual missilo ojection frequency is the sum of the missilo ojection probabilities multiplied by the system separation frequency (see Soction 6 of this report). The design and intermediato missilo ejection probabilities are composed of: 1) the conditional probability of tho ovArspood event and,2) the conditional micLile ejection probability given the overspeed event.

Destructivo overspoed is assumed to always load to missilo ojection.

Tablo 8.2 2 in WCAP 11525 hsts the type of low pressure rotor for each plant at the timo the WCAP was written. Included in Table 8.2-3 of WCAP 11525 are the conditional prot' abilities of missile ejection for the LDK rotors. These probabilities were based on turbino missile reports referenced in WCAP 11525. The LDK probabilities are very high and, when multiplied by the probabilities of design and intermediato overspeed, mef not support longer 'est intervals. Thereforo, to more accurately calculate missile ejection probabilities, this assessment usos plant specific conditional missile ejection probabilities from Turbine Missile Report CT 24926 for Vandellos 2 (Referenco 8).

Because design and intermediate overspood probabilitios were not specifically calculated for the generic BB-296 TVTF program, a fault tree analysis was periormed for the design and intermodiato overspoed events for Vandellos 2. The Variation 8 design and intermediato overspood fault troos from WCAP 11525 were modified to incorporato six reheat stop and six rohoat interceptor valves. The system separation frequency was removed it is now applied outsido of the fault troos as described in Section 7. To more accurately model the drain paths, the logic was revised to model valvo closure on the dump of EH fluid through the drain path from the valvos to the top of the cylinder. This is the same change discussed in Section 5. For the design and intermediate overspeed 6 ilt troos, the drain path revisions also included removing basic event D07 (vented drain lino from OPC is blocked) and adding basic event D10 (primary drain line return is blocked). These are the only differences betwoon the Variation 8 design and intermediate overspond fau t trees in WCAP 11525 and the Vandellos fault troos. The design and intermediate overspood fault trees used for the Appendix C June 1997 o \\3097w nortit>061697

Westinghouse Non Propriet:ry Class 3 C2 Vandellos 2 analysis are included at the end of this Appendix C, The fault tree analyses included changing the valve failure rates discussed in Section 3. Table C 1 shows the conditional design and intermediate overspeed probabilities calculated for various test intervals.

1

- Destructive overspeed is assumed to occur when there is a system separation and at least one governor valve and one throttle valve in the same steam chest fall to close.- Destructive overspeed is independent of the number of reheat stop and reheat interceptor valves.

Therefore, the Variation 8 destructive overspeed results are applicable to Vandellos 2.

Table C 1 also shows the conditional destructive overspeed probabilities for Vandellos 2, which are summarized in Table 51.

i j'

i i

t 1

I 6

i l

Appendix C June 1997 c.\\3097m.nortit@61297

WCstinghouse Non-Proprietary Class 3 C3

~

~

(+a.c)

Table C 1 Condh6onal Probability of Overspeed for Vandellos 2 The conditional missilo ejection probabilities for the design and intermediate overspeed events woro derived from Reference 8. WCAP 11525, Section 8.2 discusses t' e relationship between design and intermediato overspeed conditional missilo ejection probabilities. The conditionalintermediate overspood missilo ejection probabilitios were a factor of 5 to 15 timos greater than design overspood. A factor of 100 was used for this assessment for conservatism. The conditional missilo ejection probability for destructive overspoed is 1.0.

The resulting conditional missile ejection probabilities for Vandellos 2 are shown in Tablo C 2.

~

(+a,c)

Table C 2 Condnional Mieslie Electkv1 Probabilitiew For a given test interval, the total missilo ejection frequoney is:

0.4'[P(A)*P(WA) + P(B)

  • P(M/B) + P(C)),

where 0.4 is the system separation frequency por year (soo Section 6),

P(A), P(B), P(C) are from Tablo C-1 and, P(WA) and P(WB) are from Table C 2.

The annual missilo ejection frequencies, for various test intervals, aio shown in Table C-3 for Vandellos 2.

Appendix C June 1997 o 0097w.nortit> C61297

W0stinghouse Non Proprbtory Class 3 C4

_ (+ a,c) l Table C 3 Annual Frequency of Mienile F)ection for Vandellos 2 i

Due to the high conditional missile ejection probabilities foi the LDK rotors, the generic aliowance d.scussed in Sections 4 and 7 does not apply to Vandellos 2. The Vandellos 2 turbine onenta' ion is discussed in Section 3 5.1.3 of the Vandellos 2 Final Safety Analysis Repon (FS AR). The FSAR evaluation concludes that the turbine is favorably oriented.

Tabic t of Reference G shows that tne Annual missile ejection probability criterion for a favorably onenteJ turbine is 1.0E 4 pe year. The Vandellos 2 missile ejection frequency results, for a 3 month test interval, show a large margin to the limit. Therefore, the Vandellos 2 results support the conclusloris of Section 7, which conservatively interpret the genene missile ejection frequency results as supporting a quarterly testing interval unti!

reasonable failure rato data can be accumulated based on quarterly testing.

l l

i l

I I

l Appendix C June 1997 o 009'w non It><C1297 l

Westinghouse Non Proprietary Class 3 C5 l

i VANDELLOS 2 DESIGN AND INTERMEDIATE OVERSPEED FAULT TREES l

i-l l

l I

Appendix C

%,g7 OM7w.rar1t> oo1297

)

f C

T I*

t E

m.

,,,,,5 g

  • g CME g

E g

.*{

C F.!

bf I

I

.i rl i

7 Ml I

. f.

reg i

i r

i tard i

I i

I 5I I

rir i

b b

b b

r g

q.

l1 r,~. !! 3 i

..:*! T. ll I

l

  • i e r

i-5 b

J t!._.Iv d*' br l

{

I s!I (~

.g s

- e..

lt.

t 6

I

$k.If;

,8 7

d f.

I y

b,.

F5* s i

$2.0

)

n*'$

0 [*,,,,,,.IV r,

r

. rd C

hg" l

,g e-- !!

iI }. ll.

ii 1;;i 5"

3 il '

ist liii t tj 5

sen.

L

st J!!e.

L l

I

[

Ik

. jIl

. n!

i

- sis 8

i.ri i

i i

551,

40,8 Y

l;ep;5v Elilis i

7, E.]

. [ig II

. ie;

. i G

it.;. d e

18m

,3 u!

h-iste u 11O C

b b,i diIv 1

55fEL i

i f

b i5.

1 7

t t

.i :..i r

n r.,d

~.

u!d n!

r, 1

- 5ta 2

I!!it e

t 5.

IE

  • Ju!

i t

_..&..Q 4

4 4 %1E__

.-sm,da.

l ma, 2

emu.

. m mLA-mna-a.m.

A.

.L A e m AAma.J L42,aaA[mA.h.Aa m,

sJa

' l l

q.

i t

llt a

f :.

cr r

5 t

N 3L n

gR I

8$

- Pr!

r"(I J-ic. t to n

a m[ft-p

'AtI tsu n

(

L[fQ f

II d

ti!

d sL

'all att k

a n..,.

~

e.,

ana.,..n s,.

~,.w--,

as u.

as -

,---a w.,.-

u,

~u~

. a.u w.s

+, _ - a uasn. -, -

_.a.-

i I

3:

6,

4l

!a s

6 4 4

b f

J 1

.q!L

..il!

15it Eh; r

. Ifd d[h,,

7

. n, j

. n!

t

. 6,8 le!

Iga get C

lag, Igg I!1L Yd,

~

J lilt

,,ti 1.gi s

  • j$;

e ihg

- Q i

=

li!L lidi.

.!!!!I.

a!!.iu J.;L

. h,

. b,f J

9:

u ir dn.

m, it emi.

L an o

ia:

Ge1:!

.2 e

e s

L l

1 9

m r

b

- !g i

. I$$5 (

gra!

165 C b

b Egg

. b};

g

. g(1j;

[tS g

2

$lE:

I's; e;

E..g 5

. h"i Q:- !!

- g!*l

=

gG.

e

- :o ps za-gae; A

1a-i dLv i

=

T E ::

fi

}'t s

1 C

P D

e r

- dU P

R

[* 3

    • J 6

4"247

-s-r r

n Y

b 2 -

.t

]

mi

-is I'

2.-

U

- ru

.e b552 s 2

$252 6

r.

r o

e

",E

./

{W TI.

Id

. yd y

,.go C

4 T

l is.

igg e

a :

e-v -

d S 5s

$!I s s

.y -

2 a

1 T

E:

Y

s I@

l-P 5-K:-

w e

,rs s,

l-Y i

If I

IE :

,a r: x C

O

e

.x--

+.-au

,u usa n

.A.sa n

.. - _.. +-

a u

.s

-.=..usun.-

u se. a s a w au

.au--

w

-ws-..us-.

e T

.1:

  • g g g

.j.

.I I.

s

.lt*

bbh b

r r

i:

3 l31 8

Irt 3

. b,l ([.

gg j

a

.G E@

lele!a E

lilL,

s s

m y,

!!. C.

i,r:.

n

.I <]:

.,gr z;ra s.d e-r,-

b? Nibs bF5* s m

r, r

E bf I

'i[l!

k.g ' ;

!! l. [

' bfEj (8 8

h1 le is 3.p!e A8 s

I Eh a

r s-r" e

Jgg 3

. V" g

r g,!

g.

"4 0 h;

  • I!;

!.(h L L!ais 3Pil

$~.i u

r, kah f

- at

=

- $9 <]:

- tr a

I j

y p

-p;7!.

tr*

=

s

{E-o z**-

e*!.

E,3 ya

{*g g' {.,p

.a-a u

gie-Ziil. O sie E 4HL L

si ss

F 4

4 4e

..e 5:

4

'g i

amJ.

  1. 4_

4-..o a

A-+--

.aAam

-ht-m 4,e 4,,

T

?. ' :

[t i

f L

J: s

  • $s l ',.

1.4, )

e f

~3 0

m su 9

l

!"~o. C

_,5 14:

$5:5s r

m r

k

  • 8

<]! lEl <]5 tur!

iti <]!

sa.s a

- Td d

a te J :

it*L.

In u.

a w

v E

E 5"8

}

E

{t g

th.

. Iv ro n

fe r

W.g :

-Jg fr--

r u

-d

.:To:

u b

MYI,

Is!j C j (

r:

E

- Si

- e8 2

. !) e b

lg 8l5I g

. 83r* QE

[11,

L}

s[*lt d!I

}s1 i,

re >

te,

2:

s:

s

. 5,I :

. n'g3

. rF

. ya r.

y

. y..

0

.-- : C-

. is -

Is:

i a;s:lv:-,

s"tv'ys.,

6, E' i se x elvv x e, a= e,

a q

Eli!

i, e;

i e

r -e s

l.E Iyst d:. d Ie.g:

ne

=

<r;g I

s :

q8 ce ge:a

,e -

y eIrg

-,8

. x esL L

h cas-s' L

me a,

1

. s e

E :-

l.,

a ji st; M

g:

,I

.5-ig 9

ao 1

I I

. t.

. c.

4a, 9:

th s

. a, Q:-

tra-en sn ags e

rul w

w w.

m e r 15

~ lE 3

!' j!e!

lreik dj <a

^

i ri!o L,,

e v.

s:= >

no sert 3:.2,

L tr s

c; m r

!gyI y

uo 5

33:

r;,

- l!" <!. j'!

E E

. rt

,I e,.-

e a: s,

L.

1:sss, c.

e

,t e

s; 5d

. r,

. ro E

. rva

<.I:

e> e r.

as s.

.a L

c h.-

e s>

r.

r r

=

z e

. it.

5e 8"

u

. EEE a

.a r

. Ee

,i r,: e L

Q,e Eg g

I
-

ir.

a ra-r

&: 8.Ej

-v o.

B-ud8>

r r

r, b*

2.

EE2

[fi-Er 3

. r" C

its C_.

ils,

L f!!ii.

. ![k 9.

. $..E ge 4

e la:.

I r

.s=

L

&g E'E J

r r

hN 5

. !.!s'*

lf*-

. s.:

. ro s :5 e.

E=

ItE g1 -

t9

  • y s

s*

-i.r E

1..

"w d

5efel, A% ?>

1e re.

z, at.

Lele >

,-m c.

I I*~

fg E58

Jr" y-g

. !sa

<1:..

a 5d I-5 T

TIU

- t.

a

- t-g"

.8 n.,d 2.j Ite;s 3

.t v.

Ers. -

-b s~s :

W W$

E55,

L 0

W 5555$>

i 1-I'

)a-at

$~!

1!-

bj-

=

r

$6

- N!j di lna wf$2 s

r

. Tra 3

I

~

=

re w.$" h s m

r b

a O

E i'Ise D '.

~E e Yt h

i 3

i

~

J2i?

Im El$s-NRL d5s r.,

E* 9 h*

E g.

g h'3 e

~

ft 3

. 3.

a NSY sCflb s

~

ffy 2

"f h

h.,

h I l C'

t 1

m !-t

! ~u i; f r

. 5l <]s b

r e

al r

r b

a Wh: C

. k.

(3 I*

ii

~

ISi" ni an:y w.

r r

r, I

1:9 C..

!s

-,*a

.. e L

$1?ii.

r m

r a r

1 0

.h 6

2 g

r>

r p--

ad s *t 1s.25 3

uw a

s,

m r

r Ie,

,l o

i.

5

' l$ d'~ dll <5 II, E

< !:'_s3u es en

e e

C-

^

m r,

r r

e il n

. !s.

,o

- t:1 s

t,.

  • E:.

[;*

  • R

["c. a I E$

s_u e -,.,:

I,E!!

d$fE!s s

a a1:

E

  • O-

.8 o

.I '..h l

l l

?

r 8

. 5

- E

!r5 M*2b as i

r-r I

- t:5 g

(-

l r-En,-

t-ds.s.:.

y

.m i-hm.J s

4%

was..-h, M

i. 4 24-m

,a44--4 Jd.-+,Js+.e*w.k-.wp.,

4 F

4. 4.,e:.a 2,MA.a+d4m-c.

4

,,4.Ae e

A 1

% A > 45

_.w.

+a

--e412-,u. a A.mA-4 t

g-

- E=

j=

e

.J N

t m

l<

E 4

1

?

N Il'*

k 6e4 (E WZd b.

. WW j

d5 lie s>

r r

b 3

g.

"E w!

(I

- I,'

I E

u$5k,

!'d I

a c

r, b

T;

. !W

-[

a p

hl -

b E

b:

e r! D O

dI

' rl dI t..-

-d u t.

e.

r.

r.

r b,!_!3' !d<y3 $. =

lh..i3 !!!..

i

$552

?$$$$ a L

. GN J

l l

+

E:

}R S

g A

t o

8',

b il r

le

- 'irj <li Ic w5 -s r

TW*

O

.-Mg*8.

=

Egd:

J?* h s r

r B

32 k

(E

.per n,

SpS; it*8 U

vd5s OYW ;

r r

r,-

B" 2.

Egg T*

. 3r

.. En g

. r O

I$

N T ti

ss r-b54 4td b *Ebs s

7 7

F O F

7

. l l

I

. 53 5 E!!

E!

isE

('

I I"5 IS 1

3:N 3: 5s

$'4::*

s

^

r r

n g

a 11 3

ee.

d

~

bbag

., it So

. 5:

- =

. Y y$tg

=

y,

-a gg

=

=

l5.-- 5

g. T I,B'

,;&s.,

T

@N as G

JS$s C,*if s.

.r s

s r,

r m

r I

2 5{c 15 t.

2 2

- ITE I

- !! o rI*e 5*

- g:

v;.

s. e IP,v; 8

-L.

.s-4 e-r,-

0~,4

$550 s b$55$a E '

\\

4__,,

A g

g a

4_x w..-

44-4 M.k h48'-

l

~

i--

' {,.

3-

$5 sy1 o 2

-j f g v

t l

<]

- e 1:a r

, O s

r Eo I

i

. Eh (j

!vk sul 5

as a

r r,

h irs

. av a

.. a.

.E:fieiL e

C fig

~

b_L D

R vi

. o ser gu gg*

3$$

Mf>

Q s

r, y

7 r

r e

5 3

~ *gg

<3E

' r,8h <33

' 'E I

'}l, g

Isa!" s,

- a

.en,,.

a O

r r

r r

f

=

Ei E

- h5 a 5

n

,c

- r,:

g 5,-

r t

.r - r

.5-r-

s-r.,

rs -

- r4 b

~

)!E Es b

d L

i V

1 m.s

.v

, RP!

(*a E

ji

,b at 3,y r,

r, r

r v-v

!j ih!

~

i ri!

i

~ !@lwi E!

I l

vir, i

,ci

,1 L

L

fird, i

m m

gjI v?

v ii'E i!.

I V

E i!'

II r :;

- st:5

- trid F:

- r.

e

- jr

<a e..

.!f a

N;5

-5=I I;-

gt8-L..

I; m

d b

b,1 b

b i!! s b

r r

m rg o

I!

g.

L.

f,,n e

g; c,

r8 si ss

  • IrgE.

dI g-rs L

ut 1:sse s L.

i r

r I

i s"

b,=-

. rd a

. I n

a b

!!g!

s o

m r

m Ig-B

. ed

. h:j av" atvl.

_r. -

y:

id

%y in E

' li Ed E L

s!E E s 3 ass die as at: s r

r

'im y

a:

p;. :a=

. ar

!.!8 C

.,rs

. no e' 6 :

IIE i

.g 3Is la, 3I:,EL L

s w

e-m r.

r a

~

e.

I.

ti,.e.

33!

. I s-rv v-sg I!

E

[ It!! C..

E (f.

L

&a t.

E all s

r Ip g

E Ie o

r.

se

- r,9 3 3:

a

- n.

.g l!,

a b;= 6 o)E 3Esez s 6

""rds (r

r, r,

r r

r!

.=

r v.:

v o

=

a-rg

-I 8" t I-

-f_=

r Ej~.:

. !rre C. !8 8jI:

!"!5

. 52 =

a rrr5 f

8 i*I P!

  • C E

,I

$lha s')<.B.

~

IM

+id.i..

i:5 vi d -

a.ii,

L.-,

. igx"if.,

5

~

w c

of h

'f-M-L s

_3 4

Jd

.ar-M.;.#

$W.-

-4 m___da.

A m

m_L__isa Jse._

ta-A

.J Er a&

8 v ar iN d 3J i

i g-E3 i

/ g :-

.g:

.g I..

h 4

?

+

z 3

i T

I f

r r

Ki E!-5

. mi 2

. nsj.

m N

g pg 5 Ju 5.L

, IS,'

I gut

- e$!

- fi

- 23 2

gig ie. t to CH

$!i s fd_L N

  • ~

. s!--

. n.!Tj -

og tie lia

$bgb U

u

~

o go geo.

lI 8) 3"!!I n-a! I. !)

t; f.

gg s-C IIR --

. IIi' C.

I--

Lp SL rt 311 4

d -

J 5,-

,.---w m

r _____ _ _, ___ - _ _

_,__,._m___,_

.eh e

+6 m-p.-h.

4A

.s.

1

>r4+,.a M pW

.a

  • <%i,

_J 6.d.

J--

+)

=4 h

i e

c f

5. 5 s

,r an.

.x':

L k

r r

m

" I

" 0

' b en g..

g_.-

g-b b

e m

. b.

. b..

, h..

, b..

I 3. '

I. "_r -

I.E.2 I"~

t.,#Is.rm s

tr 8

g g2 r

r.

r.

, :i f.

, h_

h re

rr ris aa My wY3 J 255f,s

..s 3

er m

r 1.h, i

Eli-r-

=.s

.:4 T t

rs!!

3.!

'=

ii

. b. i

. s.!

t5 Cs. :::e; m

t-tiv 32 i

sai 3:sfs 5"

3"iC:a s a"]':.s 5li

.s. s n

R w

g

_....m~7..

.....1...~.

2.,.

..m

.... _.,.. 4.......... _. - -

r

=+

~_

4 1

53 9

t 6fa a.

.Z

.h ;

i 4

k r

1 e

et E

-k(3 E

I a

- E

-3 litt m

r t

, M'.

g-V 3

f b5 -

g Ih 2-

!s

. Ip: -

s L-l C

gg e; L w

=

T t

E I

N 3

i; I

l F

5

- EE O

?

e-55 4

r m

- ttE' 2

g v.

En.:

a sc x C

6

Q--

y 1

2 4

A-.--k-+

n

~a d

-td kr-S n

,uu-

=.

E x-I' at e!

n 1

d il

{f

=

r

. VW 3

If?

En E, e,

L*.

3

- EU (C

p

{g 3k' b-

. 5v g

,II

.,r a

g 3

C

,!j

?

L L

$1Nis i

i.,

PJi giI e

. ita o 5!o <a f".1 It*

E in I

lifL 1.

LIL E, a k

g g

l=

li*

' ya gis]

al ri.

' wrH :

rii f le, g

is.

i 3:

3 a:

v4 s-se:

&,v

$2 >

!~

1 E

E:

I I.i I-o

$ ll h r

Elj <]!

e h=

e r

. Yva

~

f?

r r

b W"

5

. E

<32 I

o, s-I le 1,1 3

a.

w.

p r

r e.

Ele te g

. !v g

. 3.

E-

. jr*,

C its

53 I

78

  • 8 u

w w

1 as r

r, O

E E

- f I5 wed K

- E, 3

. igig 3

EIm E

bw :;

  • r*-?

3p 3

s s.se i

d SEII.

6 r

r.,,

"E rs!s a

.E

- EE,

I!i_b N !,

d(E 2

- [

E

- Eif Id

,t s

- !s.:

I i

id N

e!! [o s its C

J:

j s

s-wu a

.sa a

-,L---

.a

, +,

s a

4 s u2

,.~_s.--

.,,us.

x

..s.

a u

- u

..a L

e 5I

.jt-

- ',t -

r g

k~S h

tlN T

R j,

r'8- (~

.E f s.seg#

i r

r.

8 tI'm O

b*

g!4,g

- gij! 45 g

- Er i

    • 's
g L[

BL r

,M s A

in N

4 C

w*$- s r

r r

s!

Q. r8 m

rga r-1 P*. :O vg -

dLv b.t

.gie 5 3 g

ro -

m r

r d

y

&d

- agt",

1 g

g

<g r

. a,

-.s

,i

- I-pr, r

y:-

r

-rus L

255 >

E d53 CEd >

r, si.

e

. If T. 2 0

ti r

a

~

!r C

~

b_b b:

r O

t.,,

. se c' rg!

r su s

Rt d

4E: 8 s

s r

{a, r,

.,, i n,

th

- E!

- jj i

- *I QE

,8*$ QB in.a

,s :

sa

.-e-s.

g

$l_L L*_v*

b, 5fe>

r,

r..

r r

r r'

'7

d. :

1

  • h g*

sj,! ' 7' s]

.g

{m

-g a Q

rf.

rrif d

s*

g Yf.:.

$531

!!8

(

I#

~

i

~

  1. I f

~

.I8s._-

v.

N_3c3 s b_.

b b

b,u M5$j

.r.

I.

c Es it

}s r.

c

.5

!:'r E

st y y

,g y

g.

y

,,g

,g,,o, t

. gere Efa I

"2 d

w w

E*o W

8 j[}

J'!!s E

d.Ifrs s'15'yd, W

o.

5 c

c, W.T W

2 o

tEdE sr C

s.g t

I.

. !!I C.

. gg~ ([

. g3 b"

e ssi trd 3

. g,

!8 (_

g;e

,1 li

. {W g

'f!

E

    • i nrg I

id r

se w'e Jhd Ese:

2;. e s t

-c eL W

5 s

w r

r w

r a

I i

E

- p

- eij <!

- gi; G a',

f$e.

a!!$

IS d

n.

r r

r O

. s:

. to R

. t*19 3

gs g-

.8 es{8.

g

.[

xEs[,

,d*

gr e a, r,

r-3 r

5 D

E,

. h8

. *:[

t

. v!",

. i~ Q.

.e

.g t

i,h, Lgg:uL fin,.

i!!,

L

$:52 I, g.

b" gg 52

. tv

(_E s

E

. ir:

E

se Ir; 19

-u ytv-d wig bed L

a T

F O I

l D

  • f g

. d.,.

e a

. h*,

h, r

[*:

h:=:,w Gb Y >

3 o

s_gg K

I S

!$E8 9

- 55 1

- f E

- 533 QE- **$ QE

  • s, :

IVS e s_

[_

J J

g J

q t,

. Irs!

s**3 C:

- t.

- t:E fI

!g EI Eg a ts.d Q:- t **!

sw se 7

s=

is.

vri4,,i V.:'8 d V! 8 o C i;

1 Er:. : L:

e s

.=_5 E25 r.

v.

$gra~5>

$ gs

-g.

h,t l *

.3 5

bb.

h55 hs s

a'+=

=

d 4

4- -.. -

+A d

eiA-e, A

e uA u

m.a.. A u 4 4 4s-4..-.L-

=4

.4-.sJ,a

--+u-.

A-,.A f

45

,b

^

i

-i, s

=, -,

3 t

i l 3 l_

T e

5 g' f

. 3-g

  • IJ 1

5 g.

3-N

~

i

.h i

]

i b

h

- 2 bl

(-:

yd s.

a T

e, b

g,,.

=

g,

M s

m>

q rz :

bgc 59L b

~

d

.-,-~x,-

e_,_

m

i i

E. I

e

$5

.E 5

8,, :

o

.#.',.h r

3 0

~

sd W.

F 3

- YY W I,,

-tgd 45* >

r r

b

. V E

<0 I

kk e,k,,.

I i

a, r

r.,.

b.

.a 55 g

r av

. a.

r

.N I re e

f$

e 11L L

fl?il

u 4

=

a....m6 a

.5Ja a

n n

b T

Ee hI

e Js

.g f

5 F

7 414 5

. Eg t

5I eos r

1 F

7 ht i

.d i;ss K L

l!E_L

EE I

a f

e h

s

(

- !ssj di t'd l

wil!_)

r

, YY*

3 E

he s.

r b

1.1" E

- E" dE s

j.ef.

e

_na, g

u 68>

1"td 3 m

r r,-

o b

I.

Egg

. Fr

. 2' s

. V

!v5!! e 3

C ji

~

~

a

-n -

lw its icEIs et s

s r

7 r

7 l

O O

8 8 1 E

Eg

!E

- 55.

- BIS

. '8E8 QE Ms e

r 1:

is nn 2

-4 W w.

r 1

r r

r r,

gg a

I g

BE Eg.

E r:

a

. T g-

, $jo

, TYiE d

g r

rg

.!;L,.

rg; es.,,-

im g;.

3; r g

ed s 3: !s dL 3gud!:

JVI3ls s

.. _, _ _ 7_,

.. - _ _.. -. __ ~ -

. ~.. _. -

L

}.

E T

.I l

'}5t 2 2' 3&

8 g

8 h

.I

.3 t

r, 3

(!

IU.

r

.,Wg E'

IET dl as r

r 2

b g g ils e,li

( i

!~

i u%i l'

8 m r

r r,

IE2

. se g:

g a.

. r ve e

ff$ d.

IIT

  • 8 iL aL n!il I

E E

- I

' II

' nI

- ra WIto Ija Ej.

55*

N b**;

  • f**T gj*

g42 b

db bg.*:

Es r

g i

fiy,

r.

s.

- Si i

- }h, L-E

- !III <!

M,i6 N

Ji!l,

I O

r r

t ht L

at

i

.C is E3 hI)!

r

.5

>j

?!IE j '.. f

'r!8 f

ssq

.l EI MI58s r

r r,

9 I5 1

- III- (!

!!s r

b-

-in ih;s 718 r

ti L

w

&< 8 s

m r,

r Eg IS$

d o

e r

r 5

T I

T g

di li_L lieis r,

m r

m r

Ig b

y f

I!

I If4 4

y 7

y*M IN

)

2 55 S"l'"bd5 s 2 ~,t t >

s r

r, r,

SN bE

[~

. Et

.Clf!

. ga le R

t*

C O

t i

il!it r

r, r

G

.h

. 6

=

3, IEE E

\\

je*~,

ag.:

3

  • ds wls r

r r

r E

E I

n j

j

. f

. h

{r (k

I$%

,i_B, f.

f

!^3 h3 L b~

E, 5 is J r.

r, r-f*j fg lI 1lIE

^

SI E8 TE a TY g

Ed Eftd-

- #3 W.

- tfI 2

a#r;8 1

C; i ;

(,

t g,

8 E,12 i,,i.s. ?-

2*;e v.

. s.,_

p E

L 55 S s Ege MYifs

1.s.

a 2,a+ a

,u am n'--

ea.

s~&-..-,-p-u-5nu a>

.nz.

in z.AnJ u.o s--k L

A W k,w u m a s ad-s a

s a

= e k _p

-,*--ns~

4 a s

4

=

I 1

E3 j g.

2i

-J I

~

'4 y

u t

1 h

s 7

L i

4 4

9 Y

y a6

' afo k

lae.

n '

I h

n !b-([

4r C,

er -

g I

15 ass as,

r r,

r er r.

. !e g

!!g:. C. !)g

!! r L

L Nil mi.

.-,-T e

- = -W--

g--

e e'3 F--

ge-<

a

+my w

me'-

?-~-T

"--