ML20080L436
| ML20080L436 | |
| Person / Time | |
|---|---|
| Site: | LaSalle |
| Issue date: | 07/03/1983 |
| From: | COMMONWEALTH EDISON CO. |
| To: | |
| Shared Package | |
| ML20080L422 | List: |
| References | |
| NUDOCS 8309300310 | |
| Download: ML20080L436 (63) | |
Text
I
~
REACTOR PRIMARY CONTAINMENT BUILDING INTEGRATED LEAK RATE TEST LASALLE COUNTY NUCLEAR POWER STATION UNIT TWO JUNE 29 - JULY 3, 1983 8309300310 830919 DR ADOCK 05000373 PDR
o I
TABLE OF CONTENTS PAGE 1
1 1
INTRODUCTION A.
TEST PREPARATIONS............................................
2 2
A.1 Type A Test P rocedu re...................................
A.2 Type A Test I ns t rumen t a t ion 2
A.2.a Tempe ratu re A.2.b P res su re A.2.c Vapor Pressure A.2.d.
Flots A.3 Type A Test Measurerent 3
A.4 Ty pe A Te s t P re s s u r i za t i on...............................
3 16 B.
TEST METHCD..................................................
16 B.1 Basic Technique 16 B.2 Supplemental Verification Test 16 B.3 Li nea r Reg re s s i on Ana l ys i s..............................
B.4 Instrumentation Error Analysis - Application 16 17 C.
SEQUENCE OF EVENTS.................
C.1 Test P re pa ra t i on Ch rono l ogy.............................
17 C.2 Test Pressurization Chronology..........................
17 18 C.3 Tempe ra tu re S ta b i l i za t i on Ch rono logy....................
C.4 24-Hour Phase of Leak Rate Test 18 19 C.5 Induced Leakage Phase 19 C.6 Depressurization Phase 20 C.7 Floor Bypass Phase 21 TYPE A TEST DATA.............................................
21 C.1 24-Hour Phase Date......................................
21 C.2 Induced Phase Date......................................
22 D.
TEST CALCULATIONS............................................
E.
TYPE A TEST RESULTS AND INTERPRETATION....................... 33 E.1 24-Hour Phase Test Results........................
33 E.2 Induced Phase Test Results.........
33 E.3 Leak Rate Compensation for Non-Vented Penetrations and Change in Drywell Sump Level 33 APPENDIX A TYPE B AND C TESTS................................. 35 b2 APPENDIX B A S FO U N D L E A K RAT E S.............................. -
11 APPENDIX C HYDR 0 STATIC TEST..................................... 43 APPENDIX D CALCULATIONS 46 APPENDIX E TYPE "A",
"B",
AND "C" TESTING SCHEDULE 53 TABLE ONE instrument Speci fication 4
TABLE TWO Sensor Physical Locations 5
TABLE THREE 40 psig Type A Test - 24 Hour Phase 23 TABLE FOUR 40 psig Type A Test - Induced Leak Rate Phase 31 TABLE A-1 Ty pe B a nd Type C Tes t Re s u l t s....................... 36 TABLE C-1 Hydrostatic Test Results 44 FIGURE ONE Idealized View of Drywell and Suppression Pool 6
FIGURE TWO Sensor Locations per Subvolume 7-14 FIGURE THREE Measurement System Schematic Arrangement 15
l o
INTRODUCTION This report presents details of the Integrated Primary Containnent Leak Rate Test (IPCLRT) successfully performed on June 24 - July 3,1983, at LaSalle County Nuc l ea r Powe r S ta t i on, Un i t Two.
The test was perfo rmed in accordance wi th 10CFR50, Appendix J and the LaSalle County Technical Speci fications.
The total primary containment integrated leak rate, adjusted to include penet rations not tested during the IPCLRT, was found to be 0.2237 wt%/ day at a test pressure of 40 psig, which was within the 0.476 wt%/ day acceptance criterion. The associated upper 95% confidence limit was 0.2309 wt%/ day.
Excluding non-testable penet rations, the supplemental induced phase leakage test result was 0.6509 wt%/ day.
This value should compare with the sum of the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> phase resJit (0.1427 wt%/ day) and the induced leak rate of 5.35 scfm (0.5418 wt%/
day). The statistical difference of 0.6509 wt%/ day and 0.7345 wt%/ day lies within the allowable tolerance band of + 0.25LA, + 0.159 wt%/ day.
l
i 1
2 j
\\
~
SECTION A - TEST-PREPARATIONS
)
A.1 Type A Test Procedure The IPCLRT was performed in accordance with Procedure LTS300-4, Revision 5, and Pre-Operational Tes t PT-PC-201, Revision 3.
Temporary Procedure Change Numbers 35-81, 36-83, and 38-83 were made to LTS 300-4 to correct the proce-dure for system valve lineup changes.
These procedures were written to comoly with 10CFR50, Appendix J, ANSI N45.4-1972, ANSI /ANS-56.8-1981, and LaSalle County Uni t Technical Speci fications.
A.2 Type A Test I ns t rumen ta t i_on Table One shows the speci fications for the instrumentation used in the IPCLRT.
Table Two lists the physical locations of the temperature and humidity sensors wi thin the primary containnent. Figure One is an idealized view of the drywell and suppression chamber showing the di f ferent subvolumes.
Figure two shows RTD and dewcell locations per subvolume, a.
Tempe ra t u re Sensors were suspended to prevent di rect thermal influences from any metal surfaces.
Sensors were also kept away from any direct ai r flows.
Each RTD-bridge network was calibrated to yield an output of 60 mV to 120 mV over the range of 60 F to 120 F.
Calibrations were done by Volu-metrics of Inglewood, California.
Calibration sheets for the RTD's and their signal conditioning boards is included in Table One, b.
Pressure Two precision quartz bourdon tube pressure gauges were utilized.
Each gauge had a local digital readout in addition to a Binary Coded Decimal output to the process computer.
Primary containment pressure was sensed by the pressure gauges in parallel through a 3/8" tube connected to a test tap on a VQ penetration.
Each precision pressure gauge was calibrated over the range 10 psia to 100 psia in approximately 5 psia increments using a Volumetrics Inc.
VMC 809 calibration standard, V_apor Pressure c.
Lithium Chioride Dewpoint Temperature Units were installed throughout the Primary Containment. The dewpoint cells were placed in locations where the chance of the dewcell becoming damaged was slight.
A calibration was done on each dewcell network over the range of 45 F to to 90 F.
Calibration was done to yield an output of 45 my to 90mV over the range of 45 F to 900F.
Calibrations were performed by Volumetrics using dewcell standard, Volumetrics Inc., Serial No. 105302.
3 d.
Flow A rotameter flowmeter, Fischer-Porter. calibrated to within +1% by Fischer-Porter, was used for flow measurement.
Tubing connected the rotameter to a test tap on one of the primary containnent penetration lines.
A.3 Type A Test Measurement The IPCLR1 was performed utilizing an interface wi th the Volumetrics Data Acquisition System (DAS) and Prime Computer.
Information from the RTD's and dewcells is sent to a Dual Multiplexer Scanner in the Drywell. The Scanner takes the data and sends it through an electrical penetration (E-20) to a Sys-tem Console. The System Console takes the raw data and converts it into data readable to a computer and the test engineer. This information is then t rans-
]
ferred to the Prime Computer where all needed calculations are performed and a hard copy of the information is produced.
(See figure 3) i A.4 Type A Test Pressurization Two 3000 scfm 600 hp electric oil-free air compressors were used to pressurize the primary containment.
The compressors were physically located outside the reactor building. The compressed air was piped into the reactor building through an existing PCILRT Pressurizing Line.
For ease of handling a flexible 4 inch pipe was used outside of the reactor building.
The drywell was pressurized through the "A" containment spray header 16 inch flange with an inbo.,rd "alve M0 2E12-F017A, open during the pressurization process.
t
TABLE ONE --
INSTRUMENT SPECIFICATIONS INSTRUMENT MANUFACTURER MODEL NO.
SERIAL NO.
RANGE ACCURACY REPEATABILITY Precision Pressure Vo l ume t ri cs 2287, 2348 0-100 psia Gauges (2)
-+0.02% reading
~+0.001% F.S.
RTD's Volume t rics 14629 ILRT 5042-1 5042-16 60 - 120 F
+0.10F
+0.1 F 5042-2,, 5042-17 5042-3, 5042-18 5042-4, 5042-19 5042-5, 5042-20 5042-6, 5042-21 5042-7, 5042-22 5042-8, 5042-23 5042-9, 5042-24 5042-10,5042-25 5042-11,5042-26 5042-12,5042-27 5042-13,5042-28 5042-14,5042-29 5042-15,5042-30 (Spare - 1 & 2)
Dewcells (11)
Volumetrics 5042-1, 5042-6 45 - 90 F
-+1.00F
+0 5 F 5042-2, 5042-7 5042-8 5042-4, 5042-9 5042-5,5042-10 (Spare - 1 & 2)
Flowmeter (2)
Fischer & Porter 10A1755 8304A9254R1 698 scfh
+1% F.S.
8304A9254R2 i
e
I s
TABLE TWO D
1PCLRT INSTRUMENT l
PHYSICAL LOCATIONS l
RTD. NO.
EPN SUBVOLUME INSTRUMENT INSTRUMENT ELEVATION AZlMUTH 1-1 2TE-Ct021 1
822' O
2 2TE-CT022 1
826' 180
'0 3
630' 9
4 2TE-CT026 6
730' 270 5
804' 115 6
804' 295 7
811' 0
8 2TE-CT018 3
815' 180 9
808' 270 10 2TE-CT015 3
797' 90 11 2TE-CT014 4
791' 90 12 2TE-CT013 4
785' O
13 2TE-CT027 4
791' 270 14 2TE-CT029 4
785' 180 15 2TE-CT012 5
777' 270 16 2TE-CT011 5
772' 180 17 2TE-CT010 5
767' 90 18 2TE-CT009 5
762' O
19 2TE-CT008 7
758' 270 20 2TE-CT007 7
754' 180 21 2TE-CT006 7
750' 90 22 2TE-CT005 7
746' o
23 2TE-CT023 6
743' 0
24 2rE-CT024 6
743' 180 25 2TE-CT001 8
708' 13 26 2TE-CT003 8
708' 195 27 2TE-CT030 8
708' 78 28 2TE-CT002 8
724' 108 29 2TE-CT028 8
724' 78 30 2TE-CT004 8
724' 287 DEWCELL NO.
EPN SUBV0LUME INSTRUMENT INSTRUMENT
. ELEVATION AZIMUTH I-1 2ME-CT036 1
826' 0
2 2ME-CT035 3
812' 180 3
803' 180 4
791' 0
5 2ME-CT033 5
773' 180 l
g 6
763' 0
7 2ME-CT038 6
746' 270g 8
752' 0
I
,9 2ME-CT031 8
708' 195 10 2ME-CT040 8
724' 78 4est - 0 Azimuth Note:
Due to cable wiring problems, not all locations were operating
i, 15'-10 "
1C -6 '
W 1y-r-c 1P
_~
, 2 - + %*
O-
^ * ~ ~
M 9ao g
}
J' l r-s-
, A-*
i
',/
s s,- 1 %
i 9
gaa
/ e* ~=
3 -,~a 5
/
/
^
- 3
- v.-
T
~
a
/
/
, e - s*
/ \\
)
s i
/
I H"[
- ~ ~ ~ ~ ~
, y - 2 r,~
",, - e o
2 e f/,, - n. o
..m.
/
/
/
~e=-
p
~
/
-. epl
.....cr
- y,.,,.
- ! 3 - +4" ll
/
\\
'/ / /,/ / /
- 3 - o~
//////f u + sus ~
/
,i l////,l, h
/l
/
& f
- ~~~
/
3 *. ep
/
/
~
l
/ Y$Ill 7
/ L * '- ' * %
/
I l
/
'//
/
2 5' - 6 '
/
/
/
/
/,
/1 / 673',4
- f
/)
{ //V/Y /
6 Y a 1
+
w 1
66'-8' Fig, t - Elevation view of contain:nent and subvolu=e locations 6
6 s
4 L
I,.
,?
e e
e r.n:....
L.
e s..
.ee3to swt.eis-s
...wu y.
e e
a.
.ITE-CT021, Elev. 822 fe, Rad. 14 ft 00 IIE-CT036, Elev. 826 f t, i
Rad. 5 ft T
ITE-CIO22, Elev. 826 ft, Rad. 10 ft
/* -
270*(
90 T
m t.~ g
-..;.,T.
. s:> :;2 jeoo
- 2. -y. '
.. :.e w.=:,..:.:2 c. g g;p..
.a,.
.n. ; ; ;,;...
...;g
.. ;c..
...- - *.~~ ~.
-=ew. ::::
...e.-
e
,. s ~-#
.,..;.u. w...,.
,s.m.. -
~ :..:;. :
.m
@ Temperature Sensor
@ Humidity Sensor Fig. 2.1 - Plan View of Seavor I,ccations, Subvelu' e 1 I
i' 7
8 I
Y
=
e ITE-CIO20, Elev. 804 ft,
. i.
Rad. 12 f t 7 in.*-
\\
ITE-CTO19, Elev. 804 ft, 29 Rad.12 f t 7 in.
270*
90*
c.
II5*.
.: V gy.~ -> ; '-
_~
_ ~;L.
.;. -r :r
-u 1
,jgQo Fig. 2.2 - Plan View of Sensor Locations, Subvolume 2 0
e o
e 6
8
i L
V
- ' *4: 9.
ITE-CIOl6, Elev. 808 f t,'
ITE-CT017, Elev. 811 ft, Rad. 16 ft Rad. 20 ft O*
T ITE-CT015 Elev. 797 ft, Rad. 25 ft 90*
270*
^:
.]
rfA..
. u.. :.
...;. " J.
. ;. _:a
.c u +i., /..
I
'.':'7.g., q..
7.
IM5-CT035,Elev.812ft, Rad.14 ITE-CT018, Elev. 815 ft, Rad. 14 IME-CT037. Elev. 803 ft, Rad. 21 Fig.1.3 - Plan View of Sensor Locations, Subvolume 3 1
f
-6 e
G 9
I
^
ITE-CIO27, Elev. 791 f t, Rad. 16 ft
.,s'
..a ITE-CTOl3, Elev. 785 ft.
Rad. 28 ft O*
' I!E-CIO34, Elev. 791 f t Rad. 21 ft ITE-CIO14. Elev. 791 f Rad. 21 ft 2 70o 90*
1 7
T.
. ' -. cm i.....
T ';.i:
- /-
n_.
. x __ :.
~
'18 0
- ITE-CT029, Elev. 785 ft Rad. 24 ft
, Fig. 2.4 - Plan View of Sensor Locations, Subvolume 4 s
t t
10
I k
F
?
\\.
ITE-CIO12, Elev. 777 f t,
Rad. 31 ft
=~
IME-CT039, Elev. 763 ft, I
~
A.~W'.t..w.' - Rad. 30 :f t -
~
e t.
O
~.
ITE-CID09, Elev. 762 ft, O
Rad. 25 ft T
ITE-CT010, El 767 ft,
/
Rad. 36 f t l
270 90*
L T
. 5p
,.% n -,
~..
s
.y. ',,:..
.. m <n
. yy, s
f~z s.*y:
- ...~;. : -..
~. *-.
.t.
1,,,.,
a
....+
.~ y e. s.
.. m.,-.
e p
+
Z, ITE-CIOll, Elev. 7 i'
Rad. 20 ft
~i IME-CT033, Elev. 7
'/80 Rad. 20 ft 4
Fig. 2..S - Plan View of Sensor Locations, Subvolume 5
..~
- 9..
1P s
i
r i
Y e
,e ITE-CT026, Elev. 730 f t,;-- -
.. g.,
Rad. 7 ft '
% -CT038, Elev. 746 f t, Rad. 5 f t ITE-CT023, Elev. 743 f t, Rad. S,ft -
go
~
ITE-CT025 Elev. 730 f t, Rad. 7 ft T
270*
rT_ _
- T) 90*
,.o Q T
, J.,. '
.~
III-cr024,' Elev. 743 ft, e-,n...
1 2%%i Rad. 5 ft
- '-~ -
..'- N S.
1800 *r:Y.
- pi Fig.1.6 - Plan View of Sensor Locations, Subvolumt 6 f
t 9
e
k 0
ITr.-CI008, Elev. 758.f t,
'ca...
Rad 25 ft ITE-CT005, Elev. 746 ft, Rad. 36 ft y
IME-CTO32, Elev. 752 ft, Rad. 25 f t y
4 ITE-CTOO6, Elev. 750 f Rad. 20 ie I
I T
90*
0 270*
T
+
\\
A.w:1
=~7.c- % <.
-. f:.:
....pp.
.m
..r -.: '.
.$ :u?.:'..
.. ~
... -T;
.1.. n p
4 t
T ITE-CT007, Elev. 754 ft, l180 Rad. 31 f t I
t.
ij Fig. 2. 7 - Plan View of Sensor Locations, Subvolume 7 il l!
ti
{
~
l l
l l*
y, ll 13 O
a L.
Il ti i
l l
IT2-CT004, Elev 724 ft, ITE CI001, Elev. 708 ft, Rad. 38-9 in.
Rad. 39-8 in.
I ITE-C.T028, Elev. 724 f t, jgo Rad. 20 ft
~
O IME-CT040, Elev. 724 ft, Rad. 22 ft-287*
7 ITE-CIO30 Elev. 708 f
'l Rad. 20 ft T
T 90*
270c
/
r S
106*
.a.
g'~ ~ ?;..,
.~
ag'- --
ITE-Cr002, Elev. 724 f-R:21. 39 ft 8.in..
T
/19 5 !/80 \\
mE-m31, Ela. 70s f t, Rad. 39 ft 8 in.
ITE-CT003, Elev. 708 ft, Rad. 39 ft 8 in.
Fig. 2.8 - Plan View of Sensor Locations, Subvolume 8 I
e
~
14
IS CI G
CI Dev-cells Precision Pressure
?cO's Gages
'I g
G I
c Cenditioning Cc:diticcing I.=plifiers
.amelifiers 1
/
CI Jcurex 1.utodata Nine Data Legger F
l PR uY TE R V
Prime Computer V
U g.
1f
~
Line Calcomp Tape Printer Plotter Storage i
I i
t 3 - Oc puter centre 11ed da:a acquisition and Fig.
data precessing syste:
r 1
i l
F
16 SECTION.B. TEST METHOD B.1 Basic Technique The absolute met, hod of leak rate determination was used. The absolute method uses the ideal gas laws with measured containment tempe ra tu re, dew poi n t and air pressure to determine dry air mass in the containment. The leak rate can then be determined from the rate of mass loss.
B.2 Supplemental Verification Test The supplemental verification test superimposes a leak of known magnitude on the existing leakage. The degreee of detectabili ty of the combined leak rate provides a basis for resolving any uncertainty associated with 24-hour phase of the test.
B.3 Linear Regression Analysis The leak rate is assumed to be constant during the testing period, ideally yielding a straight-line plot with a negative slope. Howeve r, s amp l i ng techniques and test conditions are not perfect : consequently, the measured values will deviate from the ideal straight-line situation.
A least squares fit statistical analysis was performed to determine a regression line for mass versus time af ter each set of data was acquired.
The slope of this regression line was designated to be the statistically averaged leak rate. This quanti ty was compared to the Technical Specifl-ca tion allowable operational leak rate LT (0.476 wt%/ day).
Associated with the statistically averaged leak rate was the upper 95%
conf dence limit leak rate.
The calculation of this upper limit was based upon the standard deviations from the regression line and the one-sided Students-T Distribution function.
A procedural requi rement specified that the upper 95% confidence limit leak rate must be less than the Technical Speci fication allowable operational leak rate LT (0.476 wtt/ day).
B.4 Ins t rumenta tion Error Analysi s-Appl ication An instrumentation error analysis was performed prior to the test in accord-ance with ANSI N45.5-1972. The inst rumentation system error was calculated in two parts. The first part was to determine system accuracy and the second part was to determine system repeatability. The system error analysis performed prior to the test yielded a total inst rument uncertainty of +0.024 wt%/ day.
During the test one of the RTD's malfunctioned (number 29). ~This RTD was removed f rom the test and a new error analysis was performed. The new error analysis yielded a total instrument. uncertainty of 3 024 wt%/ day.
0 The instrumentation uncertainty Is used only to illustrate the system's capability to measure the required parameters that are necessary for calcu-lation of the primary containnent leak rate. The instrumentation uncertainty 4
is always present in the data and is incorporated in the 95% upper confi-I dence limit in the form of data scatter.
17 SECTION C - SEQUENCE OF EVENTS C.1 Test Preparation Chronology, The pretest preparation phase and containment inspection was completed on June 29, 1983, with no visible structural deterioration being found. Major preliminary steps included:
1 Completion of all possible Type B and C tests, component repai rs, and retests 2.
Completion of IPCLRT pretest valve checklist including isolation of dry well and suppression chamber pressure sensors.
3.
Blocking of four drywell to suppression chamber vacuum breakers in the open position for pressure equalization between the drywell and sup-pression chamber volumes.
4 Recording drywell sump levels.
5.
Completion of pretest data gathering system, including computer program, instrument console, and associated wiring.
C.2 Test Pressurization Chronology Date Time Event 6-29-83 1300 Time and date display on DAS stopped operating, invest igat ing problem.
Mechanical check list complete.
1530 Pressurization of Primary Containment commencing.
1630 Pressurization holding at 6 psig, procedure change for valve line-up being initiated.
1654 Pressurization restarted.
Pressure gauge number 2 digital output not working, analog cutput still ope ra t ional.
2120 Pressurization complete, pressure now 54.59 psia.
6-30-83 0120 Stabilization cri teria met and containment pressure dropping. Leakage paths being looked for. Spool piece removed, f
0950 Spool piece reinstalled.
1100 Tech Staf f investigating leakage paths and ini t iating repai rs,
1145 vessel level raised to 170".
1300 Leakage paths found and repaired.
l 1530 l
i l
18
)
C.2 TEST PRESSURIZATION CHRONOLOGY (Cont'd)
DATE TIME EVENT 6-30-83 1622 Pressurization of Primary Containment Reinitiated 1640 Pressurization Complete, Pressure Now 54.7 psia C3 TEMPERATURE STABILIZATION CH_RONOLOGY
__ _ _E TIME EVENT DAT 6-30-83 1640 Stabilization Period Starting 2020 Computer Reini tiation Problems, Base Data Set Now Being Changed 2102 Stabilizat ion Completed.
D rywe l l Tempe ra t u re Change 0.349 F Per Stabilization Criteria 2236 Spool Piece Removed, Air Header Vented C.4 24-HOUR PHASE OF LEAK RATE TEST DATE TIME EVENT 7-1-83 0002 24-hr. ILRT Started, Data Sets Being Taken Every 20 Minutes.
Base Data set #51 0257 Data Indicates Negative Leakage Rate, Investigating Reason.
0300 Computer Problems, Computer Vill Not Accept Data.
0530 Computer Problems Resol ved.
0711 Water Found in Pressure Sensina Lines Of Auto-Data. This Appears To Be The Reason For The Negative Leakage Rate.
0722 Test Restarted, Base Data Set Now #73.
1020 Computer Not Acceptina Data, investicating 1170 Computer Not Operating Correctly i
1355 RHR B Pump Trio 1417 RHR B Pump Restarted I
l 19 C.4 24-HOUR PHASE OF LEAK RATE TEST (Cont'd)
DATE TIME EVENT 1
l 7-1-83 1445 Dewcell in Subvolume #4 Fluctuating.
Dew cell May Have To Be Deleted From Data Sets j
l 1700 RTD On Channel #38 Has Gone Bad. This RTD is Now Deleted From The Data Sets. All Data is Being Recalculated 702083 0300 LPCS Line Found Leaking Water (2-3 GPM).
Suspect Manual Injection Valve is Leaking By.
0800 24 Hr. Test Complete. The 95% Upper Confi-dence Limi t Leakage Rate Was 0.1999%/ Day,
Well Below The Allowable Rate of 0.476%/ Day.
The Statistically Averaged Leakage Rate Was 0.1927%/ Day.
C.5
,1NDUCED LEAKAGE RATE DATE TIME EVENT 7-2'-83 0830 Commencing 1 Hour Stabilization Period, With An Induced Leakage Rate of 320.96 SCFM.
0930 induced Leakage Test Started 1402 Induced Leakage Test Completed. The Measured Induced Leakage Rate Was 0.6509%/ Day. The Measured Leakage Rate Minus Induced Leakage Minus Statistical 1y Averaged Leakage Rate (24 Hr.) Produced A Difference Within The Limits Of 0.159%/ Day.
C.6 DEPRESSURIZATION DATE TIME EVENT 7-2-83 1505 Depressurization Initiated 1700 VQ Valves 2VO.068, 40, 36, 34, 35, and 32 1730 Opened For Depressurization, Rates 9.8 psig/hr.
2130 Drywell Depressurized to 5.5 psig. Vacuum Breakers Closed, and Suppression Pool Not Being Vented.
d
-,.,,--_-r..._
__--.m,m
,-----m.-
-__~--m-,---_...,..-e,,
l l
20 C.7 FLOOR BYPASS _ TESTS DATE TIME EVENT l
7-2-83 2226 5 psid Floor Bypass Test started.
l 2326 5 psid Bypass Floor Test.
Leakage rate is 181 SCFM.
Drywell depressurization restarted /
2355 Drywell depressurization stopped at 2.1 psig.
1.5 psid Bypass Floor Test started 7-3-83 0055 1.5 psid Bypass Floor Test completed.
Leakage rate 107 SCFM Drywell 0130 Drywell opened up, inspection shows no deviations NOTE:
The previous data contained data from the ILRT Events Log and Supplemental Data.
e l
l
21 SECTION C - TYPE A TEST DATA C.1 24 Hour Phase Data Data for the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> phase is illust rated in Table Three.
Graphic record j
of this portion of the test is presented in graphs 1 through 6.
This data has been corrected and the raw data from bad RTD's and Dewcell's has been i
eliminated.
C.2 Induced Phase Data Data for the induced phase is presented in Table Four. Graphic illust ration a
of the major parameters is presented in graphs 7 throuah 10 This data has also been corrected and raw data from bad RTD's and Dewcell's has been eliminated.
)
i a
l a
k 1
. _ r_
1 22 SECTION O - TEST CALCULATIONS Calculations for the test were based on LaSalle County Procedure LTS-300-4 A
reproduction of this procedure is found in Appendix D.
The instrument error analyses are also found in Appcndix D.
l i
I I
)
I i
._..___y
.,y
f
- e..
S 0
3 9
~)
0 9
)
7 4
3. 0. 9..'...................
G O _ _9. 9:
0.
1
.Q. 7 23
.I i
1 l
6 l
j e
[
(~'
i s.
\\
\\
I s
1 b
r e
a
^-
7 I
t I
g l
g e.
l
',t t.
1.
h.
h t
i t
l s
==
I i
{.
t T
4 I
1 i
r o N '8 3 ad f *J d 'r e
- 4 3 o ?5 # 4 * 'J A 9. T
- T1 ] *. J * > 4 'fl * "iM ~ N N N M 2 O' ed 3 's - 4 E %'.
4
?
4
~>.
4 N *'
?
'a?
-1 *= M w a CD J e ** J 33 3m C
<**M->
-N rJ -- -
E E "5 Q 3=. Om a p '3 e
%.4J -i.
fJ. fa.*J.."J. fJ. 74 7J. Pd. f 4 74. ed..M *m m ?'A ?J. C4. fa.
rr 5 5 > 4'
< ri J as c1 -r ee r.
~3-ca N aM-
- J.
J. *.
.a.e 3
- a. O. a. 7J. N. *J. 7J. N. s J. h,,.kJ. T4.J. N. 74. r
- 24. TJ. O.p N. N. O, (J. N.
fd. CA. C)
-e e
e O33 DOC 333 DOC D O O O C3 C 333OOO333 OOC 3GC03C 33333C 33
- l i
e U, O T= 0 l
M k.
a 6
1 6
.P T.=J h.
E' 3 l
f*
-0 A N N D' C' 3>N N3 4 a 78 N "3m se g '36 4
j O CECD f-Me C
>=
30 > M f 2 tl W? ft 1 om N #7 N w u' >*C' WW U.e u,
+ 3*
om 3e 3D a 1 r M===
N4 J
M > *st 3 3 N :",
1
> 3m e* *
- r<
PJ *J rd N O 3 fd f 4 N e4 O 'J ?J f 4 4 - "
4e'.
EL 4 A N P. m>
- C 33+9
=0 4 pe4 Z
m >S
- 3. O. p g* *. C.
. O. v." e
.**.**v=.*.=ei==. =Y. e.,4S.**.=.f< M r'd. a.f4. N. P (d. N. O fJ. TJ. fJ. N. fe 0 J. Cd. f4 fd Pd C' N PJ CJT Ps G
- D 3 =
4 e3 3 O (9 =E Na? @ rd n 3
=. *
.4 3D C 30C'OO C 30QOOC O O C; OCh ai 3 0 Q C3 O C 3 3 Q O O C' C O Q O O C' 3 3 3 O O C' Oc e
f g.) M N a
I f
e
- 3 i
w
. ~
l a
.;+
s
~
D T*
e c.' e.
4 M 4 "t 4 + #
N+
4 c "3 et + D 3 C
Z 0 Om el 4 3 O 2. *S a 4 N v1 na f m
%N4 e =. p o em er t9 29 e'
- e n33
- i M :
~G.p at c :4 3*P% O 4 4 4 +
ad
=0 =0
- v1 o-
?.* A M'4 4 e 1 M f-f4 0
3 36
- e v
.1 M>
I 3n a re 4
- w3 M O fi
>< 4 i
e-
"4 MNP - W1 e p**O+W J
N e41'* e--89 N M e
.. J. ?) O. O. C' O. s1. C'14 46. C',a. ** M. Cd. ~1 M'. *"ea. *3. f4. O.s C4,
- 4. *J. **eO. Cd. 4 ' N...
T. f. C T. f4. ' *.
g N On
.u 21 3 e
4 (9
q3%
-N. e'J. O' 1. TJ.
- 9. Cd..' W 4
8 x as Q f2.= C 00C 00C 30q3OC C0C'000 00Q00C 33300C 3O430Q33 303C 30 g e
6 e
t.
a g
24 s
g e
ta 4
+
e
)
l
{.
t h
>=
3m N D N-%
3AC M N ** p**?
a O. Sh erE W we M ?$ + CT d y s *) O 4 4
- J T 84 i'T n' f 3 ?13= M m +3 d d
W
- P3 D g
-1.
m 23
- > N 3 N ER.. M 3 M P1. m$ 213= N. ca 3 4 p > u 3 el Ci
. N,= S +e M, td o ".* e 3 0
.e se > a oi > > 3 ama N **
es 3a.
d ed 36 em
.1
<y*
-V N o u o, e 9e. p
- d.. e.. *d 3 C O s c C3 3 d O 3 C
.. d. ts e E
+
s.
. 4. e
..-+.,.e.J...-.e.,
a r
>. P%
3 rs M
,. e..e S m.a.
'03:P c.
D. O.
. O..~
.. C' 3 3 a 3 3 Q 3 3 3 O c c c d, s q c 3, C D O. :g C O C O O O O O C' = 3 cp O O e
M w p I
l 6
n s
.s n
O
- 14
~., '.
.e
'l' i-m sO.s. t. a. s. s, s. s. s s. s. s, s.s. s s. s. s ss t s. s. s. s. s. s s. s. s. s. s. t. s. s. s. s i
H
!7 in e
$ $.$. " $.$. $$.$. $. $.$. g e $. 3..
4 p $.$. d ct$! "' G "t d s d 1 d *! 11 $ 11
'd M M P' Tj Wg a ? **s s s. s. $. $
i "bW $4 t
i 3 S M, G M,r r. s,rd d 3,r $Of # $, <
e T
H N
a a7 3 p g.+ n a a n o E, :l
- *d m o
in
$. $ g ss.$.@s.,s.$.s.q M-re a
- ts 9.$ $. $.$.
b 3 ~ !.!.$.
4 e.
i-e.--.g,..,,.
i
.= --
--w.=-
g i4
- a -
3Oee e c n,- e.-
n w e,e e
.9,=,.
m l
l
.a s s. s. s.
- s. s. a.e. s. s,s. s. s.u.s..t s. s. s s.s.s s. s. s s. s. s. s. s. s. s. s. s s. s. s. s. s. t. s.
l s
m
.>4g4JgggJwd4ww.
wa weg w* w. W W - WW we dw ww Www WWWwmJgw 3
3 w a y.. 4 3m a 3M **
h.. "J ? A ** N 's
- D 3 f 1 <*b N 3=
- 8 Mb M a a a=
1 N +d w N
- I
-m 2'
~ bl
- 3
?.
?'d 3.d****.'=.=
MB e tr aeaa*
MM
- t r1 9'
g w
ON 47 33 q' 3 Om 76 13 4
3 3 M 23 3 0
".;. "O
- P m
3 d CD CD 3 33 CD Q Mp.
1#
f't fa
'3. a a n g
<C>
I to J
3.3 3e Oh 3= @
3* 3*
Om G* 04 3m On 3e om em os 3* CD 34 W 3
2 3 3 3. C.
3 33
- c. O. C 3 3 3 3 3.
, 3. g..-
ai no ?
a '1.f o o r
< oat
-v
.t o n e an a n r a d a o n.s a a n n o a.
I.
F=
- 3. O..o d
a O. O. C 33. O. O. C. 3 3 3 0 0 3 3. O. O.C30..
W
.x
. - e
,=== v. = = - =
- v. v-
.=
- =
e.= w e. e.
e e e e e' c - gg.- - we== c-c e
O E
i l
l l
l l
f
- *=
ee
_J r.
- ==.=e
- - vj e= *=
- a f'1 i. =.0 fad d Q "'1 E 3 N.'l f a f N,*s.= - 7. wo O
+ 3 *.
P4 0 3N O ** f 36 3 0 3m O3 41 % e
- 1 3.
= 31 d,.,
- t 4 36.* + a g N m3
- 36==.1 -
3+
- 4
?J 3
- $ 3=. N f.
.3
>4 N N.4
=>
N N Os > !**
n,** 'J.
.i 1 4 *1
- M=G =* a 3 :3 3 - 3 % -1 g
l as a as c 3. Q,,,. N M '3 a 3. m3e.. ;s. 3 3 3..go. O 3.
3 3. a. q 3 3 3. =.
- . 3 M *Sa 36 $ Se <. > Je 3 3
.4 33gg33 -
' C313 0' W rJ =
34
- 26 C M N 04 J= a + =r H.
.=
.a 4.'
.'1 at f ad
- 1. t'3 N (*e. e.
,.4-
.=
s
=. O <
, 3 se 26 >:
,'.A N ew * -.-
- c. N e.
PJ ?J..
.. e "1 f'1 0
-e
- e. e.
n q
. e. e. r
.3 e
e
.= 4 ;.,.
6 44 s*
- w 4 94
.9 -r f we + 4 -e 4 4 4' 4 4 4 + +,e 1 1 -9 < < q<w.* w ~r e A e + 4 r
.9 q.r e.. 6 4
3 se
.) W el h" aa.1HCV
.1 a a n n u) o a.) O a e'l a a 41 1 a.) a o.1 a a ta a a.1 n A is a.1.1.3 a
.1.- a.
e r an ~.
~*++4 I
i 6
l 4
8 i
4 M p r > "" - at > a s -
f = d N m M N 3 4 e "In M + 3. c3 y > -t - M 3%
r s s J e a_% # '.As.'s 3 3 r
.. s 3 i s t
J 3M a4-d - >
adCa4 a49-s G= is1 e 4n.
.~#
I
- e m N y s
. N *1 3%
3 *G.
- a. 3 -r.
.=%*>
af r)' s 3 -
$ 3 36 PJ 3h *
- G t e a<
r.
a "1 *e N ** W f -3 we f
-r r -e a 4.1 4 -3 s,e,M s,.i. a. o.
p34 a2 3
O 2'
-r. 3 3 >n. O bi 3 3 3 O,r. t. 4,e. $. e,r. 3 o, - r,.g,r.
- s. -r.
e.
... a. a.
. a. a..
e.
6 4,r. $. r3
.J
,e r. e < -r.
se.
M. n.
n e
e.
as e
e
~A + 4 mn 4 4 ~Jt d '9 4 4 4 nn 4 g 4 44 se t 4 4 4 sn 4 + 4 4 4 2<<
44 s, + + 6 14
.9 4 + -g se ?
e 4
e 4
p=
we n a a a o b 4 4-*1 <-$1 4 44,89 4 4 ~
944 44 244
-k <
aaanaaas a n. <a a aa. nae.*.ana 4 4 M<<4 44 46<<
4 44444
.1 n n e o a a c es.' aa.4aa.
I l
i f
l 1
i A
I 3885333385 8 8 8. 8 8 8 8 8 3 88 8 8 3 3. 8 8. 5 9 8 3. 88 $ B E 8.e 8 $ E.. E a.. s s.. d m. a 8
.J rs y [} N G [j.~.i. [j
'l C4 N ri *J TJ *$. r,r. r4 :$ TJ Ta '8 TJ t.d Tl T,.J Ti ?)* N Q. r.
s, e
--7 Ne ?J rJ ( la rs ti
,ww J
T. *
- r. 3..4.r. o cI r
.r......r..
TJ Q -l N :4 s.r. =.. O r.i. 3
.r.
.. C r....
I
. N,r 0 s
,e c e.
3 e.c.0
.r. 3.....
36 3.==*==~4, JM
- E} 8 :
= CJ *# ?J M *t fi f =4 e a.1 n o 4 <o N N % 3 09 3 > 34
-..e 3.. -4.. c4 e
.J P.
3
.' e om O
' O 5 j 3 3m 33 30-e
e
. e w q. - q - - *!
t I
h l
f I
I
? $,o + *4 4 4 '.l 4 # *. l => +
4 f *4 4 e *3 1 #
- .f
<G rJ ")'*
4.*4
- $ <0rs g* 9 %=3 *J G,
".*=4 0 3
-1 <0 36 4
"8
- we r4 g
- '3 ?J a.3 N q
-4 *J
..*4 7e 9 O 0. f] 4 W *
'"* *O 3 f1 3 Je. ** 4
- t M
- 9 =0 Je *?
'=J MN
,, y4 c1 g3,
M'* N
- ., O 3+ ** w3 W T1 4 >
3
'N M%y
- N 1%
- =0 f3 m3.,
"M 3 ~3 "?" as
""<3,
- 3 >.*) =3 ts *'t 4.N ** wo > * =3 -
(
~ 1 N,0,
y
-C
- =.3 *=g'?
~
t'14 94 a w3 0 9 m3 4
3 06
- 4 3
y 4
- '1 3
- )
Je
- 3..*3 53. g"1..4.
94
- 4 s
- 3.
- c I4
.. F3. w2 3e '=1.
%3 3 at 4. ;. c. 3e.
7
- ) <0
- t 4 :i F3 4
=t %) ye 94.
M 4 9 c1 42 i.1 w== 4 3e at 4 J1 **.
y 3 4G "'.
'"'=3 3 g3 '."
94
-1 +1 <3
)
> "I =3 Je...
- 1. w;
>i M we.
- 3..3 3. e.t -1. So. M.
6
.4 f
m
- ? =3
- 4 i. m3 C
. 1 =3...
%% 33 33 3 13 > > "* 3 3 3 - - PJ ?J e4 at '1 M e * ** a a
,,,r o..
3 3 3 ** -
- 4 f4 e4 *) ** '1 s f f 41.3 a wt *G <3
=g 1
l j
% C - ei -- <.1,o.s 3 > 3 3
- em -e a 4 % 13 c g 3 3 3 3 3 3 a. 3 e **
N * -c a 4 s M,r n 4 s 3
- 3. O - t) *,e a3 3 3 g >3 J*
-e=
4%
.c -
36 D* J6 3 3m > 7* Jm 3*
a 7%N '4 % % N 3 ".i 4 3 3
.5
~.".J g
I' I
3 '
l j
i I
i f
j
-****-**e1 2. 2 e ea 9 t ea aR 2 s aa aa ea a 4 a e a a e a e a a e s s e a s a a a s2 1 s f, a as i
t C
)
.)
3 3
3
..e e..
.as.a. e-.5
,[b- -.. - - -
E4.it,As O
.w
_h.
9 h. h..*).. ) :, -),.)..h..h.
......... n
..5/.,
v v
I 24 c
M I
4
.s I
lt.
~
t L.
D e
d 9,
\\'
r y
3 v.
6
.m..
?
m o
e
,- ~
p.
's
'=;
4 s,*,".
p l
.j' Y f 4,.
- . ; e p.*
i l...*
+
'4 '
s~
l
. ~.
Z b.-
7
~.p.
(
r g,.,
f, l
'*?,
l-i I
E i
6 c W3 N.=*=0 "J +
- On. 33 I
> 4 ?. 4 EJ rt. 3 4 a (*4 P% =
. 4 4.; "**t"3 1 q N Q *. 3 13 -
i
> > 3 ':3No rJ '"' W T c'
- a. > > 2. o= a. al.
c3 0 - p t d o.
.. t. T5 re..'d.b. A. Id.4. ** *.*
a 3-
-g 1, 'a *3
- A TJ. Ta 's.
499=.=**.*.*.**.=-*'< 33C.
O 3 3 3 3 ~3 3 Q C Q33QOC
,QOC 3 3 C4 Q O.
1 4
w f f.y*,
'g' %
1
=
e'
~
- v. Q,
~
Ne,a O O r.
P= CD -
V 243>==
w= = 4 A "'I Ph 4 t"H w e r $ *4.
d
>sdJs=.so. > > >. ca N o
- o. n n ev e> O* om ew i og -,
T 3
'.? m.
3* em 0 O O.. 7 3 3 3 3 >= 09 @= Om J 33 'O 37 C,D W G 0* O.=m i
w= e.e+gae*
v
' ',) ? 4.
4 74. ra..* ee.
.==.,.
.. =. e. v
.v,g=,=c.
'Q'"
4 c= e= *e
==
4..:
p333334O3C QOC00C QOC.. OOC 3 C C& Q Qre.
' ' I '4
[
. 6
.0 Si C
r -,o 33 *J s9 to 1
%>N. p it)
- D D #] @ NW NN
'd, '~f:CS.333,42.h%Mc'O+G355 UZ S S M,r.E 0
- 2.. 2. m.. :. d.
- d.. w rH.
. O. :.
,r. e u. o. u. c.o..
3 3 3
'3 rd C C 3 3 ~$ Q *T2O 3 C C, Q v* C 3 3 C3, Q Q F
3, 6
e e.
e a
w j
'~
y e
i e
s' h
(
ne r, e n e es e e o3a ra o.
n e d < >4 3 3.1 N.= O. 4 o >
33 N h. N rs
== 33
-w%
e - 23 f -e <
dc aH 6
A
.==. e4. v.3 N f.
4 l
. h
'O C, 3 **
NG e.
... 4 N JB N. 03. N..=9 3% 4%M?
we w e. (
c4. re
.v.
w j
.e...
y O
P O O 3 3 0 3 3 O Q 3 C Q Q D C, 33 QOC 33QQQ e-I 4
q ?
{-
p C;.
l fr e. s. 's. s. s. s. s. s. s s. s. s.'s. s. r, s.s.s.s.s.s. s. s. a s.s.
i E
i
$ $ $ $ b. b. Y $ $. YYY bk$YN bY, fb l
y i
b O
'.I' *3 # # > > :. o. v J. +> >r JI e f 4 + + we w -r w 3 > ). o. f l
++
e e r-0 a
> > :.+ > o= 0 o=
4.4 > o s
s am o 4
l t.>: S. a a d.s. o. 4 1 3. 3. s. h-d v 48,3.
y
~ >
a ca 8.a tc. c Q 8. N. Q.a.
i d
3
. s. 3 Qa.. -,. o. c 3
r.h.
-w,,-
ev, - *,, w. e m
.- - e e
>l t
I
~
.'a. u.. s. s. s. s. s. s s. s. s s.q. s. s. s s..s.s. s. s. t_a s..
r h wwWWW I
g a a u q 4. W s a a A. W W W. g. w.
ga ed es - a o m9 e N
3 'S ', c s N e3 "O 4 W Pt
=0 w a v1.1 st el
. :a.
.o
- #oe p
3 - - Q M *1 96J3 36 v.N N.P3 N N N%
NNN N Ps N NN e
23 3 :S g 3 :7 %.10
- 44. d n r a m1 { n d 1O v1 p' d.1 4,6
. 3 3. a. 4. 3 3.
.3 3. *.3 Lu,
(
33 O. O. C O. Q. %., 0 G.C Q 3. Q+ O. c.
w in E.
c.= e.- =
c,-,
e,..,=,
e,- we c,.
f I
i
. - m s. a o
,r. w d e., < -..
omo
><N
<,r t-d,3 -
,,r N.- c:. d na 3m-n+
a.1 u1 h s
33 o ?J - e
- O
>+:
dO ad"
. #f
- f 3'.
.' 3 v -%
1 ed
'd G f 4 4 =4 me =3 NN N N N tr "3. J.
- 3. O. O. 3',"3 3 3 O O. C 3 3. C,. O. 3. 3 3 31. O. Q.
\\
1 p
3 3.)
33 N 1
. -r. 4 y e.9e+4 7488444' d.4 e e
+-
144 j
4 4
44 M O.r :1 w] W 4
{
's 1h Hd E i.
.1 e'
,'e' d.) d d s} O O.I'OAV t
l 7 d * - 3 '4 04 rd J1
- .1 O =O r'.* G fi 0 03
- O h.
Oh 50*
l a'
3 3 3. >
- O N. P J.
d re W NN O=
O2
, t.* d. ** h C d e > = w n. =,
+9
?
c.
,..~
rd -
fJ **
- --O*=
7 3 ;) =0 g.
- d..y ?* Q N y 3
1 44%
. e3 4. %) O. 4 4 43 4. W) =0 e'"..
1, 4. G. M 4 4 4.
f
'. 1
..9 4
<e" 4
4 4B4*4 44 44 4 4 d f f
.J* + 9 l
~r 4 r4 4 ~r 4
=9 g #
i c., d d.
.{... d o., o o.i, n o,4M d.1. W W yo d.Io d
{
- f f1
. gf sJ W W.19 g # -
Wf ony 35388 l
3.. s. 8.. i. 5. 3. 8,8 5 B.. i.. B. 8 8 E. E S 3. 8 S E
~ '
4
. J:
- 3. O4 u n
.a-ann J. ~.. r. u r. ~. ~. snu
,..P 4.
T a. T,O r.i r.i e.
afO 3
?
.<,.3...' # 3. a.#. 3 d, 3 d o c,..
3 S,.- 8CC.s3N,.
}
l l
-m 4
e-435a-33ar C
== o
.3 1
l i
e f
1
.5, m,,o. os.,m,r k,, 4 r s o., -l o <
4 fe,3 -
4
<,., #,e.n,,a., s -a,e r i,3+
e x,. m.,e > 3,3 >. m,.o o
, ci i,
i c3 ~
- ie., 4 m.3
,3 3 GI i
e>
3:
,4 xm i
, o3,4
,,4o 2., o 3
>. n. o. >. m.-a. >. m a 3. n. o 2. - 4 x. n on. <. >. n. o.
.}
>,<s.-
i t
<>n..,4,,,,
-t., a w,,2 i
l
- n.. >.
. u..
1 I
t
. n.
.+
s.
- - - n ~ q "J *. ?J c. *d
{
l g
i e s s s.
I m.= -s > > 3 3 e PJ TJ ?J rd P4 P4
.* -== - r d.~ 4 f l
l
- * = = * * -
l
{ 10 ' U. '.1 " s '4 ';.4 ~l s M N., M-.EI S ~e 3.~.M. 0 T.r'.
i e
I a - --.--.--- --
j i
i I
I t
s 3
3 s
e, 3
a i
0 l
I
\\
d c
n V f
I p
i A
I l
k l
I i
i i
1 I
i I
)
ii l
{
i,
r i
s t
i i
i t
\\
l
_ -%~-----
__. __ C_,
-:..-___.--.-=J'
(
. m a =7----m_
y.
ww
//
d.
i g
q.
e, ]f
' 4 s
, !i t-t v
./'
i y'
I
f 6
q 3
b 95% UPPER CONFIDENCE LIMIT sp: As:!P r 0
.. c AK PATE CALCULATED LEAK RATE _
Also Available On Aperture Card 4
4 e
t c-PRC
.,A3F_RTUR.~.
i CARJ n <., xu = =~u..u na
^ -
a:-
_- _. =:.-w=-_. = = =. m
"~
)
I
(
!t,' tb i._-
L
N\\NNNN 6
/
/
A s
I
/
(
a e.
A K
e s
t
/
A r
J
'4 b
(
is t
/
/,
i
/
/
/
/
/
/
/
/
\\N 6
/
/
l f
l l
9
/
1~
1 1
N
\\
N
~
).,, x o
~
A
/
4%
j
/ ' /,.
(
9
/
N xN N
26 Also Availabic On A "'rture Caril l
(
.h 8
1
),
r<
~
t 1
Y 1
.c c<
I t
L.__.
i,
w'$
b-r#
b p
i e
i f
n O
/
J t
/
/
(w'.
,,\\/
\\
~
iX i
?
I
'8 i\\
\\;l
/
/
s Nj/
\\
\\
~~
i i
j 1 7 o
\\!
\\l k
e
.g
27
\\
\\,
Al.-o Available On A terture Card l
/\\
/
Y p_
\\
/yj l r
l
\\
/
/
\\
/
\\
l x..,
l' I
i
\\l I
t I
r i
i d
7
..7...
' i.'
I, 1 5o, r/\\,
/
- t..
t s
CONIAINMENI DRY AIR PRESSURE VS TIME m
nv,.,s u,
-r_
D
?
A u,,4
[
F-if)
D N
vm s
g) -
N
- 1 r j w
g,
'l L>
2' o
- ~.
u ) '$ "
1
- 1' D
CJ,c U3<,
O' [5 -
Lu (L
U1 Q'A
~Z D r _.
O '" l CL r
C
.:i,.1
- t..y _..
_7
_____.___7._._______.r-----*------r--
~'-'---T i
l\\
0.00
' 00 1.00 6-00 6.00 10.00 12.00 14 TEST DURAT10-l 1
1 1
28 Also Available %,
Aperture Card t
,Irl.
f
- x; s
(.
x
\\b y
% /~
?'\\
\\./
s n/
4 t,
.)
\\
4, p
[~ (7 - yjN
{""
7-s L,e i j3
)
ii l
'<' l \\
s
..a
,s s,sta 3;
.~
r e
N,-
v.1 a
s b
i
~b j
e L
k f
8 W
F I
/s
/
/
/
/
s-s l
1 li\\
/. \\
/
l I
/'s /
l
/
I 1 I I
\\
\\
\\
/
f I
i k
/
\\
\\
\\ __ _. ~,./
/
i 1
[]
t 8
e,-
,!J m
J s
d
1 l
29 l : ;\\[
i l,
fN/ f's f
/
/
/
,i f
/
r1,i i
l
/
J
\\
y i
r
'x[
Al.-o Available ih l
Aperture Card i
l 3
I I
\\
l:
i I k
I i
w i
P i o 7 n -l}i:.c
['\\I f'\\
t i \\ I~_
e j
_r
.__r_____r_._
_ _.r - _ _ _
,i E
9
' O. O 'c 22.03
?.00 2 +3. C 0 il s. o l
S DDk%% (Q m D]
I!;I ill
- l O
n D' q
'I T'
i
', - L ] c!
_.,I
[
r(
,; H p F OCz3_ b,_ Z. $ Z 4
- )
D m-(
TTgLC7r < q d -. f
) 1 T
1 f
i
<a m.
7 8
6 45i 9
7 6
4, 5
~
017 1
6 4,
5
)
E T3 6 U.
L6 O4i 5
S B
A (SS H 6 C4i 5
N I~
E7 R4 A.6 U4 O5i S
R 9 E3 P 6 4
S5i D-N U
1 O3 P 6 4,
5 3
2 6
4 5
]
c,OO.
o Oo oO f' OO oO
- o.OO 0
9.
U
[$. o O
- +
0 NqW4 O
C~ Pw IoZ l
an i
s Aho Availa},te g.
A u rture Cant l
t.,
,. n y.,,
' ?
~.
I 9
x
\\
\\
.cWY x
h i
b.
.)
I
~i '
')
CD
- 00 2E.30 i
ti;, f s-
%%%he, ' 06 L 1
um..
.-..e
-.-o-e..o.<o. o
- o o
o
='s
- sa o= ao 4
3 7= aa o: o
=o e0
(
O a
e e r e a a =
a a a a e =
e a e s
~e 31
- c..i n
~..,
n.
y,
.3r s pl w
g
. $d
- ..f-v c, e, <1
-o, j,-
4
,y.~-
37
..s
.y 7.,..
I 7){y
[
~L' N )
- h 4
r, L._
NS K.?
re cJ.
Wy*
yu r
-M.",&..S.
x.:
p. 4-
". p:(.
. 2.
[f's)'.
- ~
/,9 a
~ y; sy n.
a.
R.k.c M Qt D.z
.pqh h.*
- 7 4V
]
.4 * -
ue v
s %;.
.,A -
an,.~
'.,,s 7
p n.
w
. v. y w
g.
v
,; ~.'
&,m k.t..*,.
,2.s:.4..
M.
- - i, s..,.
m,
.gf
.R
- (;
-o ",.
s-Q ~
i,,
% 3..
- *:. h MS[.
o
[**
Dj
[p ' b
)"*
AT h$.'
N
' ': w p
m, %.
Q d.
- , t..
%,. A
- p
+.9
. m&
~.,y n,
~
A r
a *'
i
, r 'a(.
h Nhsh h,, b.y Q, c
$rfl h;h k h '.
I,..M N *l. M
' "'i
$[* *N v* '
g;g y[
p '-
's.
,. 4 to.x
.fg g
i.
'] 4 s
'n
_,7
- )
.? Y -
hh Ye" 5:r.Y
' a-.
Ar.r m,.m
..n, n
.a s
V
+
t
. sv f
N,s.*
m..h e
' [.5 <
- 9
)
~.
s 3.a &
y 6
e si o =*f^
- ** f9 838 f1
+ +.
i J
g ' O e ad M < m d *.
s_
N
- o 'E e N.a.
a N ew I
- e. 2..
f,..a e.
- a. cm. N. sw
- 4..e.*.*.....A
.. ye
- ?
l lg* y ca
,?/
A J
.3.
.c o o c4 cbcp a o o c;WCH '
v.b
, - 1 C. L
[h. ',
pe-
.4
- ,c o C o
y q.v 1; ar., t
[
h E7
, / g:,<
Iyb.<*t.
,,, tg
.J'
-. f.t
+y
- L
- 4. o,
,.g.
., e.
s M o n es o<
- [,I,"
'. Ns
- MW U
t, %..
[y".(m:
-a
-g 1'
M, v.
- gr 3
,wu c
- a. o.
No a
ar m e
I 4
W --.'
r/.
- 4-
~ua %
'. = m. g'
- V-
=*
-e
\\..C e '
;v.M l +. 1
%- ;*i M
c N N <$
nr e
p*...
7 k
$, *r,R
$*;A
} $'
=
- a g
~
n hT.
4.3,
{ 1*.h '-
7.h 3
- ' d
@N
E r -
s 3
i'
... h,
- t
,. d y ikn w
+
wc.-;
v c'. -
.o e ew ~
f, 'g,4 w.
w $..$
AS S" N. ' l' ",.i AN d'. -
@9. 4
<r 5
"E C
,4. aa V> *
')
M O. ar e. <
- e. N r
f w cc y
J;, -
w~
%. ;f. e
,.; f a !
<c c.s
~ =-
o o CIOCE,C o g3Jpf OOC emie= C
, as a ciOO C
? Q*
W[
- m. ~
q'q
'L..
< q.2
+.
.YM
- L' M
wu u.
w
%.. w f*;*J N f:.*.",,
.x e a'
MSA 4
B"**,'.e-*
J -
.4
k w
d*
M
,s> 0 gr Q,.
C
- 3. f e*
wi % ;P
~'* s.s
+
A.
g'
- - E f /. -
a M
.'J.,8 d o n..N e
rg "
1*
S E n>i f
eh e
gg s
. m-
/ m.t a i
s, x
e i.
c.
nc s o ca ssa.e noclocp.
M.9.
....,.4.
s-@
l' S
e, m
.c 3,
.%/
g n
gm
.s t < U. h,
- .t
?
G J,
. ', >.?.@w
- . -N".
9 s
n f*
{'
- N, M.
h
/:
i +
s N* 'y
-.s E. s. s. E. s. s. s s. R.
s.s.elpp.
r ?[l'
' v, 5 Ds,.t 2
O
'5 3
7 e
d_
e g
, o
%,.. W-M,,, *J. ',s H,, C_O,-
v.
t.
8,
- 2.,-
u
. =
7o.o e
.~u.
- e. j.
l
~~
N
- 3.. "..$ 8. Q.".. y 8 8.c, ~.j'
, -.m' g
n %s
%%3.
m Q
33 1N.
'.~.
7 M. t, '
~~ '
r'w a
i i
L
.a La C$ Q e y
=g
c mr>tm*T w-go ei g
y 1
'e ~.,
y*1.
i y s A.
. *y y a.1
,.., % I v.
J Mi,
M..
.1 n W W' a 12 oOr'W7
- :, 4. i Q O O. Cd o.l o rO. Ci
~
(
.=
c Q Q CLG
- s. ?
g'.,,.**M ?
-p a-
, ?
o 3
OA 4-
+
+-
g..
+e 6
W la w 64 lei saa L 6 L
k
' mea y
-*r h' ;
- =
1.6.
as
=O q.
r.
CT NMr 9
.'t.f i
k^ ^'.*
4.=3 Cp 3
Ow G N MN U1 N
13 wo w 4 N
44<'
E
'.,,.4.,.
O ng(
lj
., 4.,A Y),.m.,
".s E
e N
>=
dC e Wi ls eW{'O g.
g O.
Q.C
,t O. O.
i.e
-,g..
+s>..
e e e-
{
.m qg
' ge g=,.
.*. c:
P.*..
f
- 9-v= v.
.= v= v' y= eme s v= g=
i r=e*19'D 4 y[ ',-[-
- s.. s x
.m y
I f4 O fMu WM4 fWW fd 73 i,== N r'.
. ae 0 og 's i
-.E.
M 4
N M. e.9 cp Ir? O Q =0.et N e. e Ner 6p G
.o l
e N
4 o =
DeCD N m e
4 3. O. C.
-.aOOO
- 3. Q. O. O. O d. O> M. >. m. o 5 M (9 0 e
e og fi l
A e
e cm ag 4
' e+*a e + vffF fM?
M I"P f.
a O et
.s.oOW1 el el el DnSI el d o' 5 DF s
'?
~*
eNN M M 04 =0 re 3 NO Neb
.t'
)"*
'I 7
- 3. s1 < N N E 444 40 43 ar ad
- r L ,
- a'-
n,* cD. f'
'N P
A c>= P o.= *,o e
co - e ra
<r e NN-i r.
ri Q e-C== e C ** g-e
, a
, 23
- t..:
< <b *e 4 0 4. <e.. *
- a at 4
e' -*w=.
e
+1
+ f *sik as* =dP. 4
~
[
T 4 f + =r e-r,e r
ce3 n.M no<,nn.
- we.4 er+
.i n n < o o i.-
i s
i 5.88E883.88 5885..:88E.
i
~
i oy 1 3 g N h 'dN_ E_hNNbNNb.
,I_ >4 I
c
,I y > 0. C O O.*.*,T* w" T,1 NNs
- L,MM,4, ca l.
w
.p n ~ m e. C; 2Ng 2Ns i.
r
- m -< sa s d ra s 9 NN Os3
- ww
>=.u M 43
"'1 10 C' M we q *M =O g Q4 1 we
- t 0gM4 4 am C 9 =0 C M =O E
- U3 >+ (A MM4 ; M o ;; Soc ee I
w <e g
.rm
. n. 4. m. S. n. a.
M. e. ~
J 4
-1 n.
?
l o.
C Q w. - - U N ee eMM4**
4 I
I
<c >1 v 3 eJ M w =J 0
4.
<.1 LA co 41e oo o
y g
---n-r-o 6 w w a y 6".n "r r T T T T T T r T T 3
I
~
- n. oJ,/2' t_ L_ t_
c-s L.
r. F... r n i, _ F w Ps
- e. c T i n:_
u m
Oo wt i
6
\\
\\
o I ;1
\\
iol\\
\\\\
ca1 \\
\\
\\
\\
\\
4
\\
i t
OI i
't
(
.b
\\
cv 1
\\
\\
\\
O 1
o i
>- W
=[
\\'
o 0:
I Lij o,
t a_.o !
a i
\\
w
\\
r
\\
\\
us O
t i
\\
OI i
LLJ N l
\\
CL,, 4
\\
l 1
\\
ti 1
i awj
'N
.a x
o x
I
. v/ ' W c-l o
a o i..
o7 r--
f30 0 10 U.80 1 20 1.60 2.00 2.40 2.80 TEST DURAT M
i j
32
\\
957 UPPER CONF I DE N C E L l'il '
ASUR! 0.. E A K RAIE CALCULATEC LEAK RATE Also Available Gn' Aperture Card r
k I
?RC l'
AIa r:
W I l
L CARL o
V S
~,-..,-~,n_.~.-,
_ ~ - -
A -,.~2 L'-
L.
7 0
0'
~
i i
~~
^
,q 3. r,9 4.00
-O 3 cn s.20 5.60
{i (HOEjNs)
[
~
33 SECTION E - TYPE A TEST RESULTS AND INTERPRETATION E.1 24 Hour Phase Test Results Based upon data collected during the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> phase, the following resul ts were determined:
Actual Leak Rate Acceptance (wt%/ day)
Criterion (wt%/ day)
Total time measured leak rate
~~~~'071672'"'~
~ T/A ^
Statistically averaged leak rate 0.1927 N/A Uoper 95% confidence limit leak rate 0.1999 0.4676 E.2 Induced Phase Test Results A leak of 5.349 DCFM (0.5418 wt%/ day) was induced on the primary containment for this phase of the test. The following resul ts were determined:
Actual Leak Rate Acceptance (wt%/ day)
Criterion (wt%/ day)
Total time measured leak rate 0.5861 N/A Statistically averaged leak rate 0.6721 N/A Upper 95% confidence limit leak rate 0.5992 0.9007 -
0.5827 E.3 Leak Rate Compensation for Non-Vented Penetrations The Integrated Primary Containment Leak Rate Test was perforned with the following penet rations not drained and vented as required by 10CFR50, Appendix J.
The As Lef t Leak Rate of each of these penet rations, as determined by Type C testing is listed:
(Numbers are rounded of f)
Penetration Function SCFH wt%/ day M-16 RBCCW Supply 0.0 0.0 M-17 RBCCW Return 0.0 0.0 M-25 PCCW "A" Supply 0.0 0.0 M-26 PCCW "B" Supply 0.69 0.001 M-27 PCCW "A" Re t u rn 1.6 0.003 M-28 PCCW "B" Return 2.0 0.003 M-30 RWCU Suction 0.87 0.002 M-36 Recirc Loop Sample 0.0 0.0 M-96 Drywell Equipment Sump 0.0 0.0 M-97 Drywell Floor Sump 0.39 0.001 M-98 Drywell Eauipment Sump Cooling 0.0 0.0 M-22 Inboard MSIV Drain 0.0 0.0 M-7 RHR Shutdown Cooling Suction 0.87 0.002 M-15 RCIC Steam Supply 1.1 0.002 ECCS/RCIC Worst Division 0.76 0.001 Unit 1 H Recombiner 9.73 0.017 2
TOTAL 0.0305 (Actual)
34 i
=
=
\\
This yields the following adjusted leak rates:
Statistically averaged leak rate:
0,2220 wt%/ day Upper 95% confidence limit leak rate:
0.2292 wt%/ day NOTE: Drywell sump levels were not used in calculating the final leak rate.
Sumps were filled during the test by a leakage path from the reactor vessel to the sumps, Since the vessel head was vented to these sumps volume in subvolume 6 never changed, i
4
. - ~,
--,,n
,e
-c,--
m--
35 APPENDIX A TYPE B AND C TESTS Presented herein are the results of local leak rate tests conducted on all penetrations, double-casketed seals, and isolation valves. All valves with leakage in excess of the individual valve leakage limi ts were restored to an acceptable leak tightness. Total leakage for double gasketed seals and total leakage for all other penetrations and isolation valves followino repairs satisfied the Technical Specification Limits. These results are listed in Table A-1
36 TABLE A-1 TYPE B AND C TEST RESULTS VALVE (S) OR MEASURED LEAK PENETRATION TEST VOLUME
_,, RAT E _ ( S C FH )
DATE 2821-F022A Main Steam isolation Valves 0.0 4/22/83 2B21-F028A 2B21-F067A 2E32-F001A 2821-F0221 8.97 6/21/83 2B 21 - F028B 2B21-F0678 2E32-F0018 2B21-F022C 4.4 6/15/83 2821-F028C 2B21-F067C 2E32-F001C 2821-F022D 6.0 4/22/83 2B21-F028D 2B21-F0670 2E32-F0010 2B21-F016 inboard MSIV Drain 0.0 4/8/83 2821-F019 2VQO26 Suppression Chambe r Vent 0.94 6/7/83 2V0027 2VQ043 2VQO29 Drywell Vent 0.69 6/21/83 2VQO30 2VQ042 2VQO31 Suppression Chamber Purge 1,71 6/23/83 2VQO32 2Vq040 2VQO34 Drywell Purge 0.52 6/18/83 j
2VQO35 2VQO36 2VQ068 2CM027 Suppression Chamber Continuous 0.0 6/3/83 2CM028 Air Monitor 2CM029 Drywell Continuous Air 0.0 5/5/83 2CM030 Monitoring 2CM031 PC Air Sample 0.0 5/5/83 2CM032 2CM033 Sample Return to suppression 0.0 6/1/83 2CM034 Chamber l
2B21-F032A Feedwa te r Leakage Rate Test Not Completed When Report issued.
I
37
' VALVE (5) OR MEASURED LEAK PENETRATION TEST VOLUME RATE (SCFH)
DATE 2B21-F065A 1.03 6/22/83 2821-F010A 2.15 5/5/83 2821-F032B 4.7 6/22/83 2B21-F065B 4.79 6/22/83 2B21-F010B 2G33-F040 0.6 6/22/83 2fN001A Drywe1I Pneumatic Suction 0.49 4/20/83 2in001B 2B33-F019 Reci rc Loop Sample 0.0 4/26/83 2B33-F020 2RF012 Drywel1 Floor Drain Sump 0.39 5/6/83 2 RF013 M-111 D rywe l l P ressu re Ha t ch Doo r Sea l s 0.0 6/13/83 M-lli Drywell Personnel Hatch 11.57 6/22/83 M-112 Drywell Equipment Hatch 0.0 6/23/83 M-113 Suppression Pool Hatch #1 0.0 6/24/83 M-114 Suppression Pool Hatch #2 0.0 6/24/83 M-II5 CRD Removal Hatch 0.0 6/3/83 Drywe1I Head 0.0 6/24/83 M-42 TIP Flange 0.0 6/22/83 M-43 TlP Flange 0.0 6/22/83 M-44 TIP Flange 0.0 6/22/83 M-45 TIP Flange 0.0 6/22/83 M-46 TIP Flange 0.0 6/22/83 2PC001A Outboard 0-Ring Seal 0.0 6/18/83 inboard 0-Ring Seal 0.0 6/18/83 Actuator 0-Ring 0.0 6/24/83 Actuator Seal 0.0 6/24/83 2PC0018 Outboard 0-Ring 0.0 6/18/83 inboa rd 0-Ring 0.0 6/18/83 Actuator 0-Ring 0.0 6/18/83 Actuator Seal 0.0 6/18/83
- Leakage Rate Test Not Completed When Report Issued.
38 l
VALVE (S) OR MEASURED LEAK
,* ' PENETRATION TEST VOLUME _
RATE (SCFH)
DATE 2PC001C Outboard 0-Ring Seal 0.0 6/18/83 Inboard 0-Ring Seal 0.0 6/18/83 Actuator 0 Ring 0.0 6/24/83 Actuator Seal 0.0 6/24/83 2PC001D Outboard 0-Ring Seal 0.0 6/18/83 Inboard 0-Ring Seal 0.0 6/18/83 Actuator 0-Ring 0.0 6/13/83 l
Actuator Seal 0.0 6/13/83 2VQ030 inner Flange 0-Ring 0.0 4/5/83 2VQO27 inner Flange 0-Ring 0.0 4/8/83 2VQ031 inner Flange 0-Ring 0.0 4/8/83 2VQo34 Inner Flange Gasket 3.8 5/31/83 2PC003C Inner Flange 0-Ring 0.0 4/8/83 2PC003A Inner Flange 0-Ring 0.0 4/8/83 2PC003D Inner Flange 0-Ring 0.44 4/8/83 2PC003B Inner Flange 0-Ring 0.0 4/8/83 2PC002C inner Flange 0-Ring 0.0 4/5/83 2PC002A Inner Flange 0-Ring 0.0 4/5/83 2PC002D inner Flange 0-Ring 0.0 4/5/83 2PC002B inner Flange 0-Ring 0.0 4/5/83 2RE026 Drywell Equipment 0.0 4/25/83 2RE029 Drain Sump Cooling E-2 Elect rical Penetration E-3 Pressurizing System and E-4 Associated Elect rical E-5 Penetrations E-6 E-7 E-8 E-9 0.68 6/7/83 E-10
(
E-11 I
39
,VA(VE(S) OR MEASURED LEAK PENETRATION TEST VOLUME RATE (SCFH)
DATE E-12 e-13 E-14 E-15 E-16 E-17 E-18 E-19 E-20 E-24 E-21 Elect rical Penet ration 0.0 6/15/83 E-23 0.0 6/15/83 E-26 0.0 6/15/83 2RE024 D rywe l l Equ i pmen t Drain Sump 0.0 4/25/83 2RE025 2 G33-F001 RWCU Suction 0.87 4/20/83 2G33-F004 2E51-F080 RCIC Turbine Exhaust Vacuum Breaker 0.0 6/3/83 2E51-F086 2VP063A PCCW A Supply 0.0 4/8/83 2VP113A 2VP063B PCCW B Supply 0.69 4/8/83 2VP113B 2VP053A PCCW A Return 1.6 4/26/83 2VPll4A 2VP053B PCCW B Return 2.0 4/26/83 2VP114V 2iNO31 TIP Index Purge Air Supply 0.0 4/5/83 2iN017 Drywell Pneumatic Discharge to 0.49 4/20/83 21N018 Drywell 2HG001A Combustible Gas Control A Suction 0.0 4/25/83 2HG002A
40
- ALVE(S) OR MEASURED LEAK PENETRATION TEST VOLUME RATE (SCFH)
DATE 2HG005A Combustible Gas Cont rol A Return 0.0 4/5/83 j
2HG006A i
2HG001B Combustible Gas Cont rol B Suction 0.6 4/5/83 2HG002B 2HG005B Combustible Gas Control A Return 0.0 4/5/83 2HG006B 2E51-F063 Steam to RCIC 1.03 6/24/83 2E51-F076 2E51-F064 2E51-F008 2E51-F091 M-38 Service Air to Drywell 0.0 6/24/83 M-37 Clean Condensate to Drywell 0.0 6/8/83 2CM017B Crywell Humidity Monitor B Suction 0.0 6/2/83 2CM0188 2CM019A Drywell Humidity Monitor A Discharge 0.0 6/1/83 2CM020A 2CM019B Drywell Hunidity Monitor B Discharge 0.0 6/1/83 2CM020B 2CM017A Drywell Humidity Monitor A Suction 0.0 6/1/83 2CM018A 2E12-F023 RHR/RCIC Head pray 0.0 4/7/83 2E51-F013 2FC113 Cycled Condensate to Refueling Bellows 0.0 4/25/83 2FC114 2FC115 Rx Well Drain 2.7 4/26/83 2FC086 2WR029 RBCCW Supply 0.0 4/8/83 2WRI79 2WR040 RBCCW Return 0.0 4/8/83 2WR180 2lN074 Drywell Pneumatic Dryer Purge 0.5 7/25/83 21N075 2E22-F004 HPCS injection 0.76 7/25/83 2E12-F008 RHR Shutdown Cooling Suction 0.87 6/18/83 2E12-F009 2C41-F004A SBLC Injection Line 0.0 4/8/83 2C41-F004B 2C41-F007
41 VALVE (S) OR MEASURED LEAKAGE PENETRATION TEST VOLUME RATE (SCFH)
DATE l
2E51-F069 RCIC Vacuum Pump Discharge 1.57 4/7/83 2E51-F028 2E51-F068 RCIC Turbine Exhaust 0.87 4/7/83 2E51-F040 2VQ047 Drywell Inerting Make Up 0.0 4/4/83 2VQ048 2VQ059 Suppression Pool Ine rt ing 0.43 4/4/83 2VQ051 Make Up M-46 TIP Ball Valve A 0.0 6/22/83 M-45 TIP Ball Valve B 0.0 6/22/83 M-44 TIP Ball Valve C 0.69 6/22/83 M-43 TIP Ball Valve D 0.0 7/22/83 M-42 TlP Ball Valve E 0.0 6/22/83 2E12-F016A RHR A Drywell Spray 0.0 4/6/83 2E12-F017A 2E12-F016B RHR B Drywell Spray 0.49 4/20/83 2E12-F0178 2 E12 -F042 A RHR A LPCI Injection 0.0 4/6/83 2E12-F042B RHR B LPCl Injection 0.43 4/6/83 2E12-F053A A RHR Shutdown Cooling Return 0.0 6/17/83 2E12-F053B B RHR Shutdown Cooling Return 0.0 4/29/83 2E22-F005 LPCS Injection 0.76 7/25/83 2E12-F042C PHR C LPCI Injection 0.0 4/6/83 M-33,53,95,102 Post LOCA Hydrogen Control 9.73 System Unit I Post LOCA Hydrogen Control 0.77 5/3/83 System Unit 2 1-11,35,36,45 Post LOCA Containment 10.11 (A) 47,50 Moni toring System 11.14 (B) 6/28/83 l
42 APPENDIX B AS FOUND LEAK RATES The as found leak rate for the primary containnent isolation valves, excluding the main steam isolation valves and leakages identified during the IPCLRT, was unable to be determined due to excessive leakage in several volumes. The total leak rates prior to initial criticality are sunmarized as follows:
ITEM LEAKAGE RATE TECH SPEC LIMIT (SCFH)
(SC FH)
Isolation Valves 22.09*
231.4 Testable Penetrations 12.25 Double Gasketed Seals 4.24 tiain Steam Isolation Valves (Tested at 25 psig)
Steam Line "A"
0.0 25.0 8.97 25.0 S team Li ne "B"
4.4 25.0 Steam Line "C" Steam Line "D" 6.0 25.0 TOTAL Through Leakage 19.37 e 25 psig
- Leakage Excludes Feedwater Penetration Leakage Rates.
Complete details of these local leak rate test results are contained in LTS-300-5 and pre-operat ional test PT-PC-201 Due to the fact that Unit 2 has not had primary containnent established and the unit has not been fueled, "As Found Leakage Rates" are not applicable.
43 APPENDIX C HYDROSTATIC TEST Presented herein are the results of hydrostatic leak rate tests conducted on isolation valves. All valves with leakage in excess of the leakage limit (1gpm/ valve) were restored to an acceptable leak tightness. These results are listed in Table C-1,
TABLE C-1 Ub HVDR0 STATIC TEST RESULTS VALVE (S) OR MEASURE 0 LEAK PENETRATION TEST VOLUME RATE (GPM)_
DATE 2E21-F005 LPCS Injection Stop Valve 0.25 7/26/83 2E21-F006 LPCS Injection Testable Check Valve 2E22-F004 HPCS Injection Stop Valve 0.0 7/27/83 2E22-F005 HPCS Injection Testable Check Valve 2E21-F041A LPCI A Injection Testable Check Valve 2E21-F042A LPCI A Injection Stop Valve 0.0 7/27/83 2E21-F041B LPCI B Injection Testable Check Valve 2E21-F042B LPCI B Injection Stop Valve 0.0 7/27/83 2E21-F041C LPCI C Injection Testable Check Valve l
)
2E21-F042C LPCI C Injection Stop Valve 0.2 7/26/83 1
2E51 - F065 RCIC Injection Outboard Testable Check Valve 2E51-F066 RCIC Injection inboard Testable Check Valve 2E12-F050A A RHR Shutdown Cooling Return Check Valve 2E12-F053A A RHR Shutdown Cooling Return Stop Valve 0.0 8/18/83 2E12-F050B B RHR Shutdown Cooling Return Check Valve 2E12-F053B B RHR Shutdown Cooling Return Stop Valve 2E12-F008 RHR Shutdown Cooling Suction 0.0 8/18/83 2E12-F009 0.0 8/18/83 2E21-F001 2E21-F011 2E21-F012 LPCS isolation Valves 0.0 7/26/83 2E21-F016 2E21-F031 2E22-F012 2E22-F014 2E22-F015 HPCS isolation Valves 0.15 7/29/83 2E22-F023 2E12-F036A 2E51-F019 RCIC lsolation Valves 1.0 8/31/83 2E51-F031 2E12-F036B 2E12-F004B 2E12-F088B RHR B Isolation Valves 0.0 8/1/83 2E12-F064B
- Leakage Rates Not Available At The Time Of This Report.
TABLE C-1 45 HYDROSTATIC TEST RESULTS VALVE (S) OR MEASURED LEAK PENETRATION TEST VOLUME RATE (GPM)
DATE 2E12-F074B P.HR B Isolation Valves 0.0 8/8/83 2E12-F0558 2E12-F3118 2E12-F011B 2E12-F073B RHR B isolation Valves 0.0 8/8/83 2E12-F053B 2E12-F3118 2E12-F0118 i
2E12-F0248 RHR B lsolation Valves 0.3 8/8/83 2E12-F025B I
2E12-F027B 2E12-F004C RHR C.
Isolation Valves 0.2 8/2/83 2E12-F009C I
2E12-F064C 2E12-F088C 2E12-F021 RHR C isolation 0.1 7/25/83 2E12-F025C
)
2E51-F080 RCIC isolation Valves 0.0 7/29/83 1
2E51-F086 2E51-F102 2E12-F302 RHR isolation Valves 2 E 12-F004 A RHR A isolation Valves 1.0 8/2/83 i
2E12-F088A 2E12-F064A 2E12-F030 2E12-F011A RHR A isolation Valves 0.0 8/8/83 3
i 2E12-F074A 1
2E12-F055A 2E12-F311A I
2E12-F0llA RHR A isolation Valves 0.4 8/8/83 2E12-F073A l
2E12-F055A 2E12-F311A 2E12-F027A RHR A lsolation Valves 0.6 8/8/83 2E12-F025A 2E12-F024A 2B33-F013A Reactor Recirc Seal injection Check Valve 2033-F017A 2833-F0138 2B22-F017B
- Leakage Rates Not Available At The Time Of This Report
.~. - _ _.
46 APPENDIX D The following are the computations made to determine the instrument error of the inst ruments used during the IPCLRT. Also included is a reproduction of the computational procedures used during the IPCLRT.
Instrumentation Error Analysis (Initial)
La = 0.6352/ day 25 La = 0.1592/ day Pa = 54/3 psia T = 541.2 R Dew T = 56.4 F N=2 Pressure - Total Absolute Pressure
~~~
E = (.0002)(54.3 psia) = 0.0109 psia E = ).00001)(100 psia) = 0.001 psia ep=+
E2+E2'}
N
~
-b ep=+
(0.0109 psia)_ _ g 001 psia)2
+
+ 0.00774 psia = ep
=
Water Vapor Pressure N=
6 E = (1.0 F)
E = (0.5 F) ep =+
E2+E2'}
r N
1 epr = + (1.00F)2.
(0.5 F)2
+
0.4564 F = epr 6
=
= + 0.00419 psia epr
=
Tempe ra t u re N = 30 E = 0.1 F E = 0.1 F eT = +
E2+E
~ 72-eT = +
(0.1 F)2 (0.1 F)2 0.0263 F = eT
~
+
-+
29 t = 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />
~
2 2
2 E
eT ISG = + 2100 2
"P + 2 FPF
+2 l
T, t
p p
2 2
2 2400 0.0774 psia, 1 0.00419 psia,
0.0263 R ISG, #
2 1
24 54.3 psia 5.43 psia 541.2 R _
ISG = + 0.024%/ day I SG < 0.25 La La - 0.159%/ day 1
i
47 APPENDIX 0 The following are the computations made to determine the ins t rument e rror of the instruments used during the IPCLRT. Also included is a reproduction of the computational procedures used during the IPCLRT.
Instrumentation Error Analysis (Final)
La = 0.635t/ day
.25 La = 0.159t/ day Pa = 54.3 psia T = 541.2 R Dew T = 56.4 F N=2 Pressure - Total Absolute Pressure E T T.WO2T(bT.T~ psia') -TO'1D9 ps ia
~
E = (.00001)(100 psia) = 0.001 psia E
+ E2 5
2 ep = +-
N p,
ep = +
(0.0109 ps_ia),
(0.001 psia)-
+
+ 0.00774 psia = ep 2
Water Vapor Pressure N=6 E = (1.0 F)
E = (0.5 F)
'E2
, g2 ' i "Pr"1 N
epr " + -(1.0 F)2
+ (0.5 F)2'l
-+ 0.4564 F = epr
=
6
+ 0.00419 psia = epr
=
Temperature T = 30 E = 0.1 F E = 0.1 F
'E2 2'
3 g
eT = +
, 2--
2-N eT = + (0.1 F)2 + (0.1 F)2'i
+ + 0.0267 F = eT T
t = 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> e.p r, 2 3
IsG = + 2400 2 e P_
+2
+2 el t
p p
T y
2400
~
0.0774 psia 2 0.00419 psia 2 0.0267 R 2
+
+2 ISG = + y 2 SG7sTi
~5V3' p's i a 541.2 R isc = + 0.024t/ day Isc <0.25 La La = 0.1592/ day
y w
/
48 1
[
CALCULATIONS PERFORMED FOR IPCLRT DATA Data colj ected f rom pressure sensors, dew cells and RTD* s located in the containment are processed using the following calculations.
A.
Average Subvolume Temperature and Dewpoint.
T.=
I(all RTD's in the jth subvolume) c J
Number of RTD's in jth subvolume F
D.P..
=
I(all dew cells in Jth subvolume) c J
Number of dew cells in jth subvolume T
where T. =
average temperature of the jth subvolume J
D.P..
=
average deepoint of the jth subvolume J
B.
Average Primary Containment Temperature and Dewpoint.
EVO'~ (\\T. ) * (T. ) oF T=
2J:1 J
J yyo~t D.F. =
(\\T.i * (D.P..) oT
.J:1 J
J vhere T =
average containment temperature D.P. =
average containment devpoint VT. =
volume fraction of the jth subvolume J
hTOL =
number of subvolumes If T. :r undefined tnen J
T =
T.
f o r I < j <. (hTCL - 2 )
J J +,1 T =
T.
f o r, = hTOL - I Js T,=
estimate for j = hTOL s
If D.F..
is undefined J
D.P..=
D.P..+1 f o r 1 < j < (hTOL - 2 )
J J
D.P..
=
D.P..
f or j = hTOL - 1 J
J-1 D.P.,
=
estimate for j = NVOL J
i r-.
->m
,g
e 49 E,.
Measured Leak Rate.
L (TOTAL) = (V
- W.)
- 2400
,/ DAY BASE 2
m i
BASE L (POINT) = (V.
- V.)
- 2400 2-1 2
,A/DA1 o
1-1)
- W.1-1 (t.
t.
2
= containment dry air mass at t = 0 where k. BASE time from start of test at ith data set t.
=
i time from start of test at (i-1)th data set t.
=
1-1 V. = dry air mass at ith data set 2
V.
= dry air mass at (i-1)th data set 1-1 L (TOTAL)= measured leakage frora the start of test to ith data set two data sets L (POINT)= measured leahage between the last F.
Statistical Leak hate and Confidence Limit.
LIhT./J1 LEAST SQUARES TITTING TE IPCLRT DATA The method of "Least Squares" is a statistical procedure for finding the best fittinF repression line for a set of measured cata.
The criterion for the best iltting line to a set of data peints is that the sum of the squares of the cev2ations of tne observed points f rce the line must be a minimum.
Wher. this criterion is met, a unique best fitting line as obtained The value of the leah rate based on all cf the data points in the ILRT.
based cr. the represrlon is called tne statistically average leah rate.
Since it is assumed that the leak rate is constant during the testing per2od, a p]c. of tne measurec containment cr; air re. ass versus t:me veuld line vitt. a negative sicpe (assuming a non-zero idcel:3 yie;d a straignt conditions are ne leah rate).
ovvic.u. sly, sampling tecnniques and test ideal and consequently the measured values will deviate from the perfect stralpnt line estuation.
the calculated leah rate is obtained Based on this statistical process, from the equation:
V = At + B time t where V = contained dry air mass at
B = calculated dry air mass at time t = 0 A = calculated leak rate t = test duration B
nob 7
Dry Air Mass (lbs)
+
4 Test Duration (hrs)
The values for the Least Squares fit constants A and B are given by:
E) t) * (W.
A = { N
- I(t. ) * (W. ) - It.
- IV.} = I(t.
1 1
1 1
1 1
-2
{N
- I(t.)2 (It.)2}
I(t.
t) 1 1
1 o
{I(t. )^ 5 1(V. ) } - {I(t. ) * (W. ) }
A
- It. =
B = IV.
1 1
.1 1
1 1
o N
N
- I(t. )~ - (It.)'
1 1
where t = the average time for all data sets E = the average air mass for all data sets The second formulas are used in the process computer program to reduce round-off-error, by definition, leakage out of the containment is considered positive leahage; therefore, the statistica?)y average leak rate is giver by:
(-A) s- (2'00)
L =
s (welght 'm/ DAY) b STATISTICliL L3 : ETA 1STI$
In order to calculate the 95', confidence lir.its of the statistically average leak rate, the standard deviation cf the least squares slope and the student's 1 Distribution function are used as follows.
o o
1 N
- I(W.)' - (IW.)~
c={
- (
,,) - A'}
(N-2)
N
- I(t.)2 (It.)~
1 1
o ihn perforiaing these calculations on the process computcr. I(W. )~ and (IV, )~ bet e:ue so l a rt:e t i.. t they overilov.
Tt. s vo i d t h i.s probl.u.W.
i :. s.ottio t he-ii::ierei ce between L a n d i'.
.a_ _.
t i.ti d i.,r W..
SW. i.s 1
1 1
I
a 51 The single sided T-Distribution with 2 degrees of f reedrm is cpproxinated by the f ollowing f ormula from NES Handbook 91:
j T.E. = 1.646695 + 1.455393 + 1.975971 (N-2)
(N-2)
Tne upper confidence limit (UCL) is given by UCL = L + o * (TE)
- 2400 (weight *4/ DAY) s 3
O e
9 e
I l
l
52 IPCLRT DEFINITIONS (39.6 PSIG TEST PRESSURE)
Maximum Allowable Leakage Rate (LA)
L A = 0.635% of containment volume per day 3
(0.00635)(394638 f t /24 hrs
=
3
= 2506 ft /24 hrs 3
= 104.4 ft /hr.
= 104.4 (39.6 + 14.7) 385.7 SCFH
=
14.7 Maximum Allowable Operational Leakage Rate (L )
L = 75% of Maximum Allowable Leakage Rate t
= 0.75 (0.635%/ day)
= 0.476%/ day
= 289 3 SCFH Maximum Allowable Total Type "B" and "C" test (L))
L; = 0.6% of Maximum Allowable
= (0.60) (0.635%/ day)
= 0.381%/ day
= 231.4 SCFH
f l
53
)
APPENDIX E i
TYPE "A",
"B",
AND "C" TESTING SCHEDULE The primary containment leakage rates will be demonstrated at the following j
test schedule and will be determined in conformance with criteria specified in Appendix J of 10CFR50 using the methods and provisions of ANSI N45.4-1972:
a.
Three Type A Overall Integrated Containment Leakage Rate tests will be conducted at 40 f; 10 month intervals during shutdown at P, 39.6 psig, a
during each 10 year service period. The third test of each set will be conducted during the shutdown for the 10 year plant inservice inspection.
b.
If any periodic Type A test fails to meet.75 L, the test schedule for a
subsequent Type A tests will be reviewed and approved by the Commission, s
if two consecutive Type A tests fail to meet 75 La, a Type A test will be performed at least every 18 months until two consecutive Type A tests 75 L,, at which time the above test schedule will be resumed.
meet c.
The accuracy of each Type A test will be verified by a supplemental test which:
1.
Confirms the accuracy of the test by verifying that the difference between the supplemental data and the Type A test data is within 0.25 L
- a 2.
Has duration sufficient to establish accurately the change in leakage rate between the Type A test and the supplecental test.
3 Requires the quantity of gas injected into the containment or bled from the containnent during the supplemental test to be equivalent least 25 percent of the total measured leakage at P,, 39.6 psig.
to at d.
Type B and C tests will be conducted with gas at P, 39.6 psig*, at intervals no greater than 24 months except for tesis involving:
1.
Air locks, 2.
Main steam line isolation valves, 3
Valves pressurized with fluid from a seal system, and 4.
ECCS and RCIC containment isolation' valves in hydrostatically tested lines which penetrate the primary containment.
Air locks will be tested and demonstrated OPERABLE per Surveillance Require-e.
ment 4.6.1 3 of Technical Specifications.
f.
Main steam line isolation valves will be leak tested at.least once per 18 months.
g.
ECCS and RCIC containment isolation valves in hydrostatically tested lines which penetrate the primary con,tainment will be leak tested at least once per 18 months.
h.
The provisions of Technical Specification 4.0.2 are not applicable to 24 month or 40 f; 10 month surveillance intervals.
- Unless a hydraulic test is required.
__.