ML20064N424

From kanterella
Jump to navigation Jump to search
Primary Reactor Containment Integrated Leakage Rate Test, Final Rept
ML20064N424
Person / Time
Site: Susquehanna Talen Energy icon.png
Issue date: 08/31/1982
From:
BECHTEL GROUP, INC.
To:
Shared Package
ML18031A391 List:
References
NUDOCS 8209080353
Download: ML20064N424 (147)


Text

v)

SUSQUEHANNA STEAM ELECTRIC STATION PENNSYLVANIA POWER AND LIGHT C0!!?ANY BERWICK, PENNSYLVANIA REACTOR CONTAINMENT BUILDING INTEGRATED LEAKAGE RATE TEST UNIT 1 FINAL REPORT OLJ Bechtel Power Corporation May 1982 grn8eraa8%

P

_ TABLE OF CONTENTS 1

Section Page 1.

I!CRODUCTION 1-1 1.1 TEST IDENTIFICATION 1-1 1.2 PURPOSE OF ILRT AND BYPASS TEST l-1 T

1.3 GOVERNING DOCUMENTS 1-1 1.4 DRYWELL TO SUPPRESSION POOL BYPASS TEST l-2 2.

SUMMARY

2-1 2.1 ACCEPTANCE CRITERIA 2-1 2.2 CllRON0 LOGY OF MAIN EVENTS 2-1 2.3 LISTING OF CALCULATED LEAKAGE RATES 2-2 2.4 TEST EXCEPTIONS 2-2 i

2.5 CONTAINMENT INSPECTION 2-4 3.

DISCUSSION 3-1 3.1 PLANT AND CONT,AINMENT SYSTEMS 3-1 3.2 ILRT REQUIREMENTS 3-1 3.3 SYSTEM STATUS 3-1 3.4 TEST DESCRIPTION 3-2 3.5 TEST RESULTS 3-10 i

3.6 INSTRUMENTATION AND EQUIPMENT 3-13 3.7 COMPUTATIONAL TECHNIQUES - PROGRAM DESCRIPTION 3-14

4.0 CONCLUSION

S 4-1 i

t 1

O DH-160 11

... - -......-..... ~,...... -

_ _. ~. _. _

~..

1 Y

APPENDICES p

A.

Summary of Types B and C Test Results

^

r l-B.

Instrument Selection Guide C.

Sensor Location and Subvolume Definition D.

Verification of Stabilization:

}

E.

Printed Reports and Raw Data for Short Duration (8-Ilour) ILRT, Verificaton Test, and Bypass Test F.

Short Duration ILRT Plots and Verification Test Plots G.

ILRT Instrumentation H.

Report on Servicing and Calibration of the Integrated Leakage Rate Test System (ILRTS) i

~

I.

Bechtel ILRT Computer Program J.

(Left Blank) 1 i

4 i

f e

i t

i I

i.

I I

DH-160 iii j

i W

1.

INTRODUCTION v

1.1 TEST IDENTIFICATION The Reactor Containment Building Integrated Leakage Rate Test (ILRT) is a short duration (8-hour) preoperational containment test designed to verify that the actual containment leakage (Lam) is below site Technical Specifi-cations for maximum allowable leakage (La).

The drywell to suppression pool Bypass Test, which is part of the ILRT program and conducted subsequent to the ILRT, verifies that Bypass leakage meets FSAR acceptance criteria.

The ILRT and Bypass Test were performed at the Susquehanna Steam Electric Station Unit 1.

This unit is a boiling water reactor (BWR) enclosed within a GE Mark II steel lined containment. The containment is divided into two major compart-ments: the drywell containing the reactor and the suppression pool which serves as the major heat sink in case of a loss of coolant accident (LOCA).

Both the drywell and wetwell (suppression pool) were tested during the ILRT.

1.2 PURPOSE OF ILRT AND BYPASS TEST The purpose of the ILRT and Bypass Test is to comply with NRC acceptance criteria, regulatory guides and site Technical Specifications. These guides

("'N (10 CFR 50, Appendix J) specify acceptable test conditions, test frequency, (s,)

maximum allowable leakage, and valve lineup.

Additionally, the ILRT provides test data to verify that the containment leakage rate satisfies site Technical Specifications and all requirements for containment integrity necessary for fuel load and subsequent power operation. The Bypass Test provides test data to verify that FSAR commit-ments are met regarding an equivalent maximum allowable bypass area between the drywell and suppression pool.

1.3 GOVERNING DOCUMENTS l

All governing documents which provide design information, acceptance criteria, and recommended testing practice were used during the ILRT and Bypass Test.

Specifically, the FSAR provided data for Pa, La, drywell, suppression pool j

free air volume, and the bypass area. Preoperational Test Procedure P-59.2, Rev 2, Containment Integrated Leakage Rate Test, provided test direction and acceptance criteria for the ILRT. Procedure P-59.2 references BN-TOP-1, Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plants, for short duration ILRT acceptance criteria. ANSI /ANS 56.8-1981, Containment System Leakage Testing Require-ments, provided the necessary technical recommendations for instrument selection and calibration.

h DR-160 1-1

I r

j 4

1.4 DRYWELL TO SUPPRESSION POOL BYPASS TEST j

A successful drywell to suppression pool Bypass Test was conducted at 4.4 psig differential pressure. The test verified that the equivalent bypass area, as specified in the FSAR (Section 6.2.1.1.5.4, Analytical Re:.ults),

was met and no unexpected leakage paths were found. A detailed description

[

of the Bypass Test as well as volume weighting factors is supplied in j

Section 3.4.2, Te r Phases.

(

f I

r 1

i i

5 I

t T

9 t

i Y

4 i

l 1

I l

i 1

i i

I l

I 1

i i

DH-160 1-2 E

a b

.i

^

2.

SUMMARY

I

\\

]

2.1 ACCEPTANCE CRITERIA All acceptance criteria stated in P-59.2, Rev 2, were met upon successful completion of the ILRT and Bypass Test.

1 A successful short duration (8-hour) ILRT was conducted on May 23, 1982.

All acceptance criteria specified in BN-TOP-1 and ANSI /ANS 56.8-1981 were j

satisfied. Subsequent to reaching a test pressure of 46.2 psig, all thermal stabilization requirements were met within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.

ILRT data were recorded i

from 1200 to 2000 on May 23.

A 4-hour Verification Test was also conducted

]

from 2130 on May 23 to 0130 on May 24 with an induced leakage rate of 9.95 i

scfm (Li).

ILRT data verified that total containment leakage rate at Pa is below site Technical Specifications of 1.0 wt.%/ day.

Total Time calculations indicated a 95% upper confidence limit (UCL) of 0.379 wt.%/ day with a calculated leak-age rate of 0.287 wt.%/ day.

Calculated Mass Point indicated a 95% UCL of i

0.294 wt.%/ day with a calculated leakage rate of-0.287 wt.%/ day. Verifica-tion Test data for Total Time fell within the upper limit (1.403 wt.%/ day) l and the lower limit (0.903 wt.%/ day) with a calculated leakage rate of 1.034 wt.%/ day. Verification Test data for Mass Point fell within the i

upper limit (1.403 wt.%/ day) and the lower limit (0.903 wt.%/ day) with a calculated leakage rate of 1.052 wt.%/ day.

/

As required by P-59.2, Rev 2, a K factor was added to the Total Time calcu-j lations to account for increases in containment water inventory and excep-tions to the valve lineup. The value of the K factor (0.137 wt.%/ day) was added to the Total Time UCL yielding an adjusted Total Time 95% UCL of 0.516 wt.%/ day. This is within the 0.75 wt.%/ day (0.75 La) acceptance criteria.

A successful Bypass Test was completed on May 25, 1982. All acceptance criteria as.specified in P-59.2, Rev 2, were satisfied.

Specifically, a total bypass equivalent area of no more than.00926 ft2 is required to meet acceptance criteria.

A calculated bypass area of 0.01234 in2 (.0000857 2

ft ) was recorded which is within allowable limits.

I 2.2 CHRONOLOGY OF MAIN EVENTS l

Pressurization for the ILRT began at 1537 on May 22,1982. Containment pressurization was temporarily suspended at 1945 on May 22 to conduct a thorough search for leaks while at 10 psig. Pressurization resumed at 2338 on the same day.

A containment pressure of 61 psia was reached at 0532 on May 23 followed by a 4-hour temperature stabilization. To facilitate stabilization, c_ntainment lighting, fans, and chillers were turned off.

Temperature stabilization was completed at 1015 and the ILRT was started at 1200 on May 23.

A successful ILRT was completed at 2000 on May 23.

An l

induced flow of 9.95 scfm (0.865 wt%/ day) was started at 2016. A successful

- DH-160 2-1


,--en

,-w,

.,-es,e-m-,-.


m-,.m.n-

--e.-.-

,.-----,-,,-,a

,,,--,..,,,,,--,-,r-,_-,,,r,n

,,-,,,------,s,--,-,

2.2 CHRONOLOGY OF MAIN EVENTS (CONT'D)

(s_,/

4-hour verification test was performed from 2130 on May 23 to 013n on May 24.

A successful Bypass Test was conducted from 2045 on May 24 to 0045 on May 25.

(See page 2-3 for ILRT Pressure Cycle.)

i c

2.3 LISTING OF CALCULATED LEAKAGE RATES The following summary shows all test results recorded during the ILRT. All raw data from which these values were reduced are on file and exist as per-manent plant records.

Calculated Leakage Acceptance 95% UCL l

Test Method wt.%/ day Limits wt.%/ day wt.%/ day a.

ILRT Mass Point 0.287 0.75 0.294 Total Time 0.287 0.75 0.379 b.

Verification Mass Point 1.052 0.903-1.403 N/A Total Time 1.034 0.903-1.403 N/A

(

Calculated B ass 95% Confidence 2

Bypass Test Area (in )

Limits (in )_

'~'

Total Time 0.01234 0.00666-0.01801 r

j 2.4 TEST EXCEPTIONS i

l There were two exceptions to the normal performance of the ILRT. First, I

the NRC requested that the valve lineups on the control rod drive (CRD) system be modified to expose check valves on the charging line to contain-ment pressure and to vent downstream piping to atmospheric pressure. This was accomplished by opening CRD vent valves 46008 and 46017 (see P&ID M-146, Control Rod Drive).

The second exception consisted of systems whose isola-tion valves were not in the normal valve lineups and were exceptions to containment isolation.

These systems and their leakages are listed below:

Penetration System Leakage X61-A ILRT Leak Verification 0.9 + 16 scem X53 Chilled Water Supply 598.6][226seem l

X54 Chilled Water Return 1315.5 + 160 sccm X218 Instrument Gas 9.2 I 16 seem X93 TIP 130.9 I 16 seem i

~'

TOTAL = 2473.1 scem l

2-2 DH-160

i 6686 It RT PRESSURE vs. TIM 6 cOR.V8 70 ILR.T g

@ Gl PslA nW f

.U N

L 5

m V

E 4

to 40 E

b e

d 30 IOP6l6 HOLD PRYWESL 00 SYFA99 TEST y4/f7 GTART EPR PRE 550R12ATCit1 Pool IN' IO

{O 12 24 12 24 0

12 d4 36 M

60 7N MAY. E4-MAY 22 1

MAY 23 Q

TIMS Q0UR-)

Q

2.4 TEST EXCEPTIONS (CONT'D)

In addition to the above two exceptions, an increase of 3/8-in. in suppres-sion pool water level was observed. This reflects an equivalent leakage of.

0.126 wt.%/ day. The previously mentioned leakages were used to calculate a K factor of 0.137.wt.%/ day. The adjusted Total Time 95% UCL plus K factor is 0.516 wt.%/ day (0.379 + 0.137).

2.5 CONTAINMENT IN9PECTION As required by P-5 f.2, Rev 2, a containment inspection was performed prior to the ILRT. This inspection included a thorough walkdown of the drywell and suppression pool, inspection of liner plate, and verification that the lower diaphram containment liner was vented to prevent damage to the dia-phram during depressurization.

Inspection results indicated that the liner was intact and the containment was ready for the ILRT.

3 l

DH-160 2-4

__. _~

O 3.

DISCUSSION U

j 3.1 PLANT AND CONTAINMENT SYSTEMS l

The containment is built to withstand an internal design pressure of 53.0 psig at a maximum temperature of 340*F in the drywell and 220*F in the suppression pool. A steel lined drywell and suppression pool with' free air volumes of 239,600 ft3 and 159,130 f t3 (low water level) respectively pro-vide the open volume and heat sink required to effectively contain and condense accident steam. Eighty-seven downcomers provide a defined pathway to direct accident steam from the drywell to the condensing water of the suppression pool.

Postulated accident drywell pressure of up to 45 psig resulting from a recirculation line break and accident drywell temperature of 290.9'F are within design parameters of the containment.

1 3.2 ILRT REQUIREMENTS i

i ILRT requirements for acceptable test conditions are delineated in the FSAR, and federal regulations.

The suppression pool level was adjusted in order that maximum free air

]

volume for the drywell and suppression pool, as specified in the FSAR, satisfy test condition requirements. Those systems which remain water filled during the ILRT were also specified in the FSAR.

Appendix J of 10 CFR 50 specifies those venting and draining requirements necessary to expose isolation valve seats to ILRT pressure. Appendix J also directs plant personnel to close isolation valves in a normal manner, i.e., without excessive exercising of the valve operators or forcing valve

{

closure.

l Completion of all local leakage rate tests is required, by procedure, prior j

to pressurization of the containment. Types B and C tests were completed prior to pressurization and satisfied the.6 La criteria required by 10 i

CFR 50, Appendix J.

A summary of test results is included in Appendix A.

l P-59.2, Rev 2, BN-TOP-1, and ANSI 56.8-1981 specify acceptance criteria re-l quirements for data trends, minimal number of sensors, Instrument Selection Guide (see Appendix B for Instrument Selection Guide caculation), and minimal number'of data points.

Appendix I ~ to Standard Review Plan 6.2.1.1.C, Containment Systems Branch Steam Bypass for Mark II Containments, was used to revise FSAR Bypass Area l

Test acceptance criteria.

3.3 SYSTEM STATUS l

The valve lineup was arranged in accoAnce with system status. This system status satisfied the requirements of the FSAR; 10 CFR 50, Appendix J; and site Technical Specifications. Systems that are normally filled with water DH-160 3-1

nl 1

3.3 SYSTEM STATUS (CONT'D)

G/

and designed to operate under post-LOCA conditions were not purposely vented to the containment atmosphere or to the outside atmosphere but remain water filled during the Type A Test. Although the piping in these sytems are not drained and vented, venting to the primary containment atmosphere does occur since the reactor vessel is vented to the primary containment atmosphere.

This is also true for systems having penetrations which are open to the suppression pool. These normally water filled systems are: Reactor Core Isolation Cooling; Residual Feat Removal; Core Spray; and High Pressure Coola nt Injection.

Systems not listed above but included in Section 2.4, Test Exceptions, were not vented as required by the FSAR.

These systems and their associated local leakage rate test results were added to La as required by 10 CFR 50, Appendix J.

The CRD system was vented so that full ILRT pressure (Pa) was applied against the 185 check valves in the CRD charging lines and down stream vent valves opened to provide a leakage path to the atmosphere. During the ILRT, 17 of these check valves were found to be leaking.

During the ILRT, both the containment ventilation system and the cold water chillers were turned off to prevent any pertubations in the containment atmosphere which might affect leakage rate data.

D)

G 3.4 TEST DESCRIPTION 3.4.1 Pressurization System The containment was pressurized by three 1200 scfm oil-free diesel-driven compressors,. Outlet air from the compressors was first cooled by a single pass water cooled heat exchanger. Moisture was then removed by a refrige-ration unit downstream of the moisture separator. The dry air was pumped into the containment at about 60*F.

The pressurization system also included a silencer used during depressurization. The silencer, pressurization skid, and containment were separated by isolation valves HV05916C, HVv5916A, and HV05916B as indicated on P&ID M-159, Primary Containment Leakage Rate Testing (ILRT and LLRT).

l l

3.4.2 Test Phases The ILRT program was divided into 10 phases:

initial pressurization to 10 psig; leak search period during 10 lb hold; continued pressurization to Pa; thermal stabilization period; 8-hour ILRT data taking period; induced flow

)

stabilization period; Verification Test; depressurization to Bypass Test pressure; bypass data taking period; final depressurization to atmospheric pressure; and termination of the ILRT program.

Prior to pressurization, level readings were taken for reactor vessel, sup-

/N pression pool, drywell floor drain sumps, and drywell equipment drain tank.

0 l

DH-160 3-2

h 3.4.2 Test Phases (Cont'd) a The first phase pressurization to 10 psig - occurred at a rate of approxi-mately 4 psig per hour. This phase lasted for 3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> with a 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> delay when a compressor hose coupling failed at 19.9 psia. Subsequent to comple-tion of repairs, preasurization resumed and containment pressure reached 10 psig i hour later. During this phase, drywell cooling fan IV414A tripped off line at 20 psia.

The second phase of the ILRT program began when the containmnt reached 10 psig. Leak search teams with preassigned search areas were dispatched to detect any leakage from the primary containnent. Any leaks detected were documented in the test director's log book and pressurization was resumed.

The most notable leak discovered at this time was coming from the CRD vent.

The detected leakage rate measured 3750 ml/ min (at 10 psig containment pressure) and reflected the leakage from 17 check valves on the individual CRD charging lines. To reduce loss of water inventory from the reactor vessel, these vent valves were closed and reopened when containment pres-sure reached Pa.

The third phase of the ILRT program pressurization to Pa - occurred at a higher pressurization rate of 5.5 psi per hour. At 44.3 psia, fan IV414A tripped again on thermal overload. The fan was reset 15 minutes after trip and continued to run for an additional I hour and 45 minutes until fan current readings were taken and the fans were turned off.

The fourth phase of the ILRT program consisted of containment air thermal stabilization. During this period, all drywell fans and chillers were turned off. All stabilization criteria of both BN-TOP-1 and ANSI /ANS 56.8-1981 were satisfied. Shortly before the end of stabilization period, CRD charging header was vented.

Subsequent to venting these valves, a flow j

of 3700 ml/25 sec (148 ml/sec) was noted. Containment thermal stabilization was terminated 15 minutes later.

Subsequent to completing stabilization, preparations began for a 8-hour short duration ILRT.

The fifth phase - ILRT data taking period - began after completion of stabi-lization.

Suppression pool and reactor water levels were checked. The i

computer containment leakage rate program was loaded. All final prepara-l tions and procedural prerequisites were completed prior to data taking.

Subsequent to beginning the data taking for the ILRT, leak search teams continued looking for signs of escaping air or water from the primary con-tainment. Leakage through the CRD vents continued at 4000 ml/28 see (143 ml/sec) and an increase of 3/8-in. in suppression pool water level over 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> (equivalent to 0.126 wt.%/ day) was recorded. All other leakage paths discovered were noted in the test director's log during this period. At the end of the 8-hour period, ILRT data satisfied all acceptance criteria l

of BN-TOP-1 and ANSI /ANS 56.8-1981.

As required by P-59.2, Rev 2, the K factor was calculated (see Section 3.5.4) and the Verification Test period began.

See Section 2.3 and Appendix E for ILRT Summary Data.

The sixth and seventh phases of the ILRT program occurred during verifica-O tion. During these phases, a 9.95 scfm (0.865 wt.%/ day) flow was induced V

to verify proper ILRT instrument performance.

Induced flow and containment DH-160 3-3 3

3.4.2 Test Phases (Cont'd) fs L

)

atmosphere were allowed to stabilize during phase six. During phase seven, verification test data were recorded and analyzed for 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.

Subsequent i

to analysis the verification test data satisfied all acceptance criteria as defined in BN-TOP-1 and ANSl/ANS 56.8-1981.

See Section 2.3 and Appendix E for Verification Summary data.

The eighth phase of the ILRT program was depressurization f rom Pa to Bypass Test pressure. No restraint was placed on the depressurization rate since all vent plugs h,d been removed f rom the drywell floor diaphram steel liner.

Initial depressurization occurred at a rate of 7.5 psi /hr. The depressuri-zation occurred at a slower rate f rom 40 psia to 35 psia (5 psia /hr). At i

19 psia drywell pressure, HV15722 was closed to isolate the drywell from the suppression pool. Tha suppression pool was allowed to depressurize for i

an additional 3-1/2 hours until 14.6 psia was reached.

Once this occurred, the suppression pool was isolated by closing HV15725 and HV15721. The differential pressure between the drywell and the suppression pool was recorded at 4.4 psi.

5 The ninth phase of the ILRT program was the performance of the Bypass Test.

Since Bypass Area Test data were entered and reduced by the GE computer, information was hand entered on the portable terminal. Prior to beginning the Bypass Test, new volume fractions (see below) were calculated for the drywell and suppression pool. Af ter the computer program was updated, raw data were entered and equivalent bypass area calculated after 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> of data collection.

Drywell Volume Fractions Suppression Pool Volume Fractions Volume Volume Sensor Fraction Sensor Fraction RTD 7 0.077 RTD 1 0.189 RTD 8 0.077 RTD 2 0.189 RTD 9 0.077 RTD 3 0.189 RTD 10 0.077 RTD 4 0.055 RTD 11 0.036 RTD 5 0.189 RTD 12 0.068 RTD 6 0.189 RTD 13 0.068 Dewcell 1 0.250 RTD 14 0.068 Dewcell 2 0.250 l

RTD 15 0.068 Dewcell 3 0.230 l

RTD 16 0.056 Dewcell 4 0.250 RTD 17 0.056 f

RTD 18 0.056 RTD 19 0.056 i

RTD 20 0.056 t

RTD 21 0.023 p

RTD 22 0.025 RTD 23 0.027 RTD 24 0.029 Dewcell 5 0.346

~.

Dewcell 6 0.273

\\~/

Dewcell 7 0.163 j

Deweell 8 0.163 Dewcell 9 0.055 i

i DH-160 3-4

t 3.4.2 Test Phases (Cont'd)

O The tenth and final phase of the ILRT program was depressurization of the drywell and suppression pool to atmospheric pressure.

(See page 2-3 for ILRT Pressure Cycle.)

l 3.4.3 Instrumentation, Data, and Calculations ILRT test data were gathered through sensors which were placed within the containment and a data acquisition system (see page 3-6).

The data acquisi-tion system received these inputs and fed them into a mini-computer which reduced the raw data to containment leakage.

l 3.4.3.1 Instrumentation l

ILRT instrumentation was chosen for its stability and dependability.

In-strumentation used during the ILRT satisfied all Instrument Selection Guide requirements for a short duration test (see Appendix B, Instrument Selection l

Guide).

The instrumentation listed below performed satisfactorily during the test. High suppression pool moisture conditions, however, did require -

i some adjustment during the later part of the Bypass Test.

a.

Absolute Pressure (2 channels)

Mensor Quartz Manometer, Model No. 10100-001 PIT-05913 Capsule S/N 2699; gage S/N 1184 O

PIT-05914 (spare) Capsule S/N 1920; gage.S/N 1182 Range:

0-100 psia Accuracy:

1 0.015% reading l

Sensitivity:

1 0.001% full scale Repeatability:

1 0.0005% full scale Resolution:

0.001 psia Calibration Date: April 1982 b.

Drybulb Temperature RTD (24 sensors)

Rosemount Resistance Temperature Detector Model No. 786517 Element:

Platinum Resistance:

Ro = 100 ohms @ 32*F Temperature Range:

60*F to 120*F Accuracy:

1 0.5'F Sensitivity:

1 0.02*F Repeatability:

0.00l*F I

Resolution:

0.001*F l

Calibration Date:

April 1982 l

i I

I i

DH-160 3-5

O O

O I

.i l

ILRT DATA ACQUISITION SYSTEM 4

CONTAINMENT PENETRATION l

l i

l MANUAL l

l l

SCAN l

1 CONTROLLER l

l BUFFER l

I

. MANUAL MANUAL 24 RTD'S IGNAL C

SCANNER

[

DISPLAY l

t Y

l l

l e

THERMAL MASS l

90EWP0lNT I

/ DEWPOINT [

AUTO SCANNER l

FLOW ET R l

SENSORS l

fCONTROLLERf g

l l

l l

l l

FLOW PRESSURE l

PRECISION XDUCER l

DAiALOGGER O-75 m G l

l l

TR NS ER IN UT l

1 l

l THERMAL MASS l

l l

PRECISION FLOW METER l

l O-15 SCFM l

PRESSURE g

TRANSMITTER l

2 l

FLOW PRESSURE l

XDUCER l

l O-75 PSIG ILRT l

LEAK VERIFICATION CA8INET l

CABINET L______

_J

3.4.3.1 Instrumentation (Cont'd)

Dewpoint Temperature (9 sensors).

c.

i f

EG&G Inc., Model No. 660 Dewpoint Hygrometer i

r Accuracy:

+ 0.76*F i

sensitivity:

1 0.2*F Repeatability:

0.008'F Resolution:

0.00l*F from 32*F to 120*F Calibration Date:

April 1982 4

]

i l

d.

Verification Flow Device (1 channel)

Volumetrics Thermal Mass Flow Meter, TSI Model No. 2013, S/N 1578 t

Range:

32*F to 120*F p

Accuracy:

1 1.0% full scale j

i Sensitivity:

1 0.4% full scale j

Repeatability: 1 0.01 scfm i

Resolution:

0.01 scfm I

i f

Rotometer (backup)

Accuracy:

11.0% full scale j,

Sensitivity:

1 1.0% full scale

[

j Repeatability: 1 0.04 scfm t

Resolution:

0.13 scfm i

The two flow measuring devices used for the verification portion of the ILRT were piped in series to provide redundant instrumentation. The first t

sensor was a mass flow element with calibrated circuitry which served as

[

the primary element used for the Verification Test. The second sensor was i

a rotometer (0-10 sefs, Brooks Model 500-9;10A3500, Serial No. 663) which I

was used solely as a backup.

(

5 i

L 3.4.3.2 Sensor Location and Volume Fraction (see Table 1)

{

A mathematical model of the containment was developed using elevation and

{

l plan view construction drawings to define containment subvolume boundaries.

t Subsequent to subvolume boundary definition, volume fractions were assigned i

l to each subvolume in the drywell and suppression pool.

Sensors were then I

placed as near to the centroid of each subvolume as possible to detect i

changes-in containment atmospheric conditions. Table 1 indicates sensor l

location relative to volume fraction assignment, while the table in Appen-I dix C provides boundary definitions for each subvolume.

Since the ILRT was I

performed with all ventilation off, sensors were also placed with conside-rations given to air stratification and slight thermal updraf ts caused by natural convection.

This was especially true for those sensors in the sup-pression pool where large open vertical spaces existed.

l Sensor placement which considered the three criteria of nearness to sub-volume centroid, air stratification, and natural convection occurring in large open areas provided stable and accurate representation of containment 6

atmospheric conditions during the ILRT. Sensors placed in accordance to i

l the above considerations and operating without the disturbance of contain-ment ventilation or chiller operation yielded highly reliable short duration test data.

t i

l DH-160 3-7 i

f l

TABLE 1 CONTAINMENT TEMPERATURE AND DEWPOINT SENSOR LOCATION AND VOLUME FRACTIONS (ILRT)

Containment Elevation Azimuth Distance 'from Volume RTD Instrument No.

(ft)

(degrees)

Center (ft)

Fraction J-Box 1

TE05901A 690 002 32 0.074 TB0701 2

TE05901B 675 060 28 0.074 TB0695 3

TE05901C 690 120 32 0.074 TB0696 4

TE05901D 675 180 5

0.022 TB0702 5

TE05901E 675 250 32 0.074 TB0697 6

TE05901F 690 300 32 0.074 TB0698 7

TE05902A 709 013 29 0.047 TB0691 8

TE05902B 711 085 22 0.047 TB0600 9

TE05902C 713 180 31 0.047 TB0685 10 TE05902D 712 290 30 0.047 TB0694 11 TE05902E 712 0

2 0.022 TB0540 12 TE05903A 727 350 26 0.041 TB0693 13 TE05903B 725 90 25 0.042 TB0706 14 TE05903C 728 170 25 0.041 TB0689 15 TE05903D 727 280 26 0.042 TB0690 16 TE05904A 747 020 24 0.034 TB0686 0

17 TE05904B 746 165 27 0.034 TB0687 18 TE05904C 748 250 12 2 0.034 TB0699 19 TE05905A 775 210 17 0.034 TB0692 20 TE05905B 775 010 18 0.034 TB0684 21 TE05906A 784 270 20 0.014 TB0705 22 TE05906B 785 100 20 0.015 TB0728 23 TE05907A 799 090 8

0.016 TB0683 24 TE05907B 798 270 8

0.017 TB0727 Containment j

t Elevation Azimuth Distance from Volume

[

ME Instrument No.

(ft)

(degrees)

Center (ft)

Fraction J-Box 1

ME05901A 690 060 32 0.098 TB0695 l

2 ME05901B 690 240 32 0.098 TB0697 3

ME05901C 690 120 32 0.098 TB0696 4

ME05901D 690 300 32 0.099 TB0698 5

ME05902A 712 290 30 0.210 TB0694 6

ME05903 728 350 26 0.166 TB0693 7

ME05904 748 250 22 0.099 TB0699 i

8 ME05905 756 180 19 0.099 TB0692 9

ME05906 799 090 8

0.33 TB0705 O

DH-160 3-8

3.4.3.2 Data System and Recording Intervals V

The Data Acquisition System (DAS) for the containment integrated leakage rate test, as described in FSAR Table 6.2-70, consisted basically of a multiplexer, scanner, programmer, and coupler capable of an automatic periodic scan mode which was programmed to scan all sensors every 15 minutes.

An extremely tight calibration band was maintained during calibration be-cause of the individual sensor signal conditioning cards of the DAS.

These cards (which had adjustable settings for zero and span) allowed for direct one-to-one readout of containment sensors. No calibration curves were required for RTD drybulb temperature or dewcell temperature. Data output from the DAS appeared in two forms:

a printed hard copy and LED visual display.

Fifteen minute data scans were chosen to provide frequent data inputs with-out accumulating excessive ILRT data. This satisfied all data requirements of BN-TOP-1 and ANSI /ANS 56.8-1981.

3.4.3.3 Computations Raw data from containment sensors enter directly into the dedicated PDP-ll computer from the DAS by means of the RS-232 board which provide a DAS to computer interface. The data are reduced by Mass Point and Total Time com-putational methods setup in a Fortran format (see Appendix I).

ILRT com-putations reduced the raw data at 15 minute intervals and two hard copies of the raw data were available subsequent to each scan.

One copy was printed on the DAS; the second copy was printed on the PDP-ll computer sV printer.

Both of these records have been maintained on site as permanent plant records.

Data reduction for the Bypass Test was performed by a portable terminal hooked into a GE main-frame computer by telephone modem. Raw data were typed into the terminal, reduced by the remote GE computer, and printed out on the terminal's self-contained line printer.

3.4.4 Significant Test Events The most significant event noted was the opening of CRD vent valves. These valves are normally not open when performing an ILRT on GE BWR containments.

l The reason for this is that during normal plant operation, CRD system pres-sure is much higher than reactor pressure.

Since the CRD pumps would nor-mally be operational during an accident situation, no leakage would occur outside the containment from the check valves in question.

During the ILRT, l

however, the test director ordered the vent valves opened. The rationale for opening these vents was that the section of piping which contains these check valves is not Q class or missile protected.

Should scram inlet valve l

XV126 be opened during an accident and a break occur between the CRD pumps and the charging water header check valves, these check valves would be the i

only means of containment isolation. To verify that no significant amount of leakage is passing through the CRD check valves, the downstream vent

(

valves on the scram discharge header, drive water header, and charging water header were opened af ter completing the Verification Test.

l DH-160 3-9 i

3.4.4 Significant Test Events (Cont'd)

[

The effect of opening the vents to allow leakage through the appropriate

\\s_s/

check valves was not measurable with ILRT instrumentation.

(See Section 3.5.4, Special Calculations.)

3.5 TEST RESULTS 4

3.5.1 Stabilization All stabilization criteria in BN-TOP-1 and ANSI /ANS 56.8-1981 were satis-fied prior to analyzing leakage rate data for the short duration ILRT.

Appendix D, Verification of Stabilization, provides data which verify that the rate of temperature change during the 4-hour stabilization period was within acceptable limits with data taken at 15 minute intervals. The tem-peratures used to calculate rate of temperatures change were the weighted average containment temperatures taken from the 15 minute scans. To aid containment stabilization, all ventilation fans, containment coolers, and lights were turned off once the pressure of Pa had been reached. All stabilization criteria were satisfied af ter a 4-hour period and the 8-hour ILRT data collection began.

3.5.2 Calculated + Penalty and Acceptance Leakage Rates The values for the acceptable leakage rate, per site Technical Specifica-tions, and calculated leakage rates were presented earlier in this report.

f Specific values assigned as penalties have been developed in Section 3.5.4,

[

Special Calculations.

Included in the calculation of the K factor is

(

equivalent leakage which reflects increases in containment water inventory

,,j and some local lerkage rate test results.

The equivalent leakage which comes from increases in sump levels and sup-i pression pool levels has been added to the calculated leakage rate as a penalty.

Increases in water inventory may mask real air leakage from the containment.

For this reason, it is conservative to calculate the equiva-lent change in containment air mass resulting from an increase in water inventory and add this value to calculated leakage rate. An accurate measurement in suppression pool level was taken by connecting a piece of clear plastic tubing between the upper and lower legs of one of the suppres-sion pool level instrumentation lines and noting the change in the hose water level. The change in the pool level (3/8 in.) was then used in the calculation of the K factor.

3.5.3 Verification Flow Subsequent to collecting 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> of leakage rate data and calculating con-tainment leakage, an induced flow was initiated to verify that ILRT instrumentation was working correctly. A flow equal to approximately La was induced after a stabilization period was completed. Verification flow data met all acceptance criteria of BN-TOP-1 and ANSI /ANS 56.8-1981. The induced flow rate and associated new calculated leakage rate as indicated in Section 2.3, Listing of Calculated Leakage Rates, were measured by a

['~')

mass flow meter with an in-line rotameter as backup.

Both instruments

(,/

were recently calibrated with standards traceable to the National Bureau of Standards (NBS).

DH-160 3-10

4 3.5.4 Special Calculations A

As mentioned in Section 3.4.4, Significant Test Events, selected vents on f) the CRD system were opened to allow leakage through check valves located V

on the charging water header, scram discharge header, and drive water header. The vents were opened after the completion of the Verification Test and additional test data recorded. Although the vent on the charging water header was opened throughout the entire test, special calculations were performed after the remainder of the valves were opened. The opening of the additional vents increased flow by one half gpm (equivalent to

.006 wt.%/ day.

It should be noted that measured containment leakage appeared lower af ter the vents were opened.

This leakage appears lower because the leakage was trending downward during the 8-hour ILRT (see Appendix E Trend Report).

The Lam recorded for that period when the vents were open reflects the leakage normally expected if the trend report were extrapolated to the time when the line was vented.

Although this data are not considered ideal, they do provide a reliable.

i indication that gross leakage was not caused by opening the vents.

The table below shows that the opening of these additional vents did not significantly affeet ILRT results.

ILRT Results from ILRT Results with Methods Vents Shut wt.%/ day Vents Open wt.%/ day h

Mass Point Lam

= 0.287 Lam

= 0.243 95% UCL = 0.294 95% UCL = 0.260 Total Time Lam

= 0.287 Lam

= 0.253 95% UCL = 0.375 95% UCL = 0.362 Special calculations were also performed to derive the K factor as men-tioned in Section 2.4, Test Exceptions. The K factor when expressed in algebraic form is written as follows:

)

K = (A + B) wt.%/ day where A = Total Type C leakage rate for penetrations not in normal ILRT lineup expressed in wt.%/ day B = Change in suppression pool water level (B ), + change in equipment 1

drain sump tank (B ) wt.%/ day 2

The calculation of A + B is as follows:

A1 = 2473.1 scem La = 1.000 wt.%/ day

/^

= 318435 seem iC DH-160 3-11 1

3.5.4 Special calculations (Cont'd)

OC/

1 A=b=

= 0.008 wt.%/ day La 318435 seem Change of suppression pool water level = 3/8 in. in 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> B1 3_ in. x 21 hr/ day x 445.59 cu ft/in. x long 8

8 hr 398,730 cu ft

= 0.126 wt.%/ day Change of equipment drain sump tank in 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br /> Volume of tank = 120 cu ft Percent change in volume = 14%

Total change = 0.14 x 120 = 16.8 cu ft in 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br /> B2 = 16.8 cu ft x 24 hr/ day x 100%

0.003 we.%/ day 30 hr 398,730 cu ft K = 0.137 wt.%/ day Adjusted Total Time 95% UCL = 0.379 + 0.1374

0.516 wt.%/ day <.75 La The sum of changes in suppression pool level, equipment drain tank level, and leakage for penetrations not in normal-ILRT lineup is equivalent con-t tainment leakage of 0.137 wt.%/ day (0.126 wt.%/ day + 0.003 wt.%/ day + 0.008 wt.%/ day).

The adjusted Total Time 95% UCL = 0.379 wt.%/ day + 0.137 wt.%/

day = 0.516 wt.%/ day.

Since the adjusted total cotitainment leakage is less than.75 La (0.516 < 0.750), Lam is within site Technical Specifications.

3.5.5 Printed Reports and Raw Data The printed reports and raw data for ILRT Total Time and Mass Poht are included in Appendix E.

These reports not only include final leakage rate i

test results but also all information necessary to satisfy BN-TOP-1 accep-tance criteria.

Specific information required by BN-TOP-1 ILRT acceptance criteria requires a calculated 95% UCL, trend report, and at least 20 data points taken at approximately equal intervals (no interval greater than 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />).

Appendix E also includes the printed reports and raw data for the Verifica-tion Test and Bypass Test.

All acceptance criteria required for these two ILRT program test phases were met and are documented on the appropriate printed reports.

O DH-160 3-12

~ =.

3.5.6 Plots The plots for containment air mass, temperature, pressure, and vapor pres-sure are provided in Appendix F.

These plots are furnished for both the 8-hour ILRT and the 4-hour Verification Test. The plots indicate contain-ment atmospheric conditions were uniform and stable throughout the ILRT and the Verification Test.

i 3.6 INSTRUMENTATION AND EQUIPMENT 3.6.1 Instrumentation Type, Make Model, and Number Specifications l

The ILRT instrumentation listed in Appendix G, ILRT Instrumentation, repre-sents state-of-the art containment leakage rate testing equipment.

Since this is an integrated system from sensor to display, the signal condition boards identification numbers have been listed. These boards allow the I&C Technician to " fit" the sensor curve in such a manner as to allow a one-to-one calibration.

Subsequent to adjusting the trimpots on these cards the DAS readout displayed the actual containment atmospheric conditions.

Addi-tional details regarding ILRT instrumentation, which are not provided in 10 CFR 50, Appendix J, can be found in FSAR Table 6.2-20.

i 3.6.2 Calibration i

The calibration of ILRT instrumentation met calibration recommendations of ANSI /ANS 56.8-1981, Section 4.3.1, Instrument,ation for Type A Tests.

Cali-i bration for instrumentation was performed, in part, by the National Bureau l

of Standards, Susquehanna I&C personnel, and ~the supplier of the instrumen-l tation system. The final report on the calibration is supplied in Appendix l

H, Report on Servicing and Calibration of the Integrated Leakage Rate Test System.

3.6.3 DAS/ Computer Raw sensor data were periodically scanned and fed directly through an RS-232 interface into a PDP-11 computer. The DAS, which performed 15 minute scans, scanned all sensor channels and produced a paper tape af ter each This paper. tape provided a hard copy of raw data and the time of scan.

each scan.

Since signal ccnditioning cards were adjusted to match the RTD and dewcell sensor characteristic curve, a one-to-one calibration was established between sensor and DAS output.

A detailed description of the computer and program is provided in Section 3.7, Computational Techniques - Program Description, and Appendix I, Bechtel ILRT Computer Program.

3.6.4 Instrument / Equipment S/N List All appropriate information on the instrumentation used during the ILRT is supplied in Appendix G, ILRT Instrumentation. The instrumentation supplied O

in this appendix meets the proper calibration period recommended by ANSI /ANS 56.8-1981 and all calibration data are retained as plant records at the site.

DH-160 3-13

_ _ _. _ _,, _ _ ~ _ _ _ _.. _ _ _ _., _ _, _.

^

I l

3.7 COMPUTATIONAL TECHNIQUES - PROGRAM DESCRIPTION j

The computational techniques and ILRT program description are provided in 4

Appendix I, Bechtel ILRT Computer Program. Appendix I is a description of the Total Time and Mass Plot calculation methods used during the ILRT.

l Although Mass Point was calculated along with Total Time, the Computational Techniques and Trend Reports associated with Total Time calculations and l

data reduction were used to satisfy BN-TOP-1 acceptance criteria for short duration testing.

i i

l I

I I

r I

t t

I l

O i

I i

r I,

5 t

i t

i I

I i

?

1 I

i i

l l

l i

i l

l l

DH-160 3-14 i

f i

5 - - _ _,.

__.~__,_ _.-_._ _-

4.0 CONCLUSION

S O

The short duration ILRT was a successful containment leakage rate test which reflected a high degree of preparation, a well-organized LLRT program, stable containment atmospheric conditions, and reliable instrumentation. All leakage rate penalities were documented and applied against Lam.

Test results verify that containment leakage is below site Technical Spccifications requirements and 10 CFR 50, Appendix J, requirements. This unit meets all acceptance criteria and can provide a reliable enclosure to support full power operation at rated levels.

O O

DH-160 4-1

APPENDIX A

SUMMARY

OF TYPES B AND C TEST RESULTS LOCAL LEAKAGE RATE TYPE B TESTS Leakage Rate LLRT Pneumatic Hydraulic Verified by Package Penetration Description (secm)

(cc/ min)

Name /Date 5B-1 X-1 Equipment access 3.5 1 16 N/A LCC 5/14/82 hatch 6B-1 X-2 Equipment access 477.5 1 162**

N/A LCC 5/21/82 hatch with person-nel lock 6B-2 X-2 Personnel lock N/A LCC 5/2 1/82 barrell 6B-3 X-2 Personnel lock inner N/A LCC 5/2 1/82 door 6B-4 X-2 Personnel lock outer N/A LCC 5/2 1/82 door 7B X-4 Drywell head access 1.4 1 16 N/A LCC 4/3 0/82 manhole 8B Drywell head 4.0 1 16 N/A LCC 5/1 4/82 10B X-6 CRD removal hatch 0 1 16 N/A LCC 5/1 4/82 13B X-35A*

TIP drive 3.8 1 23 N/A LCC 4/3 0/82 14B X-35C*

TIP drive 2.3 1 23 N/A LCC 4/3 0/82 16B X-35E*

TIP drive 3.0 1 23 N/A LCC 4/3 0/82 17B X-35F*

TIP drive 4.3 1 23 N/A LCC 4/3 0/82 2B X-100A Neutron monitoring 1.6 1 16 N/A LCC 4/3 0/82 4B X-100B Neutron monitoring Leakage included N/A LCC 4/3 0/82 in X-104B 2B X-100C Neutron monitoring Leakage included N/A LCC 4/3 0/82 in X-100A

Leakage rate listed is total penetration path leakage.

DH-160 A-1 l

1

1 3

APPENDIX A

SUMMARY

OF TYPES B AND C TEST RESULTS LOCAL LEAKAGE RATE TYPE B TESTS (CONT'D)

^

Leakage Rate Pneumatic Hydraulic Verified by LLRT l

Package Penetration Description (secm)

(cc/ min)

Name /Date 4B X-100D Neutron Leakage included N/A LCC 4/3 0/82 Monitoring in X-1043 3B X-101A M.V. power Leakage included N/A LCC 4/3 0/82 in X-101E t

1B X-101B M.V. power 13.7 + 16 N/A LCC 4/3 0/82 3B X-101C M.V. power Leakage included N/A LCC 4/30/82 i

in X-101E 1B X-101D M.V. power Leakage included N/A LCC 4/30/82 in X-101D 3B X-101E M.V. power 109.2 + 16 N/A LCC 4/30/82

()

IB X-101F M.V. power Leakage included N/A LCC 4/30/82 in X-101B l

3B X-102A Low level Leakage included N/A LCC 4/30/82 signal /

in X-102A temperature 1B X-102B Low level Leakage included N/A LCC 4/30/82 signal /

in X-101B temperature 2B X-103A Low level Leakage included N/A LCC 4/30/82 signal /

in X-100A i

tempe rature 4B X-103B Low level Leakage included N/A LCC 4/30/82 j

signal in X-104B

]

tempeature 2B X-104A RPIS Leakage included N/A LCC 4/30/82 i

in X-100A f

48 X-104B RPIS 9.5 + 16 N/A LCC 4/30/82 I

2B X-104C RPIS Leakage included N/A LCC 4/30/82

()

in X-100A

^~2 DH-160

.l ^

I y-m

--,c-ww-g---a---w

. -,,, =

...,-,p g

,-,pr--v+m--rm edvwyr *-- - -

1=---=a-es re---se

- - * - = -

---r-

--we-----e-w---* - - = ^ * * - - - - - -

APPENDIX A

SUMMARY

OF TYPES B AND C TEST RESULTS LOCAL LEAKAGE RATE TYPE B TESTS (CONT'p)

Leakage Rate LLRT Pneumatic Hydraulic Verified by Package Penetration Description (sccm)

(cc/ min)

Name /Date 4B X-104D RPIS Leakage included N/A LCC 4/30/82 in X-104B 3B X-105A Low voltage Leakage included N/A LCC 4/30/82 power in X-101E IB X-105B Low voltage Leakage included N/A LCC 4/30/82 power in X-101B 3B X-105C Low voltage Leakage included N/A LCC 4/30/82 power in X-101E IB X-105D Low voltage Leakage included N/A LCC 4/30/82 power IN X-101B O

3B X-106A Low voltage Leakage included N/A LCC 4/30/82 k/

control in X-101E IB X-106B Low voltage Leakage included N/A LCC 4/30/82 control in X-101B 3B X-106C Low voltage Leakage included N/A LCC 4/30/82

~

control in X-102A IB X-106D Low voltage Leakage included N/A LCC 4/30/82 control in X-101B IB X-107 Low voltage Leakage included N/A LCC 4/30/82 power in X-101B 3B X-108 Low voltage Leakage included N/A LCC 4/30/82 power in X-102A llB X-200A Access hatch 2.7 1 16 N/A LCC 4/30/82 12B X-200B Access hatch 0.8 1 16 N/A LCC 4/30/82 43 X-300 Low voltage Leakage included N/A LCC 4/30/82 control in X-104B 2B X-301 Low voltage Leakage included N/A LCC 4/30/82 C

control in X-100A Total Type B Leakage 639.8 i 1173 (secm)

A-3 DH-160

APPENDIX A

SUMMARY

OF TYPES B AND C TEST RESULTS LOCAL LEAKAGE RATE TYPE C TESTS Leakage Rate LLRT Pneumatic Hydraulic Verified by Packagn. Penetration Description (secm)

(cc/ min)

Name /Date 1C X-7A Main steam 2382.7 1 1600 N/A LCC 4/30/82

- t 2C X-7B Main steam 2843.7 1 1600 N/A LCC 4/30/82..

~

3C X-7C Main steam 503.5 1 161 N/A LCC 5/14/82 4C X-7D Main steam 1234.5 1 160 N/A LCC 4/30/82 SC X-8 Main steam 2.8 1 16 N/A LCC 4/30/82 line drain 6C X-9A Feedwater 3282.7 1 1600 N/A LCC 5/14/82 6C, 7C X-9B Feedwater 3 1 23 N/A LCC 4/30'/82

~

8C X-10 RCIC turbine 122.9 1 23 N/A LCC 5/14/82 steam 9C X-11 HPCI turbine 202 1 23 N/A LCC 5/i4/82 g

steam 10C X-12 RHR shutdown 3670 1 1600 N/A LCC 5/14/82

[.

supply 11C X-13A RHR shutdown 1663.3 1 160 N/A' LCC '5/14/82 return 12C X-13B RHR shutdown 2835 1 1600 N/A LCC 5/14/82 return

~

13C X-14 RWCU supply N/A 81.0 1 1.27 LCC 4/30/82 14C X-16A Core spray 14445 1 1600 N/A LCC 5/14/82 15C X-16B Core spray 1387 1 160 N/A LCC 5/14/8L 16C X-17 RPV head 3155 1 1600 N/A LCC 4/30/82 spray 17C X-19 Instrument 82 1 23 N/A LCC 4/30/82 O

gas DH-160 A-4 j

APPENDIX A

SUMMARY

OF TYPES B AND C TEST RESULTS LOCAL LEAKAGE RATE TYPE C TESTS (CONT'D)

Leakage Rate LLRT.

Pneumatic Hydraulic Verified by

_ Package Penetration Description (secm)

(cc/ min)

Name /Date 18C X-21 Instrument 2.7 1 27 N/A LCC 4/30/82

~

'gis X-23 Closed 6.2 + 16 N/A LCC 4/30/82 19C cooling water supply 20C X-24 Closed 6.2 i 16 N/A LCC 4/30/82 cooling water return 21C X-25, Purge supply 2053 1 1600 N/A LCC 4/30/82 201A 22C X-26 Purge. exhaust 398 i 161 N/A LCC 4/30/82 O

47C X-31B Mini purge to 44 1 23-N/A LCC 4/30/82 recirculate Pump.B 23 X-39A Containment 66.7123 N/A LCC 4/30/82 f.

spray 24C X-39B Containment 54 1 23 N/A LCC 4/30/82 spray 25C X-41 Instrument 29.9127 N/A LCC 4/30/82 gas l

26C X-42 Standby liquid' N/A 1.8 i.9 LCC 5/14/82

<a control am 28C X-53 Chilled 598.6 1 226 N/A LCC 4/30/82 water supply 29C X-54 Chilled water 1315.5 i 160 N/A LCC 4/30/82 return 30C X-55'7 Chilled water 95" 1 16 N/A LCC 4/30/82 jg supply u

A-5 DH-160 '

J

I APPEND 1X A qb

SUMMARY

OF TYPES B AND C TEST RESULTS LOCAL LEAKACE RATE TYPE C TESTS (CONT'D)

Leakage Rate LLRT Pneumatic Hydraulic Verified by Package Penetration Description (scem)

(cc/ min)

Name /Date 31C X-56 Chilled water 262.5 1 161 N/A LCC 4/30/82 return 32C X-60A 0xygen sample 217 1 160 N/A LCC 4/30/82 33C X-88A 0xygen sample 1.1 1 16 N/A LCC 4/30/82 44C X-88A 0xygen sample 0.9 1 16 N/A LCC 4/30/82 48C X-60A Mini purge to 0.0 1 16 N/A LCC 4/30/82 recirculate Pump A 36C.

X-61A Demineralized 1.2 1 16 N/A LCC 4/30/82 water O

27C X-61A ILRT Leak 0.9 1 16 N/A LCC 5/14/82 Verification i

37C X-72A Liquid radwaste 2090 1 1600 N/A LCC 4/30/82 38C X-72B Liquid radwaste 673.8 1 160 N/A LCC 4/30/82 39C X-80C 0xygen analyzer 1.2 1 16 N/A LCC 4/30/82 40C X-80C 0xygen analyzer 1.3 1 16 N/A LCC 4/30/82 41C X-80C 0xygen analyzer / 1010 1 160 N/A LCC 4/30/82 nitrogen supply 42C X-85A Chilled water 3263 1 1600 N/A LCC 4/30/82 to recirculate c

Pumps 43C X-85B Chilled water 449.5 + 160 N/A LCC 4/30/82 to recirculate i

Pumps 44C X-86A Chilled water 2.7 1 16 N/A LCC 4/30/82 to' recirculate O

Pumps A-6 DH-160

i i

i i

APPENDIX A

SUMMARY

OF TYPES B AND C TEST RESULTS l

LOCAL LEAKAGE RATE TYPE C TESTS (CONT'D) 1 i

Leakage Rate l

LLRT Pneumatic Hydraulic Verified by i

Package Penetration -Description (secm)-

(cc/ min)

Name /Date i

45C X-86B Chilled water 450.8 1 160 N/A LCC 4/30/82 i

to recirculate l

pumps 46C X-87 Instrument gas 302.5 1 161 N/A LCC 4/30/82 49C X-93 TIP instrument 53.7 1 23 N/A LCC 4/30/82 gas 50C X-202 Purge exhaust 350 1 161 N/A LCC 4/30/82 3

i 51C X-203A RHR pump suction N/A 91.8 i.7 LCC 4/30/82 l

f f

52C X-203B RHR pump suction N/A 43.2 i.9 LCC 4/30/82 l

I

?

53C Z-203C RHR pump suction N/A 0.0 i.9 LCC 4/30/82 54C X-203D RHR pump suction N/A 136.8 1 9 LCC 4/30/82 l

SSC X-204A RHR pump test 1297.0 1 161 N/A LCC 5/14/82 i

line J

56C X-204B RHR pump test 746.2 1 161 N/A

'LCC 5/14/82 i

line I

i i

I 55C X-205A Containment Leakage included N/A LCC 5/14'/82

{

j spra in X-204A

{

56C X-205B Containment Leakage included N/A LCC 5/14/82 spray in X-204B l

57C X-206A Core spray pump N/A 9 i.9 LCC 4/30/82-i suction i

58C X-206B Core spray pump N/A 60 +.9 LCC 4/30/82 suction 59C X-207A Core spray pump N/A 60 1 9 LCC 4/30/82 l

test l

60C X-207B Core spray pump N/A 9 +.9 LCC 4/30/82 test i

DH-160 A-7 l

APPENDIX A

SUMMARY

OF TYPES B AND C TEST RESULTS LOCAL LEAKAGE RATE TYPE C TESTS (CONT'D)

Leakage Rate LLRT Pneumatic Hydraulic Verified by Package Penetration Description (secm)

(cc/ min)

Name /Date 61C X-2088 Core spray pump N/A 0.0 i.9 LCC 4/30/82 recirculate 62C X-208B Core spray pump N/A 6.3 i.9 LCC 5/14/82 recirculate 63C X-209 HPCI pump suction N/A 27 i.9 LCC 5/14/82 64C X-210 HPCI turbine N/A 6.3 i 1.27 LCC 5/14/82 exhaust 65C X-211 HPCI pump N/A 9.0 1 1.27 LCC 4/30/82 recirculate 66C X-214 RCIC pump suction N/A 10.8 1 1.27 LCC 5/14/82 2

\\

t 67C X-215 RCIC turbine N/A 0.0 i 1.27 LCC 4/30/82 exhaust 68C X-216 RCIC N/A 14.4 1 1.27 LCC 4/30/82 L

69C X-217 RCIC vacuum N/A 0.0 i.9 LCC 4/30/82 l

pump discharge 70C X-218 Instrument gas 9.2 1 16 N/A LCC 5/14/82 71C X-221A 0xygen analyzer 3.3 1 23 N/A LCC 4/30/82 72C X-221B 0xygen analyzer 4.6 1 23 N/A LCC 4/30/82 73C X-226A RHR recirculate N/A 0.0 1 1.27 LCC 5/14/82 74C X-226B RHR recirculate N/A 1.8 i 1.27 LCC 4/30/82 75C X-238A 0xygen analyzer 5 1 23 N/A LCC 4/30/82 i

76C X-238B 0xygen analyzer /

3.8 1 23 N/A LCC 4/30/82 l

nitrogen / supply 77C X-243 Suppression poci N/A 10.8 1 1.27 LCC 4/30/82 cleanup and drain v

DH-160 A-8

.-.__._._--_____m.

J 9

APPENDIX A j

SUMMARY

OF TYPES B AND C TEST RESULTS LOCAL LEAKAGE RATE TYPE C TESTS (CONT'D) i Leakage Rate LLRT Pneumatic Hydraulic Verified by Package Penetration Description (sccm)

(cc/ min)

Name /Date I

breaker

~' 1.61 N/A LCC 4/30/82 78C X-244 HPCl vaccum 220.6 1 i

l 79C X-245 RCIC vacuum 9.0 + 162 N/A LCC 4/30/82 breaker l

80C X-246A RHR relief valve 233.2 + 162 N/A LCC 4/30/82 i

discharge I

81C X-246B RHR relief valve 48.7 + 32 N/A LCC 4/30/82 l

discharge 4

)

8 e

5 I,

i i.

i 1

Total Type C Pnuematic Leakage 54202.1 + 5111.6 (secm)

Total Type C Hydraulic Leakage 579.0 + 9.5 (cc/ min)

DH-160 A-9

APPENDIX B Pd INSTRUMENT SELECTION CUIDE ISG CALCULATION SHEET (ANSI /ANS 56.8-1981)

Definitions E = Sensitivity Error

  • c = Repeatability Error for Measurement System, Excluding Sensor **

e = Measurement System Error N = Number of Sensors t = Time (Duration of ILRT)

T = Temperature P = Pressure Pressure Measurement System Error E = 1 001 psia ***

p e =1 [(Ep )2 + (c )2]l/2 p

p

[N ]l/2 p

c = 1 0005 psia

= 1 [(.001)2 + (.0005)2 1/2 p

e 3

p

[1]1/2 N

=1 p

e

= 1 1.1180 x 10-3 p,1,

~

p Temperature Measurement System Error ET = 1 0l*F (*R) t = 1 [(E ) + ICT) e T

N T

cT = 1 00l*F (*R)

T = 1 [(.01)2 + (.001)2]l/2 e

[24]1/2 NT = 24 T=

2.0514 x 10-3.R e

  • For the case were sensitivity errors are not equal, use the largest sensiti vity error.

A more accurate expression for the Instrument Selection Guide weights individual sensor sensitivity for their respective volume fractions i.e., ANSI assumes equal sensitivities and equal volume fractions.

    • If more than one electrical system is required for signal selection tioning, and amplification, the repeatabiilty error of each component is

, condi-additive.

      • If the sensitivity error for the pressure sensor is not available O

sensitigity error of the total pressure system (sensor to disp

, a conser-DH-160

}

B-1

O APPENDIX B INSTRUMENT SE12CTION CUIDE (CONT'D)

Water Vapor Pressure Measurement System Error At a dewpoint temperature of 70*F. the equivalent in water vapor presure change is calculated as shown in the sample calculation below titled " Partial Pressure."

E,(T) = 0.2

'F, 2.857 x 10-3 psia ep, = + [(E,)2 + (,py)2jl/2 p

p

[N,]l/2 p

cy,(T) =.008

'F, 1.143 x 10 psia ep, = 1 [(2.857x10-3)2 + (g,143,to-4)2 1/2 4

3

[9]i/2 4

e, = + 9.531 x 10 psia N,

=9 p

p Parital Pressure (from Steam Tables) Calculated from Predicted Containment Vessel ILRT Temperatures Sample Calculation Actual Calculation Assume dewpoint temperature is 70*F

(+) 2 *F+P,= 0.45664 psia and dewpoint sensor sensitivity.

(-) 2 *F+P, = 0.39950 psia E,(T), equal + 2.0*F.

p P4 = 0.5714 psi /4*F 70*F + 2*F+P, = 0.38844 paia

= 0.14285 psi /*F 70*F - 2*F+P, = 0.33889 psia AP, = 0.04955 psi for a

' for Eny (T) = 1 _*

Calculate Eoy sensor sensitivity Epy = [aP ] [Ep,(T))

y of + 2.0*F or E, = [.014285 psia /*F] [0.2*F] =

t AP,= 0.04955 psi E,= 2.857x10-3 psia 4*F p

= 0.01239 NOTE: Perform the same calculation to calcu-late sp, 4

2 f/in ggs

  • R = 534.5 *R taken from dry run ep, =.014285 x.008 = 1.143 x 10 DH-160 B-2 n-

APPENDIX B INSTRUMENT SELECTION CUIDE (CONT'D)

Interpolation from Steam Tables T

psia 77

.45919 76.83

.45664

.01499 x.83 = 0.45664 76

.44420 73

.40177 0.39950 73.83

.39950 0.05714 72

.38844 Calculation of Instrumentation Guide for an 8-Hour ILRT Let P = 45.0 psig + 14.7 = 59.7 PSIA, Let T = 59.7'F + 460 = 534.5'R ISG

= + 2400 (2 2 + 2 le_p 2+2 e

I1/2

-T (P)

}

T}

P t

ISG

= + 2400 [2 (1.1180x10-3)2 + 2 (9.531x10-4)2 + 2 (2.5014x10-3)2]l/2 8

59.7 59.7 534.5 ISG

=+ 0.010567 < 0.25 La ISG must satisfy the following acceptance criteria:

ISG < 0.25 La wt%/ day Yes - No l

l l

O DH-160 B-3

O O

O APPENDIX C SENSOR LOCATION AND SUBVOLUME DEFINITION (Suppression Pool) 1 Instrument Volume Elevation Elevation A

No.

Zone Fraction Volume

  • 1 2

ri r2 D

Degree Azi Az2 Number

(

TE5901A X/5

.074 30168 700.5 671 44' 14' 72*

324 036 1

TE5901B X/5

.074 30168 700.5 671 44' 14' 72*

036 108 2

TE5901C X/5

.074 30168 700.5 671 44' 14' 72*

108 180 3

TE5901D IX

.022 8892 700.5 671 10' 0'

360*

5' from center 4 TE5901E X/5

.074 30168 700.5 671 44' 14' 72*

180 252 5

TE5901F X/5

.074 30168 700.5 671 44' 14' 72*

252 324 6

?

ME5901A 1/4 of

.098 41892 700.5 671 44' 14' 90*

315 045 1

IX + X and 10' 0'

ME5901B 1/4 of

.098 41892 700.5 671 44' 14' 90*

135 225 2

IX + X and 10' 0'

ME5901C 1/4 of

.098 41892 700.5 671 44' 14' 90*

045 135 3

IX + X and 10' 0'

ME5901D 1/4 of

.099 41892 700.5 671 44' 14' 90*

225 315 4

IX + X and 10' 0'

1

  • Includes uniformly distributed factor for machinery and equipment Volume = Volume Fraction x (total volume + equipment deduction /section volume fraction)

DH-160

O O

O APPENDIX C SENSOR LOCATION AND SUBVOLUME DEFlNITION (Drywell) (Cont'd)

Instrument Volume Elevation Elevation Machine A

Azi Az2 I

No.

Zone Fraction 1**

2**

Factor ri r2 D

Degree **

Volume RTD i

TE05902A I

.047 719.08 702 43.4 39.2 29.75 89 316 045 19582 7

TE05902B I

.047 719.08 702 43.4 39.2 29.75 91 045 136 19582 8

TE05902C I

.047 719.08 702 43.4 39.2 29.75 89 136 224 19582 9

TE05920D I

.047 719.08 702 43.3 39.2 29.75 91 224 315 19582 10 TE05902E II

.022 729.8 704 0

20.75 360 0 360 8894 11 TE05903A III

.041 739 719.08 39.2 33.3 29.75 91 314 045 16900 12 TE05903B III

.042 739 719.08 39.2 33.3 29.75 89 046 135 17312 13 TE05923C III

.041 739 719.08 39.2 33.3 29.75 91 135 226 16900 14 TE05923D III

.042 739 719.08 39.2 33.3 29.75 89 226 315 17312 15 TE05904A IV + V.034 757.

739 33.3 28.0 29.75 118 326 84 13949 16 TE05904B IV + V.034 757.

739 33.3 28.0 29.75 121 84 205 13949 17 TE05904C IV + V.034 757.

739 33.3 28.0 29.75 121 205 326 13949 18 TE059054 IV + V.034 778.7 757 28.0 21.8 29.75-180 185 265 13949 19 TE05905B IV + V.034 778.75 757 28.0 21.8 29.75 180 265 85 13949 20

  • Includes machinery / equipment factor - uniformly distributed throughout
    • Boundaries of volumes are elevation 1, elevation 2, Azi, and Az2 DH-160

O O

O APPENDIX C SENSOR LOCATION AND SU3 VOLUME DEFINITION (Drywell) (Cont')

Instrument Volume Elevation Elevation A

No.

Zone Fraction Volume

  • 1 2

ri r2 D

Degree Azi Az2 Number

~

TE05906A VI

.014 5887 791.75 778.75 21.8 19.0 22.8 180 0

180 21 TE05906B VI

.015 6307 791.75 778.75 21.8 19.0 22.8 183 180 360 22

'l TE05907A VII

.016 6511 813 791.75 180 0

180 23 TE05907B VII

.017 6918 813 791.75 360 0

360 24 c

ME05902 I & II

.210 87280 729.8 704 360 0

360 5

ME05903 III

.166 68424 739 719.08 39.2 33.3 29.75 359 0

360 6

?

W ME05904 IV, V,

.099 40767 791.75 739 29.8 19.0 180 160 340 7

and VI ME05905 IV, V,

.099 40767 791.75 739 29.8 19.0 180 340 160 8

and VI ME05907 VIII

.033 13467 729.8 704 360 0

360 9

  • Includes uniformly distributed factor for machinery and equipment Volume = volume fraction x (total volume + equipment dedection/section volume fraction)

I I DH-160 t,

i APPENDIX D VERIFICATION OF STABILIZATION i

1 2

3 4

5 Average AT Over Average AT Over Time Temperature Last 4 Hours Last Hour 5=3-4 t

T T - T -4 T - T -1 t

t t

t 4

Hours

  • R
  • R/HR
  • R/HR
  • R/HR 0

528.87 1

527.91 2

528.86 3

529.43 4

529.78

+.228

+.35

.122 5

530.03

+.530

+.25

+.280 6

530.23

+.343

+.45

.107 7

8 9

10 (1) Column 5 < 0.5*R (ANSI -56.8 Criteria)

(2) l(t2-t4)/2l=l(528.86-529.78)/2l=0.46*F<1.0*R(BN-TOP-1 Criteria)

Based on the temperature stabilf zation criteria, the containment can be considered stabilized at the end of the fourth hour.

D-1 DH-160

~

APPENDIX E PRINTED REPORTS FOR SHORT DURATION (8-HOUR) ILRT SUSOUEHANNA SHORT DURATION ILRT TREND REPORT LEAKAGE RATES (WEIGHT PERCENT /DAV)

TIME AND DATE AT STAR.' OF TEST:

1200 0523 ELAPSED TIME:

8.00 HOURG

0. D/4 T A ELAPSED TOTAL-T IME t;NAC/SI S' NAL3-F C IN T A ML. ciI s
nmr3 ym
=' n r x -' DT=n

~ r ' m

  • L i="

n'*

' i n..

1>

.J. :.S 0.349

0. 3c:

v.339 O. 5/O 11 2.50 0.348 O.356 O.337 O.362 12 2.75 O.347 O.350 O.333 O.354 13 3.00 O.346 O.345 O.329 0.347 14 3.25 O.344 O.339 O.324 O.341 a

+.._.c

,J. s.,a:

t.,. w 4 a,

o.. a a-e

.c w. a.:

v. a m, U. a,s.a 0... a_m.e U.a04

,a_

.o a.<

17 6.UO o.34i O.329 O.319 O.330 i a._

,1..,..,

o..

,1, )

o..>.1.3,

o.. a- _ a, c.-

a 19, 4.,a_ v.

o.a,g v,. a e v,. a.9 u. a,_ c

.a v,

3 4.

a,_

  • >. aa i u. a,,, u.

o. a.,,.:.

v..O~

t 21 5.00 0.336 0.318 0.311 0.319 22 5.25 O.334 O.313 0.305 O.315 23 5.50 O.332 O.307 O.299 0.310 24 5.75 O.331 O. ~a0 4 0.297 O.307 25 6.00 0.329 0.299 0.292 0.302 26 6.25 O.327 O.296 O.289 O.299 27 6.50 0.326 0.292 0.285 0.295 29 6.75 0.325 0.292 0.287 0.297 2'i-7.00 O.324 O.291 O.287 0.296 30

/.25 O.324 O.292 0.290 O.299 31 7.50 0.323 0.290 O.289 O.297 32 7.75 O.322 0.289 O.288 0.296 33 8.00 O.321 0.287 O.287 O.294 e

7y y----

,yy-

,,i.,,.-------. - - - -,.

APPENDIX E PRINTED REPORTS FOR SHORT DURATION (8-HOUR) ILRT (CONT'D)

GUElUEHANilA SHORT DURATION ILRT LEAKAGE RATE (WEIGHT PERCENT / DAY)

TOTAL-TIME ANALYSIS TIME AND DATE AT START OF TEST:

1200 0523 ELAPSED TIME:

8.00 HOURS TIME TEMP.

FEE 53UFE MEASUPED

'R)

(FEIn)

LEN9

'E FATE i

1200 530.283 60.7368 1215 530.'331 60.7412 0.168 1230 530.376 60.7417 0.461 l

1245 530.414 60.7442 0.399 1300 530.456 60.7466 0.397 1315 530.491 60.7504 0.334 1330 530.327 60.7508 0.370 1345 530.570 60.7554 0.323 1400 530.606 60.7561 0.300 l

1415 530.642 60.7585 v.342 1430 530.675 60.7602 0.340 1445 530.709 60.7623 0.334 1500 530.742 60.7644 0.330 1515 530.779 60.7669 0.324 1530 530.806 60.7677 0.327 1545 530.838 60.7692 0.329 1600 530.864 60.7708 0.322 l

1615 530.891 60.7712 0.327 1630 530.922 60.7736 0.319 1645 530.949 60.7758 0.310 1700 530.975 60.7763 0.314 1 7'1 5 530.999 60.7790 0.299 1730 531.029 60.7817 0.290 1745 531.055 60.7813 0.301 1800 531.076 60.7842 0.286 1815 531.102 60.7847 0.290 1G30 531.130 60.7869 0.255 1 EA45 531.154 60.7836' O.310 1900 531.177 60.7859 0.301 1915 531.220 60.7864 0.314 1930 531.219 60.7881 0.295 t

1945 531.247 60.7993 0.295 2000 531.272 60.7911 0.291 0.321 MEAN OF MEASURED LEAKAGE RATES

=

1.000 f

MAXIMUM ALLOWAELE LEAKAGE RATE

=

75 '. OF MAXIMUM ALLOWAELE LEAKAGE RATE 0.750

=

THE UPPER 957. CONFIDENCE LIMIT 0.379

=

THE CALCULATED LEAKAGE RATE 0.207

=

l l

-,,,,,,,-,---w

APPENDDC E PRINTED REPORTS FOR SHORT DURATION (8-HOUR) ILRT (CONT'D)

SUSOUEHANNA SHORT DURATION ILRT LEAKAGE RATE (WEIGHT PERCENT / DAY)

MASS-POINT ANALYSIS TIME AND DATE AT START OF TEST:

1200 0523 ELAPSED TIME:

8.00 HOURS T I MI.

TEMP i: RESSURI OTf!!. AIF MASS LOSS TGT. AVG. i ASE

LpH, r ncs g r.g :-

<qs p:r/.

2.ug g.i- -

1200 530.283 60.7363 123268.

1215 530.331 60.7412 123266.

2.2 8.7 1230 530.376 60.7417 123256.

9.7 23.7 l

1245 530.414 60.7442 123253.

3.5 20.5 1300 530.456 60.7466 123248.

5.0 20.4 1313 530.491 60.7501 123247.

1.'

'7.2 1330 530.527 60.7508 123240.

7.O 19.O 1305 530.570 60.7554 123239.

0.6 16.6 b '. O 530.606 60.7561 123232.

6.9 18.0 1415 530.642 60.7585 123229.

3.6 17.6 1430 530.o75 60.7602 123225.

4.1 17.5 1445 530.709 60.7623 123221.

3.6 17.2 1500 530.742 60.7644 123217.

3.6 16.9 1515 530.779 60.7669 123214.

3.3 16.7 i

1530 530.806 60.7677 123210.

4.7 16.8 1545 530.838 60.7692 123205.

4.5

.16.9 1600 530.864 60.7708 123202.

2.8 16.5 1615 530.891 60.7712 123197.

5.3 16.8 1630 530.922 60.7736 123195.

2.4 16.4 t

l 1645 530.949 60.7758 123193.

1.7 15.9 1700 530.975

'O.7763 123188.

5.0 16.1 1715 530.999 60.7790 123188.

01 15.4 I

1730 531.028 60.7817 123186.

1.4 14.9 1745 531.055 60.7813 123179 6.9 13.5 1800 531.076 60 7842 123180.

-0.9 14.7 1815 531.102 60.7847 123175.

5.1 14.9 1930 531.130 60.7869 123173.

2.1 14.6

(

1845 531.154 60.7836 123161.

12.1 15.9 1900 531.177 60.7859 1231o0.

  • 0. 8 15.4 L913 531.220 60.7864 123151.

8.9 16.1 1930 531.219 60.7881 123155.

-3.5 15.1 1945 531.247 60.7893 123151.

3.9 15.1

[

2000 331.272 60.7911 123149.

2.3 15.0 i

0.399 j

FREE AIR VOLUME USED (MILLIONS OF CU. FT.)

=

r i

REGRESSION LINE 123264.

l INTERCEPT (LBM)

=

-14.7 l

(

SLOPE (LEM/HR)

=

t l

1.000 MAXIMUM ALLOWABLE LEAKAGE RAFE

=

0.750 75 ". OF MAXIHUM ALLOWABLE LEAKAGE RATE

=

0.294 THE UFPER 957. CONFIDEf!CE LIMIT L

=

0.287 I

THE CALCULATED LEAKAGE RATE

=

L l

'398730.

CONT. FREE AIR VOLUME AT TIf1E 2000

=

APPENDIX E PRINTED REPORTS FOR SHORT DURATION (8-HOUR) ILRT (CONT'D)

ILRT.DAT SUSQUEHANNA SHORT DURATION ILRT I

)

ALtdAX 1.000 VOL =

398730.00

=

\\V VRATET = 0.000 VRATEM = 0.000 VRATEP = 0.000 TIME DATE TEMP PRE 85URE VFRS VOLUME 1200 523 530.28265 60.736790 0.29150170 398730.

1215 525 b30.J30c9 eO./4122e

0. 2'i100V40 Sva700.

1230 523 530.37604 60.741657 0.29254058 398730.

1245 523 500.41370 60.744232 0.29291743 398730.

1000 523 530.'!5557 60.746555 0.29355025 393730.

1515 a 2.?

S30.49143 60.750126 L. 2 9 2 9 3 3 9 :-

3 7 8 7.: 3.

t.,..n. y c_ _,. -

.7..,-,-

_..y._,-,

1-...,.,

u;.m. y,-, w

_.. ~... _.

LC !

LJ

W.56989
60. Bd:6Z O.13 3 6v3 c 6 2 7 5. ~w.

1400 523 530.60577

60. ~75607 7 0.29486379 598/30.

1415 523 530.64227 60.758503 0.29440656 398730.

1430 523 530.67487 60.760193 0.29469043 398730.

l 1445 523 530.70874 60.762299 0.29455337 398730.

i 1500 523 530.74219 60.764366 0.29544026 398730.

i 1515 523 530.77831 60.766930 O.29484650 398730.

t 1530 523 530.80585 60.767712 0.29504654 398730.

l 1545 523 530.83832 60.769211 0.29551983 393730.

1600 323 530.86401 60.770782 0.29591849 398730.

i 1615 523 530.89087 60.771236 0.z9743046 398/33.

j 1630 523 530.92212 60.773628 0.29701269 398750.

t 1645 523 530.94879 60.775837 0.29677245 398730.

l 1700 523 530.97485 60.776344 0.29725018 398730.

[

}

1715 523 530.99854 60.778984 0.29756388 398730.

/,

i, 1730 523 531.02777 60.781651 0.29686862 398730.

\\/

1745 523 531.05487 60.781334 0.29915547 398730.

I 1800 523 531.07556 60.784172 0.29730105 398730.

1815 523 531.10199 60.784702 0.29873884 398730.

1330 523 531.13013 60.786880 0.29853201 398730.

(

1045 523 531.15369 60.783600 0.30181286 398730.

1900 523 531.17719 60.785881 0.30150235 398730.

l 1915 523 531.21979 60.786385 O.30198163 398730.

1930 523 531.21942 60.788082 0.30126810 398730.

i i

1945 523 531.24689 60.789280 0.30204388 393730.

l 2000 523 531.27240 60.791073 0.30025002 398730.

i F

k h

t n

(

)

i

/

i

%d l

6 b

L t

p O

I


.----n._.,-

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 1200 0523

~

?

\\

v

\\2 TEMP 1

537.00800

( 7734.)

=

TEMP 2=

536.96301

( 7729.)

TEMP 3=

537.29004

( 7762.)

5'38.14899

( 7848.)

TEMP 4

=

TEMP 5=

537.03101

( 7736.)

TEMP 6=

536.38403

( 7721.)

TEMP 7=

523.04602

( 6330.)

TEMP S=

525.35199

( 6568.)

TE T'.P 9=

325.54004

( c537.)

TEMP 10 =

525.57300

( 6590.'

526.39502

( 6673.)

TEMP 11

=

TEMP 12 =

525.79803

( 6613.)

TEMP 13 =

525.72101

( 6605.)

TEMP 14 =

525.82202

( 6615.)

TEMP 15 =

525.84503

( 6618.)

526.28400

( 6661.)

TEMP 16

=

TEMP 17 =

526.13403

( 6646.)

TEMP 18 =

525.97101

( 6630.)

TEMP 19 =

526.14302

( 6648.)

526.51001

( 6684.)

TEMP 20

=

526.38000

( 6671.)

TEMP 21

=

TEMP 22 =

526.65002

( 6698.)

TEMP 23 =

526.85101

( 6718.)

TEMP 24 =

526.59601

( 6693.)

/

\\

,\\Y PRES 1

61.020290 ( 61902.)

=

0.44745287

( 7622.)

VPRS 1

=

VPRS 2=

0.43949714

( 7568.)

VPRS 3=

0.43916222

( 7565.)

0.43349838

( 7527.)

V, PRS 4

=

VPRS 5=

0.20326716

( 5360.)'

I VPRS 6=

0.19224595

( 5208.)

VPRS 7=

0.18617944

( 5121.)

VPRS 8=

0.19426350

( 5236.)

VPRS 9=

0.19283471

( 5217.)

398730.

CTMT. FREE AIR VOL.

=

SUMMARY

OF CORRECTED DATA TIME = 1200 DATE = 0523 530.28265 TEMPERATURE (DEGREES R.)

=

60.736790 CORRECTED PRESSURE (PSIA)

=

0.29150170 VAPOR PRESSURE (PSIA)

=

s_

l CTMT. AIR MASS (LOM) 123269.

=

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 1215 0523 537.02502

( 7736.)

TEMP 1

=

TEMP 2=

536.94403

( 7727.)

TEMP 3=

537.26599

( 7760.)

IEMP 4=

538.15002

( 7848.)

TEMP 5=

536.99701

( 7733.)

TEMP 6=

536.33704

( 7717.)

325.14001

( 6547.)

TEt1P 7

=

525.45905

( 6579.)

TEMP S

=

T2M?

521.c3702

'. LST.

525.00602

(

d, _ O l. '

TEMP t r

526.4G804

( 6682.)

TEMP 11

=

TEMP 12 =

525.88403

( 6621.)

TEMP 13 =

525.80200

( 6613.)

TEMP 14 =

525.91003

( 6e24.)

TEMP 15 =

525.94000

( 6627.)

526.34802 t 6668.)

TEMP lo

=

TEMP 17 =

526.21906

( 6655.)

TEMP 18 =

326.05103

( 6638.)

TEMP 19 =

526.21704

( 6650.)

TEMP 20 =' 52a. 5970ti

( 6693.)

526.46704

( 6680.)

TEMP 21

=

TEMP 22 =

526.70801

( 6704.)

TEMP 23 =

527.00201

( 6733.)

TEMP 24 =

526.74304

( 6707.)

61.032227 ( 61906.)

PRES 1

=

0.44592395

( 7612.)

VPRS 1

=

VPRS 2=

0.43933696

( 7567.)

0.43866724

( 7562.)

VPRS 3

=

VPRS 4=

0.43083403

( 7508.)

VPRS 5=

0.20406111

( 5371.)

VPRS 6=

0.19528309

( 5251.)

VPRS 7=

0.17905025

( 5016.)

VPRS 8=

0.19422762

( 5236.)

VPRS 9=

0.19328707

( 5223.)

398730.

CTMT. FREE AIR VOL.

=

SUMMARY

OF CORRECTED DATA TIME = 1215 DATE = 0523 530.33069 TEMPERATURE (DEGREES R.)

=

60.741226 CORRECTED PRESSURE (PSIA)

=

0.29100040 VAFOR PRESSURE (PSIA)

=

CTMT. AIR MASS (LEM) 123266.

=

m

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 1230 0523 536.99902

( 7733.)

TEMP 1

=

TEMP 2=

536.89703

( 7723.)

TEMP 3=

537.23c99

( 7757.)

TEMP 4=

538.15503

( 7849.)

TEMP 5

536.96399

( 7729.)

TEMP 6=

536.82.604

( 7715.)

525.26105

( 6559.)

TEMP 7

=

TEMP R=

525.57300

( 6590.)

525.72504

( t606.)

TEMP o =

TEMF lu =

U23.78101

( 6i11.)

526.58600

( 6692.)

TEMP 11

=

TEMP 12 =

525.96399

( 6629.)

TEMP 13 =

525.90002

( 6623.)

TEMP 14 =

525.98505

( 6632.)

TEMP 15 =

326.03503

( a637.)

TEMP 16 =

526.42902

( 6676.)

TEMP 17 =

526.30304

( 6603.)

TEMP 18 =

526.153?9

( a648.)

526.27899

( 6661.)

TEMP !?

=

526.e7499

( 6700.)

TEMP 20

=

526.53601

( 6687.)

TEMP 21

=

TEMP 22 =

526.79303

( 6712.)

TEMP 23 =

527.15399

( 6748.)

TEMP 24 =

526.83801

( 6717.)

61.034199 ( 61908.)

FRES 1

=

0.44644853

( 7615.)

VPRS 1

=

VPRS 2=

0.44009423

( 7572.)

VPRS 3=

0.43809938

( 7538.)

VPRS 4=

0.42734927

( 7484.)

VPRS 5=

0.20465469

( 5379.)

VPRS 6=

0.20171638

( 5339.)

VPRS 7=

0.18431985

( 5095.)

VPRS 3=

0.19513230

( 5249.)

VPRS 9=

0.19363169

( 5228.)

393730.

CTMT. FREE AIR VOL.

=

SUMMARY

OF CORRECTED DATA TIME = 1230 DATE = 0523 500.37604 TEMFERATURE (DEGREES R.)

=

60.741657 CORRECTED PRESSURE (PSIA)

=

0.29254058 W,FCR PRESSURE (PSIA)

=

123256.

CTMT. AIR MASS (LSM)

=

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 1245 0523 r ~s.

i

\\

)

'~'

536.96704

( 7730.)

TEMP 1

=

TEMP 2=

536.86102

( 7719.)

TEMP 3=

537.21704

( 7755.)

TEMP 4=

538.11200

( 7844.)

TEMP 5=

536.91302

( 7724.)

TEMP 6=

336.77399

( 7710.)

525.34502

( 6568.)

TEne e =

TEMP 8 :=

525.63201

( 6601.)

525.01702

( d615.)

T Ci!I 7

=

325.37103 2620.

T EM.? 10

=

526.68701

( 6702.)

TEMP 11

=

TEMP 12 =

526.05304

( 6638.)

TEMP 13 =

525.96906

( 6630.)

TEMP 14 =

526.08002

( 6641.)

TEMP 15 =

526.11304

( 6644.)

326.49902

( 6683.)

TEMP 16

=

TEMP 17 =

326.38104

( 6671.)

T EP'P 18 w 526.21301

( 6634.)

326.36700

( 6670.)

TEt1P 19

=

TEMP 20 =

526.74805

( 6708.)

326.59705

( 6693.)

TEMP 21

=

TEMP 22 =

526.85400

( 6718.)

TEMP 23 =

527.30200

( 6763.)

TEMP 24 =

526.94904

( 6728.)

-m l

l

)

61.037151 ( 61911.)

PRES 1

=

0.44607377

( 7613.)

VPRS 1

=

VPRS 2=

0.43384197

( 7563.)

. VPRS 3=

0.43801194

( 7557.)

VPRS 4=

0.42915928

( 7497.'

VPRS 5=

0.20525573

( 5387.)

VPRS 6=

0.20009883

( 5317.)

l VPRS 7=

0.18838375

( 5153.)

VPRS 8=

0.19597240

( 5260.)

VPRS 9=

0.19430663

( 5237.)

398730.

CTMT. FREE AIR VOL.

=

SUMMARY

OF CORRECTED DATA TIME = 1245 DATE = 0523 530.41370 TEMPERATURE (DEGREES R.)

=

60.744232 CORRECTED PRESSURE (PSIA)

=

0.29291743 VAPOR PRESSURE (PSIA)

=

l s

[

t

\\Y CTMT. AIR MASS (LBM) 123253.

=

I l

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 1300 0523

~

7 s

(

i 536.91901

( 7725.)

TEMP 1

=

TEMP 2=

536.84503

( 7718.)

TEMP-3=

537.16901

( 7750.)

TEMP 4=

538.08502

( 7842.)

TEMP 5=

536.90704

( 7724.)

TEMP 6=

536.76001

( 7709.)

TEMP 7=

525.4c399

( 65/9.)

TEMP 8=

525.79102

( 6612.)

TEMP 9a b G.716v5

( askb./

TEMP 10 =

525.93600 C 6630.)

526.77399

( 6710.)

TEMP 11

=

TEMP 12 =

S26.12799

( 6646.)

TEMP 13 =

326.03900

( 6637.) -

TEMP 14 =

526.15900

( 6649.)

TEMP 15 =

526.19299

( 6652.)

TEMP 16 =

526.57001

( 6690.)

526.46503

( 6630.)

TEMP 17

=

TEMP 18 =

526.29102

( e6e2.)

526.42004

( 6675.)

TEMP 19

=

TEMP 20 =

526.S1604

( 6715.)

526.67804

( 6701.)

TEMP 21

=

TEMP 22 =

526.91400

( 6724.)

TEMP 23 =

527.44000

( 6777.)

527.04803

( 6738.)

TEMP 24

=

f,s

(

)

61.040108 ( $1914.)

\\#

PRES 1

=

0.44482970

( 7604.)

VPRS 1

=

VPRS 2=

0.43820125

( 7559.)

VPRS 3=

0.43773535

( 7556.)

VPRS 4=

0.42939976

( 7498.)

VPRS 5=

0.20594577

( 5396.)

VPRS 6=

0.20303717

( 5357.)

VPRS 7=

0.18952024

( 5169.)

VPRS 8=

0.19658983

( 5269.)

VPRS 9=

0.19487382

( 5245.)

398730.

CTMT. FREE AIR VOL.

=

SUMMARY

OF CORRECTED DATA TIME = 1300 DATE = 0523 TEMFERATURE (DEGREES R.)

530.45537

=

l CORRECTED PRESSURE (PSIA) 60.746555

=

0.29355425 VAPOR PRESSURE (PSIA)

=

7,i

/

t I

CTMT. AIR MASS (LEM) 123248.

=

l l

e

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D)

(^,

SUMMARY

Of MEASURED DATA AT 1315 0523

(

536.91199

( 7724.)

TEMP 1

=

TEMP 2=

536.81299

( 7714.)

TEMP 3=

537.14099

( 7747.)

TEMP-4=

538.06104

( 7839.)

TEMP 5=

536.85699

( 7719.)

TEMP 6=

536.71503

( 7705.)

TEMP 7=

525.55504

( 6589.)

TEMP 8=

525.83501

( 6621.)

t 6633.)

526.002?9 TEMP 9

=

TEMP 10 =

52c.05499

( 6639.)

526.85803

( 6719.)

TEMP 11

=

TEMP 12 =

526.20703

( 6654.)

TEMP 13 =

526.12402

( 6645.)

TEMP 14 =

526.22400

( 6655.)

TEMP 15 =

526.27399

( 6660.)

TEMP 16 =

526.62799

( 6696.)

TEMP 17 =

526.52502

( 6686.)

TEMP 18 =

526.36499

( 6c70.)

526.46704

( 6e80.)

TEMP 19

=

TEMP 20 =

526.90704

( 6724.)

526.75604

( 6709.)

TEMP 21

=

TEMP 22 =

526.97205

( 6730.)

TEMP 23 =

527.56799

( 6790.)

527.12701

( 6746.)

TEMP 24

=

7w

)

61.043060 ( 61917.)

PRES 1

=

0.44598398

( 7612.)

VPRS 1

=

VPRS 2=

0.43785200

( 7556.)

VPRS 3=

0.43795386

( 7557.)

VPRS 4=

0.42914504

( 7496.)

VFRS 5=

0.20707837

( 5411.)

VPRS 6=

0.20139731

( 5335.)

VPRS 7=

0.18116349

( 5048.)

VPRS 8=

0.19798279

( 5288.)

VPRS 9=

0.19573542

( 5257.)

398730.

CTMT. FREE AIR VOL.

=

l muMMARY OF CORRECTED DATA TIME = 1315 DATE = 0523 530.49146 TEMFERATURE (DEGREES R.)

=

60.750126 CORRECTED PRESSURE (PSIA)

=

0.29293397 VAPOR PRESSURE (PSIA)

=

-s I

I s

/

l 123247.

CTMT. AIR MASS (LBM)

=

i l

I

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 1330 0523

/

1 s

536.87903

( 7721.)

x' TEMP 1

=

TEMP 2=

536.76703

( 7710.)

TEMP 3=

537.11401

( 7 7 4 4,. )

TEMP 4=

538.06403

( 7839.)

TEMP 5=

536.83301

( 7716.)

TEMP 6=

536.69604

( 7703.)

TEMP 72 525.66901

( 6600.)

TEMP G=

S25.77205

( 6630.)

T:1.'."

'i --

31.JiOO.

( 6643.i TEMP Iv 526.12103

( 6645.

=

TEMP 11 526.93201

( 6726.)

=

TEMP 12 =

526.28601

( 6662.)

TEMP 13 =

526.18402

( 6651.)

TEMP 14 =

526.30701

( 6664.)

TEMP 15 =

526.33899

( 6667.)

326.72003

( 6705.)

TEMP 16

=

TEMP 17 =

526.62305

( 6695.)

TEMF 18 =

526.45703

( 6679.)

TEMP 19 =

326.50299

(

6683.)

TEMP 20 =

526.92004

( 6725.)

526.79700

( 6713.)

TEMP 21

=

TEMP 22 =

527.05902

( 6739.)

TEMP 23 =

527.69904

( 6803.)

TEMP 24 =

527.20099

( 6753.)

t

's

\\j PRES 1

61.045033 ( 61919.)

=

0.44565425

( 7610.)

VPRS 1

=

VPRS 2=

0.43702197

( 7551.)

VPRS 3=

0.43715307

( 7552.)

VFRS 4=

0.42833906

( 7491.)

VPRS 5=

0.20727010

( 5413.)

VPRS 6=

0.20220610

( 5346.)

VPRS 7=

0.19476610

( 5243.)

VPRS 8' =

0.19852844

( 5296.)

N VPRS 9=

0.19646779

( 5267.)

398730.

CTMT. FREE AIR VOL.

=

SUMMARY

OF CORRECTED DATA TIME = 1330 DATE = 0523 530.52728 TEMPERATURE (DEGREES R.)

=

CORRECTED PRESSURE (PSIA) 60.750771

=

VAPOR PRESSURE (PSIA) 0.29426137

=

, ~y

(

)

123240.

's_/

CTMT. AIR MASS (LBM)

=

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 1345 0523

-I

.i

'~'

536.87000-( 7720.)

TEMP 1

=

TEMP 2=

536.75000

( 7708.)

TEMP 3=

537.09802

( 7743.)

TEMP 4=

538.07202

( 7840.)

TEMP 5=

536.82104

( 7715.)

TEMP 6=

536.65503

( 7699.)

TEMP 7=

525.76404

( 6609.)

TEMP 8=

526.06000

( 6639.)

526.19104

( 6632.)

TE&

'i u

TEf1P 10 =

526.19604

( 6653..

527.01703

( 6735.)

TEMP 11

=

TEMP 12 =

526.33899

( 6667.)

TEMP 13 =

526.26202

( 6659.)

TEMP 14 =

526.38202

( 6671.)

TEMP 15 =

526.40704

( 6674.)

TEMP 16 =

526.77704

( 6711.)

TEMP 17 =

526.68701

( 6702.)

TEMP 18 =

526.53601

( 6687.)

TEMP 19 =

526.60504

( 6694.)

TEMP 20 =

527. 04004

( 6737.)

526.88605

( 6722.)

TEMP 21

=

TEMP 22 =

527.11005

( 6744.)

TEMP 23 =

527.81903

( 6815.)

527.28101

( 6761.)

TEMP 24

=

,_s l

l

\\

PRES 1

61.048973 ( 61923.)

=

0.44431996

( 7601.)

VPRS 1

=

VPRS 2=

0.43748799

( 7554.)

VPRS 3=

0.43756062

( 7554.)

VPRS 4=

0.42548284

( 7471.)

VPRS 5=

0.20778400

( 5420.)

VPRS 6=

0.20163475

( 5338.)

VPRS 7=

0.19125332

( 5194.)

VPRS 8=

0.19857870

( 5297.)

VPRS 9=

0.19662577

( 5269.)

C T'M T. FREE AIR VOL.

398730.

=

l

SUMMARY

OF CORRECTED DATA TIME = 1345 DATE = 0523 530.56989 TEMFERATURE (DEGREES R.)

=

60.755363 CORRECTED PRESSURE (PSIA)

=

VAPOR PRESSURd (PSIA)

O.29360896 u

,_(

123239.

CTMT. AIR MASS (LBM)

=

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 1400 0523 I

)

\\

TEMP 1

536.85803

( 7719.)

=

TEMP 2=

536.71906

( 7705.)

TEMP 3=

-537.06000

( 7739.)

TEMP 4=

538.04602

( 7838.)

TEMP 5=

536.79901

( 7713.)

TEMP 6=

536.62103

( 7695.)

TEMP 7=

525.S5101

( 661G.)

TEMF 8=

526.14001

( 6647..

TE: *r

?=

aa. 20 h.?

aac..

TEMP !v 526.29004

r. 66:2.

=

527.09003

( 6742.}

TEMP 11

=

TEMP 12 =

526.43903

( 6677.)

TEMP 13 =

526.33899

( 6667.)

TEMP 14 =

526.45d99

( 6678.)

TEMP 15 =

526.47601

( 6681.)

TEMP 16 =

526.83203

( 6716.)

TEMP 17 =

526.77502

( 6711.)

TEMP 18 =

526.58301

( 6691.)

TEMP 19 =

526.64S01

( 6695.)

TEMP 20 =

527.09302

( 6742.)

326.96704

(-6730.)

TEMP 21

=

TEMP 22 =

527.14899

( 6748.)

TEMP 23 =

527.95001

( 6828.)

TEMP 24 =

527.38202

( 6771.)

x

\\

PRES 1

61.050941 ( 6'1925.)

=

0.44547415

( 7609.)

VPRS 1

=

VPRS 2=

0.43709475

( 7551.)

VFRS 3=

0.43697822

( 7550.)

VPRS 4=

0.42990205

( 7502.)

VPRS 5=

0.20899586

( 5436.)

VPRS 6=

0.20174606

( 5339.)

VPRS 7=

0.19558464

( 5255.)

VPRS 8=

0.19933459

( 5307.)

VPRS 9=

0.19732940

( 5279.)

398730.

CTMT. FREE AIR VOL.

=

SUMMARY

OF CORRECTED DATA TIME = 1400 DATE = 0523 530.60577 TEMPERATURE (DEGREES R.)

=

60.756077 CORRECTED PRESSURE (PSIA)

=

0.27486379 VAPOR PRESSURE (PSIA)

=

,-~

I i

'/

CTMT. AIR MASS (LBM) 123232.

=

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 1415 0523 7-~.

k '/

536.E2202

( 7715.)

TEMP 1

=

TEMP 2=

536.70502

( 7704.)

TEMP 3=

537.03204

(,7736.)

TEMP 4

538.02600

( 7836.)

=

TEMP 5=

536.78302

( 7711.)

TEMP 6=

536.60504

( 7674.)

TEMP 7=

325.93402

( 6$26.>

TEMP S -

526.24701

( 6605.)

TEMP 52m.;Z7 ;

6cS7.)

T E M!~'

10 53.30000 c:/!.

527.17804

( 6751.)

TEMP 11

=

TEMP 12 =

526.49200

( 6682.)

TEMP 13 =

526.42603

( 6676.)

526.51404

( 6684.)

TEMP 14

=

TEMP 15 =

526.53503

( 6687.-

TEMP 16 =

D26.88501

( o721.,

TEMP 17 =

526.82501

( 6716.)

TEMP 18 =

326.65100

( 6678.)

G 6.73303

( 6706.)

TEMF 19

=

527.15503

( 6749.)

TEMP 20

=

527.03003

( 6706.)

TEMP 21

=

TEMP 22 =

527.21802

( 6755.)

TEMP 23 =

528.06000

( 6839.)

TEMP 24 =

527.44702

( 6778.)

,,/

T

'61.052910 ( 61927.)

w PRES 1

=

0.44470972

( 7603.)

VPRS 1

=

VPRS 2=

0.43673083

( 7549.)

VPRS 3' =

0.43716750

( 7552.)

VPRS 4=

0.42720795

( 7483.)

VPRS 5=

0.20955579

( 5443.)

VPRS 6=

0.20313361

( 5358.)

VPRS 7=

0.19064778

( 5186.)

VPRS 8=

0.19960168

( 5310.)

VPRS 9=

0.19701044

( 5286.)

CTMT. FREE AIR VOL.

398730.

=

SUMMARY

OF CORRECTED DATA TIME = 1415 DATE = 0523 530.64227 TEMPERATURE (DEGREES R.)

=

o CORRECTED PRESSURE (PSIA) 60.758503

=

0.274e!O656 VAFOR PRESSURE (PSIA)

=

I I

's /

CTMT. AIR MASS (LBM) 123229.

=

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D) e i

)

SUMMARY

OF MEASURED DATA AT 1430 0523 536.81201

( 7714.)

TEMP 1

=

TEMP 2=

536.68103

( 7701.)

TEMP 3=

537.01300

( 7734.)

TEMP 4=

333.04504

( 7835.)

TEMP 3=

536.74603

( 7708.)

536.55004

( 7637.)

TEMP 6

=

TEMP 7=

526.01404

( 6634.)

TEMP 8=

526.32599

( 6666.)

TEMP 9=

526.44299

( 6677.)

TEMP 10 =

526.41699

( 6675.)

527.25800

( 6759.)

TEMP 11

=

TEMP 12 =

526.57104

( 6690.)

TEMP 13 =

526.47601

( 6631.)

TEMP 14 =

526.59100

( 6692.)

TEMP 15 =

326.61304

( 6694.)

TEMP 16 =

326.93500

( 6727.)

TEMP 17 =

526.88403

( 6721.)

TEMP 18 =

526.71503

( 6705.)

TEMP 19 =

526.79901

( 6713.)

TEMP 20 =

527.22900

( 6756.)

527.08002

( 6741.)

TEMP 21

=

,s

(

)

TEMP 22 =

527.27301

( 6760.)

'N~/

TEMP 23 =

528.17401

( 6850.)

TEMP 24 =

527.54102

( 6787.)

61.054882 ( 61929.)

PRES 1

=

0.44467965

( 7603.)

VPRS 1

=

VPRS 2=

0.43740043

( 7553.)

VPRS 3=

0.43617740

( 7545.)

0.42686856

( 7480.)

VPRS 4

=

VPRS 5=

0.21058357

( 5457.)

VPRS 6=

0.20321524

( 5359.)

VPRS 7=

0.19140640

( 5197.)

VPRS 8=

0.19996525

( 5315.)

'VPRS 9=

0.19815506

( 5291.)

CTMT. FREE AIR VOL. =. 398730.

SUMMARY

OF CORRECTED DATA TIME = 1430 DATE = 0523 530.67487 TEMPERATURE (DEGREES R.)

=

/m'l CCRRECTED PRESSURE (PSIA) 60.760193

=

N.

0.29469043 VAPOR PRESSURE (PSIA)

=

123225.

CTMT. AIR MASS (LBM)

=

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 1445 0523

)

' ~>

TEMP 1

536.77002

( 7710.)

=

TEMP 2=

536.65204

( 7698.)

TEMP 3=

536.93999

( 7732.

TEMP 4=

538.02301

( 7835.)

TEMP 5=

536.72101

( 7705.)

TEMP 6=

536.57904

( 7691.)

TEMP 7=

526.09705

( 6643.)

TEMP 8

526.40704

( 6674.)

=

rann c

er t

.=1;oc

3 f_3 ;, )

T E!'? 10 326.>l7900

( 6a31.)

TEMP 11 527.31000

( 6764.)

=

TEMP 12 =

526.61902

( 6695.)

TEMP 13 =

526.54401

( 6687.)

TEMP 14 =

526,.6'6400

( 6699.)

TEMP 15 =

526.67102

( 6700.)

TEMP 16 -

526.99304

( 6732.)

TEMP 17 =

526.95502

( 6729.)

TEMP 18 =

526.77301

( 6710.)

TEt!P 19 526.39703

( 6723.)

=

527.28601

( 6762.>

TEMP 20

=

TEMP 21 327.14203

( 6747.)

=

TEMP 22 =

527.32404

( 6765.)

TEMP 23 =

528.28802

( 6862.)

s TEMP 24 =

527.61700

( 6795.)

,q l

)

2

's-PRES 1

61.056850 ( 61931.)

=

0.444'19547

( 7600.)

VPRS 1

=

VPRS 2=

0.40663797

( 7548.)

VPRS 3=

0.43635225

( 7546.)

VPRS 4

0.42754725

( 74E5.)

=

VPRS 5=

0.21089804

( 5461.)

VPRS 6=

0.20209481

( 5344.)

VPRS 7=

0.18997264

( 5176.)

VPRS 8=

0.20138991

( 5335.)

VPRS 9=

0.19877973

( 5299.)

CTMT. FREE AIR VOL.

398730.

=

i GUMMARY OF CORRECTED DA,TA TIME = 1445 DATE = 0523 TEMPERATURE (DEGREES R.)

530.70874

=

CORRECTED PRESSURE (PSIA) 60.762299

=

VAPOR PRESSURE (PSIA) 0.29455337

=

A

(

)

CTMT. AIR MASS (LSM) 123221.

=

k t

~~

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 1500 0523

-s

/

\\

336.73004

( 7706.)

~

', TEMP 1

=

TEMP 2=

536.62500

( 7696.)

TEMP 3=

536.99902

( 7733.)

TEMP 4

537.90304

( 7832.)

=

TEMP 5=

536.71204

( 7704.)

TEMP 6=

536.56604

( 7690.)

s' TEMP 7=

5 2.'2. 17603

( 6651.)

- FEMP.

8=

526.49500

( 6682.)

TEl '?

C =

526.5920c.

( 6692.)

52=.55902

( 6689.)

T5P'r-10

=

iEMP 11 =

527.38800

( 6772.)

~

TEMP 12 =

526.68701

( 6702.)

TEMP 13' '=

52o.60400

( 6693.)

TEMP 14 =

526.74603

( 6708.)

TEMP 15 =

526.73303

( 6706.)

527.03601

( 6737.)

TEMP 16

=

TEMP 17 =

527.00604

( 6734.)

TEMP 18 =

526.31403

( 6714.)

TEMP 19 =

526.92004

( 3725.)

TEMP 20 =

527.32104,(

6765.)

527.22400

( 6755.)

TEMP 21

=

TEMP 22 =

527.37701

. 6771.)

s._

'~

TEMP 23 =

528.40900

( 6874.)

TEMP 24 =

527.69800

( 6803.)

7_

(\\'

61.059807 ( 61934.)

PRES 1

=

0.44345742

( 7595.)

VPRS 1

=

VPRS 2=

0.43642500

( 7547.)

VPRS 3=

0.43617740

( 7545.)

0.42698163

( 7481.)

- -g VPRS 4

=

VPRS 5=

0.21210223

(-5476.)

g VFRS 6=

0.20262162

( 5351.)

VPRS 7y 0.19582158

( 5258.)

VPRS 8=

0.20246580

( 5349.)

VPRS 9.1 0.19963878

( 5311.)

398730.

CTMT. FREE AIR VOL.

=

i

SUMMARY

OF CORRECTED DATA l

l TIME = 1500 DATE = 0523 530.74219

{EMPERATURE (DEGREES R.)

=

60.764366 CORRECTED PRESSURE (PSIA)

=

0.2954402e VAPOR PRESSURE tPSIA)

=

f

')

CTMT. AIR HASS (LBM) 123217.

=

s

~

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 1515 0523 536.75201

( 7708.)

TEMP 1

=

TEMP-2=

536.61902

( 7695.)

TEMP 3=

536.97302

( 7730.)

538.00604

( 7834.)

TEMP 4

=-

TEMP 5=

536.69604

( 7703.)

TEMP 6=

536.51703

( 7685.)

TEMP 7=

326.24603

( 6658.)

TEMP 8 --

526.57404

( 6690.)

E2S.u1201

( 6690.)

T Et

9

=

TEMP 10 =

526.62402

( 6695.)

527.47803

( 6781.)

TEMP 11

=

TEMP 12 =

526.74603

( 6708.)

TEMP 13 =

526.67804

( 6701.)

TEMP 14 =

526.79602

( 6713.)

TEMP 15 =

526.80499

( 6714.)

TEMP 16 =

527.09302

( 6742.)

TEMP 17 =

527.08502

( 6742.)

TEMP 18 =

526.91602

( 6725.)

TEMP 19 =

526.97101

( 6730.)

TEMP 20 =

527.38104

( 6771.)

527.27704

( 6761.)

TEMP 21

=

TEMP 22 =

527.42303

( 6775.)

TEMP 23 =

528.52100

( 6885.)

527.77704

( 6811.)

TEMP 24

=

<x i

c1.061775 ( 61936.)

PRES 1

=

0.44286045

( 7591.)

VFRS 1

=

VFRS 2=

0.43639102

( 7550.)

VPRS 3=

0.43627405

( 7546.)

VPRS 4=

0.42764628

( 7486.)

VFRS 5=

0.21233997

( 5479.)

VPRS 6=

0.19962393

( 5311.)

VPRS 7 =- O.19378965

( 5230.)

VPRS 8=

0.20231001

( 5347.)

VPRS 9=

0.19982426

( 5313.)

CTMT. FREE AIR VOL.

398730.

=

l

SUMMARY

OF CORRECTED DATA 1

l l

TIME = 1515 DATE = 0523 530.77881 l

TEMPERATURE (DEGREES R.)

=

60.766930 CORRECTED PRESSURE (PSIA)

=

0.29484650 VAPOR PRESSURE (PSIA)

=

-~

/

(

I 123214.

CTMT. AIR MASS (LBM)

=

U

^'PENDIX E SHORT DURATION (8-DOUR) ILRT RAW DATA (CONT'D)

,es

SUMMARY

OF MEASURED DATA AT 1530 0523

(

I 536.73004 i 7706.)

TEMP 1

=

TEMP 2=

536.60199

( 7693.)

TEMP 3=

536.95001

( 7728.)

537.97900

( 7831.)

TEMP 4

=

TEMP 5=

536.65503

( 7699.)

TEMP 6=

536.51501

( 7685.)

TEMP 7=

526.32404

( 6665.)

TEMP 8=

526.64899

( 6693.)

TEMP 7 -

326.71379

( 6704.'i TZMF 10 526.c3903

( 6702.)

=

TEMP 11 527.51202

( 6784.)

=

TEMP 12 =

526.80701

( 6714.)

TEMP 13 =

526.72900

( 6706.)

TEMP 14 =

526.86902

( 6720.)

TEMP 15 =

526.85602

( 6719.)

TEMP 16 =

527.12799

. ( 674e.)

TEMP 17 =

527.13104

( 6746.)

TEMP 13 326.95502

( 6729.)

=

TEMP 19 =

327.03802

( 6737.)

TEMP 20 =

527.41504

( 6775.)

TEMP'21 527.32202

( 6765.)

=

TEMP 22 =

527.47400

( 6780.)

TEMP 23 =

528.62604

( 6896.)

TEMP 24 =

527.83502

( 6817.)

fs

/

\\ '"

PRES 1

c1.Od2759 ( 61937.)

=

VPRS 1

0.44393796

( 7598.)

=

VPRS 2=

0.43646878

( 7547.)

VPRS 3=

0.43526018

( 7539.)

VPRS 4=

0.42795730

( 7488.)

VPRS 3=

0.21299197

( 5488.)

VPRS 6=

0.19911194

( 5304.)

VPRS 7=

0.19455792

( 5241.)

VPRS 8=

0.20285904

( 5354.)

VPR3 9=

0.20053142

( 5323.)

CTMT. FREE AIR VOL.

398730.

=

1 l

SUMMARY

OF CORRECTED DATA TIME = 1530 DATE = 0523 TEMPERATURE (DEGREES R.)

530.80585

=

CORRECTED PRESSURE (PSIA) 60.767712

=

VAPOR PRESSURE (PSIA) 0.29504654

=

,s

/

1 l

CTMT. AIR MASS (LBM) 123210.

=

l l

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 1545 0523 I

TEMP 1

i 536.70300

( 7703.)

=

TEMP 2=

536.58405

( 7691.)

TEMP 3=

336.94403

( 7727.)

TEMP 4a 537.9480u

( 7828.)

TEMP 5=

536.65802

( 7699.)

TEMP 6,

536.50S00

( 7684.)

TEMP 7=

326.37600

( 6673.)

fEMP S

526.71301

( 6704.)

=

E."P 9

526.'7301 6710.)

=

526.74701 6 7 i. a. )

c:

r.

3.)

=

527.59503

( 6793.)

TEMP 11

=

TEMP.12 =

526.86304

( 6719.)

TEMP 13 =

526.76703

( 6710.)

526.91504

( 6725.)

TEMP 14

=

TEMP 15 =

526.91803

( 6725.)

527.19104

( 6752.)

TEMP 16

=

TEMP 17 =

527.19202

( 6752.)

TEMP 18 =

527.00S00

( 6734.)

527.12000

( 6743.)

TEMP 19

=

TEMF 20 =

527.47601

( 6781.)

327.36200

( 6769.)

TEMP 21

=

TEMP 22 =

527.52899

( 6786.)

TEMP 23 =

528.73700

( 6907.)

TEMP 24 =

527.90204

( 6823.)

b 31.064732 ( 6'1939.)

'/

PRES 1

=

0.44363225

( 7596.)

VPRS 1

=

VPRS 2=

0.43607554

( 7544.)

VPRS 3=

0.43601733

( 7544.)

VFRS 4=

0.42507279

( 7468.)

VPRS 5=

0.21354420

( 5495.)

VPRS 6=

0.19854999

( 5296.)

l VPRS 7=

0.20069982

( 5325.)

f VPRS 8-0.20406111

( 5371.)

VPRS 9=

0.20065530

( 5325.)

I l

CTMT. FREE AIR VOL.

398730.

=

i l

SUMMARY

OF CORRECTED DATA I

TIME = 1545 DATE = 0523 l

TEMPERATURE (DEGREES R.)

530.83932

=

60.76o211 CORRECTED PRESSURE (PSIA)

=

0.29551983 VAPOR PRESSURE (PSIA)

=

r\\

l l

123205.

CTMT. AIR MASS (LBM)

=

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 1600 0523 536.68304

( 7701.)

TEMP 1

=

TEMP 2=

536.56500

( 7689.)

TEMP 3=

536.89404

( 7722.)

TEMP 4=

537.97601

( 7831.)

TEMP 5=

336.64001

( 7697.)

TEMP 6=

D36.46SO2

( 7680.)

TEMP 7=

526.46600

( 6680.)

IEMP 8=

526.78900

( 6712.1

[

TEMP 9

- a.33301 1717.;

r TEMP 10 =

b_a.'7602

( e71~.)

l 527.65704

( 6799.)

TEMP 11

=

TEMP 12 =

526.93304

( 6726.)

TEMP 13 =

526.82001

( 6715.)

TEMP 14 =

526.97900

( 6731.)

TEMP 15 =

526.96301

( 6729.)

TEMP 16 =

327.24200

( 6757.)

TEMP 17 =

527.23999

( 6757.)

{

TEMP 18 =

527.06201

( 6739.)

327.15002

( 6745.)

TEMF 19

=

TEMP 20 527.53400

( 67E6.)

j

=

TEMP 21 527.41803

( 6775.)

[

=

TEMP 22 =

527.56500

( 6789.)

i TEMP 23 =

529.83099

( 6916.)

529.00299

( 6833.)

TEMP 24

=

,,s

/

i l

\\

PRES 1

61.066700 ( 6'1941.)

=

l VPRS 1

0.44236045

( 7591.)

=

l VPRS 2=

0.43642500

( 7547.)

VFRS 3=

0.43553677

( 7541.)

0.42314345

( 7468.)

VPRS 4

=

VPRS 5=

0.21401496

( 5501.)

i VPRS 6=

0.19941616

( 5308.)

VPRS 7=

0.20233226

( 5347.)

l l

VPRS 8=

0.20453599

( 5377.)

l VPRS 9=

0.20153086

( 5336.)

l 398730.

CTMT. FREE AIR VOL.

=

t

SUMMARY

OF CORRECTED DATA l

TIME = 1600 DATE = 0523 TEMPERATURE (DEGREES R.)

530.86401

=

l CORRECTED PRESSURE (PSIA) 60.770782

=

u.29591849 VAPOR PRESSURE (PSIA)

=

l

(

)

\\'

CTMT. AIR MASS (LDM) 123202.

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 1615 0523 p,

l

)

\\s' TEMP 1

536.67902

( 7701.)

=

TEMP 2=

336.51703

( 7685.)

TEMP 3=

536.89899

( 7723.)

TEMP 4=

537.92700

( 7826.)

TEMP 5=

536.62604

( 7696.)

TEMP 6=

536.42999

( 7676.)

TEMP 7=

526.53902

( 6687.)

TEMP O=

526.54201

( 6717.)

TEMP 9

52S.90601

( 6724.)

=

TdMP 10 =

52a.53901

( 6719.)

TEMP 11 527.72302

( 6805.)

=

TEMP 12 =

526.98199

( 6731.)

TEMP 13 =

526.87701

( 6721.)

TEMP 14 =

527.03003

( 6736.)

TEMP 15 =

527.02704

( 6736.)

TEMP 16 =

527.29803

( 6763.)

TEMP 17 =

527.29102

( 6762.)

TEMP 18 =

527.12402

( 6745.)

TEMP 19 527.21503

( 6755.)

=

TEMP 20 =

527.56799

( 6790.)

TEMP 21 527.44800

( 6778.)

=

TEMP 22 s 527.63104

( 6796.)

TEMP 23 =

528.92804

( 6926.)

TEMP 24 =

528.03503

( 6837.)

,/ \\,

r

(-)

PRES 1

61.068668 ( 61943.)

=

1 VPRS 1

0.44283134

( 7591.)

=

VPRS 2=

0.43585715

( 7543.)

VPRS 3=

0.43603200

( 7544.)

VPRS 4=

0.42606258

( 7475.)

VPRS 5=

0.21479011

( 5511.)

VPRS 6=

0.20693295

( 5408.)

VPRS 7=

0.20219125

( 5345.)

VPRS 8=

0.20490699

( 5382.)

l VPRS 9=

0.20196126

( 5342.)

CTMT. FREE AIR VOL.

398730.

=

SUMMARY

OF CORRECTED DATA 1

1 TIME = 1615 DATE = 0523 I

t TEMPERATURE (DEGREES R.)

530.89087

=

CORRECTED PRESSURE (PSIA) 60.771236

=

l l

VAPOR PRESSURE (FSIA) 0.29743046

=

/3

'x CTMT. AIR MASS (LEM) 123197.

=

i

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D) x

SUMMARY

OF MEASURED DATA AT 1630 0523 N)8 536.66101

( 7699.)

TEMP 1

=

TEMP 2=

536.51501

( 7685.)

TEMP 3=

536.G7604

( 7721.)

TEMP 4=

537.90399

( 7823.)

l TEMP 5=

536.59204

( 7692.)

TEMP 6=

536.40399

( 7673.)

i i

TEMP 7=

526.60901

( 6694.)

l TEMP 8u 526.?OGO2

( 6724.)

l TZi T

~

C13.70377

( c721 TEMP 10 -

E2a.73C04

( 6720.

l 527.79401

( 6812.)

f TEMP 11

=

TEMP 12 =

527.04004

( 6737.)

j TEMP 13 =

526.92499

( 6725.)

t TEMP 14 =

527.09503

( 6743.)

TEMP 15

-527.07404

( 6 7 <! O. )

=

527.36499

( 6770.)

l TEMP 16

=

TEMP 17 =

327.36401

( 6769.)

T I

TEMP 18 527.1920?

( 6752.

l

=

327.24603

( 6736.)

}

TEMF 19

=

TEMP 20 =

527.62201

( 6795.)

l 527.52002

( 6785.)

l TEMP 21

=

TEMP 22 =

527.69702

( 6803.)

TEMP 23 =

529.02301

( 6935.)

i TEMP 24 =

528.12701

( 6846.)

f3

)

t

(

i FRES 1

61.070641 ( 61945.)

=

VPRS 1

0.44310805

( 7593.)

=

VPRS 2=

0.43575901

( 7543.)

vers 3=

u.43519731

( 7538.)

)

ypg.3 4

o,.3347c3:3

_ 7433 g

_ _....._ j VFRS 5=

0.21530424

( 5519.)

l

~

VPRS 6=

0.20343041

( 5362.)

l I

VPRS 7=

0.20339331

( 5362.)

l VPRS 8=

0.20574543

( 5393.)

VPRS 9=

0.20248067

( 5349.)

399730.

.CTMT. FREE AIR VOL.

=

SUMMARY

OF CORRECTED DATA i

TIME = 1630 i

DATE = 052a TEMPERATURE (DEGREES R.)

530.92212

=

CORRECTED PRESSURE (PS:A) 60.773628

=

)

l 0.29701269 I

VAFOR PRESSURE (PSIA)

=

s I

/

i i

(

/

I 123195.

[

I CTMT. AIR MASS (LBM)

=

(

[

i f

1

?

t

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D)

~

s

SUMMARY

OF MEASURED DATA AT 1645 0523

(

\\

i TEMP 1

536.63104

( 7696.)

=

TEMP 2=

536.50299

( 7683.)

TEMP 3=

536.85004

( 7718.)

TEMP 4

537.91199

( 7824.)

=

TEMP 5=

536.59406

( 7692.)

TEMP 6=

536.42004

( 7675.)

TEMP 7=

526.67200

( 6700.)

TEMP 8=

526.9c600

( 6730.)

TCMP 9 -

527.C1202 6734.)

T:EF:P 10 -

526.G9103 6732.}

527.95199

( 6819.)

TEMP 11

=

TEMP 12 =

527.10101

( 6743.)

TEMP 13 =

526.97601

( 6731.)

TEMP 14 =

527.15503

( 6749.)

TEMP 15 =

527.133dO

( 6746.)

TEMP 16 =

527.38904

( 6772.)

TEMP 17 =

527.39600

( 6773.)

TEMP 18 =

527.21100

( 6754.)

TEMP 19 =

527.31500

( 6764.)

TEMP 20 =

527.65704

( 6799.)

527.53301

( 6791.)

TEMP 21

=

TEMP 22 =

527.71301

( 6804.)

TEMP 23 =

529.11304

( 6944.)

TEMP 24 =

528.19000

( 6852.)

,,s i

't 61.072609 ( 61947.)

PRES i

=

0.44224894

( 7587.1 VPRS 1

=

JPRS 2=

0.43537661 7539.)

VPRS 3=

0.43504179

( 7537.)

0.42652917

( 7478.)

VFRS 4

=

VPRS 5=

0.21575511

( 5S23.)

VPRS 6=

0.20314847

( 5358.)

VPRS 7=

0.19989848

( 5314.)

VPRS

'8 =

0.20622030

( 5400.)

VPRS 9=

0.20205025

( 5343.)

398730.

CTMT. FREE AIR VOL.

=

SUMMARY

OF CCRRECTED DATA TIME = 1645 DATE = 0523 TEMPERATURE (DEGREES R.)

530.94870

=

60.775937 CORRECTED PRESSURE (PSIA)

=

0.29677245 VAPOR PRESSl3E (PSIA)

=

n l

}

123193.

CTMT. AIR MASS (LSM)

=

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 1700 0523

_s

/

i

\\

l TEMP 1

536.63501

( 7696.)

=

TEMP 2=

536.49402

( 7692.)

TEMP 3'

536.G1799

-(

7713.)

TEMP 4

537.90601

( 7824.)

=

TEMP-5=

536.55499

( 7689.)

TEMP 6=

536.38800

( 7672.)

TEMP 7=

326.7.T199

( 6706.)

TEMP 8

527.01404

( 6734.)

=

T3:T 127. C 7(. 01

-k...

TEPP 10 =

52:'. CTw2 6736.

TEMP 11 527.91602

( 6825.)

=

TEMP 12 =

527.16602

( 6750.)

l TEMP 13 =

527.02802

( 6736.)

l TEMP 14 =

527.1'702

( 6753.)

9 TEMP 15 =

577.18402

( 6751.)

TEMP 16 527.42702

( 677e.)

=

TEMP 17 =

527.45404

( 6773.)

l stMP 18 =

527.26501

( 6760.)

TEMP 19 527.37701

=

ofe../

TEMP 20 =

527.73505

( 6807.)

TEMP 21 527.64001

( 6797.)

=

i TEMP 22 =

527.75299

( 6808.)

I TEMP 23 =

529.19604

( 6953.)

TEMP 24 =

528.29602

( 6863.)

(

)

\\>

PRES 1

61.073593 ( 61948.)

=

VFRS 1

0.44236547

( 7587.)

=

(PRS 2=

0.43649773

( 7347.)

VPRS 3=

0.43492526

( 7536.)

VPRS 4

0.42240030

( 7449.)

=

VPRS S=

0.21649869

( 5533.)

VPRS 6=

0.20339331

( 5362.)

VPRS 7=

0.20466952

( 5379.)

VPRS 8=

0.20700932

( 5410.)

VPRS 9=

0.20294069

( 5355.)

CTMT. FREE AIR VOL.

398730.

=

l

SUMMARY

OF CORRECTED DATA l

l TIME = 1700 DATE = 0523 TEMPERATURE (DEGREES R.)

530.97485

=

CORRECTED PRESSURE (PSIA) 60.776344

=

VAPOR PRESSURE (PSIA) 0.29725018 n

\\mj CTMT. AIR MASS (LBM) 123159.

=

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 1715 0523

-m

(

)

TEMP 1

536.57300

( 7690.)

=

TEMP 2=

536.45703

( 7679.)

TEMP 3=

536.81702

( 7715.)

TEMP 4=

537.92004

( 7825.)

TEMP 5=

536.55103

( 76SS.)

TEMP 6=

536.36700

't 7670.)

TEMP 7=

326.60902

( 6714.)

527.07501

( 6741.)

TEHF 3

=

TZ; r 7

5Z7..C300

( c740.)

rg:.:p in w 7,.rge; c n,,,

527.97e99

( 6831.)

TEMP 11

=

TEMP 12 =

527.19904

( 6753.)

TEMP 13 =

527.08099

( 6741.)

TEMP 14 =

527.26404

( 6759.)

TEMP 15 =

527.24200

( 6757.)

FEMP 16 =

527.49103

( 67G2.)

TEMP 17 =

527.48401

( 6781.)

TEMP 18 =

327.32300

( 6765.)

327.42997

( 6776.)

TEME 19

=

TEMP 20 =

527.73700

( 6807.)

527.65002

( 6798.)

TEMP 21

=

TEMP 22 =

527.83203

( 6816.)

TEMP 23 =

529.29004

( 6962.)

TEMP 24 =

528.36200

( 6869.)

f-l

}

61.076550 ( 61951.)

PRES 1

=

)

0.44203055

( 7585.)

VPRS 1

=

VPRS 2=

0.43562421

( 7541.)

i VPRG 3=

0.43530384

( 7537.)

0.42518598

( 7469.)

VPRS 4

=

VPRS 5=

0.21698120

( 5539.)

VPRS 6=

0.20474377

( 5390.)

VPRS 7=

0.20256972

( 5350.)

VPRS 8=

0.20704767

( 5410.)

VPRS*9 =

0.20287392

( 5355.)

i CTMT. FREE AIR VOL.

398730.

=

SUMMARY

OF CORRECTED DATA TIME = 1715 DATE = 0523 TEMPERATURE (DEGREES R.)

530.99854

=

l CORRECTED PRESSURE (PSIA) 60.778984

=

l (s\\

VAPOR PRESSURE (PSIA) 0.29756338

=

\\

j

\\

l CTMT. AIR MASS (LBM) 123188.

=

I e

w-

APPENDIX E SHORT. DURATION ( 8-HOUR) ILRT RAW DATA (CONT'D)

O

SUMMARY

OF MEASURED DATA AT-1730 0523 TEMP 1

536.55902

( 7689.)

=

TEMP 2=

536.46204

(-7679.)-

TEMP 3'=

536.79199

( 7712.)

TEMP 4=

537.87305

( 7820.)

TEMP S=

536.54999

( 7688.)

TEMP 6~=

536.35303

( 7668.)

TEMP-7=

526.86304

( 6719.)

TEMP 8=

527.13904

( 6747.)

TEMF 9=

527.19904

( 6753.)

TEMP 10 =

527.13000

( 6746.)

TEMP 11-=.

528.02899

( 6836.)

TEMP 12 =

527.25903

( 6759.)

TEMP 13 =

527.12604

( 6746.)

TEMP 14 =

527.31903

( 6765.)

TEMP 15 =

527.29199

(.6762.)

TEMP 16 =

327.52399

( 6785.)

TEMP 17 =

527.53601

( 6787.)

TEMP 18 =

527.36804

( 6770.)

TEMP 19 =

527.47900

( 6781.)-

TEMP 20 =

527.81702

( 6815.)

TEMP 21 527.74902

( 6808.)

=

TEMP 22 =

527.83899

( 68,17.)

~~

^

TEMP 23 =

529.36804

( c970.)

TEMP 24 =

528.44000

( 6877.)

PRES 1

61.078518 ( 61953.)

=

i 0.44203055

( 75s5.)

VPRS 1

=

l VPRS 2=

0.43562421

( 7541.)

VPRS 3=

0.43536204

( 7539.)

VPRS 4=

0.42674127

( 7480.)

VPRS 5=

0.21815978

( 5554.)

VPRS 6

0.20089275

( 5328.)

=

VPRS 7=

0.19637448

( 5266.)

VPRS 8=

0.20813681

( 5425.)

- VPRS 9=

0.20415755

( 5372.)

l CTMT. FREE AIR VOL..=

398730.

SUMMARY

OF. CORRECTED DATA TIME = 1730 DATE = 0523 TEMPERATURE (DEGREES R.)

531.02777

=

CORRECTED PRESSURE (PSIA) 60.731651

=

VAPCR PRESSURE (PSIA) 0.29686862

=

i CTMT. AIR MASS (LBM) 123186.

=

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 1745 0523 i

TEMP 1

536.54901

( 7688.)

=

TEMP 2=

536.44904

( 7678.)

TEMP 3=

536.78501

( 7712.)

TEMP 4

537.85803

( 7819.)

=

TEMP 5=

536.50299

( 7683.)

TEMP 6=

536.35400

( 7668.)

TEMP 7=

526.92603

( 6726.)

TEMP S=

527.17999

( 6751.)

  • Erd?

527.25103

( 6;'52..

TEMF 10 527. 0203

( 6753.)

TEMP 11 528.>S600

( 6842.)

=

TEMP 12 =

527. 1299

( 6764.)

TEMP 13 =

527.18903

( 6752.)

TEMP 14 527.35803

( 6769.)

=

TEMP 15 =

527.34204

( 6767.)

TEMP 16 =

527.56702

( 6790.)

TEMP 17 =

527.60303

( 6793.)

TEMP 18 =

527.41400

( 6774.)

TEMP 19 527.54401

( 6727.)

=

TEMP 20 =

527.84204

( 601'7..

TEMP 21 527.78?OO

( 6812.)

=

TEMP 22 =

527.87305

( 6820.)

TEMP 23 =

529.44104

( 6977.)

TEMP 24 528.54102

( 6887.)

=

fs i

1

(

N' 61.080490 ( 61955.)

PRES 1

=

VPRS 1

0.44185579

( 758a.)

=

VPRS 2=

0.43534750

( 7539.)

l VPPS 3=

0.43779367

( 7556.)

i VPRS 4

0.42437989

( 7463.)

=

f VPRS 5=

0.21818353

( 5554.)

VPRS 6=

0.21003130

( 5449.)

VFRS 7=

0.20350461

( 5363.)

VPRS 8=

0.20890382

( 5435.)

VPRS 9=

0.20484762

( 5381.)

l CTMT. FREE AIR VOL.

398730.

r

=

I 1

1

SUMMARY

OF CORRECTED DATA 1

1 TIME = 1745 DATE = 0523 TEMPERATURE (DEGREES R.)

531.05487

=

CORRECTED PRESSURE (PSIA) 60.781334

=

VAPOR PRESSURE (PSIA) 0.29915547

=

(

N' CTMT. AIR MASS ( <.BM )

123179.

=

I i

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (COST'D)

SUMMARY

OF MEASURED DATA AT 1800 0523

,_s I

't A

TEMP 1

536.49402

( 7682.)

=

TEMP 2=

536.44000

( 7677.)

TEMP 3=

536.75800

( 7709.)

TEMP 4=

537.89203

( 7822.)

TEMP 5=

536.50604

( 7684.)

TEMP 6=

536.33502

( 7667.)

TEMP 7=

526.97803

( 6731.)

TEMP 8=

527.23004

( 6756.)

T EM' o

d27.30200

( 6763.,

=

TEt 'P 10 =

527.20905 6754.)

TEMP 11 528.16003

( 6849.)

=

TEMP 12 =

527.36401

( 6769.)

TEMP 13 =

527.23999

( 6757.)

TEMP 14 527.39703

( 6773.)

=

TEMP 15 =

527.39600

( 6773.)

TEMP 16 =

527.61304

( 6794.)

TEMP 17 =

527.64600

( 6798.)

TEMP 18 =

527.46399

( 6779.)

TEMP 19 527.54700

( 6788.)

=

TEMP 20 =

527.89301

( 6822.)

TEMP 21 527.83600

( 6817.)

=

TEMP 22 =

527.92902

( 6826.)

TEMP 23 =

529.50702

( 6984.)

TEMP 24 =

528.64099

( 6897.)

-s

/ N i'-

PRES 1

61.081474 ( 6'1956.)

=

VPRS 1

0.44179758

( 7584.)

=

VPRS 2=

0.4353'661

( 7539.)

VPRS 3=

0.43511465

( 7538.)

VPRS 4=

0.42s95346

( 7481.)

VPRS 5=

0.21880050 C 5562.)

VPRS 6

0.20954810

( 5443.)

=

VPRS 7=

0.19409775

( 5 0 9.t. )

VPRS 8=

0.20934100

( 5440.)

VPRS 9=

0.20438758

( 5375.)

CTMT. FREE AIR VOL.

398730.

=

SUMMARY

OF CORRECTED DATA TIME = 1800 DATE = 0523 TEMPERATURE (DEGREES R.)

531.07556

=

CORRECTED PRESSURE (PSIA) 60.784172

=

VAPOR PRESSURE (PSIA) 0.29730105

=

,_s k' -

CTMT. AIR MASS (LBM) f 123180.

=

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 1815 0523

/

i

\\'

2 TEMP 1

536.50299

( 7683.)

=

TEMP 2=

536.41101

( 7674.)

TEMP 3=

536.76001

( 7709.)

TEMP 4

537.37604

( 7821.)

=

TEMP 5=

536.48102

( 7681.)

TEMP 6=

536.30701

( 7664.)

TEMP 7=

527.01904

( 6735.)

TEMP 8=

527.29199

( 6762.)

527.3 603

( 6770.)

TEP&

9 TEMP 10 D27.25000

( 6755.

=

TEMP 11 528.21'204

( 6854.)

=

TEMP 12 =

527.41400

( 6774.)

TEMP 13 =

527.29199

( 6762.)

TEMP 14 =

527.45203

( 6778.)

TEMP 15 =

527.44403

( 6777.)

TEMP 16 =

527.o7804

( 6801.)

TEMP 17 =

527.70001

( 6803.)

TEMP 18 =

527.51001

( 6784.)

TEMP 19 =

527. 6 l '299

( 6794.)

TEMP 20 527.93t.70

( 6827.)

=

TEMP 21 527.8600*:

( 6819.)

=

TEMP 22 =

527.97101

( 6830.)

TEMP 23 =

529.58405

( 6991.)

TEMP 24 528.72003 s 6905.)

=

(-

1 k'

PRES 1

61.083443 ( 6'1 9 5 8. )

=

VPRS 1

0.44187036

( 7584.)

=

VPRS 2=

0.43502724

( 7537.)

i VPRS 3=

0.43485263

( 7536.)

VPRS 4=

0.42282447

( 7452.1 VPRS 5=

0.21911744

( 5570.)

f VPRS 6

0.20742351

( 5415.)

=

VPRS 7=

0.20549315

( 5390.)

VPRS 8=

0.20924129

( 5439.)

l VPRS 9=

0.20481794

( 5381.)

CTMT. FREE AIR VOL.

398730.

=

SUMMARY

OF CORRECTED DATA l

l TIME = 1815 DATE = 0523 TEMPERATURE (DE8REES R.)

531.10199

=

l CORRECTED PRESSURE (PSIA) 60.784702

=

VAPOR PRESSURE (PSIA) 0.29873894

=

ks CTMT. AIR MASS (LBM) 123175.

=

i i

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 1830 0523

,g

\\

\\

'/

( 7683.)

TEMP 1

536.49603

=

TEMP 2=

536.42102

( 7675.)

TEMP 3=

536.72400

( 7705.)

TEMP 4

537.84705

( 7818.)

=

TEMP 5=

536.48602

( 7682.)

TEMP 6=

536.30603

( 7664.)

TEMP 7=

527.08801

( 6742.)

TEMP S=

527.33203

( 6766.)

TZ'1?

9 527.11699 6773.)

=

TEMP lO 527.29700

( c763 )

=

TEMP 11 528.27203

( 6860.)

=

TEMP 12 =

527.45300

( 6778.)

TEMP 13 =

527.34802

( 6768.)

TEMP 14 =

527.48602

( 6782.)

TEMP 15 =

527.50000

( 6783.)

TEMP 16 527.71704

( 6805.)

=

TEMP 17 =

527.73901

( 6807.)

TEMP 18 =

527.57001

( 6790.)

TEMP 19 527.65900

( 6799.)

=

TEMP 20 =

527.97504

( 6831.)

TEMP 21 327.91400

( 6824.)

=

TEMP 22 =

528.01904

( 6835.)

TEMP 23 =

529.64703

( 6998.)

TEMP 24 =

528.83002

( 6916.)

,, s

/

\\

PRES 1

61.085411 ( 61960.)

=

VPRS 1

0.44219083

( 7586.)

=

VPRS 2=

0.43582906

( 7543.)

VPRS 3=

0.43389162

( 7529.)

VPRS 4=

0.42355978

( 7457.)

VFRS 5=

0.22008188

( 5578.')

VPRS 6=

0.20417982

( 5372.)

VPRS 7=

0.20527798

( 5387.)

VPRS 8=

0.21023074

( 5452.)

VPRS 9=

0.20563416

( 5392.)

CTMT. FREE AIR VOL.

398730.

=

SUMMARY

OF CORRECTED DATA TIME = 1830 DATE = 0523 TEMPERATURE (DEGREES R.)

531.13013

=

CORRECTED PRESSURE (PSIA) 60.786830

=

VAPOR PRESSURE (PSIA) 0.29853201

=

/

\\

\\

/

CTMT. AIR MASS (LBM) 123173.

=

~

APPENDIX E SHORT D ? \\ TION (8-HOUR) ILRT RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 1845 0523 t -Y TEMP 1

536.48004

( 7681.).

=

, TEMP 2=

536.38000

( 7671.)

TEMP 3=

536.75000

( 7703.)

TEMP 4=

537.84003

( 7817.)

TEMP 5=

536.45001

( 7678.)

TEMP 6=

536.27002

( 7660.)

TEMP 7"

327.14001

( 6747.1 TEMP 8=

527.33000

( 6771.)

T E M.-

027. ' T ;i3

! a7ZG.)

TZF* In 527.::6005

( 2 769.)

=

TEMP 11 528.32001

( 6865.)

=

TEMP 12 =

527.52002

( 6785.)

TEMP 13 =

527.39001

( 6772.)

TEMP 14 527.55005

( 6788.;'

=

TEMP 15 =

527.570'01

( 6790.)

TEMP 16 527.77002

( 6310.)

=

TEMP 17 =

527.78003

( e811.)

TEMP 18 =

327.60004

( 6793.)

TEMP 19 =

327.6vuCU

( 6 5 0 2.' s TEMP 20 =

523.01001

( 6834.)

TEMP 21 527.94000

( 6827.)

=

TEMP 22 =

528.03003

( 6836.)

TEMP 23 =

529.71002

( 7004.)

TEMP 24 =

328.95001

( 6928.)

/

).

r 1/

PRES 1

61.085411 ( 6'1960.)

=

VPRS 1

0.44128805

( 7580.)

=

VPRS 2=

0.43546402

( 7540.)

VPPS 3=

0.43429920

( 7532.)

VPRS 4.=

0.4249777s

( 74o7.)

VPRS 5=

0.22036440

( 5584.)

VPRS 6=

0.21977341

( 5574.)

VPRS 7=

0.20977819

( 5446.)

VPRS 8=

0.21100542

( 5462.)

VPRS 9=

0.20602740

( 5397.)

CTMT. FREE AIR VOL.

398730.

=

SUMMARY

OF CORRECTED DATA TIME = 1845 DATE = 0523 TEMPERATURE (DEGREES R.)

531.J5369

=

CORRECTED PRESSURE (PSIA) 60.783600

=

VAPOR PRESSURE (PSIA) v.30181286

=

,/-

\\- ~

CTM T.

AIR MASS (LEM) 123161.

m

=

4

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D) f~s

SUMMARY

OF MEASURED DATA AT 1900 0523

(

)

TEMP 1

536.48004

( 7681.)*

=

TEMP 2=

536.37000

( 7670.)-

TEMP 3=

536.70001

( 7703.)-

TEMP 4=

037.86005

( 7819.)'

TEMP 5=

536.44000

( 7677.)-

TEMP 6=

536.23999

( 7657.)-

TEMP 7=

327.20001

( 6733.).

TEMP 8=

527.44000

( 6777.)-

TEMP 9

527.31001 i734.)

TEMP 10 7. % O 0 ".

(

,7~3.>

TEMP 11 528.37000

( 6870.).

=

TEMP 12 =

527.55005

( 6788.).

TEMP 13 =

527.44000

( 6777.)

TEMP 14 =

527.61005

( 6794.)

TEMP 15 =

527.63000

( 6796.)

TEMP 16 =

527.81000

( 6814.)-

TEMP 17 =

527.81000

( 6814.)-

TEMP 18 =

327.65002

( 6798.)-

TEMP 19 527.75000

( 650G.).

=

TEMP 20 =

528.06000

( 6839.)

TEMP 21 527.98999

( 6832.)'

=

TEMP 22 =

528.07001

( 6840.)-

TEMP 23 =

527.78003

( 7011.)-

TEMP 24 =

529.03003

( 6936.).

fs

(

)

61.087383 ( 6'1962.)

PRES 1

=

0.44099600

( 7578.)*

VPRS 1

=

VPRS 2=

0.43502724

( 7537.)

VPRS 3=

0.43400803

( 7530.)-

VPRS 4

0.42426684

( 7462.)*

^

=

VPRS 5=

0.22151355

( 5596.)-

3 VPRS 6=

0.21755859

( 5546.)-

VPRS 7

0.21046849

( 5455.)-

=

VPRS 8=

0.21054521

( 5456.)-

VPRS 9=

0.20617580

( 5399.)

CTMT. FREE AIR VOL.

398730.

=

SUMMARY

OF CCRRECTED DATA TIME = 1900 DATE = 0523 TEMPERATURE (DEGREES R.)

531.17719

=

CORRECTED PRESSURE (PSIA) 60.785881

=

VAPOR PRESSURE (PSIA) 0.30150235

=

7-(

I CTMT. AIR MASS (LBM) 123160.

=

APPENDIX E

'SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D)

~

SUMMARY

OF MEASURED DATA AT 1915 0523

_s

/

s

(

TEMP 1

536.48004

( 7681.)

=

TEMP 2=

536.37000

( 7670.)

TEMP 3=

536.67999

( 7701.)

T.EMP 4

537.84003

( 7817.)

=

TEMP 5=

536.45001

( 7678.)-

TEMP 6=

536.23999

( 7657.)

1 TEMP 7=

527.2300G

( 6750.).

TEMP 8=

327.49004

( 6781.)

TEMP 9

227.50002

( 67?1.;

TEMP 10 =

527.'45001

( 6778.}

528.42004

( 6875.).

TEMP 11

=

TEMP 12 =

527.62000

( 6795.)

TEMP 13 =

527.48004

( 6781.)

527.63000

( 6796.)

TEMP 14

=

TEMP 15 =

527.65002

( 6798.).

TEMP 16 =

527.87000

( 6820.)

TEMP 17 =

527.86005

( 6819.)

TEMP 13 =

327.67999

( 6801.)

527.77002

( 6310.)

TEMP 19

=

TEMP 20 =

528.11005

( 6844.)

528.04004

( 6837.)

TEMP 21

=

TEMP 22 =

528.11005

( 6844.)

TEMP 23 =

530.83002

( 7116.)

TEMP 24 =

529.11005

( 6944.)

f_

(

)

61.088367 ( 6'1963.)

PRES 1

=

0.43997759

( 7571.)-

VPRS 1

=

VPRS 2=

0.43473578

( 7535.)

VPRS 3=

0.43444481

( 7533.1 VPRS 4=

0.42681202

( 7480.)

VPRS 5=

0.22143450

( 5595.)

VPRS 6=

0.21890330

( 5563.)

VPRS 7=

0.21062189

( 5457.)

f VPRS 8=

0.21146560

( 5468.)

l VPRS 9=

0.20617380

( 5399.)

f I

CTMT. FREE AIR VOL.

398730.

=

l

SUMMARY

OF CORRECTED DATA TIME = 1915 DATE = 0523 i

531.21979 j

TEMPERATURE (DEGREES R.)

=

I 60.786385 CORRECTED PRESSURE (PSIA) l

=

0.30198163 VAPOR PREHSURE (PSIA)

=

I~.s')

t

(

123151.

x' CTMT. AIR MASS (LBM)

=

i

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D)

(

)

SUMMARY

OF MEASURED DATA AT 1930 0523 v

536.44702

( 7678.)

TEMP 1

=

TEMP 2=

536.34302

( 7667.)

TEMP 3=

536.66101

( 7699.)

TEMP 4=

537.83405

( 7816.)

TEMP 5=

536.39502

( 7673.)

TEMP 6=

536.23303 s 7656.)

TEMP 7

527.27802

( 6751.)

=

TET:P 2

527.52704

( s75m.

'Z

.22903

( 6Ts_.

TE5 s

=

e TEMP 10 =

527.49902

( 6793.)

520.46204

( 6879.)

TEMP'11

=

TEMP 12 =

527.67200

( 6800.)

TEMP 13 =

527.50604

( 6784.)

527.67700

( 6801.)

TEMP 14

=

TEMP 15 =

527.69604

( 6803.)

527.87799

( 6821.)

TEMP 16

=

TEMP 17 =

527.91400

( 6824.)

TEMP 18 =

527.72601

( 6306.)

TEMP 19 =

527.82704

( 6816.)

TEMP 20 =

528.13:00

( 6846.)

528.09003

( 6842.)

TEMP 21

=

TEMP 22 =

528.15601

( 6849.)

TEMP 23 =

529.88702

( 7022.)

7y

(

)

TEMP 24 =

529.19000

( 6952.)

33,089352 ( 61964.)

'FRES 1

=

0.44128805

( 7590.1 VPRS 1

=

VPRS 2=

0.43558043

( 7541.)

VPRS 3=

0.43432829

( 7532.)

0.42404050

( 7460.)

VPRS

^ =

VPRS 5=

0.22207512

( 5603.)

VP93 6=

0.21559696

( 5521.)

VPRS 7=

0.20750019

( 5416.)

VPRS 8=

0.21210223

( 5476.)

VPRS 9=

0.20682526

( 5408.)

398730.

CTMT. FREE AIR VOL.

=

SUMMARY

OF CORRECTED DATA TIME = 1930 DATE = 0523 531.21742 TEMPERATURE (DEGREES R.)

=

60.788082 CORRECTED PRESSURE (PSIA)

=

(

)

VAPOR PRESSURE (PSIA)

O.30126810 123155.

CTMT. AIR MASS (L3M)

=

j 9

k

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 1945 0523

~~

i

'\\

(' '!

536.45404

( 7678.)

TEMP 1

=

TEMP 2=

336.34705

( 7668.)

TEMP 3=

536.67401

( 7700.)

TEMP 4=

537.80902 t 7814.)

TEMP 5=

536.37704

( 7671.)

TEMP 6=

536.21600

( 7655.)

TEMP 7=

327.33704

( 6767.)

527.57501

( 6791.)

TEMP 8

=

527.67102

( 6500.)

TE!:P 9

=

'iEMP 10 =

527.55200

( 6703.;

528.50903

( 6884.)

TEMP 11

=

TEMP 12 =

527.70703

( 6804.)

TEMP 1' 3 =

527.56403

( 6789.)

TEMP 14 =

527.71704

( 6805.)

TEMP 15 =

527.75702

( 6809.)

TEMP 16 =

527.93903

( 6827.)

TEMP 17 =

527.95703

( 6829.)

TEMP 18 =

527.76202

( 6809.)

TEMP 19 =

527.06700

( 6520.)

TEMP 20 =

528.17804

( 6851.)

528.10602

( 6844.)

TEMP 21

=

TEMP 22 =

528.19702

( 6853.)

TEMP 23 =

529.93903

( 7027.)

TEMP 24 =

529.24701

( 6958.)

y,N i

61.091324 ( 61966.)

PRES 1

=

0.43952626

( 7568.)

VPRS 1

=

VPRS 2=

0.43408081

( 7531.)

VPRS 3=

0.43425554

( 7532.)

VPRS 4=

0.42382839

( 7439.)

VPRS 5=

0.22265518

( 5610.)

VPRS 6=

0.22013728

( 5579.)

VPRS 7=

0.20923363

( 5439.)

VPRS 8=

0.21268514

( 5484.)

VPRS 9=

0.20739281

( 5415.)

398730.

CTMT. FREE AIR VOL.

=

SUMMARY

OF CCRRECTED DATA TIME = 1945 DATE = 0523

$3'1.24689 TEMPERATURE (DEGREES R.)

=

60.789280 CORRECTED PRESSURE (PSIA)

=

0.30204388 VAPOR PRESSURE (PSIA)

=

'sI 123151.

CTMT. AIR MASS (LBM)

=

APPENDIX E SHORT DURATION (8-HOUR) ILRT RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 2000 0523 536.42999

( 7676.)

TEMP 1

=

TEMP 2=

536.33203

( 7666.)

TEMP 3=

536.66699

( 7700.)

537.77100

( 7810.)

TEMP 4

=

TEMP 5=

536.40399

( 7673.)

TEMP 6=

536.20599

( 7654.)

TEMP 7=

527.39001

( 6772.)

TEMP O=

527.63000

( 6796.)

T2:1P 7

'. 71 a:.-
03. 9.)

TEMo 10 -

327.502c

( L7a l. -

528.57001

( 6890.)

TEMP 11

=

TEMP 12 =

527.73901

( 6807.)

TEMP 13 =

527.60602

( 6794.)

TEMP 14 =

527'.76105

( 6809.)

TEMP 15 =

527.79700

( 6813.)

TEMP 16 =

52'I.97504

( 68:1.}

TEMP 17 =

528.01300

( 6834.)

TEMP 10 =

527.82202

( 6815.)

527.92004

( 6025.)

TEMP 19

=

l TEMP 20 2

528.22400

( 6855.)

523.13000

( 6846.)

TEMP 21

=

TEMP 22 =

528.24200

( 6857.)

TEMP 23 =

530.00104

( 7033.)

529.33899

( 6967.)

TEMP 24

=

61.091324 ( 6'1966.)

PRES 1

=

VPPS 1

0.42525664

( 7469.)

=

i VPRS 2=

0.42897652

( 7493.)

VPRS 3=

0.43394974

( 7530.)

0.42655745

( 7478.)

VPRS 4

=

VPRS 5=

0.22346400

( 5620.)

VPRS 6=

0.21759024

( 5546.)

VPRS 7=

0.20991629

( 5448.)

VPRS 8=

0.21307629

( 5489.)

VPRS 9=

0.20802942

( 5423.)

i l

CTMT. FREE AIR VOL.

398730.

=

i i

SUMMARY

OF CORRECTED DATA TIME = 2000 DATE = 0523 531.27240 TEMPERATURE (DEGREES R.)

=

60.791073 CORRECTED PRESSURE (PSIA)

=

0.30025002 VAPOR PRE 55UPE (PSIA)

=

123149.

CTMT. AIR MASS (LBM)

=

--..-------.c

APPENDIX E I

SHORT DURATION (8-HOUR) ILRT RAW DATA I

SUMMARY

OF MEASURED DATA AT 2015 0523 TEMP 1

G36.41101

( 7674.)

=

TEMP 2=

536.30402

( 7663.)

TEMP 3=

536.65502

( 7699.)

TEMP 4

537.80304

( 7813.)

=

TEMP 5=

536.37903

( 7671.)

TEMP 6-536.17999

( 7631.)

TEli?

7 DZ7.43701

( 6777.)

=

TEMF 0

527.67102

( 6800.>

T2: T 327.7.170:

c it.>

2in lu -

3 2.. = 1

'? 7 TEMP 11 528.59601

( 6E93.1

=

TEMP 12 =

527.78101

( 6011.)

TEMP 13 =

527.63104

( 6796.)

TEMP 14 =

527.82001

( 6815.)

TEMP 15 =

527.84406

( 6817.)

+

TEMP 16 -

323.01001

( 6834.)

TEMP 17 529.05200

( 6838.)

i

=

TEMP 18 =

527.87103

( 6E20.)

TEMP 19 =

527.93203

( 6323.)

l 528.24304

( 6857.)

TEMP 20

=

t TEMP 21 523.15601

( 6349.)

i

=

[

TEMP 22 =

528.27502

( 6861.)

TEMP 23 =

530.06104

( 7039.)

TEMP 24 =

529.42902

( 6976.)

l 4

t PRES 1

61.093292 ( 61968.)

l

=

0.43581361

( 7542.)

i VPRS 1

=

VPRS 2=

0.43341118

( 7526.)

YPRS 3=

0.43373135

( 7528.)

VPRS 4

0.42422432

( 7462.)

=

VPRS 5=

0.22381531

( 5624.)

VPRS 6=

0.21657777

( 5534.)

[

VPRS 7=

0.21013102

( 5451.1 VPRS 8=

0.21307629

( 5489.)

VPRS 9=

0.20824422

( 5426.)

i CTMT. FREE AIR VOL.

398730.

n l

l

SUMMARY

OF CORRECTED DATA i

i TIME = 2015 DATE = 0523 t

TEMPERATURE (DEGREES R.)

531.29041

=

CORRECTED PRESSURE (PSIA) 60.791852

=

VAPOR PPESSURE (PSIA) 0.30141065

=

l CTMT. AIR MASS (LEM) 123146.

=

i t

i I

f

APPENDIX E PRINTED REPORTS FOR VERIFICATION TESTS SUSOUEHANNA VERIFICATION TEST LEAKAGE RATE (WEIGHT PERCENT / DAY)

TOTAL-TIME ANALYSIS TIME AND DATE AT SFART OF TEST:

2130 0523 ELAPSED TIME:

4.00 HOURS TIME TEMP.

PRESSURE

.iEA5LRED (R)

(1 SIfd LI.'!: WE T iTE 2130 531.393 60.7727 2145 531.413 60.7674 1.199 2200e 531.432 60.7627 1.133 2215 531.445 60.7586 1.052 2230 531.467 60.7543 1.061 2245 531.487 60.7502 1.voa 2300 531.504 60.7455 1.049.

2315 531.316 a0.7400 1.053 2330 531.533 60.7347 1.006 2345 531.550 60.7312 1.043 0

531.568 60.7263 1.049 15 531.587 60.7211 1.059 30 531.603 60.7167 1.052 l

45 531.616 60.7121 1.045 l

100 531.633 60.7068 1.051 115 531.647 60.7009 1.061 130 531.668 60.6962 1.064 MEAN OF MEASURED LEAKASE RATES 1.068

=

VERIFICATION TEST LEAKAGE RATE UPPER LIMIT =

1.403 VERIFICATICN TEST LEAKAGE RATE LOWER LIMIT =

0.903 THE CALCULATED LEAKAGE RATE 1.034

=

l l

l l

1 1

APPENDIX E PRINTED REPORTS FOR VERIFICATION TESTS (CONT'D)

,.f\\

(

)

SUSOUEHANNA VERIFICATION TEST

</

LEAKAGE RATE (WEIGHT PERCENT / DAY)

MA25-POINT ANALYSIS TIME AND DATE AT START OF TEST:

2130 0523 ELAPSED TIME:

4.00 HOURS

'i' I ME

'IEMP PRESSURE CTMr. AIR MAS 3 L. CSS TOT.AVD. HASS

.R'

/ C C I. t. ?

(. 3 2 (LO?

(L2:.

L203 L 2, J;i.

2130 531.3"3 60.7727 123083.

2145 531.4:3 60.7674 123068.

15.4 61.5 2200 531.432 60.7627 123054.

13.7 58.1 2215 531.445 60.7586 123043.

11.4 54.0 2230 531.467 60.7543 123029.

13.9 54.4 2245 531.487 60.7502 123016.

12.8 53.8 2300 531.504 60.7455 123003.

13.5 53.8 2315 531.516 60.7400 122989.

13.8 54.0 2330 531.533 6 0. -' 3 ' ~

122974.

14.0 34.7 2345 53!.550 co.7312 122963.

1L.U 53.5 0

531.568 60.7263 122947.

14.1 53.S

- 15 531.587 60.7211 122934.

14.9 54.3 30 531.603 60.7167 122922.

12.4 53.9 45 531.616 60.7121 122909.

12.4 53.6 (n) 100 531.633 60.7068 122895.

14.4 53.9 115 531.647 60.7009 122879.

~ 15.3 54.4 130 531.668 60.6962 122865.

14.4 54.6 FREE AIR VOLUME USED (MILLIONS OF CU. FT.)

0.399

=

REORESSION LINE INTERCEPT (LBM) 123083.

==

SLOFE (LEM/HR)

-33.9

=

VERIFICATION TEST LEAKAGE RATE UPPER LIMIT==

1.403 VERIFICATION TEST LEAKAGE RATE LOWER LIMIT =

0.903 THE CALCULATED LEAKAGE RATE 1.052

==

CONT. FREE AIR VOLUME AT TIME 130 398730.

=

.s_/

APPENDIX E PRINTED REPORTS FOR VERIFICATION TESTS (CONT'D)

TEST.DAT SUSQUEHANNA VERIFICATION TEST 1.000 VOL =

398730.00 ALMAX

=

VRATET = 1.153 VRATEM = 1.153 VRATEP = 1.166 TIME DATE TEMP PRESEURE VPRS. VOLUME 2030 523 531.31433 60.791206 O.30208570 390730.

2043 523 531.33149 oO.786640 0.30271029 398/30.

2100 523 531.35114 60.782059 0.30236676 398730.

2115 523 531.37244 60.776264 0.30323720 398730.

2130 523 531.39331 60.772675 O.30239033 393730.

2140 523 53L.41 39 60.767387 0.30325145 398730.

720n 127 v71.43152 20.7e2703 0.302u;0?i 39273v.

Z213 911. 443G 6:. Y S 3 f;2 3 0.30322,v) 0 -8 GO.

2230 523 531.46729 60,754272 O.303562e7 398730.

2243 523 531.48706 60.750210 0.30368873 398730.

2300 523 531.50385 60.745472 0.30448389 398730.

2315 523 531.51593 60.740021 O.30501249 399730.

2330 523 531.53339 60.734684 O.30542383 398730.

2345 523 531.53023 60.731201 0.3049.3493 398730.

O 524 531.56830 60.726273 O.30496953 398730.

f 15 524 531.58734 60.721089 0.30523033 398730.

30 524 331.60266 cO.716690 0.30569163 398730.

45 524 531.61584 60.712059 0.30539399 398730.

100 524 531.63251 60.706841 0.30563972 395730.

115 524 531.64691 60.700928 0.30667788 398730.

l

(

130 524 531.66797 60.696239 0.30644378 398730.

{

L i

I I

l 6

I I

i l

\\

l i

f 6

l i

APPENDIX E VERIFICATION TEST RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 2030 0523

(_)

TEMP 1

536.39099

( 7672.)

=

TEMP 2=

536.29700

( 7663.)

TEMP 3=

536.65302

( 7699.)

TEMP 4

537.77502

( 7811.)

=

TEMP 5=

536.36102

( 7669.)

TEMP 6=

536.19000

( 7652.)

TEMP 7=

527.48901

( 6752.)

TEMP 8=

527.71600

( 6805.)

". ~ C:-'

527.230T9 6316.)

TEMP 10 "27.d510C

( 6793.)

=

TEMP 11 528.64502

( 6899.)

=

TEMP 12 =

527.82703

( 6816.)

TEMP 13 =

527.66302

( 6799.)

TEMP 14 527.84900

( 6818.)

=

TEMP 15 =

527.89099

( 6822.)

TEMP 16 =

323.06201

( 6839.)

TEMP 17 =

S28.09601

( 6843.)

TEMP 18 =

527.92004

( 6825.)

TEMP 19 =

525.00201

( 6S33.)

TEMP 20 523.26599

( 6860.)

=

TEMP 21 528.17999

( 6851.)

=

TEMP 22 =

528.32300

( 6865.)

TEMP 23 =

530.10602

( 7044.)

TEMP 24 =

529.50500

( 6984.)

,ey 61.093292 ( 6'1968.)

PRES 1

=

VPRS 1

0.43662995

( 7548.)

=

VPRS 2=

0.43242100 t 7519.)

VPRS 3=

0.43406627

( 7530.)

VPRS 4

0.42443654

( 7463.)

=

VPRS 5=

0.22465682

( 5635.)

VPRS 6=

0.21796201

( 5551.)

VPRS 7=

0.21153462

( 5469.)

VPRS 8=

0.21365155

( 5497.)

i VPRS 9

0.20933338

( 5440.).

=

CTMT. CREE AIR VOL.

398730.

=

SUMMARY

OF CORRECTED DATA l

TIME ' 2030 l

DATE = 0523 I

531.31433 TEMPERATURE (DEGREES R.)

=

60.791206 CORRECTED PRESSURE (PSIA)

=

0.302C8570 VAPOR PRESSURE (PSIA)

=

(')

< (.)

CTMT. AIR MASS (LBM) 123139.

=

. ~ -

APPENDIX E VERIFICATION TEST RAW DATA (CONT'D)

SUMMARY

OF MEASURED CATA AT 2045 0523 536.37201

( 7670.)

TEMP 1

=

TEMP 2=

536.27399

( 7660.)

TEMP 3=

536.63000

( 7696.)

537.74603

( 7808.)

TEMP 4

=

TEMP 5=

536.35504

( 7669.)

TEMP 6=

536.16302

( 7649.)

TEMP 7=

527.53802

( 6787.)

TEMP S=

527.76501

( 6810.)

327. E;?'-E TIM' 9

< M ira.}

=

TEMF 10 52/./1e00 t siiv.>

TEMP 11 528.68903

( 6902.)

=

TEMP 12 =

527.86304

( 6819.)

TEMP 13 =

527.70905

( 6804.)

TEMP 14 =

527.88904

( 6822.1 TEMP 15 =

527.93604

( 6827.)

TEMP 16 =

528.10504

( 6844-)

TEMP 17 =

528.12701

( 6846.)

32'7.96802

( 6830.)

TEMP 18

=

TEMP 19 =

525.02002

( 6835.)

529.29102

( 68c2.)

TEMP 20

=

528.21600

( 6855.)

TEMP 21

=

TEMP 22 =

528.35803

( 6869.)

TEMP 23 =

530.16179

( 7049.)

TEMP 24 529.57404

( 6990.)

=

PRES 1

61.089352 ( 61964.)

=

VPRS 1

0.43664339

( 7548.)

=

VPRS 2=

0.43122706

( 7511.)

VPRS 3=

0.43419734

( 7531.)

0.42486072

( 7466.)

VPRS 4

=

VPRS 5=

0.22514701

( 564'1.)

VPRS 6=

0.22051693

( 5383.)

VPRS 7=

0.21230930

( 5479.)

VPRS 8=

0.21462399

( 5509.)

0.20888852

( 5434.)

VPRS 9

=

398730.

CTMT. FREE AIR VOL.

=

SUMMARY

OF CORRECTED DATA TIME = 2045 DATE = 0523 l

531.33140 TEMPERATURE (DEGREES R.)

=

60.7966AO CORRECTED PRESSURE (PSIA)

=

VAPOR PRE 55URE (PSIA)'=

0.3027.029 123 0.,

CTMT. Aln MASS (LEM) e q

s 0

_______,,__.._________m.,_.

t x

i APPENDIX E s

I VERIFICATION TEST RAW DATA (CONT'D) j i

]

SUMMARY

OF MEASURED DATA.AT 2100 OS2a i

536.35101

( 7668.)

TEMP 1

i

=

TEMP 2=

536.25800

( 7659.)

TEMP 3 '=

336.62604

( 7696.)

537.76d03

( ?u12.)

l l

i Et F 4

=

TEMP 5=

536.33301

( 76ee.)

i' TEMP 6

336.13000

( 7647.)

=

TEMP 7=

527.50005

( 6771.)

TEMP S=

527.90402

( 6917.)

l 227.09-106

( c a.~.

I TE?P 9

r i

527.76404

( 69t9.!

l TFMP 10

=

528.73199

( 6700.)

i TEMP 11

=

i n

TEMP 12 =

527.91302

( 6824.)

t TEMP 13 =

527.75104

( 6808.)

~-

527.92004

( 6825.)

TEMP 14

=

TEMP 15 =

527.95502

( 6829.)

TEMP lo =

5Z8.14703

( 6348.)

TEMP 17 528.17102

( 6S50.)

=

i TEMP 18 a 527.99402

( 6332.)

529.C0:01

( 6S41.)

1 CMP 19

=

520.33099

( 6866.)

TEMP 20

=

528.26801

( 6860.'

TEMP 21

=

TEMP 22 =

528.39001

( 68/2.)

TEMP 23 =

530.20905

( 7054.)

TEMP 24 =

529.63403

( 6996.)

4 l

PRES 1

61.084427 ( 61959.)

=

0.43734223

( 7553.)

VPRS 1

=

i VPRS 2=

0.43239200

( 7519.)

VFRS 3=

0.43367323

( 7528.)

0.42471939

( 7465.)

VPRS 4

=

VPRS 5=

0.22591500

( 5650.)

4 0.21657777

( 5534.)

VPRS 6

=

0.21075232

( 5459.)

VPRS 7

=

VPRS 8=

0.21628509

( 5530.)

VPRS 9, =

0.20954043

( 5443.)

i CTMT. FREE AIR VOL.

398730.

n I

SUMMARY

OF CORRECTED DATA r

TIME n 2100 l

DATE*= 0523 i

i i

531.35114 TEMPERATURE (DEGREES R.)

=

60.782059 CORRECTED PRESSURE (PSIA)

=

0.30236676 VAPOR PRESSURE (PSIA)

=

123112.

CTMT. AIR MASS (LBM)

=

1 i

._. _ - _ _ _ _ _ _ _ __ _ _ _ _. _ - -.-.__ _._ y r___

APPENDIX E

,J VERIFICATION TEST RAW DATA (CONT'D)

?

i St.JMMARS - dS MEASURED DATA AT 2115 0523 l

TEMP, l' =

536.35004

( 7668.)

TEMP 2%

536.25104

( 7658.)

' TEMP 3^='

536.61401

( 7694.)

TEMi'

  • =

537.77502

( 7811.)

i TEMP 5=

.536.31299

( 7664.)

TEMP 6e 536.14301

( 7647.)

}

TEMP 7'

527.65100

( 6799.)

'i Ef"P 8 -

527.83704

( =a17.1

[

TEMP O-'.95707

  • 6029 >

TEP'A 19

% c'. 7 9 9 99 6 '13. )

l

$28.77100

( 6910.)

TEMP 11

=

IM TEMP 12 =

527.95099

( 6828.)

[

TEMP 13 =

527.80200

( 6813.)

527.95404

( 6828.)

TEMP 14

=

TEMP 15 =

528.01001

( 6834.)

TEMP 16

  • 528.14600

( cE45.>

TEMP 17 => 528.20001

( 6853.)

TEMP 18 =

E28.03302

( 6036.)

l TEhP 19 523.10199

( 6843.)

=

529.35803

( 6869.)

TEMP 20

=

528.28802

( 6862.)

TEMP 21

=

TEMP 22 =

528.42200

( 6875.)

TEMP 23 =

530.26404

( 7059.)

529.69299

( 7002.)

TEMP 24

=

61.079502 ( 61954.)

PRES 1

=

O.43834689

( 7560.)

VPRS 1

VPRS 2=

0.43255195

( 7520.)

VPRS 3=

0.43338197

( 7526.)

VPRS 4=

0.42559591

( 7471.)

i i

e VPHS 5=

0.22585781

( 5649.)

0.21991578

( 5576.)

VPRS 6

=

VPRS 7=

0.21285389

( 5486.)

VPRS 8=

0.21579470

( 5524.)

VPRS 9=

0.20943305

( 5442.)

l 398730.

CTMT. FREE AIR VOL.

=

SUMMARY

OF CORRECTED DATA TIME = 2115 DATE = 0523 531.37244 TEMPERATURE (DEGREES R.)

=

l 60.776264 CORRECTED PRESSURE (PGIA)

=

l l

0.30323720 VAPOR PRESSURE (PSIA)

=

i 4

I 123095.

[

CFMT. AIR MASE (LBM)

=

l r

i

-v.-- - -

-,r

--e

APPENDIX E i

VERIFICATION TEST RAW DATA (CONT'D) l

SUMMARY

OF MEASURED DATA AT 2130 0523 536.35101

( 7668.)

i TEMP 1

=

TEMP 2=

536.22900 4 7656.)

TEMP 3=

536.60004

( 7693.)

TEMP 4=

537.77502

( 7811.)

TEMP 5=

536.32202

( 7665.)

TEMP 6=

536.13G00

( 7647.)

TEMP 7=

527.63604

( 6GO2.)

TEMP 8=

527.03704

( 6322.)

TE;:P 9

327.70004

( a331.)

TE;d.P 10 2f7.84601

( eS19..

d28.SO902

( 6914.)

TEMP 11

=

TEMP 12 -

527.98004

( 6831.)

i TEMP 13 =

527.83502

( 6817.)

527.99103

( 6832.)

i TEMP 14 =

l TEMP 25 =

528.04602

( 5838.)

TEMP 16 u 528.17902

( 6551.)

TEMP 17 =

528.23901

( 6357.)

TEMP [8 =

528.08002

( 6e41.>

525.14301

( 6347.)

{

TEMP 19

=

TEMP 20 =

528.39600

( 6073.)

529.31799- ( a065.)

TEMP 21

=

TEMP 22 =

528.44702

( 6878.)

i TEMP 23 =

530.32001

( 7065.)

l TEMP 24 =

529.75104

( 7008.)

l 61.075565 ( 61950.)

PRES 1

=

0.44009423

( 7572.)

VPRS 1

=

VPRS 2=

0.43240643

( 7519.)

VPRS 3=

0.43327999

( 7525.)

0.42344663

( 7456.)

VPRS 4

=

VPRS 5=

0.22680554

( 5661.')

VPRS 6=

0.21653031

( 5533.)

VPRS 7=

0.21236302

( 5480.)

VPRS 8=

0.21710773

( 5540.)

VPRS 9=

0.20944841

( 5442.)

390730.

CTMT. FREE AIR VOL.

=

s

SUMMARY

OF CORF:ECTED DATA TIME = 2130 DATE = 0523 531.39331 TEMPERATURE (DEGREES R.)

=

60.772675 CORRECTED PRESSURE (FSIA)

=

0.30289033 VAPOR PRESSURE (PSIA)

=

123083.

CTMT. AIR MASE (LDM)

=

--w-

APPENDIX E l

VERIFICATION TEST RAW DATA (CONT'D)'

l

SUMMARY

OF MEASURED DATA AT 2145 0523 l

r 536.33704

( 7667.)

l TEMP 1

=

TEMP 2=

536.22205

( 7655.)

i TEMP 3=

536.59601

( 7693.)

idMP 4=

537.73700

( 7607.)

TEMP 5=

53o.33405

( 766o.)

l TEMP 6

536.12000

( 7645.)

=

TEMP 7e 527.72302

( 1505.)

i i

rEMP S

U27.92902

( cB26.)

f

" ~-J-

~

ST1._!504

( 2E3C.'

527.87001

ha.-

l T. :..

1:

=

1 528.84204

( 6917.)

t TEMP 11

=

TEMP 12 =

527.99701

( 6833.)

TEMP 13 =

527.86304,

( 6819.)

l TEMP 14 =

528.04004

( 6837.)

[

TEMP 15 =

528.08899

( 6842.)

l 528.20801

( 630i.)

l TEMP 16 r

528.27002

( 6860.)

(

TEMP 17

=

1EMP 18 =

523.09900

( 6a-13. )

i 522.17303

( 6350.)

)

TEMP 19

=

TEMP 20 =

528.44299

( 6877.)

f 528.35901

( 6869.1

[

TEMP 21

=

TEMP 22 =

528.47601

( 6881.)

[

TEMP 23 =

530.36401

( 7069.)

529.80902

( 7014.)

TEMP 24

=

I 61.070641 ( 61945.)

PRES 1

=

0.43855083

( 7561.)

VPRS 1

=

VPRS 2=

0.13195510

( 7516.)

VPRS 3=

0.43389162

( 7529.)

VPRS 4.=

0.42350325

( 7457.)

VPRS 5=

0.22771241

( 5672.)

[

VPRS 6=

0.21909313

( 5565.)

[

VPRS 7=

0.21173404

( 5472.)

l VPRS 8=

0.21641167

( 5532.)

l l

j VPRS 9=

0.20964018

( 5444.)

i CTMT. FREE AIR VOL.

398730.

=

I

SUMMARY

OF CORRECTED DATA l

l i

TIME = 2145 DATE = 0523 531.41339 TEMPERATURE (DEGREES R.)

=

60.767387 CORRECTED PRESSURE (PSIA)

=

j l

0.30325145 VAPOR PRESSURE (PSIA) k

=

l 123065.

CTMT. AIR MASS (LBM)

=

e

I APPENDIX E VERIFICATION TEST RAW DATA (CONT'D)

I

SUMMARY

OF MEASURED DATA AT 2200 0523 536.32501

( 7666.)

TEMP 1

=

TEMP 2=

536.23004

( 7656.)

L TEMP 3=

536.57202

( 7690.)

TEMP 4=

537.73102

( 7806.)

l TEMP 5=

536.29504

( 7663.)

TEMP 6=

536.10303

( 7643.)

l TEMP 7=

527.76202 6809.)

TEMP G=

527.96600

( 6830.)

l TZM~

7 223.36702 a040.,

l TE: !P 10 =

527.'-73201

( 6026.)

j TEMP 11 528.G8904

( 6922.)

=

TEMP 12 =

528.06201

( 6839.)

i TEMP 13 =

527.90802

( 6824.)

{

528.07300

( 6840.)

f TEMP 14

=

TEMP 15 =

528.12201

( 6845.)

j TEMP 16 =

528.24603

( 6558.)

TEMP 17 =

528.30304

( 68u3.)

y TEMP 18 =

528.13800

( 6847.)

523.21704 s OE53.)

l TEMP 19

=

TEMP 20 =

328.46906

( 68S0.)

528.43500

( 6877.)

j TEMP 21

=

TEMP 22 =

528.50201

( 6883.)

i TEMP 23 =

530.42902

( 7076.)

f TEMP 24 =

529.86902

( 7020.)

l i

I 61.065716 ( 61940.)

j PRES 1

=

0.43S43418

( 7560.)

VPRS 1

=

VPRS 2=

0.43250529

( 7520.)

VPRS 3=

0.43307617

( 7524.)

VPRS 4=

0.42255586

( 7450.)

l VPRS 5=

0.22751635

( 5670.)

i VPRS 6=

0.21670435

( 5535.)

(

VPRS 7=

0.21379729

( 5498.)

VPRS 8=

0.21755068

( 5546.)

l VPRS 9=

0.20997764

( 5449.)

i r

398730.

{

CTMT. FREE AIR VOL.

=

SUMMARY

OF CORRECTED DATA TIME = 2200 DATE = 0523 f

f 531.43152 TEMPERA TURE (DEGREES R.)

=

l 60.762703 l

CORRECTED PRESSURE (PSIA)

=

0.30301094 VAPOR PRESSURE (FSIA)

=

12305J.

CTMT. AIR MASS (LEM)

=

[

t i

,n---,

-.-.. _ _ _. - ~

I APPENDIX E VERIFICATION TEST RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 2215 0523 536.28302

( 7661.)

.i TEMP 1 =

TEMP 2=

536.22101

( 7655.)

TEMP 3=

536.55402

( 7683-)

b37.6v000

( 7802.)

TEMP 4

=

TEMP S=

536.25800

( 7659.)

TEMP 6=

536.09406

( 7642.>

TEMP 7=

527.77901

( 6913.)

TEMP e=

528.00500

( ca34.)

l T O'T-523.11 -i n a'.,

L. R _ ;

527.90$00 T3MP 10 TEMP 11 528.92603

( 6926.)

=

TEMP 12 =

528.08405

( 6841.)

TEMP 13 =

527.95502

( 6829.)

TEMP 14 =

528.10199

( 6843.)

TEMP 15 =

528.16699

( 6850.)

528.2c5U1

( obcO.)

TEMF 16

=

l TEMP 17 =

528.34900

( 6868.)

528.17004

( 635G.s TEMP 18

=

520.2460!

( 6858.s TEMP 19

=

TEMP B> =

325.51300

( 6854.)

328.44704

( 6878.)

TEMP 21

=

TEMP 22 =

528.53699

( 6887.)

TEMP 23 =

530.48199

( 7081.)

529.92700-( 7026.)

TEMP 24

=

61.061775 ( (21936.)

PRES 1

=

i 0.43834689

( 7560.)

VPRS 1

=

VPRS 2=

0.43224624

( 751G.)

VPRS 3=

0.43322179

( 7525.)

VFRS 4=

0.42142463

( 7442.)

VPRS 5=

0.22791667

( 5675.)

VPRS 6=

0.21729755

( 5543.)

0.21550994

( 5520.)

VPRS 7

=

VPRS 8=

0.21740042

( 5544.)

VPRS 9=

0.21021537

( 5452.)

398730.

CTMT. FREE AIR VOL.

=

SUMMARY

OF CCRRECTED DATA TIME = 2215 DATE = 0523 531.44458 TEMPERATURE (DEGREES R.)

=

CORRECTED PRESSURE (PSIA) 60.758553

=

0.30322409 VAPOR PRESSURE (PSIA)

=

123043.

CTNT. AIR MASS (LBM)

=

P

-m.,

-4

APPENDIX E VERIFICATION TEST RAW DATA (CONT'D) f

SUMMARY

OF MEASURED DATA AT 2230 0523 336.27100

( 7660.)

TEMP 1

=

TEMP 2=

536.19501

( 7653.)

TEMP 32 536.5679?

( 7690.)

537.697v2

( 1803.)

TEMP 4

=

l TEMP 5=

536.27399

( 7660.)

j TEMP 6=

536.03600

( 7642.)

TE!1P 7m 527.04406

( 6317.)

528.04199

( 6037.)

l IEMP S

=

(

T :_.;

5 2 J.1, C'.' l

4. O...

TEH2-t'

. 2 5, ; 12._

( 6 E'. d. -

520.95300

( 6928.)

TEMP 11

=

TEMP 12 =

528.10803

( 6844.)

TEMP 13 =

527.97205

( 6830.)

6848.)

TEMP 14 =

528.15302 TEMP 15 =

529.20703 6834 )

s TEMP ic =

523.30304

'. 6333.)

TEMP 17 =

528.38202

( 6871.)

l TEMP 16 =

523.20700

( 6054.)

TEMP 19 n 520.011C4

( 6064.)

528.54199

( 6887.)

~IEMP 20

=

528.46802

( 6880.)

TEMP 21

=

TEMP 22 =

528.58203

( 6891.)

TEMP 23 =

530.52502

( 7096.)

TEMP 24 =

529.97302

( 7030.)

61.057835 ( 61932.)

FRES 1

=

0.43760428

( 7555.)

VPRS 1

=

VPRS 2=

0.43236268

( 7517.)

VPRS 3=

0.43294507

( 7523.)

0.42343250

( 7456.)

VPRS 4

=

VPRS 5=

0.22875316

( 5685.)

VPRS 6=

0.21827000

( 5555.)

VPRS 7=

0.21282319

( 5486.)

VPRS 8=

0.21871348

( 5561.)

0.21100542

( 5462.)

VPRS 9

=

398730.

CTMT. FREE AIR VOL.

=

SUMMARY

OF CORRECTED DATA TIME = 2250 DATE = 0523 531.46729 TEMPERATURE (DE8REES R.)

=

l 60.754272 l

CORRECTED PRESSURE ' PSIA)

=

l 0.00356267 VAFOR PRESSURE (PSIA)

=

123029.

CTMT. AIR MASS (LBM)

=

r

,,----,-,..e--------

.,,e

APPENDIX E VERIFICATION TEST RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 2245 0523 536.27100

( 7660.)

TEMP 1

=

TEMP 2=

536.20001

( 7653.)

TEMP 3=

536.53900

( 7637.)

537.70001

( 7803.'

TEMP 4

=

i TEMP 5=

536.26202

( 7659.)

TEMP 6=

536.09003

( 7642.)

527.37402

( 1020.)

TEMF 7

=

i TEHP 8=

U29.09099 e 6 *i l..'

C20.2OOO1 C 5.~. >

TEM' c?

=

528. 031 t:>3

( ad N.

TEMP !O

=-

52G.99603

( 6933.)

TEMP 11

=

TEMP 12 =

528.16003

( 6849.)

TEMP 13 =

528.02399

( 6835.)

528.19501

( 6853.)

TEMP 14

=

TEMP 15 =

528.23700

( 6957.)

528.33502

( 68c7.)

TEMP 16

=

TEMP 17 =

529.41003

( 6874.)

[

528.23700

a. 6857.)

i TEMP 18

=

6363.)

l TEMF 19 =

523.31604 TEMP 20 =

528.57703

( 6391.)

l 528.50500

( 6884.)

TEMP 21

=

TEMP 22 =

528.61304

( 6894.)

TEMP 23 =

530.57104

( 7090.)

TEMP 24 =

530.03204

( 7036.)

61.053898 ( 61928.)

PRES 1

=

0.43737134

( 7553.)

VPRS 1

=

VPRS 2=

0.43119794

( 7511.)

VPRS 3=

0.432G8687

( 7522.)

0.42275393

( 7451.)

VFRS 4

=

VPRS 5=

0.22896245

( 5637.)

VFRS 6=

0.21970223

( 5573.)

0.21349815

( 5495.)

VPRS 7

=

VPRS 8=

0.21869764

( 5560.)

VPRS 9=

0.21070628

5458.)

398730.

CTMT. FREE AIR VOL,

=

SUMMARY

OF CORRECTED DATA TIME = 2245 f

DATE = 0523 TEMPERATURE (DEGREES R.)

531.48706

=

60.750210 CCRRECTED PRESSURE (PSIA)

=

l 0.30368873 I

VAPOR PRESSURE (PSIA)

=

123016.

i CTMT. AIR MASS (LBM)

=

t l

APPENDIX E I

VERIFICATION TEST RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 2300 0523 536.26300

( 7659.)

TEMP 1 =

T E M.'-

2=

536.19202

( 7652.)

j T"_MP 3=

536.54901

( 7688.)

[

537.69104 t 7802.)

i (EMP 4

=

TEMP 5=

536.24902

( 7658.)

l TEMP 6=

536.07800

( 7641.)

TEMP 7

527.91003

( 6324.)

=

TEMP S=

529.13104

( 6846.)

! EP.c 5_O.22203 62 5..

l 523.07501 e341.)

TEMP 1

=

529.03601

( 6937.)

TEMP 11

=

TEMP 12 =

528.17603

( 6851.)

TEMP 13 =

528.05499

( 6839.)

528.20905

( 6854.)

TEMP 14

=

TEMP 15 =

528.27600

( 6061.>

520.37701

( 6871.)

l TEMP 16

=

TEMP 17 =

528.40399

( 6873.)

TEMP la =

328.26904

( 6860.)

520.37103 sO70.)

T 3:'.P 19

=-

TEMP 20 =

328.61200

( sB94.)

520.53303

( 6E87.)

TEMP 21

=

TEMP 22 =

528.64600

( 6898.)

l I

l TEMP 23 =

530.61499

( 7095.)

(

TEMP 24 530.08600

( 7042.)

=

l 61.049957 ( 61924.)

PRES 1

=

i 0.43857983

( 7561.)

(

VPRS 1

=

0.43205696

( 7517.)

VPRS 2

=

VPRS 3=

0.43316346

( 7524.)

VPRS 4=

0.42241442

( 7449.)

VPRS 5=

0.22973038 5697.)

0.22155315

( 5597.)

i VPRS 6

=

VPRS 7=

0.21345212

( 5494.)

VPRS 8=

0.22001864

( 5577.)

l VPRS 9=

0.21083665

( 5460.)

CTMT. FREE AIR VOL.

398730.

=

I

SUMMARY

OF CORRECTED DATA i

i TIME = 2300 DATE = 0523 I

f 531.50383 TEMPERATURE (DEGREES R.)

=

I 60.745472 CORRECTED PREESURE (PSIA)

=

l 0.30448389 l

VAPOR PRESSL'RE (PSIA)

=

123003.

CTMT. AIR MASS (LBM)

=

i

APPENDIX E VERIFICATION TEST RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 2315 0523 536.24402

( 7657.)

TEMP 1

=

TEMP 2=

536.18304

( 7651.)

TEMP 3=

536.51904

( 7655.)

537.69403

( 7802.)

IEMP 4

=

TEMP 5=

536.22803

( 7656.)

TEMP 6=

536.06400

( 7639.)

TEMP 7-527.93201

( 6826.)

328.15204

( 6548.)

TEM?

E

=

520.2a001

625G.)

l TEMP G

=

rdM? 10 =

323.!2000

( 6843.}

TEMP 11 529.06299

( 6939.)

=

TEMP 12 =

523.21399

( 6854.)

TEMP 13 =

528.08405

( 6841.)

TEMP 14 =

528.23901

( 6857.)

i l

TEMP 15 =

528.30103

( 6863.)

TEMP 16 =

528.40601

( 0874.)

528.44800

( 6878.)

TEMP 17

=

TEMP 18 =

528.30902

( 6864.)

TEMP 17 =

528.37903

( 6871.)

TEMP 20 =

523.64301

( 6897.)

528.55499

( 6859.)

TEMP 21

=

TEMP 22 =

528.66602

( 6900.)

TEMP 23 =

530.67102

( 7100.)

l TEMP 24 530.13300

( 7046.)

=

61.045033 ( 61919.)

i PRES 1

=

VPRS 1

0.43802652

( 7558.)

=

VPRS 2=

0.431591'18

( 7513.)

VPRS 3=

0.43330911

( 7525.)

VPRS 4=

0.42426684

( 7462.)

VPRS 5=

0.23005904

( 5701.)

VPRS 6

0.22333325

( 5618.)

=

l VPRS 7=

0.21450534

( 5507.)

l VPRS 8=

0.21975757

( 5574.)

VPRS 9=

0.21046849

( 5455.)

t 398730.

t CTMT. FREE AIR VOL.

=

SUMMARY

OF CORRECTED DATA TIME = 2315 DATE = 0523 l

l 531.5159a TEMPERATURE (DEGREES R.)

=

CORRECTED PRESSURE (PSIA) 60.740021

=

VAFOR PRESSURE (PSIA) 0.30501249

=

CTMT. AIR MASS (LBM) 1229E9.

=

f

{

I

APPENDIX E VERIFICATION TEST RAW DATA (CONT'D) i

SUMMARY

OF MEASURED DATA AT 2330 0523 536.24200

( 7657.)

TEMP 1

=

TEMP 2=

536.16199

( 7649.)

TEMP 7=

536.48102

( 7681.)

537.69299

( 1802.)

TEMP 4

=

TEMP 5=

536.22101

( 7655.)

TEMP 6=

536.06604

( 7640.)

TEMP 7=

527.96399

( 6829.)

TEliP S=

528.18703

( 6852.)

!2cP 9 -

222.30'.U2 62f:L.,

522.15302

(

c. 9 i c. }

TEM.: !0

=

527.09802

( 6943.)

TEMP 11

=

TEMP 12 =

528.26703

( 6860.)

TEMP 13 =

528.11499

( 6845.)

(

TEMP 14 =

528.27502

( 6861.)

l TEMP 15 =

528.33405

( 6866.)

l TEMP 16 =

528.44403

( 6877.)

TEMP 17 =

528.48004

( 6881.)

TEMP 18 =

528.34100

( 6367.)

TEMP 19 =

523.41602

( 6375.)

TEMP 20 =

528.67499

( 6900.)

528.59003

( 6392.)

TEMP 21

=

TEMP 22 =

528.69702

( 6903.)

TEMP 23 =

530.71704

( 7105.)

7 TEMP 24 =

530.17200

( 7050.)

61.040108 ( 61914.)

PRES 1

=

0.43744421

( 7554.)

VPRS 1

=

VPRS 2=

0.43325099

( 7525.)

VPRS 3=

0.432886S7

( 7S22.)

VPRS 4=

0.42300829

( 7453.)

VPRS 5=

0.23037937

( 5705.)

VPRS 6=

0.22554736

( 5646.)

VPRS.

7=

0.21448950

( 5507.)

VPRS 8=

0.22001070

( 5577.)

VPRS 9=

0.21087503

( 5460.)

398730.

CTMT. FREE AIR VOL.

=

l l

SUMMARY

OF CCRRECTED DATA TIME = 2330 DATE = 0523 5'31.33339 f

TEMPERATURE (DEGREES R.)

=

I 60.734634 CORRECTED PRESSURE (PSIA)

=

i 0.30542383

(

VAPOR PRE 3SURE (PSIA)

=

122974.

CTMT. AIR MASS (LSM)

=

5 9

t I

t

APPENDIX E VERIFICATION TEST RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 2345 0523 536.22101

( 7655.)

TEMP 1

=

TEMP 2=

536.15601

( 7649.)

TEMP 3=

536.47400

( 7690.)

537.69000

( 7802.)

TEMP 4

=

TEMP 5=

536.21802

( 7655.)

TEMP 6-536.03400

( 7636.)

TEMP 7=

523.01404

( 6934.)

TEMF S=

528.21704 t 6555.1 T7"-

'=

225.2440s

( c557.;

I 323.20300

,2 8 5.1. )

TE!-: 10

=

529.13501

( 6946.)

FEMP 11

=

TEMP 12 =

528.28302

( 6861.)

i TEMP 13 =

528.16400

( 6849.)

i l

TEMP 14 =

528.32001

( 6865.)

TEMP 15 =

528.37799

( 6871.)

[

528.47400

( 6830.)

[

TEMP 16

=

TEMP 17 =

52E.51001

( 6G84.)

TEMP 18 =

528.37500

( 6871.)

528.45300

( 6378.)

L TEMP 19 TEMP 20 =

528.69904

( 6903.)

528.57104

( 6890.)

TEMF 21

=

TEMP 22 =

528.72803

( 6906.)

TEMP 23 =

530.76300

( 7109.)

TEMP 24 =

530.22504

( 7056.)

i 61.036167 ( 61910.)

PRES 1

=

l 0.43791020

( 7557.)

VFRS 1

=

VPRS 2=

0.43122706

( 7511.)

VPRS 3=

0.43191132

( 7516.)

VPRS 4=

0.42276794

( 7451.)

VPRS 5=

0.23103693

( 5712.)

VPRS 6=

0.221,27630

( 5593.)

VPRS 7=

0.21751906

( 5546.)

e j

VPRS 8=

0.22081757

( 5587.)

i i

i VPRS 9=

0.21100542

( 5462.)

[

398730.

f CTMT. FREE AIR VOL.

=

l

SUMMARY

OF CORRECTED DATA TIME = 2345

[

DATE = 0523 i

TEMPERATURE (DEGREES R.)

531.55023

=

60.7312vi l

CORRECTED PRESSURE (PSI A)-

=

VAPOP PRESSURE (P3IA) 0.30496493

=

l 122963.

f CTMT. AIR MASS (LBM)

=

i i

I I

r

APPENDIX E ~

VERIFICATION TEST RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT O 0524 t

536.21802

( 7655.)

TEMP 1

=

TEMP 2=

536.15503

( 7649.)

TEi:P O=

336.46704

( 7680.)

537.69403

( 7802.)

i TEMP 4

=

TEMP 5=

536.21301

( 7654.)

TEMP 6=

336.02704

( 7636.)

I TEhe 7=

520.04102

( 6537.)

TEMF 3=

522.24103

( 6357.)

_._.._..,e i

a-a.

, x, s

au. a.>

=

TEF-ic =

3 2 3. J.2 u C 3

(

S3;.3. -

TEMP 11 529.17603

( 6951.)

l

=

TEMP 12 =

528.32904

  1. 6S66.)

i TEMP 13 =

528.20300

( 6853.)

TEMP 14 =

528.34705

( 6868.)

TEMP 15 =

528.41101

( 6074.)

l 523.49304

( 6592.)

TEMP 16

=

TEMP 17 =

528.53101

( 6886.)

l TEMP 13 =

528.3E501

( 6871.)

TEMP 19 a SZa.50500 t 6554.)

l TEMP 20 =

520.73999 s 6907.)

l 528.64703

( 6858.)

TEMP 21

=

TEMP 22 =

529.76202

( 6909.)

i t

TEMP 23 =

530.80603

( 7114.)

530.28302

( 7061.)

r TEMP 24

=

i 61.031242 ( $1905.)

PRES 1

=

l t

\\

0.43769181

( 7555.)

VFRS 1

=

VPRS 2=

0.43150365

( 7513.)

{

VPRS 3=

0.43242100

( 7519.)

VPRS 4=

0.42191970

( 7445.)

VPRS 5=

0.23163542

( 5719.)

!i VPRS 6=

0.22079378

( 5587.)

VPRS 7=

0.21687047

( 5537.)

l' VPRS 8=

0.22119722

( 5592.)

VPRS 9=

0.21142724

( 5468.)

l 398730.

f CTMT. FREE AIR VOL.

=

1 c

SUMMARY

OF CORRECTED DATA TIME =

0 j

l DATE = 0524 i

1 t

1 511.56830

[

TEMPERATURE (DEGREES R.)

=

t 60.726273 CORRECTED PRES 3URE (PSIA)

=

l i

l t

0.30496953 l

VAPOR FRESSURE (PSIA)

=

I 122949.

[

CTMT. AIR MASS (LEM)

=

I l

APPENDIX E VERIFICATION TEST RAW DATA (CONT'D) i

SUMMARY

OF MEASURED DATA AT IS 0524 l

536.22205

( 7655.)

TEMP 1

=

TEMP 2=

536.14801

( 7648.)

TEMP 3=

D36.45404

( 7678.)

TEMP 4=

537.70404

( 7803.)

TEMP 5=

536.21002

( 7654.)

TEMP 6=

G36.01001

( 7634.)

' 6841.)

TEMP 7"

020.07C01 TEMP 8 -

c20. d602

( 6 S c.~. }

TEM.'

03..1003 e374..

TEMP 1'

5 25. J3': 03

( c361.

529.21704

( 6955.)

TEMP 11

=

TEMP 12 =

528.34406

( 6867.)

TEMP 13 =

528.22900

( 6856.)

TEMP 14 =

528.37701

( 6871.)

l TEMP 15 =

528.44202

( 6877.)

TEMP 16 =

528.52302

( 6906.)

TEMP 17 =

528.55902

( 6887.)

TEMP 18 =

528.42700

( 6876.)

TEMP 19 =

328.53000

( 68S6.)

TEMP 20 =

328.77301

( 6910.)

528.64600

( 6898.)

TEMP 21

=

TEMP 22 =

528.78003

( 6911.)

TEMP 23 =

530.86200

( 7119.)

i TEMP 24 =

530.34406

( 7067.)

PRES 1

61.026318 ( 61900.)

=

VPRS 1

0.43888563

( 7564.)

=

VPRS 2=

0.43143100

( 7512.)

VPRS 3=

0.43311980 C.7524.)

VPRS 4

0.42174989

( 7444.)

=

VPRS 5=

0.23204009

( 5724.)

VPRS 6=

0.22109644

( 5591.)

VPRS 7=

0.21615066

( 5528.)

VPRS 8=

0.22146612

( 5595.)

VPRS 9=

0.21174175

( 5472.)

CTMT. FREE AIR VOL.

398730.

j

=

SUMMARY

OF CORRECTED DATA TIME =

15 DATE = 0524 TEMPERATURE (DEOREES R.)

531.58734

=

CORRECTED PRESSURE (PSIA) 60.721058

=

t VAPOR FRESSURE (PSIA) 0.30523035

=

CTMT. AIR MAGS (LEM) 122934.

=

l l

APPENDIX E l

VERIFICATION TEST RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 30 0524 536.20801

( 7654.)

/

TEMP 1

=

TEMP 2=

536.14404

( 7647.)

TEMP 3=

536.45502

( 7679.)

TEMP 4=

537.68304

( 7801.)

TEMP 5=

536.18799

( 7652.)

TEMP 6=

536.02301

( 7635.)

TEMP 7=

523.11401

( 6044.)

TEMP 8=

528.30304

( 6863.)

S23. HOO1

(

e.2 2 7 0. )

TE:5 9

=

TEMP 10 =

C29.29199

( 6362.)

TEMP 11 529.23401

( 6956.)

=

TEMP 12 =

528.40002' ( 6873.)-

TEMP 13 =

528.26404

( 6859.)

TEMP 14 =

528.42401

( 6875.)

TEMP 15 =

528.47101

( 6880.)

TEMP 16 =

528.53601

( 6887.)

TEMP 17 =

528.58301

( 6891.)

TEMP 18 =

528.45703

( 6879.)

l TEMF 19 =

328.06702

( 6890.)

TEMP 20 =

529.78902

( 6912.)

528.64200

( 6897.)

TEMP 21

=

TEMP 22 =

528.80701

( 6914.)

TEMP 23 =

530.9119?

( 7124.)

TEMP 24 =

530.40100 f 7073.)

(-s)

I x/

PRES 1

61.022381 ( 61896.)

=

0.43792465

( 7557.)

VPRS 1

=

VPRS 2=

0.43023697

( 7504.)

VPRS 3=

0.43227535

'. 7518.)

VPRS 4=

0.42003903

( 7432.)

I VPRS 5=

0.23243631

( 5729.)

VPRS 6=

0.22437908

( 5631.)

VPRS 7=

0.21834961

( 5556.)

VPRS 8=

0.22218131

( 5604.)

VPRS 9=

0.21193348

( 5474.)

l CTMT. FREE AIR VOL.

398730.

=

1

SUMMARY

OF CORRECTED DATA TIME =

30 DATE = 0524 531.60266 TEMPERATURE (DEGREES R.)

=

CORRECTED PRESSURE (PSIA) 60.716690

=

VAPOR PRESSURE (PSIA) 0.30569163 j

=

(_.

l

\\

K./

CTMT. AIR MASS (LEM) 122922.

=

APPENDIX E VERIFICATION TEST RAW DATA (CONT'D) y

SUMMARY

OF MEASURED DATA AT 45 0524 i()

TEMP 1

536.18103

( 7651.)

=

TEMP 2=

536.13403 1 7646.)

TEMP 3=

336.43701

( 7677.)

i TEMP 4=

537.68304

( 7801.)

TEMP 5=

536.20203

( 7653.)

l TEMP 6=

535.98901

( 7632.)

TEf1P 7=

325.15900

( 6349.)

TEMP S=

523.33405

( 69es.)

TE: ~

C23.46600 C3D.)

T i".- 10 523.31604 M_. 5.

}

TEMP 11 529.27301

( 6960.)

=

TEMP 12 =

528.41302

( 6874.)

TEMP 13 =

528.29303

( 6862.)

l TEMP 14 =

528.43799

( 6877.)

TEMP 15 =

328.50903

( 6894.)

528.59705

( 6395.)

TEMP 16 a

i TEMP 17 =

529.60400

( 68?3.)

1 TEMP 18 =

528.48602

( 6G82.)

TEMP 19.=

523.53405

( 6371.)

TEMP 20 =

528.92001

( 6915.)

TEMP 21 523.69604

( 6903.)

=

TEMP 22 =

528.84204

( 6917.)

TEMP 23 =

530.95404

( 7129.)

TEMP 24 =

530.45300

( 7078.)

Is \\

PRES 1

61.017456 ( 61891.)

=

VPRS 1

0.43671617

( 7549.)

=

VPRS 2=

0.43057200

( 7506.)

VPRS 3=

0.43185323

( 7515.)

VPRS 4=

0.42413953

( 7461.)

VPRS 5=

0.23277345

( 5733.)

VPRS 6=

0.22076216

( 5587.)

VPRS 7=

0.21737669

( 5544.)

VPRS 8=

0.22275320

( 5611.)

VPRS 9=

0.21177241

( 5472.)

CTMT. FREE AIR VOL.

398730.

=

SUMMARY

OF CORRECTED DATA TIME =

45 DATE = 0524 TEMPERATURE (DEGREES R.)

531.61584

=

CORRECTED PRESSURE (PSIA) 60.712059

=

VAPOR PRESSURE (PSIA) 0.30539599

=

,f~s i

)

CTMT. AIR MASS (LEM) 122909.

=

APPENDIX E VERIFICATION TEST RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 100 0524 g.

(

\\_/

TEMP 1

536.17401

( 7650.)

=

TEMP 2=

536.12799

( 7646.)

TEMP 3=

536.44501

( 7678.)

TEMP 4

537.63000

( 7796.)

=

TEMP 5=

536.15704

( 7649.)

TEMP 6=

535.99701

( 7633.)

TEMP 7=

529.17904

( 6851.)

TEMP 8=

528.36497

( 6870.)

TEP'P 9

525.511C5 t 6221.)

=

TEMP to =

528.37103

( $970.)

TEMP 11 529.32300

( 6965.)

=

TEMP 12 =

528.45001

( 6878.)

TEMP 13 =

528.32501

( 6866.)

TEMP 14 =

528.46100

( 6879.)

TEMP 15 =

528.53003

( 6886.)

TEMP 16 =

528.61005

( 6894.)

TEMP 17 =

528.65902

( 6899.)

TEMP 18 =

528.52100

( 6885.)

TEMP 19 =

323.62305

( 6393.)

TEMP 20 =

528.84802

( 6918.)

TEMP 21 523.71399

( 6904.)

=

TEMP 22 =

528.86603

( 6920.)

TEMP 23 =

531.00299

( 7133.)

TEMP 24 =

330.51202

( 7084.)

KY FRES' 1 61.012531 ( 61886.)

=

VFRS 1

0.43633225

( 7546.)

=

VPR3 2=

0.43111053

( 7510.)

VPRS 3=

0.43226081

( 7518.)

VPRS 4=

0.42186296

( 7445.)

VPRS 5=

0.23378500

( 5745.)

VPRS 6=

0.22193624

( 5601.)

VPRS 7=

0.21728967

( 5543.)

VPRS 8=

0.22330061

( 5618.),

VPRS 9=

0.21204852

( 5476.)

l CTMT. FREE AIR VOL.

398730.

=

l

SUMMARY

0.0 CORRECTED DATA l

TIME =

100 DATE = 0524 TEMPERATURE (DEGREES R.)

531.63251

=

CORRECTED PRESSURE (PSIA) 60.706841

=

VAPOR PRESSURE (PSIA) 0.30568972

=

p l

(.)

CTMT. AIR MASS (LSM) 122895.

=

l l

l 29 w

l APPENDIX E 1

f' VERIFICATION TEST RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 115 0524 i

536.18103

( 7651.)

i TEMP 1

=

TEMP 2=

536.09601

( 7643.)

l TEMP 3=

536.43201

( 7676.)

l TEMP 4 =

SJ/.e33OO

( 7796.)

TEMP 5=

536.15002

( 7648.)

TEMP 6=

535.98303

( 7631.)

1 TEMP 7=

52G.21399

( 6054.)

j 528.41504

( aO75.

l TEMP 8

=

TEMF 5 2 2. 5 3.~ n 3

.2 02.

l f

TEMP

.O 320.410'.o

(

=074.)

i TEMP 11 529.33301

( 6966.)

}

=

TEMP 12 =

528.48700

( 6882.)

l TEMP 13 =

528.35199

( 6868.)

528.52600

( 6886.)

i TEMP 14

=

TEMP 15 =

528.56201

( 6889.)

i I

TEMF'16 =

328.64099

( 60v7.)

TEMP 17 =

528.64703

( 6998.)

528,5350'

( 6087.)

TEMP 18

=

TEMP 19 =

528.a 501

( 6396.)

l TEMP 20 =

528.87701

( 6921.)

TEMP 21 529.76105

( e909.)

=

l TEMP 22 =

528.88501

( 6921.)

i TEMP 23 =

531.04504

( 7138.)

TEMP 24 530.56403

( 7089.)

=

PRES 1

.61.007607 ( 61881.)

=

VPRS 1

0.43705121

( 7551.)

=

VPRS 2=

0.43095034

( 7509.)

VPRS 3=

0.43167838

( 7514.)

i VPRS 4=

0.42364457

( 7458.)

VPRS 5=

0.23418975

( 5750.)

i VFRS 6=

0.22510618

( 5640.)

VPRS 7=

0.21888746

( 5563.)

VPRS 8=

0.22361927

( 5622.)

VPRS 9=

0.21250874

( 5482.)

i CTMT. FREE AIR VOL.

398730.

=

r

SUMMARY

OF CORRECTED DATA I

l TIME =

115 I

f DATE = 0524 r

531.64691 l

TEMPERATURE (DEGREES R.)

=

i I

CORRECTED PRESSURE (PSIA) 60.700928

=

0.30667755 l

VAPOR PRESSURE (PSIA)

=

I CTMT. AIR MA5S (L5M) 122S79.

i

=

t

~ _ -.- -, _ _ - - _ - _ - - -.

- l

APPENDIX E VERIFICATION TEST RAW DATA

SUMMARY

OF MEASURED DATA AT 130 0524 i

\\

\\ s

TEMP 1

536.13904

( 7647.)

=

TEMP 2=

536.10803

( 7644.)

TEMP 3=

536.44202 C 7677.)

TEMP 4

537.62201

( 7795.)

=

TEMP 5=

536.17004

( 7650.)

TEMP 6=

535.97400

( 7630.)

TEM."

7=

C2S.26001

( 6039.)

TEMP O=

528.43701

( 6577.)

TE: P 22 2. Cm i..'

C c,X9. )

i E!'f: 10 -

223.4'70-a374.>

TEMP 11 529.3G904

( 6972.)

=

TEMP 12 =

528.53101

( 6886.)

TEMP 13 =

528.39801

( 6873.)

TEMP 14 =

528.53302

( 6886.)

TEMP 15 =

328.60303

( 6893.)

S28.68903

( 6902.)

TEMP 16

=

TEMP 17 =

528.71002

( 6904.)

TEMP 13 =

52G.59705

( 6893.)

523.00402

( 6901.)

TZMP 19

=

TEMP 20 =

529.89899

( 6923.)

528.76202

( 6909.)

TEMP 21

=

TEMP 22 =

528.92902

( 6926.)

TEMP 23 =

531.09406

( 7142.)

TEMP 24 =

530.60303

( 7093.)

\\_)

PRES 1

61.002682 ( 6'1876.)

=

VPRS 1

0.43700731

( 7551.)

=

VPRS 2=

0.43116885

( 7511.)

VPRS 3=

0.43246463

( 7519.)

VPRS 4

0.42193371

( 7446.)

=

VPRS 5=

0.23450162

( 5753.)

VPRS 6=

0.22268784

( 5611.)

VPRS 7=

0.21953610

( 5571.)

VPRS 8=

0.22481206

( 5637.)

VPRS 9=

0.21234766

( 5480.)

CTMT. FREE AIR VOL.

398730.

=

SUMMARY

OF CORRECTED DATA TIME =

130 DATE = 0524 TEMFERATURE (DEGREES R.)

531.66797

=

CORRECTED PRESSURE (PSIA) 60.696239

=

i VAPOR PRESSURE (PSIA) 0.30644379

=

,y

! k)

CTMT. AIR MASS (LBM) 122865.

=

t i

1 i

APPENDIX E SUSQUEHANNA BYPASS TEST RAW DATA O

SBP 07/02/82 15:27PDT

SUMMARY

DATA SUSQUEHANNA UNIT 1 BYPASS TEST CDD =

0.60 TVOL =

159130.00 o

o TIME DATE DRYTMP DRYPRS DRYYAP SP TMP SP PRS SP VAP 2045 524 528.87698 18.859256 0.152480 534.43692 14.408735 0.407312 2100 524 528.91189 18.861217 0.154139 534.46503 14.412652 0.407757

(J130 J115 524 528.94573 18.863179 0.155691 534.49905 14.417548 0.405832 s._-

524 528.98574 18.864160 0.146116 534.53252 14.420486 0.409781 2145 524 528.98991 18.865140 0.145700 534.57142 14.424403 0.408682 2200 524 529.04855 18.867102 0.161615 534.60032 14.428320 0.404626 2215 524 529.08770 18.869064 0.160526 534.62489 14.433217 0.405348 2230 524 529.11785 18.870044 0.153230 534.66080 14.436155 0.403600 2245 524 529.15224 18.871025 0.153230 534.69238 14.439093 0.409024 2300 524 529.17623 18.872006 0.153230 534.70482 14.443989 0.408750 2315 524 529.20950 18.872987 0.153230 534.72237 14.445948 0.409298 2330 524 529.23932 18.873967 0.162859 534.75317 14.448886 0.412689 2345 524 529.27171 18.874948 0.163672 534.77475 14.452803 0.408719 0

525 529.30116 18.875929 0.165070 534.78609 14.455740 0.408323 15 525 529.32433 18.876910 0.165934 534.79663 14.458678 0.409785 30 525 529.34954 18.877891 0.167076 534.81876 14.461616 0.410201 45 525 529.38366 18.878871 0.168822 534.83255 14.464554 0.407848 0

0

0. 0
0. 0
0. 0
0. 0
0. 0
0. 0 l

O

APPENDIX E SUSQUEHANNA BYPASS TEST RAW DATA (CONT'D)

)

v SUSQUEHANNA UNIT 1 BYPASS TEST BYPASS AREA (SOUARE INCHES)

TOTAL-TIME ANALYSIS TIME AND DATE AT START OF TEST:

2045 0524 ELAPSED TIME:

4.00 HOURS TIME DRYTMP DPYPPS DPYVAP SP TMP SP PRS SP VAP APEA 2045 528.877 18.859 0.152 534.437 14.409 0.407 2100 528.912 18.861 0.154 534.465 14.413 0.408 0.01267 2115 528.946 18.863 0.156 534.499 14.418 0.406 0.02006 2130 528.986 18.864 0.146 534.533 14.420 0.410 0.01046 l

528.990 18.865 0.146 534.571 14.424 0.409 0.01247 i

(~')P145

's, 200 529.049 18.867 0.162 534.600 14.428 0.405 0.01666 2215 529.088 18.869 0.161 534.625 14.433 0.405 0.01660 2230 529.118 18.870 0.153 534.661 14.436 0.404 0.01671 2245 529.152 18.871 0.153 534.692 14.439 0.409 0.01270 2300 529.176 18.872 0.153 534.705 14.444 0.409 0.01379 2315 529.210 18.873 0.153 534.722 14.446 0.409 0.01285 2330 529.239 18.874 0.163 534.753 14.449 0.413 0.01115 2345 529.272 18.875 0.164 534.775 14.453 0.409 0.01304 0

529.301 18.876 0.165 534.786 14.456 0.408 0.01312 15 529.324 18.877 0.166 534.797 14.459 0.410 0.01258 30 529.350 18.878 0.167 534.819 14.462 0.410 0.01234 45 529.384 18.879 0.169 534.833 14.465 0.408 0.01300

'159130.00 S.

P. FREE AIR YOLUME (CU. FT.)

=

=

0.60 COEFFICIENT OF DISCHARGE 0.01376 MEAN MEASURED BYPASS AREA (SO. IN.)

=

0.00666 THE LOWER 95% CONFIDENCE LIMIT

=

0.01801 THE UPPER 95% CONFIDENCE LIMIT

=

0.01234 THE CALCULATED BYPASS AREA

=

a

APPENDIX E SUSQUEHANNA BYPASS TEST RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 2045 0524 534.360

( 7469.)

TEMP 1 =

f-~$

TEMP 2=

534.150

( 7448.)

( j TEMP 3=

534.590

( 7492.)

TEMP 4=

537.030

( 7736.)

TEMP 5=

534.290

( 7462.)

TEMP 6=

534.040

( 7437.)

TEMP 7=

528.140

( 6947.)

TEMP 8=

529.240

( 6957.)

TEMP 9=

529.480

( 6991.)

TEMP 10 =

529.450

( 6979.)

529.690

( 7002.)

TEMP 11

=

TEMP 12 =

529.570

( 6890.)

TEMP 13 =

529.340

( 6867.)

529.640

( 6897.)

TEMP 14 =

TEMP 15 =

529.710

( 6904.)

TEMP 16 =

529.890

( 6921.)

TEMP 17 =

528.790

( 6911.)

TEMP 18 =

529.740

( 6907.)

TEMP 19 =

529.990

( 6932.)

TEMP 20 =

529.190

( 6952.)

529.150

( 6948.)

TEMP 21

=

TEMP 22 =

529.360

( 6969.)

TEMP 23 =

532.540

( 7287.)

532.210

( 7254.)

TEMP 24

=

18.859 ( 18962.)

PRES 1 =

PPES 2=

14.409 ( 14435.)

0.410

( 7359.)

VPRS 1 =

VPRS 2=

0.405

( 7324.)

VPPS 3=

0.409

( 7341.)

VPPS 4=

0.407

( 7335.)

VPRS 5=

0.151

( 4569.)

VPRS 6=

0.151

( 4569.)

VPRS 7=

0.149

( 4522.)

VPRS 8=

0.152

( 4586.)

VPRS 9=

0.175

( 4958.)

l l

SUMMARY

OF CORRECTED DATA TIME = 2045 DATE = 0524 DRYWELL S.

P.

TEMPERATURE (DEGREES R.)

528.877 534.437 i

! (}

PRESSURE (PSIA) 18.859 14.409 L/

VAPOR PRESSURE (PSIA) 0.152 0.407 l

l

APPENDIX E SUSQUEHANNA BYPASS TEST RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 2100 0524

(~s\\

\\l TEMP 1 =

534.420

( 7475.)

/

TEMP 2=

534.160

( 7449.)

TEMP 3=

534.620

( 7495.)

537.060

( 7739.)

TEMP 4 =

TEMP 5=

534.290

( 7462.)

TEMP 6=

534.080

( 7441.)

TEMP 7=

528.170

( 6850.)

TEMP 3=

528.280

( 6861.)

TEMP 9=

5?8.510

( 6894.)

TEMP 10 =

529.480

( 6981.)

529.720

( 7005.)

TEMP 11 =

TEMP 12 =

528.610

( 6894.)

TEMP 13 =

528.380

( 6871.)

TEMP 14 =

528.670

( 6900.)

TEMP 15 =

528,750

( 6908.)

TEMP 16 =

528.920

( 6925.)

TEMP 17 =

528.810

( 6914.)

TEMP 18 =

528.770

( 6910.)

TEMP 19 =

529.010

< 6934.)

TEMP 20 =

529.230

( 6956.)

529.210

( 6954.)

TEMP 21

=

TEMP 22 =

529.390

( 6972.)

TEMP 23 =

532.580

( 7291.)

TEMP 24 =

532.260

( 7259.)

O 18.861 ( 18964.)

PRES 1

=

PRES 2=

14.413 ( 14439.)

VPPS 1

0.411

( 7364.)

=

VPRS 2=

0.406

( 7329.)

VPRS 3=

0.408

( 7343.)

VPRS 4=

0.407

( 7335.)

VPPS 5=

0.153

( 4596.)

VPRS 6=

0.154

( 4621.)

l VPRS 7=

0.149

( 4532.)

l VPRS 8=

0.154

( 4606.)

VPPS 9=

0.175

( 4960.)

l

SUMMARY

OF CDPRECTED DATA TIME = 2100 DATE = 0524 DRYWELL S.

P.

TEMPERATURE (DEGREES R.)

528.912 534.465 (x

d PRESSURE (PSIR) 18.861 14.413 VAPOR PRESSURE (PSIR) 0.154 0.408

APPENDIX E SUSQUEHANNA BYPASS TEST RAW DATA (CONT'D)

SUMMARY

OF MEASUPED DATA AT 2115 0524

(

534.450

< 7478.)

TEMP 1

=

TEMP 2=

534.200

( 7453.)

TEMP 3=

534.660

( 7499.)

TEMP 4=

537.060

( 7739.)

TEMP 5=

534.330

( 7466.)

TEMP 6=

534.110

( 7444.)

TEMP 7=

528.220

( 6855.)

TEMP 8=

528.310

( 6964.)

TEMP 9=

328.570

( 6990.)

TEMP 10 =

529.500

( 6983.)

TEMP 11 =

529.730

( 7006.)

TEMP 12 =

528.660

( 6899.)

TEMP 13 =

528.410

( 6874.)

TEMP 14 =

528.700

( 6903.)

TEMP 15'=

529.790

( 6912.)

TEMP 16 =

528.930

< 6926.)

TEMP 17 =

528.860

( 6919.)

TEMP 18 =

528.800

< 6913.)

TEMP 19 =

529.040

( 6937.)

TEMP 20 =

529.250

( 6959.)

529.240

( 6957.)

TEMP 21

=

TEMP 22 =

529.420

( 6975.)

TEMP 23 =

532.610

( 7294.)

TEMP 24 =

532.290

( 7262.)

f_.

PRES 1=

18.863 ( 19966.)

PRES 2=

14.418 ( 14444.)

0.411

( 7364.)

VPRS 1 =

VPRS 2=

0.406

( 7330.)

VPRS 3=

0.408

( 7347.)

VPRS 4=

0.399

( 7273.)

VPRS 5=

0.155

( 4633.)

VPRS 6=

0.156

( 4644.)

VPRS 7=

0.151

( 4559.)

VPRS 9=

0.155

( 4622.)

VPRS 9=

0.176

( 4966.)

SUMMARY

DF CDRRECTED DATA TIME = 2115 DATE = 0524 DRYWELL S. P.

TEMPERATURE (DEGREES P.)

528.946 534.499

)

PRESSURE (PSIA) 18.863 14.418 VAPDR PRESSURE (PSIA) 0.156 0.406

APPENDIX E SUSQUEHANNA BYPASS TEST RAW DATA (CONT'D)

SUMMARY

OF MERSURED DATA AT 2130 0524 534.490

( 7482.)

TEMP 1

=

TEMP 2=

534.230

( 7456.)

TEMP 3=

534.700

( 7503.)

537.050

( 7738.)

TEMP 4 =

TEMP 5=

534.360

( 7469.)

TEMP 6=

534.150

( 7448.)

TEMP 7=

528.260

( 6859.)

TEMP 8=

528.360

( 6869.)

TEMP 9=

528.610

( 6894.)

TEMF 10 =

528.560

( 6389.)

529.750

( 7009.)

TEMP 11 =

TEMP 12 =

528.690

( 6902.)

TEMP 13 =

528.440

( 6877.)

l TEMP 14 =

528.750

( 6908.)

TEMP 15 = ~528.820

( 6915.)

TEMP 16 =

528.980

( 6931.)

TEMP 17 =

528.900

( 6923.)

TEMP 18 =

529.840

( 6917.)

TEMP 19 =

529.070

( 6940.)

TEMP 20 =

529.290

( 6962.)

529.270

( 6960.)

TEMP 21

=

TEMo 22 =

529.450

( 6978.)

TEMP 23 =

532.660

( 7299.)

532.330

( 7266.)

TEMP 24

=

18.864 ( 18967.)

PRES 1

=

PRES 2=

14. 420 < 14447. )

0.411

( 7369.)

VPPS 1

=

VPRS 2=

0.403

( 7308.)

VPRS 3=

0.409

( 7350.)

l VPRS 4=

0.416

( 7403.)

i VPRS 5=

0.156

( 4646.)

VPRS 6=

0.119

( 3940.)

VPRS 7=

0.153

( 4600.)

VPRS 8=

0.154

( 4618.)

VPPS 9=

0.174

( 4937.)

l l

SUMMARY

OF CORRECTED DATA TIME = 2130 DATE = 0524 DRYWELL S. P.

I TEMPERATURE (DEGREES R.)

528.986 534.533 i

PRESSURE (PSIA) 18.864 14.420 VAPOR PRESSURE (PSIA) 0.146 0.410

SUSQUEHANNA BYPASS TEST RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 2145 0524

{~}/

534.530

( 7486.)

TEMP 1

=

TEMP 2=

534.250

( 7458.)

x_

/

TEMP 3=

534.740

( 7507.)

537.070

'( 7740.)

TEMP 4 =

TEMP 5=

534.400

( 7473.)

TEMP 6=

534.210

( 7454.)

TEMP 7=

527.900

( 6823.)

TEMP 8=

528.400

( 6873.)

TEMP 9=

528.670

( 6900.)

TEMP 10 =

528.610

( 6894.)

TEMP 11 =

529.770

( 7010.)

TEMP 12 =

528.710

( 6904.~>

TEMP 13 =

528.470

( 6880.)

TEMP 14 =

528.770

( 6910.)

TEMP 15 =

528.860

( 6919.)

TEMP 16 =

529.010

( 6934.)

TEMP 17 =

528.940

( 6927.)

TEMP 18 =

528.880

( 6921.)

TEMP 19 =

529.030

( 6941.)

TEMP 20 =

529.330

< 6966.)

529.300

( 6963.)

TEMP 21

=

TEMP 22 =

529.460

( 6979.)

TEMP 23 =

532.700

( 7303.)

TEMP 24 =

532.370

( 7270.)

18.865 ( 18968.)

PRES 1 =

[~ )

PRES 2=

14.424 ( 14451.)

'O 0.411

( 7368.)

YPRS 1

=

VPRS 2=

0.403

( 7309.)

VPRS 3=

0.409

( 7353.)

0.411

( 7368.)

VPRS 4 =

VPRS 5=

0.156

( 4643.)

VPRS 6=

0.117

( 3905.)

VPRS 7=

0.153

( 4600.)

VPRS 8=

0.155

( 4628.)

l VPRS 9=

0.174

( 4935.)

l

SUMMARY

OF CORRECTED DATA TIME = 2145 DATE = 0524 DRY 9 ELL S.

P.

TEMPERATUPE (DEGREES R.)

528.990 534.571

(

PRESSURE (PSIA) 18.865 14.424 VAPOR PRESSURE (PSIA) 0.146 0.409

APPENDIX E SUSQUEHANNA BYPASS TEST RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 2200 0524 534.550

( 7488.)

TEMP 1

=

TEMP 2=

534.270

< 7460.)

TEMP 3=

534.790

( 7512.)

537.090

( 7741.)

TEMP 4 =

TEMP 5=

534.430

( 7476.)

TEMP 6=

534.240

< 7457.)

TEMP 7=

528.310

( 6864.)

TEMP S=

528.440

( 6877.)

TEMP 9=

523.700

( 6903.)

TEMP 10 =

529.630

( 6996.)

529.800

( 7013.)

TEMP 11

=

TEMP 12 =

529.750

( 6909.)

TEMP 13 =

528.500

( 6993.)

528.810

( 6914.)

TEMP 14

=

TEMP 15 =

529.890

( 6922.)

TEMP 16 =

529.030

( 6936.)

TEMP 17 =

529.960

( 6929.)

TEMP 18 =

529.910

( 6924.)

TEMP 19 =

529.110

( 6944.)

TEMP 20 =

529.340

( 6967.)

i 529.330

( 6966.)

TEMP 21

=

TEMP 22 =

529.500

( 6993.)

TEMP 23 =

532.730

( 7306.)

532.400

( 7273.)

TEMP 24

=

18.867 ( 18970.)

PRES 1

=

PRES 2=

14.428 ( 14455.)

VPRS 1=

0.409

( 7354.)

VPRS 2=

0.405

( 7323.)

VPPS 3=

0.410

( 7356.)

0.395

( 7245.)

VPPS 4 =

l VPPS 5=

0.159

( 4681.)

l VPRS 6=

0.171

( 4896.)

VPRS 7=

0.153

( 4600.)

VPRS 8=

0.157

( 4658.)

VPRS 9=

0.176

( 4962.)

SUMMARY

OF CORRECTED DATA TIME = 2200 DATE = 0524 DRYWELL S.

P.

f

/~T

' ( )

TEMPERATURE (DEGREES R.)

529.049 534.600 PRESSURE (PSIR) 18.867 14.428 t

VAPOR PRESSURE (PSIR) 0.162 0.405

, j'

,i ',

/

~

APPENDIX E SUSQUEHANNA BYPASS TEST RAW DATA- (CONT'D)

~.

IUMMARY OF MEASUPED DATA RT 2215 0524 534.570

( 7490.)

rx TEMP 1

=

l TEMP 2=

534.290

( 7462.)

~

'/

TEMP 3=

534.830

( 7516.)-

537.090

( 7741.)

. TEMP 4 =

TEMP 5=

534.450

( 7478.)

TEMP 6=

534.270

( 7460.)

~

o

' TEMP 7=

528.370

( 6870.)

TEMP 8=

529.470

( 6830.f TEMP 9=

529.740

( 6907.)

//

TEMP 10 =

529.690

( 6901.)

529.900

( 7013.)

TEMP 11

=

TEMP 12 =

529.790

( 6912.)

TEMP 13 =

528.540- ( 6887.)

529.850

< 6918.)

. TEMP 14

=

TEMP 15 =

528.910 ~(-6924.)

TEMP 16 =

529.070

( 6940.)

TEMP 17 =

529.010

( 6934.)

TEMP 18 =

523.970

( -69 3 0.->

TEMP 19 =

529.150

( 6949.)

TEMP 20 =

529.370

( 6970.)

529.360

( 6969.)

TEMP-21

=

TEMP 22 =

529.510

( 6994.)

TEMP 23 =

532.780

( 7311.)

^

TEMP 24 =

532.440

( 7277.)

18.969 ( 18972.)

PRES-1

=

f~)}

PRES 2=

14.433 ( 14460.)

0.413

( 7379.)

VPRS 1 =

VPRS 2.=

0.405

( 7325.)

VPPS 3=

0.409

( 7353.)

/>

0.394

( 7243.)

VPPS 4 =

VPPS 5=

0.159

( 4696.)

VPPS 6=

0.165

( 4802.)

VPRS 7=

0.153

( 4600.)

VPRS 9=

0.159

( 4677.)

VPPS 9=

0.176

( 4974.)

SUMMA 9Y OF CORRECTED DATA TIME = 2215 DATE = 0524 DPYWELL S.

P.

Y

/

TEMPEPATURE (DEGREES R.)

529.088 534.625

()

PRESSURE (PSIA) 18.869 14.433 VAPOR PRESSURE (PSIA) 0.161 0.405 i

T

APPENDIX E SUSQUEHANNA BYPASS TEST RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 2230 0524

~-

TEMP 1

534.610

( 7494.)

=

TEMP 2=

534.310

( 7464.)

TEMP 3=

534.860

( 7519.)

TEMP 4=

537.030

( 7741.)

TEMP 5=

534.500

( 7483.)

TEMP 6=

534.320

( 7465.)

TEMP

'7=

528.400

( 6873.)

TEMP 9=

528.510

( 6894.)

TEMP 9=

528.790

( 6911.)

TEMP 10 =

528.710

( 6904.)

'l TEMP 11 =

529.830

( 7016.)

TEMP 12 =

528.830

( 6916.)

TEMP 13 =

528.560

( 6889.)

TEMP 14 =

528.870

( 6920.)

TEMP 15 =

528.940

( 6927.)

TEND 16 =

529.110

( 6944.)

TEMP 17 =

529.040

( 6937.)

TEMP 18 =

528.990

( 6932.)

TEMP 19 =

529.180

( 6951.)

TEMP 20 =

529.400

( 6973.)

529.370

( 6970.)

TEMP 21 =

TEMP 22 =

529.530

( 6996.)

TEMP 23 =

532.810

( 7314.)

TEMP 24 =

532.470

( 7280.)

18.870 < 18973.)

PRES 1 =

PRES 2=

14.436 ( 14463.)

{

i VPRS 1 =

0.413

( 7378.)

l VPRS 2=

0.405

( 7325.)

VPRS 3=

0.402

< 7301.)

0.394

( 7244.)

VPRS 4 =

(

VPRS 5=

0.153

( 4600.)

VPRS 6=

0.153

( 4600.)

VPRS 7=

0.153

( 4600.)

VPRS 8=

0.153

( 4600.)

VPRS 9=

0.153

( 4600.)

l l

SUMMARY

OF CDPRECTED DATA TIME = 2230 DATE = 0524 l

DRYWELL S.

P.

l

(-~

TEMPERATURE (DEGREES R.)

529.118 534.661 PRESSURE (PSIA) 18.870 14.436 VAPOR PRESSURE (PSIR) 0.153 0.404

APPENDIX E SUSQUEHANNA BYPASS TEST RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 2245 0524 334.630

( 7496.)

TEMP 1

=

TEMP 2=

c534.350

( 7468.)

TEMP 3=

534.900

( 7523.)

TEMP 4=

537.070~ ( 7740.)

TEMP 5=

534.540

( 7487.)

s TEMP 6=

534.350

( 7468.)

TEMo 7=

528.440

( 6977.)

t TEMP 8=

528.550

( 6998.)

529.900

( 6913.)

TEMP Q =

TEMP 10 =

528.760

( 6909.)

529.930

( 7016.)

TEMP 11

=

~

TEMP 12 =

528.850

(-6918.)

TEMP 13 =

528.590

( 6992.)

e __

TEMP 14 =

528.910

( 6924.)

TEMP 15 =

528.990

( 6931.)

TEMP 16 =

529.130

( 6946.)

TEMP 17 =

529.070

( 6940.)

TEMP 18 =

529.040

< 6937.)

TEMP 19 =

529.210

( 6954.)

TEMP 20 =

529.450

( 6978.)

529.400

( 6973.)

TEMP 21

=

TEMP 22 =

529.570

( 6990.)

TEMP 23 =

532.850

( 7318.)

TEMP 24 =

532.510-- ( 7284.)

O 19.871 < 19974.)

(_j PRES 1

=

PPES 2=

14.439 ( 14466.)

VPRS 1 =

0.409

( 7352.)

VPPS 2=

0.409

( 7352.)

?

VPPS 3=

0.409

( 7352.)

~

.VPRS-4 =

0.409'

( 7352.)

'VPRS 5=

0.153

( 4600.)

VPRS 6=

0.153

( 4600.)

VPRS 7=

0.153

(. 4600. )

VFRS "8 =

0.153

( 4600.)

_ VPRS -

9=

0.153

( 4600.)

SUMMARY

OF CORRECTED DATA o:

?

TIME = 2245 DATE = 0524 DRYWELL S.

P.

/~T TEMPERATURE (DEGREES R.)

529.152 534.692 V

PRESSURE (PSIA) 18.871 14.439 VAPOR PRESSURE (PSIR) 0.153 0.409

APPENDIX E SUSQUEHANNA BYPASS TEST RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 2300 0524 534.640

( 7497.)

TEMP 1 =

TEMP 2=

534.360

( 7469.)

TEMP 3=

534.930

( 7526.)

537.090

( 7742.)

TEMP 4 =

TEMP 5=

534.540

( 7487.)

TEMP 6=

534.360

( 7469.)

TEMP 7=

528.460

( 6879.)

TEMP 8=

528.590

( 6891.)

TEMP 9=

529.830

( 6916.)

TEMP 10 =

529.770

( 6910.>

529.960

( 7019.)

TEMP 11 =

TEMP 12 =

528.890

( 6922.)

TEMP 13 =

528.620

( 6895.)

TEMP 14 =

528.950

( 6928.)

TEMP 15 =

529.000

( 6933.)

TEMP 16 =

529.150

( 6948.)

TEMP 17 =

529.090

( 6942.)

TEMP 18 =

529.050

( 6938.)

TEMP 19 =

529.230

( 6956.)

TEMP 20 =

529.460

( 6979.)

529.420

( 6975.)

TEMP 21

=

TEMP 22 =

529.530

( 6991.)

TEMP 23 =

532.890

( 7322.)

532.540

( 7287.)

TEMP 24

=

N 18.872 ( 18975.)

/

PRES 1 =

PRES 2=

14.444 ( 14471.)

0.409

( 7350.)

VPRS 1

=

VPRS 2=

0.409

( 7350.)

VPRS 3=

0.409

( 7350.)

l VPRS 4=

0.409

( 7350.)

VPRS 5=

0.153

( 4600.)

VPPS 6=

0.153

( 4600.)

VPRS 7=

0.153

( 4600.)

VPRS 8=

0.153

( 4600.)

VPRS 9=

0.153

( 4600.)

i

SUMMARY

OF CORRECTED DATA TIME = 2300 DATE = 0524 DRYWELL S.

P.

TEMPERATURE (DEGREES R.)

529.176 534.705

)

PRESSURE (PSIR) 18.872 14.444 VAPDR PRESSURE (PSI A) 0.153 0.409 l

I

APPENDIX E SUSQUEHANNA BYPASS TEST RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 2315 0524

'-'}

534.660

< 7499.)

TEMP 1 =

TEMP 2=

534.370

( 7470.)

TEMP 3=

534.950

( 7528.)

537.100

( 7743.)

TEMP 4 =

TEMP 5=

534.570

( 7490.)

TEMP 6=

534.370

( 7470.)

TEMP 7=

529.490

( 6982.)

TEMP 8=

528.620

( 6895.)

TEMP o=

528.96n

( 6919.s TEMD 10 =

528.940

( 6917.)

529.880

( 7021.)

TEMP 11

=

TEMP 12 =

529.910

( 6924.)

TEMP 13 =

528.660

( 6899.)

TEMP 14 =

528.970

( 6930.)

TEMP 15 =

529.020

( 6935.)

TEMP 16 =

529.190

( 6952.)

TEMP 17 =

529.120

( 6945.)

TEMP 18 =

529.090

( 6942.)

TEMP 19 =

529.260

( 6959.)

TEMP 20 =

529.490

( 6932.)

529.450

( 6979.)

TEMP 21

=

TEMP 22 =

529.600

( 6993.)

TEMP 23 =

532.930

( 7326.)

TEMP 24 =

532.570

( 7290.)

PRES 1=

18.873 ( 18976.)

PRES 2=

14.446 ( 14473.)

0.409

( 7354.)

VPRS 1

=

VPRS 2=

0.409

( 7354.)

VPRS 3=

0.409

( 7354.)

VPRS 4=

0.409

( 7354.)

VPRS 5=

0.153

( 4600.)

VPRS 6=

0.153

( 4600.)

l VPRS 7=

0.153

( 4600.)

l VPPS 8=

0.153

( 4600.)

VPRS 9=

0.153

( 4600.)

SUMMARY

OF CORRECTED DATA TIME = 2315 DATE = 0524 DRYWELL S. P.

{J~)

TEMPERATURE (DEGREES R.)

529.210 534.722 PRESSURE (PSIA) 18.873 14.446 VAPOR PRESSURE (PSIR)

0. 1 5 3 0.409'

APPENDIX E SUSQUEHANNA BYPISS TEST RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 2330 0524 534.700

( 7503.)

TEMP 1

=

TEMP 2=

534.400

( 7473.)

TEMP 3=

534.970

( 7530.)

TEMP 4=

537.110

( 7744.)

TEMP 5=

534.590

( 7492.)

TEMP 6=

534.420

( 7475.)

TEMP 7=

528.520

( 6885.)

TEMP 8=

528.650

( 6899.)

TEMP 9=

528.900

( 6923.)

TEMP 10 =

528.590

( 6922.)

529.330

( 7021.)

TEMP 11 =

TEMP 12 =

528.940

( 6927.)

TEMP 13 =

528.680

( 6901.)

TEMP 14 =

529.010

( 6934.)

TEMP 15 =

529.060

( 6939.)

TEMP 16 =

529.200

( 6953.)

TEMP 17 =

529.150

( 6948.)

TEMP 18 =

529.120

( 6945.)

TEMP 19 =

529.270

( 6960.)

TEMP 20 =

529.530

( 6996.)

529.460

( 6979.)

TEMP ?!

=

TEMP 22 =

529.620

( 6995.)

TEMP 23 =

532.960

( 7329.)

TEMP 24 =

532.610

( 7294.)

18.874 ( 18977.)

{~h PRES 1

=

s.)

PRES 2=

14.449 ( 14476.)

0.413

( 7383.)

VPRS 1 =

VPRS 2=

0.411

( 7369.)

VPRS 3=

0.413

( 7384.)

VPRS 4=

0.413

( 7379.)

VPRS 5=

0.162

( 4750.)

VPRS 6=

0.164

( 4780.)

VPRS 7=

0.158

( 4689.)

VPRS 8=

0.162

( 4741.)

VPRS 9=

0.178

( 4995.)

SUMMARY

OF CORRECTED DATA TIME = 2330 DATE = 0524 DRYWELL S. P.

TEMPERATURE (DEGREES R.)

529.239 534.753 PRESSURE (PSIA) 18.874 14.449 VAPOR PRESSURE (PSIA) 0.163 0.413

APPENDIX E SUSQUEHANNA BYPASS TEST RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATR AT 2345 0524

(

TEMP 1 =

534.710

( 7504.)

TEMP 2=

534.430

( 7476.)

TEMP 3=

535.010

( 7534.)

537,090

( 7742.)

TEMP 4 =

TEMP 5=

534.610

( 7494.)

TEMP 6=

534.440

( 7477.)

TEMP 7=

528.550

( 6898.)

TEMP 8=

528.690

( 6902.)

TEMP 9=

528.930

( 6926.)

TEMP 10 =

529.930

( 6926.)

529.900

( 7023.)

TEMP 11 =

TEMP 12 =

528.990

( 6931.)

TEMP 13 =

528.710

( 6904.)

TEMP 14 =

529.040

( 6937.)

TEMP 15 =

529.090

( 6942.)

TEMP 16 =

529.230

( 6956.)

TEMP 17 =

529.190

( 6952.)

TEMP 19 =

529.120

( 6945.)

TEMP 19 =

529.300

( 6963.)

TEMP 20 =

529.580

( 6991.)

TEMP 21 =

529.510

( 6994.)

TEMP 22 =

529.630

( 6996.)

TEMP 23 =

533.000

( 7333.)

TEMP 24 =

532.650

( 7298.)

O PRES 1 =

18.975 ( 18978.)

PRES 2=

14.453 ( 14480.)

VPRS 1 =

0.414

( 7399.)

VPPS 2=

0.410

( 7361.)

VPPS 3=

0.409

( 7352.)

VPPS 4=

0.402

( 7297.)

VPRS 5=

0.163

( 4768.)

VPPS 6=

0.164

( 4785.)

VPPS 7=

0.159

( 4702.)

VPRS 8=

0.163

( 4763.)

VPRS 9=

0.178

( 4996.)

i

SUMMARY

OF CORRECTED DATA TIME = 2345 DATE = 0524 DRYWELL S.

P.

TEMPERATURE (DEGREES R.)

529.272 534.775 A

k-sl PRESSURE (PSIA) 18.875 14.453 VAPOP PRESSURE (PSIA) 0.164 0.409

.,, -. ~. - -

n.

APPENDIX E SUSQUEHANNA BYPASS TEST RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 0 0525

(')

534.740

( 7507.)

TEMP 1 =

TEMP 2=

534.440

( 7477.)

TEMP 3=

535.010

( 7534.)

537.090

( 7742.)

TEMP 4 =

TEMP 5=

534.620

( 7495.)

TEMP 6=

534.450

( 7479.)

TEMP 7=

529.590

( 6992.)

TEMP 9=

529.720

(.6905.)

TEMP 9=

529.970

( 6930.)

TEMP 10 =

529.990

( 6931.)

529.920

( 7025.)

TEMo 11

=

TEMP 12 =

529.020

( 6935.)

TEMP 13 =

529.750

( 6909.)

TEMP 14 =

529.060

( 6939.)

TEMP 15 =

529.120

( 6945.)

TEMP 16 =

529.240

( 6957.)

TEMP 17 =

529.200

( 6953.)

TEMP 19 =

529.150

( 6949.)

TEMD 19 =

529.320

( 6965.)

TEMo 20 =

529.590

( 6992.)

529.550

( 6999.)

TEMP 21 =

TEMP 22 =

529.650

( 6999.)

TEMP 23 =

533.030

( 7336.)

532.690

( 7301.)

TEMP 24

=

19.976 ( 19979.)

/~

PRES 1 =

k)h PPES 2=

14.456 ( 14493.)

m 0.415

( 7393.)

VPRS 1 =

VPRS 2=

0.411

( 7366.)

VPRS 3=

0.413

( 7379.)

0.395

( 7249.)

VPRS 4 =

VPRS 5=

0.165

( 4799.)

VPRS 6=

0.165

( 4900.)

VPRS 7=

0.160

< 4722.)

VPRS 9=

0.164

( 4795.)

VoRS 9=

0.190

( 5022.)

SUMMAPY OF CORRECTED DATA TIME =

0 DATE = 0525 DRY 8 DELL S.

P.

TEMPERATURE (DEGREES P.)

529.301 534.796

)

s/

PRESSURE (PSIA) 19.976 14.456 VAPOR PRESSURE (PSIA) 0.165 0.409 t

APPENDIX E SUSQUEHANNA BYPASS TEST RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA AT 15 0525 534.760

( 7509.)

TEMP 1

=

TEMP 2=

534.450

( 7479.)

TEMo 3=

535.010

( 7534.)

537.110

( 7744.)

TEMP 4 =

TEMP 5=

534.620

( 7495.)

TEMP 6=

534.470

( 7490.)

TEMP 7=

529.610

( 6994.)

TEMP 9=

529.750

( 6909.)

TEMP 9=

529.000

( 6933.)

TEMP 10 =

529.000

( 6933.)

529.930

( 7026.)

TEMo 11

=

TEMP 12 =

529.040

( 6937.)

TEMP 13 =

529.770

( 6910.)

529.070

( 6940.)

TEMD 14 =

TEMP 15 =

529.150

( 6949.)

TEMP 16 =

529.260

( 6959.)

TEMD 17 =

529.240

( 6957.)

TEMD 19 =

520.170

( 6950.)

TEMP 19 =

529.350

( 6969.)

TEMP 20 =

529.610

( 6994.)

529.570

< 6990.)

TEMP 21

=

TEMD 22 =

529.660

( 6999.)

TEMP 23 =

533.060

( 7339.)

532.710

( 7304.)

TEMP 24

=

f 19.977 ( 19990.)

PRES 1

=

N-PRES 2=

14.459 ( 14486.)

0.415

( 7396.)

VPRS 1

=

VPRS 2=

0.410

( 7360.)

VPRS 3=

0.413

( 7391.)

VPPS 4=

0.401

( 7293.)

VPRS 5=

0.166 4d;1.)

VPRS 6=

0.166

( 4912.'

VPPS 7=

0.162

( 4749.)

l VPRS 9=

0.165

( 4795.)

j VPPS 9=

0.190

( 5026.)

l

SUMMARY

OF CORRECTED DATA TIME =

15 DATE = 0525 DRYWELL S. P.

TEMPERATURE (DEGREES R.)

529.324 534.797 l

O

\\'J PRESSURE (PSIA) 19.977 14.459 VAPOR PRESSURE (PSIA) 0.166 0.410

APPENDIX E SUSQUEHANNA BYPASS TEST RAW DATA (CONT'D)

~

SUMMARY

OF MEASURED DATA AT 30 0525 534.770

( 7510.)

~

TEMP 1 =

TEMP 2=

534.490

( 7491.)

TEMP 3=

535.050

( 7538.)

TEMP 4=

537.100

( 7743.)

TEMP 5=

534.660

( 7499.)

TEMP 6=

534.470

( 7490.)

TEMP 7=

529.640

( 6997.)

TEMP 9=

529.770

( 6910.)

TEMo 9=

529.020

( 6935.)

TEMD 10 =

529.020

( 6935.)

529.940

( 7027.)

TEMP 11 =

TEMP 12 =

529.070

( 6940.)

TEMP 13 =

529.800

( 6913.)

TEMP 14 =

529.110

( 6944.)

TEMP 15 =

529.160

( 6949.)

TEMD 16 =

529.290

( 6961.)

TEMP 17 =

529.260

( 6959.)

TEMD 19 =

529.200

( 6953.)

TEMP 19 =

529.390

( 6971.)

TEMP 20 =

529.640

( 6997.)

529.590

( 6992.)

TEMP 21

=

TEMP 22 =

529.690

( 7002.)

TEMP 23 =

533.100

( 7343.)

532.740

( 7307.)'

TEMD 24

=

19.979 ( 19991.)

PRES 1

=

PRES 2=

14.462 ( 14489.)

(

VPPS 1 =

0.415

( 7399.)

VPRS 2=

0.411

( 7370.)

VPRS 3=

0.414

( 7396.)

VPRS 4=

0.400

( 7297.)

l VPPS 5=

0.167

( 4834.)

l VPRS 6=

0.167

( 4930.)

l VPRS 7=

0.162

< 4754.)

i VPPS 9=

0.166

( 4917.)

VPPS 9=

0.191

( 5039.)

SUMMr#Y OF CORRECTED DATA TIME =

30 DATE = 0525 DRYWELL S. P.

I~h TEMPERATURE (DEGREES R.)

529.350 534.819 U

PRESSURE (PSIA) 18.878 14.462 l

VAPOP PRESSURE (PSIA) 0.167 0.410

APPENDIX E SUSQUEHANNA BYPASS TEST RAW DATA (CONT'D)

SUMMARY

OF MEASURED DATA RT 45 0525 Ok,)

TEMP 1

534.790

( 7512.)

=

m TEMP 2=

534.480

( 7481.)

TEMP 3=

535.070

( 7540.)

537.110

( 7744.)

TEMP 4 =

TEMP 5=

534.650

( 7499.)

TEMP 6=

534.510

( 7494.)

TEMP 7=

528.680

( 6901.)

TEMP 9=

528.920

( 6915.)

TEMP 9=

529.080

( 6941.)

TEMP 10 =

519.050

( 6938.)

529.930

( 7031.)

TEMP 11

=

TEMP 12 =

529.100

( 6943.)

TEMP 13 =

529.930

( 6916.)

TEMP 14 =

529.150

( 6949.)

TEMP 15 =

529.190

( 6952.)

TEMP 16 =

529.320

( 6965.)

TEMP 17 =

529.290

( 6962.)

TEMP 19 =

529.240

( 6957.)

TEMP 19 =

529.400

( 6973.)

TEMD 20 =

529.640

( 6997.)

529.590

( 6992.)

TEMP 21

=

TEMP 22 =

529.720

( 7005.)

TEMP 23 =

533.140

( 7347.)

TEMP 24 =

532.770

( 7310.)

I')

PRES 1 =

18.979 ( 19992.)

PRES 2=

14.465 ( 14492.)

0.419

( 7415.)

VPRS 1 =

VPRS 2=

0.412

( 7375.)

VPRS 3=

0.413

( 7394.)

0.399

( 7196.)

VPRS 4 =

VPRS 5=

0.169

( 4857.)

VPRS 6=

0.170

( 4870.)

VPRS 7=

0.164

( 4790.)

VPPS 9=

0.168

( 4843.)

VPRS 9=

0.191

( 5045.)

SUMMARY

OF CORRECTED DATR TIME =

45 DATE = 0525 DRYWELL S. P.

TEMPERATURE (DEGREES R.)

529.384 534.833 7s PPESSURE (PSIA) 19.679 14.465 VAPOR PRESSURE (PSIR) 0.169 0.409

- -- :. : =: -

.2: : ' -- - ^ ^ -== =~r : ^ :. = :..

- - = = = = = ~ -

: =.-

u=. =.

=.== _

w..:..

]

4 i

AIRMASS l

123139.

123159.

123179.

123198.

123218.

123233.

123253.

123275.

.r._

__._____+ _____

__.r

+________.__.r_

_______ ____ ____, _.______ _+

@1200--

+

+

i

+

4

+

t I'

e T

l

+

t I

+

L P,QO -

+-

+

i

+

)

15uO -

+

+

t

+

+

1600 -

+

j i

l

~

~V i

.e 1700 -

P i

l t

l j

+

+

l 1800 -

+

+

i

+

+

1900 -

+

~

+

2OOU -

F APPENDIX F t

ILRT AIRMASS VS. TIME PLOT i

a G

F-1.1

.. -. = -

-..z
.: =:. ====.:.

w.:- - -. =:

u.

---.u

.=

-y I

TEP1PERATURE a

i 530.20 530.37 530.53 530.70 530.86 531.02 531.19 531.35 i

+-________+_________+..________+_________+_________+_________+_________,

@ 1200 -_

+

l l

+

I

+

i 1300 -

+

i

+

,1 l

+

1

+

6 1

l'100 -

+

+

t

+

i l

i r

L L

1500 -

+

l

+

j

+

7 l

+

i 1600 -

+

J.

+

l

+

f 1700 -.

+

+

+

+

l 1800 -

+

t

+

+

+

j 1900 -

+

t

+

t

+

r y

[

2000 -

+

i i

l r

i i

t i

l

[

f APPENDIX F i

ILRT TEMPERATURE VS. TIME PLOT O

F-1.2 I

i

. -. ~. -. -. -. - ~...

i 4

PRESSURE i

60.'/32 60.741 60.750 60.759 60.768 60.778 60.787 60.796 l

+---------+---------+---------+.--------+---------+---------+---------,

1200 -

+

+

+

.+

l 1300 -

+-

l

+

+

t 1400 4-

+

4 a

1500 -

+

+

i 4

+

1600 -

+

1

+

+

+

L700 -

t

+

+

+

l 1800 -

+

+

l

+

l

' 1900 -

+

1

+

+

1 F

2000 -

+

)

I i

3 1

I I

i APPENDIX F ILRT PRESSURE VS. TIME PLOT 4

O s

1 F-1.3

~-.

.. ---.~. -

.... - -.. - -. - ~.

i i

i VAPOR PRESSURE 0.2901 0.2919 0.2933 0.2956 0.2974 O.2993 O.3011 0.305-l

+---------+----------+---------+---------+---------+---------+---------+

l 1200 -

+

l

+

l

+

r 1300 -

+

t

+

.+

+

[400 -

+

+

j t

f 1500 -

+

+

+

t

+

1600 -

+

+

+

i 1700 -

l

+

l e

j

+

1800 -

+

+

+

1900 -

+

i-

+

r e

i 2000 -

+

I i

APPENDIX F 1

ILRT VAPOR PRESSURE VS. TIME PLOT l

l 8

F-1.4 i

I I

_.__.-.--.-.-.---...~_.--.--~...--~.....-.-......u._-_--__.

4 i

l AIRMASS 122847.

122883.

122920.

122956.

122992.

123029.

123065.

123102.

+___

____+_______e.

_.+___________,_._________+__ ______.,_-__.______,_____.____.

O 2200 -

+

+

  • ~

b 2300 -

+

+

j a.

j

~

v 0 -.

j

~~

T

+

100 -

+

+

+

O APPENDIX F VERIFICATION TEST PLOTS AIRMASS VS. TIME G

F-1 5

~

TEMPERATURE b31.37 531.42 531.46 531.51 531.55 531.60 531.65 531.69 p_________+_________+_________+_________+_________+_________+_________+

+

+

2200 -

+

+

+

+

2300 -

+

+

+

+

e

+

+

100 -

+

+

+

l l

APPENDIX F VERIFICATION TEST PLOTS TEMPERATURE VS. TIME F-1,6

(

2..

- - - = -

==_=-._

- - :..-.. :: = = - = w a.:

~-

=-- - -

~. -- ~ ~.. -- - _ ----_..- -.

1 a

FRESEURE

]

60.690 60.703 60.715 60.725 60.741 60.754 60.766 60.779

+_________+_________._________+_________,_________+_________+_________+

(

+

l

+

t 2200 -

+

t

+

t

+

2300 -

+

+

~

+

't 4

L.

I M

l

~

t t

I 100 -

+

+

)

+

I i

-l l

O APPENDIX F VERIF.ICATION TEST PLOTS PRESSURE VS, TIME p

g F-1.7 l

i

~n--mmyw--

      • =

m

VAPOR PRESSURE O.3026 O.3032 O.3038 O.3045 O.3051 O.3057 O.3064 0.307

.e-______-_+_________+_________+_________+_________+_________,_________+

+

+

2200 -

+

+

r

+

o I

+

+

+

~

t

+

100 -

+

+

+

I APPENDIX F TIME VERIFICATION TEST PLOTS VAPOR PRESSURE VS.

F-1.8 m

n, e

n

'~

J

APPENDIX G ILRT INSTRUMENTATION Type (No.)

Instrument Serial Card Slot or Sensor Number Make and Model Number Range (Calibrated) Circuit Board RTD 1 TE05901A Rosemont 786517 55339 60*F - 120*F 1

RTD 2' TE05901B Rosemont 786517 64112' 60*F - 120*F 2

RTD 3 TE05901C Rose mont-786517 55397 60*F - 120*F 3

RTD 4 TE05901D Rosemont 786517 55423 60*F - 120*F 4

RTD 5 TE05901E, Rosemont 786517 64471-60*F - 120*F 5

RTD 6 TE05901F Rosemont 786517 62415 60*F - 120*F 6

RTD 7 TE05902A Rosemont 786517 64223 60*F - 120*F 7

RTD 8 TE05902B Rosemont 786517 59834 60*F - 120*F 8

RTD 9 TE05902C Rosement 786517 55354 60*F - 120*F 9

RTD 10 TE05902D Rosemont 786517 55449 60*F - 120*F 10 RTD 11 TE05902E Rosemont 786517 56926 60*F - 120*F 11 RTD 12 TE05903A Rosemont 786517 56885 60*F - 120*F 12 RTD 13 TE05903B Rosemont 786517 62586 60*F - 120*F 13 RTD 14 TE05903C Rosemont 786517 59812 60*F - 120*F l '+

RTD 15 TE05903D Rosemont 786517 50993 60*F - 120*F 15 RTD 16 TE05904A Rosemont 786517 55349 60*F - 120*F 16 RTD 17 TE05904B Rosemont 786517 64284 60*F - 120*F 17 RTD 18 TE05904C Rosemont 786517 55447 60*F - 120*F If RTD 19 TE05905A Rosemont -786517 59693 60*F - 120*F 1s RTD 20 TE05905B Rosemont 786517 55372 60*F - 120*F 20 O

RTD 21 TE05906A Rosemont 786517 55388 60*F - 120*F 21 RTD 22 TE05906B Rosemont 786517 55367 60*F - 120*F 22 RTD 23 TE05907A Rosemont 786517 55365 60*F - 120*F 23 RTD 24 TE05907B Rosemont 786517 55341 60*F - 120*F 24 Dew Cell 1 ME05901A EG&G 660 1071 40 - 100 375 Dew Cell 2 ME05901B EG6G 660 1084 40 - 100 400 Dew Cell 3 ME05901C EG&G 660 994 40 - 100 405 Dew Cell 4 ME05901D EG&G 660 1000 40 - 100 467 Dew Cell 5 ME05902 EG&G 660 1075 40 - 100 423 Dew Cell 6 ME05903 EG&'G 660 1069 40 - 100 451 I

Dew Cell 7 ME05904 EG&G 660 1008 40 - 100 437 Dew Cell 8 ME05905 EG&G 660 1043 40 - 100 439 l

Dew Cell 9 ME05907 EG&G 660 953 40 - 100 442 l

l Pressure PIT 05913 Mensor 2699 0 - 100 psia N/A j

Sensor 1 Pressure plt 05914 Mensor 1920 0 - 100 psia N/A Sensor 2 3

Mass Flow

- VMC-508 TSI-2013 1578 0 - 10 ft / min N/A Meter 4

3

'otameter FT-05911 Brooks 663 0 - 10 ft / min N/A DH-160 G-1 i

i I.-..____.__,,_,__,,.m.,.._.,_,_c__,._

APPENDIX H REPORT ON SERVICING AND CALIBRATION OF THE INTEGRATED LEAKAGE RATE TEST SYSTEM (ILRTS)

Introduction During the period of April 13, 1982 through April 30, 1982, the vendor was on site at the Susquehanna Steam Electric Station in Berwick, Pennslyvania, to pro-vide technical assistance and supervision in the calibration of the Integrated Leakage Rate Test System (ILRTS) Model 14629 (plant equipment Nos. OC-223 and OC-224). The three week ef fort involved servicing of the consoles, alignment of electronics and instruction to Pennsylvania Power and Light personnel in methods of calibration and operation.

This report outlines specific details of what was done and with what results.

It also includes vendor's comments on the procedures used by PP&L and the vendor to perform various calibrations.

Reference All required test specifications are derived from the technical standard ANSI /

ANS-56.8, 1981.

Test Requirements The following tests are required to certify an operational ILRTS prior to com-mencement of containment pressurization.

TEST ANSI /ANS-56.8 REQUIREMENT 1.

Drybulb (RTD)

(a) Sensor accuracy

+ 0.5'F (b) Sensor sensitivity 1 0.l*F (c) Display repeatability 1 0.0l*F (d) Display resolution 0.0l*F (e) Calibration check (In-Situ) i 1.0*F 2.

Dewpoint (a) Sensor accuracy 1 2.0*F (b) Sensor sensitivity 1 0.5'F (c) Display repeatability 1 0.l*F (d) Display resolution 0.1*F (e) Calibration check (In-Situ) 1 5.0*F DH-160 H-1

APPENDIX H I

REPORT ON SERVICING AND CALIBRATION OF THE INTEGRATED LEAKAGE RATE TEST SYSTEM (ILRTS) (CONT'D)

TEST ANSI /ANS-56.8 REQUIREMENT 3.

Pressure (a) Sensor accuracy

+ 0.02% reading (b) Sensor sensitivity f; 0.001% full scale (c) Display repeatability j; 0.001% full scale (d) Display resolution 0.001 psia (e) Calibration check (In-Situ)

+ 0.05% reading 4.

Verification Flow (a) Sensor accuracy

+ 2.0% full scale (b) Sensor sensitivity

+ 1.0% full scale (c) Display repeatability

+ 0.1 scfm (d) Display resolution 0.2 scfm (e) Calibration check (In-Situ)

+ 5% full scale 5.

Time

-( )

(a) Accuracy

+ 1 min /24 hours (b) Resolution 1 second In addition, the following adjustments are required to ensure proper performance of the ILRTS.

TEST OBJECTIVE 6.

Drybulb (RTD) Signal Conditioning Alignment Accuracy 7.

Dewpoint Signal Conditioning Alignment Accuracy 8.

Dewpoint Control Loop Alignment (chilled Operation and Stability mirror systems only) 9.

Data Acquisition System Calibration Accuracy 10.

Rotameter Pressure Sensor Calibration Accuracy Test Performed On-Site The following tests were performed on-site with the indicated worst-case results.

O DH-160 H-2

APPENDIX H REPORT ON SERVICING AND CALIBRATION OF THE INTEGRATED LEAKAGE RATE TEST SYSTEM (ILRTS) (CONT'D) 1.A Test:

Drybulb (RTD) Sensor Accuracy Performed by:

PP&L Calibration Lab Procedure used:

PP&L Generic with w/a Witnessed by Volumetrics:

No Calibration error:

+ 0.5*F ANSI /ANS-56.8 requirement:

][0.5*F Acceptance evaluation:

Meets ANSI requirements 1.B Test:

Drybulb (RTD) Sensor Accuracy Performed by:

PP&L Calibration Lab Procedurc used:

PP&L Generic with w/a Witnessed by Volumetrics:

No Worst-case error encountered: -+ 0.02*F ANSI /ANS-56.8 requirement:

+ 0.l*F Acceptance evaluation:

Exceeds ANSI requirements 1.C Test:

Drybulb (RTD) Display Repeatability Performed by:

PP&L I&C Procedure used:

PP&L IC-59-001, Rev 0 Witnessed by Volumetrics:

No

()

Worst-case error encountered: + 0.00l*F ANSI /ANS-56.8 requirement:

+ 0.01*F Acceptance evaluation:

Exceeds ANSI requirements I

1.D Test:

Drybulb (RTD) Display Resolution t

Performed by:

Vendor l

Procedure used:

Observation Witnessed by Volumetrics:

Yes Observed results:

0.001*F from 32*F to 120*F ANSI /ANS-56.8 requirement:

0.0l*F Acceptance evaluation:

Exceeds ANSI requirements 2.A Test:

Dewpoint Sensor Accuracy Performed by:

Vendor /PP&L I&C Procedure used:

Vendor /QAP #2021, Rev 3 Witnessed by Volumetrics:

Yes Calibration error:

+ 0.76*F ANSI /ANS-56.8 requirement:

][2.0*F Acceptance evaluation:

Exceeds ANSI requirements 2.B Test:

Dewpoint Sensor Sensitivity Performed by:

Vendor /PP&L I&C Procedure used:

Vendor QAP #2021, Rev 3 Witnessed by Volumetrics:

Yes Worst-case error encountered: + 0.2*F

()

ANSI /ANS-56.8 requirement:

3[0.5*F Acceptance evaluation:

Exceeds ANSI requirements H-3 DH-160

APPENDIX H REPORT ON SERVICING AND CALIBRATION OF THE INTEGRATED LEAKAGE RATE TEST SYSTEM (ILRTS) (CONT'D) 2.C Test:

Dewpoint Display Repeatability Performed by:

PP&L I&C Procedure used:

PP&L IC-59-601, Rev 0 Witnessed by Volumetrics:

No Worst-case error encountered: ~+ 0.008'F ANSI /ANS-56.8 requirement:

+ 0.l*F Acceptance evaluation:

Exceeds ANSI requirements 2.D Test:

Dewpoint Display Resolution Performed by; Vendor Procedure used:

Observation Witnessed by Volumetrics:

Yes Observed results:

0.00l*F from 32*F to 120*F ANSI /ANS-56.8 requirement:

0.l*F Acceptance evaluation:

Exceeds ANSI requirements 3.A Test:

Pressure Sensor Accuracy Performed by:

NBS Procedure used:

Not Available

(N Witnessed by Volumetrics:

No N_,)

Calibration accuracy:

+ 0.015% of reading ANSI /ANS-56.8 requirement:

+ 0.02% of reading Acceptance evaluation:

Exceeds ANSI requirements 3.B Test:

Pressure Sensor Sensitivity Performed by:

PP&L I&C Procedure used:

PP&L w/a #U27498 Witnessed by Volumetrics:

No Worst-case error encountered: + 0.001% full scale ANSI /ANS-56.8 requirement:

][0.001%fullscale Acceptance evaluation:

Meet ANSI requirements 3.C Test:

Pressure Display Repeatability Performed by:

PP&L I&C Procedure used:

PP&L IC-59-001, Rev 0 Witnessed by Volumetrics:

No Worst-case error encountered: + 0.0005% full scale ANSI /ANS-56.8 requirement:

][0.001%fullscale Acceptance evaluation:

Meets ANSI requirements 3.D Test:

Pressure Display Resolution Performed by:

Vendor Procedure used:

Observation Witnessed by Volumetrics:

Yes Observed results:

0.001 psia O_-

ANSI /ANS-56.8 requirement:

0.001 psia s

Acceptance evaluation:

Meets ANSI requirements DH-160 H-4

APPENDIX H REPORT ON SERVICING AND CALIBRATION OF THE INTEGRATED LEAKAGE RATE TEST SYSTEM (ILRTS) (CONT'D) 5.A Test:

Time Accuracy Performed by:

Vendor /PP&L Procedure used:

Vendor QAP #2023, Rev 2 Witnessed by Volumetrics:

Yes Worst-case error encountered:

3 seconds /48 hours ANSI /ANS-56.8 requirement:

1 minute /24 hours Acceptance evaluation:

Exceeds ANSI requirements 5.B Test:

Time Resolution Performed by:

Vendor Procedure - used :

Observation i

Witnessed by Volumetrics:

Yes Observed results:

1 second ANSI /ANS-56.8 requirement:

1 second Acceptance evaluaticn:

Exceeds ANSI requirements 6.

Test:

Drybulb Signal Conditioning Performed by:

Vendor /PP&L I&C Procedure used:

Vendor QAP #2004, Rev 1*

Witnessed by Volumetrics:

Yes 7.

Test:

Dewpoint Sigtial Conditioning Performed by:

PP&L I&C i

Procedure used:

Volumetrics QAP #2022, Rev 3*

Witnessed by Volumetrics:

Yes 8.

Test:

Dewpoint Control Loop Performed by:

Volumetrics/PP&L I&C Procedure used:

Volumetrics QAP #2002, Rev 2 Witnessed by Volumetrics:

Yes 9.

Test:

Data Acquisition Calibration f

Performed by:

PP&L I&C l

Procedure used:

Manufacturer Operation Manual Witnessed by Volumetrics:

Yes

  • PP&L procedures IC-DC-100, IC-DC-200, and IC-LC-001 apply to all system loop calibra tions.

Test Performed at Vendor's Laboratory l

I i

The following tests were performed at the vendor's calibration laboratory in l

Paso Robles, California, with the indicated worst-case results. These tests were witnessed by a representative from PP&L Quality Assurance.

I o

l H-5 DH-160 l

APPENDIX H REPORT ON SERVICING AND CALIBRATION OF THE INTEGRATED LEAKAGE RATE TEST SYSTEM (ILRTS) (CONT'D) 5.A Test:

Time Accuracy Performed by:

Vendor /PP&L Procedure used:

Vendor QAP #2023, Rev 2 Witnessed by Volumetrics:

Yes Worst-case error encountered: 3 seconds /48 hours i

ANSI /ANS-56.8 requirement:

1 minute /24 hours Acceptance evaluation:

Exceeds ANSI requirements 5.B Test:

Time Resolution Performed by:

Vendor Procedure used:

Observation Witnessed by Volumetrics:

Yes Observed results:

1 second ANSI /ANS-56.8 requirement:

1 second Acceptance evaluation:

Exceeds ANSI requirements 6.

Test:

Drybulb Signal Conditioning Performed by:

Vendor /PP&L I&C Procedure used:

Vendor QAP #2004, Rev 1*

Witnessed by Volumetrics:

Yes 7.

Test:

Dewpoint Signal Conditioning i

Performed by:

PP&L I&C 1

Procedure used:

Volumetrics QAP #2022, Rev 3*

Witaessed by Volumetrics:

Yes i

8.

Test:

Dewpoint Control Loop Performed by:

Volumetrics/PP&L I&C l

Procedure used:

Volumetrics QAP #2002, Rev 2 l

Witnessed by Volumetrics:

Yes 9.

Test:

Data Acquisition Calibration j

Performed by:

PP&L I&C Procedure used:

Manufacturer Operation Manual Witnessed by Volumetrics:

Yes l

p

  • PP&L procedures I;-DC-100, IC-DC-200, and IC-LC-001 apply to all system loop j

calibrations.

1 Test Performed at Vendor's Laboratory i

The following tests were performed at the vendor's calibration laboratory in Paso Robles, California, with the indicated worst-case results. These tests were witnessed by a representative from PP&L Quality Assurance.

OV i

H-5 DH-160

APPENDIX H REPORT ON SERVICING AND CALIBRATION OF THE INTEGRATED LEAKAGE RATE TEST SYSTEM (ILRTS) (CONT'D) 4.A Test:

Flow Sensor Accuracy (Mass Flowmeter)

Performed by:

Vendor Procedure used:

Vendor QAP #2005, Rev 4 Calibration error:

+ 1.0% full scale ANSI /ANS-56.8 requirement:

[2.0%fullscale Acceptance evaluation:

Exceeds ANSI requirements 4.A Test:

Flow Sensor Accuracy (Rotameter)

Performed by:

Vendor Procedure used:

Vendor QAP #2034, Rev 0 Calibration error:

+ 1.0% full scale ANSI /ANS-56.8 requirement:

{2.0%fullscale Acceptance evaluation:

Exceeds ANSI requirements 4.B Test:

Flow Sensor Accuracy (Mass Flowmeter)

Performed by:

Vendor Procedure used:

Vendor QAP #2005, Rev 4 Worst-case error encountered: + 0.4% full scale ANSI /ANS-56.8 requirement:

11.0%fullscale Acceptance evaluatf.on:

Exceeds ANSI requirements 4.B Test:

Flow Sensor Accuracy (Rotameter)

Performed by:

Vendor Procedure used:

Vendor QAP #2034, Rev 0 Worst-case error encountered: + 1.0% full scale ANSI /ANS-56.8 requirement:

[1.0%fullscale Acceptance evaluation:

Exceeds ANSI requirements 4.C Test:

Flow Display Repeatability (Mass Flowmeter)

Performed by:

Vendor Procedure used:

Vendor QAP #2026, Rev 4 Worst-case error encountered: + 0.01 scfm ANSI /ANS-56.8 requirement:

i 0.1 scfm Acceptance evaluation:

Exceeds ANSI requirements 4.C Test:

Flow Display Repeatability (Ro'tameter)

Performed by:

Vendor Procedure used:

Vendor QAP #2026, Rev 4 Worst-case error encountered: + 0.04 scfm ANSI /ANS-56.8 requirement:

[0.1scfm Acceptance evaluation:

Exceeds ANSI requirements 4.D Test:

Flow Display Resolution (Mass Flowmeter)

Performed by:

Vendor Procedure used:

Observation Observed results:

0.01 scfm ANSI /ANS-56.8 requirement:

0.2 scfm gy Acceptance evaluation:

Exceeds ANSI requirements H-6 l

DH-160

APPENDIX H REPORT ON SERVICING AND CALIBRATION OF THE INTEGRATED LEAKAGE RATE TEST SYSTEM (ILRTS) (CONT'D) 4.D Test:

Flow Display Resolution (Rotameter)

Performed by:

Vendor Procedure used:

Observation Observed results:

0.13 scfm (between markings)

ANSI /ANS-56.8 requirement:

0.2 scfm Acceptance evaluation:

Exceeds ANSI requirements 10.

Test:

Rotameter Pressure Sensor Accuracy Performed by:

Vendor Procedure used:

Vendor QAP #2032, Rev 4 Calibration error:

f 0.25% full scale Calibration Check Performed On-Site The following tests were performed on-site by either the vendor or PP&L per-sonnel with the indicated worst-case results.

These tests were performed after the initial three week visit by the vendor, during a subsequent visit prior to the ILRT.

1.E Test:

Drybulb (RTD) Calibration Check Performed by:

PP&L I6C Procedure used:

PP&L IC-59-002, Rev 0 0

Witnessed by Volumetrics:

Yes Worst-case error encountered: + 0.70*F ANSI /ANS-56.8 requirement:

1 1.0*F Acceptance evaluation:

Exceeds ANSI requirements 2.E Test:

Dewpoint Calibration Check Performed by:

PP&L I&C Procedure used:

PP&L IC-59-002, Rev 0 Witnessed by Volumetrics:

Yes

+ 2.30*F Worst-case error encountered: -1 5.0*F ANSI /ANS-56.8 requirement:

Acceptance evaluation:

Exceeds ANSI requirements 3.E Test:

Pressure Calibration Check Performed by:

Vendor Procedure used:

PP&L IC-59-002, Rev 0 Witnessed by Volumetrics:

Yes Worst-case error encountered: 1 0.016 psia @ 62 psia (1 0.026% reading)

ANSI /ANS-56.8 requirement:

1 0.05% reading l

Acceptance evaluation:

Exceeds ANSI requirements 1

4.E Test:

Flow Calibration Check Performed by:

PP&L I&C Procedure used:

PP&L IC-559-002, Rev 0 Witnessed by Volumetrics:

Yes Worst-case error encountered: 1 3.5% full scale ANSI /ANS-56.8 requirement:

1 5.0% full scale l

Acceptance evaluation:

Exceeds ANSI requirements DH-160 H-7 I

i APPENDIX H REPORT ON SERVICING AND CALIBRATION OF THE INTEGRATED LEAKAGE RATE TEST SYSTEM (ILRTS) (CONT'D)

Pressure Gauge Analysis In performing ILRTs, the vendor uses a quartz manometer (QM) nanufactured by Mensor Corporation. Mensor has supplied the vendor with data supporting the use of the QM as a transfer standard, thereby providing a meana of adapting deadweight tester accuracy to absolute pressure calibrations and measurements in field test situations. Refer to the vendor's QAP #1002 for further discus-t sion of this topic, The manufacturer's stated measurement accuracy for the QM at the cardinal cali-bration points is:

1 0.010% reading; i 0.002% full scale; i 5 microns s

y, The first term represents the uncertainty of the prinary standard normally used by the vendor, and by Mensor, which is a deadweight tester directly traceable to NBS.

The certified accuracy of this device is 1 0.010% of reading. The second component (1 0.002% of full scale) encompasses the nonrepeatability (1 0.0005% of full scale) of any transfer standard QM and the QM in question, The final O

and allows for operator-related errors induced by misreading the QM.

term (i 5 microns) is attributable to the uncertainty of the vacuum measurement when adjusting zero on an absolute QM. For full scale ranges greater than 20 psia, this error is insignificant.

For this specific case, the accuracy derivation is altered to reflect the test results as reported here:

1.

The primary standard used by NBS to calibrate the QM has an uncertainty of

+ 0.006% of reading.

t 2.

The worst-case repeatability of the QM was found to equal the manufacturer's specification of i 0.0005% full scale (see test 3.C results).

3.

The digital ambiguity of the LED display / transmitter is i digit, which equates to 1 0.001% full scale (assuming this value replaces the operator error associated with misreading the instrument).

I Items 1, 2, and 3 combine to form the accuracy statement:

i 0.006% reading 1 (0.0005)2 + (0.001)2% full scale j

which equates to:

l 1 0.006% reading 1 0.0011% full scale I

DH-160 H-8

-4

.-..c

1 APPENDIX H O

REPORT ON SERVICING AND CALIBRATION OF THE INTEGRATED LEAKAGE RATE TEST SYSTEM (ILRTS) (CONT'D)

As before, the 5 micron vacuum error is assumed to be negligible for this' range (100 psia). The above result demonstrates the adherence of the QMs t'c the manufacturer's specifications.

For atmospheric pressure (15 psia) the derived error statement translates to:

+ (((0.00006) (15) + (.000011) (100)) (100) 15)% reading, or + 0.013% of reading.

Since ILRTs are always run above atmospheric pressure and the percentage of reading uncertainty improves as pressure increases (due to the inclusion of a full scale error term), the pressure reading can be said to be accurate to better than + 0.013% of reading for pressures above atmospheric (Volumetrics standard specification is + 0.015% of reading).

General Evaluation y

Vendor procedures were used at the vendor's laboratory in Paso Robles, Califorkia, for all of the flow calibrations (except "in-situ" testing). Vendor procedures f

O were also used for much of the time and dewpoint testing, since PP&L did not g

have procedures specific to the alignment of ILRT circuit boards orfoperation of the vendor's dewpoint' generator. Vendor standards were used in.all fico testing and in the pressure "in-situ" test.

All other standards belonged to the PP&L I&C division.

Two of the PP&L procedures (IC-59-001 and IC-59-002) were drawn to a large ex-tentfromvendorproceduresQAP#2026,2400,2401,2402,and~240). These cover the repeatability and "in-situ" calibration checks. PP&L work authorization

  1. U27498 demonstrates a preferred method for pressure sensitivity testing. The vendor finds all of these procedures acceptable.

Some notable deficiencies surfaced in the calibration of the pressure' gauges by NBS. The most major of these was the taking of pressure reading at 10% full scale increments rather than the 5% full scale increments recommended by the vendor and Mensor. Also, NBS did not record the capsule temperature of each gauge (a problem that was alleviated by the foresight of the PP&L I&C depart-ment in measuring the temperature before and af ter the unit was shipped and" '-

received).

Other deficiencies (not recording points below 15 psia'except zero, not setting zero) were inconsequential.

l Conclusion j

In general, the cooperative calibration ef fort by PP&L and the vendor was successful.

All collected data either met or exceeded ANSI /ANS-56.8, 1981 specifications.

(

DH-160 H-9

/

' ya- ; - - -.

r, f

f APPENDIX I O~

BECHTEL ILRT COMPUTER PROGRAM a

A.

_ Program and Report Description 1.

The Bechtel ILRT computer program is used to determine the integrated Icakage rate of a nuclear primary containment structure. The program is used to compute leakage rate based on input values of time, free air volume containment atmosphere total pressure, drybulb temperature, and dewpoint temperature (water vapor pressure). Leakage rate is com-puted using the Absolute Method as defined in ANSI /ANS 56.8-1981,

" Containment System Leakage Testing Requirements" and BN-TOP-1, Rev 1,

" Testing Criteria for Integrated Leakage Rate Testing of Primary Con-tainment Structures for Nuclear Power Plants".

The program is designed i

to allow the user to evaluate containment leakage rate test results at the ~jobsite during containment leakage testing. Current leakage rate l

values may be obtained at any time during the testing period using one of two computational methods, yielding three different report printouts.

l j

2.

In the first printout, the Total Time Report, leakage rate is computed

^

from initial values of free air volume, containment atmosphere drybulb temperature and partial pressure of dry air, the latest values of the same paraseters, and elap' sed time. These individually computed leakage rates'are statistically averaged using linear regression by the method x

of least squares. The Total-Time Method'is the computational technique upon which the short duration test criteria of BN-TOP-1, Rev 1, " Testing

/

' y Criceria for' Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plant," are based.

,g I

,<t/

3.1 The second printout is the Mass Point Report and is based on the Mass-

"a

' Point Analysis Technique described in ANSI /ANS 56.8-1981, " Containment

, System Leakage Testing Requirements." The mass of dry air in the con-

'U! /

tainment is computed at each data point (time) using the Equation of

/,

State, from current values of containment atmosphere drybulb temperature and partial press'ure of' dry air.

Contained mass is " plotted" versus time and a regression line is fit to the data using the method of least i'

squares. Leakage rate is determined from the statistically derived e

slope and intercept of the regression line.

4.

The third printout, the Trend Report, is a summary of leakage rate values based on Tote 1 Time and Mass, Point computations presented as a 3

,'77-fuction of number of data' points anId elapsed time (test duration). The

'a" Trend Report provides all leakage rate values required for comparision to the acceptanceleriteria of BN-TOP-1 for conduct of a short duration h

test.

?

The program is written. in a high lehel' language and is designed for use 5.'

on a mini-computer with direct data' input from the data acquisition system, or on a mainframe vin, a remote data terminal.

Brief descriptions of program use, formulae'6 sed forgleakage rate computations, and program logic ne-provided in the Tollowing paragraphs.

.y e

3 -

'I DH-160

/ '

l'-l Y

v_ :t,

_ _ _ _ _ _ _ _ _ _ _ _. _. _ _ _. _ ~

APPENDIX I BECHTEL ILRT COMPUTER PROGRAM (CONT'D)

B.

Explanation of Program 1.

The Bechtel ILRT computer program is written, for use by experi-enced ILRT personnel, to determine containment integrated leakage rates based on the Absolute Method described in ANSI /ANS 56.8-1981 and BN-TOP-1.

2.

Information loaded into the program prior to the start of the test:

a.

Number of containment atmosphere drybulb temperature sensors and dewpoint temperature (water vapor pressure) sensors to be used in leakage rate computations for the specific test b.

Volume fractions assigned to aach of the above sensors c.

Calibration data for above sensor, if required d.

Calibration data for pressure sensor.

~

3.

Information entered into the program at the start of the test:

a.

Test title O

b.

Current test pressure and peak testi pressure c.

Maximum allowable leakage rate at peak test pressure I

d.

If the test is a verification test:

(1) Imposed leakage rate (2) Leakage rates determined using the two computational methods described in Paragraph A above during the ILRT.

4.

Data received from the data acquistion system during the test, and used to compute leakage rates:

a.

Time and date b.

Containment atmosphere drybulb temperatures c.

Containment atmosphere pressure 4

d.

Containment atmosphere dewpoint temperatures 5.

After all data at a given time are received, a Summary of Measured Data report (refer to " Program Logic," Paragraph D, " Data" option g

g command) is printed on the data terminal. The date, containment atmosphere weighted average drybulb temperature, partial pressure of the dry air and water vapor pressure are stored on a data file.

DH-160 I-2

APPENDIX I O

BECIITEL ILRT COMPUTER PROGRAM (CONT'D) 6.

If drybulb and dewpoint temperature sensors should fail during the test, the data from the sensor (s) are not used. The volume frac-tions for the remaining sensors are recomputed and reloaded into the program for use in ensuing leakage rate computations.

C.

Leakage Rate Formulae 1.

Computation using the Total Time Method:

a.

Measured leakage rate, from data:

PV1 i = W RT1 (1) 1 (2)

PVi i = W RTi i

2400 (W1-W) 1 (3) b

=

i Solving for W1 and Wi and substituting equations (1) and (2) into (3) yields:

= 2400/At (1-T P /T P )

(4)

Li i

1i i1 where:

W,Wi = Weight of contained mass of dry air at times ti and 1

ti respectively, lbs.

T, T.= Containment atmosphere drybulb temperature at times 1

i ti and ti respectively,

  • R.

P,Pi = Partial pressure of the dry air component of the con-1 tainment atmosphere at times ti and ti respectively, psia.

V = Containment free air volume (constant or variable i

during the test), ft3 th ti, ti = Time at 1st end i data points respectively, hours.

Ati = Elapsed time from ti to ti, hours.

R = Specific gas constant for air = 53.35 ft.lbf/lbm.*R.

t I

Li = Measured leakage rate computed during time interval ti to ti, %/ day.

DH-160 I-3 l

I l

APPENDIX I BECHTEL ILRT COMPUTER PROGRAM (CONT'D) b.

Calculated leaka,ge rate from regression analysis:

(5)

L = a + batN where:

L = Calculated leakage rate, %/ day, as determined from the regression line.

2 EL (Eatg ) - Eatg(E atg) i t

(6) a=

N(Eatg ) _ (gggi)2 2

N(EL at ) - EL (eat )

i t i

i b=

(7)

N(Eatg ) - (EAti)2 2

N = Number of data points N

O I=E i=1 c.

Calculated leakage rate at the 95% confidence level.

L95 - a + bacN + S_

(8)

L where:

L95 = calculated leakage rate at the 95% cont'idence level, %/ day, at elapsed time AtN' For AtN < 24 0 025;N-2 [E(L -5 )2 (N-2)]l/2 x [1 + 1 + (gg - ) / (At -E)2jl/2 (9,)

/

S_

=t N

g g 1 L

N where, t0 025;N 1.95996 + 2.37226 + 2.82250 ;

N-2 (N-2)4 For AtN 1 24

- E )2 (N-2)]1/2 x [1 +(At -

) /I(At - E)2jl/2 (9b)

/

S_, = t0 025;N-2 [E(L1 N

g 1

l L

N 1.6449(N-2)2 + 3.5283(N-2) + 0.85602 where, t0 025;N-2 =

(N-2)2 + 1.2209(N-2) - 1.5162 1

DH-160 I-4

APPENDIX I BECHTEL ILRT COMPUTER PROGRAM (CONT'D) 5 = Calculated leakage rate computed using equation (5) at total elapsed 1

time ti, %/ day.

Eati

__at =

N 2.

Computation using the Mass Point Method a.

Contained mass of dry air from data:

W1 = 144 P,V, (10)

RTi where:

All symbols as previously defined.

.i b.

Calculated leakage rate from regression analysis:

b

_L = -2400 -

(11)

O a

where:

L

= Calculated leakage rate, %/ day, as determined from the regression line.

EW -bEati i

(12) a N

i - EW /N) (Ati - E )]

E[(W i

(13) b

=

E(At - b)2 i

ch Att = Total elapsed time at time of i data point, hours N = Number of data points th Wi = Contained mass of dry air at i data point, Iba, as computed from equation (10).

I N

w I

=E i=1 l

E = Eat /N i

DH-160 I-5

APPENDIX I BECHTEL ILRT COMPUTER PROGRAM (CONT'D)

Calculated leakage rate at the 95% confidence level.

c.

-2400 595 =

(b + S )

(14) b a

where:

595 - Calculated leakage rate at the 95% confidence level, %/ day.

1/2 (15)

Sb"E0 025;N-2 (N-2)E(at - E)2 t

r 1.6449(N-2)2 + 3.5283 (N-2)2 + 0.85602

[

where, t0 025;N-2 =

r th 5 = Contained mass of dry air, Iba, computed at the i (16) 1 data point from the regression equation

?

= a + bati l

All other symbols are previously defined.

l L

OG i

DH-160 I-6 l

t l

APPENDIX I BECHTEL ILRT COMPUTER PROGRAM (CONT'D)

D.

Program Logic 1.

A flow chart of Bechtel ILRT computer program usage is presented in Figure 1, followi.ng. The various user options and a brief description of their associated function are presented below:

OPTION COMMAND FUNCTION DATA Enables operator to enter raw data. When the system requests values of time, volume temperature, pressure and vapor pressure, the user enters the appropriate data.

After completing the data entry, a summary is printed out.

The user then verifies that the data were entered correctly.

If errors are detected, the user will then be given the opportunity to correct the errors. After the user verifies that the data were entered correctly, a Corrected Data Summary Report of time, data, average temperature, partial pressure of dry air, and water vapor pressure is printed.

TREND Terminal will print out a Trend Report.

O TOTAL Terminal will print out a Total Time Report.

MASS Terminal will print out a Mass Point Report.

TERM Enables operator to sign-off temporarily or permanently.

SAVE Enables operator to store the Data Summary on a file.

PREV.

Enables operator to call up an old, previously stored, file.

CORR Enables operator to correct data stored on a file.

LIST When used with a given file name, the printer will print out a list of the Summary Data stored on the file.

READ Enable the computer to receive the next set of raw data from the data acquisition system directly.

O DR-160 I-7

O

~

BECHTEL CONTAINMENT INTEGRATED LEAKAGE RATE TEST COMPUTER PROGRAM FLOW CHART

( SIGN ON )

t

\\ ENTER BASIC /.

NO

/ ENTER PREVIOUS \\

\\lNFORMATION /

\\ VALUES FROM FILES /

, YES f

r.

5 ENTERS

SUMMARY

(DFTIONS[

L CTED FI ES e-PREV o

CORRECTS (ENTER DATA)

<FCORR

SUMMARY

DATA v

(ERROR 7)

[ YES STORES SURARARY Crs e-save

=

oa'a a-

=

ENTER

" NO SELECTED FILE k CORRECTL9NS

SUMMARY

OF

<F-TREND TREND REPORT t

MEASURED DATA

<-TOTAL TOTAL-TIME

(

YES (ERROR 7)

MASS POINT ar MASS REPORT CORRECTED n

SUMMARY

DATA PRINTOUT PRINT GUT OF o-LIST

SUMMARY

DATA' asTERM

( SIGN OFF)

O J

I-8

-