ML20050B563
| ML20050B563 | |
| Person / Time | |
|---|---|
| Site: | Seabrook |
| Issue date: | 04/02/1982 |
| From: | Devincentis J PUBLIC SERVICE CO. OF NEW HAMPSHIRE, YANKEE ATOMIC ELECTRIC CO. |
| To: | Miraglia F Office of Nuclear Reactor Regulation |
| References | |
| RTR-NUREG-0737, RTR-NUREG-737, TASK-2.E.4.2, TASK-TM SBN-251, NUDOCS 8204060052 | |
| Download: ML20050B563 (37) | |
Text
.
seAa m sTAm IPUBUC SERVICE Engineedng Office:
Companyof NewHampshre 1671 Worcester Road From*-aham, Massachusetts 01701 (617). O 2-8100
-~
9 q
April 2, 1982 6'
NEC$ gED SBN-251 T.F. B 7.1.2 97 APR 051982 %
-22
~
n n, United States Nuclear Regulatory Commission b
rh4 O
Washington, D. C.
20555 0)
M Attention:
Mr. Frank J. Miraglia, Chief Licensing Branch #3 Division of Licensing Re fere nc es :
(a) Const ruc tion Pe rmits CPPR-135 and CPPR-136, Docket No s. 50-443 and 50-444 (b) USNRC Letter, dated March 1,1982, " Request for Additional Information,
- F. J. Miraglia to W. C. Tallman Su bj ec t : Response to 480 Series RAIs; (Containment Systems Branch)
Dear Sir:
Uc have enclosed responses to the subject RAIs, which you forwarded in Reference (b), with the exception of 480.13, which will be submitted by April 9,1982.
Very truly yours, YANKEE ATOMIC ELECTRIC COMPANY
.Af /w J. DeVincentis Project Manager Attachment Qh I' 6 '
t 8204060052 820402 PDR ADOCK 05000443 A
480.5 Acco rd ing to Sec t ion 6,. 2.1. 2.b.1.
the eight blocks that make up (6.2.1.2) the neutron shicid are designed to rotate away from the reactor vessel due to the pressure rise in the reactor cavity from a LOCA. Since this is a vent flow path that is not immediately
. availabic at the time of pipe rupture, provide the following information:
.s-
- a
-.r x.
1(1).. Verification that 'the ventlarea and resistance tof flow as.
~
o m
a
~
a function of time'af ter -the break 11s based on (a' dynamic
~
analysis of the subcompartment pressure responsec to. the '
_~
. :n m pipe rupture;
,n-c.-
4[.
," 3;
,;:5 9 f.
4 e:
,: p;. ;,
3 l <..
~
(2)
Experimental data.to support the._ validity of'thP dynamic: _.
_ - -. ~ =.,,
u.
n:.n a :
+
. ~
~
- , f.=
~
~
analysis;.and (3) Analysis of the' effects ;of 'any missiles. that.mayabe gener-4 :
.p. _
~-
- :.c.~ ; w _. e. z,3 - ;. m..
w w
.y...
, ; _ ' ~ ~ ' '. T' *v* ~ ' ' -
z.,;.
y.:'*,7 Q ^.,,
~'.ca. y,,s
- , ~ * -
-. - - ated by, the rotation of;the;eightineut'ron shie1d:blocksN71'
~ ~ ~ ~
-~
s
- , m. _. ;.
..,.. < : + m
' +. ; W l'~...; u g. k Tr ' ; -,
u is', ",'.
~, - P ire-d'.
m-r 4
- 's' W M..; 7. 9 I.
lp y,:.g g g y.'.' 7.,% wrm.
4
~~.~,
'~ RESPONSE:
- r.z..%
r yh e
.e
- gg g g.g, y
j The pressurization. anal,ys,is for;the reac. tor.f cavi.ty-h.as-been p
.u.
- y. 34) _
2 e we (1
...w n
.u L.u a y ;';f, *, h;.~l; h
- 1. ' 'l.Q3 abilit using a. computer. code COMPRESS:~which has:theic'ap&; p y of-simulatin u..
y:g.u.v:.Lq;;;.5 yp.' >
c m
m Wadw
.. n: w.,. n.... A q. g. m. %.a::~. ;a.:, p. p m., n SM. C.n
.t.-
.^-
rotating shield blo'ck.s.nyrhe'. rot.n,n;offa/shieldfg g
yy y
y.
g-lock'istde
.z atio t,
1;7 m &v,e...
y pgg ss v
- s -
- g..
.;t g 2,pg g.
,4 g: g r,
,F) m m,.yy ',^. -.
w%g.g +J;I. 'wiy.
.minedbyrperforming#dyn'amic, anal' sis'so1Vingjtheyequationto6 motion j
y
@zyd '-
,in.w: ; 9pe,- p:h:.A.wr.rp~. im=myh.m]. ;'.-
l m #,.
-e r
g C
m.
c..
. varying; vent path.7a 3 5.e. L.' erg,with the c.orresponding
.. Aprn and using a time'/ e a
- c. c -
r,ea 2 t. ogeth..
~
.:t r
.n
.. g,...- p.. w..m... -y
,s u :
,w
.Y flow path resistance <and inertia which are, calculated'as: functions -
N"
. MPi D '; % s M-N@ M M M h d@iIM ddQ5% % O.
j
, c.. 3 M Y $.$[jU ECA-Wa i Td6
'of'shieid bloekMo~s~it,iorisW.EMRQMn,-n.EW.y@%*Qww J~,~i..c; r
y%. ;&.w.M:..d.. n.
s maq am.
MM%%Qgpy&s.?
?."?;bNoex-.
s.
.~ n n
-..L3 6 : WM...,WWMQ2w.f.
- 17:in; c Q;a.#m:pN?x%g$ ( 2)%.s%.:. p erimen talid a talha st b ee fGwuMW
- %D. W,.,
hev toy.verifypthe va dit yu 2
Q ist ~ 'A sy M,%e.E
^
.... g.y' W -m Q 4 % %p% 2 1 i M * :
5 iths %'. c. ;-
am ww-4
_ p.c 4
,s JEWg.r. tn9 3 vdynamicianalysis oweve he 1
h' een orme q
-w d
7;.
- m a
'~
MFMQ,.b..M>.+S@%"M2N.E!P,hLQd h" M.
fl A
d.*%nA..
m 2
,;;; A.:
q.Q,,, Miski T +- P W1<.,conservativ.e: ass.,u.x o;i,.o.ns u,I@h,a.
... %c. c m
- mpt..
sr Mf<W}M;k..M% o
_.x...
AMMME-TNN. u.
7 p.
N
.., g. c
_'$ % M M,,hp M 4 %,k.s,c 1
g 1
~. _ r./.y.-J.( 3)W,; %
R 6i i
=,Ttie. neutro. n 'sh.ield Sloc.
e,e. n% s...,.9. g.-.s.-
ve h.-. m.n
..,. R is A.
g..
7,
.g.
dynamic. loads iduring '.theirJ ro tation and ? followingiim
- ~. - +-
t
.g 1 - -. - -
.a s
x
.,..\\,
.,,.,_r.
. against.the:
g.% Q ' J c..._. Y 'l a.. m. q-m p.. ~ w_ a~. %. g, m..a.._%. m. +-
.n.=
~~
e.>
. w:,. e.
u m,.,
- m
$u m, -,.y.p? d '.
? crushing} pad ito]3,eliminatc -any[ mfssile7 generation." - NM,~,.M
=
- s G.
. T.. g
_m.
.d.4 m.
~w,._
m~
1
-y 4
~ ~ '
f.hJ f:
. p.c /l
.. ; 3 -
~ > - -
y N..q w.
. a. x m.c., n a -
,w
,7 w,c
. (-
y
.; f_
- g
%.:. a.,f,,; g.,,q y'l--
m.%r N'J'.
q,..
. %.e 6,, a@, s. -
'4 s.
i; y
- w..
eq'd.-
,(
,,,1 3
-L
. ~.. _
i
..y+
--,.,t 3
z g
.,4 i
s I
(4~q
'."%.. E.
~..
- b h.
~.
~
7;*
.4
.l. _
- .+
i tjuest ion 4HO.6 (6.2.4)
!)escribe the design provisions to ensure that tin containment mini purge system isolation valve closure will not be prevented by debris which may become entrained in escaping containment atmosphere. To prevent debris f rom entering the mini-purge line, debris screens with the following characteristics should be installed:
1.
The debris screen should be seismic Category I design and installed about one pipe diameter away f rom the inner side of the inboard isolation valve.
2.
The piping between the debris screen and the isolation valve should also be seismic Category I design.
3.
The debris screen should be designed to withstand the LOCA
[-
differential pressure.
4.
The debris screen should he designed similar to that shown in the attached Figures 1 and 2.
Answer The COP (mini purge) system in designed to prevent debris from entering the line.
Each debris screen consists of heavy bar stainless steci grating, banded and welded to the exhaust and inlet ends of the lines.
Both the exhaust and inlet piping have two 90 bends and a minimum of
.14 feet of pipe between the debris screen and the isolation valves.
This design greatly reduces the possibility of direct impingment of debris on the valves. The pipe,, screens and suoports are seismic Category I.
The design of the screens is similar to that shows in Figures 1 and 2 which were attached to NRC RAI #480.6.
The screens will be capable of withstanding the differential pressure resulting from a LOCA up to the
. point of containment isolation.
i
+
480.7 (6.2.1.2)
Section 6.2.1.2.c.3.b of the FSAR states that a nodalization sensitivity study on the pressurization analysis for the reactor cavity will be
. presented later. Discuss your plans for providing this information.
Response
. a n.
s
.f As. stated'~in the. respo_ nse to RAIT8' I8, the results of-this7st,udy wi1L.
- _O._.
+u 0
L-
+- <
~
.c.,..-
.. ~.
~..
' be..provided = by^Junei18, 1982.
,.c.
e
._m.a 44.
.-. +. -.
m.
. j
<> e+ w. g" a ".D..,.s.g.4*
y b
P l
7""..
.r.'
I 5
'v'k'.c.,
s 7
6-
~ = -,
4#
7 g,
,7_
74...
g d
i 6
- :.~ n g
e e
e e.. -,A f-y S
a-m~ ~._
? :--
4 s.
., e sp. / --
7 x
[,,,,,,A,,
.7^,,
(
2
.a..
t l,
{ ~ =~
,3
~ + + + -..
.ygg,,
-t
. s _c m~m e
.*.h
.. +.,_3
,._m.
^
.~. -
[
., 3
..:..' j-.
,c.
- . ~... # 4 c ;....a*
ap ; ;a.J y
.y
(,-
s
.4
- 6
- f- --+,.,,
-wf*,e,,'...L'.
-g t
.s.
p
.a,,
2 j
w.,,.
3,
. e 6
{
e.-M
%-g,6 1.
~
o
- 4. g
...,p W&
m.u$ m..
.s+
.-w e
C*
u u
['"
m,.y.g we g 4 e
.-.4.=
M,
,14.-
O
E a - -
_t 7--mc.
e
- .2,,_*'""
u
?'A*=.
'.m:
y
- ~ '
,u t
- - = " y %.' *]~ '~ x
- ,p, e-2
"~~
4,
. ", p"l %
~
.'A1 y*_T R.
, ' *~
^
J r
a y
-i',
ig
- - ~ ~.. 4 W>At,.'W***"~~
.L'
. xMW &".; u - nfG~
4, MW.g w.&%..
'.h:
y.
,M(.. & iW H:. %*"',;:
~~; ' m:
- %K.' #2.. J..,.:e %,." " * ' '
z
.c e~ ~ ~ ~
~w,s.-
.r w&k.,
J.
y.%,.,;.
T.i i:
.7
~,
c:,'
.w m
- p-d 46.
0.
+
e
% $l ? * '
% N. > ~ - -,.4 -
'j g
'2 w,
d**K"'"
f
[.e-la j '.'*;Q*Tq' Gym., - -.m
='. %.' Y_s.
- ' ' f.. ~_ _ c ^
y' ' -
5 w~.L.w
- L.ty, E
./
e 'n.: ;&ww Lx,', 4.-
n g
' ' x.V c.._.
. e
+,
L. :m::
r
.b; @.-
. i t e.-4 e,,.O n -
t+
%.P. g w nw,.nr@G.*W m i
,t w
WMLw6
..v.<
~
v.7.w.e w,w, m$e.f w',T,', i j ; 7'l L -
- i
'~ 'i..
lWQ W:..l~ V:
k j ff'k $ Y.w w ~. ~. f % ~:(hmm 1:$4:c,
' y
~
~e C
a..- ;
y
~
~
.m. s9 s
- n., g v my 5
.-s_^
s
- = g 8,
y v
Q-
.T. ",...., - -
- [
Y a ; y.
y 7 l'
s..,,-
Ad[*
9 i -.,. g m.. h., f.-i ? h :.* A y,e n ".*; y. h's$, y 5'c'#-
s
- - * *. yxl.'.4'4A*"u] r..,. f(p,4. = N...m~ k.gw<M r*#
,[ '":%a)-y ~- 1.7 ' ; 'Q' 'f.~nw..
c' S
s 1+. w.
.n.
...,,e-.gm1
. +, -a
.~s r.
ns -
,, ~..
a a.
. ~-.. + : m.
n m,
+
~.
'1P*
Y w
-.- ;, n
...-'.z,.! [ '.c
.d.h-P * $ ",
[,
h
._'N..4./.. ' '['$c*[a,hqf[ w. m+ww. i.,e
-. 84A_m #m. g:~
.y.
3W
Q -. ~.. w,7
>,E.
. m,
- 17..7.e... 'm. _y,',. -....
4*
w
-... $ 1 ( O
-.' + p %,
,a a
4 w'
m
,. ;;p,. 4
.~
m:
- ,.,. t.
c s, u--
. s G
?
"f J ?5...
'hy i
m.w m M w. yn q:qf? w. g=% m% W < f. s; u. m a c:
..f g-,
t f
- k. ~
-f&
fs mam m g n m[l:S & :-
c b
Wf
+
G e m s g.m.4.c'W'W.*='a w-w M ~w.flg=. &..^
- m e
h u
ay gnm3 w
w "w #
M
~
~
e T
Q
..e
,NS9Ntk2M.Mh msynpr% im..e.Mn([h((&Wm$Q$giy[t, w-n
.h
- e,~. s
~s Mm mew.n:emm-n.u swm.,,. w,...n.c w a m Lw. :w - m~.m m,~u..w t
a
%.n... m.,
=
s, z us v. m n a
n.: n.,,;w:q,?
- hl s
.w sa.
,1 hk
.y v.m n = 5Akk
. n....:
ss a
- k. x ff s.r. ~., W <ry. m: w.{*m.a.h s e r.,,.l
,$.s.
hk QhY " h h
r t. Tf5 N, y w:
$.Yi'
^
9 par-
- ','
- p m'v~ v m'
- w -:.-.g-mm. yV ' '
- .s. n 8
y.e[ 3.,%.T'jf.: h_ w* g= y; e,s,:i w. m.h_. m%.~'m%m.~:
w-
': y;..; w 7( m
..p* *:; Y&.
y -
w.
w-p
.-* m. n > ~~ i x ];
.-2
. ~
q.vij,,'.,.
- 2.
- ..- -
L; s _2
~
.,,.~.:.-s a ';~.
L.
+
r yc-
, m
.m.
m-.
. - - - / :
2,...
. s. n,,.,,,
f
-q.._s.
,,,3
' y :a
.~3..._
m,,,,
wr.
,.)? c_.. ' M' m, y
...v,
\\
N f
p.*
3.
{4..~
g I % h'.,' af[.I M b -,.
., 'g p., - -
-*", ',."g.
'*Y
- 4. e g O
' %s j.
g
.).N,b I
J';, z qq[-
d, I
4,.s.o y,
49 w. a n. p. j.y, gg'
__ %,. a L
s.go r
-j
.m m. h %w +e,'(n[. % v.- f,
~.,
e-s e.
y
. c.. n e -: ;
n
. n..
N.-N l b h
[
f
'b
[h '.
/*"
^
1 w
. c.u +4.
ot m.
q
' O. 6 - p,%,
,... ~..,,
w<
n w:
~..: y. -y.
j;*a
~
_.Ag1. c' -
s
~..
r, '
-f*
g
,w a1
<-w.+
.'d*'*_
' ' 9 1 q r- = e.
- *, -i e ;,
a s.
- n. ~,y
}b
,t 5
Q
~
...w,
'y, J
~
v -( }':n.%**..
4 A
?-
xg
+,
-4.***.',.
,,M
,*i IfNM'
,", - - * : k (f.[ ~ ', '** * '%
{
[; i
.d '_;i^ h
.D.,
I g*
480.8 The results of your subcompartment analysis are incom,lete.
(6.2.1.2) We will require the following information in order to complete our revi ew:
(a) Graphically show the pressure (psia) and dif ferential pressure (psi) responses as functions of time for each node. Discuss the basis for establishing the dif feren-f tlal pressureion structures.and l components.a_, ~
._u
~
x.
~
~
~-
(b)N For the coin'pirtment stru'ctiiral design. fress~ure evaluation,~L em-3g
-s..
" 7 provide the3eaE calculated differential pressure.and
.m-time of peak: pressure for each node.. Discuss whether the
.n z.
~
design ? differential pressuref is:: uniformly-applied'to the
^
,.,.m.
e 6
e_
. =.
i compartment 4 structure ~ or:whetfier it' is spatially varied.'~'
-m..
I{ the ilesign differential, pressure' varies depending on the
~
. r. _..
.: - ;;;;+.-
..y
- 3 2
.w
, p roximi.ty'.f of,ngpx,th,egpipeQ reaky, location, discuss how the.
~........,.
-:. -. awy. - m -c vent.. areas Jand"floiNcoef ficie~nts; were determined to as'-
~
~
~
' ~
- >- m -~ *
. " - - *. +.
4 1
f
/
'sure thatiregi6nstremoved' f romf the'Lbreak-locat' ion' are ~6--M 4 t _.
conserva tively.; designed. -
v
--.; -.w
+
.y 2
C; gn,sx:e e w,.
- 3. ;;
y,
+.;. z g.:m-
-(c)g.Providel,a; schema. m~ drawing: showing!the comp;artment-p,v - -
.n tic.
x; v 9-i
+t a
y y mc--- -:.w w:
.,.- c.. +,;&j;-;.. - Q-. c
. q y ----
~
y
^ ' n 4 Q.gz ;.;*Q~ k p,...QQ.,
n j ;.
y :i:=,*=.
O nodalization[dfordth'e?determinat' ion;ofe ma ximum structuralF T' 71 -'
[
a : ~- -
w
^
J' 44 yw
~. y,.=: g:gjn.m s y- %..; %.4 & W n n l:pd..%
- 7 p.
- J^ e~
q;,.y
~
n.
+.x K y -;. '.J ;3 w wtya Wikt-yM;y; ya
,.x 3 r
.M L,
~,a, loads,:and-forethe; component supports eva10ation.
Pro "
c- ;
i
.. }.C L. jkFt : y. f :.i.
~
, vide sufficientlFdetai_lediplan and -section ~ drawings' for' m a..
.f, a %y;ghf *:
qq.4f..
y
, _ :-s,g. g -;
,Ns ? -.--
s
, l:.-
-+
QQ 3.y.
1
- seve rala vi ewsnincludi ng p ri nci p alCdi mens i on s,,D showi ng m %. 77
..a -
h
- 'T =
m ~ : g. y a. w. u %,.n; w;. y:.s a z y,.gw -
yg 2.u:w.wg..,g :.
y m.5g.-
%w ; - - - _ -, -.,.-:
F.
c'. 2%w w@WD;$.r:m m@pipir!gnand*othep L m..w
....=; r-
. _ ~
~
s oncom 3. M g*;? @ i-i W^ A arm:gg r W 23 W '!Mif W G WEV TR W w
w mwm &u IGM
&%'W Q
w www 2,: n.
orf,obsjructionsw and;;ve.nt hW Kna d
onents-m mW hwr.
SN.pp[Nkk. q
$k hWb Nibhb h
7p;%w >
Nicat. ion
- Kareassto;perntikve
, - sc,.u.2m d1 cwt.:n =. pw}aoffthexs0'bcompartmentrnodall WWW.4MG.. y%:
, fG :
' Q,$: G Q.- QP \\k y j ; Q
.s.
a
' W ^ $%'&;L.3-f:O @'ENN-b!WY$kT p ob-f **[
y m ;
.asn.m,3ventilocalionsMee %.m;g a
- W9 m
- w3-wWn=m-
- r. :zation7and
- c. w '
. p ;a w.y.m m + w. 3,.m.
, y$ ;p ' w m. w.:
(d) 1Pr ovide the peak 'anditransient.iloading on lthe~ major-.compo,,.O
. v.
~..,
x w,3;g ;
... g.. g :
- -;. 3.;.
- - 3, -
n.q-
. s.: _
=
- p m : ~y
~
..7..
-nents used to': establish the Ydequacy' of the.supportsidesig;nF -
. 4-3.-
3'..
.g:m g
m-
+
T c.
r
+
t
. g; 3
- ,[.; -
+-
's.
. a.u a
.. _. ;e.,.,- -
~..
1w
... -. g '.;
- ; g;-
5.m
This should include the load forcing functions (e.g., f (t),
X f (t), f (t)) and transient moments (e.g., M (t), M (t),
y z
x y
M (t)) as resolved about a specific, identified coordinate Z
system.
Provide the projected area used to calculate these loads and identify the location of the area projection, on plan and section drawings in the selected coordinate system.
This information should-be presented in sucNa mannerJ chat ~ "
.. t z.
.,.:1 _
yy- --.
i confirmatory evaluations 1ofl.the loads and. moments ~ ca'a. be ma'de.
-)
~
m _
Response
T~
n.
-(a)
The transient pressures. for. all-the nodes have heEiraphically provided for.. a steam generator: compartment along with' the graphs of dif_ferential pressures $ for;somelselectedI6 odes....The dif fer-
~
.Qi%.. : ~.
..~...rn-c.a.
ential' pressure histories for the remaining nodes'can'-easily be
.._..e s
.:_-.. ~...,..
obtained from the pressure historicsf.particular1yghen thejcontain-l _- J..m
.c. n.
...a. v..
y w,
-r-
~;
A ment pressure remains. essentially unchanged.during.the transient c --
Similarl. y, :. for f.~th'e press'urlz... -er skirt. cavity:.:the; -
g;..m.. r. -
- 5...
. time considered.
a.:;;;3 w b
.L
,. z.3.:)..
c.y. - -- w. m -y..
. = _; -
2 y.
.c. - '- '
.-g,mp
- dif ferential. pressure;histori$sdianibe derivedifroml,the pressurec
.]
'_.Q f ~M N. ? ?.cQyz&w--
~ ~%
. 7 W
y V
E!ddNd T
i.
2._d.,. w. k. v '.
~
,g>. p,u e a,,Y
" ' histdiAsiprovided.s W; W3..C.'e 9--
w s.
The differential pressure on structures and-components _is. maximized
' L ~.=: -: -
3 considaring. all the po.s tulated,breakilocations,[ employing. dif ferent'. _.
~
g,p 4
- i
..a
- m. -.g.y mm;.we..
.3r t
_2 in l
, ' _ - / / ". %p --j.,l Mh ;.Q. "' r p --v~
! >.3
. h. ',
vary:w.g nodalaventepath,eparaf
- ,.2'
. nodalfar'rangements and'appropriatelyy'7 =Lhht464f?3^fth C
xp.
spw"W%~,&w@ %.: asis 7forez, G{
~
x :-e
%c[K:~i W..
This. maximum:.differen&m %tiah.M e
z..,:
r r:.
- a. +;w.:.
m<
.n, 3.~..
- eW*%
xa
- ,=M:Y ' + = m (M +w - A._
c n
&WW%
y, g m..::.w.:. q.~pressuretforms W S W W M,'5 &p%.A meterst :
e
~
-s.
1% a:..
w.e ; w np 2
- ,....n a y s~ n.
ny :aQ
-h ea qgew.rA;Wtestablishing.;cm w SWh?'hgk15qN:$$$f@tructu
%$E5Bhl5:USEL~URW 1
nd:componentsh;c sthe Qgg, tg.p-$&m$X%p ;
w.sm.m.sp"dif f eren'tia pressure 3o *s
-v p
' wwy.ntc cr.TW ~ ~
ynsd M4 M Q.t y pa gE W Q Q ? w'n~ W :q 0}. y T Q & p h] Q, q &m p;
,;x-w e g:y.w
}
n ist
. E. A:t *.. 4(b)OThe.(peakNcalculatedTdif ferenTial?yr,essurelforleacliin'odefis&provi'dedff.
ny-p:f..;.w ng wp..
m -g_2 y q ;,z, ww g.; m,3~,; w ;2 m
. c..
%g.;s --
. m: ;
- qh.-
g_
v-3 3:
in a format sugges t'ed b'yf Reg. Guidel.70 Re'v. ' 3,",in' the FSAR.
~
c 1
g.,
y
,..,gy r3, h,. _ y,.,.
bpc q( i fp-.'--
Refer 'to Table' 6.2-231(Reactor; Cavity),1Tabl,e16.2-26l(Steam Generator ~
~. dg*,c,
E h;. g}. n g.
~.
- ~..
y s a. g. g
-q
,.y;,
3
, ? Y',"
i Compartment). Table' 6.'2-32' (TPressurizer Compartment),
es p u*
4
.c T
+
.- LL
./
~4 y
..+
'p.
,, 3. ? ~4
?.
e s
4$
4.e,
9..'--
1P
1 and Table 6.2-35 (Pressurizer Skirt Cavity).
The time of peak differential can be casily read from the nodal pressure histories.
The design differential pressure is spatially varying and is equal to or higher than the calculated peak nodal pressures.
The design' differential pressure.is con-servatively predicted by appropriately nodalizing the compartment-t.
%;* y.-
c l
4
- for all postulated break locations.
For example,11n1 the steam
~
generator. compartment the des.ign dif ferential pressure's for th~e'
~ ~
structures away from the Hot-Leg break have been found to be higher
- ~...., yA C. T due to' the Cold-Leg break.
The higher. of th'e[two peaki calculated
~.... =.
u,.
' dif ferential pressures is considered t o determine the. design dif-
,..x..
ferential pressure for structures:
n, a..
- Similarily',~two break locationsf a=:
p. a.,
f.
.s
. T
.ir t m(t have been considered for-the-Surge Line break,in:the pressurizer ~
p w:p..:ww.. y 92
,n.
g
- .
- u cavity.
To calculate peak pressure;in.the' skirt,' a break at the
...+.~7*..
V.uy ( =
- LA
'~
k 5.r. 4..'E.d.f 7.. nozz.le, isi pos tulated. while a break below EL' (--).5-11")m.is'. con,,.. _.
7w w w af n.
,n /,
.n w-p 7 3.~.
.n.
- ,._. ~. ~ -.
N'
~.,. ; ', [
sidered to calculate -the peak pressures in 'the; 1ower^ region. of.-.s a.
+
w..
y
- ...~
z
.' ;;,m. -.the skirt 4 cavity.. However. this was inot presented inithe-FSAR. m z, W ~6;>J.p@.:.x sin.rc.
da w
.,.p*',
+
.; W F %"
~n * - _'
p: ^!.' c Q A-% d ?$.7,,(c)g.,e The schematics of4 the compartment"nodalization 'f6F'slls the'sub _. _
q.
NAQii!Ei
-f-
. i :*
,y '
- J.
.2_
v
%9.5:
@M Ncd.,b,$$sk.,. N... M. c'oinp, art.' 'ents used.foi stiructufabidaciand compo
,1 g Sr 4 : ped y.
e-wy.
. u w 4 ;. *...
7 i
I 7~
m s
+.,..
- x.,. o
- y. %
~
.o J,
loads have been provided in the.FSAR.1 Refer to Figures 6.'2--26',
~
fe r
a;
~
=.
k' Q,:: W,Ed
~
$ $ h M @N $
G
'. E5**.*: ~
i
.c" E
WP W..,.
~.. -.
y-
.. a ~ v:';; & w e-
'CA%i 1b,, m,.<(Stieam; Generator: Compartment),., Figures: 6.2-35 sthicongfit 6.12-40M9. -
uv&-m q'.<.
- - m ',;;n.m.. o,.u. 3. p,,. ~.. < t t br.~n,w:www mh,w y e-w
- w. % p t my t.,4.a. O g..
1 A,_.-
u d%%(Pressurizhr Co'nipartment),.andJigures.i6s2-41;e%.3,
M.a.n and ?42?(Pre'ssu'rizbri.fj'~
% m Mwp..e e M W e:
9 e s.: -. -
w-a ~ a.r:
.3 w v
y".2 nm.
- 9 ~.-;
~-
=
M4SM!g n aries (on b w; # +E.:._.J
".S kir t'ECa; M)m'.iV Fur th e re,IMMMW4WiM pg vity clarificationiofMthW nodali WN i en..
mmm.n.:
ur :' ? "
=
c wn.x.i;yw
~
p;:'^. L. & p'%5; n& W.W Mt. W ~T %,q:p-C.lW&M W U %m % M
.a.
.? W :wiXlU l,c. Wg_.a. c " e
-r plan [ drawings at various.eleva*. ions (Jean belprovide.'..M S fi'ciently 7 TQM J N MI} $. 2
.W3J.,h
, %-* m JJ 4 '.i r '
" GM iTMEE@w?n ; "., ~
P s
wpa;7.u +n :W,1A w# detailed. plan and'section drawin'gs' for all' the-sub-compartments x:
w s
~
n,
&:w i
HMM:
am
,s
_..- ~ ~ - - -7.~ H. k n%
u M, y %.g:qe% *Wrr; N - J Tare included in the-FSAR, Section 6.2.1.2.
v v
s
.c-,- v r
k a..'an..n a n;=c :y
'h
?*
?'
/
~
..,. 3
.... +
=
q, (
5
,sj' b
k g p @r"*'
.;.% Q'}-),_.
r
.3.
- t.
,...f..
.C_,
'-.ir.
a 3
[
_.e.g
%k 9,gCg,qq
': L
.;w; n.
(d) The peak and transient loadings (Fx and My) for the steam generator in a selected coordin 2te system are provided in the FSAR.
For the pressurizer skirt cavity the only component force is the uplift force on the pressurizer. This force can be easily obtained from the pressure transients 'and the projected area. Our computer program 4 -
. used to calculate the forces _ and moments.on the components, calculated x
However.they~can p
l.the projected areas arid ~ moment arms internally.
/
be hand calculated" andfprovided to the NRC.
i a
(e)l.The results.of the nodalization sensitivity study will be provided:
, k. ;.n
' to the NRC by-June.5-18, ;1982.
~ ~
t 6
.n._
-.e..
r w
A
_9
-" grp' -
4 I
d4 ap o.-
.%4
- p. #v q.
.m4 g
m a
.&e o
3
+
n*m.,,,..
c__
~
~
~..'-_
- Mm,
...*s,..
g,
. - - - " ' +
- s
[%
- 'N.~,. -..
,..y*,
'e F9.
eh *.g-.e,i
-y
'-=e o--
+
74fT
. s., y _ p _._, _
~%
- \\,
M.s..[h.h^ W.7
.;. ; 4 k,$*,'Z*Ur?:m '* l J 2Uy ~ h 4% );.,.l 7 '..
-y_
~, m f_;,_ i
~,y
....~
.-. r y.'.
$==.
',, [
. e*
=.n.-
g%
,.a.
=..-
g
~
{m a
- y. -
.\\
- ~
- E 0
w. u,.
~
m,.
~ w& M ..
?.Uls$ )
.N- ~
~
^'u
-ha 9W 1 soy m$_P..-
n.v
._ =..
. dr.y'.~.-
.i w w. _... < %.A c.n. - --
,w e
.. s.-
.s.
a,.
.w
- b... e...vag"rc( 4..; 5,i -* ' -.
Nv Wn, A
. ~.
3 N
$ "_l-w} *;
h
- ?
~
f$[ 'l
- 1u'
$E'
' * ~ * ~ ~ ~
4 l *"
. w.,y.,.
-sn y..-
- 9. u
~ - - - +-- h w y
.w-r n
a-.
- s.
4 d a
.f o.
v..
isb 4 i;g ' i g..*,L.~.. t.u.
- 2 N.
ii. -
f?
' ^s N-
- +
, Jih u
~ w' Mifj % ?, r *p
-gl.h M-m.'.e29.%
e s
+
[;*
', j; i.
- n. - ~ --
) 22.,}n
.r nn c
.~l..'
1, d m,e -e.:
[* w ' *... * ^*,,
.. '. a e c e --
.~
e is Q'l,A...u.
y :..Wr'.-
r: -"n.@n <; n., z. ~;?~.yJ..,W<h.W:ys'
'T"..~'.. f?'
.,, m %.. y:g,:s'c.QC,. m %e M_, X -
.. - rd ~. ;
K;% u x
l A
w m.w
- ~. nv
~
a.,4 - 4 $. x. -. Ni.: '
- r.
"'% j{ i t'sp
-a
- ~ ".
..-c-
., n..
.4 ". 9 p.W., e %.N:%%.' ;.Qist'Mx p%Q=. 4 epv:c #
uv*
- +:. w m
v. m.;a.a W. p;~ t,,
- ,- W +4 mw, u,.W n -t. 3 i+ y;;~
n L b_ W ~.- w m,,,.". s.
w w '
%s :!. F :.. m_s.,
f,w
>>v s
w
- w a 2...
=
-b u y y,
.r n
n w, A-a>gi,.
5 w.m e.
9 u
a-4.e;-. e#,; d m.yg e%
p= -
..-,*w
.? m=~.m
- n. a.-e
.-,,, e wn..,.., w& o~a., p.
v -
,.n.. a
~q
- e. ?n.~~
.an..,,,. w yse.;p e%wY'Mi'. ' %m."
. m.....e.,.
m c"r-u g.-
n:.o >
.,,&+.,'.
~.., n~s-s
-a
+
r ~
e
- L
~MWW5fQy 4, : p,ftY.2h!9"M ' n.. d-lw,,y Nm n.,n yy.,
ss
--e o
2;f-Q.,, c, Q W
' ~
C d
fbPjf,&sfc. &&.,w%QMR. W:.*{i.1My%; 1 r
Q%
AL w
7 n
n
%w e.
je
- y..
n.
I..
0 p.~;Qh..tY..C.f.Q s.b}W. Y.N. N. N., -QK 5M$N Yk_ b.Y.?.5.Y?.&..uc
~..
.i Th?
nV
. a
)
., b,+ /' 4 J ' ** '"N'",s' %W. 3 b
.4
$ p p " **W {,%.'$m.V.
n' c s x.9.,'. ws.. 2.%. w)l. -V"'&$.b.
e.~
~,.
b
, ~ -.
-s
-i. ' m s. ~ %. c c.
^n'
't'
' W.%Wsd
.s v
.. ~
~~-
.; 3
---.%..'.'.s '. l (- >J-f Q 4. *
- f. Q *
. *d a,&y' n...t
>^;>,
. k. -mr:.
<, w m ; <.
em
.m z
+;yfy:n*;. y..y. - m - !
.,, ~ 7,9",W= r.N s.p.>,.;=>~
~:.'
S'-
m~
.n. ; ;. n.
y; s sp e w grd:r. Q,. ~
m s
3
- q., - -
e.
^+
- e..L
.,u"e, uQ
- +
h*
~ ~ ~
s.
[ '.-- Q-'
u -g
- M,QY'.?
- y
.. yV:
>s
- &,3pa._.
'.c.
. ~ f - ll.*.'.I N lf; < 5 R*
' Y'
..-~,;;
- f I.
L.
. Q', j ^
' '.y L ~
'M.
y
,.gg ~ }.
f
- pM.
-~
&:W
=
- n r.,f.,
"'.'l'*'
.,,f
.g
'~
O e.
.*.W
~
s.
A l
r f.
5A.
- =
U.
~' '~
.m
[ ['
.b.
. i~ J.;, [
d.
., ' y,
,,4 t
The mass and energy release analysis for postulated LOCAs in FSAR 480.9 NS-TMA-20 M,
Section 6.2.1.3 is based on a Westinghouse report,
" Westinghouse LOCA Mass and Energy Release Model for Containment Design." This report is currently under staf f review and pre-sently has not been accepted.
~
~
Provide.a comparison for. the worst case LOCA of containment.
pressure and temperature response using the mass and' energy
~
release data based on NS-THA-2075 and on the previously ac-cepted methodology on WCAP-8312A.
RESPONSE:_
.~.
n
~
n=
a_,
.~
w.
% J.
'w-.
-. 4 8'). 9 ',
- The. containment pressure-temperature analysis will}be}provided
^
- e. <m. _ _. s.
~
m
.....~c..-
using WCAP-8312A, by June--18,.1982.
N
.e
~9
,;T,,L'
, r
_,+-s
- 1. : ;J.
7,' (.. :
c y%
'....,. = '. - =
v
,b
*,'T 4.
i j.:'.,T e
(
e.~
. "( {[ i ~*. 2,
_,. pm s
- s.~
-C.
"-'-M*
8
- s.'.),.;' .
I w
,a g
.. ;r w...f,
'7*-*
?_**
~
g
..f.._...,.
i' % ;..
^^?
7-m. %.--
r g
s
'.T*.
. - _7 J ~
'O,
.2
,... >,.,g.
s
.e+
T n.
-._.i M
e s,
).
.~.=_as r.
34
'-f,.
.,r+,
f a.' l *"
+'
4a-[**
N7
, 4Q ~- g.m.,. =n'k,-
3 g
t
[- "pd w4
'g h,
h
.u
~
N r*
.? a *.,-d s, t ? - ~v WQC.** T.W c.-'7. *;2.,
s.
s -
M **', b.xA, ', s
~*
h.N h ~ '
.d i.
e
~
E, [ 12.-
[,. y; ' +.+... -.
.s,
. y e ^.,. -
ry w,
. e'M.
~-
m m Q.. % @s F@*kdj.t$ w d@.,,s _m my ~i,M,.~m
.'Y'- *.} Q L.x..Y';W.d'5i/M' ER " :-- ?.TL:;W N+.h;&.Q d'$' ~j. y'J. p.K
- .U
,, :.,.; n i. 'u.: *$'5& - - * - Q
-_ _e.
4..x. 7 -: = -;;;;;.
n.g m m IhWj%2'.~@?fl%lt.J
- 1*
- -r l
- 3:W.4 ?.
b; &;,
t w.c. x.,,p< ~ea :.
ng: w K L%W s
me,ns_e'6?4ki%h,,.c..,
re;p,fhpm~.=- -
-Q
=~; 2 T 4 C2' Q W P W.A W ; '
R+pW4 Qff6ff r$$L.:I w
. Q MND sNpMEQMG' er e.
y ak
_m __,
s m
-m 4.
sv * ;n
.. ~..
- a...,';.,
- _. m yG.;.,M_ p.-.
i.%,, y.,-.-
f
. ~.
-,..., 4,, e,ng,, ;.,*v.,. *,,_
~ ;g,Jg.1..v. p
,pg ;. y.,,,
s
,s
,%ee ' 1. - r.
2;,.4,
.,~.1..
.s p.e[
,m
-*- _ep c-f, o
r%v
,? r c. itn+ - ~~ -
r
,.k. e) b &N.
M a.%.
j1*.','/._
.Q".,.,__
.-pp
{..
7.6. 5 f
'a'
- .' GP*/ #
a, k*
u-
-(
[
.h 4
r
-L.
J-m ;,,_,,
i-f 5
~
- -) _
5 7
- sy m
'E.,..
9 480.10 Verify that the Containment Recirculation Sump Screens are Seismic Category I and protected from the effects of pipe breaks.
RESPONSE
The containment recirculation sump screens are Seismic Category I.
The screens are protected by a steel cover, however, there are no high energy lines in the vicinity of the sump which would
~
present a hazard to their integrity.
4 i%.,_.
+
m.
T*+4
,---.N..'
-n
_.x..--;.--.
..-, c -
-.\\
. L r---
w
-.'s,d
-N..-
D-**
l A
"W V
-.[d'-
,.n
~
9 0
4 m
J t
1.f 9 -, _,
e %
- m.g p. a.
s Al i.
-g
..3.._
.6
~.
' t.e -',,,
f R. i '.- t'\\ * * '. '
3,
.-6 %.. q #
y s.
g o b.
e
_Am y... g ;..j
.g '
s rps
. ~;
1
- , s
. ' - (
. ',..~ \\1 g
%;* es ja )! } _~_ ~..~
. f}' _**Q~
}.
- ~ _-_.
- yt,.y*-l;
.Q = *, x_
~..,
MO w; 4, '.:.4'
- y O.
,.e,. --8,,
,',g.m.
.a a
4
.c Qm..-.i m.,.. e.,,s,,..,.t %,'., p,].,,,%,.,*' ;
e, i,.-.,~,.( *, 4 -g,. s.,1 "
q...
s.
- f.4 -
- .,..c m_......y(,
,.%. y.. n
-,c T. < st, u+of;y e. n. 4,.m... _,/,-i
. 1
<t.,
. __,,.. - - ~x. t*
g ga
..c y.*v
.2,
,,.a_
+ 4 4_w,: g,__ 7 u
4f.. t.
,s N,, d., a gy.. s. y'.*-.
. qJ%
.w w-.:..Q 37:q.6
- + -
.. : e sc r u. z.,..
/;y.38 h *er*W H A z )
'q~. m #r*~.~.,p e :.
y s., ;g ygf'***+g*%Ge.%. 5 sy,* - mg:
5,99-a
~v, 9w r.7 -.... ~ >.s.: *.,
u ga 5
p.4 *.7s.
u,-
- s. b e
%.a%
p; q 1 -
r.~y;yx:.n;.Lg e
, refL1
~.r u>-
a..
+
e g.
C'.
t
- -o.v. y..
- 3.:4;t,..,
,g-py.
- gy4jj..o w;
- -..., 4 as.yg,M.T. ; --
- L a d / T ' S.[t,.
f t'i.
f*,
=
.g i y;_
- e q
- g..
.n N
Y Y
3 I
h L.
_s,-_
480.11 (6.2.3.3)
Verify that the Containment Emergency Cleanup System is supplied 1 the Emergency Power Supply.
RESPONSE
The..Containmen' rnclosure Emergency, Cleanup System is supplied from
-cm,e.r. gen.cy motonM.ntrol centers.:..E.512.' and' E612'T.(.Y..S. AR Figur'es 8.3',
.w -s and i8.~3-23)'. -. The ;l. -oads are identified as "Containmenc: Enclosure -.-
' "EmergencyTExhaEsb. F.ilter Fans. " -- These -loadsUai.ei. also noted' as beinh I
. ~ :Oloade'd, ion
- the diesel generator.' ' (FSAR Table ' 8.~ 3-1).
m.-
9
..m g
h
. mew-.--"
9" gr +
- 'a wmem g
9 d-*
y
~
- t
=
-=
.~
a.v.
4 I
,j e
P
,.. mis.w
d.
k i
._m em.'
..-e f
' ' ~
me y
.a
- e
-,~ -,~
e Aa1%,n-s e-W P'-'
n t
+
a.,
~;.
3
~1,-
qs
- g.J.3d y -
,_4,,,.
r
>~
.-y-
, ~ - --
_w..
r I
4 7'
z
_q
+
pk*<+
i c,.;,
m......
b c
-.r. e t.a. A m-
, m; v;e. e r W
.n 4
/. ; :~.7:
[
t 4,
y-g T
7 f_ y l..Q7 (
A*.""- ~. $'. - s
/^^ *,,
s~.-
F...
'. g,s' g h _ -.
{.y 4
II b
[ 'g'.
,~g"
'*O*
'Okd"-
- $' ' [#
...'--A' I~*
e.,$g 1 4,,
^~#*
a 4 b ' b {
~~
~#
'. '. ", e
- (
+ M.br 4--
c.,
r r
e 1
I p
f] * - c J W,'a d 'lchi 4
' ::e* M9.n '
' *...T
, d' I-~k i
A*-
.h k.+
t
.s 3 - f g ~ . '
4
.a
~,_ g".[=N'= +. -
4g
, j *#-
- * * ~,
2 g-6,, {d ',: hr+3 t
..,z g..
s
+1 y
I,,*.
+
~>
+
m,
, -..y h.,. -y a e m
c'
- s g.'
g A
'( f 's.
- v' ea.~
n
?.
.- ' ".. ' 7 m
.,..j'*
- 'y,
},
.p
- [*
g m.
-s.-
g
.gj '.*
- E g
%:sf @ l,
I'd.
"* % ^[5 [;.,j 'hp.W' M d';.".$ 2.;.Q.**'
e
' ! ['.
~
"*,d '. '# ~' h. * ' '
. - v.:
y n
'e. asp...
6
,.p
%" ',fjf,
5,,:.
V AY.
~
o A
1
' ~
. n E $.,.. ~ ' "b.$..
? '.n,. i. n.K.n *7..L;. f...,
Tf.
- 4 f..
4:.C... L -
- u-
- Q
'7, e.
1
.+
~
-*)' T; s - - -,%f1.\\.~] sA T].,r
- s >
+
in <' *ph D ~;
]' ~f ', a..a,..
t,. -~~,
- ' ' ' - +--
a g.
I/
'o%
~
?J ' -* -
G*
- $ ' ? b f * *.. % u, V.,. &'
n.'. ; _. e tee ie r
- e + -., y'
% y'. --.'.t., rr... ' g c. '."%
'r+
t*
s s
5 g_
q
_g
- \\
I in,.
7 8.gD p
+%
b c wh m.; %y ',g-O kO 44k, - '
M w nb. ~ m..:.'
n QWyat-~u"%,
. %g,, $ %..x9 4 *
.D g
9,._
g y
edef.
. u um'. w N:r:.V -
r u m.,,e. $ $ $m. & m -v k zia w n$ m+.QYh,a m. m 5 y.
2,; h M,:.1' H. m. E
- '$ ZibhN4W hNWiW?~SM}'G-WM f YjESk*:
.ww.y v...m%,w, %,. # ww._..~
pm
.u.
m m ~mm h_t ' _4
-cw M-%
h
_^[
bt
- =
' * ~.
- S 9 s
. lyed, w w **
et M.-
+
m
. m,O,. l* rag'(.
t
<.6
- e. ' # emm E
y, y-pg' (., m, 3 q.gry c, a.gY.. k*,
CmlC.CrM.. >.""-- ",g f *h. '%_, ' y J TV ~ V, p_r. % M'.Q,* *
- M, g,
s L..St *-r G.... -%m. y. =.=.'i@
^ y..
~
e 4 a, --* P.u'1**e,4**.
g
.y,c w,
- w.
q
- ~
m.e n
-n
,y EY - t:g, v. ~: ?w y ;j',,. n.3 s
- ~.
a
.aw.,.y s
. e. c~ '~
'Y myg,
~
p1.,-
}~
, :**~'
l --Q
[ W.*3, " t mNy '
y'% C NW '.' : ' ^
~
^
E~W Q WT'"
p.,g*
- T[
~
5 p
y-89
/
"E
[
p
'" *"I y..g
?
. g,:
^
s yn.
.q.4 g 3......
4.
5 n',*
[.
. '.., ~
3 e
n7, ' ;--
s L.
j 6
O$
e.4
- +,sfO' I
b g ea
+< _ t a %*
hyk.
g
480.12 Describe the provisions for leak rate testing of the secondary containment bypass leakage.
Include, in your description, any test necessary to measure the secondary containment bypass leakage.
RESPONSE
In order to estimate the amount of leakage that could bypass the containment enclosure in the event of a LOCA, all lines that penetrate the containment and terminate in areas not treated by the containment enclosure exhaust filter system are assumed to be potential paths for bypass leakage, unless these lines are filled with water or are at a higher pressure than the primary system following a postulated LOCA.
(See Subsection 6.2.3.2.d. )
'As stated in Subsection 6.2.6.3, all lines that penetrate the primary containment and present s' potential leakage path between the inside and outside atmosphere's.of the primary containment ~
under postulated acci_ dent conditions, are subjected to Type C tests. Acceptable methods of Type C. testing include the pressure decay method, as described in Subsectio'n 6.2.6.2, and make-up. flow and water collection methods, as described in Subsection 6.2.6.3.
wwM 5
- Go w
m.'-a
'w'
{
,8 1---'
E,'
I. P L. i..,4,,
....ji ;
c--
_m,.
~,*l
- 1;.
- . g1
]
' J,( U
' [ t.
l;i i' l
^
b
-ps.
m, 7. -
. N.y,
..~3 ~
, y, i;n l.g..s
- -n
- w1-,,.
s.,
~-'.
.r-h:
4 l
l
f RAI 480.14 (6.2.4)
Either provide the containment isolation system information identified as "later" in Table 6.2-83 or provide a schedule for submittal of this information.
RESPONSE
Table 6.2-83, Amendment 44, has been corrected and updated with all information presently available. Information identified as "later" will.be submitted by May 14, 1982.
~
9 e
w O
k
- n-e
~l "f
)
e
+
e
- :. +.
e go$
y g
A '/@[
.,?-',
-~ ',.
a
,q. p
.x..m-wa. -
~.
- O - 1; fy4g
.q,f!g:
2.;,7 :_,m.n....- Q.
6
't
.z7 3...,, -
,.;+.
.~,
.; m,6
.y w
....,yg
-u.
, ".. b. -l
? (psf.t \\* **; Q'y;_ajp*pys' & - g.}^-g. ' ' y 5
- 3. p-QQ -
l s
C,E. ; s. -
ji!:'l %;*,;j. '.[ *
'p
~ a f.y.. -
1~~
_}_:
et
-:;a -
t, w :.. cm;. = a;.5; d.,5-
. ;_g.
y7,_,g.
c3-jp 3
p.-
9..
g
[,
f.
.7.-
I
~
p k4
w e
A a
g,.rte.
X "* "
~~ v
- es i
["]
B; 3 333 3: :
3 3Ja j :: ! I i ogv
!* ! !!J3 i s: :
33333 i 8 e a4 II j
] : : : : : : : :
a y
,i y : :
3 : : : : :
9:
';c, e
a :
3:
s,i
- : : : : : I
_-a.
y m>
n
's i :
a g
7, l g j)j wa l
e ag :
a g4 : : : : : : :
c d
a 4
s.
s-s - o p.
I - Eh
- s. *So il J
a I
dd 4 - :
c:
d d : : :
a d
oa gy
~
5 ;--
3
'8 *
- 8 8 8 : 8 88**8 8 8 ' 8 8'8-8 8 i8 8
8 *8 8 80 8
- a fW
- il
- l 5;;
i.!
- 2 f
a d d to d d
- od d d ad d :
- d d d
d d
- d d d : d d
M 3.3 8
8
- d
- 80
- 8 8
d,d
- d dd i d
= d d d d d-d
- d
- d d d s '.
I-I I..
i : : : : a g
- : si j g j
a g
a i
g g
t.
u e
5 a
- a e: -I 3' 3-I: 8 a : -j - I I
e s3 3 et-3 8 -
8
- I:
1' i
j cslea i j I
8
- =
3
, c 3 a I
s
~
=
i 3 i s
=
= -
3 3
l },!]IIl:1].II}il } } ]I 1 ' l } 15 i 'l }}' "i , i e!!ia j! ! i it 1. I I,i i i , i i i i: i t u, _a _i i - us la a a i a 3-s 4 2. -a 2 2 a s aa a n P,gs I I I I I S I I $a
- a a
b I 6 :
- ~5 s
assss s z s sss s s s sss > s s 3 .n. i 2 asss 2 3 a s ,'i! 3jj;......... I 4 i E I = a
- - f -.
nil t e# ~- 8 - " [, ' : h I =av,l?: Y !j h .u. e I h nn= a e v =, , v:. e. < =
- e n6 i
i i s8: - i e 5 ()s85 l 5 ( 4 3d y 'ei {_i i (s ' g U 5 ? -( s 14 2 L e L 5 ( ( ? 12 2, t. 1: .- 342 e i. n h k.. oL h ~j n !!], 39 h 3 3 3 3 3 3 3 3 3 3 3 3 3' 8 3 3 3 2 3 3 83 3 3 :
- 3 3 3 3 3 3 g
.Alaj 1 5
- 1..
- R$1' 3 5
4 3 3 3 3 3 J 3 3 3 3 3 3 3 3 s 3 3 3 3 3 3 3 3 3 3 3 3 sh 3 3
- i a ---. : -
n -***:- =. 24) ~ } } s: s a sy 'l ii 33 JI 33 13 i I 3 .Is .IE -1: .= a.t 21 51 I 2 a.l i e a. u. o. I'.. l;
- i;i. -
~ L y
- a
.M ~m' EfE $! ! iii 1 : } } t s 3a ! } s: 3 1 3 3 is i 3 3 is i iiss
- n i
- 4. 2. 3 il 8
8 8 ..i _ 8 i: i: 1 8' jjja 3 3 t 3 : u a i a : i a e i i a i u ie a u I as u i :: ===ii .e s a-(! e, j' 3: N ) gj,*i a M . lI 8 5 55: 5 5 5 5: 5 5
- : 5 58 8 58 5 :
i 5 sa i s i e gp o g m 9 pf
- So e ! i e - :
-- ;e ed
- : : eo -: e:.i gi e :
og t u .i n-w e. . I.
- i ou a ee: i
- : i se i i aia e M5 so i o. g gW-sig tm w cr i de c :. do o oeit 'i M A g e o i e a i e c : g j d I t d I d d 3 i d I 8 dd I t: 6 d ac: : 3 d a u . d a 8 8 8 8 8 8 88 8 8 8 8 8 i e 8 3 i i j i i- }: E 3 s_ - j ) - j I E E i I : : = t 3 m a i a1 i e I 13a il I a2 ai I 4 I =2 8 I II I Ij 8 I 2 3 l 3 8 a z e 4 N 3 2 3 E 5- ? 1 11-1'1-11' 151 1 21 l i i ll i s ill LWs 3 ? i 5 ? si i. >!= is aabb bbaa s s b b sa a a rk i = r.b i i .i. a, vb i s aaa a a a s s s k 8 s si E: L
- i. : i.
+ - i : 8Q E i i E E : : g I IE i ii33 iiiii s ss s ! i i is 3 3 8 3 3 8 3 3 8 8 isa g g._t c s,- ti!! 333 E i !!! EIE ! ! 5 2 ll E ! 5 sl 2 a I 8 !l I' I I 4 lf V 'd h ? Y V i i i..- i i i ?.- i iii 1: ( 4 4i h o a h h 2oh s s s ni s s s ii ? i;is ~1 h k a h ? e hji a s a s 2 a a a s n sss a ass sssas^ ssaa s ss2 a s l 3 3 1 3 3 l 3 3 t l 3 3 3 3 $i3 3 ii bi i $ii i i i i!! .a g... . i= n.= =
- s
, =.
- 1. i 2,,
{l f> f 51 al i is i >s il li is Is si '3 {! 1 I j5 ij i j i y-y-
- g
-I! 1! 3- .32 s s - 21 .j 31 ai a i .j j s s 2 a. a. = a 9 E E E li = ill- = n
ses
- i.t ;
w...
- ~ 1 5
}g; sas ! ss
- 3a ss iis 1
s sa s a e i s I Num a :: : .a L 2 yjg is_
- i. : g i S t t t t>2 2
2 2 g t i E : :
- : l
} iggj g s is t. g i e != ~ i .. i + g _g =8 jI-ji eii a ii gii s.8. p .il e x i e e: e r : l i f l I i e a ie x-=e
- r r, d i
N. @ bQ Q n.n f
- o eee e a e e o e a :-
e e : e: e e : < e -.j : Ie MM C -:c 3 s W5 e i I j .e .e .. e 0- M m -l.. e i e e s -Q 3 ] s b j i e ,e e ,e e no e e .e Q e i e y I i 3 t-
- : +
1 j J e l 0 - 0 9 8 I !E i f f
- : I
=I . ~j j 5 f g l 8 i =j I g a ea a a z a o a c a e e a,a a a a -a a i 2 a s 1 1 I - 5 j 2 a i s I I I I 1 1 i l '1 _a! 1 1 s s i ! J 1 1 2 .3 1 2. 1 2. .i i 2 f 1 3 3 am 3 5 I 3J l sk 1 t. t ! 1 !! ! !! 12 l2! ! ! It it ! ja it i jr !! i jaiti g a m . s? 4 5 5 '? 4 v 2 s. + 1 2.
- i. :i s.
- i
= Iig;
- =
.s gg y 3, j 3, 3 Js = si!;: 3313 a 4 I I l =s e r s5 .5 .I c! s E ? a g g a : s s s : t
- =
?. ? gs. $ $[ ss i ss ( s s? I s I. s g] s s4 e g *I is i 29 i ln b b ! $$! l si 5 (A E6 i 6 I_I}. .. J i I s as s sa s ,a a a 2 s a s : : 3 -: s : 4 s : : L $ iles .x isa, s 1 likhi i !! s. s a, s a s s a a s s a a 2 2 2 s -s a s Eiss! = = e
=
= =_: =jjj .s <!!v ll lI 4:st ii!T-q ;.; g.:: y 1: I!*;e 3 .e 3 3
- g
}}ge1 },!v; t1 i 1 ly 131 '} 12 Ji 3: ja 5 5 1, 1 i 1 3 3 i I .'.s .i. .a. t 2 r
- r er
- r 3
I 3 .a -1 -1: l-s of 1 zo z.. c. i } 1
- 1. 2 1
2
- =
- 161 g"
ajj!.1) = 1 : a l l \\ .j } = .l.i. -., =
4 ,e. m, o.a M w i 15 e s s5;is i s2 1 3.2 2 2 1 3 sss2 i a 3 s ! s IE E5'5 EI 32. l i ?.
- :....i 11.
1: . -i i . a si i ist r. i i n u. i i i u: u .-,;p i : l = cal
- 31
- 2555:
5 : : : 5 8 8 8 6 5 : : : : 8: 5 : 5 : 5 i a : Og i!! G 5 >. 111 n - : Il x
- I: :
E l 2 - : r 2 e 2 1, 2 y re n. 4.,.t l.. w., --
- : : -: e :.
j ...ee i ti e
- :: e a.
E 2 2. g 5 -* - e f,a I P .t v
- : : : e:
w
- e e e og e : : : e c : : i.e
-* a j l g E 3,,,,e i see e i : e e . i i : i ce s j u 4 f 't I s ! I I I II I i 18 :
- : ! l 1 I
1 I t t t 1 1 4' f 1 5 s 8 : = = ! = l' i 11
- =a=sja a s., =a a l 1 a i >
1 1 a s i 1 ~ a 5 >i i l, n =a =s a -
=
} hI i 5 1 n = 2 m a 2 . -.. I _J e i
- I-I33J.
I 33332# I. 1 .7 1 3 J. 3 3 3 e.. 1 33j. 1.
- ll I
e -3 3 i jj i a.s g j !, _ i i j 3 3 s jj J.i.,. !. 3 5 3 = .i .,. j a s.s _ a e t i e8 5 't 4 -l. 5 i s L t .e
- : ie c : : : : ::
2 r . Es o6 8,
- : i i I3.9 P
h g j j g, g iF j l ts!s
- 8.11
'i' R A i S !8 b fg 3 I$IT = 3 3 YE $ $$$!YY ! 4 $ 3 l 3 a 3 2 A e e e e ! e e t g e e e =2 e ee ee: Je i e ee e== e ee= s.- : = z <.-
- : ss: e.-
d a g s e e 1 L C a = <3 1 s iCi1 siiLL5i ( -i n ( ( (
- a s e.-
a 1 L i i s II ? 44 l t n I, Es.
- ji A
I 2 \\ ! k !. k l $ k I ik !!3 g i j kt l 3 i ! ! il i !3i! ! !!!3 i !!!!}! 2 2 2 2 3 3 ,s i Ill:3 f 5i !5 -g$ .gg jj I 11 1 It at j T 1 1 I It it 32 at it st it 'b Eh 55 EE E5 a ai-i-g i t t t t i.t it 11 l ti 'l 1 l ! 1 1 1 2 2 2 2 r si i si g a a t t t si 3 3 3 ai }3 23 1 di l 1 2 2 sjj! cl"5 fT82 I a2 i l I!. = i_ll. = .w ww --e-9 _w..pw.y. -r9- _,9 -es -,,75 9r.- -e--ee-e+ -ae n 9 99m
9 aa
- 3. ",* "I s
Ef? f-a II3 I 33 II li !!!!!sa as I I3 8 3 3 3III 3 3 I II 3 2 s 3_ 2.3 g gsls. ss n : s s: :
- : : aes :
a a aa : sj g 5 lIi ,,"8f 8 ..I 3.8 E!.5.M ::::: 112 o e lr k g rri ! : e eri er ererrassi. r rie t.
- irer :
i!E4 e ak e o ~~ i Q i g. $ - z.] w. s ec: e : e ec: ce e ---***** e e: e
- : : eec :
e eee+e' a. U 165 5 W -o . : o ed oceee::::: e e: e
- : eec :....: e b
-eee - s : eee l.... j e o E i I 13: 33 33333:,,,,
- : : : 4..
- 4 1
5 t t I I I II I II . ga 2: : ss- -- II=i I -1: I2e = I. II=
- ill
- 8 I
su.3 sss a!=== i
- =
3= s sas a aaa 2 o2 se s 2, s. 1 II=* e z aaa i a s. a a =, a = s
- Q I.
.,"l l!..}..l!!'l~l.. } li i l. i. -l j. ..i i .l a :: 1 23 3 3 333 33 33333 333 $ J3J r3 3 1 7 i338 ~. n ,e a
- I IIl 11 1114I++!25 1 13I
.!i4-8 123 ~ g i{! ss2 a 2s as a as asass33aas a sa 3 a: as3 5 3t s: - 't h. k 't 2 i t k .t t.,t s.t j j g g g .. e g 2. 6
- s.
z.
- a 2.
e :.; 5ip yy
- g il !!!!!ilssa
$ i!2 i !lii! $ $ $ il 3 2 }$! ! !s' g c !i
- :). -
351$ E E
==- 8 sci
- 2..
=m =
- .I
.$ *== i=e=rIlisi ! IiI i. 2 e 2 : *sei !l -a$ 2 s 2: 99
- 8h
( g
- e cn z. n=x A
4 < s-
- : ;ea
- i. *? )I$
is fissic;(ge < < ih:ii! ! ??? ? ??? 1 c 4 7 6?? it 2 is sissis=III 1 111 ( i : i. i. i. i. 5 ( !I ~3 . i 6 Iljj I l i. hs$y } : : ) Ia 333 !! $33333255)
- a t 2
? 2 a2! 21 Asa} l l i E;l s a s s 3a 2 sa 23 assssssssa a s3 a 2 s2 sa2 2 2 ss22 sli n: Jj) -1 .-s ss ssssssssis 5 153 1 1 ]l ]5 iiiiiiiiii i : nun n i i i i..I i .s .i i
- i-t 3*
s a si
- : is st 2 2 2 4 :
a 2: 3:i '3 ill li 3}} il ll!!Ill 11 21 s s s..- t s li j I s a i y s j l I! J I. I i. I
- l..i
..i s a 1 {}
- g I"
e I, I }} }3 ] li ji }3 y= tit ijji'{a-l 3si c i [s l II: k, ; fh 2 = .t = 2
9% e <n ' t e u-o og 3}}! s s is s a n-s 2 s 2 s2 e u,I f! - 4we
- 6. g
$P4 8 2.li s -3. i i
- : e8: :
J,,l
- se
,R a i i .I. t i
- i id : :
oau u l A i .m2 E U Ir , - e U O 3 ,, k a to oeo e t a c w u til 5' d I g5 'I sc : i. oeo o e
- f. s
- t; i g -o i s u se 3 8 s u i d d. I i j u ~ry g ~r I
- : : :: I
) .t .t 3 I 3 ~ ft i t .) { is i lilj } i _) Ji I i s 25 g] 8 i, ..l i lli i -i -li fi ai is s 1 i s --i
- 3 it i1 j j
[ I as 2:sii.11 -m ( j 2 a aa as s s 3 w I i 7 . 5 5 I;g;: ; i 3. ?: : 2 i gp j j j J !: i j i !3 l I l 1 !I i. l : =
- :). :
l illi t 5 g 3
- 3. a s8 s~
s = E-E.. 4 .i i z 9 = = si s 8 e 31 5 5 5 ". '; Ea ? i i{ ?? ?% !! ?! L 88 8 8 L s' h h t-i i l l(jg -1 t 21 As,a) ilia 1 ae l i !:!l1 e a a sa a a 2 aa aa: a a a j e l f ^ 1 sjj s s..;. 1 i i = = = .] 3-3 = z !g 1 I E .~ ? Si 1 5 ll li ' i e .i I I 3 1 i I ~;! 8 j 't J 1 8 8 i JrI [ i?fi,9 l l !E II-111 e s ,i .i .i !???? a- .i ,I F i 1'
- i t i 'u ' ]:.}
's a .l..i .F3s n
==
m = = = gji:t.3 j- =4 a aa i I
- l. i.
.ji js i:l: = = 2 2 2 2 jjj
3 e e 5n* g t assiassa sin sanhn un g~" s !ilsa i
- I I
!ggg ~ 7, $ jh 13 e d. 7s 11;; i.. ....s... E, a l a e a3 : ...s.... 1;:
- c. 3 E' 5
iss y lI-l1, (~I.I.s s l 5 '*c e i 3 "E lt c..d...e ecac '....d.cd cced E E G.c j,i sd gruds g 3 e e r x; 2, g p5 a N O o
- d.. a...e un....e. nun f [bb j
E .. 88 eeoe se a.V2 d..d. e 8.8.
- 8 '8 8 8-s s
e n e> g ...l. to 4 4 doodi e i e ""e., 2 g ] -s d 8855c dodd . 5585d8 88d8 4 8 3 se J dddel c : e U 'g 33388 t
- EEBE
-1 ill J'I n!! D,11:;1 H JJ si }jjj }1 i I J I 33n flu ii i i sc-3 J J 8 2 2 2 2 --11:51 1 11:1 _1:l_l!!!} _!!=1 il II-1 "}*
- l I
} anah a ana unaan un s 22 ^^ ^ E
- I s
s 212 } !jas!!!iisi:
- g 5
f asjiiiiiich li a issa una a a a,i. u iii 111 h. b.: i sassa sus s a s].]
- 333, 33; J
as = ...) . )... D. s. H. : ).. '.t. 5.. S. D. : ae e r i i! .,,c= sailssis sans siss!!ss ssas EFb ;;;;; },
- I n
s 5i!! sa t 1 !j f i3.! J = 3 mi imensas? I,E's 4?es:IEles:: I*EN i e vreet-u e : e -tess t Eesrs y-su v e s. : vsmanupi 's. il 22(gvaan222)) i?f.Y vp
- *er--
i e k e i. C42 (23 9 i4 ig nv = 122222i. c?gc4 ji l ^^233332 3333 22233333 3333 j tsass s s a a g ag g g ,g 1 j 3328s j g j i 33333381 8333 52333?28 3333 g g g g g g gg J.BA 3 1------; 5 3
~is i +
jjz 33335 s . i 1~ ~} g. g-1 -3 1 3. 5 K I -3 1 1 12 3i st Ii j i.!j j i 8: E 1 1 1 1 1
- -33 31 JI 13 31 jpi jji!
8] JJ i t ] 5 11 31 5 I: j5 f!: l I:- } }j]; I J J j 3 il 33 331 3 2
- 11
}U } } ji ji 13 1 u }s I's t s-pu y{
- 1 atlig 8
8 s
- e
_jjJ
O s 9 t#4 - g,* y 3 g! ~* 24 E 'l's s a 1 I a S E5 e jij.. i Ij. J..gj .. s. 1 g m r2 gg ))g E E. g g M3 .s g e, o E E 8 J T - #1 't 35 ri r ee r d gy 1: 1 - s e y w u h I O 1: C-dd d d d gn p g t'.g g la Ew J
- d.
qa .. d I e, o j d dd d d C u ~ 8 I i 8 i 5
- I :
4 i i a aa a a N 3 X' 3 - a -m il t' 3 m" A g i e if I!J li 15 4 b N a' b!! t
- t t
b$ I Ia } l c 131s.
- 1!7 l
E si il e : c : I, b. b $ $ bb 2 lit. Ciel 3 I Ia I } I II 21 a! 1ls 18 III s!: - a aa a a a JJ: I i jjj a a1 8 8 3 ,31 Il la' .i .:g sg 3: !s j I 8 .2 .2 I li -}i 1 ii:!si! g. ?.U Lil is l _ _III w' E
4 480.15 Verify that the hydrogen recombiners are Seismic Category I, powered from Class lE electrical buses and designed to function in a post-accident environment.
RESPONSE
The Westinghouse hydrogen recombiner has been designed and seismically qualified according to the requirement of IEEE 344-1975(1) (Seismic Qualification) and otherwise environmentally qualified according to IEEE 323-1974(2), The recombiners are designed and have been tested to assure operation in a post-accident environment (3). The recombiners are qualified seismic Class lE and are serviced by Class IE -electrical cables and buses according to IEEE 383-1974(4). L l ?: s + L et m + E f~ , f-. -~..,.,; ]j g Q: ft.' " g, y g$j ?5kT- - ~ & gJ Jc.; u h(1)i;.WCAP,-0346, Propriet,ary.f'7" L Si' utYS*;== U ? 6 tNl?; $ U ; ..~ ': .'I'.b ? 5' ~ bY %...D ?,JP~ Vif5.}:#,M(2)cf.WCAP-7709L" Supplement?6[eProprie'tary. ' " ~ ' d s,, ,y, ~ [(3)' WCAP-7709L Supplement 3, Proprietary. ~ 't"..,' (4) WCAP-7709L Supplement 7, Proprietary. e a
480.16 Provide the maximum allowable leakage rate and the in-leakage limits for' the secondary containment.
RESPONSE
Section 6.2.3.3, " Design Evaluation" of FSAR discusses in-leakage and LSe ability to reach a negative pressure of -0.25" mg within 4 minutes af ter a DBA-LOCA. This is also discussed in Technical Specification 3/4.6.5.2, " Containment Enclosure Emergency Exhaust Filter System - Basis". m-i -h' g 9 ^" ~
- ~
,y 4_ W T, 8 F I. ,I' i I - 5.$"j . I,,.W-s. p.rQNibf [. ',[Wd,~;;:.*AY? 4.. .- b, l -- .._,a'+-~ ^ ~ W k { 3 -e s ' 6
- I4 Y
g g s. km U I
- r P-w,.-
g. ,[ (. TyJ,_ _- Z ~ ..N*u m g...+....,h((,7'17-O?$"7.]i,.=- ^ C N' [. *Y N[ A ^ E * .,? -- -J-4 ";g-s Ty H %9 *-*+. e g *;. h'W T N t* *v ichy, ?,} :,:s;3*?,;n. LG,i,4'%, : - ~ ' P' g*..,
- ~ "
+ ?, - W'f 7 ~ u-4% T, R, a- ~ & I b~ L g. t, i" l ' t
l l 480.17 According to Table 6.2-83, the Main Feedwater Isolation Valves remain open af ter an accident. According to Section 6.2.1.1, the Main Feedwater Isolation Valves are isolated af ter an accident. Correct this discrepancy in your FSAR.
RESPONSE
The feedwater isolation valves are isolated af ter an accident. Table 6.2-38 of the FSAR will be corrected to reflect this discrepancy. J T' ,. e s i4 N wa ..M ? a p S y' -a:4 : = .:2 / h3 *.l... . l.~ f $5';lL ' *- " = AfkY.';.T...< i ~; - Y:... 3,;ry.g ;. Lvpn:rgg.; ;-,.p ;;.2-nq1,..* -, -, - - ~ - ' ~
- ~"
.,- 34;cp--
- ; 2,, ;_ y.y";;h@a.m&x *: xt: -
- ~._u gi m
- .. c.; :'
.v +:yp -x.s = . a. r v-++ e -swm l 1
480.18 (6.2.4) Provide the parameters sensed for the containment ventilation isolation signal. - g 4 y. 9 .w %.,.. @,K l RESPONSE-i .']- w ~~ .g e '~: - Refer th. FSAR Subsection 6~.2.4.2[jItem C, second paragraph,- which{out1'ines_. [ 'the parameters-sensed ~for the containment ventilation isolation; system. i t 6 7 ,e s + - *...
- A**
N. m 5 i. Q+ -4w.we. "+ s g-A e e. @.8 .a b* = 3 h 4 ....m.**=g. +tr-%. g, ..r** o.m.a '"h-*9*f*. . - + ~, S 6- ,m,, .a4'B 9,,. y ,, e
- ne
-ae,, %. 4 *- m 8 t E.. h.o.ai.. t - - * ~ s 7** , *-'i*, I"
- E r
,Jr.b.'.-*. -. + e"*.*'6'*"%'. f .-= r.
- n. c q
. ~, 4 _ - -. = 5 + g - +-.._ MWY e, 1 ~ * ^ " * ., 2 : n. u1 y ~-hNsS:],5-Q h,7 % ll &. % ~ ' .-m.- f .w
- ,~.;
.M . ~. ~, i@*h i, k 1 .s m. ,-.m.. --*-gJ...F'.4'-a,,'* =.. .t
- ,n
'g'... =pum. g g.. e-* e ""*1*# "*dM" ~ ,E
- 4'**[*
d*' TO < ".y.', ?.:.* Y m.% gy ef. +
- -TM,
,,',.e,eM,*, .Y 3'*
- ..j,,,
el ,y ,,f,}, Kw,f w/_* pBObsg..J g =-C.o
- -eQ-
- '-]
"
- W[r'.%Q.%..',t 5 % $ **.i ',M., 77..w.r +. - @: *
.w ' x s 2: %' ?[3 : g*. - ... ~, 3.,,%.J m.m.y,h, M,.g . a- ,e, _g *"~ ] 7. _M%h-~ 4 ,n m ,..og/ 1:ww --F. .,*.. x,1;p; A,J .T
- C
( (pr *M' ce' p' J p'r,.* p , ?A ""* "**p [* 3 *' W;.,.'*. n 4.n i ' -' Q.1'g ;q@r,g, af $'- 1 ,"Q -M' T ~ .i. 7 ' w.. 4r; r' ':. N
- h p
-yt3; -,*sg Q ?g;Q.;; p 2, ,., - 3 g t 1,ft;,; , Ln' G*h y., o m m=p. .g v. . - a -.- + ,.a d, 4.. l-s, a .n-g .ew-,m e ' +.. s.... i .e 6 -. s.y.y,4 a., <..~/4 W. A '.
- ',- r W%,/.J l,
- ' f A @. % S..A) ..y+@w,.- -. ~ 4 1,r ;.; o, A c. v -- *.. ,t p 3 g c. ~, pe,,. s. Jy r., =qt. m. .,k y ig% g,f s: *g +;. , I r* ". - ./ 7 o-. Q p _ LI w. rp. -. gI. .. - ~ ,,,, Q..m J'n / A 4 ;.a Q i5,h o' r t 2p.._-s..
- M
.,y r % w*k?'r4,, p' *. 2 '~ ., y' .?, - c. ,f , ~. .a..te
- Y k..-.-., $.* a - e,,-
cg . a s.. +n e Y $ $$._.,.%, h:* n .m a( sn--.A@,/M.mw'NW w - '\\
- Y$
9..i, &M : W M, a g 77 f. ' f. IM.d t d M r. A ;,,s.'.2'M 7; a 7.2 n E # M,.. T N.5 1 2;; q ej,c u.- g f m.'%g'*L'. H' ^* ~..?R " p LA
- h-
. @J w.~M;e % m. ,y w
- gggg, p
-m 3 T:.. M W0iM i n[j g i. 242 4 i . -r y v. w.~~ n- ~ - n 5 f* f a,%n_.-.. n.? a e.e-n.i ~~._c%u...n,M,m @s~e.g@W*> 7@%(yA.;;IMr$%. mm%@%- J.w.g . n. Q y 4w h.a.$y @
- a.
. n_ n.. y. ~. ,9.@ g M+ .m m W " -y,2 ., w.m .m gc - ; yy c v n,. - s = - , s _,._ _.j : ,( . ~ 1 3, reg.c Q+W,,w c . '..* V' "f:,,Q' m,;_. m g 2 c_. c - J e %e m& % {.$9 f r3 pg. r-' . m *? ' =: +ge;-f;fr; .p. i f.. ..y . m;m.c,,,.. ne,
- a*;
= .- e ~ ... ~,.
- y.~ - v a 6,
>.,; n x j p yps D + + *y - t <{ A - " g .p 4
- "g
- %4 t ,e = g,_. d v; y +< -,, 5-- q.,.. s, - a f. tO + 4 $ " M.: - 3 ,.,.,,b., 3 'e ". d ' )c,. 3 'f 6 c-4, m. _ ~. r._.. -. t ,. c t 4- .+ p I lHD Y ( A k. 4-m r ~ n, ,.tw--.. 'q g,' g ',j* m )q '~,.,,' 7 ".., * .m . m.i
480.19 Closed engineered safety features outside containment (e.g., the emergency core cooling system (ECCS), containment spray system) will become extensions of the containment boundary following a LOCA. Discuss the capability for leak testing the closed systems located outside containment, and include the leakage in the off-site dose calculations.
RESPONSE
All portions of the above systems (RHR, CBS, ST and CS) are located within the containment enclosure boundnry except piping associated with the injection phase of ECCS and a minor amount of charging pump piping used during the recirculation mode. Any leakage from these systems following.a LOCA is therefore filtered by the containment enclosure emergency exhaust filters prior to release to the environecnti The piping that lies outside the containment enclosure boundaries includes the pump suction lines from the r6 fueling water storage tank to the RHR, SI and CBS pumps (lines 1201-1-151-14", and' { 1202-1-151-14" see Figure.6.2-77) and to the centrifugal charging pumps (lines 1205-1-151-8" and 1206-1-151-8", including valves t LCV-112D cnd LCV-112E). These lines are used only during the injection phase of post-accident operation. They are isolated within the containment enclosure, will not be contaminatee during recirculation and will not present a release path. A portion of line CS-374-1-2501-4", between the. centrifugal charging pumps and. the boron injection tank, is run outside the containment enclosure. This line is used during the recirculation phase of - post-accident operation, however, there are no valves or equipment in this pipe segment. The leakage potential for this line is 4~ a, therefore small. A bypass. arrangement is being designed to I prevent contamination of the boron injection ' tank during post-accident recirculation. f The RHR system is periodically checked for leaktightness prior to use in its normal function of shutdown heat removal.- Thus, the '~ . system will be checked for leakage at least every refueling outage. The maximum pressure to which the system-is exp sed o during refueling is higher than the maximum system pressure during- ~ a LOCA. The RHR pumps are tested at least every 18 months per Technical Specification 4.5.2. CBS equipment is periodically. tested _via a recirculation path. This will function as leak test, a's pressure -during the l recirculation mode exposes the. discharge pipe and pump to pressure i higher than.that experienced in.a LOCA. The[ containment spray- -, ', ~ pumps are tested at least once e' ery 18 months /per Technicali > [h5
- v
_:3r..E7?i' ,i un '~ . Specification 4.6.2.1. W-lQ 1pp+:qf Thesafetyinjedtilon"pumpsareYtes.tedvih(gaj recircul'a"tToEniiniflisrM ,~ ~ ' " ' test line to the refueling water storage: tank. JThe pressure ini 1.:. the pump and pump discharge line-is greater than that seen in a'-72 LOCA. This test is performed at Ipast,5very 18 months per Technical,Scecification 4.5.2. i l /
- /
..j '[ ~ i l
k ] r t I The leakage from ECCS and containment spray system equipment has been evaluated in Section 15.6.5.4.d (page 15.6-27) of the FSAR, and the impact of this leakage is factored into the off-site dose i calculations. 4 i 4 4 f j i i .) i ) i f a 4 i i I 4 k j 1 i \\ s b l h 4
- k a
i ~ I 4 i }', 4,_ l...,*- a 'a' a s--.. j ,, ;.e r s- +- w p.n* '~ [ F i' 's ,.e '.yy, ? x $, f.uzh. 4 - y l 4;?-. /4e r-+ m -
- mn
, ( l, 4'a' ... v :.. ~l? a- \\" ?dWl 4 ci' . T~ ]_! $ *- i' n g.. ,1 .L ' y ', * '* - Q % -!.' .f t : h._yy g y m ;n ; j} ' ',,.. ,a*r a ...., r l-q-ry - .t: 4 r t s .3, [ t i. e i " i .f 4i j + 9 l gI -,. m,,, _.m.,.... -.mm..,_, ~_...-,,--.,m,.,.-.,__,.- .~.,,.-m,
4 480.20 Identify any *, ranch lines that are located between the containment and an outside isolation valve. Identify the General Design Criteria used to satisfy ti.e isolation requirements for these branch lines. RESPOflSE: All branch lines located between the containment and an outside isolation valve are themselves equipped with containment isolation valves. These valves, as well as the applicable General Design Criteria or Regulatory Guide to which they conform,'are listed in Table 6.2-83. l -4 r .;; t; *, J. -..s 't # c~ s. , _, _ 'j. '. f' s=
- . )'
4--
480.21 With regard to the leak rate testing of containment isolation valves in the purge / vent systems, it is our position that active purge / vent systems (i.e., systems operated during plant operating Modes 1 through 4) be leak tested at least once every three months and passive purge system (i.'e., systems administratively controlled closed during plant operating Modes 1 through 4) be leak tested at least once every six months. Please indicate your approach to complying with this position.
RESPONSE
Leak rate testing will be conducted in accordance with 10CFR50, Appendix J, as clarified in FSAR Section 6.2.6.3 The containment isolation valves in the purge / vent systems discussed in FSAR Section 3.9 (B).6.2 will be leak tested accordingly. ii 1 ~ ~ ' e _J f+.a e. ,., -a,j
- t. : _
_ ~a h
.w FSAR RAI 48_0.22_ Provide a description of the instrumentation used to monitor containment pressure. containment water level and containment hydrogen concentration. In your description of containnent instrumentation provide the information requested in Section II.F.1 of NUREG-0737. RESPONSEt Information partinoni: to the abovenentioned containment instrumentation is . summarized in Table 480.22-1. A11.the sensing instrumentation except_the containment narrow range water level monitor is safety' grade, redundant, and Train A and B' segregated from'the sensing point to the point of indica-tion. The recording instrumentation is also safety grade, but not redundant. The information requested in Section II.F.1 of NUREG-0737 is provided below. a. _ Containment Pressure Instrumentation (The five items below address the five respective clarification points of Page II.F.1-14 of NUREG-0737, in the same numerical order.) 1. The Seabrook design complies with this requirement. 2. This requirement is not applicable to Seabrook. 3. Tlie'Seabrook design complies with this requirement. ~ 4.z.The Seabrook design complies with this requirement. 5. The incerumentation system accurecies are listed in FSAR Table 7.5-1 for containment narrow range Pressure and containment. wide range pressure Q 4%.of, scale for wide range). Sheet.2 .of this table?will be updated in Aa=~ bent 45 to incorporate - the 4%: accuracy.!for the wide range.. The. accuracies-listed ~ are suit'able fordthe intended instrumentation functions #(see ~ ac~1.97c Rev.h2,3 Table 2)'1 " Function detection":does noc h-require greater accuracy than that provided since the contain-ment accident pressure transients shown in the figures of. FSAR Section 6.2 all indicate that the containment pressure exceeds the ESFAS.tripisetpoints for SI and CBS by an; amount . greater than the instrumentation uncertainties within a:. shorts. time after the pastulated events. " Accomplishment of'mitig'a-b ~ tion"Jiisdaqua:ely monitered-sinceithe instrumentaticinyM, h y.; accuracy]isiinsisnificant with' regard'to the differenca % @ % 4} ~ _'1 .,JL between:postulhted: peak pressures and: the st.eady-state 3alueahw y + [ygy.5hp y, e.= Qpobtaided q M t d s b[soonTaffeT ESFlactuati5n.9 " Verification"Jahd $l'o'ng Maim. p dyidedt.byfth'I nstrumental j gu, illdn6s'1 ars ~ ads {uatelyJ ei y..- u tion,'.since tha~ difference between. postulated steady state _ conditicas and actual' indicated? values will not be of such 7 a magnitude se to cause ' operator uncertainty. " Detection of breach" is adequately monitored. A small break in RCS piping will~ he ' detected. (as listed in the Tech. Specs.) by different ., instrumentation systems (sump level, radiation). A breach of
l so 1 oa FSAR the containment system. if it is not of such a magnitude as to generate a pressure transient readily monitored by the presourc instrumentation, would be detected within Technical Specifications by plant and environs radioactivity measure-
- ments, i
The response time for the pressure instrumentation is deter-tained by reference to FSAR Section 7.3 and to the instrunen-tation specifications. Item (d) on page 7.3-9 of the FSAR lists 1.5 seconds as the limiting instrumentation delay time for containment pressure ESF actuation. It'is acceptable to use this value as the time constant for the pressure trans-mitters and intervening electronics. To this, the time con-stants for the indicators or recorders is conservatively added to obtain the indication / recording time constants. This re-suits in a time constant of 2.3 seconds for indication and 3.2 seconds for recording. The adequacy of this response is justi-fied in Exhibit 480.22-1. b. Containnent Water I.evel Instrumentation (The five points shown below address the five clarification points of Page II.F.1-16 of NUREG-0737.) - 1. The Seabrook. design for containment water level complies with this requirement. Refer to clarification 3. for a discussion of the_ narrow range qualification. 2. The indicated range of 0-6.. feet adequately covers the maximum ~ ~ calculated 4 capacity of-540,000 gallons above the (-)26 foot elevation.._ 3. Narrow range water level monitors are provided in the contain-ment drainage sumps. This; instrumentation provides the opera-tor with information'on: operational inakage inside the containment,fand ;is tiotfrequired to operate in an. accident environment. : Design of, the instrumentation meets the' intent of NUREG-0737. (see clarification'1.) by satisfying the spect-fication' for the norma 1' operating environment including ex-pected transiente. Adequate design features ensure contin-uous availability of this instrumentation during operation. Operability of-the instrumentation is addressed in the Tech-alcal Specifications.- -, I l 4.. Thiiroqui amant 1s no.Applicableito seabrook..J ~ ~ .m.e, m., :. - - m,wn p.. = . E a wy ? - ~ .n... ' ' 4. ". T~ l 5. 3 The.i5p accuracy.of(thnividejrange leve11 monitors provided 'in l X, i+4FSAR Tablin735-111sfedequate-forxth~elintended.' function. Jus , c: ' s j ~ . -~ c;
- tifiEation"isprovidedfasifollows1 ' ~ -
- Tr! t l ~ i , _ 7 t- 'f-3 q _m,
$51&2 FSAR The accuracy results in a water capacity uncertainty of j a. approximately 27,000 gallons. b. The capacity of the RWST (between the Tech Spec limit and the Recirc. Setpoint) is in excess of 325,000 gallons. Of this capacity, approximately 127,000 gallons would fill open cavities below (-)26 elevation, leaving a minimum capacity of 198,000 gallons above the (-)26 elevation only considering the RW8T capacity. In light of b., the uncertainty of a. will become negli-c. gible well before the recirculation phase is entered. d. Since the switchover to recire. is based on RW8T level, uncertainty in the containetent water level will not interfere with manual operator actions required for safety. The offeet of instrumentation uncertainty on the e. operator is further minimised by-restricting the range of the instrumentation to levels above the (-)26 elevation. Since the indicators.should.always read seco during operation, any Indication offset would.be readily recognised. Absoluteaccuracyofthenarrowrangemonitori,l'snotiastrict requirement to be addressed, since the function:of,these monitors. is tc determine operational leakage rate, a function of-rate of increase of the sump level. The linearityor the instrumentation is +0.5%. This is adequate to monitor. the Tech sSpec for uniden-cifTed leakage.- Hydrogen ~ Concentration Instrumentation i c. ~ (Refer to the 3-point " clarification" on page II.F.1.-18 of NUREC-0737.) 1. The Seabrook design meets this requirement. . y- -r 2. The Seabrook design meets this' requirement. ry = The accuracy of-the tiydrogen*concentralion monitbNiis'ilisit'ed 3. in FSAR. Table 7.5-1. Flacementiof;hydrosesimonic'oralf ab Z:C illustratad Lin';FSAR Figure 6.255'.ATheidest'anicciterissareE ' listed in';FSAR.Tnle?6.2-84',7(andia5egiatisidesijajd% BYE. justiflistion is provided>in'FSAR*geIctios!6.225 V 'r ? ~ 9:. 1
- = u....
..N : The requirements of NUREC-0737 for " implementation"Lare.sa~tisfied by the-scabrook design. The requirements for " documentation" are satisfied by this response. The general requirements of Section II.F.1 of NUREG-0737 (Human-Factors Analysis, Fage II.F.1-1) will be addressed as part of the Main Control Roca-review and development of emergency procedures. l l
l ~ I T,*sta 400.22-1 POST ACCIDEu? leEII1GLING 19515UltENT&TitBI ladiceter treorder h eattan ef Isetrummet Instromsat Functionat insane [ Tes f Tag # (Pen) h tional barstrement Parz matar Train facetton h M. Escatten tenap Rametreuset rolloutsg Aa kSidaat Manttee contatement con-4 monthe III SE-FI-955 0-40 PSIC Containment,' IT - SI-FI-9M S 51-FR-934 (and) 6-40 PSIC ditiene following prie-Pressere A 21-PI-2577 (-5)-160 Psic Oscs-cm) (e-itsi) ary or escendary eyetem < ; j l[' B. $1-FI-2576 a. SI-ra-SM (tlee) (-)$ 160 r$10 kreek inside contain- . Ocs-ar) oca-Ca) meat g Contaloment A CBS-LI-2384 0-6 FT, A Cas-12-2130 (Blue) 04FT. Isenttee fleid level testde 12 montbo 8143. favel t' CBS-LI-2385 Osca-st) contatannat in the ewet of fleedias Ocs-ar) contatement A' CCC-AI-5828A 0-1&&g A CCC-AR-58284 (Red) 0-101 Il Analyser is asistataed ta 12 seaths y etandby made med watwo (for 14CA st Analyzer a C00-Al-58288 OCs-CE) will be manually lined only) 2 OCS-CF) op to pcmide operator with status of 3, re-combiner eyerattan within 30 stantes fol-lowing 14CA 6 .1si.
- i. ' JM i,
,)
- .y -ljhs,
,:j 'LIf si.,,,,l 4
- ][ ybi;1. y{ -
w., t j1 4 , t I, E L
SB 1 & 2 FSAR EXHIBIT 480.22-1 Calculation of containment Pressure Instrumentation Referencest Seabrook F8AR figures 6.2-1 6.2-10 6.2-20 6.2-4 6.2-13 6.2-22 6.2-7 6.2-16 6.2-75 Discuselon the referenced figures depict the containment pressure transients for various postulated events. Figure 6.2-75, Double-Ended cold Les Guillotine, presents the fastest rate of rise. Estimated conservatively, the time constant for this transient is 5 sec. (time to reach 63% of peak pressure). The peak of this transient occurs about 16.7 seconds into the event. The peak pressure deviation (%) for the instrumentation system due to lag is given by: x Ceax _r p + ri ri ~e r p ri %6P= x 100% (gq. 1) k 1 e- (t ax/ rp) m wherst t,= 16.7 sect r p = 5~ sect ri = instrumentation time constant Justification for the time constant of the instrumenta,:on system is provided by showin; that the maximum peak pressure deviation is less than the static indicated accurac 2he accuracy of the narrow range channels is 14% of the 0-60 pais range (y.as listed in Table 7.5-1 of the Seabrook FRAR), or 12.4 peig. Conservatively assuming that the instrumentation system time constant-is ' 1 s~ l squal to;the: process:. time constant, 5 sec (this is equivalent.co a:95%' response ~ l timefof.15(sec, or a? 99% response time of 23 sec), the peak'preisure deviation found from'Eq.1 ist. ' % A P = 3.5%. - This corresponds to a peak pressure... deviation due'to instrument lag of 0.89 psig. This deviation is negligible given the static instrumentation system accuracy. l
tru vu aucuz-porated in SB1&2 Amendtant 45) PSAR TABLE 7.5-1 (Sheet 2 of 7) 3. System Wide Range Pressure a. Channels provided: 2 channels on separate power supplies, with one channel recorded. b. Rangej 0 to 3000 pois c. Purpose Accuracy 1. Ensure proper re- +10% of lationship between full system pressure and range. temperature. 4. Containment Pressura (narrow and wide range) 4. Channels provided 2 narrow range channels are provided on separate power supplies. 2 wide range channels are n' iso provided on separate power supplies. One narrow range channel and one wide range channel are recorded on a common two-pen recorder. b. gange: 0 to 60 pois (o to 115% of containment design pressure) for narrow range. -5 to 160 psig (-5 to 300% of containment design pressure) for wide range. c. Purpose Accuracy 1. Monitor containment +4% of conditions following Tull scale primary or secondary (narrow range) system break inside containment. + 4% of full scale (wide range) 5. Steamlina Pressure s. Channels provided: ~ 2 channels per steam line on separate power suppliis,-Twith one channel per steam line recorded. b. Range: 0 to 1300 poig ---.----ee,a
e o 480.23 Provide a discussion of Containment 1solat ion Dependa bi li t y.as requested in Section II.E.4.2 of flDRCG-0737. RESP 0tlSE: 1. Diverse parameters are used wherever possible f or developing isolation signals. The types of containment isolation signals used are: main steam line isolation signal, nafety injection signal, reactor trip signal coincident with a low reactor coolant Tavn signal, steam generator hi-hi level signal, control switch, containment spray actuation signal, containment ventilation isolation signal, high cont ainrent radiation signal, Phase A and Phase B containment isolation signals, and a refueling water storage tank lo-lo level signal coincident with a safety injection signal. Ta ble 6.2-83 lists all containment isolation valves and their corresponding containment isolation signal (s). 2. Phase A containnent isolation, whose function is to prevent fission product release, isolates all lines not essential to l reactor protection (ref er to FSAR Section 7.3.1.1.2). Phase B containment isolation isolates the containment following a loss of reactor coolant accident or a steam or feedwater line 2 break within containment. Together, they isolate all but engineered safety feature lines penetrating the containment (see Figure 6.2-94, for Isolation Valve Diagrams). 3. Per Section 6.2.4.2c, Valve Actuation Signals: " Automatically-tripped isolation valves are actuated to the closed position by one of two separate containment isolation signals. The first of these signals ("T" signal) is derived in conjunction with automatic safety injection actuation or high containment pressure, and trips the majority of the automatic isolation valves. These are valves in the non-essential process lines which do not increase the potential for damage to in-containment equipment when isolated.- This is defined as " Phase A" isolation, and the valves are designated by the letter "T" in the teolation i diagrams, Figure 6.2-94. The second, or " Phase B", containment isolation signal ("P" signal) is derived from 111-3 containment pressure and/or actuation of the containment spray system, and trips the automatic isolation valves in the other process lines (which do not include safety injection lines) penetrating the containment. These isolation valves are designated by the letter "P" in the isolation diagrams". 4. Pe r Sec t ion 6. 2.4. 2c, Valve Actuation Si ;nals: "All valves l that receive a containment isolation signal cannot be reopened until the isolation signal is reset and manual action 1, taken to reopen the valve". 5. Phase A containment isolation ("T" signal) isolates all non-essential proces's lines on receipt of a safety injection signal. This isolation signal is assumed to be generated when the containment pressure reaches a maximum of 7.4 psig, which includes a drif t variation from the nominal value of 5.0 psig. The low setpoint value, 2.6 psig, which accounts i l
o f or <!ri f t below nominal, is t he ni niraon compa t i ble wi t h normal opera t ing condi t ions, f.e., 0.5 psig normal to 1.5 psig naxieum. See SectIon 6.2.1. 6. The containment isolat ion pu rge supp ', a i r va l ves, COP-VI and COP-V2, as well as the containment i so lat ion purge exhaust air valves, COP-V3 and COP-V4, are ANSI Safety Class 2, Scismic Category I valves. They are redundant valves in series and are provided with ANSI Safety Class 2, Seismic Ca t ego ry I, penetration pip!ng bettecen Ilcr. The valves are required to be shut immediately following a containment ventilation isolation or containment high radiat ion signal. Since the valves may be open during normal plant ope ra t ion, start-up, and hot standby, these valves will be periodically tested to insure valve and valve actuator performance. The applicable General Design Criteria, valve position, closure time, etc., are given in Table 6.2-83. A full description of containment isolation valves is given in Section 6.2.4. 7. Per Table 6.2-83, the containment isolation purge supply air valves, COP-VI and COP-V2, as well as the containment isolation purge exhaust air valves, COP-V3 and COP-V4, close on a high radiation signal as well as on a containment ventilation isolation signal (CVIS).}}