ML18031A306
| ML18031A306 | |
| Person / Time | |
|---|---|
| Site: | Susquehanna |
| Issue date: | 11/13/1979 |
| From: | Curtis N PENNSYLVANIA POWER & LIGHT CO. |
| To: | Sells D Office of Nuclear Reactor Regulation |
| References | |
| PLA-421, NUDOCS 7911200521 | |
| Download: ML18031A306 (44) | |
Text
ACCESS[oh udR FAC[L:bn-587
'50 3d c)
AU TH ~ uAIHE ct Uris,u.<<.
KEC[P ~ T)AT>>E SELLSgQ ~ E. ~
HE.GULA tv
["iFGH..At[titu D[STRlduTIU.-~ SYSTE,.
(R[OS)
- 1911200S21 Ouc.Dare:
79/11/13 uur~RIZED:
uu Susouenanna Steam Electric Stations Unit LP Pennsylva Susquenanna Steam Electric Station~
Unit 20 Pennsylva AUT.iUK AFF IL.[Al'iuiu Pennsvlvania
) oT.er
+ Lignt Lo.
REi:LP [E.'>> l'Fi IL[[U<
Environmental Hr ojects irancn 2
UUCKET I)5000561
SUBJECT:
For>eras r esoonse to 19L029 request for aaal info to co+at ete environ rev> ew of l ai0 f I o augmentat ion reser voi r ~
Preliminary list of aoorovalsppermits K licenses reouirea to const 4 ooerate Pona will reservoir encl'10THI80TI04 000':
600III CUPIEE PECEIvE0:LTH )
EwCI. g EIIE:~
l ITLE:
POLAR/F sAK Avo Ts ann Re I atec) cor r esoonaence vu TEE: ~gEtl Acr IU~:
REC IP [E.'4 r IO CDE)h/NAT)E ne Pi~ P, L,KSC.H ate+ a COPIES L.rrk EVCL L
1 1
0
~EC[p[E )r
[O CUI)E/ 4 A'aE Al: ~DOC 5 LA t 084~
COVLES L T TR ElVCL 0
0
['~ TERNAL:
0 RE r [Lh, Oo c
09 GEOSC[EIV dR 11
<Ecrl ENG dH 13 MA TL c,'4G dH ANALYSIS UR 18 AUX SYS HK 20 I 8,
C SYS BH 22'AO SITE TECr) 27 EFFL TRT SYS 29 KIRKhuuD AD PLATVT SYS AD S[rE AVLYSIS HYPkO HETEUK BH i3ELD EXTERNAL: 05 LPOR 50 ACRS 1
1 4
4 1
1 2
2 1
1 L
1 1
1 1
0 1
1 1
1 0
1 0
2 1
0 1
1 10 10 02
<'RC POH 05 UVERA LIC BH 10 QAd sTRuc E.vG BR LS REAC SYS BTc LT CORE FERF Bfc 19 CUVTA[u SYS 21 Pd'hER S YS BR 2b ACCDIV T AiuLYS 28 RAG ASIA r dR AO i OK ci)6 Ao HEAC sAFE,rY D [RE,C t'UR T~Hii YiP A 04 VSIC 1
1 1
1 L
1 1
1 1
1 1
1 1
1 L
1 1
1 1
0 L
0 0
1 0
1 1
gg gg $979 L.gpR J4uR+ 3~ BC pm' 3-LR ruTAL Nu).BEK oF CU) les RE"u[RED: LTTR,~
E,,uCL 40
TWO NORTH NINTH STREET, ALLEN1'OWN, PA.
18101 PHONE:
{215) 821 5151 NORMANW. CURTIS vice Prescent Engineering 8 Construction 821.5381 SOV 13 tS7O Mr. Donald E. Sells, Acting Branch Chief Environmental Projects Branch U.S. Nuclear Regulatory Commiss on Division of Site Safety 8 Environmental Analysis Washington, DC 205SS SUSQUEHANNA SES POND HILL RESERVOIR INFORMATION ER 100450 FILE 991-2 PLA-421 DOCKET NOS.
50<<387 AND 50-388
Dear Mr. Sells:
The information requested in your letter of October 29, 1979 is contained on Attachment l.
A preliminary list of approvals, permits and/or licenses required to construct and operate the Pond Hill Reservoir is included on Attachment 2.
If you have additional questions, please contact ittilliam Barberich (215-821-5833).
Very truly yours, N.
N. Curtis Copy to:
Mr. Paul Leech (4 copies) il Stop P522 U.S. Nuclear Regulatory Commission Dr. James Carson (5 copies)
Building Ila Division of Environmental Impact Studies Argonne National Laboratory Argonne, IL 60439 PENNSYLVANIA POWER IL LIGHT COMPANY T gt,>SO~<RI 3~/
C=5 rrri
Attachment 1
Additional Information Requested for Environmental Review of the Low-Flow Augmentation Reservoir for Susquehanna Steam Electric Station Docket Nos.
50-387 and 50-388 H drolo ic En ineerin 1.
Provide a description of the one-percent chance floodplain of Pond Hill Creek before, during, and after the construction of the reservoir.
Include flood inundation maps for all conditions.
Provide details of your methods of analyses.
Include your assumptions of and basis for pertinent parameters such as length and slope of drainage. basins, times of concentration, infiltration rates, rainfall amounts and distribution, Manning's "n" values, and any other assumptions or parameters used in the determinations of the floodplains.
Discuss the alterations of the floodplain, including the reaches downstream of the reservoir, that will result from the project.
RESPONSE
The attached excerpts from hydrological studies for Pond Hill Reservoir detail the derivation of flood hydrographs for Pond Hill Creek for conditions both before and after construction in the cases of Probable Maximum, 100, 50 and 25 year floods.
Reservoir flood routings for the PMF and 100 year floods (figures 859) are also attached.
A flood innundation map showing the approximate area which would be flooded during a 100 year flood before construction of the dam is attached.
During construction, flood flows will be controlled by a coffer dam and diversion releases will be controlled to minimize downstream flooding.
After the project is complete, the reservoir discharge will-be approximately 30 cfs which will be passed by the existing channel.
Because the existing channel will pass the peak discharges for both the during and after construction conditions, no innundation maps have been prepared for these conditions.
In preparing the flood innundation map, flood flows were assumed not to increase downstream of the dam.
A Manning "n" value of 0.05 was assumed and a channel
- slope, based on project maps, ranging from 3 to 10 percent was used.
No alteration of the flood plain downstream of the dam is proaosed.
2.
Provide a description, including a flood inundation map, of the one percent chance floodplain of the Susquehanna River in the vicinity of the pumping plant.
Provide descriptions of the relationship of all structures and construction activities to the floodplain.
Include maps and drawings.
RESPONSE
The 100 year floodplain for a distance of in excess of 3000 feet upstream and approximately 10,000 feet downstream is largely undeveloped on the east side of the river with exception of several isolated houses which may be in the floodplain.
The floodplain is approximately bounded on the east by the Delaware and Hudson Railroad.
The west bank of the river within the same limits also contains little development.
Flood profiles and flood boundary and floodway maps for Conyngham
- Township, Luzerne County in the vicinity of the pumoing plant are attached.
They are taken from the August 1976 Flood Insurance Study for Conyngham Township (U.S. Department of Housing and Urban Development).
Based on this data, the 100 year flood plain elevation is approximately El. 519 at the pumping plant.
The only structure proposed for construction in the floodplain is the pumping plant.
The proposed and the approximate extent of its construction in the floodplain is shown on plate S (attached)
For any structures chance floodplain, floodplain's flood analyses.
Discuss your basis for any floodplain are not or construction activities on the one-percent provide descriptions of their effects on the handling capability.
Include details of your alternate locations off the floodplain and provide conclusions that alternate locations off the practicable.
RESPONSE
The proposed pumping plant would be the only structure in the Susquehanna River floodplain.
This structure will be located approximately at river cross section J as shown on the Flood Profiles and Flood Boundary and Floodway maps (attached)
Floodway data for this cross section from the Flood Insurance Study is also attached.
Based on the proposed pump station shown in Plate 8, approximately 600 square feet of the structure would encroach on the floodplain.
Because of the steep slope on the east bank of the river at'this point it is assumed that this entire width is located in the floodway as defined in the Flood Insurance Study.
If it is conservatively assumed that no floodway fringe exists on the west bank, and uniform velocity distribution across the cross section occurs, the depth of the 100 year flood at the pump station is not expected to increase mor than 0.6'600 SF/948 ft. floodway width) due to construction of the pump station.
It is expected that this increase in river stage would not extend very far upstream due to the relatively steep flood profile in this area.
Because of the terrain in the vicinity of the site, there is no location outside the floodplain where a pumping plant could be constructed without altering the water conduit concept or relocating families residing in existing dwellings.
The floodplain extends to approximately the Delaware 5 Hudson Railroad tracks and a rock cliff adjoins Route 239 to the east in all locations which are not developed, limiting the area available for pump station construction.
4.
Provide a discussion of the groundwater conditions at the reservoir site prior to construction.
Include a map showing groundwater contours and locating all nearby wells.
RESPONSE
A map showing ground water elevations at completed core borings at the dam site and a separate map showing nearby wells where ground water elevations have been measured is attached.
Although not located, most houses shown on the map have individual wells.
There are no wells within the proposed project boundary, and nearby well are located inside the Pond Hill Creek drainage basin.
Artesian pressure has been observed at several of the borings on the south abutment.
Due to a lack of sufficient data, no groundwater contour plant has been prepared,
- however, groundwater contours appear to follow surface contours in the immediate reservoir area.
5.
Provide an analysis to justify your conclusion on page 4-4 that groundwater alterations that will result from the creation of the reservoir will be confined to the buffer "one owned by PPP<L.
Include a map showing groundwater contours expected after the reservoir is filled and equilibrium is reached.
RESPONSE
The conclusion on page 4-4 is based on the site geology.
Underlying rock formations did about 45'o the north into the reservoir.
The only major fractures are along the bedding planes.
Rock quality becomes very good below a weathered
-one of about 10 feet.
Permeability tests indicate that at about 90'epth the rock tightens
- abruptly, and the only significant seepage is through the joints in the rock.
As these joints dip into the reservoir, significant seepage away from the reservoir is not expected.
Because the natural groundwater path is into the reservoir, and
- because, based on observations to date, the groundwater appears to generally follow the surface contours and a groundwater divide has been observed near or above the maximum water storage elevation on the south abutment, it is not expected that the groundwater outside the Pond Hill Creek Basin will be effected.
PP5L proposes to acquire almost all the land within the basin.
Because of a lack of sufficient base data, no groundwater contour plan has been prepared.
6.
Provide information on all present uses of Pond Hill Creek.
If there are none, so state.
RESPONSE
Our investigations have d'isclosed no present uses of Pond Hill Creek.
7.
Justify the choice of 0.2 cfs for the conservation release to Pond Hill Creek during periods of drawdown or refilling of the reservoir.
RESPONSE
The Pennsylvania Department of Environmental Resources (DER) in the permitting process normally includes as one of the conditions the requirement that all new reservoirs provide a minimum release to maintain downstream flows.
The minimum release requirement is usually the average flow over a seven day low flow period with a return interim of ten years (Q7-10).
In the absence of any stream flow data, a value of 0. 15 cfs per square mile of stream drainage area is normally utilized by DER.
The 0.15 cfs per square mile multiplied by the drainage area at the dam (1.3 square miles) is the basis for the proposed minimum flow of 0.2 cfs.
RPN
$979:5
ATTACHMENT 2 Preliminary List of Approvals, Permits or Licenses Needed for Pond Hill Reservoir Federal l.
Intake 5 Discharge Structure, Water Withdrawal--U.S.
Army Corps of Engineers (ACE) 2.
Dredging Permit--ACE State 1.
Limited Power Permit Department of Environmental Resources (DER) 2.
Intake 5 Discharge Permit--DER 3.
Erosion and Sedimentation Control Plan--DER 4.
NPDES Discharge Permit--DER S.
Road crossings for pipeline, distribution lines, etc.--PA Department of Transportation Interstate Pro'ect A royal 1.
SRBC Water Use Permit
POND BILL RESERVOIR APPENDXX A HYDROLOGY
nitD u~r-AP PE.'i'DZ.C A
HYDROLOGY TABLE OP CO'.1TH:ITS Derivation of Flood Hydrograahs Unit Hydrograghs Probable Maximum Rainfall Probable maximum Plood Natural Conditions Reservoir Conditions 100-.Year Plood 50-Year Flood 25-Year Flood Recurrent Flood Operation Study for 1964 Drought Accumulation of Sediments Pa<ac A-1 A-2 A-6 A-7 A-10
HYDROLOGY Z ZST. OP PXGURES Pi ure No.
Probable Maximum Flood Hydroqragh, Natural Conditions Probable Maximum Flood Xnflo~ Hydrogragh, Reservoir Conditions 100-Year Flood, Natural Conditions 100-Year Flood, Reservoir Conditions 50-.Year Flood, Natural Conditions 50~Year Flood, Reservoir Conditions 25=Year Plood, Natural Conditions Recurrent Flood A-6 A-8
~
~ ~
J <<V>>>>'J i
<<<<w~<<Ãiv
~ ~ ~gr
<<~
t
<<<<~
. <<<<r<<<<<<
~
rive'ni4 (1@a
~ JQ<<oc 444 l
~ >><< lie>> 0 talc
. ~ v1 'v i>>i+i
~ >>
v v>> <<>>
a ~wc <<es a<ace C,i >>
<<V <<
I
~4>>
anc u si s <<ae va r u a>>
cn a
~
a c<<uo'ormal water su"ply Level af 981.
Inclucied a:
(1) cier'va" ion of flood hydragraphs fo storms of various frecuencies; (2) details of the reservoir ogera"ion st ciy for tne 1964 "raugn'
- period, and
( 3 )
estimates of ture sec'= nt accu.=uL at'".".
the reservoir.
Derivation of Flood Hydro raahs The purpose of this part of the Append'x is to p se..t the estimates of flood magnitudes to be expected at cne Pond Hill site uncier natural conditions and af ter canst uc" ion af the proposed reservair..
Computations nave aeen made for the probable maximum flood (PNP),
which is the des'gn oasis for dam stability anci spillway capacity aalculations and far floods to be expected at recurrence intervals of 100, 50, and 25 years.
As there is na stream-flow measurement station at the Pand Hill site, it was necessary to derive the various flaod hydrographs from synthetic unit hydrogiagns anci design storm rainfalls.
Zt is believed based on studies of flood magnitudes in the region that the derived flood magnitudes are conserva-tive.
As the reservoir surface area will be eauivalent ta about 39 percent of the total contributing area, it will "e possible to obtain a high degree of surcharge storage fa modification of inflow floods.
Because of this conc'tion,
".".e volume af the inflow flood will be more important than the pea<
discharge in determining
<<load. madification by the reser;.o ir.
Although the reservoir has a high potential for:-ad'ation of in~law floods, its existence chang s tre charac=
r'=--
tics of the total inrlow hycirograph, particular'y t' "i== ar concentration of the component areas.
The storm. rainfall on one
4serOIQ
~ f af fp8+p<<fspn1<<offth/<<QQ+
I f
. lp
~ C <<OI ~ C 0 Ln <<<<w g i rv-~ i v i <<s<<
i.a<<
<<4
~ ~ I eau k3a Is o<<ra 4 n <<<<
~ ~
~ c water area-i.s "er "eived a:.-,.ost i..".sta.".=anec s;. at a <<<<<<
timing of the ruro i from 'tne land areas
( the other co. ponen
)
is also changed by the existenc of the ~at r ar a.
To evalua"e this latter effect, i" was necessary to divide the land area into two sub-components which dischar"e dir ct'y into the <<are area'nstead of following the origina'tream ne" cwork as under natural conditions.
Zn some instances, a large surcharge storage volume could lead to the selec" ion of a spillway capacity which might be too small should a subsequent flood occur before the surcharge storage from a preceding flood had been depleted.
To prevent
- this, a recurrent flood which is assuaged to occur two days after the peak flood level resulting from the probable maximum flood is generally used to test the adequacy of the. proposed design.
The recurrent flood is also derived herein.
Unit 2 droaranhs As stated above it was necessary to establish the runoff characteristics of the total natural drainage area above the dam site, and of the two component areas contributing to the reservoir, by deriving synthetic unit hydrographs.
To obtain the necessary characteristics of the unit.hydro-graphs such as peak discharge, lag time and length of base, the procedure for triangular hydrograph analysis proposed by the U.S.
Bureau of Reclamation (USBR)-
was followed.
Unit 1/
hydrographs compiled by the Susquehanna River Basin Study Coo rd ina ting Committee-or the S u squehanna River "as in l~ "Design of Small Dams",. Bureau of Reclamation, U.S. Oepart-ment of the Enterior, 2nd Edition, 1973.
2I "Susquehanna R ver Basin Study -
Appendix D, Hycro'g '",
Susquehanna River Basin Study Coordinat'ng Commi"tee, June, 1970.
A;2
~
~
sell ah t ~ ow vaaaakLec a
Qaa, v4 n&sdnUQ J ng 0
IVaL 5
1 Qas I
~ ~
As studies c c nat inc'uae any small drainace area a.=
the 5
unaer consideratian (1.2I s=.;..'.) i" was deciaec ta use rne USBR procedure wnich allows the use of emg.irical data compiled by the Soil Conservation Service for very mall drainage ar as.
The study of design hydrographs ay J.E.
AcSgar an-far Pennsylvania Natersneds, which included one dr'ainage area cP.
2.4 square
- miles, supgorts the use of the adopted procedure.
The time fram the start of the unit hydrogragh to its peak (t
in hours) is expressed as folLows:
D
+0.6 T
2 where:
D ~ Duration of excess rainfall in hours; T ~ Time of concentration in hours c
of the watershed defined as the travel time of water fram the most distant point of the water-shed to the goint of interest.
The term'.6 T
is an empirical relationship developed by the Soil Conservation Service to represent the lag time, which is defined as the time in hours from the'idpoint af excess rainfall, D, to the time of peak discharge.
The relation developed for the peak discharge (qP) of the unit hydrograpn in cubic feet per second per square mile is as follows:
P p
3~ "Delaware River Basin Engineers
, l960.
"Design Hydrog" '..".s NcSparran, Proce=.'-'ng Report, Vol. VX, Appendix M, Corps o
for Pennsylvania Hater sheds",
Z.:-.
of ASCE, Vol 94, Ho BY4, Julv 196S.
A 3
The time base of tne unit hydroccaph
( tb, in -hours) is mined from tne empi-'cal
-e: ations.".i"s
-L.67 ana to + t to where:
tr is the recession time in hours from the peak to the end of the flood hydrograpn.
The peak of the 1-hour unit hydrograph for the 1.27 square miles of natural area based on the above relationships is 683 cfs or 538 cfs per square mile. The peak of the combined hydro-graph of the two areas contributing to the reservoir
( total area of 0.78 square miLes) is 559 cfs.
A summary of the unit hydrograph characteristics.for both conditions foLLows:
Unit 8 drooraoh Characteristics
~
With Reservoir Without Reservoir Drainage Area - sq. mi.
D hours Tc hours tp hour s tb hours Peak Discharge cfs 0.78 1.0 0.36 0.72
~
2 0
559 l.27 1
0 0.9 2 ~ 4 683 Probable Maximum Rainfall As the drainage area above the Pond Hill dam is Less than LQ square
- miles, computed values. for point rainfalL can be ap-plied to the total area or subareas.
Furthermore, a total storm duration of 6
hours is considered
- adequate, as increments o
ra~fall'or Longer durations would not be significant in siz-ing of the spillway. A 6-hour depth of 25 inches was oreviously recommended for the area of interest.
K,ater studies by 5/
5i T.chnical Paper Mo. 40, Q.S.
Weather
- Bureau, Hay '96L.
A-4
the Corps of =ng'neers r commended "hat val es or 'ess
".'".an '0 square mi es be reduced '"'0 pe cent in orer to pcvce
=or tne imper ec" zt" o
stor.. isohyet 'a"=e ns to s'". pe of
- a. particular basin.
The. assumed dist ibution and arrangement of the design rainfall within the 6-hour period is given below.
The distribution is as recommended in the "Design or Small Dams."
The arrangement was set to ootain a conservative flood peak.
Hour 1
2 3
4 5
6 Depth (inches) 2 2
9.8 3-2 1.6 1.6 20.0 Probable Naximum Flood Natural Conditions
~ The probable maximum rainfall was appl ied to the unit hydrograph for the Pond Hill Reservoir drainage area under natural conditions and the computations are shown on Figure A-1.
The peak discharge is 7,120 cfs (5,600 cfs/sq.
mi.).
Reservoir Conditions The probable maximum rainfall was appl ied to the combined unit graph for the 0.78 square mile land area contri-buting to the reservoir and to the 0.49 square mile water area.
The peak inflow from the combined land and water area is 8,755 cfs (6,892. cfs/sq mi.). The peak discharge from the water area is 36 percent of the total peak discharge which is in turn 1.23 times the peak discharge from the natural area and occurs 0.40
hours sooner.
- hus, "he
-porcanc of evaluate.'.".g floods of c" a i g relat've'y large
<<a e
areas e ~
cs
~
~
~
L,.c 'acao The. compgtat '
n or the s"-'~way ces ign
=1 "oc in low undec..
reservoir conditions. is shown 'n Figure A-2.
100-Year Flood The flood with a recurrence intervaL of once in 100 years was estimated from. the 6-hour rainfall frequency data given in Technical Paper 40.
The total 6-'hour depth for the region of the reservoir was 5.0 inches.
The assumed distribution of rainfaLL within the period is as folLows:
Hour 1
2 3
5 Depth
~inches) 0.30
~
0.70 2.50 0.65 0 50 0.3S 5.00 An infiltration Loss of 0.1 inches per hour was assumed for the storm period, giving a net total rainfall excess of 4.4 inches.
Application of the design storm to the unit hydrograph results in a peak discharge of L,756 cfs under natural condi-tions and with the reservoir the peak discharge is 2,148 cfs.
The computations are shown in Figures A-3 and.A-4 50-Year Flood The flood with a recurrence interval of once in 50-years was computed as explained above for the 100>>year flood.
T.".e rainfall is 4.3. inches, and would be distributed as follows:
A-6
Sour 1
2 3
4 5
6 Dept."a
(
neo s) 0.30 0;57
- 2. 15 0.60
- 0. 42 0.26 4.30 Using an infiltration loss of 0.1 inch per hour, and applying the design storm to the appropriate unit hydrographs, resulted in a peak discharge of 1,490 cfs under natural condi-
- tions, and 1,832 cfs with the reservoir.
The complete computa-tions are shown in Figures A-5 and A-6.
25-Year Flood The flood with a recurrence interval of once in 25 years without the reservoir was computed 's explained above for the 100-year flood.
The total depth for the 25-year 6-hour rain-fall is 4.0 inches, distributed as follows:
Hour 2
3 4.
5 6
Depth
~inchaS 0.24 0.56
- 2. 00 0.52 0.40 0.26 4.00 Using an infiltration Loss of 0
1 inch per hour, and applying the resulting design storm to the unit hydragraph or natural conditions resulted in a peak. discharge of 1,387 cfs.
The complete hydrograph is shown an Figure A-7.
A 7
Recurrent
":Lood The capacity o f the Pond Hill Reservoir spillway was tested by routing a recur rent flood beginning two.. days after the peak outflow produced by the probable maximum flood.
The recurrent flood was
'computed from the unit hydr ograph and a
total rainfall that is appr oximately equal to the record rainfall for the region.
The total rainfall of the recurrent storm was estimated based on a factor that relates the rainfall of record to that of the probable maximum storm.
As published in the
'Design of Small Dams,"
the factor for this region is 2.2.
The resulting rainfall of 9.1 inches was distributed as follows:
Hour 1
2 3
4 5
6 Depth
~inches 0.73 4'6 1 46
.0.73 0.72 9.10 I
The recurrent storm rainfall was applied to the unit hy-drograph for the Pond Bill Reservoir drainage area conside ing a full reservoir.
The computations 'are shown in Figure A-8.
7 I
POND HlLL REEERVO)R PROOAQLE HAXlHUIICBLOOD
$ 4888 NSIIRSGQRG-}147III4888 8811'7I loof
~ ~
0.a..
i-l!R IIHll HOURS II'lDROCRAP~IJDROCRlgH IIVDROSRAP~NIYDROGRAPII JlVDROCRAPH HVDRO6RAPII I1YDROGRAPH IgfDROIIRAP+QYDROCRAPII ASTER ORD !HAVE OADlHA'lE ORDINATE 4RDlHAlE ORD lNA1E ORDlNATE ORD lHATE ORDIHAlE ORD1 NATE ElARY (ADiusvEol R~i.da R.2.2a R 9.8a R 3.20 R 1.60 R i.do REC.
101 Iff5)~5~C}S}
ICI }Sf,C IIS, (CISI sffS~CI~Cf4 0.25 114.
- 182, n..
a.
a..a..
o..
o.
182.
o'.sa 303,'84.
0
~
0 ~
0 'P4 0.75
- 493, 788.
. ~
I..
D 0 ~
0 ~
0.
0 n.
788.
t.
i.oa 683.
io92.
0.
0 ~
0.
0.
a.
. 0.
in92.
I.so 439
. '02 IID 0
'1.75 317. '07 ~
'084.
u.
o..
a.
n..
n.
1s91.
2'aa
+95' so2
.o '. '..a 1814...:
2.25 73; 116.
1234.
ii17.
a.
o.
0.
0.
2468
'.50 D, '
~
965'969.
0.
a.
.0.
Q ~
3935 2.75 D,
0 457
- 4831, 0.
0,~
Jl 552ll 3.60 0.
D.
429.
- d493, 000.
a.
n.
7122.
3'.2s a';
.'.. a..
160.
'497 364
~
0..
D, O.
6n23.
3.50.
0, D
4302 '49,
...6.
0,~
5271.
's.'75'-
a'"
0.
0.
3104.
1577.
0.
0.
O.
44II4.
4'.oa 0,
0.
0 ~
19'11.
218S 0.
0.
n.
4096.
4 25.
0 115..1785.
182..
a 6~493 4.50 a.
a.,
a.
0.'14ad.'=484'. '..
- 0. '889.
4,'7s a,
0.
0.
Q.
1014.
7b8 ~
0 n.
180 5.00 D
O.'24 1692 0
Jl 1714 5.25 0,
0.
0.
0.
233.
897.
182.
0.
I'13.
- 5. 50 a.'.
a.
0.
0.
702.
484 0.
11S7.
5.'75 0,
0
+
0.
'07.
78S.
0~294 4'.ao 0,
a."
0.:
312..
1D92.
a..
1404.
- 6. 25 0,
0, 0.
a.
116.
" 897.
o.
1414.
5.5~,
.a.
0.
7o2.
.}o2 4.75 0.
a.
0 a.
0.'0."
saz'.
0.; 'saz.
7.oa 0,
0 0.
0.
0 ~
~
0.
312 ~...
0..
312.
z25~~
a a
D.
0~
}.s0 0.
a.
0.
o.
0
. 0.
~
0.
0.
0.
8 I
7 POllD HlLl RESERV)OR P'ROSA)II.E l7A lllUH FLOOD M
H PH~ II R
ERVOlR 0
D 7lOIIS hflER 1AR U 20 u,oa C.SQ
- i. 2CI
- 1. 40
~ D 1.to
- 2. 00
- 2. 4u
- 2. Ea'
~ 9 3.r a
- 3. 23
~ 4 3 go lcca
~ ~ILi 4,20
- 4. 40
~RCI CJ
- 4. va S. UO
~P ~
S. 40
- s. ecd
~ 4 4
~ 4 4.do 1~CIA UII11 I'H ORD )IIA)E (ADJU$ 7ED)
N R
ORDlt;A7E R~i.dfl H
DROGR PH OR D )HA7'E RI2 20 9i SS9 ~
54u 04 h94 ~
ie4 0,
d 2eeo ee 425 ~,;
~
415 ~
2d5.':
- A25 5.0.
E ~0.
11RER 741.
08Ci.', ',,
3dS.
0.
id2.
a.a.
0.
0.
09 00a.
0.
0.
a.
0 0,
0 a.n.
0 ~a.
0 ~
0 O.
8 o.
0 a..
00 n
0.
00 0
an n
0 ~0.
Od O.
.0 O.
n 0.
0 0
0 ~
I 0.
0 ~
0 0,
0.
n
%%&a&&waa% RRN%eaaad
%96 99wwammra&&
0 ~
HY ROGRAPH HVDROOR PH HVDROGRAPH HVDROGRAPH HYDROGRAPH HYDROGAAPH ORDllIA7E -
OADlHAlE OADlHA7E ORDlHA1E ORDlNA7E ORDlHA7E R ~.Sll
~
Sll 8 llll~~dn 8
L0.7 CfS I
(CFS)
(CFS)
(CFS)..
(CFS)
(CFS)
&%%%&'W'%&%& 99&%+%W&&W% Q&&WP&+A%% &W&&WW9WS 0.
508.
110S..
0 ~
~
0 ~
O.
SOR.
1402.
I... ':
0 ~
50..
IGC7.
0 ~..,'.3 0 ':,: I..O.:::.
e99 ~
1S42.
o.
o.
a.
o.
699.
20'47 a..
0 ~
0..
0, 699.
1895.
n' 0"
0' e99'440 II..:..',"
..'.:": 0.'
.:'; 0...
5'114.
'5dl.
- ." 3d75.'
.,-.,'.,: O.;'I,;.)'...'.
- ,... 0..
- ...,
3114.
7154.
??',~.?,
0, On 3114 ~
841?.
0 ~
a'. .
3114.
e41e.
2606 dnk D
0 76 4231 6
.,:."'- 1200.::::.:
- 0. '."-,-
- 0. '..:.
1016.
3843.
- 225..'..;.;..'.176k..;.:,';",";.
- a. ';-;.'.::.;. 0..';:.:,= 1cie.
3530.
.,? '":"
l? "-'? ?,?
0, 078.
0, 0.
1016.
2095.
0.
0 Si..
3a4..
O.
saa.
G~597 500' n
Cnd.
9639 G.
':. 23I.. '94.
0 ~
SIIR.
1639 a.
ie.
Ee4.
0.
SOR.
13EE.
37 0~0?l.
1G47 0.
0.
425.
30C.
508.
1238.
0.
0.
2es.
dno.
saa.
1374.
.'7.4 506~521 n..
0,.:
8
~
86C 506.
1380.
o.
0.
a.
539.
Sah.
1047.
0~25.
Q.
425 0.
a.
. 0.
265.
0.
2es.
0 ~
0.
o..
11a.'.
1)s.
~ ub 00 a.
0.
a.
o.
0.
9 I
POND HE'LL RESER(0)R"':..e 2. -."..I.. i.::r. -.-;>>:A",4 e..':
.p 'ein,e
~
e e:e 7' l
~ O'A
~j" ':=.
inn-YEAR FLOOD fUQ~lTWlAiRHPEFATUIOI~IFIFDTT1'G 1
HR UN)T HOURS HYDRGGRAPH IIYDRGGRAPH HYDROGRAPH HYDROGRAPII HYDRDGRAPH HYDROGRAPH HYDRDGRAI'H HTDROGRAPH HYDRCGQAPH XTTEO=OEO301T~EOIERT~ROXIQTE ORXTIQTE 0391IIRTE" ilR54IIX'TE SIIOlaATA O'Ile'IOAIE "OAAIOATE START lADJUSTED)
REOO 20 R490.60 RA02.40 RE90.55
EDT (CFS)
CCES)
(CES)
CCES)
(CES)
(CES CCFS)
(CFS)
ECES)
&'w\\ &
eeo 0
0.
0.25 114.
22 0.'0 303...'.
40.
O.i~93,.
OS 1.00 6S3.
136
'.25 561.
112 0 ~0.
O.
0.
0.
~
0.
0.
0.
0 ~
0 ~
0.
0.
0 n.
0 ~
0.
0 ~
0.
0.
65 0 ~0.
1.75 317.
2.00 195.
2:25 73.
2.50 Q.
- 2. 75
~ 0.
3.O~.
- 3. 25 0.
3 50 0.
3.75 0.
4 ~ 00 O.
4.25 0.
3.5 4.75 0.'.oo0
- 5. 25 6.
- 5. 50 n.
5.75 0.
KH 6.25 0'.
4'.50.
O.
0:7 7.00 0.
?.25 0'.
~
~
~
63 ~
5
~ 295 ~
0.
~
0 ~
~
- 0. ~:
39
~ 409.
0.
~
0.
0.
54.
3XS.
273.
O.
0.
0:
0.
2d3.
727 ~
0.
0 ~
0.
0.
190.
1183.
n.
0.
0.
~ '
0
~ '3 '
134d e.'2
0 3 " "
0':.'..:
- a. 'nss'.
tee,,0''.a.
0.
-74a.-
27t;
o.
0.
, 0.
0.
467'75.
o.
n'.
a.
tts'soe.'5.
G.
El.
I21.,
6.
n..
0.
o.-"
. 1?4..
197.
0.
0 '.
~
0..
10?..
273.
n.
0 ~
0.
0.
40."
224
.ES.
0.
0.
~ 0.
0..175.
75.
0 ~
0.
0.
0.
124.
123.
Ii.;
170.
0 0.
- 0. '.
29 140 0.
n.
0.
o.
~
n.
109.
~
~
a-.
a.
0.
0". " "" 0".',
79.
On 0.
0 ~
n.
~
o.
'a.
0 0.
n.
O.
0.
is.
nn 22.
0.
60.
96.
0.0.
0 ~0.
136 ian.
269.
359.
448.
0."
624.
0 ~
990.
0.
13?3.
1?SS.
0 1452.
0.
1220.
0; 1031.
F443 529.
0.
n.
O.
3? 1.
0.
'Ao.
0:
293.
0 n.
n.
251 ~
250.
248.
169 109.
0.
0 79 0.n.
4S.
1b.
0.
0~42.
SO'IID Ilail t
RE SERVJOR lNfLOM IIFDROGRAPH FULL RESERVO)R CONDlllOHS IIOUR $
AflER ORD)MATK ORDlHAVE ORD)HAYL ORD lHATE.
ORDl HATE ORDINATE ORD l4hlE ARD lHA1E ODD)NARK IIYDI7C?GRAPII IIVDR0GRAPII ll>DR0CiRAPII IIE0R0GRAPH H'NDR0GRAPII O'FDR0GRAPII IIYDR0GRAPII IIYDROGRAPII HYDR0GRAPH
%%0% w&
W&O %&&
- b. 40
- u. 40 9
1.I33..
33
- 1. 20 26
- 1. 60
- 1. cn
~97 c.20
- 40 C. 4II
- 3. 43
.'0 40
- 3. 40
- 4. 05)
- 4. 20 4
4.
4, ~sl 4.:0 II O.
uo n
irCdl iesu 5 60 Cr
- 4. 40 6 20
~
r 0 ~
n 0.
n t, 4il G,cn 4 ru 0,
Cs (CFS)
<CFS) '
lCFS)
(CFS)
Aw&% &%%&&%%%&% Arrear &Arran&& &%&w&rrAA&%IO&oArr&%&A+ &Arr&wl& rw& &w AwA %&& &&&M
~
& &we &~ a
'a
~
0 375 ~
75, 0 ~
0.
. 0 ~
0.
0, 43.
132.
559 ~ '11 ~
0~, '
~
~
0 ~
~
Ou 63 ~'75.
- d?. I..; :.0.;
0..', -:.;.r.:,.,:9;:: 0.::,,I;:;..:; n.":.,: '3.
330.
6 ~
53 ~:;".'::
113 ~.....'.'.;
0 ~.."I
. q'"'0,,'5 -.:3,I',:;: -':.;
0 ~ i 'i',
190.
35?.
74.
34.
.335.
a.
o.
n.
a.
190.
sio.
5, i.
324.
0.
~: 0, 0.
O.
190.
515.
02
'9Q
.392..
0,
?
0,:
159 ..:",. 455..',v",,'! 0;I,:1,".,;!
0
!I ".-.I 0 '.:.':,
, ?li?.
1372
- 0. '. 'I, 0, 99~:..
899 ~:: -'".r 0.,".";.'-.;.I':
0 ~':.;.';.','; 0 ~;.."!"," 762..'7G2.
~u U ~
- 0. '.
1296.
G.
0.
0.
742.
2041.
0',
0.
0.'
808.'C.
0.. ..
762.
CSV].
ll,~
0 ~
~
0 ~."',"3 I::;.=
0 ~
~ r.-.".-:. 398 ~ i 394? =-,'.;Zj.206 ~ C'.:429".:,I +:.'
~ ~'.Ii.;;:.-'
~ rr.:1,,.'74
~
779 ~
- 0. ~,...,.';.:. 00 '....
u.
1.: '177.
':;,';,";;",;".'.3070 - "."'~;.".. 0., ".-.;i;:p.:, 0.:".".::::. 174.
'59.
227 n.,.'74 4!I3.
a.:.:,
0, a.
u.
1os.
o.
o'.
1?i
. sda'.
- 0. 2, O. '.
146'.
0
~
127 349 1r~50
~?
7 0~,
0 ~ '-'.:." ~ 40~... '223 ~..".
0 ~.-
127.
'91.
0 6 ~
00 0 ~..
~
216. '.:
0.
127.
45.
0~3 '~?
7 741 I?
0.
0.
II.
10
~
47.
79.
I 233.
0.
u..'..
n.
46 93.
79.
'39.
ll t,.
0 ~
u..:
2.
3'...
?9 ~
21l.
0.
0.
u.. I;i..
O.
84.
77.
163.
n,!'
d Q
de Io ~
~
Cs.
0.
0.
0..
41.'.
41.
u.
0.
0 ~
0..
0 ~
18.
0.
18.
Cs 6
0
~ OJ
~
~
I ~
0 ~
, 0....
0..
0.
0.
0.
0.
r
~
tD4D llfllRESERVO1R 50-TEAR FLOOD Rt U
Dill NS
~
S'TART
{ADJUSTED)
R O 20 R O.i?
R 2.05 R O.SO
.R 0.
2 R 0 ~ 16 RES..
TOt
{CFS)
{CFS)
{CFS)
{CFS)
{CFS C
S
~so W% &W '%
A%&% % a &%%%
%%&%%&u&OIW %&&&M& &&%
n %AWE &
~ W&
W%%AA&&O&%
0 25 114..'22
~ '.
0...
O.'
0 ~
~
o'.sa sos.
'o'.
af'7~I.
1.'oo 683.'.
'36.'
a'. '.. a.'.
- 1. 25 561 112 53.
0 I..
1.75 317 ~
63 ~
231 0.,:
0 ~
<.'no
<<s.'9 321 a',
o',.
P.ss 13.
f~sS~T.
.2. 50 0.
0..
206.
d21 ~
0 ~
<.<s a'.
148.
010 0
3.O o.
n.
22.
<Il..
a.
0.
98.
0.
a.
136.
365 0.
O.
230.
O.
0.
a.
295.
0.
0.
0 511.
0.
o.
0 ~
827.
~
~
~a~sS<
a o
1 3.25 0 ~
s.'0 O.
3.3~
c.'oo
'.'.25 6
A.ha A. 75 s,'ao S.<s s'.sa S.<s 0.,
a.
U Oaa.
0 Eh 6.25 sa 6.75
.a, Q.
0 o.'
'o.
<a
.0.
70 0.
0..
0.
0.
0.
50 o.
sa.
0 ~
0.
0.
o.
a.
Q.
31.
o
~s.
0 ~
a.
0
- 7. OD
~<<
a.
0.
a.
a.
O.
a.
0 0.
0 ~
.: f.
0 34.
1150.
57 ~'.
~ ':
0 Q.
12{1.
o a
<s< ',~~.
1<51 a.
IN<
<3<.
o.
0 ~
0 ~
896.
0 ~
O.
399 341 ~
a.
Q.
Q.
741 0 ~
D..
0.
219:
96.
0 3'I6.
Q ~
0 ~
On
" " '58 ~
'5?
~
0 ~
3'Id
<1.,
Qo 314 ~
On 0.
3<.
1'<<.
1<.
0 234.
0 ~
0.
0.
o.
isa.
A8.
0.
188.
0 0
a 01 FO 0 ~
0.
0 ~
0 ~
d2.
'09.
- 0. '71.
0 ~
0.
0 0;
23 89..
O.
113.
I Cfl
9 P49ID lllLL RESERVlOR 50-AREAR fI.ODD
. fl ll 0'0 R
R Pll-II I
~
L.
R SERVO)R COHO lflOHS
'1 I
AffER SVJRl
~ W G.4
- 6. Da
- 4. Ea
~ ad 1.$ 0 40
~ 00 1,f.a
- 2. un
?.40
- c. 60
~ CU 3.un 3.20
~ dd J
- 3. 60 3.20 4 ~ Id 4.id
- 4. ~3) 5 ~ 6.'II
.5.4n
- 5. bia 5 40
- b. i>90 6
22) 09 J
A. EQ E.ca
~ 82 1 "PR Usill fD C
PH ORD)HA)E (ADJULEED CES 90 isa 540
- 2ca, 6
05,0.
Q.
~
~
G.
0 0 ~
n.
0, 4
D,a.
Q 0 ~
0, 4
Uo 0
I
~c Oo 0,
0 ~
P.
0, 0 ~
0.
O.
Hf 0 GRAPH HYDROGRAPH HVDROGRAPH HYDROGDAPH IIYDROGRAPH HYDROGRAPH HYDROGRAPII HYDROGRAPH ORDEIIAYE ORD)HAlE ORD)HA)E ORD)llh)E ORDlhhfE ORD)HATE OPD1HATE ORD)IIAlE 8
II 251 8 0 6
8 ~ 05~50~32
~+6~52, JQX Cf (Cf S)
CES),
(CFS)
(CES)
(CES)
(CES)
(C ES)
W&W&
~ a.
a.
0..
0.
0.
63.
'138.
111 ~
0 ~
a.
a..
O.
O...
b30 1r S.
08 0
0 63, ir1 O.,
~ -;
~ II....
0.',,;".,:.,
0, 63;
'30.
3~:
89~;
~
0.
~ ~ '
0 ~
0 ~.--..'.:";.'.
149; 291.
l.-~
1, 262.
II.
0 ~
0 0.
119.
626.
1 ~
253 ~
0 ~
~
. D.
0 ~
0; 149 ~
404 es.;,,:
.:;,::;..'- a..:.:.,;;
.. a.:..:
I ess.
iles'.
0'; "-.'8'.:.:
268.':,;I'I::,:,0..".0', '.'. 0.'::;;I., ',: '0;;.':
651. '698.
W
""IL
sur a.
a.
0.
esi'.
irda'.
0, a',
690.
a.
0.
0, 651.
1342 0
sds 95 0
~52
~
4.6:..';.."I-s. 5.4.,'.Js.
o.
=..;.;-,.:.:a...;:.. 1sa.
eeb.
~
- a. '.'.'::.-1510'..';..-':.-'.'279
.".'. 'q'.'-;." 0 ~ <-:..'".:I:,'. 0 ~ ".-.. ".'58 ~
590.
UI4 0 '-'":.- 0 ~ "'
158..
539.
0, 0.
0 ~
168.
0.
0.
159.
322.
~ a.'
~
0..
133 ~
60 '
~
101
~
295 0
irioi.:01 0.
2 :':'.:.12II. '. '01.
31I.'
~
0 ~
0.
~.
2,
- 172, 2 ".:.-.. 0..
101.
276.
I 0,
~
P.
0 ~
0 ~
85, 30.
50.
166.
0 ~
n.
o.
0.
53.
ca.
50.
163.
89 50.~63 n.
0 0 ~
dd.
50.
13R.
0 ~
0 ~
0.
0.
A.
. 53.
50.
104.
a~I.~2 0
42 0
0.
II~
0 2d 26 0.
Q ~
0'. '. '1.
n.
a' 0
8 PGHD H)LL RsssRvo)R.'.
2S-YEAR fLOOD
~
.fKWS llYNlO4VAFHNOA~COTJÃlT1'CIS e RR a Rre a
%%&RR&e %%9 H&%WWAAWa& %\\%% Re &%%+
WW&%\\%'a&%%
15' 0.
0; 42 0.
0.
15.
42.
'e9.
oa0.
0 ~
0 0
0.0.
0.
0 0225 1140 0.50 303.I!.
a.
0.
0.
'5.
0.
130.
0.~200.
0.
0 ~
271.
a.
Q.
341.
0..
0'.
a.
a.',
0.
77'? ~
a.
0 0.
1082.
0~.
0~'87.
a..:.'.
a..
o.
114?.
0 0
9e1 809.
Q.
e57.
a.
caa.
0.
275.
O.
2e1.
a.
?Re.
0.
219.
a.
ice.
a.
1S3.
58..
722.
1,Qa'o 3 ~
95 ~
0 ~
a, o.
1.25 Sd1.
7O.
52.
0.
0.
, 559....
f!
1,75 317.
44.:.
22e...
o..
o..
2 00 19S.. '7. '14.' '.:
. 0.
2 R5.B...
258 EtE 0;
2,50 OE 0,
201 ~
575.
0 2.75 0.
a't tt.'958'.
a'.
3.25 0.,
0 ~
33.
10e5. -'7.
3.50 '..'. '.
R34.
127.
0.0.
0~07.
Q.
4.'Qo o,
a.
O.
370.
28e 0..
0.
4.25 0.
~
Q.
0; 138.
235.
34.
'0.
1.50 ll.
ISA..
90.
4,75 A.
"o.
a.. -.'.,
133.,
147..
o.
- 5. 00 a'.
o'.
o.
a, '1.
204.
~
a.
l88.
20.
a.
0.
131.
54 O.
95.'s.
5 0.0.
5.50 Q.
0.
s'.?s a'.
0 ~
18 122 ~
?9.
tf.a~
d'.2S
- 0. -..
a'.
O.
d.so a.
0.
0-0 a.
0.0.
a.
21.
100.
a.
a.
79 0..
57.
0 0 ~
0.
5'?.
35, 13.0.
Q.
0a.
6.
0 0',
a.
d.?5
- 7. 00
- 7. 25
,50 35
'3.
0a.
0 ~
0.o.
A.
0 ~
a.
0
'I"HR HN)T HOURS llYDROGRAPH HYDROGRAPH HYDROGRAPH HYDROGRAPN HYDROGRAPH HYDROGRAPH llYDROGRAPN HYDROGRAPH HYDROGRAPH
=5/IE~E51LAA 66liI617~687617E 0ATEAIE 0$8'AEA15 AAEfliA'fE liA1657E aaalaAIA RRRAIIAt s)ART 4ADJU$ YKD) '
0 14 R 0 ~ 4e R
1 ~ 90 R 0.42 R.0.30 R 0.18 Rss
~
TQY lCfS)
CCfS)
(CFS)
CCfS)
~
CCFS)
(CFS) lCfS)
CCFS)
CCFS)
~ - ~- ~
POIID HlLL IIR$KRV)ON ~
)IIFLPII IIFPI44GRAPIR FUL). RFSSRVO)R COIID) Tl OIIS I CUPS AF1KII
~aeaee
~I (CFOG)
(CFS) 4CFS)
$ CFS)..
'- (CFS)
(CFR):
(CFG) lCFS) e eaeaaaeae>>9 eeaaaaaaaa eaaaaaeeea aeaaeeeaee eaaaea4eaaa aaaeeaaaaa eaaaaaaaaa 'aa HFPRO RAfII HlDROGRAPII IITDR4GRAPII HYDROGRAPII HVDROGRAPH HVDROGRAPII HVDROGRAPII IIIDROGRJPH HVDROGRAPN PRP) ghee f ORD) IIA)g ORD) HATS ORD) HA1g ORD $ IIAff, ODD ll6A7 g ORD l"AY%
ORP)IIA)K QRD)IIATC (Cf S)
SA ~ CQ
$ 4 ~ 64
'2 S7 40
- 57. 60
. 5
~ 2 4I SK. 20 4
St:. uQ SS.KQ 9,rQ S9.40 D. alD OO.I 0 Lt 't 50.2 0 40.QQ
~R
~
di. 00 373; 559
'7'ee.
74i
~
S
- 400, FRQ 0.
0,
. 0.
09 QQ I
II; 0 ~
0, QQ I
0.
0.
~ ~
273',
0, Ai 0,
0
- R31, 505.
4DEQ 0 ~
0, 0,.
0.
231 640.
24, ':.
0.
0, '.i;:.
0.:.;:.'
0,':-":': 0. '.:
231..
477.
194....'90.:.. 0.3 '.
0, ":-..';.. 0,".:.."!7::--:. O..:,:::..'17.
701.
Q~ ':: '" 0 ". '317.
$ 13.
54.
5:9, 0.
0.
0.
0.
- 347, 930.'4')
~ 0.'.'.'. o.'17.'ei.
ll 0 ~.:":':
266.
$ 47, :.i'.',i'.i',- :.'; 0.'- i::.".-.:. 0.,':: 1417
..R530.
ice..
'1672, 0.
0.. " '..'.:."
1417.
3255.
Ii. i i
0 5>>
240$.
~ ',
0,,
0.
1417 ~
3630.
0.
0.
1503,'.,'
0.'
. O.'417..
2920.
li~
. 0.;
0.
740
. I:.:. 6547
- ,;.
- .:,,". 0.
'ii',.-, 0..:;..
463'.
- 1761,
'. 0; 0.
330 ~
R1d, '- Q.,: ',:
463.
1610.
0~2 73$'..
46'.~274.
iI~
0.
0.
- 492, 0.',
46'4.
955.
.. 0'.
0.
Oo 3af 9 '38
~
09 '31
~
75>.
4L 27!
0~31.
74$
0,,
. 0,: ', '.i..106 ":i:,':I:"430ii, 's.:i/ii',: 0,,;.,1I:
\\ 1, 74a.
.,". 0.'::. "
. 0. -.;,
0',
7,':,.'.,"..'.-394'.:;.::.',".:.'.".. 0.'.",.'.; 231.'
633.
0~5
.0~3L.
477.
0 ~
0,
. 0,'.
194.
136.
R24.
559.
Q ~
0 ~
0>>
0; Q.
121.
- 270, 22a.
e19.
4~AR~2466 3.
09 3~:..
3$ $.
~
~ '2$.
II21.
PQ 242 ~
22a.
471.
09 0,
119 ~
0.
- 119, 0,
- 0. '3.
0 ~
53.
II,0.'.0.
0.
b.
0.a.
0.
0, 0 ~
0.
0.
40 0.
0 ~
4.
0,
e I
1
'igure 8 i/2 POHD HILL RF SERVO IR ROUTIHG OF P lf AND RECURRENT FLOOD TllO DAYS SPTLLMAY CREST ELEV.
= 981 FT SPILLWAY llIDTH "-10 F T ~
LATER
~ HOURS
~
F/
f 010
- 020
/
4 Q. 60 0
hC
- 1. C."
F
~ M IJ CFS n
n 1 '
812.G no 1402.0 1372+V 1 (/47 CFS 1.0 1
4 0
5.0 7 ~ 2 2
CFS 810 5
11 4
1396 9
1364.7 1n37. 7 CFS 405.2 7 7 1250.'9 t380.8 tyne NCF 0.14 0
0.90 0./:9 XCF 1 051. 58 1 051.7Z 4
1053.31 1054 31 1/'
17 FT o
=n 981.03 981.04 981.15 981.22 981 R
20
/: 1.40
'.60 l
1 484
'., 2.00 2.20
,.Z. 40
. 'j: 2.60
~
!'" 2 80 1 r.95 v'44n.0
'5".61.0 20.1 23.0 2"".7 r 154 ~U:,
45 5
8755.0..
71.3 8417.0 '8.7
. 1542.0 11.2 1789.0 13.9 7047.0
'17.2 1530 7
1r75 G
2029.7 18?4 E
1416 9
c +2 (el
?108 4
8583 6
8318.2 1284 2
1652.8 1902. 3 1%52 ~ 2 1645. 9 3474.5 6320 3
7896 '
500.9 0
oZ 1.19 1.36 1 '0 1.18
'.50 4
$ 5
, 5.68 6 12 1 G56.10 1057. 29 1058.66 1060 Cb 1 A&1 25 1G63.75 1 068; "0 1073 98 108
.10 981 ~4 981 43 981,52 981 52 981 70 981.88 98Z 19 982.59 983 01
- 3. GU 3.ib 3.4G 6416 ~ 0 4231 u
f'43. 0 1.5 154.5 173. /)
6Z84.4 4LI?4 ~ 4 3bbo.9
?301 3
5180.4 3R73.2 S.r.5 3.72
?.78 1085.36 1 089.G9 1091.88 983 38 983.54 QP3.83
<.-'3 SO
~" 4;00 3530.0
-..186 2.
~. 2793.0
...;:"201 6
2095.0 217.1 3343
?
2591.3 1877.8 3506 '8 2967.5 2234.6 2.52 Z;13 1.60 1094. 40 1G96.54 1098. 15 984 01, 984 16 984.27 4
4 ~ 40 4.60 1 c~>op 1639.0 1 43o Cc.'3 ~8
. 232.5 239.5 14>.1 tr06 4
1399 4
toe.4 1 421.7 1402.9 1 to 1
C2
- 1. C'1 1099 34 110G.37 1101. 38 904 984.42 984 49
~5 00 l..-5.20 o
1140 1047 0
=: 251 1, 795 8
1238.0
'60.0 977.9 1
6~
9 968 1
886.9 0
91 0.69 0.63 1102. 29 1102. 99 1103.63 98.6 984 ~60 984.55 5'0 F 80 1521. C 1380.0 6
270.0 273.3 1 c~
1250.9 1106. 6 1tt81 6" 117R. 7 0.85 0.$ 4 1105. 23 1106.08 98 984 76 984 82
$.-6.20
--6'0 u//
~
c.9 64 935 3
425 aO ",.'82 w3 '.
142 '&
453w3 265.0 265.0
Q.Q 71.3 0.6 0.32 0.05 1106.?5 1107 08 1107. 13 984 8?
984 89 984.89 e
4 6 80 7.00 13aO..
8 0
Q.D D4a 234 5
232. 7 11
-226 '
-232.7
- a.b
-171 8
-229.6
-0 04
-0 12
-O.to 110 09 1106.96 1106. ES 984 89 984 ~88 984 87
'.QO L;:..S 50
!" 9.00
- ,
- .0 ~0,~.. ZZ.4; 9
0 0 *<<)'.'25 ~ 1
-225 ~ 1 0
0 222 ~ 6 222 6
-2>0.3
-Q.BZ
,.-226 5'
-0.40
-223.8
-0.40 1 105 9?
1105 S&
1105.16 984 81 984 78 984 76 0
~
4
- to 00
/10.5Q 1.40 i tt-50 I 12.QQ
~ /I 0 0 O.fl 0
0 0 0 Q.fl' Got 217.6 215.1 1 2 ~
210 3
208.0
-ZZD 1
-217.6
-215.1
-212 ~
-Ztfli3 "208.0
-221 3
-218 8
-216.4
-213 '
-211.5
-209.Z
-0.39
-0 39
-0.3W
-0.38 Q
3R
-0.37 1104 r6 1104 36 110'3. 97 1103 59 1103. 21 1102 83 984
?3 984 70 984.57 984 65 984 52 984.59
Figure 8 2/2 ROUTIHG POND HILL RESERVOIR QF PMF AHO RECURRENT FLOOD TAO OAYS LATER SPTLLMAY CREST ELEV.
= 981 FT SPILLQA Y WIDTH "-10 F T ~
'OURS
'18. 00 0 ~ 00
.36.00 Ce i48 ~ GU 54.00
~
~ 4
- .54. 40
- 54.60 4
40 55 M 55.?9 s
u'5.
6C
- 55. EU 50 ~ Uu 56
~ ZG 56 40 o.bu 55 60 57.00 ir 0
57.40 Sr.bu lr eBU 58.00 58.20 03 ~
0 58.60 5P..PQ 59 20 59.40 o4 59 80
'0.bG
~ 60.40 I eo 60 F
<<<<<<<<W 0.0 183.~
CFS "1P3.8 t
~0.0 O.G u
0.0
~
0.0
?l
~
05 0
&40.0 bc&.u 477.0
?01.0 3
930.0 8&1.0 4 ~ U 2530.0 3255.0
>9"4.
3330:0 Z920.0 192?.C 1?51 0
1010.0 1c 4 ~ u 955.0 759.0 48.G 748.0 633.0 4
.u 559.0 619.0 boa.u 621 0
471.0 142.1 f27.0 0
101.4 90.7 108 4
11C.B 112.7 114.5 115.8 119.5 120.9 125.5 i27.?
1 135 5
150.8 154 Q
132.6 1o?.7 210. 7 21?.G
?2?o) 233 ~
236i8 239.4 c4r'.0 249.4 252.4 249 250.9
'55.9 43 o
259.7
?62.8
-142
-127.0
-11
-101. 4
-90.?
261. 5 394.1 52?.2 511 361.1 581.4 692.0 304.4 733. Z 24.0 2393.4 3104.1 3819.9 3647.3 2722. 2 1716. Z 1 533.9 1<<82
~ 4 Ir40 2 718 1..
519.5 500 0
49 5
3pn.5 ZZ
~2 308.0 363.0 4(5 361 2
208.1 191
, 119.0..',
53.0 19.4 -
.,-28.4'....
216 '
-99 4
22Dr6 167 6
CFS NCF
-1 "151.2
-134.6
-10?.5
-o6. 1 85.4 327.8 4&rf.7 519 3
436 2
47'f.2 o 6.7 748. 2
?68. 8
&ZB 6 145E.?
2748.S 34&Z.Q 3733.6 31P4 2219 2
1625.0 1458 1211.3 879
&18.8 510a2 449 7
439.5 303 9
257 6
335.5
'9b.4 395.5 2S4.6 89 8
-63 9
-133.5
<<0 ~ r I
-3.26
-2.90 2 ~ <<2
-~. f?
G.G6 0.23 Q
0.3?
0.33 Q 45 Q..
~
C'7 Q.55 0.45 1.L5 1.9?
Z.49 2.6$
2.2o co 17 1.GC 0.87 0.83 0
44, 0.36.
0.35 0.31 0.21 0 19 0 24 0.28 0.28 0
20
- 0. L'6 O.D4
-0.09
-195.9
-4.23 HCF 1098.60 1694.88 1091.62 1088.71 1 056 ~ 11 1083.79 1,71 1 081. 7?
1 082. 01 1 082. 71 1C83. C3 1083. 3?
1 C83. 83 1084.36 1 084. 92 1C85.37 1 686. 42 1088.40 1090 89 1093. 58 1 095. 87 1 C97 47 1098.&4 1094.69 1100.56 1101 19 1101.64 1 102. 01 1102. 37 1102. 68 1102 90 1103. C9 1103. 34 1103. 62 1103 91 1104 1104.18 1104.13 1104 03 FT 984.30 984.04 983.81 983.51 983.43 983.27 983 13
'83.15
.1?
983.19 983.22 983.24 983.27 983.31 983. 35 983 38 983.45 983.59 983.76 983.95 984.11 984.22 984.30 984.38 984 44 984.48 984 51 o84 54 984 56 984.58 984.50-984.51 984.53'84 55 984.67 984 58 984 69-984.58 984.6 eC 61.00
- 66. 00 78 GQ
'4.00 9o.00 102.00
, 0.0 0.0 0
0.0 0.0 eU 0 0 Q.a 814.8 213.5
'192. 8 108 ~
148 1
132.3 105.7 94.5
-211 b
-213.5
-192.8
-go8 5
-148.1
-132.3 1 lb+
-105.7
-94. 5
-189 2f2 ~ 7
-203.2
-180 6
-158.3
-140.2
-1 112.0
-100. 1
-0 13
-0.15
-3. 65
-3 90
-3. 41
-3.QZ
-2 70
- 2. 41
-2.1&
1103.90 1103. 74 1100. 09 1096.1S 1092.76 1CR'9.?3 1 087 ~ 03 1084.61 1 CR?. C4 984.67 984.66' 4.40 984.13.
983.89
'8~.68 983 49 983.33 3
18 1 14 ~ OQ
~ 0 0 8
76 7 84+4 69 ~ 4
-76 7
). -80 6
-1 93
-1.74 1080 51
>0?8.?r 983 04
~
982 92 l
PfguIe 9 POND HILL.RESERVOIR ROUTIN6 OF 100-YEAR FLOOD a
SPILLMAY VIDTH = 10 FT ~
~
HCF NCF FT 0<<<<<<<<<<
0 ~ 10 0
ZQ 0 69
- . G.LQ 1.2G 1.44 1.60 2 00 1 ~ 0 101.0 "
- :
175.0 171.0
~
~
+57 Q
44~
0 4.
St 5.0 392.0 7'PQ 1
Q 1.5 1
8 2.4
?.
4 7
5.4 99 8
tr?r 4
169.1 0
354.5
.444 8
">A 510.2 386.5 Z7
, ~
49.9 '
155.0 1 71.2 C
241.2 399. 6 Con 4
523 1
448.3 a
7 0.01 0.11
0 12 0.17
- 0. 28 7C
- 0. 37 0.32 1051. 58 1051. 59 a
1051.79 1051 91 C
1052.19 1052.48 n
1053.21 1053.53 981 D3 981 03 981.04 981.05 oa 981.0 7 981.09 981 14 981.16 2
40 17&2.G 2 60 2'148.0 9 ~ 4 12.5 C
0 1752 5
2135.4 4<
1561.7 1943 no 1.12 1.39 1 055. 29 1056.C9 n
a 981.29 981 38 3 00 1571 0
3 20 917.0 gn 79 19.0 29.9
?9 1551.9
~
89&.e 1 798 ~ 4 1223 9
1.29 0;88 0
1059 49 981 58 1960.37
. 981;54 er r
o 60
'.80 4
4 20 4.40 C.&0 4.60
'5 00 5.4u 5 60 5 eo 659 0
483. 0 349.0 368 ~ 0 0
23 6
24.C 4
0 25.3 25.9 26.5 239. 0 248 0
21& 0 2 al a 2 Z8 6
2~
2 345.D.
27.4 261.0.'-::.27.8-2~
li.c -...Pr 9
, 635.3 458.5
?g C'23. 6 342 ~ 0 364 3
317.5 Z33.1 0
0 21 0.7 Zt 9.3 18&.7 695 9.
546 9'6a 29 '
332.8 353.1 340 9
275.3 1~
1 207 9
215.0 203.0 0.23 0.23 0.25 0 24 0.19 15 0 14 0.15 0
14 1C&c,.38 1062.62 1062.a8 1 063.12 1 063. 32 1 063. 48 1063.63 1 063.78 1063. c'3 0.50 1061. 47
, 0.39 1061.86
~16 15 981 72 981 74 at 76 981. 78 981.80 9
1 1
981.83 981.85 981.86 981.87 981.88 9at.89
..6.00..
163.0...., '9.4
.. t33.5 6 ZO" '5 0'.,; 29';
36 6
~ 6 CO
-'< 41.0'"'"
29 6
'~
11.3 160
,. 85.t.
24 0
0.11 0.06 0.01 1064.04 1 064. 11 1064.12 981 90 981.90 981.90 6.60 6 80 0
18 ~ 0 1.0 25 0
24.5 C
4
-7 0
-23. 5' 4
2 1
-15 2
-23.0 0.00
-0.01 01 t 064.12 1064 11 10&4 10 981 90 981.90 981 9
7 ~20..:"
0 0 7.40'= ": -
Q.o'.:=.
7 &0' 0
24.3 24 3
ZC.3
-24.3 "24 3
-24.3
-24. 3
.. -0. G 1 24 3,,-O.ot
-24 3
-0.01 1 064. 08 106'4 06 1 064. 04 981.90 981.90 081.90 t 7+80
'800
~
8 0
I 8 40 8 ~ 60 80 0 0 0 ~ 0 0.0 0
0 0.0
.0 24.2 24.2 24 1
Z4.1 24.1 c4 2
-24.2
-ZC
'24
-24.1 "ZC.1
-24 2 24 2
-24;7 "0.01 "0.01
-0.01
-24 1
-Q.ot
-24.1
-0.01
-24.1 "0 01 1064. 03 1064.01 1063 99 1063.97 1 063 95 1 063.94 981.89 981 <<89 9Pt.a9 981 89 981 8'9.
981 89 9 00 9 40.
'R. 6u 0.0 I
Q ~ 0 n.o ZC.O 24.0
~
23.9
-24.0
-74 0
24 0 23.9
-24. t
<<')4 Q
-24 ~ 0
-24.0
-0.01
<<0 01
-0 01 "0.01 1063.92 1063 90 1063 89 1063.87 981.89 08i 89 981 88 981.88
1 AI
- I
- i':
P P
.el'i'JP's!l(
rgoo stem ssl
~
lr 9
$ ~ ~
~
v
~ ~
~ >~
C
~II IIA P
r
(~
gp~
II.
I l
II r II II XP II as ~
/~
lpa II I
PPs r 0
II I
'"<.s
'I t
MINIMUMPOOL ELEVATION RESERVOM MAXIMUMWATER SUPPLY ELEVATION SITE PERIMETER a ~ ~
I/RNa I/Ial g
)
PEKKSYI.VAKIA POWER 4 uGKf COUPAKY RMSMLNAAAMMASE ~ RESERVSNM STINTS
~ENWS ISRA RE \\ERVIMA LAKD REQUIRKIIEIIT8 PANIC ISELll
~ROSIE MAEARTWVMTRATTOM
~aaaaaaa ~ aasaplscvl RRM~
F LOOO IN G SOURCE F LOOOWAY IIASE F I.OOO WATER SUIIFACE ELEVATION CROSS SECTION OISTANCE 1 WIOTII2 IF T.I SECTION AREA (SQ. FT.)
MEAN VELOCITY (F.P.S.)
WITII FLOOOWAY (M.S.L.)
WIT I I 0U l FLOOOWAY (M.S.L.)
OIFFEfIENCE (FT.)
~II 475 3, 070 5> 120 7, 24'i 9,935 12, 27!i 14,035 15, 710 17, 7I35
'>(), (>'I'i 22,0l0 23, H90
>!>> >>0()
.>(), ()II'i 27, II(>>j.
2),.'n5 29,600 30,070
'32, 17()
>>, I.nl) 1, 02()
1 557 1,299 l,2() I l,()47 l,n27 1, 023 1,4 I4 l,(037 940 2,00 l 2,007 1, 33'i 70 I I>II2 79()
750 835 I, 236>
I,2') I 29,156 36,646 33 3rl 3ri I)IIII I'i, 307 35,074 43, 199 42, 110 33, 302 2ll, 076 57 564 40 990 45,640 20, ()27
- >'j, I)3'>
27,152 27, 01(>
27,599 40, i)00 42, 7(I'9
- 9. ()
7.6 8.4 H. I) 7
>)
7.0 6.5 6.6 0.4 9.7 4.9 5.7 (i. 1
').0 I I. I 10.3 10.4 10.1 6.9 r>l2. 3 5 1>l. I
- 5) 14
~ 7
!iI 'i. 7
'i I (>.!>
!iI 7. ()
510.5 5i]H. 0
') I') 0 5l').9 5
I 7
021.0 522 '
'i:!I
~ 7
'i23. 0
'i22 ~ H 523. ()
524. I 5'>> )
'>:!'>. (>
')I I 5
5I 3. 3 513 9
'.i ln. <<
'> I 'j.(>
5l(> ~ ()
517.!i 5i17.9.
510. I 5 I'). ()
520.
>I 520.(l
!i23 ~ I
'i:>t). H
'i2 I.0 r22 I
522.9 523.4 "i24.'i
~ 2n.7 0.0
().0 1.0 0.9
().9
(). 7
(). 7 0.7
().')
I I I TAIIOVI.I;OIII'ORATELIMITS TO)AL I LOOI)WAYWII>TIIWITHOUTREGARO TO COHPOIIATL LIMITS Nfl'AIITMENTOF IIOUSINC ANO UI18AN DEVELOPMENT F cdcta( In)u)a>)sc Admi))i)I)ati>) >)
TOINSH}P OF CONYNGHAM, PA tLUZEANE CO.)
FI.OODIAY DATA NORTH BRANCH SUSQUEHANNA RlVER 1
5
~ REACH I ZONE Al~
.)I.'ft
~ f ji~/
J
- elo I
Z I
400 T5)
III UI R
~ IT
- ~ I+ '"t.-t f.
f f
~ '
t
~ I if
~
~ ~
~ t ~
T T
It
"'1
~.i.i-.--~
~'
I T't
- a.'.2
~
I
. ~ ~
~
~
f tT ~ T
~
~ ' '
I I
~
~
1
~ ~
T --I - - I 1 f I I ~ I.
~
~
~
~
'I
~ ~
-rlj-j-, j f I j:.I I
Iijjft
~ ~
tt 111 P'I T ~ ~i fr t;xp!pi 1
2 t
~
~ ~ I I
fitr ~ I I T
~ $
rri}
1 I ~
~
~ Tl tt
~ ~
~ I I I ~
~
~
1! i.
5 I I
~
~
~ ~ r T. ~
'. rt!'~
'"i" tl'I
~ I j.
I-
~
~
0 j I: f.
}'j I j.
-- ~ )
i.T I ~-
j-~
llr
~rr 0
f I
I i-t}.):
I
~
~"I P;!.
LEGEND mmv%Ã%
0 500 YEAR FLOOD 100 YEAR Ft.OOD
}
50 YEAR FI.OOO 10 YEAR FLOOD I
STREAM BEO CROSS SECTION LOCATION I
E 4 g Rj I
tat 8
5FF K
58 Irf gJ Z III ND CL CFS I
21 25 25 24 22 2$
DISTANCE ABOVE CORPORATE LIMI'TS IIIIOIISANO5OF Fl5tl 03P EXHIBIT I
KEY TO SYMBOLS FLOOO BOUNDARYANO F LOOOWAYOATA 100 YI flood davaor
'02F 100 VI SI444 SLCylylywoy VL00 woy oorsolly yllllvcf 1lylllI¹ ooo vl f¹44 o¹rs¹I y Ayovsclool~ 100 Yl flood Ioosyoly E'-.': "3 Qo=QO tt r
IOF RiffR IIF 12F Vlrcc Iklo Ilc ¹oslldrrro M 11MIX
~c414 oorsor ¹ ol 144 ocos¹rl soo4 ov rro ¹Ir ococl\\I oor ¹4 Iso ctoN ¹clrsI Isors o¹rsscf Ioc ~
'o¹
~I cio>> ¹cso¹ rrI corowsl Icosi sla¹44 co¹d ro¹ 4slf <<411 so cosrorllrs 4 ¹1 14 e.osolsr lsld ¹ Ooolrd VICI¹I ASV IIOO4
~ V ISII 44¹ SOI OSCIO¹S OS
~sl oo¹4¹ieo rrsss corrir ¹Is SIC $1444sly slo¹lo.
~crcl rktIvo1 Voto sv NOT PRINTEO-NO FLOOD OOUNDARY OR FLOOOWAY SHOWN PANEL OIE-ELEVATION RFFERENCE AIARKS OEFARTNINT OF NOUQNC ANO UIIIANOEYEIOFNINT Fodrol l¹lvlsco Ad~lraocro FLOOD OOUMOART AND FLOODWAY IIAF MAP IHDF.X TOVlNSHIP OF CONYNGHAM, PA ILUZERNE CO.I COIIIIURI1T RO.
42OSOOB EXHI~IT 2
JOINS 01F D?
O n
r~LIIJI(S>> ~IVORTg 0q,Pr~q%'Q>>
JEcccv CCJVMAL IIAILJIOLD c((
(I(I((C
~>>
Rl('ER
((h CORPORATE (.(g(TS
.4?
~II?
O I
>>ID e g IC a~
Is 3 DZ
>>. t cs 7 IIC D
~ O
~o C) ?
CD gC Cc N
O 3 Il I
EXHIBIT 3
SOSONCIIANNA SIVCO ar~ f~
- oerroefe Oefe feere Verfe'for frtefkef Oe/eeoc Oeeeaarfe C+aeeoere
~ ~
~
/ela (keek Ofee aeeff
- .I!
- ee~ aae rpag
~
"~ ~:
~
a real faf
~
~
Qa SIAIICC Aff; el Ceeawer Taeef
~ rref fa rraf a ~
Qe eeeer Mfeocher alerorfeApe la ~ Car~
Vrcarr'ee PSSIINPD APetbgfofAIP AVu'ifLNIf44orffO A&tN.F Pm<) 0&5TdLCuTCAES OesP ~ rfffOCrr O ffffrr tLAN Of tlrftWO STATION oo of~
SCCTIOII TIQOVQI WWQO STATION lo rrmev Ceca aeer J C ~ lllea roo ferrtwo Oeeaeaa Crt 0 Vlfofr~klsl faa.kerr lleeorm
/Orrleeereef lff
~ea o oo~oerel aeeaaefe Vefrl
~eeeI
~
~II~
~a SCC'SION THROOQI ISSCHAROC CIIANSCO PENNSYLVANIA POWEII A UGIIT COllPANY
~CIQuWWA SLS OCSIIIVCOASllef
~Oe& IIALOILISTCOO PUIAPING PLAHT
~LAIS NO. ~
lrfftffcrea Ifrefaflrfolfeffrr
~aaaaoa w eaceellclo woIw
.R.
LEGEND a adA SORIAf6 E QADI/4DNA%R E'LEv E
ARTESI/lb'E5SQRE
~4
/
.55 i Pgg,rr'k r
A8 ff r
Tr'
/cr
.~-CONPEN}CATION FLOW OUTLET
..= =.-~~'1Ã/-'.=
=
IVVI~ELCll R>>>>S Stol>>TI>>S~.
NB
>>R r r
~
e PUNPNIO PLANT l.
fj}'j I,(
)1))
r/I
~/
~
.r.
o
~ 5 o/,
ANO STIIUCTURE PIPELINE
~
r EPILLW T I
I ~ I 8'ri ro rr TOI Of SRMIC PF'Fr-
~:
'/
m r
>>RCTIV8STCRRC "I.
E EggL.asa~
'I
/
/
F ErP
/
"1 ry l
.t-Cg i/IO
/
/y~'/
PENNSTL5IAHIA POWER A UCNT COMPANY o
v "r iv'ii';)j 3'1 RV
~
I cscofoMI~ Roa aooraa
~>>a c>>ao>>o>>oon src>>TI sosoocooatslsa
$8$ 8555>>Yocs EIooc SCue LIES ELELEVOOI PLAN OF DAAIAND STIIIJOTIIIIES
~LAI~ 10. S Itrrcn8-aaacn c>>coat>>t. ~Iaono>>
oocoos>>o fro aacaftoc I~
>>I>> os>>8
~
~