ML070230622
| ML070230622 | |
| Person / Time | |
|---|---|
| Site: | Palisades, 07109276 |
| Issue date: | 06/28/2006 |
| From: | Hopf J BNG Fuel Solutions Corp |
| To: | Office of Nuclear Material Safety and Safeguards, Office of Nuclear Reactor Regulation |
| References | |
| CID: 0000-0659, FOIA/PA-2010-0209, VSC-03, VSC-03.3606 VSC-03.3606, Rev 0 | |
| Download: ML070230622 (191) | |
Text
0000-0659 Form QAP 3.2-1, Revision 10 Page 1 of 191
© 2006 BNFL Fuel Solutions Corporation All Rights Reserved CALCULATION PACKAGE Calc. Pkg No.
VSC-03.3606 File No.:
VSC-03.3606 Revision:
0 PROJECT/CUSTOMER:
VSC-03 TITLE:
Criticality Analysis for Transport of the Palisades MSBs in the FuelSolutionsTM TS125 Cask.
SCOPE:
Product:
FuelSolutions' VSC-24 Other _______________
Service:
Storage Transportation Other _______________
Conditions:
Normal Off-Normal Accident Other _______________
Component(s):
VSC-24 System Multi-Assembly Sealed Basket (MSB)
FuelSolutionsTM TS125 Transportation Cask.
Prepared by:
Verified by:
Approved by Engineering Manager:
Digitally signed by James E. Hopf Reason: I am the author of this document Date: 2006.06.28 18:08:34 -07'00' Digitally signed by Kenneth D. Wright Reason: I am the verifier of this document Date: 2006.06.28 18:10:23 -07'00' Digitally signed by Ram Srinivasan Reason: I am approving this document Date: 2006.06.29 12:52:29 -07'00'
Calc Package No.: VSC-03.3606 Page 2 of 191 Revision 0 RECORD OF REVISIONS NAMES (Print or Type)
REV.
AFFECTED PAGES AFFECTED MEDIA DESCRIPTION PREPARER CHECKER 0
All 1 CD-ROM Initial Issue James Hopf Ken Wright
Calc Package No.: VSC-03.3606 Page 3 of 191 Revision 0 RECORD OF VERIFICATION YES NO N/A (a) The objective is clear and consistent with the analysis.
(b) The inputs are correctly selected and incorporated into the design.
(c) References are complete, accurate, and retrievable.
(d) Basis for engineering judgments is adequately documented.
(e) The assumptions necessary to perform the design activity are adequately described and reasonable.
(f) Assumptions and references, which are preliminary, are noted as being preliminary.
(g) Methods and units are clearly identified.
(h) Any limits of applicability are identified.
(i) Computer calculations are properly identified.
(j) Computer codes used are under configuration control.
(k) Computer codes used are applicable to the calculation.
(l) Input parameters and boundary conditions are appropriate and correct.
(m) An appropriate design method is used.
(n) The output is reasonable compared to the inputs.
(o) Conclusions are clear and consistent with analysis results.
COMMENTS:
All comments resolved.
Verifier:
Digitally signed by Kenneth D. Wright Reason: I am the verifier of this document Date: 2006.06.28 18:10:46 -07'00'
Calc Package No.: VSC-03.3606 Page 4 of 191 Revision 0 TABLE OF CONTENTS
- 1.
INTRODUCTION............................................................................................................................9 1.1 Objective...................................................................................................................................9 1.2 Purpose.....................................................................................................................................9 1.3 Scope.........................................................................................................................................9
- 2.
REQUIREMENTS...........................................................................................................................9 2.1 Design Inputs............................................................................................................................9 2.2 Regulatory Commitments.........................................................................................................9
- 3.
REFERENCES...............................................................................................................................10 3.1 BFS Calculation Packages......................................................................................................10 3.2 General References.................................................................................................................10
- 4.
ASSUMPTIONS.............................................................................................................................12 4.1 Design Configuration..............................................................................................................12 4.1.1 MSB & TS125 Cask Configurations..............................................................................12 4.1.2 Geometry of Loaded Palisades PWR Assemblies..........................................................15 4.1.3 Non-Fuel Material Descriptions.....................................................................................18 4.1.4 Spent Fuel Material Compositions.................................................................................19 4.2 Design Criteria........................................................................................................................21 4.3 Calculation Assumptions........................................................................................................21
- 5.
CALCULATION METHODOLOGY............................................................................................44 5.1 General Analysis Approach....................................................................................................44 5.2 Analysis Code.........................................................................................................................44 5.3 Selected Cross-Sections..........................................................................................................45 5.4 SASQUASH Code..................................................................................................................46 5.5 Analyses Performed................................................................................................................49
Calc Package No.: VSC-03.3606 Page 5 of 191 Revision 0 5.5.1 Most Reactive Configuration Analyses..........................................................................49 5.5.2 Primary Criticality Analyses...........................................................................................50 5.6 Determination of Final Keff.....................................................................................................51
- 6.
CALCULATIONS..........................................................................................................................57 6.1 Material Composition Calculations........................................................................................57 6.2 Most Reactive Configuration (Sensitivity) Analyses.............................................................58 6.2.1 Fuel Sleeve Dimension Analyses...................................................................................59 6.2.2 MSB Edge Structure/Reflector Sensitivity Analyses.....................................................60 6.2.3 Internal Moderator Density Analyses.............................................................................60 6.2.4 External Cask Array Analyses........................................................................................61 6.2.5 Normal-Condition Cask Configuration Analyses...........................................................62 6.3 Primary Criticality Analyses...................................................................................................64 6.4 Determination of MSB Acceptability.....................................................................................66 6.4.1 MSB-Average Physical Parameter Determination.........................................................67 6.4.2 Criticality Analysis Overall (SAS2H + MCNP) USL Value Calculation......................68 6.4.3 Horizontal Burnup Variation (Slant) Keff Penalty Determination..................................71 6.4.4 Final MSB Keff Calculation............................................................................................72
- 7.
CONCLUSIONS............................................................................................................................88 7.1 Results.....................................................................................................................................88 7.2 Compliance With Requirements.............................................................................................88 7.3 Range of Validity....................................................................................................................88 7.4 Summary of Conservatism.....................................................................................................89 7.5 Limitations or Special Instructions.........................................................................................89
- 8.
ELECTRONIC FILES....................................................................................................................90 8.1 Computer Runs.......................................................................................................................90
Calc Package No.: VSC-03.3606 Page 6 of 191 Revision 0 8.2 Other Electronic Files.............................................................................................................92
- 9.
ATTACHMENT A - SAMPLE COMPUTER INPUT/OUTPUT.................................................93
- 10.
ATTACHMENT B...................................................................................................................181
Calc Package No.: VSC-03.3606 Page 7 of 191 Revision 0 LIST OF TABLES Table 4-1 - MSB and TS125 Cask Component Dimensions (inches).........................................26 Table 4-2 - Characteristics of Palisades Fuel Assemblies Loaded into VSC-24 MSBs..............27 Table 4-3 - Assembly Type Present in Each Palisades MSB Fuel Sleeve..................................28 Table 4-4 - Locations of Non-Standard Palisades Assemblies....................................................29 Table 4-5 - Criticality Model Component Materials...................................................................30 Table 4-6 - Elemental Compositions of Non-Fuel Component Materials...................................31 Table 4-7 - Description of Transferred Palisades Assembly Fuel Rods......................................32 Table 5-1 - Modeled Spent Fuel Isotopes and Associated Cross-Sections.................................55 Table 5-2 - Modeled Non-Fuel Isotopes and Associated Cross-Sections...................................56 Table 6-1 - Material Compositions of B4C/Al2O3 Neutron Absorbers........................................73 Table 6-2 - TS125 Cask Neutron Shield Material Composition Calculation..............................74 Table 6-3 - MSB Fuel Sleeve Sensitivity Analysis Results........................................................75 Table 6-4 - Cask Interior Moderator Density Evaluation............................................................75 Table 6-5 - Keff vs. External Cask Array Configuration..............................................................76 Table 6-6 - MCNP5-Calculated Keff Results for Individual Palisades MSBs.............................77 Table 6-7 - MSB-Average Physical Parameter Values...............................................................78 Table 6-8 - Overall (SAS2H + MCNP) USL Function Calculation............................................79 Table 6-9 - MSB-Specific USL Value Calculation.....................................................................80 Table 6-10 - Palisades Assembly Horizontal Burnup Variation Keff Penalty Factor Equations.81 Table 6-11 - Final MSB Keff Determination................................................................................82
Calc Package No.: VSC-03.3606 Page 8 of 191 Revision 0 LIST OF FIGURES Figure 4-1 - MSB and TS125 Cask Radial Model Configuration...............................................33 Figure 4-2 - Axial (R-Z) Criticality Model Configuration..........................................................34 Figure 4-3 - Array Configuration for the A1 Assembly..............................................................35 Figure 4-4 - Array Configuration for D1, F1, I4, J2, K2, L1, L2, and L3 Assemblies...............36 Figure 4-5 - Array Configuration for the E1 Assembly..............................................................37 Figure 4-6 - Array Configuration for the G1, G3, H1, H3, I1, I2, J1, and K1 Assemblies.........38 Figure 4-7 - Array Configuration for G2, H2, and I3 Assemblies..............................................39 Figure 4-8 - Array Configuration for the I1h Assembly..............................................................40 Figure 4-9 - Array Configuration for the H1S Assembly............................................................41 Figure 4-10 - Array Configuration for the L1S, L2S, and L3S Assemblies................................42 Figure 4-11 - MSB Fuel Sleeve Location Numbers....................................................................43 Figure 6-1 - MCNP USL Function Calculation for AENCF Parameter......................................83 Figure 6-2 - MCNP Keff Penalty Function Calculation for AENCF Parameter..........................84 Figure 6-3 - SAS2H Keff Penalty Function Calculation for AENCF Parameter..........................85 Figure 6-4 - Combination of MCNP and SAS2H Keff Penalty Functions...................................86 Figure 6-5 - SAS2H Keff Penalty Function Calculation for AENCF Parameter..........................87
Calc Package No.: VSC-03.3606 Page 9 of 191 Revision 0
- 1. INTRODUCTION 1.1 Objective The objective is to demonstrate that the overall neutron multiplication factor (keff) does not exceed 0.95 for any of the 18 VSC-24 system MSBs currently in service at the Palisades plant, when they are loaded into the FuelSolutionsTM TS125 transport cask. The MSB-specific keff values are to be determined using a burnup-credit criticality analysis that meets all 10CFR71 requirements (as well as current NRC guidance), and that explicitly models the specific properties (e.g., geometry, spent fuel isotopic composition, etc..) of each individual assembly in each MSB.
1.2 Purpose The purpose is to qualify the 18 currently-loaded MSBs at the Palisades plant for (10CFR71) transportation inside the FuelSolutionsTM TS125 transport cask.
1.3 Scope These analyses only apply to transportation of the 18 specific, loaded MSBs at the Palisades plant, inside the FuelSolutionsTM TS125 cask, and meeting the associated 10CFR71 criticality requirements
- 2. REQUIREMENTS 2.1 Design Inputs 2.1.1. Code of Federal Regulations, Parts 10CFR71.55 and 10CFR71.59. Requires that an infinite array of packages remains sub-critical, assuming water in-leakage into the package, optimum moderation inside and between the casks in the array, and the most reactive credible configurations, given the package tests defined in Parts 71.71 (NCT) and 71.73 (HAC).
2.2 Regulatory Commitments 2.2.1. None
Calc Package No.: VSC-03.3606 Page 10 of 191 Revision 0
- 3. REFERENCES 3.1 BFS Calculation Packages 3.1.1. VSC02.6.2.2.02, Rev. 0, VSC-24 Design Basis Criticality Evaluation.
(Criticality model template, MSB component dimensions and tolerances, and carbon steel density.)
3.1.2. VSC-03.3603, Rev. 0, Effects of Assembly Horizontal Burnup Variations on MSB Reactivity.
(Horizontal burnup variation keff penalty.)
3.1.3. VSC-03.3605, Rev. 0, Palisades MSB Transportation Fuel Depletion Analysis.
(Spent fuel isotopic compositions.)
3.1.4. CMPC.1701.001, Rev. 1, Criticality Materials Property Calculations.
(Elemental compositions for non-fuel materials other than carbon steel and Zircaloy.)
3.1.5. VSC-03.3602, Rev. 0, MCNP Benchmark Evaluation and USL Function Calculation for Burned UO2 Fuel Criticality Analyses.
(USL function data related to MCNP code bias and uncertainty.)
3.1.6. VSC-03.3604, Rev. 0, Calculation of Isotopic Bias and Uncertainty Penalty for VSC-24 MSBs in the TS125 Cask.
(USL function data related to SAS2H code bias and uncertainty.)
3.1.7. CMPC.1603.003, Rev. 2, FuelSolutionsTM TS125 Transportation Cask Shielding Analyses.
(Heat transfer fin volume fraction, for neutron shield region mixture calculation.)
3.1.8. CMPC.1603.001, Rev. 2, Specification of Design Basis SNF Assemblies for Transportation.
(Assembly bottom nozzle zone length.)
3.2 General References 3.2.1. Letter from S. Leblang to R. Quinn, Corrected Fuel Data, dfs-bfs-05-002, January 10, 2005.
(Primary source for fuel assembly dimensional data) 3.2.2. Letter from S. Leblang to R. Quinn, Palisades Fuel Data, November 29, 2004.
(Source for assembly array layout figures only) 3.2.3. Letter from S. Leblang to R. Quinn, Clarification Fuel Data, dfs-bfs-05-004, February 28, 2005.
(Source for guide bar dimensional data & effective radii) 3.2.4. Letter from S. Leblang to R. Quinn, Additional Palisades Fuel Data, dfs-bfs-05-001, January 03, 2005. (Poison rod material compositions - reconstituted fuel descriptions)
Calc Package No.: VSC-03.3606 Page 11 of 191 Revision 0 3.2.5. Letter from S. Leblang to R. Quinn, Final Palisades Fuel Data Clarifications, dfs-bfs-05-006, June 13, 2005. (A assembly poison rod info - H3 assembly description) 3.2.6. Parrington, J.R, et al, Nuclides and Isotopes - Chart of the Nuclides, 15th Edition, General Electric Co., 1996.
3.2.7. 2004 ASME Boiler & Pressure Vessel Code, Part A - Ferrous Material Specifications, Vol. 2A, ASME Specification for SA-516, the American Society of Mechanical Engineers, New York, NY, 2004. (SA-516 carbon steel composition) 3.2.8. B00000000-01717-0210-00004, Rev. 0, CRC Reactivity Calculations for McGuire Unit 1, CRWMS (DOE Yucca Mtn. Project), June 1998. (NRC ADAMS Accession #
MOL.19980728.0006 - Source for Zircaloy-4 material description, MCNP cross-sections) 3.2.9. Handbook of Chemistry and Physics, 83rd Edition, page 4-39, CRC Press, 2002-2003.
(Density for pure Al2O3) 3.2.10. LA-UR-03-1987, MCNP - A General Monte Carlo N-Particle Transport Code, Version 5, Los Alamos National Laboratory, April 2003. (MCNP5 code description/reference) 3.2.11. SOFT.020.400, User Manual for SASQUASH - SAS2H Output Processor and MCNP Material Card Code, Version 1.02, May 19, 2005.
3.2.12. NUREG/CR-6361, Criticality Benchmark Guide for Light-Water-Reactor Fuel in Transportation and Storage Packages, U.S. Nuclear Regulatory Commission, Spent Fuel Project Office, March 1997.
(General reference for the USL method and how it reflects current NRC guidance) 3.2.13. NUREG-1617, Standard Review Plan for Transportation Packages for Spent Nuclear Fuel, U.S. Nuclear Regulatory Commission, Spent Fuel Project Office, March 2000.
Calc Package No.: VSC-03.3606 Page 12 of 191 Revision 0
- 4. ASSUMPTIONS 4.1 Design Configuration As discussed in Section 1.1, the criticality analyses explicitly model each individual loaded assembly.
This includes an explicit model of each assemblys geometry, along with explicit modeling of each assemblys spent fuel material isotopic composition. The assemblies are loaded inside a VSC-24 system MSB (multi-assembly sealed basket), which in turn is loaded inside a FuelSolutionsTM TS125 transportation cask. Each MSB contains 24 loaded spent PWR fuel assemblies.
The overall criticality model configuration, along with a description of the modeled MSB and TS125 cask geometries, is given below in Section 4.1.1. A detailed description of the geometry of each type of Palisades assembly that is loaded in the MSBs is given in Section 4.1.2. A description of each of the non-spent-fuel materials modeled in the criticality analyses, including elemental and isotopic compositions (and densities), is given in Section 4.1.3. Finally, the spent fuel isotopic compositions modeled in each of the loaded assemblies are discussed in Section 4.1.4.
4.1.1 MSB & TS125 Cask Configurations The VSC-24 storage (10CFR72) licensing-basis analyses (Reference 3.1.1) model MSBs inside storage and transfer casks. These analyses employ criticality models that are extremely similar to those used in the Reference 3.1.1 analyses, with the primary difference being the overpack outside the MSB (i.e.,
the TS125 transport cask is modeled). Most of the geometric (MCNP) model for the MSB and its interior are taken directly from the (full, 360-degree) models used in Reference 3.1.1.
The radial criticality model of the MSB and TS125 cask configurations is shown in Figure 4-1. The MSB interior is relatively simple, with the main feature being the 24 square, carbon steel fuel sleeves (or tubes) that surround each loaded assembly. These sleeves are surrounded by the cylindrical, carbon steel MSB radial shell.
The only other significant component in the MSB interior are three metal band structures that wrap around the 24 fuel sleeves, around the edge of the MSB interior. The metal band edge structures consist of three components, including large side rings, chevron-shaped pieces in the four corners of the MSB, and four solid square bars (inside the side rings), at the four sides of the MSB. These three components are referred to (in Reference 3.1.1) as the Radial Support Plate, the Outer Support Wall, and the Outer Support Bar, respectively. A cross-section of the edge structure is illustrated in Figure 4-1. The bands do not extend over the entire axial length of the fuel, as there are two large axial gaps between the three bands. As shown by sensitivity analyses in Section 6.2.2, however, it is conservative to simply model the edge structure over the full axial span covered by the fuel sleeves.
The geometry of these MSB edge structures are taken directly from the Reference 3.1.1 (storage) criticality models.
The MSB outer (radial) shell is surrounded by the TS125 cask body, and the SS-304 radial spacer ring that is placed between the MSB and the TS125, to provide additional shielding and to reduce the amount of excess rattle space between the canister and the cask. The radial configurations of the TS125 cask and the radial spacer ring are also illustrated in Figure 4-1. The modeled TS125 cask radial configuration includes the inner and outer steel cask shells (or liners), along with the lead
Calc Package No.: VSC-03.3606 Page 13 of 191 Revision 0 gamma shield. The radial neutron shield structure that lies outside the cask outer shell is not modeled.
This is because the primary criticality analyses are based upon an accident-condition cask configuration, where the entire neutron shield structure is conservatively assumed to be completely removed. As discussed, and demonstrated, in Section 6.2.5, the accident-condition cask configuration is more reactive than the normal-condition configuration.
An axial cross-section view of the criticality model is shown in Figure 4-2. As shown in Figure 4-2, there is an axial cask spacer below the MSB, which is placed at the bottom of the (much longer) TS125 cask cavity, to remove the excessive axial rattle space between the MSB and the ends of the cask cavity. The spacer also pushes the unshielded MSB bottom away from the bottom end of the cask, and the bottom ends of the cask radial shields, which results in a significant decrease in cask bottom end exterior dose rates. The spacer consists of a thick stainless steel top plate, along with leg structures which are not modeled (i.e., replaced with water) in the criticality analysis. As shown in Figure 4-2, a thick steel plate, a large water volume below it, lies just below the MSB bottom plate. Figure 4-2 also shows the radial spacer ring (discussed earlier) in the TS125 cask cavity along with the MSB and the axial spacer. The cask radial shells (excluding the neutron shield structure) are shown in Figure 4-2 along with the bottom plates and top lids of both the MSB and the TS125 cask. All MSB structures are made of (SA 516) carbon steel, while the TS125 cask body (including the inner liner, outer shell, bottom plate, and top lid) is made entirely out of XM-19 stainless steel. The radial and axial cask cavity spacers are made out of Type 304 stainless steel.
As illustrated in Figure 4-2, the carbon steel fuel sleeves are modeled from the bottom of the active fuel to a point near the top of the MSB cavity (well above the top of the active fuel). Thus, over the active fuel region, the fuel sleeves are modeled along with the fuel assembly rod array. Above the fuel, only the fuel sleeves are modeled. Below the active fuel, and in the small space above the top of the fuel sleeves, pure water is modeled. The plenum and top and bottom nozzle regions of the fuel assemblies are not modeled (i.e., modeled as water) in the criticality analyses. As shown by sensitivity analyses discussed in Section 6.2.2, replacing fresh water with metal, or vice versa, in the reflector regions around the fuel material configuration has no measurable effect on overall reactivity.
Modeling fresh water (vs. other materials) in the reflector regions is generally considered conservative.
The fuel sleeves are not modeled in the region below the active fuel for reasons discussed later in this sub-section.
The dimensions of the MSB and TS125 cask components are presented in Table 4-1. Many of the dimensions for the MSB interior components are taken from Table 4.1.1-1 of Reference 3.1.1. These reflect the worst-case tolerance dimensions that were modeled in the (10CFR72) storage evaluations.
Sensitivity analyses in Sections 6.2.1 and 6.2.2 demonstrate that these dimensions remain bounding (worst-case) for transport (10CFR71) conditions as well. For the fuel sleeves, this involves modeling the minimum width and minimum wall thickness. For the edge structures, it involves modeling maximum thicknesses, and modeling the structures over the entire length from the bottom of the active fuel to the top of the fuel sleeves. The edge structures clearly do not extend into the assembly bottom nozzle region, or the ~3 inch region above the tops of the fuel sleeves. For all components outside the MSB, nominal dimensions are assumed, as all such components are known to have a negligible impact on overall reactivity. Sensitivity analyses in Section 6.2.2 show that even replacing the entire MSB edge structure with water has a minimal effect on reactivity. Thus, small changes in the dimensions of components even farther away from the fuel (behind large reflector regions) due to tolerances will clearly have no effect.
Calc Package No.: VSC-03.3606 Page 14 of 191 Revision 0 Palisades fuel assemblies active fuel zone starts ~3.8 inches above the assembly bottom, as shown in Table 5.1-1 of Reference 3.1.8. The length of the active fuel region is 131.8 inches, as discussed later in Section 4.1.2. The cavity length for the Palisades MSBs is 150.6 inches. This leaves a space of about 15 inches between the top of the active fuel and the top of the MSB interior cavity (as shown in Figure 4-2). The MSB drawings show that the fuel sleeves are 147.5 inches long (3.1 inches shorter than the MSB cavity), and that they rest on the bottom of the cavity. They also show large square cutouts in the fuel sleeve walls, extending from 1-4 inches off the sleeve bottom. Due to the cutouts, at least half of the metal volume in the bottom four inches of the sleeve are gone. Furthermore, the metal is gone in areas that are closer to the fuel material (i.e., on the sides of the sleeve versus the corners, and in the upper three inches of the four inch length). Thus, the fuel views more water than steel in this region. For these reasons, modeling the bottom four inches of the fuel sleeves as water is a closer approximation to reality than modeling it as steel. Therefore, the fuel sleeves are modeled as starting at the bottom of the active fuel region, as opposed to at the bottom of the MSB cavity.
The TS125 cask also has a small neutron shield structure on its bottom end. As with the radial neutron shield structure, however, this bottom end neutron shield structure is assumed to be completely absent in the accident-condition cask configuration, which is modeled in these analyses and which is shown in Figure 4-2. The same is true for the cask impact limiters, which are also not modeled (i.e.,
conservatively assumed to be totally absent) in the accident-condition cask analyses. Thus, the XM-19 cask bottom plate and top lid form the bottom and top ends of the criticality model shown in Figure 4-2, which is used as the basis for all these analyses.
Reflective boundaries are placed on the (cylindrical) side and the (planar) top and bottom surfaces of the model shown in Figure 4-2, to effectively model an infinite array of accident-condition casks. The sensitivity analyses in Sections 6.2.4 and 6.2.5 demonstrate that this treatment conservatively bounds all potential cask exterior configurations, including normal condition casks, single casks surrounded by infinite water reflection, and infinite cask arrays with any combination of cask pitch and water density between casks.
The criticality model shown in Figure 4-2 has several minor approximations, for simplicity, none of which have any effect at all on overall reactivity. The MSB and axial spacer are slightly (a fraction of an inch) shorter than the TS125 cask cavity, which may allow a small water gap to occur between the MSB top lid and the cask top lid, or between the MSB bottom and the spacer top lid. These tiny (potential) water gaps are neglected in the criticality model. All extra cavity space is placed below the axial spacer top plate (i.e., in the axial spacer leg region), effectively assuming that the MSB and spacer are shifted to the top of the cask cavity. Also, the two-inch neutron shielding (RX-277) region in the MSB top lid is neglected and replaced by carbon steel. Also, as discussed earlier, the steel legs of the axial spacer are neglected, and modeled as water. Finally, the criticality model (shown in Figure 4-2) models the lead gamma shield as extending from the bottom to the top of the cask cavity.
In reality, the lead stops a few inches short of the top of the cavity. Thus, in a corner region of the criticality model, well above the top of the active fuel, and behind large volumes of water reflection and other materials, a small volume of steel is replaced by lead.
The criticality analyses do not apply any changes in component geometry or dimensions to account for permanent deformation following the 10CFR71 accident sequence. Unlike canisters which employ flux traps, and/or canisters that employ spacer plates with (relatively thin) assembly guide tubes, such deformations will not be a significant issue for the VSC-24 MSB. First of all, permanent deformations
Calc Package No.: VSC-03.3606 Page 15 of 191 Revision 0 in the fuel sleeves will be small to non-existent, since the sleeves are relatively thick and are supported along their entire length (unlike the thin guide tubes in a spacer plate canister). Furthermore, since the MSB does not employ flux traps, small deformations in fuel sleeve walls would not significantly affect criticality even if they were to occur. The primary effect of deformations is their potential to reduce the thickness of flux traps. In the MSBs, criticality is primarily governed by assemblies lying in direct contact with a fuel sleeve wall, with another assembly in direct contact with the adjacent sleeve wall (leaving ~0.4 inches of carbon steel and no water between the two assemblies). What little neutron absorption there is occurs in the ~0.4 inches of carbon steel (a mild absorber). No credible type of deformation will act to reduce the overall thickness of steel between two assembly cavities. Indeed, any deformation will reduce the flatness of the sleeve wall, which can only act to create water gaps between the assemblies and the sleeve walls, or between the adjacent sleeve walls, thus reducing reactivity.
The fuel assemblies are modeled as resting on the bottom of the MSB cavity. The Palisades assemblies are only a fraction of an inch shorter than the MSB cavity, so axial shifting of the assemblies will be a negligible effect. Furthermore, since the fuel sleeves extend well past the top of the assembly active fuel region, whereas they are modeled as ending at the bottom of the active fuel, pushing the assemblies down should be (very slightly) conservative, as it moves the fissile material closer to a region that does not have the mild-absorbing steel fuel sleeve material.
The fuel assemblies are also modeled as being shifted, within their fuel sleeves, so that they are as close as possible to the MSB centerline. Thus, the assembly arrays are modeled as being pressed against the inner (closest to MSB center) two walls of the fuel sleeve. The analyses in Reference 3.1.2 demonstrate that this is the most reactive configuration for a VSC-24 MSB containing spent PWR fuel with a flat radial burnup distribution. Thus, this configuration will yield maximum reactivity for the analyses presented in this calculation, which are based on flat radial burnup distributions. As discussed in Reference 3.1.2 and in Section 5.6, the effects of radial (or horizontal) burnup variations are accounted for by adding a keff penalty factor, determined by the Reference 3.1.2 analyses.
4.1.2 Geometry of Loaded Palisades PWR Assemblies The criticality analyses explicitly model the rod array that is present, in the active fuel zone, for each individual assembly loaded in each slot of each of the 18 Palisades MSBs. As discussed above in Section 4.1.1, the assembly plenum, bottom nozzle, and top nozzle regions are not modeled. The analyses also neglect the (Zircaloy) assembly grid spacers. Each fuel rod is explicitly modeled, along with the assembly guide tubes (if present), and any insert rods contained in those guide tubes. For Palisades, the only type of insert is a poison rod, generally containing a mixture of Al2O3 and B4C, which extends over most or all of the assembly active fuel zone (with pure Al2O3 extending over the remaining, unpoisoned sections of the fuel zone). Some assemblies contain poison rods with pure hafnium instead of B4C. The stainless steel plugging inserts (described in Reference 3.2.1) do not penetrate the assembly fuel zone and are therefore not modeled in the analyses. The instrument tube at the center of every Palisades assembly is also explicitly modeled. All of the fuel zone metal hardware in all types of Palisades assembly (including the fuel rod cladding, guide tubes, instrument tube, and poison rod cladding) are made of Zircaloy. All Palisades assemblies also have eight, solid, trapezoidal, Zircaloy guide bars around the edge of the assembly (i.e., two bars in each of the four outer rows of the assembly array).
Calc Package No.: VSC-03.3606 Page 16 of 191 Revision 0 The set of spent PWR assemblies loaded in the 18 MSBs at Palisades includes a large number of specific assembly types, each having a specific geometry. These assembly types are described in Table 4-2. The data shown in Table 4-2 is based upon assembly data provided by the Palisades plant (Reference 3.2.1 through 3.2.5). Each specified assembly type was given (by Palisades) a one-or two-character alphanumeric descriptor, which is shown at the top of the column (in Table 4-2) describing each defined assembly type. In several cases, more than one of the assembly designs defined by Palisades have an identical geometry (with the differences in the defined assembly types only having to do with fuel material compositions, which is treated and discussed later in Section 4.1.4). In such cases, several of the assembly type names are shown at the top of a single column in Table 4-2.
For each assembly type, Table 4-1 lists the number of fuel rods, the radial dimensions of the fuel pellet and fuel rod cladding, and the length of the active fuel. The effective (equal area) radius for the eight guide bars is also shown for each assembly type. If guide tubes are present, their radial dimensions are given, along with those of any insert rods that remain present in those guide tubes. For each type of poison rod, the bottom and top ends of the poison material are also given, along with the overall absorber pellet density, and the B4C loading within the poison material. For the A1 and E1 assembly types, B4C poison rods are inserted (in place of fuel rods) directly into the assembly array, without the use of guide tubes. Thus, for these assemblies, poison rod descriptions are given even though no guide tubes are present. Note that these rods have the same cladding dimensions as normal fuel rods.
The rod array layouts are shown for each assembly type in Figure 4-3 through Figure 4-8. The array locations of the fuel rods, guide tubes, instrument tube, and poison rods are shown. While the various component dimensions vary somewhat between the various assembly types, there are actually a relatively small number of array layouts (i.e., locations of guide tubes, poison rods, etc.). Thus, each of the figures applies for several of the defined assembly types. Note that the guide bar array locations are the same for all Palisades assemblies. The array layouts shown in Figure 4-3 through Figure 4-8 are determined based on the array layouts shown for each specific assembly type in the figures attached to Reference 3.2.2.
Although the eight solid Zircaloy guide bars in all Palisades assemblies are trapezoidal in shape (as shown in Figure 4-3 through 4-8, they are modeled in the assembly arrays as a Zircaloy cylinder with an area equal to that of the actual guide bar for the specific assembly type in question. As stated in Reference 3.2.3, effective (i.e., equal area cylinder) guide bar radius is 0.2344 inches for the A1 and D1 assembly types, and 0.2274 inches for all the remaining (E through L) assemblies. For simplicity, the lower radius of 0.2274 inches (which occurs for the majority of the loaded assemblies) is applied for all of the guide bars. As the guide bars act to reduce reactivity (by displacing fresh water), this is a conservative assumption for the A1 and D1 assemblies.
It should be noted that several of the defined Palisades assembly types contained fuel rods with integral Gd2O3 burnable absorber material. The number, array location, and poison material concentration for these Gd2O3 rods varied for the different assembly types defined by Palisades, and in many cases this (along with a different pattern of initial fuel rod enrichments) was the only distinction between two or more of the defined types. As is discussed further below in Section 4.1.4, these analyses do not model these Gd2O3 rods. These rods are explicitly modeled in the Palisades fuel depletion analyses (Reference 3.1.3), and their effect on the assemblys spent fuel isotopic compositions is fully accounted for. The Gd2O3 poison material is conservatively neglected in the criticality analysis
Calc Package No.: VSC-03.3606 Page 17 of 191 Revision 0 however, and these rods are simply modeled as fuel rods. For this reason, the Gd2O3 poison rods, and their locations in the fuel rod array, are not shown in Figure 4-3 through Figure 4-8. This reduces the number of assembly array configurations modeled in these analyses.
Because the initial enrichments of various fuel rods, and the presence of Gd2O3 fuel absorber rods are not considered (directly) in these calculations, the number of assembly array layouts is actually relatively small. The layouts shown in Figure 4-3 through Figure 4-8 only consider (or define) five types of array objects, a fuel rod, an empty guide tube, a guide tube containing a poison rod, and a fixed poison rod with no guide tube. No distinction is made between fuel rods of different initial enrichment, or between normal fuel rods and Gd2O3 rods. A distinction is made between B4C and hafnium poison rods, with the I1h (hafnium rod) assembly being shown in a separate figure.
In addition to the primary assembly layouts defined in Figure 4-3 through Figure 4-8, there exist a small number of assemblies that were modified as a result of fuel reconstitution operations at Palisades. This leads to the creation of the H1S assembly array, where 56 fuel rods, on one side of the assembly, have been replaced with 19 solid stainless steel dummy rods (modeled as SS-304), and 37 replacement fuel rods from several different parent assemblies (several of which are not loaded in any of the MSBs). Thus, on one side of the assembly, many of the fuel rods in the array are replaced by solid SS-304 rods (with the same outer diameter) or by fuel rods with a different spent fuel material composition (as is discussed further in Section 4.1.4). The resulting H1S assembly array is illustrated in Figure 4-9.
The replacement fuel rods in the H1S assemblies may come from up to four parent assemblies in some cases. Fuel rod array maps (from Reference 3.2.4) giving the locations of the steel rods, along with the ID of the parent assembly for each replacement fuel rod, are shown for each individual H1S assembly in the appendix (Section 10) of this calculation. Each assembly is identified (in the Palisades plant data) by an H followed by a two-digit number. All of the replacement rods in the H1S assemblies came from L parent assemblies. In the rod maps, each replacement rod array location contains an ID number (consisting of an L followed by a two-digit number) that specifies the individual parent assembly that the rod in question came from.
In addition to the H1S assembly, the L1S, L2S, and L3S assembly types were also defined by Palisades. These correspond to L1, L2, and L3 assemblies, respectively, with 14 fuel rods removed and replaced by 14 equal-diameter, solid stainless steel dummy rods, with most (8) of the dummy rods in one corner of the array. The array layouts for the L1S, L2S, and L3S assemblies are identical (as is the case for the L1, L2, and L3 assemblies). Thus, the assembly array for the L1S, L2S, and L3S assembly types is shown in Figure 4-10.
Finally, there are four individual oddball assemblies that do not conform to any of the array configurations shown in Figure 4-3 through Figure 4-10. The Palisades individual assembly IDs for these assemblies are H32, H34, J09, and L59. The only modifications to these assemblies, from their respective standard configurations, are that one or two fuel rods are replaced with inert (i.e.,
solid Zircaloy) rods. The H32 assembly is an H1 assembly (as defined in Table 4-2) with two inert rods in array locations C-1 and K-13. The H34 assembly is an H2 assembly with a single inert rod in array location B-8. The J09 assembly is a J2 assembly with a single inert rod in array location B-14. The L59 assembly is an L1 assembly with two inert rods in array locations D-8 and M-3.
These specific assemblies, and their inserted inert rods, are explicitly modeled in the criticality
Calc Package No.: VSC-03.3606 Page 18 of 191 Revision 0 analyses. As the assembly orientations (within the MSB) are not known, the assemblies are rotated to shift the inert rods away from the canister center, thus maximizing reactivity.
Table 4-3 shows the assembly type that is loaded in each fuel sleeve of each Palisades MSB. Each table entry contains an assembly type name which corresponds to those shown in the header row of Table 4-2, and in the captions of Figure 4-3 through Figure 4-10. Note that the H1S assembly type (illustrated in Figure 4-9) and the L1S, L2S and L3S assembly types (illustrated in Figure 4-10) are not specifically listed in the Table 4-2 header row. The dimensions shown in Table 4-2 for the H1 assembly also apply for the H1S assembly, and the dimensions for the L1-L3 assemblies also apply for the L1S-L3S assemblies. Table 4-3 refers to fuel sleeves #1 through #24. A map of the MSB interior which defines the location of each fuel sleeve number is provided in Figure 4-11.
The defined assembly types, with their associated descriptions in Table 4-2 and in Figure 4-3 through Figure 4-10, are sufficient to completely describe the physical geometry of every individual fuel assembly, loaded in each fuel sleeve of each MSB. The only physical difference between assemblies of a given, defined type is the composition of the spent fuel material, which is explicitly treated on an individual assembly basis as discussed in Section 4.1.4. Thus, the assembly type name is sufficient to determine (and specify) all of the physical characteristics of an individual assembly, save for the composition of the spent fuel material.
The only exception to this are the H1S assemblies that have replacement fuel rods from different assemblies, and the four oddball assemblies described above. Thus, the specific MSB locations for these non-standard assemblies will have to be specified. These specific locations are given in Table 4-4. Each of the individual assemblies in question are listed in Table 4-4. For each assembly, the individual assembly identifier from the Palisades plant data (e.g., H-39) is given along with the assembly type (as shown and defined in the figures and in Table 4-2). Then the cask number and fuel sleeve number is given for each assembly.
4.1.3 Non-Fuel Material Descriptions The constituent materials of the MSB and TS125 cask components are listed in Table 4-5. The fuel rod cladding, guide tubes, instrument tube, inert rods, and poison rod cladding are all made of Zircaloy-4, as shown in Reference 3.2.1. All MSB components are made of SA-516 carbon steel.
(The small amount of RX-277 neutron shielding material deep within the thick steel MSB lid is neglected and modeled as carbon steel.) The axial and radial cask cavity spacers (which lie between the MSB and the TS125 cask) are both made of Type 304 stainless steel (or SS-304). All of the TS125 cask structural components (including the inner liner, outer shell, bottom plate and lid) are made of Type XM-19 stainless steel (or XM-19). The cask gamma shield is modeled as pure lead, and the cask neutron shield material is neglected in the primary, bounding, accident-condition criticality analysis models.
The absorber material in the B4C poison rods consists of an Al2O3 inert material with three different B4C poison material concentrations (1.7%, 4.7%, and 7.7%), as shown in Table 4-2. Pure Al2O3 is modeled in sections of the poison rod that lie within the assembly active fuel zone, but outside the axial bounds of the poison material shown in Table 4-2, as discussed in Section 4.3. Finally, the I1h assemblies described in Table 4-2 contain poison rods with pure hafnium absorber material.
Calc Package No.: VSC-03.3606 Page 19 of 191 Revision 0 The elemental compositions of all the component materials above are listed in Table 4-6. The compositions of SS-304, XM-19, and lead are taken from Reference 3.1.4. The elemental composition of SA-516 carbon steel is taken from Reference 3.2.7, whereas its overall density is taken from (and is consistent with) the 10CFR72 storage criticality evaluation (Reference 3.1.1). The composition for Zircaloy-4 is taken from Reference 3.2.8. This is the Zircaloy-4 cladding material composition that was modeled in the (Reference 3.1.5) burned-fuel benchmark analyses that the applied MCNP code bias factors are based upon. Modeling this same cladding material composition provides consistency between and these licensing-basis criticality analyses the benchmark analyses they are based upon.
The overall density and B4C concentration for the three types of B4C/Al2O3 poison rod are shown in Table 4-2 (and taken from Reference 3.2.4). B4C and Al2O3 are shown as compounds in Table 4-6, and are not broken down into component elemental densities. This is because, unlike all the other model component materials, their elemental breakdown is not taken directly from any reference, but instead must be calculated. These elemental (and isotopic) compositions for B4C and Al2O3 are presented in Section 6.1. The I1h assembly hafnium absorber rods contain pure hafnium absorber material, over the axial bounds specified in Table 4-2. The density of the hafnium material is taken from Reference 3.2.1.
As noted in Table 4-6, the active poison materials are conservatively neglected (i.e., assumed to be completely depleted) in the criticality analyses. For the hafnium absorber rods, this means conservatively neglecting the absorber material entirely, and modeling it as void (as discussed in Section 4.3). This void is modeled over the entire length of the fuel zone, as discussed in Section 4.3.
For the B4C material, the 10B isotope density is reduced to zero, leaving only the 11B and the carbon.
This results in a reduction in the overall density of the modeled B4C. This reduced density is calculated and presented in Section 6.1.
4.1.4 Spent Fuel Material Compositions As discussed in Section 5, these are burnup-credit criticality analyses that rigorously model the isotopic composition of the spent fuel material in each individual assembly. Furthermore, the effects of the axial burnup profile are modeled by dividing the 131.8-inch assembly fuel zone into 18 equal-height axial zones, each with its own fuel composition. A total of 12 actinide isotopes and 16 fission product isotopes, as well as oxygen, are modeled. These modeled isotopes are listed in Table 5-1.
Thus, each MCNP input file (for each individual MSB) contains a total of 432 (24 x 18) spent fuel material zones, each containing a total of 29 modeled isotope concentrations. Thus, there are 18 MCNP input files, each of which contains over 12,000 spent fuel material isotope concentrations.
The spent fuel material isotopic concentrations, for each axial zone of each loaded assembly, are calculated in the Palisades fuel depletion calculation (Reference 3.1.3). The CD-ROMs attached to that calculation contain a SAS2H fuel depletion code output file for each of axial zone of each individual loaded assembly. Each such SAS2H output file contains the concentrations of the 29 modeled isotopes, for the individual assembly axial zone in question. The name of each SAS2H output file denotes which individual assembly, and axial zone, that its results pertain to. All of the SAS2H output file names begin with the letter s, followed by two numbers denoting the MSB number, followed by the letter a, followed by two numbers denoting the assembly (or fuel sleeve) number, and finally two more numbers denoting the axial zone number. The MSB numbers range from 1-19 (with no #14), and assembly numbers range from 1-24 (based on the assembly/fuel sleeve number
Calc Package No.: VSC-03.3606 Page 20 of 191 Revision 0 arrangement shown in Figure 4-11), and the axial zone numbers range from 1-18 (where #1 corresponds to the bottom axial zone). For example, the Reference 3.1.3 SAS2H output file s09a2113 contains the isotopic concentrations for the spent fuel material in the 13th axial zone of the assembly in fuel sleeve location #21 (as shown in Figure 4-11) in MSB #9.
Thus, there are a total of 7776 SAS2H output files (18 x 24 x 18) that contain the isotopic concentration data that supports these criticality analyses. These 7776 SAS2H output files, stored on the CD-ROMs attached to the Reference 3.1.3 calculation, are referenced as the source of the spent fuel isotopic compositions modeled in these criticality analyses. Since extracting the 29 isotope concentrations from each of these 7776 SAS2H output files would be far too time consuming and prone to error, BFS developed the SASQUASH computer code, which automatically extracts the desired data and casts it into the formatted MCNP material card blocks that can be directly pasted into each of the 18 MCNP input files. The SASQUASH code is discussed in more detail in Section 5.4.
The isotopic concentrations (over 225,000 individual concentrations) are also far too voluminous to present directly in the body of this calculation. All of the isotope concentration data is documented in this calculation package, however. As discussed above, the SASQUASH code automatically creates the MCNP material cards for the spent fuel material zones. Each of the 18 MCNP input and output files (one modeling each of the 18 Palisades MSBs), has a material card block which contains all of the spent fuel isotopic concentrations that occur in that MSB. Each material card block contains 432 (24 x 18) defined materials, each containing the concentrations of all 29 modeled isotopes. Each of these materials is assigned a four-digit MCNP material number, where the first two digits denote the assembly (or fuel sleeve location) number, and the second two digits denote the axial zone number.
These are the same four digits that are at the end of the name of the SAS2H output file from which the isotope concentrations (for the MCNP material mixture in question) were taken. Thus, by looking at the MCNP material number, one can immediately see which assembly and axial zone the isotopic concentrations correspond to. There are also title blocks (comment cards) over each of the 432 material cards which denote the materials overall density, and the local burnup, and initial assembly enrichment that apply for the assembly axial zone in question (and that the calculated isotopic concentrations are based upon).
As discussed in Section 4.1.2, several Palisades assemblies contain fuel rods taken from other assemblies after irradiation. The fuel depletion analyses for these replacement rods are described in Section 6.6 of Reference 3.1.3. Most of the replacement rods were taken from parent assemblies that are also loaded in MSBs. Table 6-6 of Reference 3.1.3 shows the MSB and fuel sleeve numbers for each such parent assembly. Five of the parent assemblies were never loaded into an MSB. Table 6-7 of Reference 3.1.3 gives the individual assembly ID (similar to those shown for MSB-loaded assemblies in Reference 3.2.1) for each of these five assemblies, along with their cycle burnups, initial enrichment, and fuel mass. For all of these parent assemblies, SAS2H fuel depletion analyses are performed in Reference 3.1.3. As the SAS2H methodology is based on assembly-wide, average fuel compositions, the composition of any given replacement rod is the same as that calculated for the entire parent assembly in question. Note that the isotopic compositions of the rods from MSB-loaded parent assemblies are not the same as those of the parent assemblies themselves, as the rods were often extracted before the final irradiation period of those assemblies. Thus, an additional, separate SAS2H analysis had to be performed for those removed rods.
Calc Package No.: VSC-03.3606 Page 21 of 191 Revision 0 The Reference 3.1.3 SAS2H output files for the replacement rods are named using the same conventions (discussed above) that are used for ordinary assemblies. Thus, for the rods from MSB-loaded parent assemblies, the SAS2H output file names correspond to the MSB number and fuel sleeve number shown for each parent assembly in Table 6-6 of Reference 3.1.3. For the five non-MSB-loaded assemblies, the SAS2H output files are all named s01a0xyy, where x is a number from one to five, and yy is a two-digit number from 1 to 18 (representing the 18 axial zones for each of the five assemblies). Note that these SAS2H filenames are the same as those of various ordinary assemblies (e.g., the parent assemblies themselves for the MSB-loaded assembly cases). For this reason, the SAS2H output files for the replacement rods are kept in separate directories on the Reference 3.1.3 calculation CDs.
As discussed in Section 4.1.2, maps of the reconstituted (receiver) assemblies are shown in Attachment B of this calculation. The maps show the array locations of the replacement rods, along with the individual assembly IDs of the parent assemblies each rod was taken from. Table 4-7 gives a description of every parent assembly. It lists the individual assembly ID for each assembly, along with the MSB number and fuel sleeve number where it is currently stored. These entries are left blank for the five non-MSB-loaded parent assemblies. This information is useful in locating the Reference 3.1.3 SAS2H output file containing the fuel composition for that parent assemblys replacement rods (as discussed above). In fact, Table 4-7 also lists the Reference 3.1.3 SAS2H output filename prefix (containing all but the two digits representing the 18 axial zones) for each parent assembly case, clarifying where the isotopic compositions can be found, for the rods taken from that assembly.
Table 4-7 then lists the ID(s) of any recipient assemblies that contain rods from that parent assembly.
The associated MSB number and fuel sleeve number is also listed for each recipient assembly. The data in Table 4-7, along with the replacement rod array maps given in Attachment B (Section 10) explicitly define the (Reference 3.1.3) SAS2H output file containing the fuel compositions for each assembly array location that contains a replacement rod.
The CD-ROM attached to this calculation contains all of the MCNP input and output files for the run cases listed in Table 8-1. Thus, although some effort is required, every single spent fuel isotope concentration modeled in these analyses, along with the burnup and initial enrichment that it is based upon, can be found in the MCNP files on the CD-ROM attached to this calculation. To determine the cooling time that each set of isotopic concentrations is based upon, however, one must refer to the Reference 3.1.3 calculation package to determine the cooling time of the individual assembly in each MSB location. Examination of the MCNP input/output file material blocks allows the modeled isotopic compositions that correspond to a given Reference 3.1.3 SAS2H output file, or a given set of fuel parameters (e.g., burnup, enrichment, cooling time, etc) to be accessed relatively quickly.
4.2 Design Criteria All 18 Palisades MSBs shall be shown to meet a criticality criterion of keff < 0.95, after accounting for all analysis biases and uncertainties, and assuming the most reactive credible cask system configuration.
4.3 Calculation Assumptions As discussed in Section 4.1, the criticality analyses model the MSBs steel fuel sleeves, the primary MSB edge structures, the MSB radial shell and lids, the radial cask spacer, the top plate of the axial
Calc Package No.: VSC-03.3606 Page 22 of 191 Revision 0 cask cavity spacer, the primary radial shells of the TS125 cask, and the primary end plates/lids of the TS125 cask. All other (much smaller) components are assumed to have no measurable effect on criticality, and are not modeled.
A 2.0-inch layer of RX-277 neutron shielding material lies in the middle of the 12.5-inch-thick carbon steel MSB lid structure. For simplicity, this small layer of material is neglected, and the MSB top lid is simply modeled as 12.5 inches of carbon steel. This assumption will have no measurable effect on criticality, since a thick layer of water and a thick layer of steel lie between the RX-277 and the assembly fuel zones. The sensitivity analyses presented in Section 6.2 demonstrate the fact that materials well outside the MSB cavity have no measurable effect on criticality. Finally, if the RX-277 did have any effect on criticality, it would be to reduce keff, due to the boron poison that is present in the material. Thus, modeling the RX-277 material as steel is, if anything, conservative.
The criticality analyses model the TS125 cask lead gamma shield as extending up to the top of the TS125 cask cavity, whereas it actually stops a few inches short of that elevation. Thus, a small volume of steel at the top of the gamma shield is effectively replaced by lead. Since the volume of material in question is small, and it lies far away from the assembly fuel material, this will have no effect on reactivity. The region in question is well above the top of the active fuel, as well as being behind the large radial reflector region around the edge of the MSB interior. It is also behind the MSB shell, the MSB/cask gaps, the radial cavity spacer, and the cask inner steel liner. Furthermore, the reflective properties of lead and steel are not significantly different. Finally, materials and geometries outside the MSB interior are known to not measurably affect reactivity in the first place.
The normal cask condition sensitivity analysis presented in Section 6.2.5 models the radial neutron shield structure of the TS125 cask. For simplicity, this structure is modeled over the full length of the cask, despite the fact that the actual structure stops 12 inches short of each end, to accommodate the impact limiters. As with the lead issue above, this approximation will have no effect on reactivity, since it affects a local area that lies far away from the fissile material, behind large layers of reflective material. It is also true that the analysis in question is not computing an absolute keff result. Its only purpose is to confirm that the presence of the radial neutron shield around the cask either has no measurable effect, or causes keff to go down. A simple model that places neutron shield around the cask over the entire axial span of the assembly fuel zones (which the actual neutron shield structure does indeed fully cover) is sufficient to accomplish this task. The presence or absence of additional neutron shield material in the cask corners, well beyond the axial ends of the assembly fuel zones, will have no effect on the conclusion of the analysis. As shown in the Section 6.2.5 analyses, the entire neutron shield structure has no measurable effect on criticality anyway, so a small amount of material in the cask corner regions would clearly have no effect.
Whereas worst-case tolerance values are assumed for the radial dimensions of the important radial MSB components (including the fuel sleeves, the primary edge structures, and the radial shell),
nominal dimensions are assumed for the MSB axial dimensions, as well as the radial and axial dimensions for all MSB exterior components (i.e., the radial and axial cavity spacers, and the TS125 cask). It is well understood that components that lie behind thick water reflector regions, such as the radial and axial water regions that lie between the fuel material and the MSB shell and lids, have very little effect on reactivity. Evidence of this fact is provided by the sensitivity analyses presented in Section 6.2 of this calculation. These analyses showed, among other things, that the removal of the entire MSB edge structure, and its replacement with water, has almost no effect on overall reactivity.
Calc Package No.: VSC-03.3606 Page 23 of 191 Revision 0 The MSB ends (lids) and MSB-exterior components lie even farther from the fuel material than the MSB radial edge structure. In such a situation, where even the presence or absence of a component would not affect reactivity, tiny variations in that components dimensions (due to fabrication tolerances) will clearly have no effect on reactivity. Thus, the modeling of nominal dimensions is sufficient for these components.
No adjustments are made to the modeled configuration to account for post-accident permanent deformations in the MSB basket structure. As discussed in Section 4.1.1, no significant deformations are expected to occur in the MSB basket structure, and even if they did, they would have no measurable effect on reactivity.
The MSB, and the axial cask cavity spacer, are modeled as being pushed up against the top of the TS125 cask cavity. The combined length of the MSB and the axial spacer is a fraction of an inch shorter than the cask cavity length, which would allow for small gaps to appear between the MSB lid and the TS125 cask lid, between the MSB bottom and the top plate of the axial spacer, and/or between the bottom of the axial spacer legs and the bottom of the cask cavity. By pushing the MSB and cavity spacer plate up as far as possible, the overall (combined) gap is all placed between the axial spacer and the cask cavity bottom. As discussed in Section 4.1.1, the legs of the axial spacer are not modeled.
The MSB is modeled so that it is in contact with the cask lid, and the top plate of the axial spacer is modeled as being in contact with the MSB bottom plate. A volume of pure water, which covers all the remaining axial length in the cask cavity, is modeled below the axial spacer top plate. Shifting the axial spacer top plate down by a fraction of an inch, or moving the MSB down by a fraction of an inch (thus creating very small water gaps at the top and/or bottom ends of the MSB) will have no effect on reactivity, for the reasons discussed (several times) above. The sensitivity analyses already show that switching between water and steel in the reflector zones around the fuel sleeves have no effect on reactivity, even when large volumes of material are switched. Thus, switching far smaller volumes of material, in locations that are even farther from the fuel material, will clearly have no effect.
The assembly grid spacers are not modeled. This will have little effect on reactivity, as these structures have a small cross-sectional areas (as well as volume) and are made of Zircaloy.
The gas plenum, bottom nozzle, and top nozzle regions/structures of the loaded PWR assemblies are not modeled, and are therefore effectively replaced by water. As discussed above, sensitivity analyses have demonstrated that swapping metals with water (or vice versa) in the reflector regions around the fuel material has no measurable effect on reactivity. Note, however, that the steel fuel sleeves are modeled in the region above the active fuel. Due to the presence of the water flow cutouts, the fuel sleeve structure below the active fuel zone is not modeled, as discussed in Section 4.1.1.
The loaded assemblies are modeled as resting on the bottom of the MSB cavity. The assemblies are only a fraction of an inch shorter than the cavity, so they could only shift (upward) by a fraction of an inch, which would result of a fraction of an inch of top water reflector being shifted to the bottom reflector. As the axial reflector regions are already relatively thick (~4 inches or more), this will have no measurable effect, especially given that the sensitivity analyses show that water and steel reflectors produce roughly the same reactivity.
As shown in Table 4-2, the great majority of the Palisades fuel assemblies have an active fuel length of 131.8 inches. The A1 and D1 assemblies, however, have fuel lengths of 132.0 and 131.4 inches, respectively. Modeling the same fuel length for all assemblies greatly simplifies the criticality model
Calc Package No.: VSC-03.3606 Page 24 of 191 Revision 0 (given that multiple assembly types often occur within the same MSB, i.e., in the same individual criticality model). Like all PWR fuel, Palisades fuel is sufficiently long that axial leakage in general is not very important, and small (fraction of an inch) differences in overall fuel length have no measurable effect on reactivity. It should be noted that neutron absorption of the MSB, and its basket structure, is axially uniform (mainly by virtue of the fact that theres basically no absorption at all).
Thus, there are no discontinuities in absorber configuration that occur near the axial ends of the fuel zones (which is the only situation where small changes in active fuel length could have any measurable effect on reactivity).
The trapezoidal guide bars in the Palisades assemblies, shown in Figure 4-3 through Figure 4-10, are modeled as solid, cylindrical Zircaloy rods with an equivalent area. It is assumed that small changes in the geometry of these bars will have no measurable impact on reactivity, given the lack of neutron absorption in Zirclaoy, and given that the overall area is preserved. This assumption makes the guide bars much easier to model. Also, as discussed in Section 4.1.2, the same guide bar area is modeled for all assembly types. The minimum guide bar area is modeled. This will be conservative, as displacement of water generally causes reactivity to decrease for PWR fuel in fresh water.
As discussed in Section 4.1.2, whereas credit is taken for the water (or fuel) displacement of inserted absorber rods, no credit is taken for any active poison material in these rods. It is conservatively assumed that all active poison materials are completely consumed during assembly irradiation. The density of any active poison material is reduced to zero, and thus the absorber isotope is effectively modeled as void. Thus, the density of 10B in B4C material is reduced to zero, leaving the 11B and the carbon (at their respective calculated densities). For the hafnium rods, where the absorption properties of each hafnium isotope are less clear, the entire material is modeled as void. Thus, the hafnium rod inserts are modeled as hollow Zircaloy rods.
Some details were lacking in the Palisades plant data references concerning the active absorber and inert materials in the inserted absorber rods, requiring some assumptions to be made. Reference 3.2.1 gives the top and bottom elevations of the active absorber material for all absorber rod types except for the (fixed) absorber rods in the A1 and E1 assemblies. Reference 3.2.5 gives the axial absorber material boundaries for the A1 assembly, and clarifies that pure Al2O3 covers all of the active fuel zone that remains above and below the active poison region of the A1 assembly insert rods. For the E1 assembly, no information exists concerning the axial boundaries of the active poison material, or the nature of the (filler) material outside those axial boundaries. Reference 3.2.4 refers to Al2O3 as the rod filler material for all of the assembly types that contain B4C absorber rods, but it does not explicitly state that Al2O3 covers all of the remaining fuel zone, above and/or below the ends of the active poison. For the E1 assembly, the active B4C/Al2O3 poison material described in Reference 3.2.4 is modeled over the entire active fuel zone. This assumption is partly based in the fact that, for the E1 assembly, the absorber rod is not part of an insert, but instead consists of a fixed rod that is placed directly in the assembly array in place of a fuel rod. For the remaining assembly types, pure Al2O3 is modeled in all parts of the assembly fuel zone that lie outside the axial boundaries of the active absorber material (from Reference 3.2.1) which are shown for each assembly type in Table 4-2.
It should be noted that the axial boundaries of the absorber region, and the material modeled outside those boundaries, makes little difference, as it is all inert material (i.e., a mixture of 11B4C and Al2O3, versus pure Al2O3, where the fraction of 11B4C in the absorber region is very small in the first place).
Calc Package No.: VSC-03.3606 Page 25 of 191 Revision 0 The Palisades plant data did not give the radial dimensions for the fixed absorber rods in the A1 and E1 assemblies. As these rods replace fuel rods, they are assumed to have the same radial pellet and cladding dimensions. An exception to this is the A1 assembly absorber pellet diameter, which was provided in Reference 3.2.5.
The sensitivity analyses presented in Section 6.2 are all performed modeling the MSB #5, with its associated specific loaded assembly geometries and assembly spent fuel isotopic compositions. The conclusions of the sensitivity analyses (concerning what is the most reactive configuration) are all based upon well understood theoretical principles, with the actual analyses merely confirming existing expectations. None of these conclusions would be affected by minor changes in assembly geometry (such as exist between the different Palisades assembly types), or by changes in spent fuel material compositions (for assemblies with different burnups, enrichments, etc). The conclusions of these analyses would apply for any large cask system containing spent fuel that has no fixed poisons, has mild-absorbing steel fuel sleeves, is filled with fresh (unborated ) water, has large radial and axial reflector regions around the fuel. It is also true that MSB #5s assembly payload configuration (i.e.,
the assembly burnup levels and initial enrichment values, and their distribution within the MSB) is extremely similar to that of Palisades MSBs #6 through #13, which have the lowest criticality margins.
None of these nine MSBs has a criticality margin that is significantly lower (i.e., by more than the statistical error level in the keff results) than MSB #5. The margins for the other nine MSBs, on the other hand, are significantly higher (by ~2% or more). For the reasons given above, no changes in the conclusions of the sensitivity analyses between MSBs are expected. A change in conclusion (i.e., a more reactive configuration) that would change keff by ~2% or more is even less credible.
The uncertainties (or variations) in the MCNP5 keff penalty factor (code bias), the fuel depletion (SAS2H) penalty factor, and the statistical error in the MCNP5-calculated keff results, are all assumed to be independent of each other. Thus, it is assumed that these uncertainty factors can be summed statistically (i.e., square root of sum of squares) as opposed to being summed directly. This is discussed further in Sections 5.6 and 6.4.
It is assumed that an infinite, regular, hexagonal array of casks will be at least as reactive as a square-pitched or irregular cask array. A hexagonal array maximizes the cask packing fraction (for a given array pitch), and optimizes the degree to which each cask views the other casks in the array. It should be noted, however, that as shown by the Section 6.2 sensitivity analyses, the cask exterior configuration has no affect at all on reactivity, so keff would not be at all sensitive to the type of cask array in any event.
Calc Package No.: VSC-03.3606 Page 26 of 191 Revision 0 Table 4-1 - MSB and TS125 Cask Component Dimensions (inches)1 Component Dimension Nominal Value Modeled Value9 Fuel Sleeve Outer Width 9.2 9.075 Fuel Sleeve Wall Thickness 0.1875 0.1775 Fuel Sleeve Bottom Elevation2 0.0 3.8 Fuel Sleeve Top Elevation2 147.5 147.5 Bottom of Assembly Active Fuel Zone2,3 3.8 3.8 Radial Support Plate Inner Radius 29.1 28.975 Radial Support Plate Thickness 0.5 0.96310 Outer Support Wall Thickness4 0.5 0.625 Outer Support Bar Width 2.0 2.125 Outer Support Bar Thickness 1.45 1.512 Edge Structure Axial Height5 3 x 28 143.7 MSB Radial Shell Outer Radius 31.25 31.0 MSB Radial Shell Thickness 1.0 1.0625 MSB Cavity Length 150.6 150.6 MSB Bottom Plate Thickness 0.75 0.75 MSB Top Lids Thickness 12.5 12.5 MSB/Cask Radial Spacer Outer Radius6 33.0 33.0 MSB/Cask Radial Spacer Thickness6 1.25 1.25 TS125 Cask Cavity Radius 33.5 33.5 TS125 Cask Inner Liner Thickness 1.5 1.5 TS125 Cask Gamma Shield Thickness7 3.25 3.25 TS125 Cask Outer Shell Thickness 2.65 2.65 TS125 Cask Cavity Length 193.0 193.0 Cask Axial Cavity Spacer Top Plate Thk.8 3.0 3.0 TS125 Cask Bottom Plate Thickness 6.0 6.0 TS125 Cask Top Lid Thickness 6.0
6.0 Notes
- 1. The TS125 cask neutron shield structure is not modeled in the primary criticality analyses, as discussed in Section 4.1.1, and is therefore not included in this table. A description of the neutron shield structure modeled in the sensitivity analyses that cover the normal-condition cask configuration is given in Section 6.2.5.
- 2. Measured from the MSB cavity bottom. The fuel sleeve metal below the active fuel zone is neglected in the analysis.
- 3. The Palisades assembly bottom nozzle region height of 3.8 inches is taken from Reference 3.2.6. The modeled active fuel length is 131.8 inches. The non-fuel axial zones of the assembly are modeled as water.
- 4. The modeled location of this metal chevron is such that its inner corner contacts the outer corner of the fuel sleeve (see Figure 4-1).
- 5. The edge structure includes the Radial Support Plate, the Outer Support Wall, and the Outer Support Bar. It is modeled as covering the same axial span covered by the fuel sleeves (w/ no gaps), as discussed in Section 4.1.1.
- 6. The MSB/Cask Radial Spacer is modeled over the entire axial span covered by the MSB.
- 7. No gaps in the gamma shield cavity (or anywhere in the radial or axial TS125 cask configuration) are modeled.
- 8. The axial length of the water zone below the axial spacer top plate is determined by subtracting the length of the MSB and the thickness of this plate from the cask cavity length (effectively pushing the MSB to the top of the cask cavity, and assuming no axial gaps between the MSB and the cask lid or the axial spacer).
- 9. Reflects the worst-case tolerance dimensions for all radial MSB component dimensions (as shown in Table 4.1.1-1 of Reference 3.1.1). Nominal dimensions are assumed for all axial dimensions, and for all TS125 cask and cask spacer components.
- 10. Corresponds to (conservatively) filling the space between this ring and the MSB shell with steel.
Calc Package No.: VSC-03.3606 Page 27 of 191 Revision 0 Table 4-2 - Characteristics of Palisades Fuel Assemblies Loaded into VSC-24 MSBs1,2 Assembly Fuel Assembly Type Parameter A17 D18 E19 F1 G1,G3 G2 H1,H3 H2 I1,I2 I1h I3 J1,K1 I4,J2,K2 L1-L3 Array Size 15x15 15x15 15x15 15x15 15x15 15x15 15x15 15x15 15x15 15x15 15x15 15x15 15x15 15x15 No. of Fuel Rods 212 216 208 216 208 208 208 208 208 208 208 208 216 216 Rod Pitch (in) 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 Fuel Rod O.D. (in) 0.4135 0.4175 0.415 0.415 0.415 0.415 0.417 0.417 0.417 0.417 0.417 0.417 0.417 0.417 Clad Thickness (in) 0.024 0.026 0.0285 0.0285 0.0285 0.0285 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 Fuel Pellet O.D. (in) 0.359 0.358 0.3505 0.3505 0.3505 0.3505 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.3505 Active Fuel Height (in)3 132.0 131.4 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 131.8 No. of Guide Tubes 0
0 0
0 8
8 8
8 8
8 8
8 0
0 Guide Tube O.D. (in) 0.416 0.416 0.417 0.417 0.417 0.417 0.417 0.417 GT Thickness (in) 0.0125 0.0125 0.013 0.013 0.014 0.014 0.014 0.013 Inst. Tube O.D. (in) 0.4135 0.4175 0.415 0.415 0.415 0.415 0.415 0.415 0.417 0.417 0.417 0.417 0.417 0.417 IT Thickness (in) 0.024 0.026 0.0275 0.0275 0.0275 0.0275 0.0285 0.0285 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 No. of Poison Rods4 4
0 8
0 0
8 0
8 0
8 8
0 0
0 Poison Rod O.D. (in) 0.4135 0.415 0.332 0.332 0.332 0.334 PR Clad Thickness (in) 0.024 0.0285 0.023 0.023 0.023 0.024 PR Absorber O.D. (in) 0.356 0.3505 0.268 0.268 0.276 0.268 PR Absorber Material5 B4C B4C B4C B4C Hf10 B4C PR B4C Conc. (w/o)5 1.7 %
7.7 %
4.7 %
4.7 %
4.7 %
Bot. of Absorber (in) 6.0 0
5.7 5.7 3.2 5.7 Top of Absorber (in) 126.0 131.8 125.7 125.7 131.8 125.7 Array Layout Figure #6 4-3 4-4 4-5 4-4 4-6 4-7 4-6 4-7 4-6 4-8 4-7 4-6 4-4 4-4 Notes:
- 1. All data are taken from Reference 3.2.1 (and its attached fuel data spreadsheets) unless otherwise stated.
- 2. All assembly metal hardware, including fuel rod and poison rod cladding, guide tubes, and instrument tubes, consists of Zircaloy-4.
- 3. A fuel height of 131.8 inches is modeled for all assembly types in the actual criticality analyses, as discussed in the Section 4.1.2 text.
- 4. Determined from the Reference 3.2.2 assembly array figures. Generally equal to the number of guide tubes, except for the A1 and E1 assemblies where the poison rods are inserted directly into the assembly array (in place of fuel rods) and no guide tubes are present.
- 5. The B4C poison rod absorber materials, for each specific assembly type, are described in detail in Reference 3.2.4.
- 6. Determined from the information shown in the assembly array figures in Reference 3.2.1 (as discussed in the Section 4.1.2 text).
- 7. The A1 assemblys inserted poison rods are described in Reference 3.2.5.
- 8. The D1 assembly is referred to as the EF assembly in some (but not all) of the fuel data documentation provided in References 3.2.1 through 3.2.5.
- 9. The geometric dimensions of the E1 assembly poison rod clad and absorber material are assumed to equal those of a fuel rod.
- 10. The I1h assembly inserts contain pure hafnium absorber material at a density of 13.31 g/cc, as shown in Reference 3.2.1. Note that the hafnium material is conservatively neglected (i.e., modeled as void) in the criticality analyses.
Calc Package No.: VSC-03.3606 Page 28 of 191 Revision 0 Table 4-3 - Assembly Type Present in Each Palisades MSB Fuel Sleeve1,2 Fuel Palisades MSB Number Slv #3 1
2 3
4 5
6 7
8 9
10 11 12 13 15 16 17 18 19 1
G3 G1 D1 D1 F1 A1 A1 F1 F1 A1 F1 F1 F1 J1 J1 J1 J1 J1 2
G3 G1 D1 D1 F1 A1 A1 F1 F1 A1 F1 F1 F1 J2 J2 J2 D1 D1 3
G3 G2 D1 D1 F1 A1 A1 D1 D1 A1 F1 F1 F1 I2 I2 I1 H2 H1 4
G1 G1 G2 G2 I4 H2 H1 D1 D1 H1 I4 I4 I4 K2 K2 K2 K2 K2 5
G3 G1 F1 F1 I4 H2 H1 D1 D1 H2 I4 I4 I4 L1 L1 L3S L3S L3S 6
G3 G1 E1 D1 F1 A1 A1 F1 F1 A1 F1 F1 F1 F1 F1 F1 F1 F1 7
G3 G1 E1 D1 F1 A1 A1 D1 D1 A1 F1 F1 F1 J1 J2 J1 J1 J2 8
G3 G1 G1 G2 I4 H2 H1 D1 D1 H1 I4 I4 I4 L1 L1 L3S L1 L1 9
G1 G2 F1 F1 F1 H1 H1 D1 D1 H1 F1 F1 F1 I1h L2S L2S I1h I1h 10 G3 G1 F1 F1 F1 H1 H2 D1 D1 H1 F1 F1 F1 I1h L3S I1h I1h I1h 11 G1 G1 F1 F1 I3 H1 H2 D1 D1 H1 I3 I3 I3 L3S L1 H1S L1 L1 12 G1 G1 D1 D1 F1 A1 A1 F1 F1 A1 F1 F1 F1 J2 J1 J1 J1 J1 13 G1 G1 D1 D1 F1 A1 A1 F1 F1 A1 F1 F1 F1 J1 J1 J1 J1 J1 14 G1 G1 G2 G1 I3 H1 H2 D1 D1 H2 I3 I3 I1 L1 L1 H1S L1 L1 15 G1 G1 F1 F1 A1 H1 H1 D1 D1 H1 A1 A1 A1 I1h I1h I1h I1h I1h 16 G1 G2 F1 E1 H1 H1 H1 D1 E1 H2 H1 H2 H2 L2S I1h I1h I1h H1S 17 G1 G1 G2 G2 I3 H3 H2 D1 D1 H1 I1 I1 I2 K2 L1 L1 L1 L1 18 G2 G1 D1 D1 A1 A1 A1 D1 D1 A1 A1 A1 F1 K2 K2 K2 J1 J1 19 G1 G2 D1 D1 A1 A1 A1 D1 D1 A1 A1 A1 A1 H3 G2 G2 G2 G2 20 G1 G2 G2 G1 I1 H3 H2 D1 D1 H2 I2 I1 I2 H1S H1S H1S H1S K2 21 G1 G1 G2 G2 I1 H3 H1 D1 D1 H2 I2 I1 I2 L3S L1 L1 L3S L1 22 G1 G2 D1 D1 A1 A1 A1 D1 D1 A1 A1 A1 A1 J1 J1 J1 J1 I2 23 G1 G1 D1 D1 A1 A1 A1 D1 D1 A1 A1 A1 A1 J1 J1 J1 J1 J2 24 G1 G1 D1 F1 A1 A1 A1 F1 F1 A1 A1 A1 A1 J1 J1 J1 J1 J1 Notes:
- 1. The physical geometry of each defined assembly type is described in detail in Table 4-2 and in Figure 4-3 through Figure 4-10. The H1S, L1S, L2S, and L3S assemblies are identical to the H1, L1, L2, and L3 assemblies, except for the inserted stainless rods shown in Figure 4-9 and Figure 4-10.
- 2. The assembly type, in each location, is given in the large Fuel Assembly Specific Data spreadsheet attached to Reference 3.2.1.
Calc Package No.: VSC-03.3606 Page 29 of 191 Revision 0 Table 4-4 - Locations of Non-Standard Palisades Assemblies Individual Assembly ID1 Assembly Type2 Palisades MSB Number3 Fuel Sleeve Number3 H01 H1S 19 16 H03 H1S 18 20 H31 H1S 17 11 H38 H1S 17 20 H39 H1S 16 20 H59 H1S 17 14 H65 H1S 15 20 H32 H1 10 15 H34 H2 7
17 J09 J2 16 7
L59 L1 18 17 Notes:
- 1. The individual non-standard assemblies are identified (by the ID #s shown in this column) and described in Reference 3.2.4. The assembly array layouts for these assemblies are taken from Reference 3.2.4 and presented in the appendix (Section 10) of this calculation.
- 2. As defined in Table 4-2. The large Fuel Assembly Specific Data spreadsheet attached to Reference 3.2.1 gives the assembly type that applies for each individual loaded assembly.
- 3. The large Fuel Assembly Specific Data spreadsheet attached to Reference 3.2.1 shows the individual assembly IDs for the assemblies loaded in each fuel sleeve of each MSB. This provides the cask and fuel sleeve location for each of the 11 specific assemblies listed above.
Calc Package No.: VSC-03.3606 Page 30 of 191 Revision 0 Table 4-5 - Criticality Model Component Materials1,3 Non-Fuel Model Component Material All Palisades Assembly Hardware (fuel zone)
Zircaloy-4 MSB Fuel Sleeve SA516 Carbon Steel Radial Support Plate SA516 Carbon Steel Outer Support Wall SA516 Carbon Steel Outer Support Bar SA516 Carbon Steel MSB Radial Shell SA516 Carbon Steel MSB Bottom Plate SA516 Carbon Steel MSB Top Lids2 SA516 Carbon Steel Radial Cask Cavity Spacer Type 304 Stainless Steel Axial Cask Cavity Spacer (top plate)
Type 304 Stainless Steel TS125 Cask Inner Liner Type XM-19 Stainless Steel TS125 Cask Gamma Shield Lead TS125 Cask Outer Shell Type XM-19 Stainless Steel TS125 Cask Bottom Plate Type XM-19 Stainless Steel TS125 Cask Lid Type XM-19 Stainless Steel Notes:
- 1. The composition of each component material is described and discussed in Section 4.1.3 and in Table 4-6.
- 2. The 2.0-inch layer of RX-277 neutron shielding material (within the 12.5-inch-thick MSB lid) is neglected for simplicity, as discussed in Section 4.3.
- 3. The neutron shield structure is not included in the primary (bounding) criticality analysis models, as discussed in Section 4.1.1. Thus, it is not listed here. The normal-condition cask configuration (including the neutron shield structure) is discussed and described in Section 6.2.5.
Calc Package No.: VSC-03.3606 Page 31 of 191 Revision 0 Table 4-6 - Elemental Compositions of Non-Fuel Component Materials Elemental Weight Fraction (%)
Element Zirc-42 SA-516 C-Steel3 SS-3044 XM-194 Lead4 B4C Abs (1.7%)5 B4C Abs (4.7%)5 B4C Abs (7.7%)5 Pure Al2O3 5
Hafnium Absorber7 C
0.27 O
0.12 Si 0.3 0.75 P
0.035 S
0.035 Cr 0.1 19.0 22.0 Mn 1.0 2.0 5.0 Fe 0.2 98.36 69.75 57.5 Ni 9.25 12.5 Zr 98.18 Mo 2.25 Sn 1.4 Hf 100.0 Pb 100.0 B4C1 1.7 4.7 7.7 Al2O3 1
98.3 95.3 92.3 100.0 Total Density (g/cc) 6.56 7.8212 8.027 8.027 11.35 4.0101 3.3634 3.3074 3.976 13.31 Notes:
- 1. The elemental (and isotopic) breakdowns for these compounds must be calculated (vs. referenced). These calculations are presented in Section 6.1.
- 2. Composition taken from Table 5.3.3-1 of Reference 3.2.8. The selection of this reference is discussed in Section 4.1.3.
- 3. The elemental breakdown for SA-516 carbon steel is taken from Reference 3.2.7, whereas the overall density is taken from Reference 3.1.1.
- 4. These compositions are taken from Reference 3.1.4.
- 5. The overall density and the B4C weight percentages for the three types of B4C absorber material are given in Reference 3.2.4. This reference also specifies Al2O3 and the inert filler material for these rods, but it does not give the density for pure Al2O3. Note that the 10B isotope density is reduced to zero in the criticality calculations, as shown in the Section 6.1 isotopic density calculations.
- 6. Taken from Reference 3.2.9.
- 7. Pure elemental hafnium at 13.31 g/cc. Note, however, that the hafnium material is completely neglected (i.e., modeled as void) in the criticality analysis.
Calc Package No.: VSC-03.3606 Page 32 of 191 Revision 0 Table 4-7 - Description of Transferred Palisades Assembly Fuel Rods1 Parent Assembly Recipient Assembly Assy ID MSB No.
Assy No.3 SAS2H Filename4 Assy ID MSB No.
Assy No.3 L022 s01a01 H01 19 16 L05 16 9
s16a09 H01 19 16 H01 19 16 L08 15 16 s15a16 H03 18 20 L11 17 9
s17a09 H03 18 20 L13 17 8
s17a08 H03 18 20 H03 18 20 L14 18 5
s18a05 H31 17 11 L15 15 21 s15a21 H31 17 11 H31 17 11 L16 19 5
s19a05 H38 17 20 L17 18 21 s18a21 H38 17 20 L18 16 10 s16a10 H38 17 20 H38 17 20 L19 15 11 s15a11 H39 16 20 L20 17 5
s17a05 H39 16 20 L332 s01a02 H39 16 20 H39 16 20 L402 s01a03 H59 17 14 L472 s01a04 H59 17 14 H59 17 14 L542 s01a05 H65 15 20 Notes:
- 1. See Section 10 (Attachment B) for array locations of inserted (transferred) fuel rods.
- 2. These parent assemblies are not stored in any MSBs (although rods from those assemblies are inserted in recipient assemblies that are). Thus, no MSB number or location is applicable for these assemblies. The Reference 3.1.3 SAS2H output filenames were chosen arbitrarily (as opposed to being based on the MSB and assembly number) for these five parent assemblies.
- 4. The listed filenames exclude the last two digits, which range from 01 to 18, and denote the axial zone of the modeled assembly. These SAS2H output files are taken from the Addl_Runs and Extra_New folders on the Reference 3.1.3 calculation CDs.
Calc Package No.: VSC-03.3606 Page 33 of 191 Revision 0 Radial Spacer Outer Support Bar Outer Support Wall MSB Shell Fuel Sleeve Outer Radial Support Plate TS125 Inner Liner TS125 Lead Shell TS125 Outer Shell Figure 4-1 - MSB and TS125 Cask Radial Model Configuration
Calc Package No.: VSC-03.3606 Page 34 of 191 Revision 0 TS125 Axial Spacer Water MSB Lid Fuel Zone Water Fuel Sleeves Only Water TS125 Closure Lid MSB Radial Shell TS125 Bottom Plate Radial Spacer TS125 Inner Liner TS125 Lead Shell TS125 Outer Shell Figure 4-2 - Axial (R-Z) Criticality Model Configuration
Calc Package No.: VSC-03.3606 Page 35 of 191 Revision 0 Fuel Rod B4C Rod - 1.7%
Instrument Tube Guide Bar Figure 4-3 - Array Configuration for the A1 Assembly
Calc Package No.: VSC-03.3606 Page 36 of 191 Revision 0 Fuel Rod Instrument Tube Guide Bar Figure 4-4 - Array Configuration for D1, F1, I4, J2, K2, L1, L2, and L3 Assemblies
Calc Package No.: VSC-03.3606 Page 37 of 191 Revision 0 Fuel Rod B4C Rod - 7.7%
Instrument Tube Guide Bar Figure 4-5 - Array Configuration for the E1 Assembly
Calc Package No.: VSC-03.3606 Page 38 of 191 Revision 0 Fuel Rod Empty Guide Tube Instrument Tube Guide Bar Figure 4-6 - Array Configuration for the G1, G3, H1, H3, I1, I2, J1, and K1 Assemblies
Calc Package No.: VSC-03.3606 Page 39 of 191 Revision 0 Fuel Rod B4C Rod - 4.7% - Inside Guide Tube Instrument Tube Guide Bar Figure 4-7 - Array Configuration for G2, H2, and I3 Assemblies
Calc Package No.: VSC-03.3606 Page 40 of 191 Revision 0 Fuel Rod Hafnium Rod - Inside Guide Tube Instrument Tube Guide Bar Figure 4-8 - Array Configuration for the I1h Assembly
Calc Package No.: VSC-03.3606 Page 41 of 191 Revision 0 Original Fuel Rod Replaced Fuel Rod Solid Stainless Steel Rod Empty Guide Tube Instrument Tube Guide Bar Figure 4-9 - Array Configuration for the H1S Assembly
Calc Package No.: VSC-03.3606 Page 42 of 191 Revision 0 Fuel Rod Solid Stainless Steel Rod Instrument Tube Guide Bar Figure 4-10 - Array Configuration for the L1S, L2S, and L3S Assemblies
Calc Package No.: VSC-03.3606 Page 43 of 191 Revision 0 Figure 4-11 - MSB Fuel Sleeve Location Numbers
Calc Package No.: VSC-03.3606 Page 44 of 191 Revision 0
- 5. CALCULATION METHODOLOGY The criticality analyses are performed using the MCNP5 monte carlo criticality code, based on the model configurations described in detail in Section 4.1. In this section, the details of the methodology are discussed, including the overall approach, the code and cross-sections that are used, and the types of analyses that are performed.
5.1 General Analysis Approach An explicit, 3-D criticality analysis is performed for each of the 18 individual MSBs that are currently loaded at the Palisades plant site. Each analysis models an MSB flooded with fresh (unpoisoned) water, inside the FuelSolutionsTM TS125 transportation cask. Radial and axial spacers are also modeled between the MSB and the cask. The modeled MSB and cask configuration is described in detail in Section 4.1.1. The analyses explicitly model the geometry of each assembly in each fuel sleeve of each MSB, as discussed in Section 4.1.2. The analyses take credit for the burnup of the spent PWR fuel. The specific spent fuel isotopic composition present in each of 18 defined axial zones of each of the 24 loaded assemblies are explicitly modeled in each of the criticality analyses (performed for each of the 18 casks), as discussed in Section 4.1.4. Thus, the analyses model the burnup, initial enrichment, cooling time, and reactor operating history parameters that specifically apply to each individual loaded assembly, and rigorously account for the effects of the fuels axial burnup profile.
The isotopic compositions are taken from Reference 3.1.3. These MSB-specific analyses are all performed using the most reactive MSB/cask configuration that is determined as discussed in Section 5.5.
As discussed above, the criticality analyses take credit for fuel burnup, and explicitly model the isotopic composition of the spent fuel. The isotopic densities for the spent fuel material in each axial zone of each loaded assembly in each MSB are given in the Reference 3.1.3 SAS2H output files, which are extracted as discussed in Sections 4.1.4 and 5.4. The analyses do not model all of the isotopes present in spent fuel, however. Most of the isotopes are conservatively neglected. In addition to the oxygen, a total of 28 spent fuel isotopes, including 12 actinides and 16 fission products, are modeled. These isotopes are listed in Table 5-1.
The isotopes listed in Table 5-1 are the isotopes that have the greatest impact on reactivity, and for which the greatest amount of benchmark data is available, as discussed in Reference 3.1.6. The Reference 3.1.6 analyses calculate a keff penalty that accounts for biases and uncertainties in the SAS2H code (and the associated Reference 3.1.3 analyses) based upon this set of 28 isotopes. The results of the Reference 3.1.6 analyses are applicable (and bounding) for VSC-24 system burnup credit analysis that model the isotopes listed in Table 5-1 (or any subset thereof), and use the SAS2H module of the SCALE-4.4 code package to calculate their densities. As discussed in Reference 3.1.6, the keff penalty is used in lieu of applying adjustment factors to the isotopic concentrations. Therefore, the calculated isotopic densities given in the Reference 3.1.3 SAS2H output files are used directly in these criticality analyses, without any applied adjustments.
5.2 Analysis Code The criticality analyses are performed using Version 5 of the MCNP monte carlo criticality code (Reference 3.2.10). This code can explicitly model three-dimensional geometries of arbitrary
Calc Package No.: VSC-03.3606 Page 45 of 191 Revision 0 complexity, and can explicitly model the individual densities of each isotope present in each material (that lies in each defined volume within the model). The MCNP5 code is capable of modeling arrays of objects of a given geometry, such as the fuel rods in a fuel assembly. Reflective boundary conditions can also be used to effectively model infinite arrays of a given modeled configuration (such as arrays of casks).
To ensure adequate convergence, and adequate sampling of all fissile regions of the MSB interior, the MCNP analyses use a very large source of 5184 particles per generation. The location of each of these 5184 generated source particles is directly specified. 5184 evenly spaced source locations are defined.
A layer of start locations, each containing 576 particles, is defined at nine different axial elevations.
More layers of start locations (with less separation between them) are placed near the ends of the assembly fuel zones, where the burnup gradients are larger. These are also the more reactive sections of the fuel zone, due to lower burnup levels. The sets of start locations are roughly in the middle of axial zones 1, 2, 4, 7, 12, 15, 17, and 18, with the ninth set lying at the boundary between zones 9 and 10 (i.e., at the axial center of the fuel zone). The 576 particles in each sheet are evenly divided among the 24 assemblies, resulting in 24 source locations in each assembly. These 24 source locations are distributed evenly throughout the 15x15 assembly array, with sources placed in Rows 2, 5, 8, 11, and
- 14. This creates a 5x5 array of source locations, which results in 24 (as opposed to 25) total source locations, because no source point is defined at the instrument tube location in the center of the assembly (in the 8th row and 8th column). The source locations lie directly in the center of the modeled fuel pellet stacks. The source locations are chosen in a way that accounts for the fact that the assemblies are shifted in their fuel sleeves such that they are as close as possible to the MSB center (as discussed in Section 5.5). The same set of 5184 initial source locations is used in all of the criticality analyses except for a few of the sensitivity analyses described in Section 6.2. In these analyses, changes in the MSB configuration result in changes in the assembly fuel rod locations, thus requiring an adjustment in the source locations, to keep them inside fissile material.
The primary MCNP5 analyses perform a total of 500 cycles, or generations. For better converged results, the first 50 cycles are skipped, before the tally of average keff begins. This, along with the large initial source of 5184 particles per generation, results in very low levels of statistical error in the MCNP5 keff results. The level of error is generally ~0.04% (in keff), and never exceeds 0.05%. For some of the sensitivity analyses, only 200 cycles are performed, as that is sufficient to demonstrate a clear reduction in keff for the alternate case in question. In these cases, the alternate cases keff value is lower than that of the base case by several standard deviations, even with the higher error level (standard deviation) that results from using 200 cycles. For the 200-cycle cases, the error level never exceeds 0.1%.
5.3 Selected Cross-Sections The MCNP material IDs (or ZAIDs) of each modeled isotope for the modeled spent fuel isotopes are listed in Table 5-2. These MCNP material IDs identify the isotope along with the cross-section set used by MCNP for that isotope. In all cases, the continuous (as opposed to discrete) MCNP cross-section sets are used. For the spent fuel materials, the cross-sections listed for each isotope in Table 5.3.1-1 of Reference 3.2.8 are used. These are the cross-sections that are used in the DOE Commercial Reactor Critical (or CRC) benchmarks of MCNP for spent (burned) fuel applications.
(Although Reference 3.2.8 specifically applies to the McGuire reactor benchmarks, all of the DOE CRC benchmarks use an extremely similar set of cross-sections.) These benchmark analyses are the basis of the code biases (more specifically, the Upper Subcritical Limit functions calculated in
Calc Package No.: VSC-03.3606 Page 46 of 191 Revision 0 Reference 3.1.5) that are used in this criticality evaluation. To ensure the accuracy and applicability of these USL functions, the same MCNP cross-section sets that were used in the benchmark evaluations are used in these criticality analyses as well. In general, the.50c cross-section library is used, the only exceptions being 239Pu and 153Eu (for which the.55c cross-section library is used), and 109Ag (for which the.60c cross-section library is used).
The Reference 3.2.8 cross-sections are used for all isotopes except for 235U and 238U. For these two isotopes, a special.53c cross-section set, which applies for elevated temperatures (587 K) is available. The DOE CRC benchmark analyses, which model hot-standby (zero power) reactor cores, use these special cross-sections. These analyses, however, are for a (relatively cold) transport cask filled with water from the outside environment. For this reason, the standard, room temperature (294 K).50c cross-section set is used for these fissile uranium isotopes.
The cross-sections used in each non-fuel material mixture modeled in the MCNP analyses are listed in Table 5-2. For each defined mixture, Table 5-2 lists all the elements and/or isotopes included in the mixture, along with the corresponding MCNP material IDs (ZAIDs).
As discussed in Section 4.1.3, the Zircaloy-4 material composition shown in Table 5.3.3-1 of Reference 3.2.8 is modeled in the analyses. The table in the reference also shows the cross-section IDs for all the component isotopes. As with the isotopic composition, the same set of Zircaloy-4 cross-sections are modeled as well. Thus, the cross-sections (i.e., specific ZAIDs) shown for Zircaloy-4 in Table 5-2 are taken directly from Table 5.3.3-1 of Reference 3.2.8. The.60c cross-section set is used for all of the isotopes except oxygen, which uses the.50c library. One cladding isotope for which the cross-section set modeled in these analyses (and shown in Table 5-2) differs from that shown in Reference 3.2.8 is (natural) tin. For tin, the.40c cross-section set is used in these analyses, whereas the DOE analyses used the.35c cross-section set. The reason for the change is that the
.35c cross-section set is not a standard, available cross-section set for MCNP5 (as shown in the cross-section set tables in Reference 3.2.10). Thus, the (available).40c library is used instead.
For the other non-fuel materials, the same,.60c cross-section set is used for the chromium and iron materials, in cases where the individual isotopes are specified (such as the carbon steel material). For other elements, and for materials like the stainless steels of the TS125 cask, where the natural iron and chromium material descriptors (ZAIDs) are modeled, the.50c cross-section set is generally used, since there are no natural chromium and iron.60c cross-section sets available (natural iron uses the.55c set). The.50c set is used for 1H and for 16O, and the.56 set is used for 11B, all of which is consistent with the cross-sections shown in Table 5.3.1-1 of Reference 3.2.8.
5.4 SASQUASH Code As discussed in Section 4.1.4, the set of spent fuel material isotopic concentrations that are modeled in these analyses are far too voluminous to be extracted manually from the SAS2H output files included in Reference 3.1.3. For this reason, BFS developed the SASQUASH code (described in Reference 3.2.11), which automatically extracts the desired results from a set of SAS2H output files specified by the user. As discussed in Section 4.1.4, the SASQUASH code then automatically casts the extracted isotopic concentration results into the form of an MCNP material description card, which can be directly pasted into the MCNP input file.
Calc Package No.: VSC-03.3606 Page 47 of 191 Revision 0 Since each MCNP run models an entire MSB, each SASQUASH run creates a material input block for an entire MSB. Thus, each SASQUASH run reads in 432 SAS2H output files (as there is one SAS2H output file for each of the 18 axial zones of each of the 24 assemblies in each MSB). The SASQUASH code then creates a single, large MCNP input block that includes 432 material composition descriptions. In an MCNP input file, each defined material is denoted (and preceded) by a character string which consists of the letter m, followed by a number, where a different number is used for each defined material. For the 432 defined spent fuel materials in these MCNP input files, a four-digit number is used to identify each defined material, where the first two numbers denote the assembly (or fuel sleeve location) number, as shown in Figure 4-11. The second two numbers denote the axial zone number. Each of the 432 material composition blocks contains a total of 29 isotope concentrations; one for oxygen and one for each of the modeled isotopes listed in Table 5-1.
The SASQUASH input file is actually very simple. First, the user enters a number which denotes the number of SAS2H output files to be processed. This is followed (in the first line of the input file) by a number 0 or 1, which denotes whether SAQAUSH is to be run in manual or automatic mode, respectively. In manual mode, the set of individual SAS2H output files to be treated are listed directly by the user. In automatic mode, a full set of 432 SAS2H output files, which applies to a given MSB, is automatically treated. As discussed in Section 4.1.4, the names of the Reference 4.1.3 SAS2H output files denote the MSB number, assembly number, and axial zone number that its calculated isotopic concentrations apply to. The second and third characters in the SAS2H output file name denote the cask number, whereas the last four characters denote the assembly number and axial zone number. An s and an a are present in every SAS2H output filename, and are the first and fourth characters, respectively. In manual mode, a list of these SAS2H output file names would begin on the second line of the SASQUASH input file. In automatic mode, the user doesnt list the individual SAS2H output filenames. Instead, a single character string containing the first four characters that are present in all 432 SAS2H output file names is entered. Thus, an s, followed by the two characters which denote the number of the MSB in question, followed by an a is entered. At that point, SAS2H expects to see (in the current directory), and automatically treats, the full set of 432 SAS2H outputs that correspond to that MSB. For these analyses, SASQUASH is used in the full, automatic mode.
After listing the set of SAS2H output files to be treated, a number is entered which denotes the column number where the desired data resides. SAS2H automatically produces seven columns of data which list the calculated isotopic concentrations. The last column contains the concentrations that apply to the post-irradiation decay time that was entered by the SAS2H user. The previous six columns contain data for a set of cooling times that are evenly distributed between zero time and the specified cooling time. These analyses are only interested in the isotopic concentrations at the cooling time that was actually specified by the user in Reference 3.1.3. Thus, the number 7 is entered into the SASQUASH input file.
After the column number, a three column set of data is entered which describes the set of isotopes for which concentration data is desired. In the first column, the isotope names, as they would appear in the SAS2H output file, are listed. In the second column, the corresponding MCNP isotope ID (or ZAID) number is given. This includes the element number and isotope number for the isotope, along with a two-character suffix which denotes the MCNP cross-section set that is to be used for that isotope (as discussed above in Section 5.3). When SASQUASH automatically creates the MCNP material cards, it lists the character string shown in this second column before each isotopes concentration. In the third column the SASQUASH user enters a set of numbers which are to be used as adjustment factors to the concentrations given in the SAS2H output files. In some cases, the overall
Calc Package No.: VSC-03.3606 Page 48 of 191 Revision 0 criticality evaluation methodology involves applying adjustment factors to the modeled isotope concentrations, to account for biases and uncertainties in the SAS2H code. In these analyses however, as discussed in Reference 3.1.6, such adjustment factors are not applied. For this reason, a set of 1.0 values is placed in the third data column in all of the SASQUASH inputs.
The parameters discussed above (i.e., the set of SAS2H outputs to be processed, the SAS2H column number the data is to be read from, and the list of isotopes to be considered, along with their MCNP ZAIDs and any applied adjustment factors) are the only data in the SASQUASH input file. An example SASQUASH input file is given in Section 9 (Attachment A) of this calculation. More details on the SASQUASH code and its input file can be found in Reference 3.2.11. A total of 18 SASQUASH runs are performed for these analyses, one for each of the 18 Palisades MSBs. All of these SASQUASH input files are identical to the one shown in Section 9, except for the two numerical characters in the four-character string on the second line, which change for each MSB (i.e., 01-19).
The result of each SASQUASH run is a single, large block of data that can be directly pasted into the material card section of the MCNP input file for the MSB in question. Each such block contains 432 MCNP material composition definitions. Each such sub-block starts with a material identifier that consists of an m followed by four digits that denote the assembly number and axial zone number of the material (as discussed earlier). Each sub-block also contains two rows of comment data which state the overall density of the mixture, the assembly and zone number it applies to, and the burnup and initial 235U enrichment that the spent fuel composition is based upon. After these title cards, each material composition block contains a set of 29 MCNP material identifiers (ZAIDs) along with the corresponding set of 29 concentration values. The same set of isotopes, and corresponding selected cross-section sets are used for all of the spent fuel material compositions in all of these analyses (i.e.,
all 432 x 18 compositions). These MCNP spent fuel composition blocks are too voluminous to present in the body of this calculation file. However, as discussed in Section 4.1.4, each of the MCNP input and output files, given in the CD-ROM attached to this calculation, includes the entire spent fuel material block (as output by SASQUASH) for each of the 18 MSBs.
In addition to the individual isotopic densities (and the associated MCNP material card block),
SASQUASH determines the total density of each material mixture, by summing the densities of the 29 modeled isotopes. At the end of the SASQUASH output file (after the large isotope density block),
these total densities are listed for each of the 432 defined spent fuel materials. In addition to pasting the large isotopic density block into the MCNP input file, these overall material densities must be pasted into the MCNP cell cards. This is done using a text editor that can select columns of data within a text file, and edit such columns. The cell numbers for the fuel rod regions containing the spent fuel material are all four digits long, where the first two digits denote the assembly number and the last two digits denote the axial zone number. Thus, the four-digit cell numbers correspond exactly to the four-digit material card numbers (discussed above) that are listed in the MCNP material block for the spent fuel material that will occupy that cell.
SASQUASH produces an output (.o) file which contains all of the data discussed above, along with a range of additional descriptive/diagnostic data for the run. SASQAUSH also produces a.fort16 file, which only lists the MCNP material composition block and the total density data that are used in the MCNP input files.
Calc Package No.: VSC-03.3606 Page 49 of 191 Revision 0 5.5 Analyses Performed Two sets of MCNP analyses are performed for this criticality evaluation. First, a set of analyses is performed to determine the most reactive physical configuration that could occur for the configurations described in Section 4.1. After the most-reactive configuration is determined, the set of 18 primary criticality evaluations, corresponding to the 18 loaded MSBs at Palisades, are performed. These analyses are described in the sections below.
5.5.1 Most Reactive Configuration Analyses These criticality evaluations consider (radial) dimensional tolerances in the MSB interior components, as well as density variations in the water inside the cask and/or MSB. On the cask exterior, the analyses conservatively model an infinite array of TS125 casks, and consider variations in the pitch of this cask array, as well as variations in the density of the moderator (water) between the casks. These analyses also consider both normal-and accident-condition TS125 cask configurations, as well as a single TS125 cask surrounded by infinite water reflection (in accordance with 10CFR71 requirements).
The configuration described in Section 4.1 is considered to be the most reactive configuration, largely based on theoretical considerations. All of the sensitivity (or most reactive configuration) analyses presented in Section 6.2 confirm these initial assumptions, by showing that no other potential configuration is more reactive than the one presented in Section 4.1. In some cases, the Section 6.2 analyses show a clear reduction in reactivity for the alternate configuration(s). In other cases, the analyses show no measurable difference in keff (to within the level of statistical error in the MCNP results), thus showing that the effect or change in question has no measurable effect on reactivity.
The sensitivity analyses consider changes (i.e., dimensional tolerances) in the width and thickness of the carbon steel fuel sleeves, in the presence or absence of the MSB edge support structures, in the thickness of those support structures, and in the diameter and thickness of the MSB radial shell. For each of these dimensions, a sensitivity analysis is run where the parameter in question is moved to the other end of the tolerance range (from the bounding value presented in Section 4.1), and it is shown that this causes keff to decrease (or not change).
After the dimensional tolerance analyses are performed, moderator density studies are performed. The density of the water inside the cask and MSB is reduced from 1.0 g/cc (the density modeled in the Section 4.1 configuration) all the way down to 0.0, with a large set of intermediate densities being analyzed as well. The analyses will confirm that reduced densities reduce keff.
At this point, the cask exterior (cask array) analyses are performed. A set of six surfaces are modeled which define a hexagon around the cylindrical cask exterior. Reflective boundaries are placed on these six surfaces, as well as on the top and bottom outer surfaces of the cask. This effectively models an infinite hexagonal array of TS125 casks. For the first cask array analyses, the hexagon is defined such that its wrench size is equal to the outer diameter of the cask body. This models a close-packed array, with the casks in contact with each other. In subsequent analyses, the six surfaces are modified so that the wrench size of the reflective hexagon is increased to various multiples of the cask diameter. In other words, several cask array pitch values are studies. In addition to varying the cask array pitch, several densities for the water between the casks are considered. As discussed in Section 6.2, the primary (Section 4.1) criticality analyses simply model reflective boundaries on top, bottom, and outer radial surfaces of the cask body (as shown in Figure 4-2). These cask array analyses
Calc Package No.: VSC-03.3606 Page 50 of 191 Revision 0 will show that no other external configuration is more reactive than the one assumed in the primary analyses. A hexagonal array is considered for the cask exterior configuration analyses, as opposed to a square-pitch array or some type of irregular array. A hexagonal array is considered at least as reactive as other types of cask array because it maximizes the cask packing fraction, and maximizes the view factor for the cask (i.e., maximizes the degree to which other casks are viewed by a given cask).
In addition to the cask array analyses, analyses are performed for normal-condition casks as well as single (normal-condition) casks surrounded by infinite water reflection. The bounding configuration described in Section 4.1 is based upon an accident condition cask configuration, where the external neutron shield structures are removed. The normal-condition configuration (with the neutron shield structure present) is expected to be less reactive, because the neutron absorber material (B4C) present in the neutron shield material will make it a worse reflector than water. This sensitivity analyses will demonstrate that the normal-condition configuration (with the neutron shield structure present) is less reactive (or at least no more reactive) than the accident condition configuration. In accordance with 10CFR71 requirements, a single normal-condition cask surrounded by infinite water reflection is also modeled., and shown to be no more reactive than the bounding, Section 4.1 configuration.
As discussed in Section 4.1.1, the assemblies are modeled as being pushed, within their fuel sleeves, as close as possible to the center of the MSB. No sensitivity analyses are performed here to determine the most reactive set of assembly positions, as these analyses were already performed in Reference 3.1.2.
These analyses showed that moving all assemblies as close as possible to the MSB center maximizes reactivity.
All of the most-reactive configuration (or sensitivity) analyses model Palisades MSB #5, and its associated spent PWR assembly contents, inside the MSB. The burnup and enrichment of the assemblies in MSB #5 are very representative of the general Palisades spent PWR fuel inventory (particularly for the MSBs with the lowest criticality margins), and it is considered highly unlikely that the most reactive configuration would be different for any of the other casks. As discussed in Section 6.2, the configuration that is most reactive is based upon fundamental criticality principles that should apply for any system with fresh water and a carbon steel basket structure (with no flux traps or fixed absorbers). Small changes in spent fuel isotopic composition should not change any of the conclusions of these analyses.
5.5.2 Primary Criticality Analyses Once the bounding nature of the configuration described in Section 4.1 has been confirmed, the primary criticality analyses are performed, based on that configuration. A total of 18 MCNP analyses, corresponding to the 18 loaded Palisades MSBs, are performed. The only differences between the criticality models, for each MSB, are small changes in the geometries of the assemblies in each fuel sleeve, and changes in the isotopic composition of the spent fuel material in each assembly. Table 4-2 describes all of the assembly types, and associated physical configurations, that exist in the Palisades MSBs. Table 4-3 gives the assembly type that exists in each fuel sleeve of each MSB. The information given in Table 4-2 and Table 4-3 is sufficient to explicitly define the physical geometry of each loaded assembly.
For the spent fuel material compositions, the SASQUASH code is run for each MSB, as discussed in Section 5.4. This creates an large, MCNP material block (containing 432 separate material composition descriptions/definitions) that can be pasted into each MCNP5 input file. Using this
Calc Package No.: VSC-03.3606 Page 51 of 191 Revision 0 approach, the specific spent fuel material composition, which occurs in each of the (defined) 18 axial zones of each of the 24 assemblies in each of the 18 MSBs is explicitly defined and accurately modeled. These 18 MCNP analyses produce 18 (overall MSB/cask) keff values. These keff values are the primary results of this calculation. The addition of bias and uncertainty factors (i.e., keff values) to these results, and their comparison to associated limits and requirements, is discussed below in Section 5.6.
5.6 Determination of Final Keff After the primary criticality analyses (discussed in Section 5.5.2) are performed, and the keff results are extracted, an evaluation is performed to determine whether each cask meets the 10CFR71 criticality criteria. This evaluation accounts for various effects as well as biases and uncertainties in the MCNP code, as well as the SAS2H fuel depletion code used to calculate the spent fuel isotopic concentrations.
First, a keff penalty (keff) is added to account for the effects of horizontal (as opposed to axial) variations in assembly burnup. No penalty factor is required for axial burnup variation effects, as the axial burnup profile (and its effects on spent fuel isotopic compositions) is modeled directly in these (and the Reference 3.1.3) analyses. Horizontal burnup variation keff penalty factors are calculated, for Palisades fuel assemblies, as a function of assembly-average burnup, in Reference 3.1.2. Using the Reference 3.1.2 results data, a keff penalty factor is determined for each MSB, based upon the MSB-average fuel burnup level. As discussed in Section 6 of Reference 3.1.2, no adjustment factor to the keff penalty, to account for cooling time effects, need be applied for Palisades fuel.
After the horizontal burnup keff penalty factor is added, the effects of MCNP and SAS2H code biases and uncertainties are considered. To account for the MCNP code bias and uncertainty, Upper Sub-critical Limit (USL) functions are determined in Reference 3.1.5. These give a maximum allowable final keff value, as a function of various cask system physical parameters (e.g., assembly rod pitch, initial enrichment, burnup, assembly array water-to-fuel volume ratio, etc). For each MSB, average values of each of the defined physical parameters are determined, and each value is plugged into its corresponding (linear) USL function from Reference 3.1.5, to determine a corresponding USL value.
Then the lowest of the USL values is then chosen as the keff limit. The Reference 3.1.5 USL functions are based upon an administrative margin of 5% (i.e., a final keff limit of 0.95). The Reference 3.1.5 USL calculations are performed in accordance with the guidance given in Reference 3.2.12, which in turn is accordance with the general NRC guidance given in Reference 3.2.13. It should be noted that a USL value can be cast in terms of a keff penalty. For example, a USL value of 0.94 could also be interpreted, or applied, as a 1.0% keff penalty, which is applied before comparing a calculated keff value to the administrative limit of 0.95. This will allow the MCNP code bias and uncertainty penalty to be more easily added to a similar penalty that will be determined for the SAS2H code (as is discussed below).
Analyses presented in Reference 3.1.6 determine a set of keff penalties which account for the effects of biases and uncertainties in the spent fuel isotopic compositions calculated (in Reference 3.1.3) by the SAS2H code. These keff penalties are described by a set of USL functions similar to those determined for the MCNP code in Reference 3.1.5. These isotopic (SAS2H) USL functions are determined using the same Reference 3.2.12 methodologies that were used in the Reference 3.1.5 MCNP benchmark evaluations. Thus, there are two sets of USL functions (for MCNP and for SAS2H) that must be combined to yield an overall keff (or USL value) for these analyses.
Calc Package No.: VSC-03.3606 Page 52 of 191 Revision 0 These penalties are combined, in this evaluation, using the method described in Reference 3.1.6. Each USL function is actually a combination of a linear best-guess function (calculated based on a linear regression of the benchmark data) and a fixed, bounding uncertainty factor (W) that is applied to the best-guess line. The single uncertainty factor is applied to the whole best-guess line, effectively sliding it down by the value of W. Reference 3.1.6 currently casts the SAS2H USL function as a linear, keff penalty factor function. The penalty factor given in Reference 3.1.6 is based upon the best-guess linear USL function, as opposed to the bounding USL function (which includes the uncertainty effects, i.e., had the W factor applied). In Reference 3.1.6, the W factor is listed separately, alongside the linear keff penalty function. The MCNP USL functions presented in Reference 3.1.6 can also be expressed as a linear keff penalty function. The W factor can also be separated (from the best-guess line) in the Reference 3.1.5 results. Thus, from these two references, we have two best-guess keff penalty factor functions, and associated W factors, for each of the evaluated MSB physical parameters.
With the above data, an overall (MCNP + SAS2H) keff penalty factor equation, and corresponding USL function, is determined as follows for each of the evaluated system physical parameters. Based on the Reference 3.1.5 and 3.1.6 data, we have two linear, best-guess keff penalty equations, along with two associated W factors that represent the level of uncertainty in the determined keff penalties (and/or USL values). A linear function representing the overall (SAS2H + MCNP) best-guess keff penalty, versus each physical parameter, is determined by simply adding the linear SAS2H and MCNP keff penalty functions. Both the slope and Y-intercept values (that describe the linear functions) are simply added together to yield an overall slope and Y-intercept value. After the linear, best-guess keff penalty function is determined, the effects of uncertainties must be accounted for, through the application of an overall (SAS2H + MCNP) W factor, which is calculated as described below.
The SAS2H and MCNP W factors (calculated in References 3.1.5 and 3.1.6, respectively) represent the uncertainties in code biases (or USL values) for SAS2H and MCNP, based upon the spreads of the (calculated vs. measured) keff values produced in the respective benchmark evaluations. The presented W factors correspond to 95% statistical confidence level. The biases in MCNPs calculated keff values, and the biases in keff due to associated bias in the isotopic concentrations calculated by SAS2H are considered to be independent of each other, as they are two separate codes and analysis methods. The statistical uncertainty in the keff results, given in the MCNP output files, is also considered statistically independent from both W factors. For this reason, all three of these uncertainty factors (the MCNP W factor, the SAS2H W factor, and the MCNP keff result uncertainty) can be added statistically. The one-sigma statistical error level quoted in the MCNP output files is doubled so that it represents a confidence level of over 95%. The resulting value is squared, and added to the squares of the MCNP and SAS2H W factors, to yield an overall variance for the overall keff penalty. The square root of this value is then taken to yield an overall uncertainty factor that corresponds to an overall statistical confidence level (for the entire process) of 95%. This process is repeated to determine the overall W (or uncertainty) factor for each of the evaluated physical parameters.
After the W factor is determined for each parameter, a final, overall USL function is determined for each parameter based upon the overall (SAS2H + MCNP) best-guess linear keff penalty function and the overall W value. The slope of the keff penalty function is reversed (multiplied by -1.0) to yield the slope of the USL function. The Y-intercept of the keff penalty function is subtracted, along with the overall W factor, from the keff criterion of 0.95 (which represents an administrative margin of 5%).
The result is a linear equation giving the maximum allowable MCNP-calculated keff value, as a
Calc Package No.: VSC-03.3606 Page 53 of 191 Revision 0 function of the physical parameter value in question for the system being analyzed. Note that since the statistical error in the raw calculated keff results is already included in the overall W factor upon which the final USL function was based, this error level does not need to be added to the raw (MCNP-calculated) keff value before it is compared to the USL value. In addition to the final, linear USL function, a maximum saturation value (that the final USL value cannot exceed) is determined for each evaluated physical parameter. This saturation value, which is equal to 0.95 minus the overall W value, is based upon the principle that a negative code bias (that actually increases the calculated criticality margin) may not be applied.
After the final USL functions (and saturation values) are determined for each evaluated system physical parameter, the acceptability of each MSB is determined as follows. The average value for each of the five evaluated parameters (rod pitch, water-to-fuel volume ratio, initial enrichment, burnup, and the AENCF neutron spectrum parameter) is determined for each MSB. Based upon these MSB-average physical parameter values, and the corresponding linear USL functions, a MSB-specific USL value is determined for each of the parameters. The lowest of the five USL values is then conservatively selected. These final USL values represent the maximum allowable final keff value for each MSB. The final keff value is determined by adding the horizontal burnup variation keff penalty to the raw keff value output by MCNP for each MSB.
The above evaluation is described and summarized by the formulas below.
The final criticality criterion is given by:
min USL k
k Hslant eff MCNP eff
+
where keff-MCNP is the raw, calculated keff value taken directly from the MCNP output file, keff-Hslant is the keff penalty from Reference 3.1.2 that accounts for the effects of horizontal burnup variations, and USLmin is the lowest of the five USL values that are determined, for each MSB, based upon the MSB-average values of the five evaluated physical parameters and the associated overall USL functions determined for each parameter (as discussed above).
The USL value for each evaluated physical parameter is given by the function:
(
) (
)
05
.0 2
2
+
+
+
=
total MCNP H
SAS W
x B
B A
A USL where the A values are the Y-intercept values of the SAS2H and MCNP USL functions, the B values are the slopes of the SAS2H and MCNP USL functions, x is the MSB-average value of the physical parameter in question, and Wtotal (determined below) is the overall W (or uncertainty) factor, which represents all the uncertainties associated with the entire analysis process, including those associated with the MCNP code bias, the SAS2H code bias, and the raw calculated keff results.
Calc Package No.: VSC-03.3606 Page 54 of 191 Revision 0 The slope and Y-intercept for the MCNP USL function are given directly in Reference 3.1.5. The SAS2H slope and Y-intercept values are determined (for each physical parameter) from the corresponding keff penalty equations given in Reference 3.1.6, by reversing the sign of their slope values, and subtracting their Y-intercept values from 1.0. The value of 0.05, which is subtracted from each USL formula, is the administrative margin that represents a criticality criterion of keff < 0.95.
The overall W factor, which represents the overall uncertainty of the entire process (based upon a statistical confidence level of 95%) is determined as discussed above and as shown in the equation below:
(
)
2 2
2 2
2 H
W W
+
+
=
where MCNP is the (one sigma) statistical error level in the calculated keff result listed in each MCNP output, WMCNP is the (95% confidence level) W factor given in Reference 3.1.5 for the MCNP code bias (or USL) function, and WSAS2H is the (95% confidence level) W factor given in Reference 3.1.6 for the SAS2H code bias function.
Calc Package No.: VSC-03.3606 Page 55 of 191 Revision 0 Table 5-1 - Modeled Spent Fuel Isotopes and Associated Cross-Sections Isotope MCNP ID (ZAID)1 234U 92234.50c 235U 92235.50c2 236U 92236.50c 238U 92238.50c2 237Np 93237.50c 238Pu 94238.50c 239Pu 94239.55c 240Pu 94240.50c 241Pu 94241.50c 242Pu 94242.50c 241Am 95241.50c 243Am 94243.50c 95Mo 42095.50c 99Tc 43099.50c 101Ru 44101.50c 103Rh 45103.50c 109Ag 47109.60c 133Cs 55133.50c 143Nd 60143.50c 145Nd 60145.50c 147Sm 62147.50c 149Sm 62149.50c 150Sm 62150.50c 151Sm 62151.50c 152Sm 62152.50c 151Eu 63151.50c 153Eu 63153.55c 155Gd 64155.50c 16O 8016.50c Notes:
- 1. Taken from Table 5.3.1-1 of Reference 3.2.8.
- 2. The.50c cross-section set, as opposed to the.53c set listed in Table 5.3.1-1 of Reference 3.2.8, is used for the reasons discussed in Section 5.3.
Calc Package No.: VSC-03.3606 Page 56 of 191 Revision 0 Table 5-2 - Modeled Non-Fuel Isotopes and Associated Cross-Sections Isotope1 MCNP ID (ZAID) 1H 1001.50c 10B 5010.50c 11B 5011.56c C-nat 6000.50c 16O 8016.50c 27Al 13027.50c Si-nat 14000.50c 31P 15031.50c 32S 16032.50c Cr-nat2 24000.50c 50Cr 24050.60c 52Cr 24052.60c 53Cr 24053.60c 54Cr 24054.60c 55Mn 25055.50c Fe-nat2 26000.55c 54Fe 26054.60c 56Fe 26056.60c 57Fe 26057.60c 58Fe 26058.60c Ni-nat 28000.50c Zr-nat 40000.60c Mo-nat 42000.50c Sn-nat 50000.40c Pb-nat 82000.50c Notes:
- 1. The -nat suffix refers to the natural element specification in the MCNP input, and its associated, effective cross-section set. When this material definition is used, the isotopic breakdown that occurs in nature for the element in question is automatically assumed by MCNP. For all the listed elements except Cr and Fe, either this natural element specification is shown, or all the modeled individual isotopes are shown (for elements where the natural element specification is not used).
- 2. The isotopic breakdowns for chromium and iron are explicitly defined in the Zircaloy-4 and carbon steel material composition cards. For all other materials where these elements appear (e.g. stainless steels), the natural element material card is used.
Calc Package No.: VSC-03.3606 Page 57 of 191 Revision 0
- 6. CALCULATIONS Mathematical calculations performed in support of this calculation are presented in this section, along with the results of the various computer (MCNP5) calculations. Material composition calculations for the B4C/Al2O3 neutron absorber material (in the neutron absorber rods present in many Palisades assemblies), and the borated NS-4FR neutron shielding material (which is present in the normal-condition cask configuration that is considered in the sensitivity analyses) is are presented in Section 6.1. The most reactive configuration (or sensitivity) analyses, and their results, are presented in Section 6.2. The primary criticality analyses, which calculate keff for each of the 18 loaded MSBs (based on the most reactive configuration determined in Section 6.2), are presented in Section 6.3.
Finally, the calculations discussed in Section 5.6, which demonstrate compliance with 10CFR71 requirements for each MSB, are presented in Section 6.4.
6.1 Material Composition Calculations As discussed in Section 4.1.3, the active region of the Palisades assembly neutron absorber rods contain a mixture of B4C and Al2O3, while the inert regions of these rods contain pure Al2O3. As shown in Table 4-6, there are three different B4C/Al2O3 mixture, containing three different B4C concentrations. Table 4-6 lists the B4C weight percentage for each of these mixtures., along with the their overall densities. The overall density for the pure Al2O3 (inert) material is also given.
The isotopic densities for each of these four material mixtures can be calculated using the data provided in Table 4-6. These calculations are presented in the spreadsheet Al2O3-B4C.xls, which is included on the CD-ROM attached to this calculation. The user enters the overall density of the B4C/Al2O3 mixture, along with the B4C weight percentage (both from Table 4-6), and the spreadsheet determines the density for each isotope in the mixture.
The calculations are based upon a 19.9% atom fraction of 10B in boron, as well as the precise atomic weight for 10B, 11B, carbon, oxygen, and aluminum, all of which are taken from Reference 3.2.6, and are shown in the spreadsheet. Using the isotopic weight data, the weight fractions of 10B and 11B, in boron, are determined from the 19.9% 10B atom fraction. The average atomic weight for boron is determined from the 10B atom fraction, and this is used, along with the carbon atomic weight, to determine the weight fraction of carbon in B4C. The density of B4C in a given B4C/Al2O3 mixture is determined from the B4C weight percentage and overall material density (shown in Table 4-6 and entered into the spreadsheet by the user). As the weight fraction of carbon is known (as discussed above), the densities of boron and carbon in the mixture can be determined. Then the 11B density can be determined, based on the isotopic weight percentages determined as discussed above. The density of 10B is not modeled (or calculated). As discussed in Section 4.1.3, the 10B, and its associated density, is conservatively neglected in the analyses. The density of Al2O3 in the mixture can also be determined from the (user entered) B4C weight percentage and overall material density. The weight fractions of aluminum and oxygen are determined based upon the Al2O3 chemical formula, and the atomic weights for oxygen and aluminum. Using these weight fractions, the densities of aluminum and oxygen are determined from the overall Al2O3 density. To determine the elemental densities for pure Al2O3 (inert) material, the user simply enters a B4C weight percentage of 0%, along with the overall density of 3.97 g/cc.
Calc Package No.: VSC-03.3606 Page 58 of 191 Revision 0 The results of these material composition calculations, from the Al2O3-B4C.xls spreadsheet, are listed in Table 6-1. Densities are listed for 11B, carbon, oxygen, and aluminum. As shown in Table 5-2 (and discussed in Section 5.3), the MCNP analyses model all of the oxygen as 16O, and all of the aluminum as 27Al, whereas natural carbon is modeled. The element/isotope names listed in the left column of Table 6-1 are stated accordingly.
As discussed in Section 4.1.1, the primary analyses are based upon an infinite array of accident-condition casks, as this is considered the most reactive configuration. In the accident-condition configuration, the cask neutron shield structure is removed (i.e., absent). In some of the sensitivity analyses presented in Section 6.2, however, the normal-condition cask configuration is analyzed, and the neutron shield structure (and material) is present. Thus, the elemental/isotopic composition of the neutron shield region of the TS125 cask must be determined.
A description of pure NS-4FR neutron shield material is given in Section 5.17 of Reference 3.1.4. The NS-4FR neutron shielding material used in the TS125 cask has a specified (minimum) density of 1.62 g/cc and a (minimum) B4C weight fraction of 2.0%. Along with this data, Reference 3.1.4 states that the weight percentages of the constituent elements are 5.88% hydrogen, 27.15% carbon, 1.96%
nitrogen, 41.94% oxygen, 21.07% aluminum, and 2.0% B4C (where the breakdown of B4C is 78.3%
boron and 21.7% carbon with a 19.9% 10B atom fraction in boron). Spreadsheet Al2O3-B4C.xls is used to determine 10B, 11B, and carbon weight fractions from the data given above. This is multiplied by the overall B4C weight fraction of 2.0% to give the weight percentages of 10B, 11B, and carbon in the overall NS-4FR material. The carbon in the B4C is added to the carbon in the (unborated) NS4 material to yield an overall carbon weight percentage. After all the constituent element/isotope density fractions are determined, they are multiplied by the overall material density of 1.62 g/cc to yield absolute densities for each constituent.
After the component densities for the (2% B4C) NS-4FR neutron shield material are determined, they are modified to account for the presence of the carbon steel heat transfer fins in the TS125 cask neutron shield region. In these analyses, the fins are not modeled explicitly, but are instead smeared into the NS-4FR neutron shield material to make a single homogenous material that completely fills the annular neutron shield region. The heat transfer fins occupy 5.2% of the neutron shield cavity volume (Reference 3.1.7). They consist of carbon steel. For these analyses, where the fins only represent a small (5.2% volume fraction) component of a material, the carbon steel fins are simply modeled as pure iron (and adequate approximation, as the carbon steel is over 98% iron). Thus, a final step in the material composition calculations is to multiply all of the elemental/isotopic densities, determined above for solid neutron shield material, by a factor of 0.948. Then an iron material density, equal to 5.2% of carbon steels full density of 7.8218 g/cc, is included.
The material composition calculations for the neutron shield region are summarized in Table 6-2.
6.2 Most Reactive Configuration (Sensitivity) Analyses The primary criticality analyses presented in Section 6.3 are based upon the MSB and cask configuration described in Section 4.1. An accident-condition cask configuration (with the radial and bottom end neutron shield structures removed) is modeled. Reflective boundaries are placed on the outer axial and radial surfaces of the cask model/geometry shown in Figure 4-2. This effectively models (and bounds) an infinite array of casks. Full density (1.0 g/cc) water is modeled inside the MSB, and in the radial and axial gaps between the MSB and the TS125 cask (i.e., in the TS125 cask
Calc Package No.: VSC-03.3606 Page 59 of 191 Revision 0 cavity). The analyses model the minimum fuel sleeve width and wall thickness dimensions shown in Table 4-1. A minimum MSB radial shell diameter is assumed, and the thickness of the MSB shell and all of the MSB edge structure components are all set to their maximum values. Whereas the actual edge structures consist of three large axial belts (with large, 28-inch axial water gaps between them),
the edge structures are modeled as extending over the entire axial length of the fuel sleeves. As discussed in Section 4.1.1, nominal values are modeled for the radial TS125 cask dimensions, as well as the axial MSB and cask dimensions (as variations in these dimensions are known to have no significant effect on reactivity). As discussed in Section 4.1.1 and 5.5.1, the spent fuel assemblies are shifted within their sleeves so that they are as close as possible to the MSB center. The Reference 3.1.2 demonstrate this to be the most reactive assembly shift configuration.
A series of sensitivity analyses, presented in the following sub-sections, demonstrate that the configuration described above (and in Section 4.1) is the bounding, most-reactive possible configuration. In the sensitivity analyses, all the cask system parameters discussed above will be set to alternate (possible) values, and it will be shown that these changes either cause reactivity to decrease, or have no measurable effect on reactivity. For all of these sensitivity analyses, the base case is the primary analysis for Palisades MSB #5 (which is documented in the MCNP5 output file pal05o).
Each of the sensitivity analyses involve incremental changes to this specific MCNP model. Thus, all of the sensitivity analyses are based upon the assembly physical geometries, and spent fuel material compositions, that occur for MSB #5. It is assumed that the conclusions of the sensitivity analyses will apply for the other 17 MSBs as well, as discussed in Section 4.3.
6.2.1 Fuel Sleeve Dimension Analyses The outer width of the carbon steel fuel sleeves is 9.2 +/- 0.125 inches (as shown in Table 4.1.1-1 of Reference 3.1.1). The fuel sleeve wall thickness is 0.1875 inches, plus 0.03 inches, minus 0.01 inches.
The primary analyses are based upon the minimum sleeve width of 9.075 inches and the minimum wall thickness of 0.1775 inches. This reduces the neutron absorption in the carbon steel sleeve walls by minimizing their thickness, and by reducing the water around the assemblies in each fuel sleeve (which acts to thermalize the neutron flux and thus increase absorption in the fuel sleeve walls). Thus, the primary (Section 4.1.1) configuration is expected to be the most reactive. To demonstrate this, three alternative configurations are analyzed. One alternate configuration increases the sleeve width to its maximum (9.325 inch) value. The second increases the fuel sleeve wall thickness to its maximum (0.2175 inch) value. Finally, the third alternate configuration does both, applying the maximum fuel sleeve width and maximum fuel sleeve wall thickness.
There are generally no other changes made in the primary criticality models, other than the fuel sleeve dimensional changes discussed above. There are two exceptions to this, however. First of all, when the width of the fuel sleeves is increased, the size of the fuel sleeve array increases, such that it no longer fits within the MSB edge structure configuration given in the primary models. Thus, the radius of the Radial Support Plates have to be increased (from 28.975 inches to 29.489 inches), and the locations of the Outer Support Wall and the Outer Support Bar have to be moved outward so that they remain just in contact with the outer edges of the fuel sleeve array. This actually required a reduction in the modeled thickness of the Radial Support Plates, in order for them to fit inside the MSB shell (whose dimensions were not altered). The second change concerns the 5184 particle start locations discussed in Section 5.2. As the width of the fuel sleeve is increased by 0.25 inches, the assemblies in the second ring of fuel sleeves (out from the MSB center) are moved outwards by 0.25 inches. The outer ring of fuel sleeves are moved out by 0.5 inches. To keep the source locations inside fissile
Calc Package No.: VSC-03.3606 Page 60 of 191 Revision 0 material, the X and Y coordinates for the source points in these outer fuel sleeves are increased by 0.25 and 0.5 inch increments accordingly.
The results of the fuel sleeve sensitivity analyses are presented in Table 6-3. MCNP-calculated keff values are shown for minimum and maximum fuel sleeve widths, and for minimum and maximum fuel sleeve wall thicknesses. The results show, as expected, that the primary (Section 4.1.1) configuration, with minimum sleeve width and minimum wall thickness, is the most reactive by a measurable margin (far larger than the ~0.04% level of statistical error in the keff results).
6.2.2 MSB Edge Structure/Reflector Sensitivity Analyses As discussed above in Section 6.2, the MSB edge structure is axially periodic, with large sections alternately filled with steel structure or water. The storage (10CFR72) criticality analyses modeled the steel structure over the entire axial length of the MSB. This is a conservative assumption for the storage analyses, where borated water is present in the MSB, as steel is clearly a better reflector than borated (i.e., poisoned) water, which thermalizes and then quickly absorbs any neutrons in the reflector region. For fresh water, however, it is not clear whether steel or water is a better reflector. Thus, sensitivity analyses must be performed to confirm the conservatism of the assumption made in the Reference 3.1.1 criticality models. Therefore, an alternate criticality analysis was performed where all of the carbon steel in the MSB edge structures (i.e., in the Radial Support Plates, the Outer Support Wall and the Outer Support Bar) was replaced by water.
The results of this analyses are presented in MCNP output file noedgeo. The calculated keff for this configuration, where the entire steel edge structure has been removed, is 0.87761, as compared to the primary (Section 4.1.1) analysis MSB #5 calculated keff value (given in MCNP output file pal05o) of 0.87766. Thus, the results show an insignificant change in keff (well within the statistical error level in the keff results) from removing the steel and replacing it with water. Based upon these results, it is concluded that there is no evidence that replacing steel with water around the fuel sleeve array increases keff. Given the very small magnitude of the change, it is also concluded that trading small volumes of steel for water basically has no effect on reactivity. If switching a very large volume of steel around the fuel sleeve array to water only has a negligible (~0.005%) effect on keff, then small tradeoffs between steel and water (such as those which could result from dimensional tolerances) will clearly have no significant effect.
Based upon the above results, it is concluded that the configuration modeled in the Reference 3.1.1 storage criticality analyses remains bounding for MSBs filled with fresh (unborated) water. Thus, the assumptions of having the edge structures modeled over the full axial length, modeling the minimum MSB radial shell diameter, modeling the maximum MSB radial shell thickness, and modeling the maximum edge structure component thicknesses, are all retained in these analyses (as shown in Table 4-1). Also, based on the results above concerning the lack of effect of trading water for steel (and vice versa) in regions outside the fuel sleeve array, it is concluded that the use of nominal values for all TS125 cask component dimensions, and for MSB component axial dimensions is adequate (as tolerance variations in the dimensions of these components will clearly have no effect on keff).
6.2.3 Internal Moderator Density Analyses In accordance with 10CFR71 (and Reference 3.2.13) requirements, reduced cask interior moderator (water) densities are evaluated. The density of the water present in all empty volumes inside the
Calc Package No.: VSC-03.3606 Page 61 of 191 Revision 0 TS125 cask (i.e., in both the cask and MSB cavities) is varied between 1.0 g/cc and 0.01 g/cc (effectively zero water density). The results of these analyses are presented in Table 6-4. As the results clearly show, keff drops off significantly, and steadily, as the water density is decreased. Thus, these analyses confirm that a full water density of 1.0 g/cc in the cask interior volumes is the bounding (conservative) assumption.
6.2.4 External Cask Array Analyses As discussed in Section 5.5.1, an infinite hexagonal array of accident condition casks is modeled by modeling a hexagon, with six reflective surfaces, around the cask body. These six reflective surfaces are modeled in lieu of the cylindrical reflective surface placed on the outer radial surface of the cask in the primary analysis models. The reflective surfaces on the top and bottom ends of the cask body are retained. In these analyses various cask spacing levels (or pitches) are evaluated, along with various water densities between the casks in the array. The cask spacing (or array pitch) is varied by changing the wrench size of the hexagon that is modeled around the cask (with the effective cask array pitch being equal to this wrench size).
The studied cask pitches range from a tight-packed array where the casks are in contact with each other (i.e., a cask array pitch equal to one cask diameter) to a very widely spaced array (with an array pitch of 10 cask diameters). A total of nine cask array pitches are analyzed. The next highest array pitch value (after the tight-packed array value) is equal to the diameter of the normal-condition cask configuration (which includes the neutron shield structure). This case will be used later (in Section 6.2.5) for comparison with normal-condition analyses (which model an infinite array of normal condition casks). The analyses also consider water densities (between the casks) that range from 1.0 to 0.0 g/cc. The results of the external cask array analyses are presented in Table 6-5. Water densities of 0.0 g/cc and 1.0 g/cc are analyzed for all of the studied cask pitch values. For three of the cask pitch values (one cask diameter, ten cask diameters, and one normal-condition cask diameter), four intermediate water densities are analyzed as well.
The analysis results presented in Table 6-5 show that changes in the cask array pitch, or the density of the water between the casks, has no measurable effect on criticality. For the full density water case, all cask array pitch values other than the close-packed-array value yield keff values that are identical, down to the last decimal place. For the 20%, 40%, 60%, and 80% water densities, the 1.25 cask diameter pitch and 10 cask diameter pitch cases show identical keff results, so it is presumed that the same keff value will apply for all cask array pitch values in between (thus obviating the need to perform those analyses).
Basically, the results show that there is no neutron communication between casks. All of the values shown in Table 6-5 are the same, to within the statistical error level of the MCNP5 keff results. For all cask pitch values of 1.25 or more, the keff values are literally identical, to the last decimal place, for all but the zero-water=density cases, suggesting that literally no neutrons pass between casks. All variations between the Table 6-5 results can be explained as purely statistical variations. There are no trends in the Table 6-5 data between keff and either cask pitch or external water density. Instead, the distribution of keff values shows random scatter. The average value of the keff results shown in Table 6-5 is 0.87761 (assuming that identical values are not counted multiple times). This is extremely close to the design-basis (primary analysis) value of 0.87766. Also, all of the Table 6-5 keff values lie within the statistical error level (i.e., within ~2) of the design-basis value, as well as their mean.
Calc Package No.: VSC-03.3606 Page 62 of 191 Revision 0 Based on the above, it is concluded that the cask array pitch and cask exterior water density has no measurable effect on reactivity. It is also concluded that the configuration modeled in the primary analyses, where a reflective surface is simply placed on the outer (cylindrical) surface of the accident-condition cask body, bounds all cask exterior configurations (i.e., all cask array types or configurations, all cask array pitch values, and all water densities, or other types of materials, that may occur outside or in between the casks).
It should be noted that the placement of a reflective boundary on the outer cylindrical surface of the cask body was chosen for the primary criticality analyses as a bounding configuration, on the basis of theoretical considerations. Any absorber material between casks would clearly reduce neutron communication (if any) between casks and reduce array reactivity. Any moderator between casks would further thermalize any neutrons traveling between them, making it more likely that they are absorbed by the cask and MSB components before reaching the fuel inside the cask. Any increase in cask array pitch (above the close-contact value) would, in theory, act to reduce reactivity if any water (or any other material) is present between the casks, for the reasons given above. For the void case, it should simply make no difference, as all neutrons leaving one cask would eventually enter another.
The reflective boundary on the cask body outer surface effectively models a close-packed array with no water between casks. In fact, it does something even (a little bit) better. If a reflective hexagon were placed around the (cylindrical) cask, with void outside the cask, all neutrons would indeed bounce back into the cask, but the hexagonal surfaces would cause the neutrons to re-enter the cask body at a somewhat more oblique (i.e., less normal) angle, as compared to a cylindrical reflective boundary right on the cask surface. Neutrons entering the cask at a less normal angle will travel through more cask/MSB materials before reaching the fuel deep inside the cask, and are therefore slightly more likely to be absorbed in these structures. At a minimum, the hexagonal surfaces are no better (i.e., more reactive) than a reflective boundary right on the cask surface.
Given these theoretical considerations, the accident-condition cask body reflective surface is considered a valid assumption unless the sensitivity analyses (shown in Table 6-5) provide clear evidence that it is not bounding. Based on the Table 6-5 results, this is clearly not the case. As discussed above, the variation in results is clearly purely statistical, within the statistical error level in the individual keff results (as output by MCNP5). Furthermore, there are no trends in Table 6-5 keff values, relative to either of the two evaluated parameters (cask array pitch and interspersed water density). The results are randomly scattered. And finally, the average value of the keff results shown in Table 6-5 is lower than the keff value produced in the base-case analysis. Thus, it is concluded that the configuration described in Section 4.1.1, where reflective boundaries are placed directly on the outer axial and radial surfaces of the cask model configuration (as shown in Figure 4-2) is bounding for all credible cask exterior configurations.
6.2.5 Normal-Condition Cask Configuration Analyses In addition to the cask array analyses described above in Section 6.2.4, normal-condition cask configurations are analyzed, in accordance with 10CFR71 (and Reference 3.2.13) requirements. In the normal-condition configuration, the cask neutron shield structure is present. The radial neutron shield structure consists of a 6.0-inch-thick layer of NS-4FR neutron shielding material that contains 2.0 w/o B4C. There are also carbon steel heat transfer fins within this shield volume which occupy 5.2% of the region volume. The overall (homogenized) material that occupies this 6.0-inch annulus in the normal-condition cask configuration is presented in Table 6-2. The 6.0-inch neutron shield material is surrounded by a 3/16-thick outer shell of carbon steel.
Calc Package No.: VSC-03.3606 Page 63 of 191 Revision 0 The neutron shield material is a hydrogenous material containing a neutron absorber (B4C). Thus, it is expected to thermalize and then absorb neutrons. For this reason, it is expected that the presence of the neutron shield structure will reduce reactivity. Certainly, the neutron shield structure should be bounded by a layer of water containing a similar hydrogen density, but with no B4C absorber material.
That would correspond to the full water density, ~1.15 cask diameter pitch case shown in Table 6-5 (which is based on a cask array pitch that is exactly equal to the diameter of the normal-condition cask). Thus, the normal-condition sensitivity analyses are performed to demonstrate that the normal-condition configuration is indeed less reactive.
Three normal-condition cask configuration analyses are actually performed. The first analysis models a close-packed hexagonal array of normal-condition casks. The neutron shield structure is present, and the cask array pitch is set to equal the outer diameter of the normal-condition cask (which is ~15%
greater than that of the accident-condition cask). A second analysis is performed where a reflective boundary is placed right on the outer (cylindrical) surface of the normal-condition cask, as opposed to on six hexagonal surfaces outside the cask. This allows a more direct comparison to the base-case accident condition cask model, which in turn allows a more direct evaluation of the effect of the neutron shield structure. Finally, an analysis which models a single normal-condition cask surrounded by an ~infinitely thick layer of water is performed, in accordance with 10CFR71 requirements.
The calculated keff value for each of the three above cases (shown in MCNP5 output files anormo, snormo and fulrefo, respectively), is 0.87739. The exact agreement between the results is unexpected, but it is possible, and it does not affect the basic conclusions of the analysis. The neutron shield material has an overall hydrogen density similar to that of full density water. As shown in Table 6-5, and discussed in Section 6.2.4, a ~6 inch layer of full density water is already an infinite reflector, and adding additional water around the outside of that reflector literally makes no difference in keff (even to the last decimal place). The fact that the 6-inch neutron shield also contains boron absorber makes this statement even more true, as few if any neutrons would survive passage back and forth through the material. This would explain the lack of difference between the infinite water reflector case and the other two cases. Adding water outside the neutron shield structure makes no difference, since literally no neutrons successfully pass all the way through the neutron shield material get reflected back in water outside the cask, and then pass all the way back through the neutron shield and all the way into the MSB interior. A similar situation exists between the hexagonal array and the cylindrical reflective boundary cases. Apparently, even with a reflective boundary just outside the cask, as opposed to an infinite water volume, no neutrons make it all the way out, and then all the way back in, through the neutron shield structure.
Finally, the keff value calculated for all three normal-condition cases (0.87739) is lower than that determined for the corresponding, design-basis accident condition configuration (0.87766, as shown in Table 6-6), but only by ~half the statistical error level associated with the keff results. Thus, the evaluation shows that the design-basis, accident-condition configuration modeled in the primary criticality analyses is bounding and applicable for all normal-condition configurations, with the differences between the normal and accident configurations having no measurable effect on keff.
A copy of the MCNP5 input file for the infinite normal-condition cask array case is shown in Section 9 (Attachment A) of this calculation. This example MCNP input file shows the modeling of the neutron shield structure (along with the neutron shield material description), and shows the hexagonal surfaces around the cask exterior, which are used to effectively model an infinite hexagonal array of casks.
Calc Package No.: VSC-03.3606 Page 64 of 191 Revision 0 6.3 Primary Criticality Analyses After the most reactive configuration is confirmed (by the sensitivity analyses presented above in Section 6.2), the primary criticality analyses are performed on the 18 Palisades MSBs. One MCNP5 model is developed for each MSB. Each MCNP model rigorously describes (in three dimensions) each loaded assembly (in each of the 24 fuel sleeve locations) as well as the MSB and TS125 cask configuration. The analyses explicitly model the composition of the spent fuel material present in each assembly. These burnup-credit criticality analyses model the concentrations of the 12 actinide and 16 fission product isotopes listed in Table 5-1. The analyses also treat the effects of the assembly axial burnup profile by dividing each assembly fuel zone into 18 (equal size) axial regions, and modeling the specific spent fuel material composition present in each zone. The physical configuration of the MSB and TS125 cask (which is the same for all 18 cases) is described in detail in Section 4.1.1. The physical configuration of the loaded spent fuel assemblies present in each of the 18 MSBs is described in detail in Section 4.1.2. The non-fuel materials are described in Section 4.1.3, and the modeled spent fuel material compositions are discussed in Section 4.1.4.
As discussed in Section 4.1.4, there are a total of 432 defined spent fuel material regions (each containing a specific isotopic composition) in each of the 18 MSB criticality models. Each of the 24 loaded assemblies is divided into 18 axial zones, resulting in 432 (24 x 18) spent fuel material compositions. The spent fuel material compositions, for each of the 432 zones in each of the 18 MCNP models, is taken from Reference 3.1.3. As discussed in Section 4.1.4, the densities of the 29 isotopes listed in Table 5-1 is given for each defined spent fuel material region in the SAS2H output files included (on CD-ROM) in Reference 3.1.3. The BFS-developed SASQUASH code is used (as discussed in Sections 4.1.4 and 5.4) to extract the isotopic density data and cast it into the form of an MCNP input file material composition card block. This large (single) block of material composition data can be pasted directly into the MCNP5 input deck. Also, the total densities for the 432 spent fuel material compositions (also output by SASQUASH) are pasted into the corresponding cell cards of the MCNP5 input file. An example SASQUASH input deck is shown in Section 9 of this calculation. As discussed in Section 5.4, the 18 SASQUASH input files are all identical to the one shown in Section 9, except for the four-character string that appears on the second line, which will range from s01a to s19a, denoting the 18 different MSB numbers (there is no MSB #14).
The MCNP material card block is too voluminous to show in the text of this calculation. All of these material blocks are included in the 18 MCNP5 output files that are stored on the CD-ROM attached to this calculation. As discussed in Section 5.4, each of the 432 (or more) material mixture cards (in the large material block output by SASQUASH) contains the densities of the 29 modeled isotopes, and corresponding MCNP IDs (ZAIDs) that are listed in Table 5-1 (which denote the modeled isotopes and the cross-section set that is used for each isotope). Each individual mixture card also contains comment data giving the assembly number and axial zone number that it corresponds to, along with fuel burnup and initial 235U enrichment that the calculated isotopic densities are based upon.
In addition to having different spent fuel material compositions, the physical geometries of the assemblies in each fuel sleeve also change for the different MSBs (and their associated MCNP5 models). In order to minimize the changes between the 18 MCNP input files, all of the objects that occur in any of the array units cells of any type of Palisades assembly are described and defined in every MCNP input. In the surface and cell sections of the MCNP input file, all the types of fuel rod, guide tube, instrument tube, and absorber rod that occur anywhere in the 18 MSBs are defined. After each type of object that may occupy an assembly array location is defined, it is given a universe
Calc Package No.: VSC-03.3606 Page 65 of 191 Revision 0 number. (More details of the MCNP repeated structure (or array) feature is given in Reference 3.2.10.) Then, in another section of the input file, large square arrays of numbers representing the individual assembly rod arrays are listed. There are 24 such number arrays, each representing one of the 24 loaded assemblies. Each number in the array represents the universe number of one of the object types defined earlier in the MCNP input file. Thus, these arrays show which objects are in each array location, for each of the 24 assemblies.
Once all of the possible object types are defined and described in the MCNP input, different assembly types can be represented by simply changing the numbers shown in the square universe number array representing that assembly (or sleeve location). The object type descriptions, once completed, never have to be changed in order to model different assemblies or MSBs. Thus, the only section of the MCNP input deck that changes between the 18 primary MCNP models (other than the spent fuel material compositions and densities) is the set of 24 large square universe number arrays that represent the rod arrays of the 24 loaded assemblies. None of the surface cards or cell cards defining the various objects (or universes) need to be changed. Only the universe number arrays are changed, to reflect the assembly types present in each fuel sleeve (in each MSB), as shown in Table 4-3. Example MCNP input files are given in Section 9 (Attachment A) of this calculation, which illustrate these large, square universe number arrays.
As discussed in Section 4.1.2, and shown in Table 4-4, several assemblies have had fuel rods replaced with rods from other assemblies. This reconstitution process occurred after assembly irradiation.
Details of this process are discussed in Reference 3.1.3 and Reference 3.2.4. Assembly array maps showing the locations of the replacements rods, and the individual Palisades assemblies they came from, are included (for each affected individual loaded assembly) in Section 10 of this calculation.
Table 4-7 also describes the replacement rods, giving the individual IDs of their parent and recipient assemblies, along with their MSB and fuel sleeve locations (if applicable), and the name of the Reference 3.1.3 SAS2H output file containing their isotopic composition. Recipient assemblies may contain inserted fuel rods from up to four parent assemblies. Furthermore, there are often several of these reconstituted assemblies in some of the affected MSBs (as shown in Table 4-4). A single SASQUASH run is performed on all of the SAS2H output files associated with all the replacement rods in each affected MSB. This creates a single MCNP material card block that is appended to the standard material block (discussed above) that is already present in the MCNP input file. These additional material compositions are modeled in the appropriate array locations in the various assembly geometries.
The MCNP input files defined 18 material compositions (for each of the 18 axial zones) for each of the 24 loaded assemblies. These material compositions apply for all the fuel rods in the array of a non-reconstituted assembly (in a given fuel sleeve location), and apply for all the original (non-inserted) rods in the array of a reconstituted assembly. To treat the inserted rods, additional sets of (18) material compositions are defined, in addition to the standard 24 sets. One additional set of compositions is defined for each parent assembly that contributes rods to one or more of the loaded assembly in the given MSB. Thus, assembly #25, #26, etc.., are defined (each containing a set of 18 spent fuel material compositions). The material compositions for these new assemblies apply for the inserted fuel rods in the reconstituted assembly arrays. They are calculated, in Reference 3.1.3, based upon the physical parameters and irradiation histories of their parent assemblies. The number of additional assemblies that must be defined varies. One MSB has nine additional defined assemblies (up to assembly #33), because the inserted fuel rods present in the (multiple) reconstituted assemblies in that MSB came from nine different parent assemblies.
Calc Package No.: VSC-03.3606 Page 66 of 191 Revision 0 The square universe number arrays (discussed earlier in this section) contain fuel rod objects in most of their array locations. In the standard case (with no reconstituted assemblies) these 24 universe number arrays contain 24 different fuel rod object universe numbers, each one corresponding to the fuel rods present in each of the 24 assemblies. Thus, each of the 24 universe number arrays contains only one fuel rod object universe number, and this number changes for each of the 24 arrays. For the reconstituted assemblies, multiple fuel rod object universe numbers appear. For most of the rods (i.e.,
the original, non-inserted rods), the standard fuel rod universe number (for that assembly or fuel sleeve location) is listed. For the inserted rods, one or more different fuel rod universe numbers appear, each corresponding to an assembly number above 24. The set of reconstituted (inserted) fuel rods in a given assembly may have several different universe numbers, depending on the number of associated parent assemblies (i.e., each parent assembly has a different defined fuel rod universe number).
In addition to the square universe number arrays, additional cell cards must be placed in the MCNP input file, to model the inserted rods in the reconstituted assemblies. As discussed in Section 5.4, the four-digit cell numbers for the fuel rods correspond to the assembly number and axial zone number for each defined region. Thus, the first two digits of these cell numbers range from 01 to 24.
Additional blocks of 18 cell cards are added, which have cell numbers starting with 25, 26, and so on. Thus, the fuel rod cells for assembly #25, #26, etc., are added. These cell cards are identical to those shown in the first 24 blocks of 18, except for their cell numbers. The densities shown in the cell cards are also different, as they are calculated based upon the spent fuel material compositions that apply for these extra assemblies (i.e., for the parent assemblies that were the source for the inserted rods). Finally, after running SASQUASH for all the replacement rod compositions, and appending the resulting material block to the end of the main material block, the material numbers of these additional mixtures are renamed to read m25xx, m26xx, etc. (where xx refers to the axial zone number).
These material numbers, and the overall density of each mixture, will be entered into the corresponding cell cards described above.
The MCNP input file for MSB #17, which includes several reconstituted assemblies, is shown in Section 9 (Attachment A) of this calculation. The input file for MSB #5 is also shown, as a more typical MSB example.
The 18 MCNP models described in this section (and in Section 4.1) are run to calculate keff for each specific MSB. These primary criticality analysis results are presented in Table 6-6.
6.4 Determination of MSB Acceptability The determination of acceptability for each MSB, based upon various MSB physical parameters, along with the calculated keff values shown in Table 6-6, is performed using the methodology discussed in Section 5.6 and in Section 6.5 of Reference 3.1.6. USL values (similar to those calculated for MCNP (alone) in Reference 3.1.5) are determined for each MSB, based upon various physical MSB parameters that are important to criticality (e.g., burnup and initial enrichment). A USL value (or keff penalty) that accounts for MCNP5 code biases and uncertainties is determined, along with another, separate penalty factor that accounts for uncertainties and biases in the isotopic concentrations calculated by the Reference 3.1.3 SAS2H fuel depletion analyses.
Calc Package No.: VSC-03.3606 Page 67 of 191 Revision 0 6.4.1 MSB-Average Physical Parameter Determination The physical MSB parameters considered in this evaluation include the assembly rod pitch, the assembly arrays water-to-fuel volume ratio, the average assembly burnup level, the average assembly initial 235U enrichment level, and the average energy causing fission parameter (which is a measure of neutron spectrum hardness output by MCNP). As discussed in Section 4.3, it is assumed that MSB-average values for the (assembly-specific) burnup and enrichment are adequate and appropriate for determining the USL function (keff penalty) that will be applied to the overall keff value calculated for that MSB. Variations within the MSB, for these parameters is assumed to not have a significant effect on the overall SAS2H and MCNP code biases. The MSB-average assembly burnup and initial enrichment values are presented, along with the AENCF parameter values, for each of the 18 MSBs in Table 6-7. The AENCF (or average energy of neutrons causing fission) parameter, which is an overall measure of neutron spectrum hardness within the analyzed configuration, is output (for each MSB) by MCNP5. It equates directly to (i.e., is equal to) the Eloss/Wloss ratio referred to in the Reference 3.1.5 MCNP benchmark calculations. The average assembly burnup and initial enrichment values are determined, from the raw data given in the Reference 3.2.1 spreadsheets, in the spreadsheet Palisades MSB Avge Param.xls, which is included on the CD-ROM attached to this calculation.
The MCNP validation (Reference 3.1.5) analyses considered additional physical parameters, including the H-to-fissile atom ratio, the depleted fissile percentage, and the percent fissile material that is plutonium (as shown in Table 6-2 of that calculation). However, as discussed in Section 7.1 of that calculation, these physical parameter never yield the minimum USL value, and thus will never yield the bounding MCNP keff penalty for these calculations. Therefore, these parameters do not need to be considered here. The Reference 3.1.6 analyses also consider assembly cooling time as one of its evaluated physical parameters. However, as discussed in Section 6.5 and presented in Table 6-11 of Reference 3.1.6, the keff penalty factor is already negative at the maximum cooling time of 2447 days that occurs for the SAS2H benchmark experiments, and the penalty is known to decrease with increasing cooling time. The assemblies in the Palisades MSBs will all have cooling times of over 20 years (7305 days) at the earliest time of MSB shipment (2015). Thus, the keff penalty factor associated with cooling time for any of the actual MSBs is known to be an even larger negative value. Therefore, the cooling-time-related keff penalty will never be the limiting (SAS2H) penalty factor for the MSBs.
These cooling time results indicate that the SAS2H isotopic density results are very conservative (i.e.,
result in over-prediction of keff) for the long-cooling-time fuel present in the MSBs. The fact that this effect, and the associated cooling time parameter, are ignored in this acceptability evaluation constitutes a significant conservatism in the evaluation.
With respect to the water-to-fuel volume ratio, it varies by assembly type, as opposed to by individual assembly. This ratio is calculated, for each assembly type, in the Palisades MSB Avge Param.xls spreadsheet, based on the fuel rod O.D., cladding thickness, and fuel pellet thickness dimensions shown in Table 4-2. As the Palisades assemblies are all relatively similar, the water-to-fuel ratio values only vary by a few percent, ranging from 1.687 to 1.777. The great majority of the assemblies have values over 1.76, with the lower values applying only for the A1 and D1 assemblies. A bounding (conservative) approach is taken with respect to the water-to-fuel volume ratio parameter.
As shown (later) in Table 6-8, a higher water-to-fuel ratio produces worse results (i.e., a higher keff penalty and/or a lower USL value). Thus, the maximum water-to-fuel ratio for any Palisades assembly (1.777) is conservatively used to determine the keff penalties and/or USL values associated with the water-to-fuel volume ratio parameter. As discussed later in this section, this parameter never produces the bounding penalty (for either criticality or fuel depletion) anyway.
Calc Package No.: VSC-03.3606 Page 68 of 191 Revision 0 All Palisades fuel assemblies have a pitch of 1.397 cm (0.55 inch), which will result in a single pitch-related USL value applying for all Palisades MSBs.
6.4.2 Criticality Analysis Overall (SAS2H + MCNP) USL Value Calculation As discussed in Section 5.6, USL functions that account for the code bias and uncertainty effects for the criticality code (MCNP5) and the fuel-depletion code (SAS2H) are combined to yield a single overall USL function that accounts for the bias and uncertainty effects of the entire process.
As discussed in References 3.1.5 and 3.1.6, as well as Reference 3.2.12, the USL function for a given system physical parameter is determined by performing a linear regression of benchmark keff values versus the parameter in question. This results in a best guess line giving the expected keff value versus the parameter value. Then a bounding W factor (a single value representing the uncertainty in the regression analysis, based on a 95% statistical confidence level) is determined. This value, along with the specified administrative margin (e.g., 0.05) is subtracted from the best-guess regression line to yield the USL function line. That is, the entire line is moved down by that amount (W + 0.05).
Finally, a saturation value is applied to prevent any negative keff penalties from being applied. This value corresponds to the criticality criterion (0.95) minus the uncertainty (W value) for the USL function.
USL functions can be recast as linear equations giving a keff penalty as a function of the physical parameter value. The amount by which the best-guess regression line is under 1.0 equates to the best-guess keff penalty value (with a regression line keff value under 1.0 corresponding to a positive keff penalty). Thus, if one were to subtract the USL functions Y-intercept value from 1.0, and reverse the sign of the USL functions slope, the results would be a linear, best-guess keff penalty vs. parameter value equation. To yield a bounding keff penalty equation, the W value would simply be added (i.e.,
the line would be moved up by that amount). Such a keff penalty could be added to the calculated keff value, and the result could be compared to 0.95. This process is effectively identical to the USL approach described in Reference 3.2.12. As discussed below, however, converting the USL functions into keff penalty functions makes the process of combining the SAS2H and MCNP USL functions more straightforward.
Table 6-2 of Reference 3.1.5 gives USL functions for the MCNP5 code for several evaluated system physical parameters, including assembly-average burnup, initial enrichment, rod pitch, water-to-fuel volume ratio, and the ratio of the Eloss and Wloss parameters output by MCNP for each analyzed MSB (which equates to the AENCF parameter, as discussed in Section 6.4.1). In addition to the Y-intercept and slope values of the final USL function, Table 6-2 of Reference 3.1.5 also gives the raw (best-guess) regression line Y-intercept, and the uncertainty (W) value that applies for each USL function. The Y-intercept values given (for each parameter) in Table 6-2 of Reference 3.1.5 are subtracted from 1.0 to yield the Y-intercept values for the corresponding keff penalty function. The sign of the presented slope values are reversed. The resulting slope and Y-intercept parameters, which define the (best-guess) linear keff penalty versus parameter value equations, are presented for each analyzed parameter in Table 6-8. The W value, taken directly from Table 6-2 of Reference 3.1.5, is also presented in Table 6-8.
The same information is presented for the SAS2H fuel depletion analysis in Table 6-11 of Reference 3.1.6. The Y-intercept and slope values which define the linear, best-guess keff penalty
Calc Package No.: VSC-03.3606 Page 69 of 191 Revision 0 versus parameter value equation are given, along with the associated W (uncertainty) value. These values are presented in Table 6-8.
The keff penalties associated with SAS2H and MCNP are then combined to form a single, overall keff penalty equation, for each analyzed parameter. As discussed in Section 6.5 of Reference 3.1.6, whereas it is appropriate to directly add the best-guess keff penalty values (for SAS2H and MCNP), to yield an overall best-guess keff penalty, it is not appropriate to directly add the uncertainty (W) values, as the two penalties are independent (i.e., there is no correlation or dependency between the SAS2H and MCNP keff penalties). Instead, the two W factors are statistically combined (i.e., the total W value is set equal to the square root of the sum of the squares of the SAS2H and MCNP W values). Another independent source of error, the relative (statistical) error level in the raw, MCNP-calculated keff values, is also statistically combined with the SAS2H and MCNP W values to yield a single, overall uncertainty factor for the entire process. As discussed in Section 5.2, these relative error levels are always under 0.00050 for the primary criticality analyses. Thus, for the purposes of determining the overall uncertainty factor, a bounding calculated keff error level of 0.00050 is conservatively assumed in all cases. Based upon the above methodology/philosophy, best-guess Y-intercept, slope, and W values that define the overall keff penalty equation for the entire process are determined for each analyzed physical parameter. These values are shown in the following rows of Table 6-8.
Finally, the combined, overall keff penalty equations are converted back into USL functions. The slope of the USL function is the same as that of the keff penalty function, with a reversed sign. The Y-intercept of the USL function is equal to 0.95 minus the Y-intercept of the best-guess keff penalty equation, minus the W value. Finally, a maximum saturation value, equal to 0.95 minus the overall (SAS2H + MCNP) W value is also shown for each parameter. These three parameters define, for each of the analyzed system physical parameters, the final, overall USL function that accounts for all bias and uncertainty effects in the entire analysis process. These three values are shown, for each physical parameter, in the last three rows of Table 6-8.
After the USL functions are determined for each parameter, corresponding USL values are determined, for each MSB, based upon the physical parameter values that apply for each MSB. As discussed in Section 6.4.1, MSB-average values are used as the basis of the USL value determination for the assembly burnup and initial enrichment parameters. The AENCF parameter, which is output by MCNP, is already (by definition) and MSB-wide parameter. Finally, as discussed in Section 6.4.1, the pitch parameter value is invariant (at 1.777 cm) for all assemblies in each MSB. Based upon these MSB-specific physical parameter values, MSB-specific USL values are calculated for each analyzed parameter. These USL values are presented in Table 6-9. In accordance with Reference 3.2.12 methodology, the lowest of the five USL values is then applied for each MSB. These bounding (minimum) USL values are presented, for each MSB, in the far right column of Table 6-9.
The Table 6-9 results show that USL function saturation never comes into play for the 18 Palisades MSBs. For each USL function, the final USL value may not exceed the saturation values shown in the last row of Table 6-8. The lowest value at which any of the USL values could saturate is the 0.92007 value shown in Table 6-8 for the AENCF parameter. However, examination of the minimum (governing) USL values listed in the right column of Table 6-9 shows that this minimum value of 0.92007 is never exceeded.
Calc Package No.: VSC-03.3606 Page 70 of 191 Revision 0 The process for determining the overall (MCNP + SAS2H) USL functions, described in this section, is illustrated graphically in Figure 6-1 through Figure 6-5. These figures illustrate the processes performed in Table 6-8, using the AENCF parameter case as the example. The contents of these figures are discussed in detail below, as part of a more detailed explanation of the process discussed above.
Figure 6-1 shows the standard MCNP USL process for the USL parameter. For all of the benchmark experiments, the measured keff value is exactly 1.0. The data points in the plot represent the MCNP-calculated keff values for each benchmark configuration, along with the associated (MCNP-output)
AENCF value for that configuration. A simple linear regression is performed on these (scatter plot) data points to yield the best-estimate line shown in the figure. This linear function represents the keff value that MCNP is expected to calculate (for a configuration whose actual keff value is 1.0), as a function of the systems AENCF parameter. A keff value less than 1.0 represents non-conservative under-prediction by MCNP, which must be accounted for through the application of a code bias penalty. Thus, this expected keff value function represents the best-estimate of what should be used as a keff limit for MCNP criticality calculations (before the effects of uncertainty, or any administrative margins are considered).
In cases where MCNP is expected to be conservative (such as the low AENCF value range in Figure 6-1), NRC policy is to not allow credit to be taken for the codes conservatism through the application of a negative code bias. Therefore, to enforce the no negative code bias principle, the best-estimate regression line is truncated at (i.e., not allowed to exceed) 1.0, as shown in the saturation zone illustrated in Figure 6-1. Once the best-estimate line is established, a bounding (conservative) keff limit (or USL) function is determined which accounts for the uncertainty in the regression. This is accomplished by subtracting the W (or uncertainty) factor from the best-estimate function, as shown in Figure 6-1 (i.e., the entire function line is shifted downwards by the (fixed) W factor). Figure 6-1 illustrates how the bounding USL function line is clearly conservative relative to the set of benchmark data, to a 95% confidence level. After the bounding keff limit function is determined, the administrative criticality margin (0.05) is subtracted (i.e., the entire line is shifted down by 0.05) to yield the final USL function. (This final USL function is not directly used here, and is not shown in Figure 6-1). The slope and Y-intercept parameters that define the best-estimate regression line (shown in Figure 6-1), as well as the value of the MCNP W factor, are taken from Table 6-2 of Reference 3.1.5 and presented in Table 6-8.
The best-estimate and bounding keff limit (or USL) functions shown in Figure 6-1 can be cast in terms of a keff penalty function (as a reduced keff limit is equivalent to the application of a keff penalty). This process is illustrated in Figure 6-2. The best-estimate and bounding functions shown in Figure 6-1 are converted into equivalent keff penalty functions by subtracting them from 1.0. Thus, the slope of the linear USL function is reversed, and the Y-intercept is subtracted from 1.0, to yield the function for the keff penalty. For the keff penalty functions, the no negative code bias requirement is reflected in the fact that the best-estimate keff penalty is not allowed to be negative (as shown in Figure 6-2). Note that in the case of keff penalty functions, where a higher value is more conservative, the W (uncertainty) factor is added to the best-estimate function to yield the bounding function (as opposed to being subtracted). This process, illustrated in Figure 6-2, is performed in Rows 4-6 of Table 6-8. Figure 6-2 clearly illustrates the conservative nature of the bounding keff penalty function.
Table 6-11 of Reference 3.1.6 defines similar linear keff penalty functions for the SAS2H (fuel depletion) analysis. The SAS2H keff penalty functions for the AENCF parameter are shown as an
Calc Package No.: VSC-03.3606 Page 71 of 191 Revision 0 example in Figure 6-3. These keff penalty equations are equivalent to those presented for MCNP in Figure 6-2, in terms of their meaning and their application. The only differences between the MCNP and SAS2H penalty functions are different calculated slope and Y-intercept values (due to the fact that the set of SAS2H benchmark keff values are not the same as the set of MCNP benchmark keff values). As with the MCNP keff penalty functions, the best-estimate function is not allowed to go negative. The W (uncertainty) factor that pertains to the SAS2H benchmark analyses (for the AENCF parameter) is added to the best-estimate keff penalty function to yield the bounding keff penalty function (as was done for MCNP in Figure 6-2). The slope, Y-intercept and W factor values that define the SAS2H keff penalty functions (shown for the AENCF parameter example in Figure 6-3) are presented in Table 6-8.
Figure 6-4 illustrates (for the AENCF parameter case) how the MCNP and SAS2H keff penalty functions are combined to yield a single, final keff penalty function. The best-estimate keff penalty functions (lines) are directly added to yield the best-estimate combined keff penalty function. The MCNP and SAS2H best-estimate keff penalty functions from Figure 6-2 and Figure 6-3, respectively, are presented again in Figure 6-4 (with the truncation, at zero, removed). The best-estimate combined keff penalty function line shown in Figure 6-4 is simply the direct sum of the MCNP and SAS2H keff penalty function lines (i.e., the slope and Y-intercept values are both simply summed to yield the combined-case values). The best-estimate combined keff penalty function line is then truncated at zero, to apply the no negative code bias criterion. Finally, the W (uncertainty) factor is added to the best-estimate penalty function to yield the final (combined), bounding keff penalty function. Note that, as discussed earlier in this section, the combined W factor (WTot) applied for the combined case is not the simple sum of the MCNP and SAS2H W factors. Instead, the two code W factors are statistically combined. A bounding, two-sigma MCNP keff result error of 0.001 is also included in this overall W factor. The parameter values pertaining to the combined keff penalty function (determined as illustrated in Figure 6-4) are presented in Table 6-8.
The final step in the process is to convert the bounding, combined keff penalty function illustrated (for the AENCF example) in Figure 6-4 back into a USL (keff limit) function. This process is illustrated in Figure 6-5. This is basically the reverse of the process that was performed, for the MCNP bias, between Figure 6-1 and Figure 6-2. To convert the bounding (combined-case) keff penalty function into a corresponding keff limit function, the function is simply subtracted from 1.0. Thus, the slope value is reversed, and the Y-intercept value is subtracted from 1.0. This bounding, combined (MCNP
+ SAS2H) keff limit function still does not reflect any administrative margin, however. Thus, to determine the final USL function that is to be applied in the criticality analyses, the standard administrative margin of 0.05 is subtracted from the bounding keff limit function (i.e., the entire function line is shifted downwards by 0.05). The parameters that define the final USL functions (calculated using the process illustrated in Figure 6-5) are presented for each parameter in the final three rows of Table 6-8. These final USL functions are used to determine the corresponding USL values (for each evaluated physical parameter) for the Palisades MSBs, as shown in Table 6-9.
6.4.3 Horizontal Burnup Variation (Slant) Keff Penalty Determination Whereas the effects of axial burnup variations in the fuel are explicitly (i.e., directly) modeled by these calculations (and the fuel depletion calculations in Reference 3.1.3), the effects of horizontal burnup variations (slant) are accounted for by adding a keff penalty factor that bounds their potential effect.
These horizontal slant penalty factors (i.e., increases in reactivity due to horizontal burnup variations) are calculated as a function of assembly burnup in Reference 3.1.2. Bounding keff penalty factors that
Calc Package No.: VSC-03.3606 Page 72 of 191 Revision 0 specifically apply to Palisades assemblies are shown in Table 6-7 of that calculation. Four assembly burnup ranges (which cover all Palisades assemblies loaded into MSBs) are presented in the Reference 3.1.2 table, along with keff penalties that were calculated for the upper-and lower-bound burnup levels that defined each range. For intermediate assembly burnup levels within each defined burnup range, linear interpolation (between the presented keff penalties) is to be applied to determine the specific keff penalty that applies for the assembly in question. As discussed in Reference 3.1.2, the final horizontal slant keff penalty results are expressed (for Palisades fuel) solely as a function of assembly-average burnup.
The pertinent data from Table 6-7 of Reference 3.1.2 is re-presented in Table 6-10 of this calculation.
Note that the non-adjusted case penalty factors from the Reference 3.1.2 table are used. These (higher) penalty factors must be used for these criticality analyses, because no isotopic concentration adjustment factors are applied. In the right two columns of Table 6-10, a slope and intercept term, which define a linear equation, are presented. These equations, presented for each burnup range, represent linear interpolation between the upper-and lower-bound keff penalty factors presented for each burnup range. Multiplying a given assembly burnup by the slope term, and then adding the intercept term, will yield the horizontal burnup slant keff penalty factor that applies for that given assembly.
The horizontal burnup variation keff penalty factor, for each Palisades assembly loaded in each MSB, is calculated in the Palisades MSB Avge Param.xls spreadsheet. The spreadsheet determines which of the four defined burnup ranges each assembly lies in, and then applies the corresponding linear equation (defined in Table 6-10) to yield an assembly-specific keff penalty value. After these assembly-specific penalty values are determined, they are averaged over the 24 assemblies in each MSB, to yield an overall (average) keff penalty factor for each of the 18 MSBs. These MSB-average penalty factors are listed in Table 6-11.
6.4.4 Final MSB Keff Calculation The final step in these analyses is to add the horizontal burnup variation keff penalty factors discussed in Section 6.4.3 to the raw, MCNP-calculated keff values, to yield final keff values. These final keff values are then compared to the governing USL values to determine acceptability of each MSB for transportation in the TS125 cask (based upon a keff criterion of 0.95, after accounting for all biases and uncertainties).
The final keff calculation is presented in Table 6-11. The table presents, for each MSB, the raw MCNP5-calculated keff values (from Table 6-6), the horizontal burnup variation penalty factors (calculated as discussed in Section 6.4.3), and the governing USL values from the right column of Table 6-9. The horizontal burnup variation penalty factor is added to the raw, MCNP-calculated keff value to yield the final keff value. This final keff value is subtracted from the governing USL value to yield a criticality margin for each MSB.
As shown in the far right column, of Table 6-11, all of the Palisades MSBs yield final keff values that are less than 0.95 by a significant margin (over 1.6%). Thus, it is concluded that all 18 currently-loaded Palisades MSBs meet all of the 10CFR71 criticality requirements when shipped in the TS125 transportation cask.
Calc Package No.: VSC-03.3606 Page 73 of 191 Revision 0 Table 6-1 - Material Compositions of B4C/Al2O3 Neutron Absorbers B4C/Al2O3 Mixture Isotope Densities (g/cc)1 Isotope2 0.0% B4C 1.7% B4C 4.7% B4C 7.7% B4C 11B 0.0435 0.1009 0.1626 C-nat 0.0148 0.0344 0.0554 16O 1.8689 1.8557 1.5089 1.4371 27Al 2.1011 2.0863 1.6964 1.6157 Total3 3.9700 4.0003 3.3406 3.2707 Notes:
- 1. Calculated using the spreadsheet Al2O3-B4C.xls, as discussed in Section 6.1, based on the B4C weight percentage and overall material density data given in Table 4-6.
- 2. Any 10B remaining in the neutron absorber materials is conservatively neglected (i.e.,
modeled as void). Thus, no 10B is modeled.
- 3. Equal to the sum of the isotopic densities listed in the columns above. Note that these densities are slightly lower than the actual overall densities listed for each material in Table 4-6, due to the elimination of the 10B.
Calc Package No.: VSC-03.3606 Page 74 of 191 Revision 0 Table 6-2 - TS125 Cask Neutron Shield Material Composition Calculation Constituent Reference NS-4FR Composition (w/o)1 Isotopic NS-4FR Composition (w/o)2 Pure NS-4FR Component Densities (g/cc)3 N-Shld. Region Material Densities (g/cc)4 1H 5.88%
5.88%
0.0953 0.0903 10B 0.2886%
0.0047 0.0044 11B 1.2774%
0.0207 0.0196 C-nat 27.15%
27.584%
0.4469 0.4236 14N 1.96%
1.96%
0.0318 0.0301 16O 41.94%
41.94%
0.6794 0.6441 27Al 21.07%
21.07%
0.3413 0.3236 Fe-nat 0.4067 B4C 2.0%
Total 100%
100%
1.621 1.9425 Notes:
- 1. Taken directly from Section 5.17 of Reference 3.1.4.
- 2. The B4C weight percentage is converted into 10B, 11B, and carbon weight percentages, using the 10B weight percentage (in boron) of 18.431% given in the Al2O3-B4C.xls spreadsheet, and the carbon weight percentage (in B4C) of 21.7% given in Reference 3.1.4. Note that the overall carbon weight percentage from the B4C (0.434%) is added to the NS-4FR carbon weight percentage of 27.15% to yield the overall carbon weight percentage shown.
- 3. The isotopic densities for the solid NS-4FR material are calculated by multiplying the isotopic weight percentages (shown in the previous column) by the overall NS-4FR material density of 1.62 g/cc.
- 4. The solid NS-4FR isotopic densities are modified to account for (i.e., smear in) the neutron shield regions carbon steel heat transfer fins, which are modeled as pure iron, and which occupy 5.2% of the neutron shield region volume. The NS-4FR material isotopic densities are simply 0.948 times the values shown for the solid (pure) NS-4FR material in the previous column. The iron density is equal to 0.052 times the solid carbon steel density of 7.8212 g/cc (as shown in Table 4-6).
Calc Package No.: VSC-03.3606 Page 75 of 191 Revision 0 Table 6-3 - MSB Fuel Sleeve Sensitivity Analysis Results Fuel Sleeve Wall Thickness Fuel Sleeve Width (inches)1 (inches)1 9.075 9.325 0.1775 0.877662 0.869883 0.2175 0.867484 0.859645 Notes:
- 1. Equal to the minimum and maximum allowable values, as shown by the tolerance ranges given in Table 4.1.1-1 of Reference 3.1.1.
- 2. Taken directly from the MCNP output file pal05o shown in Table 8-1.
- 3. Taken directly from the MCNP output file wslvo shown in Table 8-1.
- 4. Taken directly from the MCNP output file thslvo shown in Table 8-1.
- 5. Taken directly from the MCNP output file wthslvo shown in Table 8-1.
Table 6-4 - Cask Interior Moderator Density Evaluation Interior Water Density (g/cc)
Calculated Keff 1
1.0 0.877662 0.95 0.87007 0.90 0.86185 0.80 0.84219 0.70 0.81607 0.60 0.78443 0.50 0.74332 0.40 0.69244 0.30 0.62660 0.20 0.54228 0.10 0.43376 0.01 0.27808 Notes:
- 1. Taken from the MCNP5 output files named int##o, where the last two-digits represent the internal moderator density value shown in the left column (e.g., int80o).
- 2. This one result is taken directly from the MCNP5 output file pal05o.
Calc Package No.: VSC-03.3606 Page 76 of 191 Revision 0 Table 6-5 - Keff vs. External Cask Array Configuration1,5 Cask Array Interspersed Water Density (g/cc)3 Pitch2 0.0 0.26 0.46 0.66 0.86 1.0 1.0 0.87768 0.87745 0.87665 0.87701 0.87677 0.87624 1.154 0.87761 0.87777 0.87838 0.87844 0.87718 0.87718 1.25 0.87741 0.87777 0.87718 0.87813 0.87718 0.87718 1.50 0.87857 0.87718 2.0 0.87826 0.87718 3.0 0.87870 0.87718 5.0 0.87755 0.87718 7.0 0.87824 0.87718 10.0 0.87664 0.8777 0.87718 0.87813 0.87718 0.87718 Notes:
- 1. Keff values are calculated based upon an infinite, regular, hexagonal-pitch array of accident-condition TS125 casks.
- 2. Expressed in multiples of the accident-condition cask diameter (of 40.9 inches). An array pitch of 1.0 represents a close-packed hexagonal array with the casks in contact with each other.
- 3. Refers to the density of the water between the casks in the cask array, as opposed to the water inside the casks (which is modeled at the full, 1.0 g/cc density).
- 4. The array pitch of 1.15 (times the accident-condition cask diameter) is equal to the normal condition cask diameter, and represents the cask spacing that would occur for a close-packed array of normal-condition casks.
- 5. The calculated keff results are taken from the hex MCNP5 output files listed in Table 8-1. The first digit after the hex character string denotes the cask pitch, with the numbers one through nine representing the nine pitch values shown in the left column of the table (where the number 1 represents the 1.0 value, the number 9 represents the 10.0 value, etc..). The last two digits of the filename represent the cask exterior water density, where 00 corresponds to a density of 0.0 g/cc, 10 corresponds to 1.0 g/cc, 06 corresponds to 0.6 g/cc, and so on.
- 6. Given that the keff values shown for the 1.25 pitch and the 10.0 pitch are identical to the last decimal place, it is assumed that the same keff value would apply for all of the pitch values in between.
Calc Package No.: VSC-03.3606 Page 77 of 191 Revision 0 Table 6-6 - MCNP5-Calculated Keff Results for Individual Palisades MSBs MSB Number1 Calculated Keff 2,3 1
0.86299 2
0.86019 3
0.85891 4
0.85900 5
0.87766 6
0.87945 7
0.87762 8
0.85927 9
0.85651 10 0.87931 11 0.87588 12 0.87474 13 0.87352 15 0.85430 16 0.85990 17 0.84694 18 0.85153 19 0.85170 Notes:
- 1. Under the MSB numbering provided by the Palisades plant, and used in the Reference 3.1.3 analyses, there is no MSB #14.
- 2. The calculated keff results are taken directly from the primary, MSB-specific MCNP5 criticality analyses, whose output files are listed in Table 8-1. These 18 output filenames begin with the letters pal which are followed by a two-digit number denoting the MSB number shown in the first column above (i.e., pal01 through pal19). All the filenames then end with the character o, denoting that they are MCNP5 output files.
- 3. Note that these MCNP5-calculated keff values do not include the various penalty factors that are (later) applied to account for horizontal burnup slant effects, and the effects of biases and uncertainties in the MCNP5 code, and in the isotopic concentrations calculated by SAS2H in Reference 3.1.3. These penalty factors are applied as discussed in Section 6.4, before the keff results are compared to any regulatory limits.
Calc Package No.: VSC-03.3606 Page 78 of 191 Revision 0 Table 6-7 - MSB-Average Physical Parameter Values1 MSB Number Fuel Burnup (GWd/MTU)
Initial Enrichment (w/o 235U)
AENCF Parameter2 1
32.85 3.00%
0.20497 2
32.88 3.00%
0.20614 3
27.65 2.52%
0.21460 4
27.70 2.51%
0.21509 5
20.96 2.20%
0.20804 6
23.13 2.45%
0.20442 7
23.17 2.46%
0.20461 8
26.53 2.43%
0.22081 9
26.45 2.45%
0.22114 10 23.20 2.46%
0.20372 11 21.06 2.19%
0.20898 12 21.18 2.20%
0.20945 13 21.10 2.19%
0.20902 15 35.37 3.16%
0.21132 16 34.94 3.15%
0.21035 17 35.41 3.16%
0.21057 18 35.04 3.14%
0.21053 19 34.84 3.13%
0.21182 Notes:
- 1. Calculated in spreadsheet Palisades MSB-Average Param.xls using the data presented in the Reference 3.2.1 spreadsheets.
- 2. The AENCF parameter is a dimensionless parameter output by MCNP that is a measure of the hardness of the neutron spectrum present in the analyzed configuration. The presented values are taken directly from the primary criticality analysis MCNP5 output files (i.e., files pal01o through pal19o).
Calc Package No.: VSC-03.3606 Page 79 of 191 Revision 0 Table 6-8 - Overall (SAS2H + MCNP) USL Function Calculation Pin Pitch (cm)
Water-to-Fuel V-Ratio12 235U Enrich (wt. %)
Burnup (GWd/
MTU)
AENCF (Mev)
MCNP USL Function Line Slope1 1.204e-2 1.007e-3 3.316e-4
-2.386e-4 -5.512e-2 MCNP Regression Line Y-Intercept1 0.97635 0.99363 0.99460 0.99550 1.00728 MCNP USL Function W Factor1 0.00617 0.00936 0.00920 0.00490 0.00693 MCNP Keff Penalty Function Slope2
-1.204e-2
-1.007e-3
-3.316e-4 2.386e-4 5.512e-2 MCNP Keff Penalty Y-Intercept3 0.02365 0.00637 0.00540 0.00450
-0.00728 MCNP Keff Penalty W Factor4 0.00617 0.00936 0.00920 0.00490 0.00693 SAS2H Keff Penalty Function Slope5
-0.1145 0.00448
-4.978e-3
-6.424e-4
-0.1978 SAS2H Keff Penalty Y-Intercept5 0.1593
-0.0094 0.0174 0.0223 0.0434 SAS2H Keff Penalty W Factor5 0.02369 0.02620 0.02740 0.02676 0.02910 Combined Keff Penalty Func. Slope6
-0.1265 3.473e-3
-5.310e-3
-4.038e-4
-0.1427 Combined Keff Penalty Y-Intercept7 0.18295
-0.00303 0.02280 0.02680 0.03612 Combined Keff Penalty W Factor8 0.02450 0.02784 0.02892 0.02722 0.02993 Combined USL Function Slope9 0.1265
-3.473e-3 5.310e-3 4.038e-4 0.1427 Combined USL Func. Y-Intercept10 0.74255 0.92519 0.89828 0.89598 0.88395 Comb. USL Func. Saturation Value11 0.92550 0.92216 0.92108 0.92278 0.92007 Notes:
- 1. Taken directly from Table 6-2 of Reference 3.1.5 (rows 8, 9, and 11).
- 2. Equal to the slope of the MCNP USL function (from Reference 3.1.5), with the sign reversed.
- 3. Calculated by subtracting the USL function intercept term (shown above) from 1.0.
- 4. Equal to the W factor for the MCNP USL function presented above.
- 5. Taken directly from the bottom three rows of Table 6-9 of Reference 3.1.6.
- 8. Calculated as discussed in Section 6.4.2. The MCNP and SAS2H W factors are both squared, and added to the square of 0.001 (twice the bounding MCNP-calculated keff value error level). The combined W factor is equal to the square root of the resulting sum.
- 9. Calculated by reversing the sign of the combined keff penalty factor equations slope (given above).
- 10. Calculated by subtracting the Y-intercept and W values presented (above) for the combined keff penalty formula from 0.95.
- 11. Equal to 0.95 minus the overall W factor (given above for the combined keff penalty formula).
- 12. The applicable Water-to-Fuel ratio is calculated assuming water fills the fuel-to-clad gap.
Calc Package No.: VSC-03.3606 Page 80 of 191 Revision 0 Table 6-9 - MSB-Specific USL Value Calculation1 MSB Number Pin Pitch (cm)2 Water-to-Fuel V-Ratio3 235U Enrich (wt. %)4 Burnup (GWd/
MTU)4 AENCF (Mev)4 Governing USL Value 1
0.91927 0.91902 0.91421 0.90925 0.91320 0.90925 2
0.91927 0.91902 0.91421 0.90926 0.91337 0.90926 3
0.91927 0.91902 0.91167 0.90714 0.91457 0.90714 4
0.91927 0.91902 0.91160 0.90717 0.91464 0.90717 5
0.91927 0.91902 0.90994 0.90444 0.91364 0.90444 6
0.91927 0.91902 0.91131 0.90532 0.91312 0.90532 7
0.91927 0.91902 0.91132 0.90534 0.91315 0.90534 8
0.91927 0.91902 0.91120 0.90669 0.91546 0.90669 9
0.91927 0.91902 0.91126 0.90666 0.91551 0.90666 10 0.91927 0.91902 0.91133 0.90535 0.91302 0.90535 11 0.91927 0.91902 0.90993 0.90448 0.91377 0.90448 12 0.91927 0.91902 0.90994 0.90453 0.91384 0.90453 13 0.91927 0.91902 0.90989 0.90450 0.91378 0.90450 15 0.91927 0.91902 0.91507 0.91026 0.91411 0.91026 16 0.91927 0.91902 0.91503 0.91009 0.91397 0.91009 17 0.91927 0.91902 0.91504 0.91028 0.91400 0.91028 18 0.91927 0.91902 0.91493 0.91013 0.91399 0.91013 19 0.91927 0.91902 0.91493 0.91005 0.91418 0.91005 Notes:
- 1. The USL values are determined using the USL function slope and Y-intercept values shown in rows 13 and 14 of Table 6-8, based on the average physical parameter values for each MSB. The USL values are determined using the simple formula: USL = A + Bx, where A is the Y-intercept value, B is the slope value, and x is the (average) value of the parameter in question, for the specific MSB. The physical parameter (x) values are discussed in the notes below.
- 2. A pitch value of 1.397 cm applies for all Palisades MSBs.
- 3. As discussed in Section 6.4.1, the water-to-fuel volume ratio of 1.748 ranges from 1.687 to 1.777. The upper-bound value of 1.777 is conservatively used for all ANO-1 MSBs, as this yields the lowest USL value.
- 4. The MSB-specific values for the average initial 235U enrichment, the average burnup, and the (MCNP-calculated) AENCF parameter, are presented in Table 6-7.
- 5. Equal to the lowest of the five calculated USL values, for each given MSB. Note that all of the governing USL values are lower than the lowest saturation value (0.92007) presented in Table 6-8.
Calc Package No.: VSC-03.3606 Page 81 of 191 Revision 0 Table 6-10 - Palisades Assembly Horizontal Burnup Variation Keff Penalty Factor Equations1 Assembly Burnup Range (GWd/MTU)2 Horizontal Burnup Slant Keff Penalty2 Keff Penalty Formula Slope Term3 Keff Penalty Formula Intercept Term3 10-15 0.67% - 1.04%
0.074
-0.07 28-30 1.47% - 1.59%
0.060
-0.21 30-35 0.87% - 1.14%
0.054
-0.75 35-40 1.14% - 1.20%
0.012 0.72 Notes:
- 1. These are linear functions which give the increase in reactivity (or keff penalty) of a given assembly, as a function of the assemblys average burnup. These reactivity increases are calculated for Palisades assemblies with various burnup (and enrichment) levels in Reference 3.1.2.
- 2. Taken directly from Table 6-7 of Reference 3.1.2.
- 3. The horizontal slant keff penalty is calculated, from the assembly burnup (BU), using a linear equation of the form keff = B*BU + A, where B is the slope term shown above, and A is the intercept term. These two parameters, which define the linear keff penalty functions, are calculated based upon the upper-and lower-bound burnup levels, and the corresponding upper-and lower-bound keff penalty values, that are shown in the first two columns of this table.
Calc Package No.: VSC-03.3606 Page 82 of 191 Revision 0 Table 6-11 - Final MSB Keff Determination MSB Number Raw MCNP5 Calculated Keff 1
Horizontal BU Slant Keff Penalty2 Final Keff 3
Minimum USL Value4 Criticality Margin5 1
0.86299 0.01024 0.87323 0.90925 0.03602 2
0.86019 0.01026 0.87045 0.90926 0.03881 3
0.85891 0.01067 0.86958 0.90714 0.03757 4
0.85900 0.00981 0.86881 0.90717 0.03835 5
0.87766 0.00956 0.88722 0.90444 0.01722 6
0.87945 0.00944 0.88889 0.90532 0.01643 7
0.87762 0.00940 0.88702 0.90534 0.01832 8
0.85927 0.01009 0.86936 0.90669 0.03733 9
0.85651 0.01123 0.86774 0.90666 0.03892 10 0.87931 0.00944 0.88875 0.90535 0.01660 11 0.87588 0.00962 0.88550 0.90448 0.01898 12 0.87474 0.00966 0.88440 0.90453 0.02013 13 0.87352 0.00962 0.88314 0.90450 0.02136 15 0.85430 0.01139 0.86569 0.91026 0.04457 16 0.85990 0.01128 0.87118 0.91009 0.03891 17 0.84694 0.01138 0.85832 0.91028 0.05196 18 0.85153 0.01151 0.86304 0.91013 0.04709 19 0.85170 0.01148 0.86318 0.91005 0.04687 Notes:
- 1. Taken directly from Table 6-6. Represents the raw keff value from the primary analysis MCNP output files.
- 2. Calculated as discussed in Section 6.4.3 using the Palisades MSB-Average Param.xls spreadsheet, based on the linear keff penalty factor (vs. burnup) equations defined in Table 6-10, and the assembly burnups and discharge dates given in the Reference 3.2.1 and Reference 3.2.2 spreadsheets. After a penalty factor is determined for each assembly, they are averaged to determine the penalty factor for each MSB (which are listed above).
- 3. Equal to the sum of the first two columns. This final keff value is compared to the governing USL value to determine compliance with the specified criticality criterion.
- 4. Taken directly from the far right column of Table 6-9.
- 5. Equal to the USL value minus the final keff value. A positive value indicates compliance with a criticality criterion of keff < 0.95 (after accounting for all biases and uncertainties).
Calc Package No.: VSC-03.3606 Page 83 of 191 Revision 0 0.980 0.985 0.990 0.995 1.000 1.005 1.010 0.00 0.05 0.10 0.15 0.20 0.25 0.30 AENCF MCNP Keff WMCNP Bounding USL (before admin margin)
Best-Estimate Regression Line Saturation Zone Figure 6-1 - MCNP USL Function Calculation for AENCF Parameter (illustrative example)
Calc Package No.: VSC-03.3606 Page 84 of 191 Revision 0
-0.010
-0.005 0.000 0.005 0.010 0.015 0.05 0.10 0.15 0.20 0.25 0.30 AENCF delta-Keff WMCNP Best-Estimate Keff Penalty Function Bounding Keff Penalty Function Figure 6-2 - MCNP Keff Penalty Function Calculation for AENCF Parameter (illustrative example)
Calc Package No.: VSC-03.3606 Page 85 of 191 Revision 0
-0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.05 0.10 0.15 0.20 0.25 0.30 AENCF Keff Penalty WSAS2H Best Estimate Keff Penalty Function Bounding Keff Penalty Function Saturation Zone Figure 6-3 - SAS2H Keff Penalty Function Calculation for AENCF Parameter (illustrative example)
Calc Package No.: VSC-03.3606 Page 86 of 191 Revision 0
-0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.05 0.10 0.15 0.20 0.25 0.30 AENCF Keff Penalty MCNP Best Estimate Keff Penalty Function SAS2H Best Estimate Penalty Function Bounding Combined Keff Penalty Function Best Estimate Combined Keff Penalty Function WTot Figure 6-4 - Combination of MCNP and SAS2H Keff Penalty Functions (illustrative example)
Calc Package No.: VSC-03.3606 Page 87 of 191 Revision 0 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.05 0.10 0.15 0.20 0.25 0.30 AENCF USL Value Bounding Keff Limit Function (w/o administrative margin)
Final USL Function Administrative Margin (0.05)
Saturation Zone Figure 6-5 - SAS2H Keff Penalty Function Calculation for AENCF Parameter (illustrative example)
Calc Package No.: VSC-03.3606 Page 88 of 191 Revision 0
- 7. CONCLUSIONS 7.1 Results The conclusion (or result) of these calculations is that each of the 18 currently-loaded MSBs at the Palisades nuclear plant meet all 10CFR71 criticality requirements when loaded inside the FuelSolutionsTM TS125 transportation cask.
The raw keff values for each MSB, calculated using the MCNP5 code, are presented in Table 6-6.
These calculations are conservatively based upon the most reactive credible configuration of an MSB inside the TS125 cask, as demonstrated by the calculations presented in Section 6.2. As discussed in Section 6.4, and shown in Table 6-11, all of the MSBs yield a final keff of less than 0.95, even after all necessary adjustments (or penalties) are made to account for all criticality (MCNP5) and fuel depletion (SAS2H) code/analysis bias and uncertainty effects, as well as the effects of horizontal burnup variations within the assemblies. The effects of axial burnup variations are treated explicitly by the analyses.
7.2 Compliance With Requirements These analyses demonstrate sub-criticality under all credible cask conditions or configurations, and show that keff is less than 0.95, in accordance with all 10CFR71 criticality requirements as well as general NRC criticality guidance (such as that given in Reference 3.2.13).
Code bias and uncertainty effects for both criticality and fuel depletion are both treated by comparison to measured data (i.e., critical-configuration experiments for criticality and fuel composition assay measurements for fuel depletion), over large sets of benchmark cases. For both criticality and fuel depletion, the benchmark results take the form of a large set of reactivity differences (between the calculated case and the measured case) which are expressed as keff values. Trending analyses (versus important cask system physical parameters) are performed on both sets of keff values (criticality and fuel depletion). The results of these trending analyses are processed using the NRC-recommended USL methodology given in Reference 3.2.12. The same (Reference 3.2.12) methodology that is traditionally used (to treat sets of keff values) for criticality benchmark evaluations is used to treat a similar set of keff values produced by the fuel depletion benchmark analyses (as discussed in Reference 3.1.6). The analyses also apply conservative penalties to treat additional effects not directly treated in the primary criticality analyses, such as the effects of horizontal burnup variations in the fuel.
Based upon all the above, the methodologies used to calculate keff and to determine acceptability (versus criticality requirements) are in accordance with all NRC requirements and guidance that pertain to burnup-credit criticality analyses.
7.3 Range of Validity These analyses, and their conclusions, only apply to the 18 specific, currently-loaded VSC-24 system MSBs at the Palisades nuclear plant. They only apply for MSBs loaded in the FuelSolutionsTM TS125 transportation cask. The conclusions of these analyses, concerning the acceptability of the MSBs, only apply to the criticality requirements of 10CFR71. They do not apply for storage conditions.
Calc Package No.: VSC-03.3606 Page 89 of 191 Revision 0 7.4 Summary of Conservatism The analyses are based upon worst-case MSB-interior component dimensions.
The analyses conservatively apply and additional keff penalty factor to account for biases and uncertainties in the fuel-depletion analyses (and SAS2H code), which is based on comparisons to chemical assay measurements. This is done even though the burned-fuel criticality benchmarks presented in Reference 3.1.5 (which are based in MCNP criticality calculations and SAS2H fuel depletion calculations) theoretically constitute a benchmark of the entire process. It can be argued that the entire, additional fuel depletion bias is unnecessary, and overly conservative.
The analyses only model the set of 29 isotopes listed in Table 5-1. As all fissile isotopes are already included, the addition of all the other isotopes actually present in the spent fuel material would act to reduce reactivity, by a significant amount.
As discussed in Section 6.4, it is known that SAS2H-calcualted spent fuel isotopic densities become increasingly conservative (i.e., more reactive in an assembly configuration) at higher assembly cooling times. Since the (over 20 year old) spent fuel in the MSBs is much older than the fuel assemblies treated in any of the SAS2H benchmark evaluation experiments (which are ~0-7 years old), it is known that the keff penalty factor associated with the fuel depletion analyses is conservative. If benchmarks were performed on 20+ year old fuel, the penalty factor would be less. This fact is conservatively neglected in these analyses.
7.5 Limitations or Special Instructions These criticality analyses apply to the specific, current spent fuel contents of each MSB, and they address all issues required to qualify the MSBs for transportation. Thus, the conclusions of these calculations do not involve any requirements or restrictions on the spent fuel contents of any MSB that would require verification by the cask user. The conclusion, for each MSB, is simply that it is qualified for transport inside the TS125 cask.
Calc Package No.: VSC-03.3606 Page 90 of 191 Revision 0
- 8. ELECTRONIC FILES 8.1 Computer Runs Filename File Date Computer Code Cat Version Platform Machine Pal01o 2/01/06 MCNP 2
5 Windows XP 00043568514407 Pal02o 2/01/06 MCNP 2
5 Windows XP 00043568514407 Pal03o 2/01/06 MCNP 2
5 Windows XP 00043568514407 Pal04o 2/02/06 MCNP 2
5 Windows XP 00043568514407 Pal05o 1/27/06 MCNP 2
5 Windows XP 00043568514407 Pal06o 2/02/06 MCNP 2
5 Windows XP 00043568514407 Pal07o 2/02/06 MCNP 2
5 Windows XP 00043568514407 Pal08o 2/02/06 MCNP 2
5 Windows XP 00043568514407 Pal09o 2/02/06 MCNP 2
5 Windows XP 00043568514407 Pal10o 2/02/06 MCNP 2
5 Windows XP 00043568514407 Pal11o 2/02/06 MCNP 2
5 Windows XP 00043568514407 Pal12o 2/02/06 MCNP 2
5 Windows XP 00043568514407 Pal13o 2/02/06 MCNP 2
5 Windows XP 00043568514407 Pal15o 2/02/06 MCNP 2
5 Windows XP 00043568514407 Pal16o 2/03/06 MCNP 2
5 Windows XP 00043568514407 Pal17o 5/30/06 MCNP 2
5 Windows XP 00043568514407 Pal18o 5/30/06 MCNP 2
5 Windows XP 00043568514407 Pal19o 5/30/06 MCNP 2
5 Windows XP 00043568514407 Wslvo 1/27/06 MCNP 2
5 Windows XP 00043568514407 Thslvo 1/27/06 MCNP 2
5 Windows XP 00043568514407 Wthslvo 1/28/06 MCNP 2
5 Windows XP 00043568514407 Noedgeo 2/03/06 MCNP 2
5 Windows XP 00043568514407 Int01o 1/28/06 MCNP 2
5 Windows XP 00043568514407 Int10o 1/28/06 MCNP 2
5 Windows XP 00043568514407 Int20o 1/28/06 MCNP 2
5 Windows XP 00043568514407 Int30o 1/28/06 MCNP 2
5 Windows XP 00043568514407 Int40o 1/28/06 MCNP 2
5 Windows XP 00043568514407 Int50o 1/28/06 MCNP 2
5 Windows XP 00043568514407 Int60o 1/29/06 MCNP 2
5 Windows XP 00043568514407 Int70o 1/29/06 MCNP 2
5 Windows XP 00043568514407 Int80o 1/29/06 MCNP 2
5 Windows XP 00043568514407
Calc Package No.: VSC-03.3606 Page 91 of 191 Revision 0 Filename File Date Computer Code Cat Version Platform Machine Int90o 1/29/06 MCNP 2
5 Windows XP 00043568514407 Int95o 1/29/06 MCNP 2
5 Windows XP 00043568514407 Hex100 1/29/06 MCNP 2
5 Windows XP 00043568514407 Hex102 1/29/06 MCNP 2
5 Windows XP 00043568514407 Hex104 1/29/06 MCNP 2
5 Windows XP 00043568514407 Hex106 1/29/06 MCNP 2
5 Windows XP 00043568514407 Hex108 1/29/06 MCNP 2
5 Windows XP 00043568514407 Hex110 1/29/06 MCNP 2
5 Windows XP 00043568514407 Hex200 1/29/06 MCNP 2
5 Windows XP 00043568514407 Hex202 1/29/06 MCNP 2
5 Windows XP 00043568514407 Hex204 1/29/06 MCNP 2
5 Windows XP 00043568514407 Hex206 1/29/06 MCNP 2
5 Windows XP 00043568514407 Hex208 1/29/06 MCNP 2
5 Windows XP 00043568514407 Hex210 1/30/06 MCNP 2
5 Windows XP 00043568514407 Hex300 1/30/06 MCNP 2
5 Windows XP 00043568514407 Hex310 1/30/06 MCNP 2
5 Windows XP 00043568514407 Hex400 1/30/06 MCNP 2
5 Windows XP 00043568514407 Hex410 1/31/06 MCNP 2
5 Windows XP 00043568514407 Hex500 1/31/06 MCNP 2
5 Windows XP 00043568514407 Hex510 1/31/06 MCNP 2
5 Windows XP 00043568514407 Hex600 2/01/06 MCNP 2
5 Windows XP 00043568514407 Hex610 2/01/06 MCNP 2
5 Windows XP 00043568514407 Hex700 2/01/06 MCNP 2
5 Windows XP 00043568514407 Hex710 2/01/06 MCNP 2
5 Windows XP 00043568514407 Hex800 2/01/06 MCNP 2
5 Windows XP 00043568514407 Hex810 2/01/06 MCNP 2
5 Windows XP 00043568514407 Hex900 2/01/06 MCNP 2
5 Windows XP 00043568514407 Hex902 2/01/06 MCNP 2
5 Windows XP 00043568514407 Hex904 2/01/06 MCNP 2
5 Windows XP 00043568514407 Hex906 2/01/06 MCNP 2
5 Windows XP 00043568514407 Hex908 2/01/06 MCNP 2
5 Windows XP 00043568514407 Hex910 2/01/06 MCNP 2
5 Windows XP 00043568514407 Anormo 1/28/06 MCNP 2
5 Windows XP 00043568514407 Snormo 1/28/06 MCNP 2
5 Windows XP 00043568514407
Calc Package No.: VSC-03.3606 Page 92 of 191 Revision 0 Filename File Date Computer Code Cat Version Platform Machine Fulrefo 1/28/06 MCNP 2
5 Windows XP 00043568514407 Sqp01.o 1/27/06 SASQUASH 2
1.02 Windows XP 00043568514407 Sqp02.o 1/27/06 SASQUASH 2
1.02 Windows XP 00043568514407 Sqp03.o 1/27/06 SASQUASH 2
1.02 Windows XP 00043568514407 Sqp04.o 1/27/06 SASQUASH 2
1.02 Windows XP 00043568514407 Sqp05.o 1/27/06 SASQUASH 2
1.02 Windows XP 00043568514407 Sqp06.o 1/30/06 SASQUASH 2
1.02 Windows XP 00043568514407 Sqp07.o 1/30/06 SASQUASH 2
1.02 Windows XP 00043568514407 Sqp08.o 1/30/06 SASQUASH 2
1.02 Windows XP 00043568514407 Sqp09.o 1/30/06 SASQUASH 2
1.02 Windows XP 00043568514407 Sqp10.o 1/30/06 SASQUASH 2
1.02 Windows XP 00043568514407 Sqp11.o 1/30/06 SASQUASH 2
1.02 Windows XP 00043568514407 Sqp12.o 1/30/06 SASQUASH 2
1.02 Windows XP 00043568514407 Sqp13.o 1/30/06 SASQUASH 2
1.02 Windows XP 00043568514407 Sqp15.o 1/30/06 SASQUASH 2
1.02 Windows XP 00043568514407 Sqp16.o 1/30/06 SASQUASH 2
1.02 Windows XP 00043568514407 Sqp17.o 1/30/06 SASQUASH 2
1.02 Windows XP 00043568514407 Sqp18.o 1/30/06 SASQUASH 2
1.02 Windows XP 00043568514407 Sqp19.o 1/30/06 SASQUASH 2
1.02 Windows XP 00043568514407 Sq15exr.o 2/02/06 SASQUASH 2
1.02 Windows XP 00043568514407 Sq16exr.o 2/02/06 SASQUASH 2
1.02 Windows XP 00043568514407 Sq17exr.o 2/02/06 SASQUASH 2
1.02 Windows XP 00043568514407 Sq18exr.o 2/02/06 SASQUASH 2
1.02 Windows XP 00043568514407 Sq19exr.o 2/02/06 SASQUASH 2
1.02 Windows XP 00043568514407 8.2 Other Electronic Files Filename File Date Description Al2O3-B4C 8/31/05 MS Excel 2002 spreadsheet Palisades MSB Avge Param 5/31/06 MS Excel 2002 spreadsheet
Calc Package No.: VSC-03.3606 Page 93 of 191 Revision 0
- 9. ATTACHMENT A - SAMPLE COMPUTER INPUT/OUTPUT File Pal05 - Primary Criticality Run for MSB #5 - Also Acts as Base Case for Sensitivity Analyses Consumers MSB 05 in TS125 Cask - Ship in 2015 c
c geometry c
c fuel rod outside spacer grids c
101 101 -10.048 -7 -201 imp:n=1 u=11 $ Assembly 01 - Axial Zone 1 102 102 -10.008 -7 +201 -202 imp:n=1 u=11 $ Assembly 01 - Axial Zone 2 103 103 -9.993 -7 +202 -203 imp:n=1 u=11 $ Assembly 01 - Axial Zone 3 104 104 -9.994 -7 +203 -204 imp:n=1 u=11 $ Assembly 01 - Axial Zone 4 105 105 -9.994 -7 +204 -205 imp:n=1 u=11 $ Assembly 01 - Axial Zone 5 106 106 -9.994 -7 +205 -206 imp:n=1 u=11 $ Assembly 01 - Axial Zone 6 107 107 -9.994 -7 +206 -207 imp:n=1 u=11 $ Assembly 01 - Axial Zone 7 108 108 -9.994 -7 +207 -208 imp:n=1 u=11 $ Assembly 01 - Axial Zone 8 109 109 -9.994 -7 +208 -209 imp:n=1 u=11 $ Assembly 01 - Axial Zone 9 110 110 -9.994 -7 +209 -210 imp:n=1 u=11 $ Assembly 01 - Axial Zone 10 111 111 -9.995 -7 +210 -211 imp:n=1 u=11 $ Assembly 01 - Axial Zone 11 112 112 -9.995 -7 +211 -212 imp:n=1 u=11 $ Assembly 01 - Axial Zone 12 113 113 -9.994 -7 +212 -213 imp:n=1 u=11 $ Assembly 01 - Axial Zone 13 114 114 -10.010 -7 +213 -214 imp:n=1 u=11 $ Assembly 01 - Axial Zone 14 115 115 -10.033 -7 +214 -215 imp:n=1 u=11 $ Assembly 01 - Axial Zone 15 116 116 -10.049 -7 +215 -216 imp:n=1 u=11 $ Assembly 01 - Axial Zone 16 117 117 -10.067 -7 +216 -217 imp:n=1 u=11 $ Assembly 01 - Axial Zone 17 118 118 -10.087 -7 +217 imp:n=1 u=11 $ Assembly 01 - Axial Zone 18 121 3 -1.00 +7 -8 imp:n=1 u=11 122 2 -6.56 +8 -15 imp:n=1 u=11 123 3 -1.00 +15 imp:n=1 u=11 c Assy 2 201 201 -10.025 -7 -201 imp:n=1 u=12 $ Assembly 02 - Axial Zone 1 202 202 -9.986 -7 +201 -202 imp:n=1 u=12 $ Assembly 02 - Axial Zone 2 203 203 -9.972 -7 +202 -203 imp:n=1 u=12 $ Assembly 02 - Axial Zone 3 204 204 -9.972 -7 +203 -204 imp:n=1 u=12 $ Assembly 02 - Axial Zone 4 205 205 -9.972 -7 +204 -205 imp:n=1 u=12 $ Assembly 02 - Axial Zone 5 206 206 -9.972 -7 +205 -206 imp:n=1 u=12 $ Assembly 02 - Axial Zone 6 207 207 -9.972 -7 +206 -207 imp:n=1 u=12 $ Assembly 02 - Axial Zone 7 208 208 -9.972 -7 +207 -208 imp:n=1 u=12 $ Assembly 02 - Axial Zone 8 209 209 -9.972 -7 +208 -209 imp:n=1 u=12 $ Assembly 02 - Axial Zone 9 210 210 -9.973 -7 +209 -210 imp:n=1 u=12 $ Assembly 02 - Axial Zone 10 211 211 -9.973 -7 +210 -211 imp:n=1 u=12 $ Assembly 02 - Axial Zone 11 212 212 -9.973 -7 +211 -212 imp:n=1 u=12 $ Assembly 02 - Axial Zone 12 213 213 -9.973 -7 +212 -213 imp:n=1 u=12 $ Assembly 02 - Axial Zone 13 214 214 -9.988 -7 +213 -214 imp:n=1 u=12 $ Assembly 02 - Axial Zone 14 215 215 -10.019 -7 +214 -215 imp:n=1 u=12 $ Assembly 02 - Axial Zone 15 216 216 -10.035 -7 +215 -216 imp:n=1 u=12 $ Assembly 02 - Axial Zone 16 217 217 -10.042 -7 +216 -217 imp:n=1 u=12 $ Assembly 02 - Axial Zone 17 218 218 -10.067 -7 +217 imp:n=1 u=12 $ Assembly 02 - Axial Zone 18 221 3 -1.00 +7 -8 imp:n=1 u=12 222 2 -6.56 +8 -15 imp:n=1 u=12 223 3 -1.00 +15 imp:n=1 u=12 c Assy 3 301 301 -10.051 -7 -201 imp:n=1 u=13 $ Assembly 03 - Axial Zone 1 302 302 -10.012 -7 +201 -202 imp:n=1 u=13 $ Assembly 03 - Axial Zone 2
Calc Package No.: VSC-03.3606 Page 94 of 191 Revision 0 303 303 -9.996 -7 +202 -203 imp:n=1 u=13 $ Assembly 03 - Axial Zone 3 304 304 -9.997 -7 +203 -204 imp:n=1 u=13 $ Assembly 03 - Axial Zone 4 305 305 -9.997 -7 +204 -205 imp:n=1 u=13 $ Assembly 03 - Axial Zone 5 306 306 -9.997 -7 +205 -206 imp:n=1 u=13 $ Assembly 03 - Axial Zone 6 307 307 -9.997 -7 +206 -207 imp:n=1 u=13 $ Assembly 03 - Axial Zone 7 308 308 -9.997 -7 +207 -208 imp:n=1 u=13 $ Assembly 03 - Axial Zone 8 309 309 -9.997 -7 +208 -209 imp:n=1 u=13 $ Assembly 03 - Axial Zone 9 310 310 -9.997 -7 +209 -210 imp:n=1 u=13 $ Assembly 03 - Axial Zone 10 311 311 -9.998 -7 +210 -211 imp:n=1 u=13 $ Assembly 03 - Axial Zone 11 312 312 -9.998 -7 +211 -212 imp:n=1 u=13 $ Assembly 03 - Axial Zone 12 313 313 -10.006 -7 +212 -213 imp:n=1 u=13 $ Assembly 03 - Axial Zone 13 314 314 -10.013 -7 +213 -214 imp:n=1 u=13 $ Assembly 03 - Axial Zone 14 315 315 -10.045 -7 +214 -215 imp:n=1 u=13 $ Assembly 03 - Axial Zone 15 316 316 -10.052 -7 +215 -216 imp:n=1 u=13 $ Assembly 03 - Axial Zone 16 317 317 -10.069 -7 +216 -217 imp:n=1 u=13 $ Assembly 03 - Axial Zone 17 318 318 -10.085 -7 +217 imp:n=1 u=13 $ Assembly 03 - Axial Zone 18 321 3 -1.00 +7 -8 imp:n=1 u=13 322 2 -6.56 +8 -15 imp:n=1 u=13 323 3 -1.00 +15 imp:n=1 u=13 c Assy 4 401 401 -9.966 -6 -201 imp:n=1 u=14 $ Assembly 04 - Axial Zone 1 402 402 -9.880 -6 +201 -202 imp:n=1 u=14 $ Assembly 04 - Axial Zone 2 403 403 -9.853 -6 +202 -203 imp:n=1 u=14 $ Assembly 04 - Axial Zone 3 404 404 -9.845 -6 +203 -204 imp:n=1 u=14 $ Assembly 04 - Axial Zone 4 405 405 -9.845 -6 +204 -205 imp:n=1 u=14 $ Assembly 04 - Axial Zone 5 406 406 -9.846 -6 +205 -206 imp:n=1 u=14 $ Assembly 04 - Axial Zone 6 407 407 -9.846 -6 +206 -207 imp:n=1 u=14 $ Assembly 04 - Axial Zone 7 408 408 -9.847 -6 +207 -208 imp:n=1 u=14 $ Assembly 04 - Axial Zone 8 409 409 -9.848 -6 +208 -209 imp:n=1 u=14 $ Assembly 04 - Axial Zone 9 410 410 -9.848 -6 +209 -210 imp:n=1 u=14 $ Assembly 04 - Axial Zone 10 411 411 -9.849 -6 +210 -211 imp:n=1 u=14 $ Assembly 04 - Axial Zone 11 412 412 -9.841 -6 +211 -212 imp:n=1 u=14 $ Assembly 04 - Axial Zone 12 413 413 -9.841 -6 +212 -213 imp:n=1 u=14 $ Assembly 04 - Axial Zone 13 414 414 -9.851 -6 +213 -214 imp:n=1 u=14 $ Assembly 04 - Axial Zone 14 415 415 -9.851 -6 +214 -215 imp:n=1 u=14 $ Assembly 04 - Axial Zone 15 416 416 -9.878 -6 +215 -216 imp:n=1 u=14 $ Assembly 04 - Axial Zone 16 417 417 -9.943 -6 +216 -217 imp:n=1 u=14 $ Assembly 04 - Axial Zone 17 418 418 -10.012 -6 +217 imp:n=1 u=14 $ Assembly 04 - Axial Zone 18 421 3 -1.00 +6 -8 imp:n=1 u=14 422 2 -6.56 +8 -17 imp:n=1 u=14 423 3 -1.00 +17 imp:n=1 u=14 c Assy 5 501 501 -9.966 -6 -201 imp:n=1 u=15 $ Assembly 05 - Axial Zone 1 502 502 -9.880 -6 +201 -202 imp:n=1 u=15 $ Assembly 05 - Axial Zone 2 503 503 -9.853 -6 +202 -203 imp:n=1 u=15 $ Assembly 05 - Axial Zone 3 504 504 -9.845 -6 +203 -204 imp:n=1 u=15 $ Assembly 05 - Axial Zone 4 505 505 -9.845 -6 +204 -205 imp:n=1 u=15 $ Assembly 05 - Axial Zone 5 506 506 -9.846 -6 +205 -206 imp:n=1 u=15 $ Assembly 05 - Axial Zone 6 507 507 -9.846 -6 +206 -207 imp:n=1 u=15 $ Assembly 05 - Axial Zone 7 508 508 -9.847 -6 +207 -208 imp:n=1 u=15 $ Assembly 05 - Axial Zone 8 509 509 -9.848 -6 +208 -209 imp:n=1 u=15 $ Assembly 05 - Axial Zone 9 510 510 -9.848 -6 +209 -210 imp:n=1 u=15 $ Assembly 05 - Axial Zone 10 511 511 -9.849 -6 +210 -211 imp:n=1 u=15 $ Assembly 05 - Axial Zone 11 512 512 -9.841 -6 +211 -212 imp:n=1 u=15 $ Assembly 05 - Axial Zone 12 513 513 -9.841 -6 +212 -213 imp:n=1 u=15 $ Assembly 05 - Axial Zone 13 514 514 -9.851 -6 +213 -214 imp:n=1 u=15 $ Assembly 05 - Axial Zone 14 515 515 -9.851 -6 +214 -215 imp:n=1 u=15 $ Assembly 05 - Axial Zone 15 516 516 -9.878 -6 +215 -216 imp:n=1 u=15 $ Assembly 05 - Axial Zone 16 517 517 -9.943 -6 +216 -217 imp:n=1 u=15 $ Assembly 05 - Axial Zone 17 518 518 -10.012 -6 +217 imp:n=1 u=15 $ Assembly 05 - Axial Zone 18 521 3 -1.00 +6 -8 imp:n=1 u=15
Calc Package No.: VSC-03.3606 Page 95 of 191 Revision 0 522 2 -6.56 +8 -17 imp:n=1 u=15 523 3 -1.00 +17 imp:n=1 u=15 c Assy 6 601 601 -10.091 -7 -201 imp:n=1 u=16 $ Assembly 06 - Axial Zone 1 602 602 -10.051 -7 +201 -202 imp:n=1 u=16 $ Assembly 06 - Axial Zone 2 603 603 -10.036 -7 +202 -203 imp:n=1 u=16 $ Assembly 06 - Axial Zone 3 604 604 -10.036 -7 +203 -204 imp:n=1 u=16 $ Assembly 06 - Axial Zone 4 605 605 -10.036 -7 +204 -205 imp:n=1 u=16 $ Assembly 06 - Axial Zone 5 606 606 -10.036 -7 +205 -206 imp:n=1 u=16 $ Assembly 06 - Axial Zone 6 607 607 -10.036 -7 +206 -207 imp:n=1 u=16 $ Assembly 06 - Axial Zone 7 608 608 -10.036 -7 +207 -208 imp:n=1 u=16 $ Assembly 06 - Axial Zone 8 609 609 -10.037 -7 +208 -209 imp:n=1 u=16 $ Assembly 06 - Axial Zone 9 610 610 -10.037 -7 +209 -210 imp:n=1 u=16 $ Assembly 06 - Axial Zone 10 611 611 -10.037 -7 +210 -211 imp:n=1 u=16 $ Assembly 06 - Axial Zone 11 612 612 -10.037 -7 +211 -212 imp:n=1 u=16 $ Assembly 06 - Axial Zone 12 613 613 -10.037 -7 +212 -213 imp:n=1 u=16 $ Assembly 06 - Axial Zone 13 614 614 -10.053 -7 +213 -214 imp:n=1 u=16 $ Assembly 06 - Axial Zone 14 615 615 -10.075 -7 +214 -215 imp:n=1 u=16 $ Assembly 06 - Axial Zone 15 616 616 -10.092 -7 +215 -216 imp:n=1 u=16 $ Assembly 06 - Axial Zone 16 617 617 -10.109 -7 +216 -217 imp:n=1 u=16 $ Assembly 06 - Axial Zone 17 618 618 -10.130 -7 +217 imp:n=1 u=16 $ Assembly 06 - Axial Zone 18 621 3 -1.00 +7 -8 imp:n=1 u=16 622 2 -6.56 +8 -15 imp:n=1 u=16 623 3 -1.00 +15 imp:n=1 u=16 c Assy 7 701 701 -10.079 -7 -201 imp:n=1 u=17 $ Assembly 07 - Axial Zone 1 702 702 -10.031 -7 +201 -202 imp:n=1 u=17 $ Assembly 07 - Axial Zone 2 703 703 -10.016 -7 +202 -203 imp:n=1 u=17 $ Assembly 07 - Axial Zone 3 704 704 -10.016 -7 +203 -204 imp:n=1 u=17 $ Assembly 07 - Axial Zone 4 705 705 -10.016 -7 +204 -205 imp:n=1 u=17 $ Assembly 07 - Axial Zone 5 706 706 -10.017 -7 +205 -206 imp:n=1 u=17 $ Assembly 07 - Axial Zone 6 707 707 -10.016 -7 +206 -207 imp:n=1 u=17 $ Assembly 07 - Axial Zone 7 708 708 -10.016 -7 +207 -208 imp:n=1 u=17 $ Assembly 07 - Axial Zone 8 709 709 -10.017 -7 +208 -209 imp:n=1 u=17 $ Assembly 07 - Axial Zone 9 710 710 -10.017 -7 +209 -210 imp:n=1 u=17 $ Assembly 07 - Axial Zone 10 711 711 -10.017 -7 +210 -211 imp:n=1 u=17 $ Assembly 07 - Axial Zone 11 712 712 -10.017 -7 +211 -212 imp:n=1 u=17 $ Assembly 07 - Axial Zone 12 713 713 -10.026 -7 +212 -213 imp:n=1 u=17 $ Assembly 07 - Axial Zone 13 714 714 -10.041 -7 +213 -214 imp:n=1 u=17 $ Assembly 07 - Axial Zone 14 715 715 -10.064 -7 +214 -215 imp:n=1 u=17 $ Assembly 07 - Axial Zone 15 716 716 -10.080 -7 +215 -216 imp:n=1 u=17 $ Assembly 07 - Axial Zone 16 717 717 -10.096 -7 +216 -217 imp:n=1 u=17 $ Assembly 07 - Axial Zone 17 718 718 -10.112 -7 +217 imp:n=1 u=17 $ Assembly 07 - Axial Zone 18 721 3 -1.00 +7 -8 imp:n=1 u=17 722 2 -6.56 +8 -15 imp:n=1 u=17 723 3 -1.00 +15 imp:n=1 u=17 c Assy 8 801 801 -9.966 -6 -201 imp:n=1 u=18 $ Assembly 08 - Axial Zone 1 802 802 -9.880 -6 +201 -202 imp:n=1 u=18 $ Assembly 08 - Axial Zone 2 803 803 -9.853 -6 +202 -203 imp:n=1 u=18 $ Assembly 08 - Axial Zone 3 804 804 -9.845 -6 +203 -204 imp:n=1 u=18 $ Assembly 08 - Axial Zone 4 805 805 -9.845 -6 +204 -205 imp:n=1 u=18 $ Assembly 08 - Axial Zone 5 806 806 -9.846 -6 +205 -206 imp:n=1 u=18 $ Assembly 08 - Axial Zone 6 807 807 -9.846 -6 +206 -207 imp:n=1 u=18 $ Assembly 08 - Axial Zone 7 808 808 -9.847 -6 +207 -208 imp:n=1 u=18 $ Assembly 08 - Axial Zone 8 809 809 -9.847 -6 +208 -209 imp:n=1 u=18 $ Assembly 08 - Axial Zone 9 810 810 -9.848 -6 +209 -210 imp:n=1 u=18 $ Assembly 08 - Axial Zone 10 811 811 -9.849 -6 +210 -211 imp:n=1 u=18 $ Assembly 08 - Axial Zone 11 812 812 -9.840 -6 +211 -212 imp:n=1 u=18 $ Assembly 08 - Axial Zone 12
Calc Package No.: VSC-03.3606 Page 96 of 191 Revision 0 813 813 -9.841 -6 +212 -213 imp:n=1 u=18 $ Assembly 08 - Axial Zone 13 814 814 -9.850 -6 +213 -214 imp:n=1 u=18 $ Assembly 08 - Axial Zone 14 815 815 -9.851 -6 +214 -215 imp:n=1 u=18 $ Assembly 08 - Axial Zone 15 816 816 -9.878 -6 +215 -216 imp:n=1 u=18 $ Assembly 08 - Axial Zone 16 817 817 -9.943 -6 +216 -217 imp:n=1 u=18 $ Assembly 08 - Axial Zone 17 818 818 -10.012 -6 +217 imp:n=1 u=18 $ Assembly 08 - Axial Zone 18 821 3 -1.00 +6 -8 imp:n=1 u=18 822 2 -6.56 +8 -17 imp:n=1 u=18 823 3 -1.00 +17 imp:n=1 u=18 c Assy 9 901 901 -10.053 -7 -201 imp:n=1 u=19 $ Assembly 09 - Axial Zone 1 902 902 -10.005 -7 +201 -202 imp:n=1 u=19 $ Assembly 09 - Axial Zone 2 903 903 -9.990 -7 +202 -203 imp:n=1 u=19 $ Assembly 09 - Axial Zone 3 904 904 -9.991 -7 +203 -204 imp:n=1 u=19 $ Assembly 09 - Axial Zone 4 905 905 -9.991 -7 +204 -205 imp:n=1 u=19 $ Assembly 09 - Axial Zone 5 906 906 -9.991 -7 +205 -206 imp:n=1 u=19 $ Assembly 09 - Axial Zone 6 907 907 -9.991 -7 +206 -207 imp:n=1 u=19 $ Assembly 09 - Axial Zone 7 908 908 -9.991 -7 +207 -208 imp:n=1 u=19 $ Assembly 09 - Axial Zone 8 909 909 -9.991 -7 +208 -209 imp:n=1 u=19 $ Assembly 09 - Axial Zone 9 910 910 -9.991 -7 +209 -210 imp:n=1 u=19 $ Assembly 09 - Axial Zone 10 911 911 -9.991 -7 +210 -211 imp:n=1 u=19 $ Assembly 09 - Axial Zone 11 912 912 -9.992 -7 +211 -212 imp:n=1 u=19 $ Assembly 09 - Axial Zone 12 913 913 -10.000 -7 +212 -213 imp:n=1 u=19 $ Assembly 09 - Axial Zone 13 914 914 -10.016 -7 +213 -214 imp:n=1 u=19 $ Assembly 09 - Axial Zone 14 915 915 -10.038 -7 +214 -215 imp:n=1 u=19 $ Assembly 09 - Axial Zone 15 916 916 -10.054 -7 +215 -216 imp:n=1 u=19 $ Assembly 09 - Axial Zone 16 917 917 -10.070 -7 +216 -217 imp:n=1 u=19 $ Assembly 09 - Axial Zone 17 918 918 -10.086 -7 +217 imp:n=1 u=19 $ Assembly 09 - Axial Zone 18 921 3 -1.00 +7 -8 imp:n=1 u=19 922 2 -6.56 +8 -15 imp:n=1 u=19 923 3 -1.00 +15 imp:n=1 u=19 c Assy 10 1001 1001 -10.051 -7 -201 imp:n=1 u=20 $ Assembly 10 - Axial Zone 1 1002 1002 -10.012 -7 +201 -202 imp:n=1 u=20 $ Assembly 10 - Axial Zone 2 1003 1003 -9.996 -7 +202 -203 imp:n=1 u=20 $ Assembly 10 - Axial Zone 3 1004 1004 -9.997 -7 +203 -204 imp:n=1 u=20 $ Assembly 10 - Axial Zone 4 1005 1005 -9.997 -7 +204 -205 imp:n=1 u=20 $ Assembly 10 - Axial Zone 5 1006 1006 -9.997 -7 +205 -206 imp:n=1 u=20 $ Assembly 10 - Axial Zone 6 1007 1007 -9.997 -7 +206 -207 imp:n=1 u=20 $ Assembly 10 - Axial Zone 7 1008 1008 -9.997 -7 +207 -208 imp:n=1 u=20 $ Assembly 10 - Axial Zone 8 1009 1009 -9.997 -7 +208 -209 imp:n=1 u=20 $ Assembly 10 - Axial Zone 9 1010 1010 -9.997 -7 +209 -210 imp:n=1 u=20 $ Assembly 10 - Axial Zone 10 1011 1011 -9.998 -7 +210 -211 imp:n=1 u=20 $ Assembly 10 - Axial Zone 11 1012 1012 -9.998 -7 +211 -212 imp:n=1 u=20 $ Assembly 10 - Axial Zone 12 1013 1013 -10.006 -7 +212 -213 imp:n=1 u=20 $ Assembly 10 - Axial Zone 13 1014 1014 -10.013 -7 +213 -214 imp:n=1 u=20 $ Assembly 10 - Axial Zone 14 1015 1015 -10.045 -7 +214 -215 imp:n=1 u=20 $ Assembly 10 - Axial Zone 15 1016 1016 -10.052 -7 +215 -216 imp:n=1 u=20 $ Assembly 10 - Axial Zone 16 1017 1017 -10.069 -7 +216 -217 imp:n=1 u=20 $ Assembly 10 - Axial Zone 17 1018 1018 -10.085 -7 +217 imp:n=1 u=20 $ Assembly 10 - Axial Zone 18 1021 3 -1.00 +7 -8 imp:n=1 u=20 1022 2 -6.56 +8 -15 imp:n=1 u=20 1023 3 -1.00 +15 imp:n=1 u=20 c Assy 11 1101 1101 -10.044 -6 -201 imp:n=1 u=21 $ Assembly 11 - Axial Zone 1 1102 1102 -9.956 -6 +201 -202 imp:n=1 u=21 $ Assembly 11 - Axial Zone 2 1103 1103 -9.929 -6 +202 -203 imp:n=1 u=21 $ Assembly 11 - Axial Zone 3 1104 1104 -9.920 -6 +203 -204 imp:n=1 u=21 $ Assembly 11 - Axial Zone 4 1105 1105 -9.921 -6 +204 -205 imp:n=1 u=21 $ Assembly 11 - Axial Zone 5 1106 1106 -9.921 -6 +205 -206 imp:n=1 u=21 $ Assembly 11 - Axial Zone 6
Calc Package No.: VSC-03.3606 Page 97 of 191 Revision 0 1107 1107 -9.922 -6 +206 -207 imp:n=1 u=21 $ Assembly 11 - Axial Zone 7 1108 1108 -9.922 -6 +207 -208 imp:n=1 u=21 $ Assembly 11 - Axial Zone 8 1109 1109 -9.923 -6 +208 -209 imp:n=1 u=21 $ Assembly 11 - Axial Zone 9 1110 1110 -9.923 -6 +209 -210 imp:n=1 u=21 $ Assembly 11 - Axial Zone 10 1111 1111 -9.924 -6 +210 -211 imp:n=1 u=21 $ Assembly 11 - Axial Zone 11 1112 1112 -9.925 -6 +211 -212 imp:n=1 u=21 $ Assembly 11 - Axial Zone 12 1113 1113 -9.925 -6 +212 -213 imp:n=1 u=21 $ Assembly 11 - Axial Zone 13 1114 1114 -9.926 -6 +213 -214 imp:n=1 u=21 $ Assembly 11 - Axial Zone 14 1115 1115 -9.935 -6 +214 -215 imp:n=1 u=21 $ Assembly 11 - Axial Zone 15 1116 1116 -9.954 -6 +215 -216 imp:n=1 u=21 $ Assembly 11 - Axial Zone 16 1117 1117 -10.020 -6 +216 -217 imp:n=1 u=21 $ Assembly 11 - Axial Zone 17 1118 1118 -10.101 -6 +217 imp:n=1 u=21 $ Assembly 11 - Axial Zone 18 1121 3 -1.00 +6 -8 imp:n=1 u=21 1122 2 -6.56 +8 -17 imp:n=1 u=21 1123 3 -1.00 +17 imp:n=1 u=21 c Assy 12 1201 1201 -10.041 -7 -201 imp:n=1 u=22 $ Assembly 12 - Axial Zone 1 1202 1202 -10.002 -7 +201 -202 imp:n=1 u=22 $ Assembly 12 - Axial Zone 2 1203 1203 -9.987 -7 +202 -203 imp:n=1 u=22 $ Assembly 12 - Axial Zone 3 1204 1204 -9.987 -7 +203 -204 imp:n=1 u=22 $ Assembly 12 - Axial Zone 4 1205 1205 -9.987 -7 +204 -205 imp:n=1 u=22 $ Assembly 12 - Axial Zone 5 1206 1206 -9.987 -7 +205 -206 imp:n=1 u=22 $ Assembly 12 - Axial Zone 6 1207 1207 -9.987 -7 +206 -207 imp:n=1 u=22 $ Assembly 12 - Axial Zone 7 1208 1208 -9.987 -7 +207 -208 imp:n=1 u=22 $ Assembly 12 - Axial Zone 8 1209 1209 -9.987 -7 +208 -209 imp:n=1 u=22 $ Assembly 12 - Axial Zone 9 1210 1210 -9.987 -7 +209 -210 imp:n=1 u=22 $ Assembly 12 - Axial Zone 10 1211 1211 -9.987 -7 +210 -211 imp:n=1 u=22 $ Assembly 12 - Axial Zone 11 1212 1212 -9.988 -7 +211 -212 imp:n=1 u=22 $ Assembly 12 - Axial Zone 12 1213 1213 -9.996 -7 +212 -213 imp:n=1 u=22 $ Assembly 12 - Axial Zone 13 1214 1214 -10.003 -7 +213 -214 imp:n=1 u=22 $ Assembly 12 - Axial Zone 14 1215 1215 -10.035 -7 +214 -215 imp:n=1 u=22 $ Assembly 12 - Axial Zone 15 1216 1216 -10.042 -7 +215 -216 imp:n=1 u=22 $ Assembly 12 - Axial Zone 16 1217 1217 -10.059 -7 +216 -217 imp:n=1 u=22 $ Assembly 12 - Axial Zone 17 1218 1218 -10.075 -7 +217 imp:n=1 u=22 $ Assembly 12 - Axial Zone 18 1221 3 -1.00 +7 -8 imp:n=1 u=22 1222 2 -6.56 +8 -15 imp:n=1 u=22 1223 3 -1.00 +15 imp:n=1 u=22 c Assy 13 1301 1301 -10.031 -7 -201 imp:n=1 u=23 $ Assembly 13 - Axial Zone 1 1302 1302 -9.991 -7 +201 -202 imp:n=1 u=23 $ Assembly 13 - Axial Zone 2 1303 1303 -9.984 -7 +202 -203 imp:n=1 u=23 $ Assembly 13 - Axial Zone 3 1304 1304 -9.984 -7 +203 -204 imp:n=1 u=23 $ Assembly 13 - Axial Zone 4 1305 1305 -9.984 -7 +204 -205 imp:n=1 u=23 $ Assembly 13 - Axial Zone 5 1306 1306 -9.984 -7 +205 -206 imp:n=1 u=23 $ Assembly 13 - Axial Zone 6 1307 1307 -9.984 -7 +206 -207 imp:n=1 u=23 $ Assembly 13 - Axial Zone 7 1308 1308 -9.984 -7 +207 -208 imp:n=1 u=23 $ Assembly 13 - Axial Zone 8 1309 1309 -9.985 -7 +208 -209 imp:n=1 u=23 $ Assembly 13 - Axial Zone 9 1310 1310 -9.985 -7 +209 -210 imp:n=1 u=23 $ Assembly 13 - Axial Zone 10 1311 1311 -9.985 -7 +210 -211 imp:n=1 u=23 $ Assembly 13 - Axial Zone 11 1312 1312 -9.985 -7 +211 -212 imp:n=1 u=23 $ Assembly 13 - Axial Zone 12 1313 1313 -9.985 -7 +212 -213 imp:n=1 u=23 $ Assembly 13 - Axial Zone 13 1314 1314 -10.001 -7 +213 -214 imp:n=1 u=23 $ Assembly 13 - Axial Zone 14 1315 1315 -10.025 -7 +214 -215 imp:n=1 u=23 $ Assembly 13 - Axial Zone 15 1316 1316 -10.032 -7 +215 -216 imp:n=1 u=23 $ Assembly 13 - Axial Zone 16 1317 1317 -10.049 -7 +216 -217 imp:n=1 u=23 $ Assembly 13 - Axial Zone 17 1318 1318 -10.065 -7 +217 imp:n=1 u=23 $ Assembly 13 - Axial Zone 18 1321 3 -1.00 +7 -8 imp:n=1 u=23 1322 2 -6.56 +8 -15 imp:n=1 u=23 1323 3 -1.00 +15 imp:n=1 u=23 c Assy 14 1401 1401 -10.036 -6 -201 imp:n=1 u=24 $ Assembly 14 - Axial Zone 1
Calc Package No.: VSC-03.3606 Page 98 of 191 Revision 0 1402 1402 -9.948 -6 +201 -202 imp:n=1 u=24 $ Assembly 14 - Axial Zone 2 1403 1403 -9.921 -6 +202 -203 imp:n=1 u=24 $ Assembly 14 - Axial Zone 3 1404 1404 -9.912 -6 +203 -204 imp:n=1 u=24 $ Assembly 14 - Axial Zone 4 1405 1405 -9.913 -6 +204 -205 imp:n=1 u=24 $ Assembly 14 - Axial Zone 5 1406 1406 -9.913 -6 +205 -206 imp:n=1 u=24 $ Assembly 14 - Axial Zone 6 1407 1407 -9.914 -6 +206 -207 imp:n=1 u=24 $ Assembly 14 - Axial Zone 7 1408 1408 -9.914 -6 +207 -208 imp:n=1 u=24 $ Assembly 14 - Axial Zone 8 1409 1409 -9.915 -6 +208 -209 imp:n=1 u=24 $ Assembly 14 - Axial Zone 9 1410 1410 -9.916 -6 +209 -210 imp:n=1 u=24 $ Assembly 14 - Axial Zone 10 1411 1411 -9.916 -6 +210 -211 imp:n=1 u=24 $ Assembly 14 - Axial Zone 11 1412 1412 -9.917 -6 +211 -212 imp:n=1 u=24 $ Assembly 14 - Axial Zone 12 1413 1413 -9.918 -6 +212 -213 imp:n=1 u=24 $ Assembly 14 - Axial Zone 13 1414 1414 -9.918 -6 +213 -214 imp:n=1 u=24 $ Assembly 14 - Axial Zone 14 1415 1415 -9.927 -6 +214 -215 imp:n=1 u=24 $ Assembly 14 - Axial Zone 15 1416 1416 -9.946 -6 +215 -216 imp:n=1 u=24 $ Assembly 14 - Axial Zone 16 1417 1417 -10.013 -6 +216 -217 imp:n=1 u=24 $ Assembly 14 - Axial Zone 17 1418 1418 -10.093 -6 +217 imp:n=1 u=24 $ Assembly 14 - Axial Zone 18 1421 3 -1.00 +6 -8 imp:n=1 u=24 1422 2 -6.56 +8 -17 imp:n=1 u=24 1423 3 -1.00 +17 imp:n=1 u=24 c Assy 15 1501 1501 -10.015 -9 -201 imp:n=1 u=25 $ Assembly 15 - Axial Zone 1 1502 1502 -9.982 -9 +201 -202 imp:n=1 u=25 $ Assembly 15 - Axial Zone 2 1503 1503 -9.966 -9 +202 -203 imp:n=1 u=25 $ Assembly 15 - Axial Zone 3 1504 1504 -9.966 -9 +203 -204 imp:n=1 u=25 $ Assembly 15 - Axial Zone 4 1505 1505 -9.966 -9 +204 -205 imp:n=1 u=25 $ Assembly 15 - Axial Zone 5 1506 1506 -9.966 -9 +205 -206 imp:n=1 u=25 $ Assembly 15 - Axial Zone 6 1507 1507 -9.966 -9 +206 -207 imp:n=1 u=25 $ Assembly 15 - Axial Zone 7 1508 1508 -9.966 -9 +207 -208 imp:n=1 u=25 $ Assembly 15 - Axial Zone 8 1509 1509 -9.966 -9 +208 -209 imp:n=1 u=25 $ Assembly 15 - Axial Zone 9 1510 1510 -9.967 -9 +209 -210 imp:n=1 u=25 $ Assembly 15 - Axial Zone 10 1511 1511 -9.967 -9 +210 -211 imp:n=1 u=25 $ Assembly 15 - Axial Zone 11 1512 1512 -9.967 -9 +211 -212 imp:n=1 u=25 $ Assembly 15 - Axial Zone 12 1513 1513 -9.976 -9 +212 -213 imp:n=1 u=25 $ Assembly 15 - Axial Zone 13 1514 1514 -9.984 -9 +213 -214 imp:n=1 u=25 $ Assembly 15 - Axial Zone 14 1515 1515 -10.008 -9 +214 -215 imp:n=1 u=25 $ Assembly 15 - Axial Zone 15 1516 1516 -10.016 -9 +215 -216 imp:n=1 u=25 $ Assembly 15 - Axial Zone 16 1517 1517 -10.025 -9 +216 -217 imp:n=1 u=25 $ Assembly 15 - Axial Zone 17 1518 1518 -10.041 -9 +217 imp:n=1 u=25 $ Assembly 15 - Axial Zone 18 1521 3 -1.00 +9 -11 imp:n=1 u=25 1522 2 -6.56 +11 -14 imp:n=1 u=25 1523 3 -1.00 +14 imp:n=1 u=25 c Assy 16 1601 1601 -10.022 -6 -201 imp:n=1 u=26 $ Assembly 16 - Axial Zone 1 1602 1602 -9.933 -6 +201 -202 imp:n=1 u=26 $ Assembly 16 - Axial Zone 2 1603 1603 -9.906 -6 +202 -203 imp:n=1 u=26 $ Assembly 16 - Axial Zone 3 1604 1604 -9.897 -6 +203 -204 imp:n=1 u=26 $ Assembly 16 - Axial Zone 4 1605 1605 -9.897 -6 +204 -205 imp:n=1 u=26 $ Assembly 16 - Axial Zone 5 1606 1606 -9.898 -6 +205 -206 imp:n=1 u=26 $ Assembly 16 - Axial Zone 6 1607 1607 -9.898 -6 +206 -207 imp:n=1 u=26 $ Assembly 16 - Axial Zone 7 1608 1608 -9.899 -6 +207 -208 imp:n=1 u=26 $ Assembly 16 - Axial Zone 8 1609 1609 -9.899 -6 +208 -209 imp:n=1 u=26 $ Assembly 16 - Axial Zone 9 1610 1610 -9.900 -6 +209 -210 imp:n=1 u=26 $ Assembly 16 - Axial Zone 10 1611 1611 -9.901 -6 +210 -211 imp:n=1 u=26 $ Assembly 16 - Axial Zone 11 1612 1612 -9.901 -6 +211 -212 imp:n=1 u=26 $ Assembly 16 - Axial Zone 12 1613 1613 -9.902 -6 +212 -213 imp:n=1 u=26 $ Assembly 16 - Axial Zone 13 1614 1614 -9.902 -6 +213 -214 imp:n=1 u=26 $ Assembly 16 - Axial Zone 14 1615 1615 -9.912 -6 +214 -215 imp:n=1 u=26 $ Assembly 16 - Axial Zone 15 1616 1616 -9.939 -6 +215 -216 imp:n=1 u=26 $ Assembly 16 - Axial Zone 16 1617 1617 -9.997 -6 +216 -217 imp:n=1 u=26 $ Assembly 16 - Axial Zone 17 1618 1618 -10.070 -6 +217 imp:n=1 u=26 $ Assembly 16 - Axial Zone 18
Calc Package No.: VSC-03.3606 Page 99 of 191 Revision 0 1621 3 -1.00 +6 -8 imp:n=1 u=26 1622 2 -6.56 +8 -17 imp:n=1 u=26 1623 3 -1.00 +17 imp:n=1 u=26 c Assy 17 1701 1701 -10.036 -6 -201 imp:n=1 u=27 $ Assembly 17 - Axial Zone 1 1702 1702 -9.948 -6 +201 -202 imp:n=1 u=27 $ Assembly 17 - Axial Zone 2 1703 1703 -9.921 -6 +202 -203 imp:n=1 u=27 $ Assembly 17 - Axial Zone 3 1704 1704 -9.912 -6 +203 -204 imp:n=1 u=27 $ Assembly 17 - Axial Zone 4 1705 1705 -9.913 -6 +204 -205 imp:n=1 u=27 $ Assembly 17 - Axial Zone 5 1706 1706 -9.913 -6 +205 -206 imp:n=1 u=27 $ Assembly 17 - Axial Zone 6 1707 1707 -9.913 -6 +206 -207 imp:n=1 u=27 $ Assembly 17 - Axial Zone 7 1708 1708 -9.914 -6 +207 -208 imp:n=1 u=27 $ Assembly 17 - Axial Zone 8 1709 1709 -9.915 -6 +208 -209 imp:n=1 u=27 $ Assembly 17 - Axial Zone 9 1710 1710 -9.915 -6 +209 -210 imp:n=1 u=27 $ Assembly 17 - Axial Zone 10 1711 1711 -9.916 -6 +210 -211 imp:n=1 u=27 $ Assembly 17 - Axial Zone 11 1712 1712 -9.916 -6 +211 -212 imp:n=1 u=27 $ Assembly 17 - Axial Zone 12 1713 1713 -9.917 -6 +212 -213 imp:n=1 u=27 $ Assembly 17 - Axial Zone 13 1714 1714 -9.918 -6 +213 -214 imp:n=1 u=27 $ Assembly 17 - Axial Zone 14 1715 1715 -9.927 -6 +214 -215 imp:n=1 u=27 $ Assembly 17 - Axial Zone 15 1716 1716 -9.945 -6 +215 -216 imp:n=1 u=27 $ Assembly 17 - Axial Zone 16 1717 1717 -10.012 -6 +216 -217 imp:n=1 u=27 $ Assembly 17 - Axial Zone 17 1718 1718 -10.092 -6 +217 imp:n=1 u=27 $ Assembly 17 - Axial Zone 18 1721 3 -1.00 +6 -8 imp:n=1 u=27 1722 2 -6.56 +8 -17 imp:n=1 u=27 1723 3 -1.00 +17 imp:n=1 u=27 c Assy 18 1801 1801 -10.039 -9 -201 imp:n=1 u=28 $ Assembly 18 - Axial Zone 1 1802 1802 -9.998 -9 +201 -202 imp:n=1 u=28 $ Assembly 18 - Axial Zone 2 1803 1803 -9.991 -9 +202 -203 imp:n=1 u=28 $ Assembly 18 - Axial Zone 3 1804 1804 -9.991 -9 +203 -204 imp:n=1 u=28 $ Assembly 18 - Axial Zone 4 1805 1805 -9.991 -9 +204 -205 imp:n=1 u=28 $ Assembly 18 - Axial Zone 5 1806 1806 -9.991 -9 +205 -206 imp:n=1 u=28 $ Assembly 18 - Axial Zone 6 1807 1807 -9.991 -9 +206 -207 imp:n=1 u=28 $ Assembly 18 - Axial Zone 7 1808 1808 -9.991 -9 +207 -208 imp:n=1 u=28 $ Assembly 18 - Axial Zone 8 1809 1809 -9.991 -9 +208 -209 imp:n=1 u=28 $ Assembly 18 - Axial Zone 9 1810 1810 -9.992 -9 +209 -210 imp:n=1 u=28 $ Assembly 18 - Axial Zone 10 1811 1811 -9.992 -9 +210 -211 imp:n=1 u=28 $ Assembly 18 - Axial Zone 11 1812 1812 -9.992 -9 +211 -212 imp:n=1 u=28 $ Assembly 18 - Axial Zone 12 1813 1813 -9.992 -9 +212 -213 imp:n=1 u=28 $ Assembly 18 - Axial Zone 13 1814 1814 -10.008 -9 +213 -214 imp:n=1 u=28 $ Assembly 18 - Axial Zone 14 1815 1815 -10.024 -9 +214 -215 imp:n=1 u=28 $ Assembly 18 - Axial Zone 15 1816 1816 -10.040 -9 +215 -216 imp:n=1 u=28 $ Assembly 18 - Axial Zone 16 1817 1817 -10.049 -9 +216 -217 imp:n=1 u=28 $ Assembly 18 - Axial Zone 17 1818 1818 -10.065 -9 +217 imp:n=1 u=28 $ Assembly 18 - Axial Zone 18 1821 3 -1.00 +9 -11 imp:n=1 u=28 1822 2 -6.56 +11 -14 imp:n=1 u=28 1823 3 -1.00 +14 imp:n=1 u=28 c Assy 19 1901 1901 -10.025 -9 -201 imp:n=1 u=29 $ Assembly 19 - Axial Zone 1 1902 1902 -9.992 -9 +201 -202 imp:n=1 u=29 $ Assembly 19 - Axial Zone 2 1903 1903 -9.976 -9 +202 -203 imp:n=1 u=29 $ Assembly 19 - Axial Zone 3 1904 1904 -9.976 -9 +203 -204 imp:n=1 u=29 $ Assembly 19 - Axial Zone 4 1905 1905 -9.976 -9 +204 -205 imp:n=1 u=29 $ Assembly 19 - Axial Zone 5 1906 1906 -9.976 -9 +205 -206 imp:n=1 u=29 $ Assembly 19 - Axial Zone 6 1907 1907 -9.976 -9 +206 -207 imp:n=1 u=29 $ Assembly 19 - Axial Zone 7 1908 1908 -9.976 -9 +207 -208 imp:n=1 u=29 $ Assembly 19 - Axial Zone 8 1909 1909 -9.976 -9 +208 -209 imp:n=1 u=29 $ Assembly 19 - Axial Zone 9 1910 1910 -9.977 -9 +209 -210 imp:n=1 u=29 $ Assembly 19 - Axial Zone 10 1911 1911 -9.977 -9 +210 -211 imp:n=1 u=29 $ Assembly 19 - Axial Zone 11 1912 1912 -9.977 -9 +211 -212 imp:n=1 u=29 $ Assembly 19 - Axial Zone 12
Calc Package No.: VSC-03.3606 Page 100 of 191 Revision 0 1913 1913 -9.986 -9 +212 -213 imp:n=1 u=29 $ Assembly 19 - Axial Zone 13 1914 1914 -9.994 -9 +213 -214 imp:n=1 u=29 $ Assembly 19 - Axial Zone 14 1915 1915 -10.018 -9 +214 -215 imp:n=1 u=29 $ Assembly 19 - Axial Zone 15 1916 1916 -10.026 -9 +215 -216 imp:n=1 u=29 $ Assembly 19 - Axial Zone 16 1917 1917 -10.035 -9 +216 -217 imp:n=1 u=29 $ Assembly 19 - Axial Zone 17 1918 1918 -10.051 -9 +217 imp:n=1 u=29 $ Assembly 19 - Axial Zone 18 1921 3 -1.00 +9 -11 imp:n=1 u=29 1922 2 -6.56 +11 -14 imp:n=1 u=29 1923 3 -1.00 +14 imp:n=1 u=29 c Assy 20 2001 2001 -10.056 -6 -201 imp:n=1 u=30 $ Assembly 20 - Axial Zone 1 2002 2002 -9.976 -6 +201 -202 imp:n=1 u=30 $ Assembly 20 - Axial Zone 2 2003 2003 -9.939 -6 +202 -203 imp:n=1 u=30 $ Assembly 20 - Axial Zone 3 2004 2004 -9.940 -6 +203 -204 imp:n=1 u=30 $ Assembly 20 - Axial Zone 4 2005 2005 -9.931 -6 +204 -205 imp:n=1 u=30 $ Assembly 20 - Axial Zone 5 2006 2006 -9.931 -6 +205 -206 imp:n=1 u=30 $ Assembly 20 - Axial Zone 6 2007 2007 -9.932 -6 +206 -207 imp:n=1 u=30 $ Assembly 20 - Axial Zone 7 2008 2008 -9.941 -6 +207 -208 imp:n=1 u=30 $ Assembly 20 - Axial Zone 8 2009 2009 -9.942 -6 +208 -209 imp:n=1 u=30 $ Assembly 20 - Axial Zone 9 2010 2010 -9.943 -6 +209 -210 imp:n=1 u=30 $ Assembly 20 - Axial Zone 10 2011 2011 -9.934 -6 +210 -211 imp:n=1 u=30 $ Assembly 20 - Axial Zone 11 2012 2012 -9.935 -6 +211 -212 imp:n=1 u=30 $ Assembly 20 - Axial Zone 12 2013 2013 -9.935 -6 +212 -213 imp:n=1 u=30 $ Assembly 20 - Axial Zone 13 2014 2014 -9.936 -6 +213 -214 imp:n=1 u=30 $ Assembly 20 - Axial Zone 14 2015 2015 -9.945 -6 +214 -215 imp:n=1 u=30 $ Assembly 20 - Axial Zone 15 2016 2016 -9.973 -6 +215 -216 imp:n=1 u=30 $ Assembly 20 - Axial Zone 16 2017 2017 -10.031 -6 +216 -217 imp:n=1 u=30 $ Assembly 20 - Axial Zone 17 2018 2018 -10.104 -6 +217 imp:n=1 u=30 $ Assembly 20 - Axial Zone 18 2021 3 -1.00 +6 -8 imp:n=1 u=30 2022 2 -6.56 +8 -17 imp:n=1 u=30 2023 3 -1.00 +17 imp:n=1 u=30 c Assy 21 2101 2101 -10.034 -6 -201 imp:n=1 u=31 $ Assembly 21 - Axial Zone 1 2102 2102 -9.955 -6 +201 -202 imp:n=1 u=31 $ Assembly 21 - Axial Zone 2 2103 2103 -9.927 -6 +202 -203 imp:n=1 u=31 $ Assembly 21 - Axial Zone 3 2104 2104 -9.919 -6 +203 -204 imp:n=1 u=31 $ Assembly 21 - Axial Zone 4 2105 2105 -9.910 -6 +204 -205 imp:n=1 u=31 $ Assembly 21 - Axial Zone 5 2106 2106 -9.910 -6 +205 -206 imp:n=1 u=31 $ Assembly 21 - Axial Zone 6 2107 2107 -9.920 -6 +206 -207 imp:n=1 u=31 $ Assembly 21 - Axial Zone 7 2108 2108 -9.920 -6 +207 -208 imp:n=1 u=31 $ Assembly 21 - Axial Zone 8 2109 2109 -9.921 -6 +208 -209 imp:n=1 u=31 $ Assembly 21 - Axial Zone 9 2110 2110 -9.921 -6 +209 -210 imp:n=1 u=31 $ Assembly 21 - Axial Zone 10 2111 2111 -9.913 -6 +210 -211 imp:n=1 u=31 $ Assembly 21 - Axial Zone 11 2112 2112 -9.914 -6 +211 -212 imp:n=1 u=31 $ Assembly 21 - Axial Zone 12 2113 2113 -9.914 -6 +212 -213 imp:n=1 u=31 $ Assembly 21 - Axial Zone 13 2114 2114 -9.924 -6 +213 -214 imp:n=1 u=31 $ Assembly 21 - Axial Zone 14 2115 2115 -9.924 -6 +214 -215 imp:n=1 u=31 $ Assembly 21 - Axial Zone 15 2116 2116 -9.952 -6 +215 -216 imp:n=1 u=31 $ Assembly 21 - Axial Zone 16 2117 2117 -10.010 -6 +216 -217 imp:n=1 u=31 $ Assembly 21 - Axial Zone 17 2118 2118 -10.091 -6 +217 imp:n=1 u=31 $ Assembly 21 - Axial Zone 18 2121 3 -1.00 +6 -8 imp:n=1 u=31 2122 2 -6.56 +8 -17 imp:n=1 u=31 2123 3 -1.00 +17 imp:n=1 u=31 c Assy 22 2201 2201 -10.007 -9 -201 imp:n=1 u=32 $ Assembly 22 - Axial Zone 1 2202 2202 -9.965 -9 +201 -202 imp:n=1 u=32 $ Assembly 22 - Axial Zone 2 2203 2203 -9.957 -9 +202 -203 imp:n=1 u=32 $ Assembly 22 - Axial Zone 3 2204 2204 -9.958 -9 +203 -204 imp:n=1 u=32 $ Assembly 22 - Axial Zone 4 2205 2205 -9.958 -9 +204 -205 imp:n=1 u=32 $ Assembly 22 - Axial Zone 5 2206 2206 -9.958 -9 +205 -206 imp:n=1 u=32 $ Assembly 22 - Axial Zone 6 2207 2207 -9.958 -9 +206 -207 imp:n=1 u=32 $ Assembly 22 - Axial Zone 7
Calc Package No.: VSC-03.3606 Page 101 of 191 Revision 0 2208 2208 -9.958 -9 +207 -208 imp:n=1 u=32 $ Assembly 22 - Axial Zone 8 2209 2209 -9.958 -9 +208 -209 imp:n=1 u=32 $ Assembly 22 - Axial Zone 9 2210 2210 -9.958 -9 +209 -210 imp:n=1 u=32 $ Assembly 22 - Axial Zone 10 2211 2211 -9.959 -9 +210 -211 imp:n=1 u=32 $ Assembly 22 - Axial Zone 11 2212 2212 -9.959 -9 +211 -212 imp:n=1 u=32 $ Assembly 22 - Axial Zone 12 2213 2213 -9.959 -9 +212 -213 imp:n=1 u=32 $ Assembly 22 - Axial Zone 13 2214 2214 -9.966 -9 +213 -214 imp:n=1 u=32 $ Assembly 22 - Axial Zone 14 2215 2215 -9.991 -9 +214 -215 imp:n=1 u=32 $ Assembly 22 - Axial Zone 15 2216 2216 -10.007 -9 +215 -216 imp:n=1 u=32 $ Assembly 22 - Axial Zone 16 2217 2217 -10.016 -9 +216 -217 imp:n=1 u=32 $ Assembly 22 - Axial Zone 17 2218 2218 -10.032 -9 +217 imp:n=1 u=32 $ Assembly 22 - Axial Zone 18 2221 3 -1.00 +9 -11 imp:n=1 u=32 2222 2 -6.56 +11 -14 imp:n=1 u=32 2223 3 -1.00 +14 imp:n=1 u=32 c Assy 23 2301 2301 -9.918 -9 -201 imp:n=1 u=33 $ Assembly 23 - Axial Zone 1 2302 2302 -9.894 -9 +201 -202 imp:n=1 u=33 $ Assembly 23 - Axial Zone 2 2303 2303 -9.878 -9 +202 -203 imp:n=1 u=33 $ Assembly 23 - Axial Zone 3 2304 2304 -9.878 -9 +203 -204 imp:n=1 u=33 $ Assembly 23 - Axial Zone 4 2305 2305 -9.878 -9 +204 -205 imp:n=1 u=33 $ Assembly 23 - Axial Zone 5 2306 2306 -9.878 -9 +205 -206 imp:n=1 u=33 $ Assembly 23 - Axial Zone 6 2307 2307 -9.878 -9 +206 -207 imp:n=1 u=33 $ Assembly 23 - Axial Zone 7 2308 2308 -9.878 -9 +207 -208 imp:n=1 u=33 $ Assembly 23 - Axial Zone 8 2309 2309 -9.878 -9 +208 -209 imp:n=1 u=33 $ Assembly 23 - Axial Zone 9 2310 2310 -9.878 -9 +209 -210 imp:n=1 u=33 $ Assembly 23 - Axial Zone 10 2311 2311 -9.879 -9 +210 -211 imp:n=1 u=33 $ Assembly 23 - Axial Zone 11 2312 2312 -9.879 -9 +211 -212 imp:n=1 u=33 $ Assembly 23 - Axial Zone 12 2313 2313 -9.879 -9 +212 -213 imp:n=1 u=33 $ Assembly 23 - Axial Zone 13 2314 2314 -9.895 -9 +213 -214 imp:n=1 u=33 $ Assembly 23 - Axial Zone 14 2315 2315 -9.911 -9 +214 -215 imp:n=1 u=33 $ Assembly 23 - Axial Zone 15 2316 2316 -9.919 -9 +215 -216 imp:n=1 u=33 $ Assembly 23 - Axial Zone 16 2317 2317 -9.936 -9 +216 -217 imp:n=1 u=33 $ Assembly 23 - Axial Zone 17 2318 2318 -9.944 -9 +217 imp:n=1 u=33 $ Assembly 23 - Axial Zone 18 2321 3 -1.00 +9 -11 imp:n=1 u=33 2322 2 -6.56 +11 -14 imp:n=1 u=33 2323 3 -1.00 +14 imp:n=1 u=33 c Assy 24 2401 2401 -10.012 -9 -201 imp:n=1 u=34 $ Assembly 24 - Axial Zone 1 2402 2402 -9.979 -9 +201 -202 imp:n=1 u=34 $ Assembly 24 - Axial Zone 2 2403 2403 -9.972 -9 +202 -203 imp:n=1 u=34 $ Assembly 24 - Axial Zone 3 2404 2404 -9.963 -9 +203 -204 imp:n=1 u=34 $ Assembly 24 - Axial Zone 4 2405 2405 -9.963 -9 +204 -205 imp:n=1 u=34 $ Assembly 24 - Axial Zone 5 2406 2406 -9.972 -9 +205 -206 imp:n=1 u=34 $ Assembly 24 - Axial Zone 6 2407 2407 -9.972 -9 +206 -207 imp:n=1 u=34 $ Assembly 24 - Axial Zone 7 2408 2408 -9.972 -9 +207 -208 imp:n=1 u=34 $ Assembly 24 - Axial Zone 8 2409 2409 -9.972 -9 +208 -209 imp:n=1 u=34 $ Assembly 24 - Axial Zone 9 2410 2410 -9.973 -9 +209 -210 imp:n=1 u=34 $ Assembly 24 - Axial Zone 10 2411 2411 -9.973 -9 +210 -211 imp:n=1 u=34 $ Assembly 24 - Axial Zone 11 2412 2412 -9.973 -9 +211 -212 imp:n=1 u=34 $ Assembly 24 - Axial Zone 12 2413 2413 -9.973 -9 +212 -213 imp:n=1 u=34 $ Assembly 24 - Axial Zone 13 2414 2414 -9.981 -9 +213 -214 imp:n=1 u=34 $ Assembly 24 - Axial Zone 14 2415 2415 -10.005 -9 +214 -215 imp:n=1 u=34 $ Assembly 24 - Axial Zone 15 2416 2416 -10.013 -9 +215 -216 imp:n=1 u=34 $ Assembly 24 - Axial Zone 16 2417 2417 -10.031 -9 +216 -217 imp:n=1 u=34 $ Assembly 24 - Axial Zone 17 2418 2418 -10.038 -9 +217 imp:n=1 u=34 $ Assembly 24 - Axial Zone 18 2421 3 -1.00 +9 -11 imp:n=1 u=34 2422 2 -6.56 +11 -14 imp:n=1 u=34 2423 3 -1.00 +14 imp:n=1 u=34 c
c c guide bars (modeled as cylinder w/ minimum 0.415" dia)
Calc Package No.: VSC-03.3606 Page 102 of 191 Revision 0 c
1 2 -6.56 -19 imp:n=1 u=1 2 3 -1.00 +19 imp:n=1 u=1 c
c steel dummy rods (0.417" dia - H & L assys) c 3 6 -8.027 -17 imp:n=1 u=40 4 3 -1.00 +17 imp:n=1 u=40 c
c empty guide tube - G Assembly c
231 3 -1.00 -13 imp:n=1 u=2 232 2 -6.56 +13 -16 imp:n=1 u=2 233 3 -1.00 +16 imp:n=1 u=2 c
c empty guide tube - H, J1, K1 Assemblies c
234 3 -1.00 -13 imp:n=1 u=3 235 2 -6.56 +13 -17 imp:n=1 u=3 236 3 -1.00 +17 imp:n=1 u=3 c
c empty guide tube - I1-I3 Assemblies c
237 3 -1.00 -12 imp:n=1 u=4 238 2 -6.56 +12 -17 imp:n=1 u=4 239 3 -1.00 +17 imp:n=1 u=4 c
c instrument tube - A Assembly c
241 3 -1.00 -11 imp:n=1 u=5 242 2 -6.56 +11 -14 imp:n=1 u=5 243 3 -1.00 +14 imp:n=1 u=5 c
c instrument tube - D (EF) Assembly c
244 3 -1.00 -11 imp:n=1 u=6 245 2 -6.56 +11 -18 imp:n=1 u=6 246 3 -1.00 +18 imp:n=1 u=6 c
c instrument tube - E-G Assemblies c
247 3 -1.00 -10 imp:n=1 u=7 248 2 -6.56 +10 -15 imp:n=1 u=7 249 3 -1.00 +15 imp:n=1 u=7 c
c instrument tube - H Assembly c
250 3 -1.00 -8 imp:n=1 u=8 251 2 -6.56 +8 -15 imp:n=1 u=8 252 3 -1.00 +15 imp:n=1 u=8 c
c instrument tube - I-L Assemblies c
253 3 -1.00 -8 imp:n=1 u=9 254 2 -6.56 +8 -17 imp:n=1 u=9 255 3 -1.00 +17 imp:n=1 u=9 c
c fixed poison rod - A Assembly (1.7% B4C) c 260 14 -3.97 38 imp:n=1 u=66 261 11 -4.0003 -20 +38 -39 imp:n=1 u=66
Calc Package No.: VSC-03.3606 Page 103 of 191 Revision 0 262 14 -3.97 -20 +39 imp:n=1 u=66 263 3 -1.00 +20 -11 imp:n=1 u=66 264 2 -6.56 +11 -14 imp:n=1 u=66 265 3 -1.00 +14 imp:n=1 u=66 c
c fixed poison rod - E Assembly (7.7% B4C) c 266 13 -3.2707 -7 imp:n=1 u=67 267 3 -1.00 +7 -8 imp:n=1 u=67 268 2 -6.56 +8 -15 imp:n=1 u=67 269 3 -1.00 +15 imp:n=1 u=67 c
c G Assembly guide tube containing Insert 2 (4.7% B4C) c 271 14 -3.97 -1 -35 imp:n=1 u=68 272 12 -3.3406 -1 +35 -36 imp:n=1 u=68 273 14 -3.97 -1 +36 imp:n=1 u=68 274 3 -1.00 +1 -3 imp:n=1 u=68 275 2 -6.56 +3 -4 imp:n=1 u=68 276 3 -1.00 +4 -13 imp:n=1 u=68 277 2 -6.56 +13 -16 imp:n=1 u=68 278 3 -1.00 +16 imp:n=1 u=68 c
c H Assembly guide tube containing Insert 2 (4.7% B4C) c 281 14 -3.97 -1 -35 imp:n=1 u=69 282 12 -3.3406 -1 +35 -36 imp:n=1 u=69 283 14 -3.97 -1 +36 imp:n=1 u=69 284 3 -1.00 +1 -3 imp:n=1 u=69 285 2 -6.56 +3 -4 imp:n=1 u=69 286 3 -1.00 +4 -13 imp:n=1 u=69 287 2 -6.56 +13 -17 imp:n=1 u=69 288 3 -1.00 +17 imp:n=1 u=69 c
c I3 Assembly guide tube containing Insert 3 (4.7% B4C) c 291 14 -3.97 -1 -35 imp:n=1 u=70 292 12 -3.3406 -1 +35 -36 imp:n=1 u=70 293 14 -3.97 -1 +36 imp:n=1 u=70 294 3 -1.00 +1 -3 imp:n=1 u=70 295 2 -6.56 +3 -5 imp:n=1 u=70 296 3 -1.00 +5 -12 imp:n=1 u=70 297 2 -6.56 +12 -17 imp:n=1 u=70 298 3 -1.00 +17 imp:n=1 u=70 c
c I1 Assembly guide tube containing Insert 4 (hafnium) c 331 3 -1.00 -2 -37 imp:n=1 u=96 332 0 -2 +37 imp:n=1 u=96 333 3 -1.00 +2 -3 imp:n=1 u=96 334 2 -6.56 +3 -4 imp:n=1 u=96 335 3 -1.00 +4 -12 imp:n=1 u=96 336 2 -6.56 +12 -17 imp:n=1 u=96 337 3 -1.00 +17 imp:n=1 u=96 c
c Zr-4 inert rods (0.417" dia - H - J - L assys) c 341 2 -6.56 -17 imp:n=1 u=97 342 3 -1.00 +17 imp:n=1 u=97 c
c
Calc Package No.: VSC-03.3606 Page 104 of 191 Revision 0 c assembly lattice outside spacer grids c
11 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=41 fill=-9:9 -9:9 0:0 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 11 11 11 11 1 11 11 11 11 11 1 11 11 11 11 41 41 41 41 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 41 41 41 41 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 41 41 41 41 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 41 41 41 41 1 11 11 11 11 11 11 11 11 11 11 11 11 11 1 41 41 41 41 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 41 41 41 41 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 41 41 41 41 11 11 11 11 11 11 11 7 11 11 11 11 11 11 11 41 41 41 41 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 41 41 41 41 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 41 41 41 41 1 11 11 11 11 11 11 11 11 11 11 11 11 11 1 41 41 41 41 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 41 41 41 41 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 41 41 41 41 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 41 41 41 41 11 11 11 11 1 11 11 11 11 11 1 11 11 11 11 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 c
12 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=42 fill=-9:9 -9:9 0:0 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 12 12 12 12 1 12 12 12 12 12 1 12 12 12 12 42 42 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 42 42 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 42 42 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 42 42 42 42 1 12 12 12 12 12 12 12 12 12 12 12 12 12 1 42 42 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 42 42 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 42 42 42 42 12 12 12 12 12 12 12 7 12 12 12 12 12 12 12 42 42 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 42 42 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 42 42 42 42 1 12 12 12 12 12 12 12 12 12 12 12 12 12 1 42 42 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 42 42 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 42 42 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 42 42 42 42 12 12 12 12 1 12 12 12 12 12 1 12 12 12 12 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 c
13 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=43 fill=-9:9 -9:9 0:0 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 13 13 13 13 1 13 13 13 13 13 1 13 13 13 13 43 43 43 43 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 43 43 43 43 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 43 43 43 43 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 43 43 43 43 1 13 13 13 13 13 13 13 13 13 13 13 13 13 1 43 43 43 43 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 43 43 43 43 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 43 43 43 43 13 13 13 13 13 13 13 7 13 13 13 13 13 13 13 43 43 43 43 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 43 43 43 43 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 43 43 43 43 1 13 13 13 13 13 13 13 13 13 13 13 13 13 1 43 43
Calc Package No.: VSC-03.3606 Page 105 of 191 Revision 0 43 43 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 43 43 43 43 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 43 43 43 43 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 43 43 43 43 13 13 13 13 1 13 13 13 13 13 1 13 13 13 13 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 c
14 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=44 fill=-9:9 -9:9 0:0 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 14 14 14 14 1 14 14 14 14 14 1 14 14 14 14 44 44 44 44 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 44 44 44 44 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 44 44 44 44 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 44 44 44 44 1 14 14 14 14 14 14 14 14 14 14 14 14 14 1 44 44 44 44 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 44 44 44 44 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 44 44 44 44 14 14 14 14 14 14 14 9 14 14 14 14 14 14 14 44 44 44 44 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 44 44 44 44 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 44 44 44 44 1 14 14 14 14 14 14 14 14 14 14 14 14 14 1 44 44 44 44 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 44 44 44 44 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 44 44 44 44 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 44 44 44 44 14 14 14 14 1 14 14 14 14 14 1 14 14 14 14 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 c
15 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=45 fill=-9:9 -9:9 0:0 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 15 15 15 15 1 15 15 15 15 15 1 15 15 15 15 45 45 45 45 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 45 45 45 45 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 45 45 45 45 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 45 45 45 45 1 15 15 15 15 15 15 15 15 15 15 15 15 15 1 45 45 45 45 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 45 45 45 45 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 45 45 45 45 15 15 15 15 15 15 15 9 15 15 15 15 15 15 15 45 45 45 45 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 45 45 45 45 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 45 45 45 45 1 15 15 15 15 15 15 15 15 15 15 15 15 15 1 45 45 45 45 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 45 45 45 45 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 45 45 45 45 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 45 45 45 45 15 15 15 15 1 15 15 15 15 15 1 15 15 15 15 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 c
16 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=46 fill=-9:9 -9:9 0:0 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 16 16 16 16 1 16 16 16 16 16 1 16 16 16 16 46 46 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 46 46 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 46 46 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 46 46 46 46 1 16 16 16 16 16 16 16 16 16 16 16 16 16 1 46 46 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 46 46
Calc Package No.: VSC-03.3606 Page 106 of 191 Revision 0 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 46 46 46 46 16 16 16 16 16 16 16 7 16 16 16 16 16 16 16 46 46 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 46 46 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 46 46 46 46 1 16 16 16 16 16 16 16 16 16 16 16 16 16 1 46 46 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 46 46 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 46 46 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 46 46 46 46 16 16 16 16 1 16 16 16 16 16 1 16 16 16 16 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 c
17 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=47 fill=-9:9 -9:9 0:0 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 17 17 17 17 1 17 17 17 17 17 1 17 17 17 17 47 47 47 47 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 47 47 47 47 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 47 47 47 47 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 47 47 47 47 1 17 17 17 17 17 17 17 17 17 17 17 17 17 1 47 47 47 47 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 47 47 47 47 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 47 47 47 47 17 17 17 17 17 17 17 7 17 17 17 17 17 17 17 47 47 47 47 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 47 47 47 47 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 47 47 47 47 1 17 17 17 17 17 17 17 17 17 17 17 17 17 1 47 47 47 47 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 47 47 47 47 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 47 47 47 47 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 47 47 47 47 17 17 17 17 1 17 17 17 17 17 1 17 17 17 17 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 c
18 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=48 fill=-9:9 -9:9 0:0 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 18 18 18 18 1 18 18 18 18 18 1 18 18 18 18 48 48 48 48 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 48 48 48 48 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 48 48 48 48 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 48 48 48 48 1 18 18 18 18 18 18 18 18 18 18 18 18 18 1 48 48 48 48 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 48 48 48 48 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 48 48 48 48 18 18 18 18 18 18 18 9 18 18 18 18 18 18 18 48 48 48 48 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 48 48 48 48 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 48 48 48 48 1 18 18 18 18 18 18 18 18 18 18 18 18 18 1 48 48 48 48 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 48 48 48 48 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 48 48 48 48 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 48 48 48 48 18 18 18 18 1 18 18 18 18 18 1 18 18 18 18 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 c
19 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=49 fill=-9:9 -9:9 0:0 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 19 19 19 19 1 19 19 19 19 19 1 19 19 19 19 49 49
Calc Package No.: VSC-03.3606 Page 107 of 191 Revision 0 49 49 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 49 49 49 49 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 49 49 49 49 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 49 49 49 49 1 19 19 19 19 19 19 19 19 19 19 19 19 19 1 49 49 49 49 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 49 49 49 49 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 49 49 49 49 19 19 19 19 19 19 19 7 19 19 19 19 19 19 19 49 49 49 49 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 49 49 49 49 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 49 49 49 49 1 19 19 19 19 19 19 19 19 19 19 19 19 19 1 49 49 49 49 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 49 49 49 49 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 49 49 49 49 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 49 49 49 49 19 19 19 19 1 19 19 19 19 19 1 19 19 19 19 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 c
20 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=50 fill=-9:9 -9:9 0:0 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 20 20 20 1 20 20 20 20 20 1 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 50 50 50 50 1 20 20 20 20 20 20 20 20 20 20 20 20 20 1 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 7 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 50 50 50 50 1 20 20 20 20 20 20 20 20 20 20 20 20 20 1 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 1 20 20 20 20 20 1 20 20 20 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 c
21 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=51 fill=-9:9 -9:9 0:0 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 21 21 21 21 1 21 21 21 21 21 1 21 21 21 21 51 51 51 51 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 51 51 51 51 21 21 21 21 21 70 21 21 21 70 21 21 21 21 21 51 51 51 51 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 51 51 51 51 1 21 21 21 21 21 21 21 21 21 21 21 21 21 1 51 51 51 51 21 21 70 21 21 21 21 21 21 21 21 21 70 21 21 51 51 51 51 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 51 51 51 51 21 21 21 21 21 21 21 9 21 21 21 21 21 21 21 51 51 51 51 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 51 51 51 51 21 21 70 21 21 21 21 21 21 21 21 21 70 21 21 51 51 51 51 1 21 21 21 21 21 21 21 21 21 21 21 21 21 1 51 51 51 51 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 51 51 51 51 21 21 21 21 21 70 21 21 21 70 21 21 21 21 21 51 51 51 51 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 51 51 51 51 21 21 21 21 1 21 21 21 21 21 1 21 21 21 21 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 c
Calc Package No.: VSC-03.3606 Page 108 of 191 Revision 0 22 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=52 fill=-9:9 -9:9 0:0 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 22 22 22 22 1 22 22 22 22 22 1 22 22 22 22 52 52 52 52 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 52 52 52 52 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 52 52 52 52 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 52 52 52 52 1 22 22 22 22 22 22 22 22 22 22 22 22 22 1 52 52 52 52 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 52 52 52 52 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 52 52 52 52 22 22 22 22 22 22 22 7 22 22 22 22 22 22 22 52 52 52 52 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 52 52 52 52 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 52 52 52 52 1 22 22 22 22 22 22 22 22 22 22 22 22 22 1 52 52 52 52 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 52 52 52 52 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 52 52 52 52 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 52 52 52 52 22 22 22 22 1 22 22 22 22 22 1 22 22 22 22 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 c
23 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=53 fill=-9:9 -9:9 0:0 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 23 23 23 23 1 23 23 23 23 23 1 23 23 23 23 53 53 53 53 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 53 53 53 53 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 53 53 53 53 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 53 53 53 53 1 23 23 23 23 23 23 23 23 23 23 23 23 23 1 53 53 53 53 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 53 53 53 53 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 53 53 53 53 23 23 23 23 23 23 23 7 23 23 23 23 23 23 23 53 53 53 53 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 53 53 53 53 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 53 53 53 53 1 23 23 23 23 23 23 23 23 23 23 23 23 23 1 53 53 53 53 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 53 53 53 53 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 53 53 53 53 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 53 53 53 53 23 23 23 23 1 23 23 23 23 23 1 23 23 23 23 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 c
24 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=54 fill=-9:9 -9:9 0:0 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 24 24 24 24 1 24 24 24 24 24 1 24 24 24 24 54 54 54 54 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 54 54 54 54 24 24 24 24 24 70 24 24 24 70 24 24 24 24 24 54 54 54 54 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 54 54 54 54 1 24 24 24 24 24 24 24 24 24 24 24 24 24 1 54 54 54 54 24 24 70 24 24 24 24 24 24 24 24 24 70 24 24 54 54 54 54 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 54 54 54 54 24 24 24 24 24 24 24 9 24 24 24 24 24 24 24 54 54 54 54 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 54 54 54 54 24 24 70 24 24 24 24 24 24 24 24 24 70 24 24 54 54 54 54 1 24 24 24 24 24 24 24 24 24 24 24 24 24 1 54 54 54 54 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 54 54 54 54 24 24 24 24 24 70 24 24 24 70 24 24 24 24 24 54 54
Calc Package No.: VSC-03.3606 Page 109 of 191 Revision 0 54 54 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 54 54 54 54 24 24 24 24 1 24 24 24 24 24 1 24 24 24 24 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 c
25 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=55 fill=-9:9 -9:9 0:0 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 25 25 25 25 1 25 25 25 25 25 1 25 25 25 25 55 55 55 55 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 55 55 55 55 25 25 66 25 25 25 25 25 25 25 25 25 66 25 25 55 55 55 55 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 55 55 55 55 1 25 25 25 25 25 25 25 25 25 25 25 25 25 1 55 55 55 55 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 55 55 55 55 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 55 55 55 55 25 25 25 25 25 25 25 5 25 25 25 25 25 25 25 55 55 55 55 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 55 55 55 55 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 55 55 55 55 1 25 25 25 25 25 25 25 25 25 25 25 25 25 1 55 55 55 55 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 55 55 55 55 25 25 66 25 25 25 25 25 25 25 25 25 66 25 25 55 55 55 55 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 55 55 55 55 25 25 25 25 1 25 25 25 25 25 1 25 25 25 25 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 c
26 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=56 fill=-9:9 -9:9 0:0 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 26 26 26 26 1 26 26 26 26 26 1 26 26 26 26 56 56 56 56 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 56 56 56 56 26 26 26 26 26 3 26 26 26 3 26 26 26 26 26 56 56 56 56 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 56 56 56 56 1 26 26 26 26 26 26 26 26 26 26 26 26 26 1 56 56 56 56 26 26 3 26 26 26 26 26 26 26 26 26 3 26 26 56 56 56 56 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 56 56 56 56 26 26 26 26 26 26 26 8 26 26 26 26 26 26 26 56 56 56 56 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 56 56 56 56 26 26 3 26 26 26 26 26 26 26 26 26 3 26 26 56 56 56 56 1 26 26 26 26 26 26 26 26 26 26 26 26 26 1 56 56 56 56 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 56 56 56 56 26 26 26 26 26 3 26 26 26 3 26 26 26 26 26 56 56 56 56 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 56 56 56 56 26 26 26 26 1 26 26 26 26 26 1 26 26 26 26 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 c
27 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=57 fill=-9:9 -9:9 0:0 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 27 27 27 27 1 27 27 27 27 27 1 27 27 27 27 57 57 57 57 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 57 57 57 57 27 27 27 27 27 70 27 27 27 70 27 27 27 27 27 57 57 57 57 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 57 57 57 57 1 27 27 27 27 27 27 27 27 27 27 27 27 27 1 57 57 57 57 27 27 70 27 27 27 27 27 27 27 27 27 70 27 27 57 57 57 57 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 57 57 57 57 27 27 27 27 27 27 27 9 27 27 27 27 27 27 27 57 57
Calc Package No.: VSC-03.3606 Page 110 of 191 Revision 0 57 57 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 57 57 57 57 27 27 70 27 27 27 27 27 27 27 27 27 70 27 27 57 57 57 57 1 27 27 27 27 27 27 27 27 27 27 27 27 27 1 57 57 57 57 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 57 57 57 57 27 27 27 27 27 70 27 27 27 70 27 27 27 27 27 57 57 57 57 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 57 57 57 57 27 27 27 27 1 27 27 27 27 27 1 27 27 27 27 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 c
28 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=58 fill=-9:9 -9:9 0:0 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 28 28 28 28 1 28 28 28 28 28 1 28 28 28 28 58 58 58 58 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 58 58 58 58 28 28 66 28 28 28 28 28 28 28 28 28 66 28 28 58 58 58 58 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 58 58 58 58 1 28 28 28 28 28 28 28 28 28 28 28 28 28 1 58 58 58 58 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 58 58 58 58 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 58 58 58 58 28 28 28 28 28 28 28 5 28 28 28 28 28 28 28 58 58 58 58 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 58 58 58 58 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 58 58 58 58 1 28 28 28 28 28 28 28 28 28 28 28 28 28 1 58 58 58 58 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 58 58 58 58 28 28 66 28 28 28 28 28 28 28 28 28 66 28 28 58 58 58 58 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 58 58 58 58 28 28 28 28 1 28 28 28 28 28 1 28 28 28 28 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 c
29 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=59 fill=-9:9 -9:9 0:0 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 29 29 29 29 1 29 29 29 29 29 1 29 29 29 29 59 59 59 59 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 59 59 59 59 29 29 66 29 29 29 29 29 29 29 29 29 66 29 29 59 59 59 59 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 59 59 59 59 1 29 29 29 29 29 29 29 29 29 29 29 29 29 1 59 59 59 59 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 59 59 59 59 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 59 59 59 59 29 29 29 29 29 29 29 5 29 29 29 29 29 29 29 59 59 59 59 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 59 59 59 59 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 59 59 59 59 1 29 29 29 29 29 29 29 29 29 29 29 29 29 1 59 59 59 59 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 59 59 59 59 29 29 66 29 29 29 29 29 29 29 29 29 66 29 29 59 59 59 59 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 59 59 59 59 29 29 29 29 1 29 29 29 29 29 1 29 29 29 29 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 c
30 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=60 fill=-9:9 -9:9 0:0 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 30 30 30 30 1 30 30 30 30 30 1 30 30 30 30 60 60 60 60 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 60 60 60 60 30 30 30 30 30 4 30 30 30 4 30 30 30 30 30 60 60
Calc Package No.: VSC-03.3606 Page 111 of 191 Revision 0 60 60 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 60 60 60 60 1 30 30 30 30 30 30 30 30 30 30 30 30 30 1 60 60 60 60 30 30 4 30 30 30 30 30 30 30 30 30 4 30 30 60 60 60 60 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 60 60 60 60 30 30 30 30 30 30 30 9 30 30 30 30 30 30 30 60 60 60 60 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 60 60 60 60 30 30 4 30 30 30 30 30 30 30 30 30 4 30 30 60 60 60 60 1 30 30 30 30 30 30 30 30 30 30 30 30 30 1 60 60 60 60 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 60 60 60 60 30 30 30 30 30 4 30 30 30 4 30 30 30 30 30 60 60 60 60 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 60 60 60 60 30 30 30 30 1 30 30 30 30 30 1 30 30 30 30 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 c
31 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=61 fill=-9:9 -9:9 0:0 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 31 31 31 31 1 31 31 31 31 31 1 31 31 31 31 61 61 61 61 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 61 61 61 61 31 31 31 31 31 4 31 31 31 4 31 31 31 31 31 61 61 61 61 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 61 61 61 61 1 31 31 31 31 31 31 31 31 31 31 31 31 31 1 61 61 61 61 31 31 4 31 31 31 31 31 31 31 31 31 4 31 31 61 61 61 61 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 61 61 61 61 31 31 31 31 31 31 31 9 31 31 31 31 31 31 31 61 61 61 61 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 61 61 61 61 31 31 4 31 31 31 31 31 31 31 31 31 4 31 31 61 61 61 61 1 31 31 31 31 31 31 31 31 31 31 31 31 31 1 61 61 61 61 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 61 61 61 61 31 31 31 31 31 4 31 31 31 4 31 31 31 31 31 61 61 61 61 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 61 61 61 61 31 31 31 31 1 31 31 31 31 31 1 31 31 31 31 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 c
32 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=62 fill=-9:9 -9:9 0:0 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 32 32 32 32 1 32 32 32 32 32 1 32 32 32 32 62 62 62 62 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 62 62 62 62 32 32 66 32 32 32 32 32 32 32 32 32 66 32 32 62 62 62 62 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 62 62 62 62 1 32 32 32 32 32 32 32 32 32 32 32 32 32 1 62 62 62 62 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 62 62 62 62 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 62 62 62 62 32 32 32 32 32 32 32 5 32 32 32 32 32 32 32 62 62 62 62 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 62 62 62 62 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 62 62 62 62 1 32 32 32 32 32 32 32 32 32 32 32 32 32 1 62 62 62 62 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 62 62 62 62 32 32 66 32 32 32 32 32 32 32 32 32 66 32 32 62 62 62 62 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 62 62 62 62 32 32 32 32 1 32 32 32 32 32 1 32 32 32 32 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 c
33 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=63 fill=-9:9 -9:9 0:0
Calc Package No.: VSC-03.3606 Page 112 of 191 Revision 0 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 33 33 33 33 1 33 33 33 33 33 1 33 33 33 33 63 63 63 63 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 63 63 63 63 33 33 66 33 33 33 33 33 33 33 33 33 66 33 33 63 63 63 63 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 63 63 63 63 1 33 33 33 33 33 33 33 33 33 33 33 33 33 1 63 63 63 63 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 63 63 63 63 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 63 63 63 63 33 33 33 33 33 33 33 5 33 33 33 33 33 33 33 63 63 63 63 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 63 63 63 63 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 63 63 63 63 1 33 33 33 33 33 33 33 33 33 33 33 33 33 1 63 63 63 63 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 63 63 63 63 33 33 66 33 33 33 33 33 33 33 33 33 66 33 33 63 63 63 63 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 63 63 63 63 33 33 33 33 1 33 33 33 33 33 1 33 33 33 33 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 c
34 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=64 fill=-9:9 -9:9 0:0 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 34 34 34 34 1 34 34 34 34 34 1 34 34 34 34 64 64 64 64 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 64 64 64 64 34 34 66 34 34 34 34 34 34 34 34 34 66 34 34 64 64 64 64 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 64 64 64 64 1 34 34 34 34 34 34 34 34 34 34 34 34 34 1 64 64 64 64 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 64 64 64 64 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 64 64 64 64 34 34 34 34 34 34 34 5 34 34 34 34 34 34 34 64 64 64 64 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 64 64 64 64 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 64 64 64 64 1 34 34 34 34 34 34 34 34 34 34 34 34 34 1 64 64 64 64 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 64 64 64 64 34 34 66 34 34 34 34 34 34 34 34 34 66 34 34 64 64 64 64 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 64 64 64 64 34 34 34 34 1 34 34 34 34 34 1 34 34 34 34 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 c
c fuel sleeves containing specific assemblies (w/ specific position shift) c 41 3 -1.00 +25 -26 +27 57 fill=41 (+0.5970 -0.5970 0.0) imp:n=1 u=71 71 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=71 131 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=71 c
42 3 -1.00 +25 -26 +27 57 fill=42 (-0.5970 -0.5970 0.0) imp:n=1 u=72 72 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=72 132 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=72 c
43 3 -1.00 +25 -26 +27 57 fill=43 (+0.5970 -0.5970 0.0) imp:n=1 u=73 73 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=73 133 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=73 c
44 3 -1.00 +25 -26 +27 57 fill=44 (+0.5970 -0.5970 0.0) imp:n=1 u=74 74 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=74 134 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=74 c
45 3 -1.00 +25 -26 +27 57 fill=45 (-0.5970 -0.5970 0.0) imp:n=1 u=75
Calc Package No.: VSC-03.3606 Page 113 of 191 Revision 0 75 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=75 135 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=75 c
46 3 -1.00 +25 -26 +27 57 fill=46 (-0.5970 -0.5970 0.0) imp:n=1 u=76 76 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=76 136 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=76 c
47 3 -1.00 +25 -26 +27 57 fill=47 (+0.5970 -0.5970 0.0) imp:n=1 u=77 77 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=77 137 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=77 c
48 3 -1.00 +25 -26 +27 57 fill=48 (+0.5970 -0.5970 0.0) imp:n=1 u=78 78 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=78 138 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=78 c
49 3 -1.00 +25 -26 +27 57 fill=49 (+0.5970 -0.5970 0.0) imp:n=1 u=79 79 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=79 139 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=79 c
50 3 -1.00 +25 -26 +27 57 fill=50 (-0.5970 -0.5970 0.0) imp:n=1 u=80 80 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=80 140 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=80 c
51 3 -1.00 +25 -26 +27 57 fill=51 (-0.5970 -0.5970 0.0) imp:n=1 u=81 81 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=81 141 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=81 c
52 3 -1.00 +25 -26 +27 57 fill=52 (-0.5970 -0.5970 0.0) imp:n=1 u=82 82 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=82 142 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=82 c
53 3 -1.00 +25 -26 +27 57 fill=53 (+0.5970 +0.5970 0.0) imp:n=1 u=83 83 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=83 143 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=83 c
54 3 -1.00 +25 -26 +27 57 fill=54 (+0.5970 +0.5970 0.0) imp:n=1 u=84 84 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=84 144 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=84 c
55 3 -1.00 +25 -26 +27 57 fill=55 (+0.5970 +0.5970 0.0) imp:n=1 u=85 85 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=85 145 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=85 c
56 3 -1.00 +25 -26 +27 57 fill=56 (-0.5970 +0.5970 0.0) imp:n=1 u=86 86 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=86 146 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=86 c
57 3 -1.00 +25 -26 +27 57 fill=57 (-0.5970 +0.5970 0.0) imp:n=1 u=87 87 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=87 147 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=87 c
58 3 -1.00 +25 -26 +27 57 fill=58 (-0.5970 +0.5970 0.0) imp:n=1 u=88 88 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=88 148 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=88 c
59 3 -1.00 +25 -26 +27 57 fill=59 (+0.5970 +0.5970 0.0) imp:n=1 u=89 89 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=89 149 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=89 c
60 3 -1.00 +25 -26 +27 57 fill=60 (+0.5970 +0.5970 0.0) imp:n=1 u=90 90 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=90
Calc Package No.: VSC-03.3606 Page 114 of 191 Revision 0 150 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=90 c
61 3 -1.00 +25 -26 +27 57 fill=61 (-0.5970 +0.5970 0.0) imp:n=1 u=91 91 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=91 151 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=91 c
62 3 -1.00 +25 -26 +27 57 fill=62 (-0.5970 +0.5970 0.0) imp:n=1 u=92 92 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=92 152 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=92 c
63 3 -1.00 +25 -26 +27 57 fill=63 (+0.5970 +0.5970 0.0) imp:n=1 u=93 93 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=93 153 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=93 c
64 3 -1.00 +25 -26 +27 57 fill=64 (-0.5970 +0.5970 0.0) imp:n=1 u=94 94 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=94 154 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=94 c
c basket fuel sleeve lattice c
35 3 -1.00 -30 +29 -32 +31 imp:n=1 lat=1 u=99 fill=-4:3 -4:3 0:0 99 99 99 99 99 99 99 99 99 99 99 93 94 99 99 99 99 99 89 90 91 92 99 99 99 83 84 85 86 87 88 99 99 77 78 79 80 81 82 99 99 99 73 74 75 76 99 99 99 99 99 71 72 99 99 99 99 99 99 99 99 99 99 99 c
c inside MSB canister - outside outer structures c
36 3 -1.00 (-111:-109) (+110:-109) (+110:+108) (+108:-111)
(+107:-117:-106) (+105:-104:-119) (+107:+116:-106) (+105:+118:-104)
-101 +56 -58 fill=99 (11.5252 11.5252 0.0) imp:n=1 c
c MSB radial support plates c
181 4 -7.8212 +101 +103 +108 -109 -41 +56 -58 imp:n=1 182 4 -7.8212 +101 +102 +110 -111 -41 +56 -58 imp:n=1 183 4 -7.8212 +101 -103 +108 -109 -41 +56 -58 imp:n=1 184 4 -7.8212 +101 -102 +110 -111 -41 +56 -58 imp:n=1 c
c MSB corner support wall structures c
185 4 -7.8212 +109 +111 (-113:-115) -41 +56 -58 imp:n=1 186 3 -1.00 +113 +115 -41 +56 -58 imp:n=1 187 4 -7.8212 +109 -110 (-113:+114) -41 +56 -58 imp:n=1 188 3 -1.00 +113 -114 -41 +56 -58 imp:n=1 189 4 -7.8212 -108 -110 (+112:+114) -41 +56 -58 imp:n=1 190 3 -1.00 -112 -114 -41 +56 -58 imp:n=1 191 4 -7.8212 -108 +111 (+112:-115) -41 +56 -58 imp:n=1 192 3 -1.00 -112 +115 -41 +56 -58 imp:n=1 c
c MSB outer support bars c
193 4 -7.8212 -101 +117 +106 -107 +56 -58 imp:n=1 194 4 -7.8212 -101 -118 +104 -105 +56 -58 imp:n=1 195 4 -7.8212 -101 -116 +106 -107 +56 -58 imp:n=1
Calc Package No.: VSC-03.3606 Page 115 of 191 Revision 0 196 4 -7.8212 -101 +119 +104 -105 +56 -58 imp:n=1 c
c MSB canister shell (carbon steel) c 40 4 -7.8212 +41 -42 +54 -60 imp:n=1 c
c Radial Spacer / TS125 Cask Shells c
161 3 -1.00 +42 -43 +52 -60 imp:n=1 $ MSB/Spacer Gap (water) 162 6 -8.027 +43 -44 +52 -60 imp:n=1 $ Radial Spacer (SS-304) 163 3 -1.00 +44 -45 +52 -60 imp:n=1 $ Spacer/Cask Gap (water) 164 7 -8.027 +45 -46 +52 -60 imp:n=1 $ TS125 Inner Shell (XM-19) 165 5 -11.35 +46 -47 +52 -60 imp:n=1 $ TS125 Gamma Shld (lead) 166 7 -8.027 +47 -48 +52 -60 imp:n=1 $ TS125 Outer Shell (XM-19) c c end regions c
171 7 -8.027 +51 48 imp:n=1 $ Cask Bottom Plate (XM-19) 172 3 -1.00 +52 42 imp:n=1 $ Cavity Spacer Vol (water) 173 6 -8.027 +53 42 imp:n=1 $ Cavity Spacer Top Plate (SS-304) 174 4 -7.8212 +54 41 imp:n=1 $ MSB Bottom Plate (Carbon Steel) 175 3 -1.00 +55 41 imp:n=1 $ Assy Bottom Nozzle Zone (water) 176 3 -1.00 +58 41 imp:n=1 $ Cav. Above Fuel Sleeves (water) 177 4 -7.8212 +59 41 imp:n=1 $ MSB Top Lids (Carbon Steel) 178 7 -8.027 +60 48 imp:n=1 $ Cask Top Lid (XM-19) c c zero importance region c
180 0 (-51:+61:+48) imp:n=0 c surfaces c
c assembly rod/tube radii c
1 cz 0.34036 $ 0.268" dia - Insert 2 & 3 absorber pellet OR 2 cz 0.35052 $ 0.276" dia - Insert 4 absorber pellet OR 3 cz 0.36322 $ 0.286" dia - absorber clad IR (all types) 4 cz 0.42164 $ 0.332" dia - Insert 2 & 4 clad OR 5 cz 0.42418 $ 0.334" dia - Insert 3 clad OR 6 cz 0.4445 $ 0.35" dia - H-K pellet OR 7 cz 0.44514 $ 0.3505" dia - E-G, L pellet OR 8 cz 0.45466 $ 0.358" dia - D pellet OR, E-L clad IR, H-L inst IR 9 cz 0.45593 $ 0.359" dia - A pellet OR 10 cz 0.4572 $ 0.36" dia - E-G inst IR 11 cz 0.46419 $ 0.3655" dia - A-D clad IR, A-D inst IR 12 cz 0.49403 $ 0.389" dia - I guide tube IR 13 cz 0.49657 $ 0.391" dia - G, H, J1, K1 guide tube IR 14 cz 0.52515 $ 0.4135" dia - A clad OR, A inst OR 15 cz 0.52705 $ 0.415" dia - E-G clad OR, E-H inst OR 16 cz 0.52832 $ 0.416" dia - G guide tube OR 17 cz 0.52959 $ 0.417" dia - H-L clad OR, H-K guide tube OR, I-L inst OR 18 cz 0.53023 $ 0.4175" dia - D clad OR, D inst OR 19 cz 0.5776 $ 0.4548" dia - guide bar effective OR 20 cz 0.45212 $ 0.356" dia - A absorber pellet OR c
c pin pitch / fuel sleeve x-y surfaces c
21 px -0.6985 $ pin cell -x surface 22 px 0.6985 $ pin cell +x surface 23 py -0.6985 $ pin cell -y surface 24 py 0.6985 $ pin cell +y surface
Calc Package No.: VSC-03.3606 Page 116 of 191 Revision 0 25 px -11.0744 $ fuel sleeve -x inner surface 26 px 11.0744 $ fuel sleeve +x inner surface 27 py -11.0744 $ fuel sleeve -y inner surface 28 py 11.0744 $ fuel sleeve +y inner surface 29 px -11.52525 $ fuel sleeve -x outer surface 30 px 11.52525 $ fuel sleeve +x outer surface 31 py -11.52525 $ fuel sleeve -y outer surface 32 py 11.52525 $ fuel sleeve +y outer surface c
c poison material axial boundaries c
35 pz -152.908 $ Bottom of B4C Poison Material (Insert Types 2 & 3) 36 pz 151.892 $ Top of B4C Poison Material (Insert Types 2 & 3) 37 pz -159.258 $ Bottom of Hafnium Poison Material (Insert Type 4) 38 pz -152.4 $ Bottom of B4C Poison Material (A Assembly Fixed Rod) 39 pz 152.4 $ Top of B4C Poison Material (A Assembly Fixed Rod) c c MSB & TS125 Cask Radial Shell Surfaces c
41 cz 76.043 $ MSB radial shell IR 42 cz 78.740 $ MSB radial shell OR 43 cz 80.645 $ radial cavity spacer IR 44 cz 83.82 $ radial cavity spacer OR 45 cz 85.09 $ TS125 Cask Cavity IR 46 cz 88.9 $ TS125 Cask Inner Liner OR 47 cz 97.155 $ TS125 Cask Gamma Shield OR 48* cz 103.886 $ TS125 Cask Shell OR c
c Model axial surfaces c
51* pz -268.224 $ Bottom of TS125 Cask Body 52 pz -252.984 $ Bottom of TS125 Cask Cavity 53 pz -186.563 $ Bottom of Axial Cask Cavity Spacer Top Plate 54 pz -178.943 $ Bottom End of MSB 55 pz -177.038 $ Bottom of MSB Internal Cavity 56 pz -167.386 $ Bottom of Active Fuel Zone 57 pz 167.386 $ Top of Active Fuel Zone 58 pz 197.612 $ Top of Steel Fuel Sleeves 59 pz 205.486 $ Top of MSB Internal Cavity 60 pz 237.236 $ Top End of MSB / Top of TS125 Cask Cavity 61* pz 252.476 $ Top of TS125 Cask Body c
c MSB edge structure surfaces c
101 cz 73.597 $ inner surface of MSB radial support plates 102 px 0.0 $ X-axis - quadrant separator 103 py 0.0 $ Y-axis - quadrant separator 104 px -2.699 $ -x surface of -y and +y support bars 105 px 2.699 $ +x surface of -y and +y support bars 106 py -2.699 $ -y surface of -x and +x support bars 107 py 2.699 $ +y surface of -x and +x support bars 108 px -46.101 $ +x surface of -x/-y and -x/+y corner support wall structures 109 px 46.101 $ -x surface of +x/-y and +x/+y corner support wall structures 110 py -46.101 $ +y surface of -x/-y and +x/-y corner support wall structures 111 py 46.101 $ -y surface of -x/+y and +x/+y corner support wall structures 112 px -47.689 $ -x surface of -x/-y and -x/+y corner support wall structures 113 px 47.689 $ +x surface of +x/-y and +x/+y corner support wall structures 114 py -47.689 $ -y surface of -x/-y and +x/-y corner support wall structures 115 py 47.689 $ +y surface of -x/+y and +x/+y corner support wall structures 116 px -69.757 $ +x surface of -x support bar 117 px 69.757 $ -x surface of +x support bar
Calc Package No.: VSC-03.3606 Page 117 of 191 Revision 0 118 py -69.757 $ +y surface of -y support bar 119 py 69.757 $ -y surface of +y support bar c
c axial burnup profile zone boundaries (18 zones) c 201 pz -148.788 $ axial profile zone boundary - 1/2 202 pz -130.189 $ axial profile zone boundary - 2/3 203 pz -111.591 $ axial profile zone boundary - 3/4 204 pz -92.992 $ axial profile zone boundary - 4/5 205 pz -74.394 $ axial profile zone boundary - 5/6 206 pz -55.795 $ axial profile zone boundary - 6/7 207 pz -37.197 $ axial profile zone boundary - 7/8 208 pz -18.598 $ axial profile zone boundary - 8/9 209 pz 0.000 $ axial profile zone boundary - 9/10 210 pz 18.598 $ axial profile zone boundary - 10/11 211 pz 37.197 $ axial profile zone boundary - 11/12 212 pz 55.795 $ axial profile zone boundary - 12/13 213 pz 74.394 $ axial profile zone boundary - 13/14 214 pz 92.992 $ axial profile zone boundary - 14/15 215 pz 111.591 $ axial profile zone boundary - 15/16 216 pz 130.189 $ axial profile zone boundary - 16/17 217 pz 148.788 $ axial profile zone boundary - 17/18 c non-fuel materials c
m2 40000.60c -98.18 $ clad 50000.40c -1.4 24050.60c -0.004 24052.60c -0.084 24053.60c -0.01 24054.60c -0.002 26054.60c -0.011 26056.60c -0.184 26057.60c -0.004 26058.60c -0.001 8016.50c -0.12 c
m3 1001.50c -11.18983 $ fresh water 8016.50c -88.81017 c
m4 26054.60c -5.8032 $ Carbon Steel 26056.60c -90.2158 26057.60c -2.0656 26058.60c -0.2754 6000.50c -0.27 14000.50c -0.3 15031.50c -0.035 16032.50c -0.035 25055.50c -1.0 c
m5 82000.50c -1.0 $ lead c
m6 24000.50c -19.0 $ SS-304 25055.50c -2.0 26000.55c -69.75 28000.50c -9.25 c
m7 14000.50c -0.75 $ XM-19 24000.50c -22.0 25055.50c -5.0 26000.55c -57.5
Calc Package No.: VSC-03.3606 Page 118 of 191 Revision 0 28000.50c -12.5 42000.50c -2.25 c
m11 13027.50c -2.0863 $ Al2O3-B4C Absorber Material - 1.7% B4C 8016.50c -1.8557 6000.50c -0.0148 5011.56c -0.0435 c
m12 13027.50c -1.6964 $ Al2O3-B4C Absorber Material - 4.7% B4C 8016.50c -1.5089 6000.50c -0.0344 5011.56c -0.1009 c
m13 13027.50c -1.6157 $ Al2O3-B4C Absorber Material - 7.7% B4C 8016.50c -1.4371 6000.50c -0.0554 5011.56c -0.1626 c
m14 13027.50c -2.1001 $ Pure Al2O3 8016.50c -1.8689 c
c c fuel material compositions (each assembly - each axial zone - 24x18) c c
c Cask 5 - Assembly 1 - 13366 MWd/MTU Avg - 1.50%
c Total Density: 10.0478 g/cc c Assembly 1 - Axial Zone 1 Fuel Material ( 8675 MWd/MTU - 1.50%)
m0101 92234.50c -1.090E+02 92235.50c -7.980E+03 92236.50c -1.240E+03 92238.50c -9.770E+05 93237.50c -7.460E+01 94238.50c -6.750E+00 94239.55c -3.250E+03 94240.50c -8.400E+02 94241.50c -4.880E+01 94242.50c -4.640E+01 95241.50c -2.390E+02 95243.50c -2.760E+00 42095.50c -2.140E+02 43099.50c -2.250E+02 44101.50c -2.060E+02 45103.50c -1.520E+02 47109.60c -2.200E+01 55133.50c -3.320E+02 60143.50c -2.590E+02 60145.50c -1.950E+02 62147.50c -1.010E+02 62149.50c -1.500E+00 62150.50c -7.370E+01 62151.50c -4.120E+00 63151.50c -1.370E+00 62152.50c -4.170E+01 63153.55c -2.160E+01 64155.50c -1.070E+00 8016.50c -1.345E+05 c Total Density: 10.0084 g/cc c Assembly 1 - Axial Zone 2 Fuel Material (13954 MWd/MTU - 1.50%)
m0102 92234.50c -1.010E+02 92235.50c -5.470E+03 92236.50c -1.620E+03 92238.50c -9.720E+05 93237.50c -1.410E+02 94238.50c -1.960E+01 94239.55c -3.850E+03 94240.50c -1.420E+03 94241.50c -9.940E+01 94242.50c -1.660E+02 95241.50c -4.870E+02 95243.50c -1.680E+01 42095.50c -3.290E+02 43099.50c -3.530E+02 44101.50c -3.330E+02 45103.50c -2.460E+02 47109.60c -4.420E+01 55133.50c -5.190E+02 60143.50c -3.700E+02 60145.50c -2.980E+02 62147.50c -1.410E+02 62149.50c -2.040E+00 62150.50c -1.240E+02 62151.50c -5.110E+00 63151.50c -1.690E+00 62152.50c -6.760E+01 63153.55c -4.350E+01 64155.50c -2.030E+00 8016.50c -1.345E+05 remainder of the 432 spent fuel material compositions - not shown c Total Density: 10.0307 g/cc c Assembly 24 - Axial Zone 17 Fuel Material ( 5209 MWd/MTU - 1.65%)
m2417 92234.50c -1.350E+02 92235.50c -1.170E+04 92236.50c -9.090E+02 92238.50c -9.790E+05 93237.50c -3.980E+01 94238.50c -2.560E+00 94239.55c -2.570E+03 94240.50c -4.130E+02 94241.50c -1.660E+01 94242.50c -9.090E+00 95241.50c -9.460E+01 95243.50c -3.310E-01
Calc Package No.: VSC-03.3606 Page 119 of 191 Revision 0 42095.50c -1.330E+02 43099.50c -1.370E+02 44101.50c -1.230E+02 45103.50c -8.790E+01 47109.60c -9.630E+00 55133.50c -2.020E+02 60143.50c -1.700E+02 60145.50c -1.220E+02 62147.50c -6.740E+01 62149.50c -1.090E+00 62150.50c -3.930E+01 62151.50c -3.680E+00 63151.50c -1.320E+00 62152.50c -2.300E+01 63153.55c -1.030E+01 64155.50c -5.920E-01 8016.50c -1.345E+05 c Total Density: 10.0382 g/cc c Assembly 24 - Axial Zone 18 Fuel Material ( 3076 MWd/MTU - 1.65%)
m2418 92234.50c -1.400E+02 92235.50c -1.340E+04 92236.50c -6.150E+02 92238.50c -9.800E+05 93237.50c -1.940E+01 94238.50c -7.400E-01 94239.55c -1.800E+03 94240.50c -1.870E+02 94241.50c -5.110E+00 94242.50c -1.590E+00 95241.50c -2.900E+01 95243.50c -3.290E-02 42095.50c -8.010E+01 43099.50c -8.170E+01 44101.50c -7.240E+01 45103.50c -5.050E+01 47109.60c -4.150E+00 55133.50c -1.210E+02 60143.50c -1.060E+02 60145.50c -7.420E+01 62147.50c -4.210E+01 62149.50c -9.690E-01 62150.50c -2.230E+01 62151.50c -2.970E+00 63151.50c -1.080E+00 62152.50c -1.230E+01 63153.55c -5.110E+00 64155.50c -3.840E-01 8016.50c -1.345E+05 c
c mt3 lwtr.01t c
c source specifications c
ksrc 2.546 2.546 158.67 -2.546 2.546 158.67 6.737 2.546 158.67 -6.737 2.546 158.67 10.928 2.546 158.67 -10.928 2.546 158.67 (rest of 5184 neutron start location triplets (X,Y,Z) - not shown) 10.928 -65.411 -46.67 -10.928 -65.411 -46.67 15.119 -65.411 -46.67 -15.119 -65.411 -46.67 19.310 -65.411 -46.67 -19.310 -65.411 -46.67 c
c c control specifications c
kcode 5184 0.86 50 500 10000 print
Calc Package No.: VSC-03.3606 Page 120 of 191 Revision 0 File Pal17 - Primary Criticality Run for MSB #17 - Illustrates Reconstituted Assembly Treatment Consumers MSB 17 in TS125 Cask - Ship in 2015 c
c geometry c
c fuel rod outside spacer grids c
101 101 -9.893 -6 -201 imp:n=1 u=11 $ Assembly 01 - Axial Zone 1 102 102 -9.810 -6 +201 -202 imp:n=1 u=11 $ Assembly 01 - Axial Zone 2 103 103 -9.785 -6 +202 -203 imp:n=1 u=11 $ Assembly 01 - Axial Zone 3 104 104 -9.776 -6 +203 -204 imp:n=1 u=11 $ Assembly 01 - Axial Zone 4 105 105 -9.777 -6 +204 -205 imp:n=1 u=11 $ Assembly 01 - Axial Zone 5 106 106 -9.777 -6 +205 -206 imp:n=1 u=11 $ Assembly 01 - Axial Zone 6 107 107 -9.777 -6 +206 -207 imp:n=1 u=11 $ Assembly 01 - Axial Zone 7 108 108 -9.778 -6 +207 -208 imp:n=1 u=11 $ Assembly 01 - Axial Zone 8 109 109 -9.779 -6 +208 -209 imp:n=1 u=11 $ Assembly 01 - Axial Zone 9 110 110 -9.779 -6 +209 -210 imp:n=1 u=11 $ Assembly 01 - Axial Zone 10 111 111 -9.780 -6 +210 -211 imp:n=1 u=11 $ Assembly 01 - Axial Zone 11 112 112 -9.780 -6 +211 -212 imp:n=1 u=11 $ Assembly 01 - Axial Zone 12 113 113 -9.781 -6 +212 -213 imp:n=1 u=11 $ Assembly 01 - Axial Zone 13 114 114 -9.781 -6 +213 -214 imp:n=1 u=11 $ Assembly 01 - Axial Zone 14 115 115 -9.790 -6 +214 -215 imp:n=1 u=11 $ Assembly 01 - Axial Zone 15 116 116 -9.807 -6 +215 -216 imp:n=1 u=11 $ Assembly 01 - Axial Zone 16 117 117 -9.869 -6 +216 -217 imp:n=1 u=11 $ Assembly 01 - Axial Zone 17 118 118 -9.946 -6 +217 imp:n=1 u=11 $ Assembly 01 - Axial Zone 18 121 3 -1.00 +6 -8 imp:n=1 u=11 122 2 -6.56 +8 -17 imp:n=1 u=11 123 3 -1.00 +17 imp:n=1 u=11 c Assy 2 201 201 -9.893 -6 -201 imp:n=1 u=12 $ Assembly 02 - Axial Zone 1 202 202 -9.810 -6 +201 -202 imp:n=1 u=12 $ Assembly 02 - Axial Zone 2 203 203 -9.785 -6 +202 -203 imp:n=1 u=12 $ Assembly 02 - Axial Zone 3 204 204 -9.776 -6 +203 -204 imp:n=1 u=12 $ Assembly 02 - Axial Zone 4 205 205 -9.777 -6 +204 -205 imp:n=1 u=12 $ Assembly 02 - Axial Zone 5 206 206 -9.777 -6 +205 -206 imp:n=1 u=12 $ Assembly 02 - Axial Zone 6 207 207 -9.777 -6 +206 -207 imp:n=1 u=12 $ Assembly 02 - Axial Zone 7 208 208 -9.778 -6 +207 -208 imp:n=1 u=12 $ Assembly 02 - Axial Zone 8 209 209 -9.779 -6 +208 -209 imp:n=1 u=12 $ Assembly 02 - Axial Zone 9 210 210 -9.779 -6 +209 -210 imp:n=1 u=12 $ Assembly 02 - Axial Zone 10 211 211 -9.780 -6 +210 -211 imp:n=1 u=12 $ Assembly 02 - Axial Zone 11 212 212 -9.780 -6 +211 -212 imp:n=1 u=12 $ Assembly 02 - Axial Zone 12 213 213 -9.781 -6 +212 -213 imp:n=1 u=12 $ Assembly 02 - Axial Zone 13 214 214 -9.781 -6 +213 -214 imp:n=1 u=12 $ Assembly 02 - Axial Zone 14 215 215 -9.790 -6 +214 -215 imp:n=1 u=12 $ Assembly 02 - Axial Zone 15 216 216 -9.807 -6 +215 -216 imp:n=1 u=12 $ Assembly 02 - Axial Zone 16 217 217 -9.869 -6 +216 -217 imp:n=1 u=12 $ Assembly 02 - Axial Zone 17 218 218 -9.946 -6 +217 imp:n=1 u=12 $ Assembly 02 - Axial Zone 18 221 3 -1.00 +6 -8 imp:n=1 u=12 222 2 -6.56 +8 -17 imp:n=1 u=12 223 3 -1.00 +17 imp:n=1 u=12 c Assy 3 301 301 -9.893 -6 -201 imp:n=1 u=13 $ Assembly 03 - Axial Zone 1 302 302 -9.810 -6 +201 -202 imp:n=1 u=13 $ Assembly 03 - Axial Zone 2 303 303 -9.785 -6 +202 -203 imp:n=1 u=13 $ Assembly 03 - Axial Zone 3 304 304 -9.776 -6 +203 -204 imp:n=1 u=13 $ Assembly 03 - Axial Zone 4
Calc Package No.: VSC-03.3606 Page 121 of 191 Revision 0 305 305 -9.777 -6 +204 -205 imp:n=1 u=13 $ Assembly 03 - Axial Zone 5 306 306 -9.777 -6 +205 -206 imp:n=1 u=13 $ Assembly 03 - Axial Zone 6 307 307 -9.777 -6 +206 -207 imp:n=1 u=13 $ Assembly 03 - Axial Zone 7 308 308 -9.778 -6 +207 -208 imp:n=1 u=13 $ Assembly 03 - Axial Zone 8 309 309 -9.779 -6 +208 -209 imp:n=1 u=13 $ Assembly 03 - Axial Zone 9 310 310 -9.779 -6 +209 -210 imp:n=1 u=13 $ Assembly 03 - Axial Zone 10 311 311 -9.780 -6 +210 -211 imp:n=1 u=13 $ Assembly 03 - Axial Zone 11 312 312 -9.780 -6 +211 -212 imp:n=1 u=13 $ Assembly 03 - Axial Zone 12 313 313 -9.781 -6 +212 -213 imp:n=1 u=13 $ Assembly 03 - Axial Zone 13 314 314 -9.781 -6 +213 -214 imp:n=1 u=13 $ Assembly 03 - Axial Zone 14 315 315 -9.790 -6 +214 -215 imp:n=1 u=13 $ Assembly 03 - Axial Zone 15 316 316 -9.807 -6 +215 -216 imp:n=1 u=13 $ Assembly 03 - Axial Zone 16 317 317 -9.869 -6 +216 -217 imp:n=1 u=13 $ Assembly 03 - Axial Zone 17 318 318 -9.946 -6 +217 imp:n=1 u=13 $ Assembly 03 - Axial Zone 18 321 3 -1.00 +6 -8 imp:n=1 u=13 322 2 -6.56 +8 -17 imp:n=1 u=13 323 3 -1.00 +17 imp:n=1 u=13 c Assy 4 401 401 -9.986 -6 -201 imp:n=1 u=14 $ Assembly 04 - Axial Zone 1 402 402 -9.909 -6 +201 -202 imp:n=1 u=14 $ Assembly 04 - Axial Zone 2 403 403 -9.882 -6 +202 -203 imp:n=1 u=14 $ Assembly 04 - Axial Zone 3 404 404 -9.873 -6 +203 -204 imp:n=1 u=14 $ Assembly 04 - Axial Zone 4 405 405 -9.873 -6 +204 -205 imp:n=1 u=14 $ Assembly 04 - Axial Zone 5 406 406 -9.873 -6 +205 -206 imp:n=1 u=14 $ Assembly 04 - Axial Zone 6 407 407 -9.874 -6 +206 -207 imp:n=1 u=14 $ Assembly 04 - Axial Zone 7 408 408 -9.874 -6 +207 -208 imp:n=1 u=14 $ Assembly 04 - Axial Zone 8 409 409 -9.875 -6 +208 -209 imp:n=1 u=14 $ Assembly 04 - Axial Zone 9 410 410 -9.875 -6 +209 -210 imp:n=1 u=14 $ Assembly 04 - Axial Zone 10 411 411 -9.876 -6 +210 -211 imp:n=1 u=14 $ Assembly 04 - Axial Zone 11 412 412 -9.876 -6 +211 -212 imp:n=1 u=14 $ Assembly 04 - Axial Zone 12 413 413 -9.877 -6 +212 -213 imp:n=1 u=14 $ Assembly 04 - Axial Zone 13 414 414 -9.877 -6 +213 -214 imp:n=1 u=14 $ Assembly 04 - Axial Zone 14 415 415 -9.887 -6 +214 -215 imp:n=1 u=14 $ Assembly 04 - Axial Zone 15 416 416 -9.905 -6 +215 -216 imp:n=1 u=14 $ Assembly 04 - Axial Zone 16 417 417 -9.961 -6 +216 -217 imp:n=1 u=14 $ Assembly 04 - Axial Zone 17 418 418 -10.031 -6 +217 imp:n=1 u=14 $ Assembly 04 - Axial Zone 18 421 3 -1.00 +6 -8 imp:n=1 u=14 422 2 -6.56 +8 -17 imp:n=1 u=14 423 3 -1.00 +17 imp:n=1 u=14 c Assy 5 501 501 -9.893 -7 -201 imp:n=1 u=15 $ Assembly 05 - Axial Zone 1 502 502 -9.810 -7 +201 -202 imp:n=1 u=15 $ Assembly 05 - Axial Zone 2 503 503 -9.785 -7 +202 -203 imp:n=1 u=15 $ Assembly 05 - Axial Zone 3 504 504 -9.776 -7 +203 -204 imp:n=1 u=15 $ Assembly 05 - Axial Zone 4 505 505 -9.777 -7 +204 -205 imp:n=1 u=15 $ Assembly 05 - Axial Zone 5 506 506 -9.777 -7 +205 -206 imp:n=1 u=15 $ Assembly 05 - Axial Zone 6 507 507 -9.777 -7 +206 -207 imp:n=1 u=15 $ Assembly 05 - Axial Zone 7 508 508 -9.778 -7 +207 -208 imp:n=1 u=15 $ Assembly 05 - Axial Zone 8 509 509 -9.779 -7 +208 -209 imp:n=1 u=15 $ Assembly 05 - Axial Zone 9 510 510 -9.779 -7 +209 -210 imp:n=1 u=15 $ Assembly 05 - Axial Zone 10 511 511 -9.780 -7 +210 -211 imp:n=1 u=15 $ Assembly 05 - Axial Zone 11 512 512 -9.780 -7 +211 -212 imp:n=1 u=15 $ Assembly 05 - Axial Zone 12 513 513 -9.781 -7 +212 -213 imp:n=1 u=15 $ Assembly 05 - Axial Zone 13 514 514 -9.781 -7 +213 -214 imp:n=1 u=15 $ Assembly 05 - Axial Zone 14 515 515 -9.790 -7 +214 -215 imp:n=1 u=15 $ Assembly 05 - Axial Zone 15 516 516 -9.807 -7 +215 -216 imp:n=1 u=15 $ Assembly 05 - Axial Zone 16 517 517 -9.869 -7 +216 -217 imp:n=1 u=15 $ Assembly 05 - Axial Zone 17 518 518 -9.946 -7 +217 imp:n=1 u=15 $ Assembly 05 - Axial Zone 18
Calc Package No.: VSC-03.3606 Page 122 of 191 Revision 0 521 3 -1.00 +7 -8 imp:n=1 u=15 522 2 -6.56 +8 -17 imp:n=1 u=15 523 3 -1.00 +17 imp:n=1 u=15 c Assy 6 601 601 -9.893 -7 -201 imp:n=1 u=16 $ Assembly 06 - Axial Zone 1 602 602 -9.810 -7 +201 -202 imp:n=1 u=16 $ Assembly 06 - Axial Zone 2 603 603 -9.785 -7 +202 -203 imp:n=1 u=16 $ Assembly 06 - Axial Zone 3 604 604 -9.776 -7 +203 -204 imp:n=1 u=16 $ Assembly 06 - Axial Zone 4 605 605 -9.777 -7 +204 -205 imp:n=1 u=16 $ Assembly 06 - Axial Zone 5 606 606 -9.777 -7 +205 -206 imp:n=1 u=16 $ Assembly 06 - Axial Zone 6 607 607 -9.777 -7 +206 -207 imp:n=1 u=16 $ Assembly 06 - Axial Zone 7 608 608 -9.778 -7 +207 -208 imp:n=1 u=16 $ Assembly 06 - Axial Zone 8 609 609 -9.779 -7 +208 -209 imp:n=1 u=16 $ Assembly 06 - Axial Zone 9 610 610 -9.779 -7 +209 -210 imp:n=1 u=16 $ Assembly 06 - Axial Zone 10 611 611 -9.780 -7 +210 -211 imp:n=1 u=16 $ Assembly 06 - Axial Zone 11 612 612 -9.780 -7 +211 -212 imp:n=1 u=16 $ Assembly 06 - Axial Zone 12 613 613 -9.781 -7 +212 -213 imp:n=1 u=16 $ Assembly 06 - Axial Zone 13 614 614 -9.781 -7 +213 -214 imp:n=1 u=16 $ Assembly 06 - Axial Zone 14 615 615 -9.790 -7 +214 -215 imp:n=1 u=16 $ Assembly 06 - Axial Zone 15 616 616 -9.807 -7 +215 -216 imp:n=1 u=16 $ Assembly 06 - Axial Zone 16 617 617 -9.869 -7 +216 -217 imp:n=1 u=16 $ Assembly 06 - Axial Zone 17 618 618 -9.946 -7 +217 imp:n=1 u=16 $ Assembly 06 - Axial Zone 18 621 3 -1.00 +7 -8 imp:n=1 u=16 622 2 -6.56 +8 -15 imp:n=1 u=16 623 3 -1.00 +15 imp:n=1 u=16 c Assy 7 701 701 -9.893 -6 -201 imp:n=1 u=17 $ Assembly 07 - Axial Zone 1 702 702 -9.810 -6 +201 -202 imp:n=1 u=17 $ Assembly 07 - Axial Zone 2 703 703 -9.785 -6 +202 -203 imp:n=1 u=17 $ Assembly 07 - Axial Zone 3 704 704 -9.776 -6 +203 -204 imp:n=1 u=17 $ Assembly 07 - Axial Zone 4 705 705 -9.777 -6 +204 -205 imp:n=1 u=17 $ Assembly 07 - Axial Zone 5 706 706 -9.777 -6 +205 -206 imp:n=1 u=17 $ Assembly 07 - Axial Zone 6 707 707 -9.778 -6 +206 -207 imp:n=1 u=17 $ Assembly 07 - Axial Zone 7 708 708 -9.778 -6 +207 -208 imp:n=1 u=17 $ Assembly 07 - Axial Zone 8 709 709 -9.779 -6 +208 -209 imp:n=1 u=17 $ Assembly 07 - Axial Zone 9 710 710 -9.779 -6 +209 -210 imp:n=1 u=17 $ Assembly 07 - Axial Zone 10 711 711 -9.780 -6 +210 -211 imp:n=1 u=17 $ Assembly 07 - Axial Zone 11 712 712 -9.780 -6 +211 -212 imp:n=1 u=17 $ Assembly 07 - Axial Zone 12 713 713 -9.781 -6 +212 -213 imp:n=1 u=17 $ Assembly 07 - Axial Zone 13 714 714 -9.781 -6 +213 -214 imp:n=1 u=17 $ Assembly 07 - Axial Zone 14 715 715 -9.790 -6 +214 -215 imp:n=1 u=17 $ Assembly 07 - Axial Zone 15 716 716 -9.807 -6 +215 -216 imp:n=1 u=17 $ Assembly 07 - Axial Zone 16 717 717 -9.869 -6 +216 -217 imp:n=1 u=17 $ Assembly 07 - Axial Zone 17 718 718 -9.946 -6 +217 imp:n=1 u=17 $ Assembly 07 - Axial Zone 18 721 3 -1.00 +6 -8 imp:n=1 u=17 722 2 -6.56 +8 -17 imp:n=1 u=17 723 3 -1.00 +17 imp:n=1 u=17 c Assy 8 801 801 -9.893 -7 -201 imp:n=1 u=18 $ Assembly 08 - Axial Zone 1 802 802 -9.810 -7 +201 -202 imp:n=1 u=18 $ Assembly 08 - Axial Zone 2 803 803 -9.785 -7 +202 -203 imp:n=1 u=18 $ Assembly 08 - Axial Zone 3 804 804 -9.776 -7 +203 -204 imp:n=1 u=18 $ Assembly 08 - Axial Zone 4 805 805 -9.777 -7 +204 -205 imp:n=1 u=18 $ Assembly 08 - Axial Zone 5 806 806 -9.777 -7 +205 -206 imp:n=1 u=18 $ Assembly 08 - Axial Zone 6 807 807 -9.777 -7 +206 -207 imp:n=1 u=18 $ Assembly 08 - Axial Zone 7 808 808 -9.778 -7 +207 -208 imp:n=1 u=18 $ Assembly 08 - Axial Zone 8
Calc Package No.: VSC-03.3606 Page 123 of 191 Revision 0 809 809 -9.779 -7 +208 -209 imp:n=1 u=18 $ Assembly 08 - Axial Zone 9 810 810 -9.779 -7 +209 -210 imp:n=1 u=18 $ Assembly 08 - Axial Zone 10 811 811 -9.780 -7 +210 -211 imp:n=1 u=18 $ Assembly 08 - Axial Zone 11 812 812 -9.780 -7 +211 -212 imp:n=1 u=18 $ Assembly 08 - Axial Zone 12 813 813 -9.781 -7 +212 -213 imp:n=1 u=18 $ Assembly 08 - Axial Zone 13 814 814 -9.781 -7 +213 -214 imp:n=1 u=18 $ Assembly 08 - Axial Zone 14 815 815 -9.790 -7 +214 -215 imp:n=1 u=18 $ Assembly 08 - Axial Zone 15 816 816 -9.807 -7 +215 -216 imp:n=1 u=18 $ Assembly 08 - Axial Zone 16 817 817 -9.869 -7 +216 -217 imp:n=1 u=18 $ Assembly 08 - Axial Zone 17 818 818 -9.946 -7 +217 imp:n=1 u=18 $ Assembly 08 - Axial Zone 18 821 3 -1.00 +7 -8 imp:n=1 u=18 822 2 -6.56 +8 -17 imp:n=1 u=18 823 3 -1.00 +17 imp:n=1 u=18 c Assy 9 901 901 -9.992 -7 -201 imp:n=1 u=19 $ Assembly 09 - Axial Zone 1 902 902 -9.906 -7 +201 -202 imp:n=1 u=19 $ Assembly 09 - Axial Zone 2 903 903 -9.880 -7 +202 -203 imp:n=1 u=19 $ Assembly 09 - Axial Zone 3 904 904 -9.871 -7 +203 -204 imp:n=1 u=19 $ Assembly 09 - Axial Zone 4 905 905 -9.871 -7 +204 -205 imp:n=1 u=19 $ Assembly 09 - Axial Zone 5 906 906 -9.872 -7 +205 -206 imp:n=1 u=19 $ Assembly 09 - Axial Zone 6 907 907 -9.872 -7 +206 -207 imp:n=1 u=19 $ Assembly 09 - Axial Zone 7 908 908 -9.872 -7 +207 -208 imp:n=1 u=19 $ Assembly 09 - Axial Zone 8 909 909 -9.873 -7 +208 -209 imp:n=1 u=19 $ Assembly 09 - Axial Zone 9 910 910 -9.873 -7 +209 -210 imp:n=1 u=19 $ Assembly 09 - Axial Zone 10 911 911 -9.874 -7 +210 -211 imp:n=1 u=19 $ Assembly 09 - Axial Zone 11 912 912 -9.875 -7 +211 -212 imp:n=1 u=19 $ Assembly 09 - Axial Zone 12 913 913 -9.875 -7 +212 -213 imp:n=1 u=19 $ Assembly 09 - Axial Zone 13 914 914 -9.875 -7 +213 -214 imp:n=1 u=19 $ Assembly 09 - Axial Zone 14 915 915 -9.884 -7 +214 -215 imp:n=1 u=19 $ Assembly 09 - Axial Zone 15 916 916 -9.911 -7 +215 -216 imp:n=1 u=19 $ Assembly 09 - Axial Zone 16 917 917 -9.967 -7 +216 -217 imp:n=1 u=19 $ Assembly 09 - Axial Zone 17 918 918 -10.037 -7 +217 imp:n=1 u=19 $ Assembly 09 - Axial Zone 18 921 3 -1.00 +7 -8 imp:n=1 u=19 922 2 -6.56 +8 -17 imp:n=1 u=19 923 3 -1.00 +17 imp:n=1 u=19 c Assy 10 1001 1001 -9.893 -6 -201 imp:n=1 u=20 $ Assembly 10 - Axial Zone 1 1002 1002 -9.810 -6 +201 -202 imp:n=1 u=20 $ Assembly 10 - Axial Zone 2 1003 1003 -9.785 -6 +202 -203 imp:n=1 u=20 $ Assembly 10 - Axial Zone 3 1004 1004 -9.776 -6 +203 -204 imp:n=1 u=20 $ Assembly 10 - Axial Zone 4 1005 1005 -9.777 -6 +204 -205 imp:n=1 u=20 $ Assembly 10 - Axial Zone 5 1006 1006 -9.777 -6 +205 -206 imp:n=1 u=20 $ Assembly 10 - Axial Zone 6 1007 1007 -9.777 -6 +206 -207 imp:n=1 u=20 $ Assembly 10 - Axial Zone 7 1008 1008 -9.778 -6 +207 -208 imp:n=1 u=20 $ Assembly 10 - Axial Zone 8 1009 1009 -9.779 -6 +208 -209 imp:n=1 u=20 $ Assembly 10 - Axial Zone 9 1010 1010 -9.779 -6 +209 -210 imp:n=1 u=20 $ Assembly 10 - Axial Zone 10 1011 1011 -9.780 -6 +210 -211 imp:n=1 u=20 $ Assembly 10 - Axial Zone 11 1012 1012 -9.780 -6 +211 -212 imp:n=1 u=20 $ Assembly 10 - Axial Zone 12 1013 1013 -9.781 -6 +212 -213 imp:n=1 u=20 $ Assembly 10 - Axial Zone 13 1014 1014 -9.781 -6 +213 -214 imp:n=1 u=20 $ Assembly 10 - Axial Zone 14 1015 1015 -9.790 -6 +214 -215 imp:n=1 u=20 $ Assembly 10 - Axial Zone 15 1016 1016 -9.807 -6 +215 -216 imp:n=1 u=20 $ Assembly 10 - Axial Zone 16 1017 1017 -9.869 -6 +216 -217 imp:n=1 u=20 $ Assembly 10 - Axial Zone 17 1018 1018 -9.946 -6 +217 imp:n=1 u=20 $ Assembly 10 - Axial Zone 18 1021 3 -1.00 +6 -8 imp:n=1 u=20 1022 2 -6.56 +8 -17 imp:n=1 u=20 1023 3 -1.00 +17 imp:n=1 u=20
Calc Package No.: VSC-03.3606 Page 124 of 191 Revision 0 c Assy 11 1101 1101 -9.989 -6 -201 imp:n=1 u=21 $ Assembly 11 - Axial Zone 1 1102 1102 -9.903 -6 +201 -202 imp:n=1 u=21 $ Assembly 11 - Axial Zone 2 1103 1103 -9.877 -6 +202 -203 imp:n=1 u=21 $ Assembly 11 - Axial Zone 3 1104 1104 -9.868 -6 +203 -204 imp:n=1 u=21 $ Assembly 11 - Axial Zone 4 1105 1105 -9.868 -6 +204 -205 imp:n=1 u=21 $ Assembly 11 - Axial Zone 5 1106 1106 -9.869 -6 +205 -206 imp:n=1 u=21 $ Assembly 11 - Axial Zone 6 1107 1107 -9.869 -6 +206 -207 imp:n=1 u=21 $ Assembly 11 - Axial Zone 7 1108 1108 -9.869 -6 +207 -208 imp:n=1 u=21 $ Assembly 11 - Axial Zone 8 1109 1109 -9.870 -6 +208 -209 imp:n=1 u=21 $ Assembly 11 - Axial Zone 9 1110 1110 -9.871 -6 +209 -210 imp:n=1 u=21 $ Assembly 11 - Axial Zone 10 1111 1111 -9.871 -6 +210 -211 imp:n=1 u=21 $ Assembly 11 - Axial Zone 11 1112 1112 -9.872 -6 +211 -212 imp:n=1 u=21 $ Assembly 11 - Axial Zone 12 1113 1113 -9.872 -6 +212 -213 imp:n=1 u=21 $ Assembly 11 - Axial Zone 13 1114 1114 -9.872 -6 +213 -214 imp:n=1 u=21 $ Assembly 11 - Axial Zone 14 1115 1115 -9.882 -6 +214 -215 imp:n=1 u=21 $ Assembly 11 - Axial Zone 15 1116 1116 -9.908 -6 +215 -216 imp:n=1 u=21 $ Assembly 11 - Axial Zone 16 1117 1117 -9.964 -6 +216 -217 imp:n=1 u=21 $ Assembly 11 - Axial Zone 17 1118 1118 -10.034 -6 +217 imp:n=1 u=21 $ Assembly 11 - Axial Zone 18 1121 3 -1.00 +6 -8 imp:n=1 u=21 1122 2 -6.56 +8 -17 imp:n=1 u=21 1123 3 -1.00 +17 imp:n=1 u=21 c Assy 12 1201 1201 -9.991 -6 -201 imp:n=1 u=22 $ Assembly 12 - Axial Zone 1 1202 1202 -9.913 -6 +201 -202 imp:n=1 u=22 $ Assembly 12 - Axial Zone 2 1203 1203 -9.886 -6 +202 -203 imp:n=1 u=22 $ Assembly 12 - Axial Zone 3 1204 1204 -9.878 -6 +203 -204 imp:n=1 u=22 $ Assembly 12 - Axial Zone 4 1205 1205 -9.878 -6 +204 -205 imp:n=1 u=22 $ Assembly 12 - Axial Zone 5 1206 1206 -9.878 -6 +205 -206 imp:n=1 u=22 $ Assembly 12 - Axial Zone 6 1207 1207 -9.879 -6 +206 -207 imp:n=1 u=22 $ Assembly 12 - Axial Zone 7 1208 1208 -9.879 -6 +207 -208 imp:n=1 u=22 $ Assembly 12 - Axial Zone 8 1209 1209 -9.880 -6 +208 -209 imp:n=1 u=22 $ Assembly 12 - Axial Zone 9 1210 1210 -9.880 -6 +209 -210 imp:n=1 u=22 $ Assembly 12 - Axial Zone 10 1211 1211 -9.881 -6 +210 -211 imp:n=1 u=22 $ Assembly 12 - Axial Zone 11 1212 1212 -9.881 -6 +211 -212 imp:n=1 u=22 $ Assembly 12 - Axial Zone 12 1213 1213 -9.882 -6 +212 -213 imp:n=1 u=22 $ Assembly 12 - Axial Zone 13 1214 1214 -9.882 -6 +213 -214 imp:n=1 u=22 $ Assembly 12 - Axial Zone 14 1215 1215 -9.891 -6 +214 -215 imp:n=1 u=22 $ Assembly 12 - Axial Zone 15 1216 1216 -9.910 -6 +215 -216 imp:n=1 u=22 $ Assembly 12 - Axial Zone 16 1217 1217 -9.966 -6 +216 -217 imp:n=1 u=22 $ Assembly 12 - Axial Zone 17 1218 1218 -10.036 -6 +217 imp:n=1 u=22 $ Assembly 12 - Axial Zone 18 1221 3 -1.00 +6 -8 imp:n=1 u=22 1222 2 -6.56 +8 -17 imp:n=1 u=22 1223 3 -1.00 +17 imp:n=1 u=22 c Assy 13 1301 1301 -9.997 -6 -201 imp:n=1 u=23 $ Assembly 13 - Axial Zone 1 1302 1302 -9.920 -6 +201 -202 imp:n=1 u=23 $ Assembly 13 - Axial Zone 2 1303 1303 -9.901 -6 +202 -203 imp:n=1 u=23 $ Assembly 13 - Axial Zone 3 1304 1304 -9.893 -6 +203 -204 imp:n=1 u=23 $ Assembly 13 - Axial Zone 4 1305 1305 -9.893 -6 +204 -205 imp:n=1 u=23 $ Assembly 13 - Axial Zone 5 1306 1306 -9.893 -6 +205 -206 imp:n=1 u=23 $ Assembly 13 - Axial Zone 6 1307 1307 -9.894 -6 +206 -207 imp:n=1 u=23 $ Assembly 13 - Axial Zone 7 1308 1308 -9.894 -6 +207 -208 imp:n=1 u=23 $ Assembly 13 - Axial Zone 8 1309 1309 -9.895 -6 +208 -209 imp:n=1 u=23 $ Assembly 13 - Axial Zone 9 1310 1310 -9.895 -6 +209 -210 imp:n=1 u=23 $ Assembly 13 - Axial Zone 10 1311 1311 -9.896 -6 +210 -211 imp:n=1 u=23 $ Assembly 13 - Axial Zone 11 1312 1312 -9.896 -6 +211 -212 imp:n=1 u=23 $ Assembly 13 - Axial Zone 12 1313 1313 -9.897 -6 +212 -213 imp:n=1 u=23 $ Assembly 13 - Axial Zone 13
Calc Package No.: VSC-03.3606 Page 125 of 191 Revision 0 1314 1314 -9.897 -6 +213 -214 imp:n=1 u=23 $ Assembly 13 - Axial Zone 14 1315 1315 -9.906 -6 +214 -215 imp:n=1 u=23 $ Assembly 13 - Axial Zone 15 1316 1316 -9.925 -6 +215 -216 imp:n=1 u=23 $ Assembly 13 - Axial Zone 16 1317 1317 -9.981 -6 +216 -217 imp:n=1 u=23 $ Assembly 13 - Axial Zone 17 1318 1318 -10.043 -6 +217 imp:n=1 u=23 $ Assembly 13 - Axial Zone 18 1321 3 -1.00 +6 -8 imp:n=1 u=23 1322 2 -6.56 +8 -17 imp:n=1 u=23 1323 3 -1.00 +17 imp:n=1 u=23 c Assy 14 1401 1401 -9.981 -6 -201 imp:n=1 u=24 $ Assembly 14 - Axial Zone 1 1402 1402 -9.904 -6 +201 -202 imp:n=1 u=24 $ Assembly 14 - Axial Zone 2 1403 1403 -9.878 -6 +202 -203 imp:n=1 u=24 $ Assembly 14 - Axial Zone 3 1404 1404 -9.869 -6 +203 -204 imp:n=1 u=24 $ Assembly 14 - Axial Zone 4 1405 1405 -9.869 -6 +204 -205 imp:n=1 u=24 $ Assembly 14 - Axial Zone 5 1406 1406 -9.869 -6 +205 -206 imp:n=1 u=24 $ Assembly 14 - Axial Zone 6 1407 1407 -9.870 -6 +206 -207 imp:n=1 u=24 $ Assembly 14 - Axial Zone 7 1408 1408 -9.870 -6 +207 -208 imp:n=1 u=24 $ Assembly 14 - Axial Zone 8 1409 1409 -9.871 -6 +208 -209 imp:n=1 u=24 $ Assembly 14 - Axial Zone 9 1410 1410 -9.871 -6 +209 -210 imp:n=1 u=24 $ Assembly 14 - Axial Zone 10 1411 1411 -9.872 -6 +210 -211 imp:n=1 u=24 $ Assembly 14 - Axial Zone 11 1412 1412 -9.872 -6 +211 -212 imp:n=1 u=24 $ Assembly 14 - Axial Zone 12 1413 1413 -9.873 -6 +212 -213 imp:n=1 u=24 $ Assembly 14 - Axial Zone 13 1414 1414 -9.873 -6 +213 -214 imp:n=1 u=24 $ Assembly 14 - Axial Zone 14 1415 1415 -9.883 -6 +214 -215 imp:n=1 u=24 $ Assembly 14 - Axial Zone 15 1416 1416 -9.901 -6 +215 -216 imp:n=1 u=24 $ Assembly 14 - Axial Zone 16 1417 1417 -9.966 -6 +216 -217 imp:n=1 u=24 $ Assembly 14 - Axial Zone 17 1418 1418 -10.027 -6 +217 imp:n=1 u=24 $ Assembly 14 - Axial Zone 18 1421 3 -1.00 +6 -8 imp:n=1 u=24 1422 2 -6.56 +8 -17 imp:n=1 u=24 1423 3 -1.00 +17 imp:n=1 u=24 c Assy 15 1501 1501 -9.994 -6 -201 imp:n=1 u=25 $ Assembly 15 - Axial Zone 1 1502 1502 -9.917 -6 +201 -202 imp:n=1 u=25 $ Assembly 15 - Axial Zone 2 1503 1503 -9.890 -6 +202 -203 imp:n=1 u=25 $ Assembly 15 - Axial Zone 3 1504 1504 -9.882 -6 +203 -204 imp:n=1 u=25 $ Assembly 15 - Axial Zone 4 1505 1505 -9.882 -6 +204 -205 imp:n=1 u=25 $ Assembly 15 - Axial Zone 5 1506 1506 -9.882 -6 +205 -206 imp:n=1 u=25 $ Assembly 15 - Axial Zone 6 1507 1507 -9.883 -6 +206 -207 imp:n=1 u=25 $ Assembly 15 - Axial Zone 7 1508 1508 -9.883 -6 +207 -208 imp:n=1 u=25 $ Assembly 15 - Axial Zone 8 1509 1509 -9.884 -6 +208 -209 imp:n=1 u=25 $ Assembly 15 - Axial Zone 9 1510 1510 -9.884 -6 +209 -210 imp:n=1 u=25 $ Assembly 15 - Axial Zone 10 1511 1511 -9.885 -6 +210 -211 imp:n=1 u=25 $ Assembly 15 - Axial Zone 11 1512 1512 -9.885 -6 +211 -212 imp:n=1 u=25 $ Assembly 15 - Axial Zone 12 1513 1513 -9.886 -6 +212 -213 imp:n=1 u=25 $ Assembly 15 - Axial Zone 13 1514 1514 -9.886 -6 +213 -214 imp:n=1 u=25 $ Assembly 15 - Axial Zone 14 1515 1515 -9.895 -6 +214 -215 imp:n=1 u=25 $ Assembly 15 - Axial Zone 15 1516 1516 -9.913 -6 +215 -216 imp:n=1 u=25 $ Assembly 15 - Axial Zone 16 1517 1517 -9.978 -6 +216 -217 imp:n=1 u=25 $ Assembly 15 - Axial Zone 17 1518 1518 -10.040 -6 +217 imp:n=1 u=25 $ Assembly 15 - Axial Zone 18 1521 3 -1.00 +6 -8 imp:n=1 u=25 1522 2 -6.56 +8 -17 imp:n=1 u=25 1523 3 -1.00 +17 imp:n=1 u=25 c Assy 16 1601 1601 -9.997 -6 -201 imp:n=1 u=26 $ Assembly 16 - Axial Zone 1 1602 1602 -9.920 -6 +201 -202 imp:n=1 u=26 $ Assembly 16 - Axial Zone 2 1603 1603 -9.901 -6 +202 -203 imp:n=1 u=26 $ Assembly 16 - Axial Zone 3 1604 1604 -9.893 -6 +203 -204 imp:n=1 u=26 $ Assembly 16 - Axial Zone 4 1605 1605 -9.893 -6 +204 -205 imp:n=1 u=26 $ Assembly 16 - Axial Zone 5
Calc Package No.: VSC-03.3606 Page 126 of 191 Revision 0 1606 1606 -9.893 -6 +205 -206 imp:n=1 u=26 $ Assembly 16 - Axial Zone 6 1607 1607 -9.894 -6 +206 -207 imp:n=1 u=26 $ Assembly 16 - Axial Zone 7 1608 1608 -9.894 -6 +207 -208 imp:n=1 u=26 $ Assembly 16 - Axial Zone 8 1609 1609 -9.895 -6 +208 -209 imp:n=1 u=26 $ Assembly 16 - Axial Zone 9 1610 1610 -9.895 -6 +209 -210 imp:n=1 u=26 $ Assembly 16 - Axial Zone 10 1611 1611 -9.896 -6 +210 -211 imp:n=1 u=26 $ Assembly 16 - Axial Zone 11 1612 1612 -9.896 -6 +211 -212 imp:n=1 u=26 $ Assembly 16 - Axial Zone 12 1613 1613 -9.897 -6 +212 -213 imp:n=1 u=26 $ Assembly 16 - Axial Zone 13 1614 1614 -9.897 -6 +213 -214 imp:n=1 u=26 $ Assembly 16 - Axial Zone 14 1615 1615 -9.906 -6 +214 -215 imp:n=1 u=26 $ Assembly 16 - Axial Zone 15 1616 1616 -9.925 -6 +215 -216 imp:n=1 u=26 $ Assembly 16 - Axial Zone 16 1617 1617 -9.981 -6 +216 -217 imp:n=1 u=26 $ Assembly 16 - Axial Zone 17 1618 1618 -10.043 -6 +217 imp:n=1 u=26 $ Assembly 16 - Axial Zone 18 1621 3 -1.00 +6 -8 imp:n=1 u=26 1622 2 -6.56 +8 -17 imp:n=1 u=26 1623 3 -1.00 +17 imp:n=1 u=26 c Assy 17 1701 1701 -9.940 -7 -201 imp:n=1 u=27 $ Assembly 17 - Axial Zone 1 1702 1702 -9.863 -7 +201 -202 imp:n=1 u=27 $ Assembly 17 - Axial Zone 2 1703 1703 -9.836 -7 +202 -203 imp:n=1 u=27 $ Assembly 17 - Axial Zone 3 1704 1704 -9.828 -7 +203 -204 imp:n=1 u=27 $ Assembly 17 - Axial Zone 4 1705 1705 -9.828 -7 +204 -205 imp:n=1 u=27 $ Assembly 17 - Axial Zone 5 1706 1706 -9.828 -7 +205 -206 imp:n=1 u=27 $ Assembly 17 - Axial Zone 6 1707 1707 -9.829 -7 +206 -207 imp:n=1 u=27 $ Assembly 17 - Axial Zone 7 1708 1708 -9.829 -7 +207 -208 imp:n=1 u=27 $ Assembly 17 - Axial Zone 8 1709 1709 -9.830 -7 +208 -209 imp:n=1 u=27 $ Assembly 17 - Axial Zone 9 1710 1710 -9.830 -7 +209 -210 imp:n=1 u=27 $ Assembly 17 - Axial Zone 10 1711 1711 -9.831 -7 +210 -211 imp:n=1 u=27 $ Assembly 17 - Axial Zone 11 1712 1712 -9.831 -7 +211 -212 imp:n=1 u=27 $ Assembly 17 - Axial Zone 12 1713 1713 -9.832 -7 +212 -213 imp:n=1 u=27 $ Assembly 17 - Axial Zone 13 1714 1714 -9.832 -7 +213 -214 imp:n=1 u=27 $ Assembly 17 - Axial Zone 14 1715 1715 -9.841 -7 +214 -215 imp:n=1 u=27 $ Assembly 17 - Axial Zone 15 1716 1716 -9.868 -7 +215 -216 imp:n=1 u=27 $ Assembly 17 - Axial Zone 16 1717 1717 -9.924 -7 +216 -217 imp:n=1 u=27 $ Assembly 17 - Axial Zone 17 1718 1718 -9.994 -7 +217 imp:n=1 u=27 $ Assembly 17 - Axial Zone 18 1721 3 -1.00 +7 -8 imp:n=1 u=27 1722 2 -6.56 +8 -17 imp:n=1 u=27 1723 3 -1.00 +17 imp:n=1 u=27 c Assy 18 1801 1801 -9.960 -6 -201 imp:n=1 u=28 $ Assembly 18 - Axial Zone 1 1802 1802 -9.875 -6 +201 -202 imp:n=1 u=28 $ Assembly 18 - Axial Zone 2 1803 1803 -9.849 -6 +202 -203 imp:n=1 u=28 $ Assembly 18 - Axial Zone 3 1804 1804 -9.840 -6 +203 -204 imp:n=1 u=28 $ Assembly 18 - Axial Zone 4 1805 1805 -9.832 -6 +204 -205 imp:n=1 u=28 $ Assembly 18 - Axial Zone 5 1806 1806 -9.832 -6 +205 -206 imp:n=1 u=28 $ Assembly 18 - Axial Zone 6 1807 1807 -9.841 -6 +206 -207 imp:n=1 u=28 $ Assembly 18 - Axial Zone 7 1808 1808 -9.842 -6 +207 -208 imp:n=1 u=28 $ Assembly 18 - Axial Zone 8 1809 1809 -9.842 -6 +208 -209 imp:n=1 u=28 $ Assembly 18 - Axial Zone 9 1810 1810 -9.843 -6 +209 -210 imp:n=1 u=28 $ Assembly 18 - Axial Zone 10 1811 1811 -9.844 -6 +210 -211 imp:n=1 u=28 $ Assembly 18 - Axial Zone 11 1812 1812 -9.835 -6 +211 -212 imp:n=1 u=28 $ Assembly 18 - Axial Zone 12 1813 1813 -9.836 -6 +212 -213 imp:n=1 u=28 $ Assembly 18 - Axial Zone 13 1814 1814 -9.845 -6 +213 -214 imp:n=1 u=28 $ Assembly 18 - Axial Zone 14 1815 1815 -9.845 -6 +214 -215 imp:n=1 u=28 $ Assembly 18 - Axial Zone 15 1816 1816 -9.872 -6 +215 -216 imp:n=1 u=28 $ Assembly 18 - Axial Zone 16 1817 1817 -9.936 -6 +216 -217 imp:n=1 u=28 $ Assembly 18 - Axial Zone 17 1818 1818 -10.005 -6 +217 imp:n=1 u=28 $ Assembly 18 - Axial Zone 18
Calc Package No.: VSC-03.3606 Page 127 of 191 Revision 0 1821 3 -1.00 +6 -8 imp:n=1 u=28 1822 2 -6.56 +8 -17 imp:n=1 u=28 1823 3 -1.00 +17 imp:n=1 u=28 c Assy 19 1901 1901 -9.976 -7 -201 imp:n=1 u=29 $ Assembly 19 - Axial Zone 1 1902 1902 -9.899 -7 +201 -202 imp:n=1 u=29 $ Assembly 19 - Axial Zone 2 1903 1903 -9.873 -7 +202 -203 imp:n=1 u=29 $ Assembly 19 - Axial Zone 3 1904 1904 -9.864 -7 +203 -204 imp:n=1 u=29 $ Assembly 19 - Axial Zone 4 1905 1905 -9.864 -7 +204 -205 imp:n=1 u=29 $ Assembly 19 - Axial Zone 5 1906 1906 -9.865 -7 +205 -206 imp:n=1 u=29 $ Assembly 19 - Axial Zone 6 1907 1907 -9.865 -7 +206 -207 imp:n=1 u=29 $ Assembly 19 - Axial Zone 7 1908 1908 -9.865 -7 +207 -208 imp:n=1 u=29 $ Assembly 19 - Axial Zone 8 1909 1909 -9.866 -7 +208 -209 imp:n=1 u=29 $ Assembly 19 - Axial Zone 9 1910 1910 -9.866 -7 +209 -210 imp:n=1 u=29 $ Assembly 19 - Axial Zone 10 1911 1911 -9.867 -7 +210 -211 imp:n=1 u=29 $ Assembly 19 - Axial Zone 11 1912 1912 -9.867 -7 +211 -212 imp:n=1 u=29 $ Assembly 19 - Axial Zone 12 1913 1913 -9.868 -7 +212 -213 imp:n=1 u=29 $ Assembly 19 - Axial Zone 13 1914 1914 -9.868 -7 +213 -214 imp:n=1 u=29 $ Assembly 19 - Axial Zone 14 1915 1915 -9.878 -7 +214 -215 imp:n=1 u=29 $ Assembly 19 - Axial Zone 15 1916 1916 -9.905 -7 +215 -216 imp:n=1 u=29 $ Assembly 19 - Axial Zone 16 1917 1917 -9.961 -7 +216 -217 imp:n=1 u=29 $ Assembly 19 - Axial Zone 17 1918 1918 -10.031 -7 +217 imp:n=1 u=29 $ Assembly 19 - Axial Zone 18 1921 3 -1.00 +7 -8 imp:n=1 u=29 1922 2 -6.56 +8 -15 imp:n=1 u=29 1923 3 -1.00 +15 imp:n=1 u=29 c Assy 20 2001 2001 -9.944 -6 -201 imp:n=1 u=30 $ Assembly 20 - Axial Zone 1 2002 2002 -9.868 -6 +201 -202 imp:n=1 u=30 $ Assembly 20 - Axial Zone 2 2003 2003 -9.849 -6 +202 -203 imp:n=1 u=30 $ Assembly 20 - Axial Zone 3 2004 2004 -9.841 -6 +203 -204 imp:n=1 u=30 $ Assembly 20 - Axial Zone 4 2005 2005 -9.841 -6 +204 -205 imp:n=1 u=30 $ Assembly 20 - Axial Zone 5 2006 2006 -9.841 -6 +205 -206 imp:n=1 u=30 $ Assembly 20 - Axial Zone 6 2007 2007 -9.842 -6 +206 -207 imp:n=1 u=30 $ Assembly 20 - Axial Zone 7 2008 2008 -9.842 -6 +207 -208 imp:n=1 u=30 $ Assembly 20 - Axial Zone 8 2009 2009 -9.843 -6 +208 -209 imp:n=1 u=30 $ Assembly 20 - Axial Zone 9 2010 2010 -9.843 -6 +209 -210 imp:n=1 u=30 $ Assembly 20 - Axial Zone 10 2011 2011 -9.844 -6 +210 -211 imp:n=1 u=30 $ Assembly 20 - Axial Zone 11 2012 2012 -9.844 -6 +211 -212 imp:n=1 u=30 $ Assembly 20 - Axial Zone 12 2013 2013 -9.845 -6 +212 -213 imp:n=1 u=30 $ Assembly 20 - Axial Zone 13 2014 2014 -9.845 -6 +213 -214 imp:n=1 u=30 $ Assembly 20 - Axial Zone 14 2015 2015 -9.845 -6 +214 -215 imp:n=1 u=30 $ Assembly 20 - Axial Zone 15 2016 2016 -9.873 -6 +215 -216 imp:n=1 u=30 $ Assembly 20 - Axial Zone 16 2017 2017 -9.929 -6 +216 -217 imp:n=1 u=30 $ Assembly 20 - Axial Zone 17 2018 2018 -9.990 -6 +217 imp:n=1 u=30 $ Assembly 20 - Axial Zone 18 2021 3 -1.00 +6 -8 imp:n=1 u=30 2022 2 -6.56 +8 -17 imp:n=1 u=30 2023 3 -1.00 +17 imp:n=1 u=30 c Assy 21 2101 2101 -9.979 -7 -201 imp:n=1 u=31 $ Assembly 21 - Axial Zone 1 2102 2102 -9.902 -7 +201 -202 imp:n=1 u=31 $ Assembly 21 - Axial Zone 2 2103 2103 -9.875 -7 +202 -203 imp:n=1 u=31 $ Assembly 21 - Axial Zone 3 2104 2104 -9.867 -7 +203 -204 imp:n=1 u=31 $ Assembly 21 - Axial Zone 4 2105 2105 -9.867 -7 +204 -205 imp:n=1 u=31 $ Assembly 21 - Axial Zone 5 2106 2106 -9.868 -7 +205 -206 imp:n=1 u=31 $ Assembly 21 - Axial Zone 6 2107 2107 -9.868 -7 +206 -207 imp:n=1 u=31 $ Assembly 21 - Axial Zone 7 2108 2108 -9.868 -7 +207 -208 imp:n=1 u=31 $ Assembly 21 - Axial Zone 8 2109 2109 -9.878 -7 +208 -209 imp:n=1 u=31 $ Assembly 21 - Axial Zone 9 2110 2110 -9.869 -7 +209 -210 imp:n=1 u=31 $ Assembly 21 - Axial Zone 10
Calc Package No.: VSC-03.3606 Page 128 of 191 Revision 0 2111 2111 -9.870 -7 +210 -211 imp:n=1 u=31 $ Assembly 21 - Axial Zone 11 2112 2112 -9.870 -7 +211 -212 imp:n=1 u=31 $ Assembly 21 - Axial Zone 12 2113 2113 -9.871 -7 +212 -213 imp:n=1 u=31 $ Assembly 21 - Axial Zone 13 2114 2114 -9.871 -7 +213 -214 imp:n=1 u=31 $ Assembly 21 - Axial Zone 14 2115 2115 -9.881 -7 +214 -215 imp:n=1 u=31 $ Assembly 21 - Axial Zone 15 2116 2116 -9.907 -7 +215 -216 imp:n=1 u=31 $ Assembly 21 - Axial Zone 16 2117 2117 -9.964 -7 +216 -217 imp:n=1 u=31 $ Assembly 21 - Axial Zone 17 2118 2118 -10.034 -7 +217 imp:n=1 u=31 $ Assembly 21 - Axial Zone 18 2121 3 -1.00 +7 -8 imp:n=1 u=31 2122 2 -6.56 +8 -17 imp:n=1 u=31 2123 3 -1.00 +17 imp:n=1 u=31 c Assy 22 2201 2201 -9.984 -6 -201 imp:n=1 u=32 $ Assembly 22 - Axial Zone 1 2202 2202 -9.907 -6 +201 -202 imp:n=1 u=32 $ Assembly 22 - Axial Zone 2 2203 2203 -9.880 -6 +202 -203 imp:n=1 u=32 $ Assembly 22 - Axial Zone 3 2204 2204 -9.872 -6 +203 -204 imp:n=1 u=32 $ Assembly 22 - Axial Zone 4 2205 2205 -9.872 -6 +204 -205 imp:n=1 u=32 $ Assembly 22 - Axial Zone 5 2206 2206 -9.872 -6 +205 -206 imp:n=1 u=32 $ Assembly 22 - Axial Zone 6 2207 2207 -9.873 -6 +206 -207 imp:n=1 u=32 $ Assembly 22 - Axial Zone 7 2208 2208 -9.873 -6 +207 -208 imp:n=1 u=32 $ Assembly 22 - Axial Zone 8 2209 2209 -9.874 -6 +208 -209 imp:n=1 u=32 $ Assembly 22 - Axial Zone 9 2210 2210 -9.874 -6 +209 -210 imp:n=1 u=32 $ Assembly 22 - Axial Zone 10 2211 2211 -9.875 -6 +210 -211 imp:n=1 u=32 $ Assembly 22 - Axial Zone 11 2212 2212 -9.875 -6 +211 -212 imp:n=1 u=32 $ Assembly 22 - Axial Zone 12 2213 2213 -9.876 -6 +212 -213 imp:n=1 u=32 $ Assembly 22 - Axial Zone 13 2214 2214 -9.876 -6 +213 -214 imp:n=1 u=32 $ Assembly 22 - Axial Zone 14 2215 2215 -9.886 -6 +214 -215 imp:n=1 u=32 $ Assembly 22 - Axial Zone 15 2216 2216 -9.912 -6 +215 -216 imp:n=1 u=32 $ Assembly 22 - Axial Zone 16 2217 2217 -9.968 -6 +216 -217 imp:n=1 u=32 $ Assembly 22 - Axial Zone 17 2218 2218 -10.039 -6 +217 imp:n=1 u=32 $ Assembly 22 - Axial Zone 18 2221 3 -1.00 +6 -8 imp:n=1 u=32 2222 2 -6.56 +8 -17 imp:n=1 u=32 2223 3 -1.00 +17 imp:n=1 u=32 c Assy 23 2301 2301 -9.990 -6 -201 imp:n=1 u=33 $ Assembly 23 - Axial Zone 1 2302 2302 -9.914 -6 +201 -202 imp:n=1 u=33 $ Assembly 23 - Axial Zone 2 2303 2303 -9.895 -6 +202 -203 imp:n=1 u=33 $ Assembly 23 - Axial Zone 3 2304 2304 -9.887 -6 +203 -204 imp:n=1 u=33 $ Assembly 23 - Axial Zone 4 2305 2305 -9.887 -6 +204 -205 imp:n=1 u=33 $ Assembly 23 - Axial Zone 5 2306 2306 -9.887 -6 +205 -206 imp:n=1 u=33 $ Assembly 23 - Axial Zone 6 2307 2307 -9.888 -6 +206 -207 imp:n=1 u=33 $ Assembly 23 - Axial Zone 7 2308 2308 -9.888 -6 +207 -208 imp:n=1 u=33 $ Assembly 23 - Axial Zone 8 2309 2309 -9.889 -6 +208 -209 imp:n=1 u=33 $ Assembly 23 - Axial Zone 9 2310 2310 -9.889 -6 +209 -210 imp:n=1 u=33 $ Assembly 23 - Axial Zone 10 2311 2311 -9.890 -6 +210 -211 imp:n=1 u=33 $ Assembly 23 - Axial Zone 11 2312 2312 -9.890 -6 +211 -212 imp:n=1 u=33 $ Assembly 23 - Axial Zone 12 2313 2313 -9.891 -6 +212 -213 imp:n=1 u=33 $ Assembly 23 - Axial Zone 13 2314 2314 -9.891 -6 +213 -214 imp:n=1 u=33 $ Assembly 23 - Axial Zone 14 2315 2315 -9.892 -6 +214 -215 imp:n=1 u=33 $ Assembly 23 - Axial Zone 15 2316 2316 -9.919 -6 +215 -216 imp:n=1 u=33 $ Assembly 23 - Axial Zone 16 2317 2317 -9.975 -6 +216 -217 imp:n=1 u=33 $ Assembly 23 - Axial Zone 17 2318 2318 -10.037 -6 +217 imp:n=1 u=33 $ Assembly 23 - Axial Zone 18 2321 3 -1.00 +6 -8 imp:n=1 u=33 2322 2 -6.56 +8 -17 imp:n=1 u=33 2323 3 -1.00 +17 imp:n=1 u=33 c Assy 24 2401 2401 -9.989 -6 -201 imp:n=1 u=34 $ Assembly 24 - Axial Zone 1 2402 2402 -9.912 -6 +201 -202 imp:n=1 u=34 $ Assembly 24 - Axial Zone 2
Calc Package No.: VSC-03.3606 Page 129 of 191 Revision 0 2403 2403 -9.885 -6 +202 -203 imp:n=1 u=34 $ Assembly 24 - Axial Zone 3 2404 2404 -9.877 -6 +203 -204 imp:n=1 u=34 $ Assembly 24 - Axial Zone 4 2405 2405 -9.877 -6 +204 -205 imp:n=1 u=34 $ Assembly 24 - Axial Zone 5 2406 2406 -9.877 -6 +205 -206 imp:n=1 u=34 $ Assembly 24 - Axial Zone 6 2407 2407 -9.878 -6 +206 -207 imp:n=1 u=34 $ Assembly 24 - Axial Zone 7 2408 2408 -9.878 -6 +207 -208 imp:n=1 u=34 $ Assembly 24 - Axial Zone 8 2409 2409 -9.879 -6 +208 -209 imp:n=1 u=34 $ Assembly 24 - Axial Zone 9 2410 2410 -9.879 -6 +209 -210 imp:n=1 u=34 $ Assembly 24 - Axial Zone 10 2411 2411 -9.880 -6 +210 -211 imp:n=1 u=34 $ Assembly 24 - Axial Zone 11 2412 2412 -9.880 -6 +211 -212 imp:n=1 u=34 $ Assembly 24 - Axial Zone 12 2413 2413 -9.881 -6 +212 -213 imp:n=1 u=34 $ Assembly 24 - Axial Zone 13 2414 2414 -9.881 -6 +213 -214 imp:n=1 u=34 $ Assembly 24 - Axial Zone 14 2415 2415 -9.890 -6 +214 -215 imp:n=1 u=34 $ Assembly 24 - Axial Zone 15 2416 2416 -9.909 -6 +215 -216 imp:n=1 u=34 $ Assembly 24 - Axial Zone 16 2417 2417 -9.973 -6 +216 -217 imp:n=1 u=34 $ Assembly 24 - Axial Zone 17 2418 2418 -10.035 -6 +217 imp:n=1 u=34 $ Assembly 24 - Axial Zone 18 2421 3 -1.00 +6 -8 imp:n=1 u=34 2422 2 -6.56 +8 -17 imp:n=1 u=34 2423 3 -1.00 +17 imp:n=1 u=34 c Rods from Assy L14 - Inserted into Assy 11 (H31) 2501 2501 -9.989 -7 -201 imp:n=1 u=121 $ Assembly 11 - Axial Zone 1 2502 2502 -9.912 -7 +201 -202 imp:n=1 u=121 $ Assembly 11 - Axial Zone 2 2503 2503 -9.885 -7 +202 -203 imp:n=1 u=121 $ Assembly 11 - Axial Zone 3 2504 2504 -9.877 -7 +203 -204 imp:n=1 u=121 $ Assembly 11 - Axial Zone 4 2505 2505 -9.877 -7 +204 -205 imp:n=1 u=121 $ Assembly 11 - Axial Zone 5 2506 2506 -9.877 -7 +205 -206 imp:n=1 u=121 $ Assembly 11 - Axial Zone 6 2507 2507 -9.878 -7 +206 -207 imp:n=1 u=121 $ Assembly 11 - Axial Zone 7 2508 2508 -9.878 -7 +207 -208 imp:n=1 u=121 $ Assembly 11 - Axial Zone 8 2509 2509 -9.879 -7 +208 -209 imp:n=1 u=121 $ Assembly 11 - Axial Zone 9 2510 2510 -9.879 -7 +209 -210 imp:n=1 u=121 $ Assembly 11 - Axial Zone 10 2511 2511 -9.880 -7 +210 -211 imp:n=1 u=121 $ Assembly 11 - Axial Zone 11 2512 2512 -9.880 -7 +211 -212 imp:n=1 u=121 $ Assembly 11 - Axial Zone 12 2513 2513 -9.881 -7 +212 -213 imp:n=1 u=121 $ Assembly 11 - Axial Zone 13 2514 2514 -9.881 -7 +213 -214 imp:n=1 u=121 $ Assembly 11 - Axial Zone 14 2515 2515 -9.890 -7 +214 -215 imp:n=1 u=121 $ Assembly 11 - Axial Zone 15 2516 2516 -9.909 -7 +215 -216 imp:n=1 u=121 $ Assembly 11 - Axial Zone 16 2517 2517 -9.973 -7 +216 -217 imp:n=1 u=121 $ Assembly 11 - Axial Zone 17 2518 2518 -10.035 -7 +217 imp:n=1 u=121 $ Assembly 11 - Axial Zone 18 2521 3 -1.00 +7 -8 imp:n=1 u=121 2522 2 -6.56 +8 -17 imp:n=1 u=121 2523 3 -1.00 +17 imp:n=1 u=121 c Rods from Assy L15 - Inserted into Assy 11 (H31) 2601 2601 -9.989 -7 -201 imp:n=1 u=221 $ Assembly 11 - Axial Zone 1 2602 2602 -9.912 -7 +201 -202 imp:n=1 u=221 $ Assembly 11 - Axial Zone 2 2603 2603 -9.885 -7 +202 -203 imp:n=1 u=221 $ Assembly 11 - Axial Zone 3 2604 2604 -9.877 -7 +203 -204 imp:n=1 u=221 $ Assembly 11 - Axial Zone 4 2605 2605 -9.877 -7 +204 -205 imp:n=1 u=221 $ Assembly 11 - Axial Zone 5 2606 2606 -9.877 -7 +205 -206 imp:n=1 u=221 $ Assembly 11 - Axial Zone 6 2607 2607 -9.878 -7 +206 -207 imp:n=1 u=221 $ Assembly 11 - Axial Zone 7 2608 2608 -9.878 -7 +207 -208 imp:n=1 u=221 $ Assembly 11 - Axial Zone 8 2609 2609 -9.879 -7 +208 -209 imp:n=1 u=221 $ Assembly 11 - Axial Zone 9 2610 2610 -9.879 -7 +209 -210 imp:n=1 u=221 $ Assembly 11 - Axial Zone 10 2611 2611 -9.880 -7 +210 -211 imp:n=1 u=221 $ Assembly 11 - Axial Zone 11 2612 2612 -9.880 -7 +211 -212 imp:n=1 u=221 $ Assembly 11 - Axial Zone 12 2613 2613 -9.881 -7 +212 -213 imp:n=1 u=221 $ Assembly 11 - Axial Zone 13 2614 2614 -9.881 -7 +213 -214 imp:n=1 u=221 $ Assembly 11 - Axial Zone 14 2615 2615 -9.890 -7 +214 -215 imp:n=1 u=221 $ Assembly 11 - Axial Zone 15 2616 2616 -9.909 -7 +215 -216 imp:n=1 u=221 $ Assembly 11 - Axial Zone 16
Calc Package No.: VSC-03.3606 Page 130 of 191 Revision 0 2617 2617 -9.973 -7 +216 -217 imp:n=1 u=221 $ Assembly 11 - Axial Zone 17 2618 2618 -10.035 -7 +217 imp:n=1 u=221 $ Assembly 11 - Axial Zone 18 2621 3 -1.00 +7 -8 imp:n=1 u=221 2622 2 -6.56 +8 -17 imp:n=1 u=221 2623 3 -1.00 +17 imp:n=1 u=221 c Rods from Assy L16 - Inserted into Assys 11 (H31) & 20 (H38) 2701 2701 -9.989 -7 -201 imp:n=1 u=321 $ Assembly 11 - Axial Zone 1 2702 2702 -9.912 -7 +201 -202 imp:n=1 u=321 $ Assembly 11 - Axial Zone 2 2703 2703 -9.885 -7 +202 -203 imp:n=1 u=321 $ Assembly 11 - Axial Zone 3 2704 2704 -9.877 -7 +203 -204 imp:n=1 u=321 $ Assembly 11 - Axial Zone 4 2705 2705 -9.877 -7 +204 -205 imp:n=1 u=321 $ Assembly 11 - Axial Zone 5 2706 2706 -9.877 -7 +205 -206 imp:n=1 u=321 $ Assembly 11 - Axial Zone 6 2707 2707 -9.878 -7 +206 -207 imp:n=1 u=321 $ Assembly 11 - Axial Zone 7 2708 2708 -9.878 -7 +207 -208 imp:n=1 u=321 $ Assembly 11 - Axial Zone 8 2709 2709 -9.879 -7 +208 -209 imp:n=1 u=321 $ Assembly 11 - Axial Zone 9 2710 2710 -9.879 -7 +209 -210 imp:n=1 u=321 $ Assembly 11 - Axial Zone 10 2711 2711 -9.880 -7 +210 -211 imp:n=1 u=321 $ Assembly 11 - Axial Zone 11 2712 2712 -9.880 -7 +211 -212 imp:n=1 u=321 $ Assembly 11 - Axial Zone 12 2713 2713 -9.881 -7 +212 -213 imp:n=1 u=321 $ Assembly 11 - Axial Zone 13 2714 2714 -9.881 -7 +213 -214 imp:n=1 u=321 $ Assembly 11 - Axial Zone 14 2715 2715 -9.890 -7 +214 -215 imp:n=1 u=321 $ Assembly 11 - Axial Zone 15 2716 2716 -9.909 -7 +215 -216 imp:n=1 u=321 $ Assembly 11 - Axial Zone 16 2717 2717 -9.973 -7 +216 -217 imp:n=1 u=321 $ Assembly 11 - Axial Zone 17 2718 2718 -10.035 -7 +217 imp:n=1 u=321 $ Assembly 11 - Axial Zone 18 2721 3 -1.00 +7 -8 imp:n=1 u=321 2722 2 -6.56 +8 -17 imp:n=1 u=321 2723 3 -1.00 +17 imp:n=1 u=321 c Rods from Assy L17 - Inserted into Assy 20 (H38) 2801 2801 -9.989 -7 -201 imp:n=1 u=130 $ Assembly 20 - Axial Zone 1 2802 2802 -9.912 -7 +201 -202 imp:n=1 u=130 $ Assembly 20 - Axial Zone 2 2803 2803 -9.885 -7 +202 -203 imp:n=1 u=130 $ Assembly 20 - Axial Zone 3 2804 2804 -9.877 -7 +203 -204 imp:n=1 u=130 $ Assembly 20 - Axial Zone 4 2805 2805 -9.877 -7 +204 -205 imp:n=1 u=130 $ Assembly 20 - Axial Zone 5 2806 2806 -9.877 -7 +205 -206 imp:n=1 u=130 $ Assembly 20 - Axial Zone 6 2807 2807 -9.878 -7 +206 -207 imp:n=1 u=130 $ Assembly 20 - Axial Zone 7 2808 2808 -9.878 -7 +207 -208 imp:n=1 u=130 $ Assembly 20 - Axial Zone 8 2809 2809 -9.879 -7 +208 -209 imp:n=1 u=130 $ Assembly 20 - Axial Zone 9 2810 2810 -9.879 -7 +209 -210 imp:n=1 u=130 $ Assembly 20 - Axial Zone 10 2811 2811 -9.880 -7 +210 -211 imp:n=1 u=130 $ Assembly 20 - Axial Zone 11 2812 2812 -9.880 -7 +211 -212 imp:n=1 u=130 $ Assembly 20 - Axial Zone 12 2813 2813 -9.881 -7 +212 -213 imp:n=1 u=130 $ Assembly 20 - Axial Zone 13 2814 2814 -9.881 -7 +213 -214 imp:n=1 u=130 $ Assembly 20 - Axial Zone 14 2815 2815 -9.890 -7 +214 -215 imp:n=1 u=130 $ Assembly 20 - Axial Zone 15 2816 2816 -9.909 -7 +215 -216 imp:n=1 u=130 $ Assembly 20 - Axial Zone 16 2817 2817 -9.973 -7 +216 -217 imp:n=1 u=130 $ Assembly 20 - Axial Zone 17 2818 2818 -10.035 -7 +217 imp:n=1 u=130 $ Assembly 20 - Axial Zone 18 2821 3 -1.00 +7 -8 imp:n=1 u=130 2822 2 -6.56 +8 -17 imp:n=1 u=130 2823 3 -1.00 +17 imp:n=1 u=130 c Rods from Assy L18 - Inserted into Assy 20 (H38) 2901 2901 -9.989 -7 -201 imp:n=1 u=230 $ Assembly 20 - Axial Zone 1 2902 2902 -9.912 -7 +201 -202 imp:n=1 u=230 $ Assembly 20 - Axial Zone 2 2903 2903 -9.885 -7 +202 -203 imp:n=1 u=230 $ Assembly 20 - Axial Zone 3 2904 2904 -9.877 -7 +203 -204 imp:n=1 u=230 $ Assembly 20 - Axial Zone 4 2905 2905 -9.877 -7 +204 -205 imp:n=1 u=230 $ Assembly 20 - Axial Zone 5 2906 2906 -9.877 -7 +205 -206 imp:n=1 u=230 $ Assembly 20 - Axial Zone 6 2907 2907 -9.878 -7 +206 -207 imp:n=1 u=230 $ Assembly 20 - Axial Zone 7
Calc Package No.: VSC-03.3606 Page 131 of 191 Revision 0 2908 2908 -9.878 -7 +207 -208 imp:n=1 u=230 $ Assembly 20 - Axial Zone 8 2909 2909 -9.879 -7 +208 -209 imp:n=1 u=230 $ Assembly 20 - Axial Zone 9 2910 2910 -9.879 -7 +209 -210 imp:n=1 u=230 $ Assembly 20 - Axial Zone 10 2911 2911 -9.880 -7 +210 -211 imp:n=1 u=230 $ Assembly 20 - Axial Zone 11 2912 2912 -9.880 -7 +211 -212 imp:n=1 u=230 $ Assembly 20 - Axial Zone 12 2913 2913 -9.881 -7 +212 -213 imp:n=1 u=230 $ Assembly 20 - Axial Zone 13 2914 2914 -9.881 -7 +213 -214 imp:n=1 u=230 $ Assembly 20 - Axial Zone 14 2915 2915 -9.890 -7 +214 -215 imp:n=1 u=230 $ Assembly 20 - Axial Zone 15 2916 2916 -9.909 -7 +215 -216 imp:n=1 u=230 $ Assembly 20 - Axial Zone 16 2917 2917 -9.973 -7 +216 -217 imp:n=1 u=230 $ Assembly 20 - Axial Zone 17 2918 2918 -10.035 -7 +217 imp:n=1 u=230 $ Assembly 20 - Axial Zone 18 2921 3 -1.00 +7 -8 imp:n=1 u=230 2922 2 -6.56 +8 -17 imp:n=1 u=230 2923 3 -1.00 +17 imp:n=1 u=230 c Rods from Assy L19 - Inserted into Assy 20 (H38) 3001 3001 -9.989 -7 -201 imp:n=1 u=330 $ Assembly 20 - Axial Zone 1 3002 3002 -9.912 -7 +201 -202 imp:n=1 u=330 $ Assembly 20 - Axial Zone 2 3003 3003 -9.885 -7 +202 -203 imp:n=1 u=330 $ Assembly 20 - Axial Zone 3 3004 3004 -9.877 -7 +203 -204 imp:n=1 u=330 $ Assembly 20 - Axial Zone 4 3005 3005 -9.877 -7 +204 -205 imp:n=1 u=330 $ Assembly 20 - Axial Zone 5 3006 3006 -9.877 -7 +205 -206 imp:n=1 u=330 $ Assembly 20 - Axial Zone 6 3007 3007 -9.878 -7 +206 -207 imp:n=1 u=330 $ Assembly 20 - Axial Zone 7 3008 3008 -9.878 -7 +207 -208 imp:n=1 u=330 $ Assembly 20 - Axial Zone 8 3009 3009 -9.879 -7 +208 -209 imp:n=1 u=330 $ Assembly 20 - Axial Zone 9 3010 3010 -9.879 -7 +209 -210 imp:n=1 u=330 $ Assembly 20 - Axial Zone 10 3011 3011 -9.880 -7 +210 -211 imp:n=1 u=330 $ Assembly 20 - Axial Zone 11 3012 3012 -9.880 -7 +211 -212 imp:n=1 u=330 $ Assembly 20 - Axial Zone 12 3013 3013 -9.881 -7 +212 -213 imp:n=1 u=330 $ Assembly 20 - Axial Zone 13 3014 3014 -9.881 -7 +213 -214 imp:n=1 u=330 $ Assembly 20 - Axial Zone 14 3015 3015 -9.890 -7 +214 -215 imp:n=1 u=330 $ Assembly 20 - Axial Zone 15 3016 3016 -9.909 -7 +215 -216 imp:n=1 u=330 $ Assembly 20 - Axial Zone 16 3017 3017 -9.973 -7 +216 -217 imp:n=1 u=330 $ Assembly 20 - Axial Zone 17 3018 3018 -10.035 -7 +217 imp:n=1 u=330 $ Assembly 20 - Axial Zone 18 3021 3 -1.00 +7 -8 imp:n=1 u=330 3022 2 -6.56 +8 -17 imp:n=1 u=330 3023 3 -1.00 +17 imp:n=1 u=330 c Rods from Assy L40 - Inserted into Assy 14 (H59) 3101 3101 -9.989 -7 -201 imp:n=1 u=124 $ Assembly 14 - Axial Zone 1 3102 3102 -9.912 -7 +201 -202 imp:n=1 u=124 $ Assembly 14 - Axial Zone 2 3103 3103 -9.885 -7 +202 -203 imp:n=1 u=124 $ Assembly 14 - Axial Zone 3 3104 3104 -9.877 -7 +203 -204 imp:n=1 u=124 $ Assembly 14 - Axial Zone 4 3105 3105 -9.877 -7 +204 -205 imp:n=1 u=124 $ Assembly 14 - Axial Zone 5 3106 3106 -9.877 -7 +205 -206 imp:n=1 u=124 $ Assembly 14 - Axial Zone 6 3107 3107 -9.878 -7 +206 -207 imp:n=1 u=124 $ Assembly 14 - Axial Zone 7 3108 3108 -9.878 -7 +207 -208 imp:n=1 u=124 $ Assembly 14 - Axial Zone 8 3109 3109 -9.879 -7 +208 -209 imp:n=1 u=124 $ Assembly 14 - Axial Zone 9 3110 3110 -9.879 -7 +209 -210 imp:n=1 u=124 $ Assembly 14 - Axial Zone 10 3111 3111 -9.880 -7 +210 -211 imp:n=1 u=124 $ Assembly 14 - Axial Zone 11 3112 3112 -9.880 -7 +211 -212 imp:n=1 u=124 $ Assembly 14 - Axial Zone 12 3113 3113 -9.881 -7 +212 -213 imp:n=1 u=124 $ Assembly 14 - Axial Zone 13 3114 3114 -9.881 -7 +213 -214 imp:n=1 u=124 $ Assembly 14 - Axial Zone 14 3115 3115 -9.890 -7 +214 -215 imp:n=1 u=124 $ Assembly 14 - Axial Zone 15 3116 3116 -9.909 -7 +215 -216 imp:n=1 u=124 $ Assembly 14 - Axial Zone 16 3117 3117 -9.973 -7 +216 -217 imp:n=1 u=124 $ Assembly 14 - Axial Zone 17 3118 3118 -10.035 -7 +217 imp:n=1 u=124 $ Assembly 14 - Axial Zone 18 3121 3 -1.00 +7 -8 imp:n=1 u=124 3122 2 -6.56 +8 -17 imp:n=1 u=124 3123 3 -1.00 +17 imp:n=1 u=124
Calc Package No.: VSC-03.3606 Page 132 of 191 Revision 0 c Rods from Assy L47 - Inserted into Assy 14 (H59) 3201 3201 -9.989 -7 -201 imp:n=1 u=224 $ Assembly 14 - Axial Zone 1 3202 3202 -9.912 -7 +201 -202 imp:n=1 u=224 $ Assembly 14 - Axial Zone 2 3203 3203 -9.885 -7 +202 -203 imp:n=1 u=224 $ Assembly 14 - Axial Zone 3 3204 3204 -9.877 -7 +203 -204 imp:n=1 u=224 $ Assembly 14 - Axial Zone 4 3205 3205 -9.877 -7 +204 -205 imp:n=1 u=224 $ Assembly 14 - Axial Zone 5 3206 3206 -9.877 -7 +205 -206 imp:n=1 u=224 $ Assembly 14 - Axial Zone 6 3207 3207 -9.878 -7 +206 -207 imp:n=1 u=224 $ Assembly 14 - Axial Zone 7 3208 3208 -9.878 -7 +207 -208 imp:n=1 u=224 $ Assembly 14 - Axial Zone 8 3209 3209 -9.879 -7 +208 -209 imp:n=1 u=224 $ Assembly 14 - Axial Zone 9 3210 3210 -9.879 -7 +209 -210 imp:n=1 u=224 $ Assembly 14 - Axial Zone 10 3211 3211 -9.880 -7 +210 -211 imp:n=1 u=224 $ Assembly 14 - Axial Zone 11 3212 3212 -9.880 -7 +211 -212 imp:n=1 u=224 $ Assembly 14 - Axial Zone 12 3213 3213 -9.881 -7 +212 -213 imp:n=1 u=224 $ Assembly 14 - Axial Zone 13 3214 3214 -9.881 -7 +213 -214 imp:n=1 u=224 $ Assembly 14 - Axial Zone 14 3215 3215 -9.890 -7 +214 -215 imp:n=1 u=224 $ Assembly 14 - Axial Zone 15 3216 3216 -9.909 -7 +215 -216 imp:n=1 u=224 $ Assembly 14 - Axial Zone 16 3217 3217 -9.973 -7 +216 -217 imp:n=1 u=224 $ Assembly 14 - Axial Zone 17 3218 3218 -10.035 -7 +217 imp:n=1 u=224 $ Assembly 14 - Axial Zone 18 3221 3 -1.00 +7 -8 imp:n=1 u=224 3222 2 -6.56 +8 -17 imp:n=1 u=224 3223 3 -1.00 +17 imp:n=1 u=224 c Rods from Assy L54 - Inserted into Assy 14 (H59) 3301 3301 -9.989 -7 -201 imp:n=1 u=324 $ Assembly 14 - Axial Zone 1 3302 3302 -9.912 -7 +201 -202 imp:n=1 u=324 $ Assembly 14 - Axial Zone 2 3303 3303 -9.885 -7 +202 -203 imp:n=1 u=324 $ Assembly 14 - Axial Zone 3 3304 3304 -9.877 -7 +203 -204 imp:n=1 u=324 $ Assembly 14 - Axial Zone 4 3305 3305 -9.877 -7 +204 -205 imp:n=1 u=324 $ Assembly 14 - Axial Zone 5 3306 3306 -9.877 -7 +205 -206 imp:n=1 u=324 $ Assembly 14 - Axial Zone 6 3307 3307 -9.878 -7 +206 -207 imp:n=1 u=324 $ Assembly 14 - Axial Zone 7 3308 3308 -9.878 -7 +207 -208 imp:n=1 u=324 $ Assembly 14 - Axial Zone 8 3309 3309 -9.879 -7 +208 -209 imp:n=1 u=324 $ Assembly 14 - Axial Zone 9 3310 3310 -9.879 -7 +209 -210 imp:n=1 u=324 $ Assembly 14 - Axial Zone 10 3311 3311 -9.880 -7 +210 -211 imp:n=1 u=324 $ Assembly 14 - Axial Zone 11 3312 3312 -9.880 -7 +211 -212 imp:n=1 u=324 $ Assembly 14 - Axial Zone 12 3313 3313 -9.881 -7 +212 -213 imp:n=1 u=324 $ Assembly 14 - Axial Zone 13 3314 3314 -9.881 -7 +213 -214 imp:n=1 u=324 $ Assembly 14 - Axial Zone 14 3315 3315 -9.890 -7 +214 -215 imp:n=1 u=324 $ Assembly 14 - Axial Zone 15 3316 3316 -9.909 -7 +215 -216 imp:n=1 u=324 $ Assembly 14 - Axial Zone 16 3317 3317 -9.973 -7 +216 -217 imp:n=1 u=324 $ Assembly 14 - Axial Zone 17 3318 3318 -10.035 -7 +217 imp:n=1 u=324 $ Assembly 14 - Axial Zone 18 3321 3 -1.00 +7 -8 imp:n=1 u=324 3322 2 -6.56 +8 -17 imp:n=1 u=324 3323 3 -1.00 +17 imp:n=1 u=324 c
c c guide bars (modeled as cylinder w/ minimum 0.415" dia) c 1 2 -6.56 -19 imp:n=1 u=1 2 3 -1.00 +19 imp:n=1 u=1 c
c steel dummy rods (0.417" dia - H & L assys) c 3 6 -8.027 -17 imp:n=1 u=40 4 3 -1.00 +17 imp:n=1 u=40 c
c empty guide tube - G Assembly c
Calc Package No.: VSC-03.3606 Page 133 of 191 Revision 0 231 3 -1.00 -13 imp:n=1 u=2 232 2 -6.56 +13 -16 imp:n=1 u=2 233 3 -1.00 +16 imp:n=1 u=2 c
c empty guide tube - H, J1, K1 Assemblies c
234 3 -1.00 -13 imp:n=1 u=3 235 2 -6.56 +13 -17 imp:n=1 u=3 236 3 -1.00 +17 imp:n=1 u=3 c
c empty guide tube - I1-I3 Assemblies c
237 3 -1.00 -12 imp:n=1 u=4 238 2 -6.56 +12 -17 imp:n=1 u=4 239 3 -1.00 +17 imp:n=1 u=4 c
c instrument tube - A Assembly c
241 3 -1.00 -11 imp:n=1 u=5 242 2 -6.56 +11 -14 imp:n=1 u=5 243 3 -1.00 +14 imp:n=1 u=5 c
c instrument tube - D (EF) Assembly c
244 3 -1.00 -11 imp:n=1 u=6 245 2 -6.56 +11 -18 imp:n=1 u=6 246 3 -1.00 +18 imp:n=1 u=6 c
c instrument tube - E-G Assemblies c
247 3 -1.00 -10 imp:n=1 u=7 248 2 -6.56 +10 -15 imp:n=1 u=7 249 3 -1.00 +15 imp:n=1 u=7 c
c instrument tube - H Assembly c
250 3 -1.00 -8 imp:n=1 u=8 251 2 -6.56 +8 -15 imp:n=1 u=8 252 3 -1.00 +15 imp:n=1 u=8 c
c instrument tube - I-L Assemblies c
253 3 -1.00 -8 imp:n=1 u=9 254 2 -6.56 +8 -17 imp:n=1 u=9 255 3 -1.00 +17 imp:n=1 u=9 c
c fixed poison rod - A Assembly (1.7% B4C) c 260 14 -3.97 38 imp:n=1 u=66 261 11 -4.0003 -20 +38 -39 imp:n=1 u=66 262 14 -3.97 -20 +39 imp:n=1 u=66 263 3 -1.00 +20 -11 imp:n=1 u=66 264 2 -6.56 +11 -14 imp:n=1 u=66 265 3 -1.00 +14 imp:n=1 u=66 c
c fixed poison rod - E Assembly (7.7% B4C) c
Calc Package No.: VSC-03.3606 Page 134 of 191 Revision 0 266 13 -3.2707 -7 imp:n=1 u=67 267 3 -1.00 +7 -8 imp:n=1 u=67 268 2 -6.56 +8 -15 imp:n=1 u=67 269 3 -1.00 +15 imp:n=1 u=67 c
c G Assembly guide tube containing Insert 2 (4.7% B4C) c 271 14 -3.97 -1 -35 imp:n=1 u=68 272 12 -3.3406 -1 +35 -36 imp:n=1 u=68 273 14 -3.97 -1 +36 imp:n=1 u=68 274 3 -1.00 +1 -3 imp:n=1 u=68 275 2 -6.56 +3 -4 imp:n=1 u=68 276 3 -1.00 +4 -13 imp:n=1 u=68 277 2 -6.56 +13 -16 imp:n=1 u=68 278 3 -1.00 +16 imp:n=1 u=68 c
c H Assembly guide tube containing Insert 2 (4.7% B4C) c 281 14 -3.97 -1 -35 imp:n=1 u=69 282 12 -3.3406 -1 +35 -36 imp:n=1 u=69 283 14 -3.97 -1 +36 imp:n=1 u=69 284 3 -1.00 +1 -3 imp:n=1 u=69 285 2 -6.56 +3 -4 imp:n=1 u=69 286 3 -1.00 +4 -13 imp:n=1 u=69 287 2 -6.56 +13 -17 imp:n=1 u=69 288 3 -1.00 +17 imp:n=1 u=69 c
c I3 Assembly guide tube containing Insert 3 (4.7% B4C) c 291 14 -3.97 -1 -35 imp:n=1 u=70 292 12 -3.3406 -1 +35 -36 imp:n=1 u=70 293 14 -3.97 -1 +36 imp:n=1 u=70 294 3 -1.00 +1 -3 imp:n=1 u=70 295 2 -6.56 +3 -5 imp:n=1 u=70 296 3 -1.00 +5 -12 imp:n=1 u=70 297 2 -6.56 +12 -17 imp:n=1 u=70 298 3 -1.00 +17 imp:n=1 u=70 c
c I1 Assembly guide tube containing Insert 4 (hafnium) c 331 3 -1.00 -2 -37 imp:n=1 u=96 332 0 -2 +37 imp:n=1 u=96 333 3 -1.00 +2 -3 imp:n=1 u=96 334 2 -6.56 +3 -4 imp:n=1 u=96 335 3 -1.00 +4 -12 imp:n=1 u=96 336 2 -6.56 +12 -17 imp:n=1 u=96 337 3 -1.00 +17 imp:n=1 u=96 c
c Zr-4 inert rods (0.417" dia - H - J - L assys) c 341 2 -6.56 -17 imp:n=1 u=97 342 3 -1.00 +17 imp:n=1 u=97 c
c c assembly lattice outside spacer grids c
11 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=41 fill=-9:9 -9:9 0:0
Calc Package No.: VSC-03.3606 Page 135 of 191 Revision 0 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 11 11 11 11 1 11 11 11 11 11 1 11 11 11 11 41 41 41 41 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 41 41 41 41 11 11 11 11 11 3 11 11 11 3 11 11 11 11 11 41 41 41 41 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 41 41 41 41 1 11 11 11 11 11 11 11 11 11 11 11 11 11 1 41 41 41 41 11 11 3 11 11 11 11 11 11 11 11 11 3 11 11 41 41 41 41 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 41 41 41 41 11 11 11 11 11 11 11 9 11 11 11 11 11 11 11 41 41 41 41 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 41 41 41 41 11 11 3 11 11 11 11 11 11 11 11 11 3 11 11 41 41 41 41 1 11 11 11 11 11 11 11 11 11 11 11 11 11 1 41 41 41 41 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 41 41 41 41 11 11 11 11 11 3 11 11 11 3 11 11 11 11 11 41 41 41 41 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 41 41 41 41 11 11 11 11 1 11 11 11 11 11 1 11 11 11 11 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 c
12 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=42 fill=-9:9 -9:9 0:0 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 12 12 12 12 1 12 12 12 12 12 1 12 12 12 12 42 42 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 42 42 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 42 42 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 42 42 42 42 1 12 12 12 12 12 12 12 12 12 12 12 12 12 1 42 42 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 42 42 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 42 42 42 42 12 12 12 12 12 12 12 9 12 12 12 12 12 12 12 42 42 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 42 42 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 42 42 42 42 1 12 12 12 12 12 12 12 12 12 12 12 12 12 1 42 42 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 42 42 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 42 42 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 42 42 42 42 12 12 12 12 1 12 12 12 12 12 1 12 12 12 12 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 c
13 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=43 fill=-9:9 -9:9 0:0 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 13 13 13 13 1 13 13 13 13 13 1 13 13 13 13 43 43 43 43 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 43 43 43 43 13 13 13 13 13 4 13 13 13 4 13 13 13 13 13 43 43 43 43 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 43 43 43 43 1 13 13 13 13 13 13 13 13 13 13 13 13 13 1 43 43 43 43 13 13 4 13 13 13 13 13 13 13 13 13 4 13 13 43 43 43 43 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 43 43 43 43 13 13 13 13 13 13 13 9 13 13 13 13 13 13 13 43 43 43 43 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 43 43 43 43 13 13 4 13 13 13 13 13 13 13 13 13 4 13 13 43 43 43 43 1 13 13 13 13 13 13 13 13 13 13 13 13 13 1 43 43 43 43 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 43 43
Calc Package No.: VSC-03.3606 Page 136 of 191 Revision 0 43 43 13 13 13 13 13 4 13 13 13 4 13 13 13 13 13 43 43 43 43 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 43 43 43 43 13 13 13 13 1 13 13 13 13 13 1 13 13 13 13 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 c
14 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=44 fill=-9:9 -9:9 0:0 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 14 14 14 14 1 14 14 14 14 14 1 14 14 14 14 44 44 44 44 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 44 44 44 44 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 44 44 44 44 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 44 44 44 44 1 14 14 14 14 14 14 14 14 14 14 14 14 14 1 44 44 44 44 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 44 44 44 44 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 44 44 44 44 14 14 14 14 14 14 14 9 14 14 14 14 14 14 14 44 44 44 44 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 44 44 44 44 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 44 44 44 44 1 14 14 14 14 14 14 14 14 14 14 14 14 14 1 44 44 44 44 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 44 44 44 44 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 44 44 44 44 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 44 44 44 44 14 14 14 14 1 14 14 14 14 14 1 14 14 14 14 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 c
15 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=45 fill=-9:9 -9:9 0:0 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 40 15 15 15 1 15 15 15 15 15 1 15 15 15 40 45 45 45 45 40 15 15 15 15 15 15 15 15 15 15 15 15 15 40 45 45 45 45 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 45 45 45 45 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 45 45 45 45 1 15 15 15 15 15 15 15 15 15 15 15 15 15 1 45 45 45 45 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 45 45 45 45 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 45 45 45 45 15 15 15 15 15 15 15 9 15 15 15 15 15 15 15 45 45 45 45 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 45 45 45 45 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 45 45 45 45 1 15 15 15 15 15 15 15 15 15 15 15 15 15 1 45 45 45 45 15 15 15 15 15 15 15 15 15 15 15 15 15 15 40 45 45 45 45 15 15 15 15 15 15 15 15 15 15 15 15 15 15 40 45 45 45 45 15 15 15 15 15 15 15 15 15 15 15 15 15 40 40 45 45 45 45 40 40 15 15 1 15 15 15 15 15 1 40 40 40 40 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 c
16 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=46 fill=-9:9 -9:9 0:0 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 16 16 16 16 1 16 16 16 16 16 1 16 16 16 16 46 46 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 46 46 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 46 46 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 46 46
Calc Package No.: VSC-03.3606 Page 137 of 191 Revision 0 46 46 1 16 16 16 16 16 16 16 16 16 16 16 16 16 1 46 46 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 46 46 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 46 46 46 46 16 16 16 16 16 16 16 7 16 16 16 16 16 16 16 46 46 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 46 46 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 46 46 46 46 1 16 16 16 16 16 16 16 16 16 16 16 16 16 1 46 46 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 46 46 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 46 46 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 46 46 46 46 16 16 16 16 1 16 16 16 16 16 1 16 16 16 16 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 c
17 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=47 fill=-9:9 -9:9 0:0 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 17 17 17 17 1 17 17 17 17 17 1 17 17 17 17 47 47 47 47 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 47 47 47 47 17 17 17 17 17 3 17 17 17 3 17 17 17 17 17 47 47 47 47 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 47 47 47 47 1 17 17 17 17 17 17 17 17 17 17 17 17 17 1 47 47 47 47 17 17 3 17 17 17 17 17 17 17 17 17 3 17 17 47 47 47 47 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 47 47 47 47 17 17 17 17 17 17 17 9 17 17 17 17 17 17 17 47 47 47 47 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 47 47 47 47 17 17 3 17 17 17 17 17 17 17 17 17 3 17 17 47 47 47 47 1 17 17 17 17 17 17 17 17 17 17 17 17 17 1 47 47 47 47 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 47 47 47 47 17 17 17 17 17 3 17 17 17 3 17 17 17 17 17 47 47 47 47 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 47 47 47 47 17 17 17 17 1 17 17 17 17 17 1 17 17 17 17 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 c
18 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=48 fill=-9:9 -9:9 0:0 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 40 18 18 18 1 18 18 18 18 18 1 18 18 40 40 48 48 48 48 40 18 18 18 18 18 18 18 18 18 18 18 18 18 18 48 48 48 48 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 48 48 48 48 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 48 48 48 48 1 18 18 18 18 18 18 18 18 18 18 18 18 18 1 48 48 48 48 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 48 48 48 48 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 48 48 48 48 18 18 18 18 18 18 18 9 18 18 18 18 18 18 18 48 48 48 48 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 48 48 48 48 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 48 48 48 48 1 18 18 18 18 18 18 18 18 18 18 18 18 18 1 48 48 48 48 40 18 18 18 18 18 18 18 18 18 18 18 18 18 18 48 48 48 48 40 18 18 18 18 18 18 18 18 18 18 18 18 18 18 48 48 48 48 40 40 18 18 18 18 18 18 18 18 18 18 18 18 18 48 48
Calc Package No.: VSC-03.3606 Page 138 of 191 Revision 0 48 48 40 40 40 40 1 18 18 18 18 18 1 18 18 40 40 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 c
19 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=49 fill=-9:9 -9:9 0:0 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 40 19 19 19 1 19 19 19 19 19 1 19 19 40 40 49 49 49 49 40 19 19 19 19 19 19 19 19 19 19 19 19 19 19 49 49 49 49 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 49 49 49 49 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 49 49 49 49 1 19 19 19 19 19 19 19 19 19 19 19 19 19 1 49 49 49 49 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 49 49 49 49 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 49 49 49 49 19 19 19 19 19 19 19 9 19 19 19 19 19 19 19 49 49 49 49 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 49 49 49 49 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 49 49 49 49 1 19 19 19 19 19 19 19 19 19 19 19 19 19 1 49 49 49 49 40 19 19 19 19 19 19 19 19 19 19 19 19 19 19 49 49 49 49 40 19 19 19 19 19 19 19 19 19 19 19 19 19 19 49 49 49 49 40 40 19 19 19 19 19 19 19 19 19 19 19 19 19 49 49 49 49 40 40 40 40 1 19 19 19 19 19 1 19 19 40 40 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 c
20 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=50 fill=-9:9 -9:9 0:0 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 40 20 20 20 1 20 20 20 20 20 1 20 20 20 40 50 50 50 50 40 20 20 20 20 20 20 20 20 20 20 20 20 20 40 50 50 50 50 20 20 20 20 20 96 20 20 20 96 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 50 50 50 50 1 20 20 20 20 20 20 20 20 20 20 20 20 20 1 50 50 50 50 20 20 96 20 20 20 20 20 20 20 20 20 96 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 9 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 96 20 20 20 20 20 20 20 20 20 96 20 20 50 50 50 50 1 20 20 20 20 20 20 20 20 20 20 20 20 20 1 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 20 40 50 50 50 50 20 20 20 20 20 96 20 20 20 96 20 20 20 20 40 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 40 40 50 50 50 50 40 40 20 20 1 20 20 20 20 20 1 40 40 40 40 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 c
21 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=51 fill=-9:9 -9:9 0:0 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 21 21 21 21 1 21 21 21 21 21 1 321 221 221 40 51 51 51 51 21 21 21 21 21 21 21 21 21 21 21 321 221 221 40 51 51 51 51 21 21 21 21 21 3 21 21 21 3 21 321 221 221 40 51 51 51 51 21 21 21 21 21 21 21 21 21 21 21 321 221 121 40 51 51 51 51 1 21 21 21 21 21 21 21 21 21 21 321 221 121 1 51 51
Calc Package No.: VSC-03.3606 Page 139 of 191 Revision 0 51 51 21 21 3 21 21 21 21 21 21 21 21 321 3 121 40 51 51 51 51 21 21 21 21 21 21 21 21 21 21 21 321 221 121 40 51 51 51 51 21 21 21 21 21 21 21 8 21 21 21 321 221 121 40 51 51 51 51 21 21 21 21 21 21 21 21 21 21 21 321 221 121 40 51 51 51 51 21 21 3 21 21 21 21 21 21 21 21 321 3 121 40 51 51 51 51 1 21 21 21 21 21 21 21 21 21 21 321 221 121 1 51 51 51 51 21 21 21 21 21 21 21 21 21 21 21 321 221 121 40 51 51 51 51 21 21 21 21 21 3 21 21 21 3 21 321 221 121 40 51 51 51 51 21 21 21 21 21 21 21 21 21 21 21 321 221 121 40 51 51 51 51 21 21 21 21 1 21 21 21 21 21 1 321 221 121 40 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 c
22 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=52 fill=-9:9 -9:9 0:0 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 22 22 22 22 1 22 22 22 22 22 1 22 22 22 22 52 52 52 52 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 52 52 52 52 22 22 22 22 22 3 22 22 22 3 22 22 22 22 22 52 52 52 52 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 52 52 52 52 1 22 22 22 22 22 22 22 22 22 22 22 22 22 1 52 52 52 52 22 22 3 22 22 22 22 22 22 22 22 22 3 22 22 52 52 52 52 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 52 52 52 52 22 22 22 22 22 22 22 9 22 22 22 22 22 22 22 52 52 52 52 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 52 52 52 52 22 22 3 22 22 22 22 22 22 22 22 22 3 22 22 52 52 52 52 1 22 22 22 22 22 22 22 22 22 22 22 22 22 1 52 52 52 52 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 52 52 52 52 22 22 22 22 22 3 22 22 22 3 22 22 22 22 22 52 52 52 52 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 52 52 52 52 22 22 22 22 1 22 22 22 22 22 1 22 22 22 22 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 c
23 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=53 fill=-9:9 -9:9 0:0 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 23 23 23 23 1 23 23 23 23 23 1 23 23 23 23 53 53 53 53 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 53 53 53 53 23 23 23 23 23 3 23 23 23 3 23 23 23 23 23 53 53 53 53 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 53 53 53 53 1 23 23 23 23 23 23 23 23 23 23 23 23 23 1 53 53 53 53 23 23 3 23 23 23 23 23 23 23 23 23 3 23 23 53 53 53 53 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 53 53 53 53 23 23 23 23 23 23 23 9 23 23 23 23 23 23 23 53 53 53 53 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 53 53 53 53 23 23 3 23 23 23 23 23 23 23 23 23 3 23 23 53 53 53 53 1 23 23 23 23 23 23 23 23 23 23 23 23 23 1 53 53 53 53 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 53 53 53 53 23 23 23 23 23 3 23 23 23 3 23 23 23 23 23 53 53 53 53 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 53 53 53 53 23 23 23 23 1 23 23 23 23 23 1 23 23 23 23 53 53
Calc Package No.: VSC-03.3606 Page 140 of 191 Revision 0 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 c
24 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=54 fill=-9:9 -9:9 0:0 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 40 40 40 40 1 24 24 24 24 24 1 24 24 24 24 54 54 54 54 40 124 124 124 24 24 24 24 24 24 24 24 24 24 24 54 54 54 54 40 124 124 124 24 3 24 24 24 3 24 24 24 24 24 54 54 54 54 40 124 124 124 24 24 24 24 24 24 24 24 24 24 24 54 54 54 54 1 224 124 124 24 24 24 24 24 24 24 24 24 24 1 54 54 54 54 40 224 3 224 24 24 24 24 24 24 24 24 3 24 24 54 54 54 54 40 224 224 224 24 24 24 24 24 24 24 24 24 24 24 54 54 54 54 40 224 224 224 24 24 24 8 24 24 24 24 24 24 24 54 54 54 54 40 224 224 224 24 24 24 24 24 24 24 24 24 24 24 54 54 54 54 40 224 3 224 24 24 24 24 24 24 24 24 3 24 24 54 54 54 54 1 324 324 324 24 24 24 24 24 24 24 24 24 24 1 54 54 54 54 40 324 324 324 24 24 24 24 24 24 24 24 24 24 24 54 54 54 54 40 324 324 324 24 3 24 24 24 3 24 24 24 24 24 54 54 54 54 40 324 324 324 24 24 24 24 24 24 24 24 24 24 24 54 54 54 54 40 40 40 40 1 24 24 24 24 24 1 24 24 24 24 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 c
25 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=55 fill=-9:9 -9:9 0:0 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 25 25 25 25 1 25 25 25 25 25 1 25 25 25 25 55 55 55 55 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 55 55 55 55 25 25 25 25 25 96 25 25 25 96 25 25 25 25 25 55 55 55 55 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 55 55 55 55 1 25 25 25 25 25 25 25 25 25 25 25 25 25 1 55 55 55 55 25 25 96 25 25 25 25 25 25 25 25 25 96 25 25 55 55 55 55 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 55 55 55 55 25 25 25 25 25 25 25 9 25 25 25 25 25 25 25 55 55 55 55 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 55 55 55 55 25 25 96 25 25 25 25 25 25 25 25 25 96 25 25 55 55 55 55 1 25 25 25 25 25 25 25 25 25 25 25 25 25 1 55 55 55 55 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 55 55 55 55 25 25 25 25 25 96 25 25 25 96 25 25 25 25 25 55 55 55 55 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 55 55 55 55 25 25 25 25 1 25 25 25 25 25 1 25 25 25 25 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 c
26 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=56 fill=-9:9 -9:9 0:0 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 26 26 26 26 1 26 26 26 26 26 1 26 26 26 26 56 56 56 56 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 56 56 56 56 26 26 26 26 26 96 26 26 26 96 26 26 26 26 26 56 56 56 56 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 56 56 56 56 1 26 26 26 26 26 26 26 26 26 26 26 26 26 1 56 56 56 56 26 26 96 26 26 26 26 26 26 26 26 26 96 26 26 56 56
Calc Package No.: VSC-03.3606 Page 141 of 191 Revision 0 56 56 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 56 56 56 56 26 26 26 26 26 26 26 9 26 26 26 26 26 26 26 56 56 56 56 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 56 56 56 56 26 26 96 26 26 26 26 26 26 26 26 26 96 26 26 56 56 56 56 1 26 26 26 26 26 26 26 26 26 26 26 26 26 1 56 56 56 56 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 56 56 56 56 26 26 26 26 26 96 26 26 26 96 26 26 26 26 26 56 56 56 56 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 56 56 56 56 26 26 26 26 1 26 26 26 26 26 1 26 26 26 26 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 c
27 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=57 fill=-9:9 -9:9 0:0 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 27 27 27 27 1 27 27 27 27 27 1 27 27 27 27 57 57 57 57 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 57 57 57 57 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 57 57 57 57 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 57 57 57 57 1 27 27 27 27 27 27 27 27 27 27 27 27 27 1 57 57 57 57 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 57 57 57 57 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 57 57 57 57 27 27 27 27 27 27 27 9 27 27 27 27 27 27 27 57 57 57 57 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 57 57 57 57 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 57 57 57 57 1 27 27 27 27 27 27 27 27 27 27 27 27 27 1 57 57 57 57 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 57 57 57 57 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 57 57 57 57 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 57 57 57 57 27 27 27 27 1 27 27 27 27 27 1 27 27 27 27 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 c
28 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=58 fill=-9:9 -9:9 0:0 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 28 28 28 28 1 28 28 28 28 28 1 28 28 28 28 58 58 58 58 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 58 58 58 58 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 58 58 58 58 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 58 58 58 58 1 28 28 28 28 28 28 28 28 28 28 28 28 28 1 58 58 58 58 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 58 58 58 58 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 58 58 58 58 28 28 28 28 28 28 28 9 28 28 28 28 28 28 28 58 58 58 58 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 58 58 58 58 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 58 58 58 58 1 28 28 28 28 28 28 28 28 28 28 28 28 28 1 58 58 58 58 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 58 58 58 58 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 58 58 58 58 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 58 58 58 58 28 28 28 28 1 28 28 28 28 28 1 28 28 28 28 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 c
29 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=59 fill=-9:9 -9:9 0:0
Calc Package No.: VSC-03.3606 Page 142 of 191 Revision 0 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 29 29 29 29 1 29 29 29 29 29 1 29 29 29 29 59 59 59 59 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 59 59 59 59 29 29 29 29 29 68 29 29 29 68 29 29 29 29 29 59 59 59 59 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 59 59 59 59 1 29 29 29 29 29 29 29 29 29 29 29 29 29 1 59 59 59 59 29 29 68 29 29 29 29 29 29 29 29 29 68 29 29 59 59 59 59 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 59 59 59 59 29 29 29 29 29 29 29 7 29 29 29 29 29 29 29 59 59 59 59 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 59 59 59 59 29 29 68 29 29 29 29 29 29 29 29 29 68 29 29 59 59 59 59 1 29 29 29 29 29 29 29 29 29 29 29 29 29 1 59 59 59 59 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 59 59 59 59 29 29 29 29 29 68 29 29 29 68 29 29 29 29 29 59 59 59 59 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 59 59 59 59 29 29 29 29 1 29 29 29 29 29 1 29 29 29 29 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 c
30 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=60 fill=-9:9 -9:9 0:0 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 40 40 40 40 1 40 40 40 40 40 1 40 40 40 40 60 60 60 60 40 230 230 230 230 230 330 330 330 330 330 330 330 330 40 60 60 60 60 40 130 130 230 230 3 230 230 230 3 230 230 230 230 40 60 60 60 60 40 321 130 130 130 130 130 130 130 130 130 130 130 130 40 60 60 60 60 1 30 30 30 30 30 30 30 30 30 30 30 30 30 1 60 60 60 60 30 30 3 30 30 30 30 30 30 30 30 30 3 30 30 60 60 60 60 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 60 60 60 60 30 30 30 30 30 30 30 8 30 30 30 30 30 30 30 60 60 60 60 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 60 60 60 60 30 30 3 30 30 30 30 30 30 30 30 30 3 30 30 60 60 60 60 1 30 30 30 30 30 30 30 30 30 30 30 30 30 1 60 60 60 60 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 60 60 60 60 30 30 30 30 30 3 30 30 30 3 30 30 30 30 30 60 60 60 60 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 60 60 60 60 30 30 30 30 1 30 30 30 30 30 1 30 30 30 30 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 c
31 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=61 fill=-9:9 -9:9 0:0 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 31 31 31 31 1 31 31 31 31 31 1 31 31 31 31 61 61 61 61 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 61 61 61 61 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 61 61 61 61 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 61 61 61 61 1 31 31 31 31 31 31 31 31 31 31 31 31 31 1 61 61 61 61 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 61 61 61 61 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 61 61 61 61 31 31 31 31 31 31 31 9 31 31 31 31 31 31 31 61 61 61 61 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 61 61 61 61 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 61 61 61 61 1 31 31 31 31 31 31 31 31 31 31 31 31 31 1 61 61 61 61 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 61 61
Calc Package No.: VSC-03.3606 Page 143 of 191 Revision 0 61 61 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 61 61 61 61 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 61 61 61 61 31 31 31 31 1 31 31 31 31 31 1 31 31 31 31 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 c
32 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=62 fill=-9:9 -9:9 0:0 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 32 32 32 32 1 32 32 32 32 32 1 32 32 32 32 62 62 62 62 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 62 62 62 62 32 32 32 32 32 3 32 32 32 3 32 32 32 32 32 62 62 62 62 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 62 62 62 62 1 32 32 32 32 32 32 32 32 32 32 32 32 32 1 62 62 62 62 32 32 3 32 32 32 32 32 32 32 32 32 3 32 32 62 62 62 62 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 62 62 62 62 32 32 32 32 32 32 32 9 32 32 32 32 32 32 32 62 62 62 62 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 62 62 62 62 32 32 3 32 32 32 32 32 32 32 32 32 3 32 32 62 62 62 62 1 32 32 32 32 32 32 32 32 32 32 32 32 32 1 62 62 62 62 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 62 62 62 62 32 32 32 32 32 3 32 32 32 3 32 32 32 32 32 62 62 62 62 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 62 62 62 62 32 32 32 32 1 32 32 32 32 32 1 32 32 32 32 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 c
33 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=63 fill=-9:9 -9:9 0:0 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 33 33 33 33 1 33 33 33 33 33 1 33 33 33 33 63 63 63 63 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 63 63 63 63 33 33 33 33 33 3 33 33 33 3 33 33 33 33 33 63 63 63 63 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 63 63 63 63 1 33 33 33 33 33 33 33 33 33 33 33 33 33 1 63 63 63 63 33 33 3 33 33 33 33 33 33 33 33 33 3 33 33 63 63 63 63 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 63 63 63 63 33 33 33 33 33 33 33 9 33 33 33 33 33 33 33 63 63 63 63 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 63 63 63 63 33 33 3 33 33 33 33 33 33 33 33 33 3 33 33 63 63 63 63 1 33 33 33 33 33 33 33 33 33 33 33 33 33 1 63 63 63 63 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 63 63 63 63 33 33 33 33 33 3 33 33 33 3 33 33 33 33 33 63 63 63 63 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 63 63 63 63 33 33 33 33 1 33 33 33 33 33 1 33 33 33 33 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 c
34 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=64 fill=-9:9 -9:9 0:0 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 34 34 34 34 1 34 34 34 34 34 1 34 34 34 34 64 64 64 64 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 64 64 64 64 34 34 34 34 34 3 34 34 34 3 34 34 34 34 34 64 64 64 64 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 64 64
Calc Package No.: VSC-03.3606 Page 144 of 191 Revision 0 64 64 1 34 34 34 34 34 34 34 34 34 34 34 34 34 1 64 64 64 64 34 34 3 34 34 34 34 34 34 34 34 34 3 34 34 64 64 64 64 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 64 64 64 64 34 34 34 34 34 34 34 9 34 34 34 34 34 34 34 64 64 64 64 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 64 64 64 64 34 34 3 34 34 34 34 34 34 34 34 34 3 34 34 64 64 64 64 1 34 34 34 34 34 34 34 34 34 34 34 34 34 1 64 64 64 64 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 64 64 64 64 34 34 34 34 34 3 34 34 34 3 34 34 34 34 34 64 64 64 64 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 64 64 64 64 34 34 34 34 1 34 34 34 34 34 1 34 34 34 34 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 c
c fuel sleeves containing specific assemblies (w/ specific position shift) c 41 3 -1.00 +25 -26 +27 57 fill=41 (+0.5970 -0.5970 0.0) imp:n=1 u=71 71 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=71 131 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=71 c
42 3 -1.00 +25 -26 +27 57 fill=42 (-0.5970 -0.5970 0.0) imp:n=1 u=72 72 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=72 132 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=72 c
43 3 -1.00 +25 -26 +27 57 fill=43 (+0.5970 -0.5970 0.0) imp:n=1 u=73 73 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=73 133 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=73 c
44 3 -1.00 +25 -26 +27 57 fill=44 (+0.5970 -0.5970 0.0) imp:n=1 u=74 74 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=74 134 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=74 c
45 3 -1.00 +25 -26 +27 57 fill=45 (-0.5970 -0.5970 0.0) imp:n=1 u=75 75 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=75 135 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=75 c
46 3 -1.00 +25 -26 +27 57 fill=46 (-0.5970 -0.5970 0.0) imp:n=1 u=76 76 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=76 136 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=76 c
47 3 -1.00 +25 -26 +27 57 fill=47 (+0.5970 -0.5970 0.0) imp:n=1 u=77 77 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=77 137 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=77 c
48 3 -1.00 +25 -26 +27 57 fill=48 (+0.5970 -0.5970 0.0) imp:n=1 u=78 78 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=78 138 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=78 c
49 3 -1.00 +25 -26 +27 57 fill=49 (+0.5970 -0.5970 0.0) imp:n=1 u=79 79 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=79 139 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=79 c
50 3 -1.00 +25 -26 +27 57 fill=50 (-0.5970 -0.5970 0.0) imp:n=1 u=80 80 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=80 140 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=80 c
51 3 -1.00 +25 -26 +27 57 fill=51 (-0.5970 -0.5970 0.0) imp:n=1 u=81 81 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=81
Calc Package No.: VSC-03.3606 Page 145 of 191 Revision 0 141 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=81 c
52 3 -1.00 +25 -26 +27 57 fill=52 (-0.5970 -0.5970 0.0) imp:n=1 u=82 82 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=82 142 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=82 c
53 3 -1.00 +25 -26 +27 57 fill=53 (+0.5970 +0.5970 0.0) imp:n=1 u=83 83 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=83 143 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=83 c
54 3 -1.00 +25 -26 +27 57 fill=54 (+0.5970 +0.5970 0.0) imp:n=1 u=84 84 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=84 144 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=84 c
55 3 -1.00 +25 -26 +27 57 fill=55 (+0.5970 +0.5970 0.0) imp:n=1 u=85 85 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=85 145 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=85 c
56 3 -1.00 +25 -26 +27 57 fill=56 (-0.5970 +0.5970 0.0) imp:n=1 u=86 86 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=86 146 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=86 c
57 3 -1.00 +25 -26 +27 57 fill=57 (-0.5970 +0.5970 0.0) imp:n=1 u=87 87 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=87 147 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=87 c
58 3 -1.00 +25 -26 +27 57 fill=58 (-0.5970 +0.5970 0.0) imp:n=1 u=88 88 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=88 148 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=88 c
59 3 -1.00 +25 -26 +27 57 fill=59 (+0.5970 +0.5970 0.0) imp:n=1 u=89 89 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=89 149 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=89 c
60 3 -1.00 +25 -26 +27 57 fill=60 (+0.5970 +0.5970 0.0) imp:n=1 u=90 90 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=90 150 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=90 c
61 3 -1.00 +25 -26 +27 57 fill=61 (-0.5970 +0.5970 0.0) imp:n=1 u=91 91 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=91 151 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=91 c
62 3 -1.00 +25 -26 +27 57 fill=62 (-0.5970 +0.5970 0.0) imp:n=1 u=92 92 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=92 152 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=92 c
63 3 -1.00 +25 -26 +27 57 fill=63 (+0.5970 +0.5970 0.0) imp:n=1 u=93 93 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=93 153 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=93 c
64 3 -1.00 +25 -26 +27 57 fill=64 (-0.5970 +0.5970 0.0) imp:n=1 u=94 94 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=94 154 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=94 c
c basket fuel sleeve lattice c
35 3 -1.00 -30 +29 -32 +31 imp:n=1 lat=1 u=99
Calc Package No.: VSC-03.3606 Page 146 of 191 Revision 0 fill=-4:3 -4:3 0:0 99 99 99 99 99 99 99 99 99 99 99 93 94 99 99 99 99 99 89 90 91 92 99 99 99 83 84 85 86 87 88 99 99 77 78 79 80 81 82 99 99 99 73 74 75 76 99 99 99 99 99 71 72 99 99 99 99 99 99 99 99 99 99 99 c
c inside MSB canister - outside outer structures c
36 3 -1.00 (-111:-109) (+110:-109) (+110:+108) (+108:-111)
(+107:-117:-106) (+105:-104:-119) (+107:+116:-106) (+105:+118:-104)
-101 +56 -58 fill=99 (11.5252 11.5252 0.0) imp:n=1 c
c MSB radial support plates c
181 4 -7.8212 +101 +103 +108 -109 -41 +56 -58 imp:n=1 182 4 -7.8212 +101 +102 +110 -111 -41 +56 -58 imp:n=1 183 4 -7.8212 +101 -103 +108 -109 -41 +56 -58 imp:n=1 184 4 -7.8212 +101 -102 +110 -111 -41 +56 -58 imp:n=1 c
c MSB corner support wall structures c
185 4 -7.8212 +109 +111 (-113:-115) -41 +56 -58 imp:n=1 186 3 -1.00 +113 +115 -41 +56 -58 imp:n=1 187 4 -7.8212 +109 -110 (-113:+114) -41 +56 -58 imp:n=1 188 3 -1.00 +113 -114 -41 +56 -58 imp:n=1 189 4 -7.8212 -108 -110 (+112:+114) -41 +56 -58 imp:n=1 190 3 -1.00 -112 -114 -41 +56 -58 imp:n=1 191 4 -7.8212 -108 +111 (+112:-115) -41 +56 -58 imp:n=1 192 3 -1.00 -112 +115 -41 +56 -58 imp:n=1 c
c MSB outer support bars c
193 4 -7.8212 -101 +117 +106 -107 +56 -58 imp:n=1 194 4 -7.8212 -101 -118 +104 -105 +56 -58 imp:n=1 195 4 -7.8212 -101 -116 +106 -107 +56 -58 imp:n=1 196 4 -7.8212 -101 +119 +104 -105 +56 -58 imp:n=1 c
c MSB canister shell (carbon steel) c 40 4 -7.8212 +41 -42 +54 -60 imp:n=1 c
c Radial Spacer / TS125 Cask Shells c
161 3 -1.00 +42 -43 +52 -60 imp:n=1 $ MSB/Spacer Gap (water) 162 6 -8.027 +43 -44 +52 -60 imp:n=1 $ Radial Spacer (SS-304) 163 3 -1.00 +44 -45 +52 -60 imp:n=1 $ Spacer/Cask Gap (water) 164 7 -8.027 +45 -46 +52 -60 imp:n=1 $ TS125 Inner Shell (XM-19) 165 5 -11.35 +46 -47 +52 -60 imp:n=1 $ TS125 Gamma Shld (lead) 166 7 -8.027 +47 -48 +52 -60 imp:n=1 $ TS125 Outer Shell (XM-19) c c end regions c
171 7 -8.027 +51 48 imp:n=1 $ Cask Bottom Plate (XM-19) 172 3 -1.00 +52 42 imp:n=1 $ Cavity Spacer Vol (water)
Calc Package No.: VSC-03.3606 Page 147 of 191 Revision 0 173 6 -8.027 +53 42 imp:n=1 $ Cavity Spacer Top Plate (SS-304) 174 4 -7.8212 +54 41 imp:n=1 $ MSB Bottom Plate (Carbon Steel) 175 3 -1.00 +55 41 imp:n=1 $ Assy Bottom Nozzle Zone (water) 176 3 -1.00 +58 41 imp:n=1 $ Cav. Above Fuel Sleeves (water) 177 4 -7.8212 +59 41 imp:n=1 $ MSB Top Lids (Carbon Steel) 178 7 -8.027 +60 48 imp:n=1 $ Cask Top Lid (XM-19) c c zero importance region c
180 0 (-51:+61:+48) imp:n=0 c surfaces c
c assembly rod/tube radii c
1 cz 0.34036 $ 0.268" dia - Insert 2 & 3 absorber pellet OR 2 cz 0.35052 $ 0.276" dia - Insert 4 absorber pellet OR 3 cz 0.36322 $ 0.286" dia - absorber clad IR (all types) 4 cz 0.42164 $ 0.332" dia - Insert 2 & 4 clad OR 5 cz 0.42418 $ 0.334" dia - Insert 3 clad OR 6 cz 0.4445 $ 0.35" dia - H-K pellet OR 7 cz 0.44514 $ 0.3505" dia - E-G, L pellet OR 8 cz 0.45466 $ 0.358" dia - D pellet OR, E-L clad IR, H-L inst IR 9 cz 0.45593 $ 0.359" dia - A pellet OR 10 cz 0.4572 $ 0.36" dia - E-G inst IR 11 cz 0.46419 $ 0.3655" dia - A-D clad IR, A-D inst IR 12 cz 0.49403 $ 0.389" dia - I guide tube IR 13 cz 0.49657 $ 0.391" dia - G, H, J1, K1 guide tube IR 14 cz 0.52515 $ 0.4135" dia - A clad OR, A inst OR 15 cz 0.52705 $ 0.415" dia - E-G clad OR, E-H inst OR 16 cz 0.52832 $ 0.416" dia - G guide tube OR 17 cz 0.52959 $ 0.417" dia - H-L clad OR, H-K guide tube OR, I-L inst OR 18 cz 0.53023 $ 0.4175" dia - D clad OR, D inst OR 19 cz 0.5776 $ 0.4548" dia - guide bar effective OR 20 cz 0.45212 $ 0.356" dia - A absorber pellet OR c
c pin pitch / fuel sleeve x-y surfaces c
21 px -0.6985 $ pin cell -x surface 22 px 0.6985 $ pin cell +x surface 23 py -0.6985 $ pin cell -y surface 24 py 0.6985 $ pin cell +y surface 25 px -11.0744 $ fuel sleeve -x inner surface 26 px 11.0744 $ fuel sleeve +x inner surface 27 py -11.0744 $ fuel sleeve -y inner surface 28 py 11.0744 $ fuel sleeve +y inner surface 29 px -11.52525 $ fuel sleeve -x outer surface 30 px 11.52525 $ fuel sleeve +x outer surface 31 py -11.52525 $ fuel sleeve -y outer surface 32 py 11.52525 $ fuel sleeve +y outer surface c
c poison material axial boundaries c
35 pz -152.908 $ Bottom of B4C Poison Material (Insert Types 2 & 3) 36 pz 151.892 $ Top of B4C Poison Material (Insert Types 2 & 3) 37 pz -159.258 $ Bottom of Hafnium Poison Material (Insert Type 4) 38 pz -152.4 $ Bottom of B4C Poison Material (A Assembly Fixed Rod) 39 pz 152.4 $ Top of B4C Poison Material (A Assembly Fixed Rod)
Calc Package No.: VSC-03.3606 Page 148 of 191 Revision 0 c
c MSB & TS125 Cask Radial Shell Surfaces c
41 cz 76.043 $ MSB radial shell IR 42 cz 78.740 $ MSB radial shell OR 43 cz 80.645 $ radial cavity spacer IR 44 cz 83.82 $ radial cavity spacer OR 45 cz 85.09 $ TS125 Cask Cavity IR 46 cz 88.9 $ TS125 Cask Inner Liner OR 47 cz 97.155 $ TS125 Cask Gamma Shield OR 48* cz 103.886 $ TS125 Cask Shell OR c
c Model axial surfaces c
51* pz -268.224 $ Bottom of TS125 Cask Body 52 pz -252.984 $ Bottom of TS125 Cask Cavity 53 pz -186.563 $ Bottom of Axial Cask Cavity Spacer Top Plate 54 pz -178.943 $ Bottom End of MSB 55 pz -177.038 $ Bottom of MSB Internal Cavity 56 pz -167.386 $ Bottom of Active Fuel Zone 57 pz 167.386 $ Top of Active Fuel Zone 58 pz 197.612 $ Top of Steel Fuel Sleeves 59 pz 205.486 $ Top of MSB Internal Cavity 60 pz 237.236 $ Top End of MSB / Top of TS125 Cask Cavity 61* pz 252.476 $ Top of TS125 Cask Body c
c MSB edge structure surfaces c
101 cz 73.597 $ inner surface of MSB radial support plates 102 px 0.0 $ X-axis - quadrant separator 103 py 0.0 $ Y-axis - quadrant separator 104 px -2.699 $ -x surface of -y and +y support bars 105 px 2.699 $ +x surface of -y and +y support bars 106 py -2.699 $ -y surface of -x and +x support bars 107 py 2.699 $ +y surface of -x and +x support bars 108 px -46.101 $ +x surface of -x/-y and -x/+y corner support wall structures 109 px 46.101 $ -x surface of +x/-y and +x/+y corner support wall structures 110 py -46.101 $ +y surface of -x/-y and +x/-y corner support wall structures 111 py 46.101 $ -y surface of -x/+y and +x/+y corner support wall structures 112 px -47.689 $ -x surface of -x/-y and -x/+y corner support wall structures 113 px 47.689 $ +x surface of +x/-y and +x/+y corner support wall structures 114 py -47.689 $ -y surface of -x/-y and +x/-y corner support wall structures 115 py 47.689 $ +y surface of -x/+y and +x/+y corner support wall structures 116 px -69.757 $ +x surface of -x support bar 117 px 69.757 $ -x surface of +x support bar 118 py -69.757 $ +y surface of -y support bar 119 py 69.757 $ -y surface of +y support bar c
c axial burnup profile zone boundaries (18 zones) c 201 pz -148.788 $ axial profile zone boundary - 1/2 202 pz -130.189 $ axial profile zone boundary - 2/3 203 pz -111.591 $ axial profile zone boundary - 3/4 204 pz -92.992 $ axial profile zone boundary - 4/5 205 pz -74.394 $ axial profile zone boundary - 5/6 206 pz -55.795 $ axial profile zone boundary - 6/7 207 pz -37.197 $ axial profile zone boundary - 7/8 208 pz -18.598 $ axial profile zone boundary - 8/9
Calc Package No.: VSC-03.3606 Page 149 of 191 Revision 0 209 pz 0.000 $ axial profile zone boundary - 9/10 210 pz 18.598 $ axial profile zone boundary - 10/11 211 pz 37.197 $ axial profile zone boundary - 11/12 212 pz 55.795 $ axial profile zone boundary - 12/13 213 pz 74.394 $ axial profile zone boundary - 13/14 214 pz 92.992 $ axial profile zone boundary - 14/15 215 pz 111.591 $ axial profile zone boundary - 15/16 216 pz 130.189 $ axial profile zone boundary - 16/17 217 pz 148.788 $ axial profile zone boundary - 17/18 c non-fuel materials c
m2 40000.60c -98.18 $ clad 50000.40c -1.4 24050.60c -0.004 24052.60c -0.084 24053.60c -0.01 24054.60c -0.002 26054.60c -0.011 26056.60c -0.184 26057.60c -0.004 26058.60c -0.001 8016.50c -0.12 c
m3 1001.50c -11.18983 $ fresh water 8016.50c -88.81017 c
m4 26054.60c -5.8032 $ Carbon Steel 26056.60c -90.2158 26057.60c -2.0656 26058.60c -0.2754 6000.50c -0.27 14000.50c -0.3 15031.50c -0.035 16032.50c -0.035 25055.50c -1.0 c
m5 82000.50c -1.0 $ lead c
m6 24000.50c -19.0 $ SS-304 25055.50c -2.0 26000.55c -69.75 28000.50c -9.25 c
m7 14000.50c -0.75 $ XM-19 24000.50c -22.0 25055.50c -5.0 26000.55c -57.5 28000.50c -12.5 42000.50c -2.25 c
m11 13027.50c -2.0863 $ Al2O3-B4C Absorber Material - 1.7% B4C 8016.50c -1.8557 6000.50c -0.0148 5011.56c -0.0435 c
m12 13027.50c -1.6964 $ Al2O3-B4C Absorber Material - 4.7% B4C 8016.50c -1.5089
Calc Package No.: VSC-03.3606 Page 150 of 191 Revision 0 6000.50c -0.0344 5011.56c -0.1009 c
m13 13027.50c -1.6157 $ Al2O3-B4C Absorber Material - 7.7% B4C 8016.50c -1.4371 6000.50c -0.0554 5011.56c -0.1626 c
m14 13027.50c -2.1001 $ Pure Al2O3 8016.50c -1.8689 c
c c fuel material compositions (each assembly - each axial zone - 24x18) c c
(432 spent fuel material compositions (produced by SASQUASH code) - not shown) c c
mt3 lwtr.01t c
c source specifications c
ksrc 2.546 2.546 158.67 -2.546 2.546 158.67 6.737 2.546 158.67 -6.737 2.546 158.67 10.928 2.546 158.67 -10.928 2.546 158.67 (rest of 5184 neutron start location triplets (X,Y,Z) - not shown) 10.928 -65.411 -46.67 -10.928 -65.411 -46.67 15.119 -65.411 -46.67 -15.119 -65.411 -46.67 19.310 -65.411 -46.67 -19.310 -65.411 -46.67 c
c c control specifications c
kcode 5184 0.86 50 500 10000 print
Calc Package No.: VSC-03.3606 Page 151 of 191 Revision 0 File Snorm - Normal-Condition Array Run - Shows Infinite Array and Neutron Shield Modeling Consumers MSB 01 in TS125 Cask - Ship in 2015 - Single Normal Cond. Cask c
c geometry c
c fuel rod outside spacer grids c
101 101 -9.893 -7 -201 imp:n=1 u=11 $ Assembly 01 - Axial Zone 1 102 102 -9.810 -7 +201 -202 imp:n=1 u=11 $ Assembly 01 - Axial Zone 2 103 103 -9.785 -7 +202 -203 imp:n=1 u=11 $ Assembly 01 - Axial Zone 3 104 104 -9.776 -7 +203 -204 imp:n=1 u=11 $ Assembly 01 - Axial Zone 4 105 105 -9.777 -7 +204 -205 imp:n=1 u=11 $ Assembly 01 - Axial Zone 5 106 106 -9.777 -7 +205 -206 imp:n=1 u=11 $ Assembly 01 - Axial Zone 6 107 107 -9.777 -7 +206 -207 imp:n=1 u=11 $ Assembly 01 - Axial Zone 7 108 108 -9.778 -7 +207 -208 imp:n=1 u=11 $ Assembly 01 - Axial Zone 8 109 109 -9.779 -7 +208 -209 imp:n=1 u=11 $ Assembly 01 - Axial Zone 9 110 110 -9.779 -7 +209 -210 imp:n=1 u=11 $ Assembly 01 - Axial Zone 10 111 111 -9.780 -7 +210 -211 imp:n=1 u=11 $ Assembly 01 - Axial Zone 11 112 112 -9.780 -7 +211 -212 imp:n=1 u=11 $ Assembly 01 - Axial Zone 12 113 113 -9.781 -7 +212 -213 imp:n=1 u=11 $ Assembly 01 - Axial Zone 13 114 114 -9.781 -7 +213 -214 imp:n=1 u=11 $ Assembly 01 - Axial Zone 14 115 115 -9.790 -7 +214 -215 imp:n=1 u=11 $ Assembly 01 - Axial Zone 15 116 116 -9.807 -7 +215 -216 imp:n=1 u=11 $ Assembly 01 - Axial Zone 16 117 117 -9.869 -7 +216 -217 imp:n=1 u=11 $ Assembly 01 - Axial Zone 17 118 118 -9.946 -7 +217 imp:n=1 u=11 $ Assembly 01 - Axial Zone 18 121 3 -1.00 +7 -8 imp:n=1 u=11 122 2 -6.56 +8 -15 imp:n=1 u=11 123 3 -1.00 +15 imp:n=1 u=11 c Assy 2 201 201 -9.893 -7 -201 imp:n=1 u=12 $ Assembly 02 - Axial Zone 1 202 202 -9.810 -7 +201 -202 imp:n=1 u=12 $ Assembly 02 - Axial Zone 2 203 203 -9.785 -7 +202 -203 imp:n=1 u=12 $ Assembly 02 - Axial Zone 3 204 204 -9.776 -7 +203 -204 imp:n=1 u=12 $ Assembly 02 - Axial Zone 4 205 205 -9.777 -7 +204 -205 imp:n=1 u=12 $ Assembly 02 - Axial Zone 5 206 206 -9.777 -7 +205 -206 imp:n=1 u=12 $ Assembly 02 - Axial Zone 6 207 207 -9.777 -7 +206 -207 imp:n=1 u=12 $ Assembly 02 - Axial Zone 7 208 208 -9.778 -7 +207 -208 imp:n=1 u=12 $ Assembly 02 - Axial Zone 8 209 209 -9.779 -7 +208 -209 imp:n=1 u=12 $ Assembly 02 - Axial Zone 9 210 210 -9.779 -7 +209 -210 imp:n=1 u=12 $ Assembly 02 - Axial Zone 10 211 211 -9.780 -7 +210 -211 imp:n=1 u=12 $ Assembly 02 - Axial Zone 11 212 212 -9.780 -7 +211 -212 imp:n=1 u=12 $ Assembly 02 - Axial Zone 12 213 213 -9.781 -7 +212 -213 imp:n=1 u=12 $ Assembly 02 - Axial Zone 13 214 214 -9.781 -7 +213 -214 imp:n=1 u=12 $ Assembly 02 - Axial Zone 14 215 215 -9.790 -7 +214 -215 imp:n=1 u=12 $ Assembly 02 - Axial Zone 15 216 216 -9.807 -7 +215 -216 imp:n=1 u=12 $ Assembly 02 - Axial Zone 16 217 217 -9.869 -7 +216 -217 imp:n=1 u=12 $ Assembly 02 - Axial Zone 17 218 218 -9.946 -7 +217 imp:n=1 u=12 $ Assembly 02 - Axial Zone 18 221 3 -1.00 +7 -8 imp:n=1 u=12 222 2 -6.56 +8 -15 imp:n=1 u=12 223 3 -1.00 +15 imp:n=1 u=12 c Assy 3 301 301 -9.893 -7 -201 imp:n=1 u=13 $ Assembly 03 - Axial Zone 1 302 302 -9.810 -7 +201 -202 imp:n=1 u=13 $ Assembly 03 - Axial Zone 2 303 303 -9.785 -7 +202 -203 imp:n=1 u=13 $ Assembly 03 - Axial Zone 3 304 304 -9.776 -7 +203 -204 imp:n=1 u=13 $ Assembly 03 - Axial Zone 4
Calc Package No.: VSC-03.3606 Page 152 of 191 Revision 0 305 305 -9.777 -7 +204 -205 imp:n=1 u=13 $ Assembly 03 - Axial Zone 5 306 306 -9.777 -7 +205 -206 imp:n=1 u=13 $ Assembly 03 - Axial Zone 6 307 307 -9.777 -7 +206 -207 imp:n=1 u=13 $ Assembly 03 - Axial Zone 7 308 308 -9.778 -7 +207 -208 imp:n=1 u=13 $ Assembly 03 - Axial Zone 8 309 309 -9.779 -7 +208 -209 imp:n=1 u=13 $ Assembly 03 - Axial Zone 9 310 310 -9.779 -7 +209 -210 imp:n=1 u=13 $ Assembly 03 - Axial Zone 10 311 311 -9.780 -7 +210 -211 imp:n=1 u=13 $ Assembly 03 - Axial Zone 11 312 312 -9.780 -7 +211 -212 imp:n=1 u=13 $ Assembly 03 - Axial Zone 12 313 313 -9.781 -7 +212 -213 imp:n=1 u=13 $ Assembly 03 - Axial Zone 13 314 314 -9.781 -7 +213 -214 imp:n=1 u=13 $ Assembly 03 - Axial Zone 14 315 315 -9.790 -7 +214 -215 imp:n=1 u=13 $ Assembly 03 - Axial Zone 15 316 316 -9.807 -7 +215 -216 imp:n=1 u=13 $ Assembly 03 - Axial Zone 16 317 317 -9.869 -7 +216 -217 imp:n=1 u=13 $ Assembly 03 - Axial Zone 17 318 318 -9.946 -7 +217 imp:n=1 u=13 $ Assembly 03 - Axial Zone 18 321 3 -1.00 +7 -8 imp:n=1 u=13 322 2 -6.56 +8 -15 imp:n=1 u=13 323 3 -1.00 +15 imp:n=1 u=13 c Assy 4 401 401 -9.986 -7 -201 imp:n=1 u=14 $ Assembly 04 - Axial Zone 1 402 402 -9.909 -7 +201 -202 imp:n=1 u=14 $ Assembly 04 - Axial Zone 2 403 403 -9.882 -7 +202 -203 imp:n=1 u=14 $ Assembly 04 - Axial Zone 3 404 404 -9.873 -7 +203 -204 imp:n=1 u=14 $ Assembly 04 - Axial Zone 4 405 405 -9.873 -7 +204 -205 imp:n=1 u=14 $ Assembly 04 - Axial Zone 5 406 406 -9.873 -7 +205 -206 imp:n=1 u=14 $ Assembly 04 - Axial Zone 6 407 407 -9.874 -7 +206 -207 imp:n=1 u=14 $ Assembly 04 - Axial Zone 7 408 408 -9.874 -7 +207 -208 imp:n=1 u=14 $ Assembly 04 - Axial Zone 8 409 409 -9.875 -7 +208 -209 imp:n=1 u=14 $ Assembly 04 - Axial Zone 9 410 410 -9.875 -7 +209 -210 imp:n=1 u=14 $ Assembly 04 - Axial Zone 10 411 411 -9.876 -7 +210 -211 imp:n=1 u=14 $ Assembly 04 - Axial Zone 11 412 412 -9.876 -7 +211 -212 imp:n=1 u=14 $ Assembly 04 - Axial Zone 12 413 413 -9.877 -7 +212 -213 imp:n=1 u=14 $ Assembly 04 - Axial Zone 13 414 414 -9.877 -7 +213 -214 imp:n=1 u=14 $ Assembly 04 - Axial Zone 14 415 415 -9.887 -7 +214 -215 imp:n=1 u=14 $ Assembly 04 - Axial Zone 15 416 416 -9.905 -7 +215 -216 imp:n=1 u=14 $ Assembly 04 - Axial Zone 16 417 417 -9.961 -7 +216 -217 imp:n=1 u=14 $ Assembly 04 - Axial Zone 17 418 418 -10.031 -7 +217 imp:n=1 u=14 $ Assembly 04 - Axial Zone 18 421 3 -1.00 +7 -8 imp:n=1 u=14 422 2 -6.56 +8 -15 imp:n=1 u=14 423 3 -1.00 +15 imp:n=1 u=14 c Assy 5 501 501 -9.893 -7 -201 imp:n=1 u=15 $ Assembly 05 - Axial Zone 1 502 502 -9.810 -7 +201 -202 imp:n=1 u=15 $ Assembly 05 - Axial Zone 2 503 503 -9.785 -7 +202 -203 imp:n=1 u=15 $ Assembly 05 - Axial Zone 3 504 504 -9.776 -7 +203 -204 imp:n=1 u=15 $ Assembly 05 - Axial Zone 4 505 505 -9.777 -7 +204 -205 imp:n=1 u=15 $ Assembly 05 - Axial Zone 5 506 506 -9.777 -7 +205 -206 imp:n=1 u=15 $ Assembly 05 - Axial Zone 6 507 507 -9.777 -7 +206 -207 imp:n=1 u=15 $ Assembly 05 - Axial Zone 7 508 508 -9.778 -7 +207 -208 imp:n=1 u=15 $ Assembly 05 - Axial Zone 8 509 509 -9.779 -7 +208 -209 imp:n=1 u=15 $ Assembly 05 - Axial Zone 9 510 510 -9.779 -7 +209 -210 imp:n=1 u=15 $ Assembly 05 - Axial Zone 10 511 511 -9.780 -7 +210 -211 imp:n=1 u=15 $ Assembly 05 - Axial Zone 11 512 512 -9.780 -7 +211 -212 imp:n=1 u=15 $ Assembly 05 - Axial Zone 12 513 513 -9.781 -7 +212 -213 imp:n=1 u=15 $ Assembly 05 - Axial Zone 13 514 514 -9.781 -7 +213 -214 imp:n=1 u=15 $ Assembly 05 - Axial Zone 14 515 515 -9.790 -7 +214 -215 imp:n=1 u=15 $ Assembly 05 - Axial Zone 15 516 516 -9.807 -7 +215 -216 imp:n=1 u=15 $ Assembly 05 - Axial Zone 16 517 517 -9.869 -7 +216 -217 imp:n=1 u=15 $ Assembly 05 - Axial Zone 17 518 518 -9.946 -7 +217 imp:n=1 u=15 $ Assembly 05 - Axial Zone 18
Calc Package No.: VSC-03.3606 Page 153 of 191 Revision 0 521 3 -1.00 +7 -8 imp:n=1 u=15 522 2 -6.56 +8 -15 imp:n=1 u=15 523 3 -1.00 +15 imp:n=1 u=15 c Assy 6 601 601 -9.893 -7 -201 imp:n=1 u=16 $ Assembly 06 - Axial Zone 1 602 602 -9.810 -7 +201 -202 imp:n=1 u=16 $ Assembly 06 - Axial Zone 2 603 603 -9.785 -7 +202 -203 imp:n=1 u=16 $ Assembly 06 - Axial Zone 3 604 604 -9.776 -7 +203 -204 imp:n=1 u=16 $ Assembly 06 - Axial Zone 4 605 605 -9.777 -7 +204 -205 imp:n=1 u=16 $ Assembly 06 - Axial Zone 5 606 606 -9.777 -7 +205 -206 imp:n=1 u=16 $ Assembly 06 - Axial Zone 6 607 607 -9.777 -7 +206 -207 imp:n=1 u=16 $ Assembly 06 - Axial Zone 7 608 608 -9.778 -7 +207 -208 imp:n=1 u=16 $ Assembly 06 - Axial Zone 8 609 609 -9.779 -7 +208 -209 imp:n=1 u=16 $ Assembly 06 - Axial Zone 9 610 610 -9.779 -7 +209 -210 imp:n=1 u=16 $ Assembly 06 - Axial Zone 10 611 611 -9.780 -7 +210 -211 imp:n=1 u=16 $ Assembly 06 - Axial Zone 11 612 612 -9.780 -7 +211 -212 imp:n=1 u=16 $ Assembly 06 - Axial Zone 12 613 613 -9.781 -7 +212 -213 imp:n=1 u=16 $ Assembly 06 - Axial Zone 13 614 614 -9.781 -7 +213 -214 imp:n=1 u=16 $ Assembly 06 - Axial Zone 14 615 615 -9.790 -7 +214 -215 imp:n=1 u=16 $ Assembly 06 - Axial Zone 15 616 616 -9.807 -7 +215 -216 imp:n=1 u=16 $ Assembly 06 - Axial Zone 16 617 617 -9.869 -7 +216 -217 imp:n=1 u=16 $ Assembly 06 - Axial Zone 17 618 618 -9.946 -7 +217 imp:n=1 u=16 $ Assembly 06 - Axial Zone 18 621 3 -1.00 +7 -8 imp:n=1 u=16 622 2 -6.56 +8 -15 imp:n=1 u=16 623 3 -1.00 +15 imp:n=1 u=16 c Assy 7 701 701 -9.893 -7 -201 imp:n=1 u=17 $ Assembly 07 - Axial Zone 1 702 702 -9.810 -7 +201 -202 imp:n=1 u=17 $ Assembly 07 - Axial Zone 2 703 703 -9.785 -7 +202 -203 imp:n=1 u=17 $ Assembly 07 - Axial Zone 3 704 704 -9.776 -7 +203 -204 imp:n=1 u=17 $ Assembly 07 - Axial Zone 4 705 705 -9.777 -7 +204 -205 imp:n=1 u=17 $ Assembly 07 - Axial Zone 5 706 706 -9.777 -7 +205 -206 imp:n=1 u=17 $ Assembly 07 - Axial Zone 6 707 707 -9.778 -7 +206 -207 imp:n=1 u=17 $ Assembly 07 - Axial Zone 7 708 708 -9.778 -7 +207 -208 imp:n=1 u=17 $ Assembly 07 - Axial Zone 8 709 709 -9.779 -7 +208 -209 imp:n=1 u=17 $ Assembly 07 - Axial Zone 9 710 710 -9.779 -7 +209 -210 imp:n=1 u=17 $ Assembly 07 - Axial Zone 10 711 711 -9.780 -7 +210 -211 imp:n=1 u=17 $ Assembly 07 - Axial Zone 11 712 712 -9.780 -7 +211 -212 imp:n=1 u=17 $ Assembly 07 - Axial Zone 12 713 713 -9.781 -7 +212 -213 imp:n=1 u=17 $ Assembly 07 - Axial Zone 13 714 714 -9.781 -7 +213 -214 imp:n=1 u=17 $ Assembly 07 - Axial Zone 14 715 715 -9.790 -7 +214 -215 imp:n=1 u=17 $ Assembly 07 - Axial Zone 15 716 716 -9.807 -7 +215 -216 imp:n=1 u=17 $ Assembly 07 - Axial Zone 16 717 717 -9.869 -7 +216 -217 imp:n=1 u=17 $ Assembly 07 - Axial Zone 17 718 718 -9.946 -7 +217 imp:n=1 u=17 $ Assembly 07 - Axial Zone 18 721 3 -1.00 +7 -8 imp:n=1 u=17 722 2 -6.56 +8 -15 imp:n=1 u=17 723 3 -1.00 +15 imp:n=1 u=17 c Assy 8 801 801 -9.893 -7 -201 imp:n=1 u=18 $ Assembly 08 - Axial Zone 1 802 802 -9.810 -7 +201 -202 imp:n=1 u=18 $ Assembly 08 - Axial Zone 2 803 803 -9.785 -7 +202 -203 imp:n=1 u=18 $ Assembly 08 - Axial Zone 3 804 804 -9.776 -7 +203 -204 imp:n=1 u=18 $ Assembly 08 - Axial Zone 4 805 805 -9.777 -7 +204 -205 imp:n=1 u=18 $ Assembly 08 - Axial Zone 5 806 806 -9.777 -7 +205 -206 imp:n=1 u=18 $ Assembly 08 - Axial Zone 6 807 807 -9.777 -7 +206 -207 imp:n=1 u=18 $ Assembly 08 - Axial Zone 7 808 808 -9.778 -7 +207 -208 imp:n=1 u=18 $ Assembly 08 - Axial Zone 8 809 809 -9.779 -7 +208 -209 imp:n=1 u=18 $ Assembly 08 - Axial Zone 9
Calc Package No.: VSC-03.3606 Page 154 of 191 Revision 0 810 810 -9.779 -7 +209 -210 imp:n=1 u=18 $ Assembly 08 - Axial Zone 10 811 811 -9.780 -7 +210 -211 imp:n=1 u=18 $ Assembly 08 - Axial Zone 11 812 812 -9.780 -7 +211 -212 imp:n=1 u=18 $ Assembly 08 - Axial Zone 12 813 813 -9.781 -7 +212 -213 imp:n=1 u=18 $ Assembly 08 - Axial Zone 13 814 814 -9.781 -7 +213 -214 imp:n=1 u=18 $ Assembly 08 - Axial Zone 14 815 815 -9.790 -7 +214 -215 imp:n=1 u=18 $ Assembly 08 - Axial Zone 15 816 816 -9.807 -7 +215 -216 imp:n=1 u=18 $ Assembly 08 - Axial Zone 16 817 817 -9.869 -7 +216 -217 imp:n=1 u=18 $ Assembly 08 - Axial Zone 17 818 818 -9.946 -7 +217 imp:n=1 u=18 $ Assembly 08 - Axial Zone 18 821 3 -1.00 +7 -8 imp:n=1 u=18 822 2 -6.56 +8 -15 imp:n=1 u=18 823 3 -1.00 +15 imp:n=1 u=18 c Assy 9 901 901 -9.992 -7 -201 imp:n=1 u=19 $ Assembly 09 - Axial Zone 1 902 902 -9.906 -7 +201 -202 imp:n=1 u=19 $ Assembly 09 - Axial Zone 2 903 903 -9.880 -7 +202 -203 imp:n=1 u=19 $ Assembly 09 - Axial Zone 3 904 904 -9.871 -7 +203 -204 imp:n=1 u=19 $ Assembly 09 - Axial Zone 4 905 905 -9.871 -7 +204 -205 imp:n=1 u=19 $ Assembly 09 - Axial Zone 5 906 906 -9.872 -7 +205 -206 imp:n=1 u=19 $ Assembly 09 - Axial Zone 6 907 907 -9.872 -7 +206 -207 imp:n=1 u=19 $ Assembly 09 - Axial Zone 7 908 908 -9.872 -7 +207 -208 imp:n=1 u=19 $ Assembly 09 - Axial Zone 8 909 909 -9.873 -7 +208 -209 imp:n=1 u=19 $ Assembly 09 - Axial Zone 9 910 910 -9.873 -7 +209 -210 imp:n=1 u=19 $ Assembly 09 - Axial Zone 10 911 911 -9.874 -7 +210 -211 imp:n=1 u=19 $ Assembly 09 - Axial Zone 11 912 912 -9.875 -7 +211 -212 imp:n=1 u=19 $ Assembly 09 - Axial Zone 12 913 913 -9.875 -7 +212 -213 imp:n=1 u=19 $ Assembly 09 - Axial Zone 13 914 914 -9.875 -7 +213 -214 imp:n=1 u=19 $ Assembly 09 - Axial Zone 14 915 915 -9.884 -7 +214 -215 imp:n=1 u=19 $ Assembly 09 - Axial Zone 15 916 916 -9.911 -7 +215 -216 imp:n=1 u=19 $ Assembly 09 - Axial Zone 16 917 917 -9.967 -7 +216 -217 imp:n=1 u=19 $ Assembly 09 - Axial Zone 17 918 918 -10.037 -7 +217 imp:n=1 u=19 $ Assembly 09 - Axial Zone 18 921 3 -1.00 +7 -8 imp:n=1 u=19 922 2 -6.56 +8 -15 imp:n=1 u=19 923 3 -1.00 +15 imp:n=1 u=19 c Assy 10 1001 1001 -9.893 -7 -201 imp:n=1 u=20 $ Assembly 10 - Axial Zone 1 1002 1002 -9.810 -7 +201 -202 imp:n=1 u=20 $ Assembly 10 - Axial Zone 2 1003 1003 -9.785 -7 +202 -203 imp:n=1 u=20 $ Assembly 10 - Axial Zone 3 1004 1004 -9.776 -7 +203 -204 imp:n=1 u=20 $ Assembly 10 - Axial Zone 4 1005 1005 -9.777 -7 +204 -205 imp:n=1 u=20 $ Assembly 10 - Axial Zone 5 1006 1006 -9.777 -7 +205 -206 imp:n=1 u=20 $ Assembly 10 - Axial Zone 6 1007 1007 -9.777 -7 +206 -207 imp:n=1 u=20 $ Assembly 10 - Axial Zone 7 1008 1008 -9.778 -7 +207 -208 imp:n=1 u=20 $ Assembly 10 - Axial Zone 8 1009 1009 -9.779 -7 +208 -209 imp:n=1 u=20 $ Assembly 10 - Axial Zone 9 1010 1010 -9.779 -7 +209 -210 imp:n=1 u=20 $ Assembly 10 - Axial Zone 10 1011 1011 -9.780 -7 +210 -211 imp:n=1 u=20 $ Assembly 10 - Axial Zone 11 1012 1012 -9.780 -7 +211 -212 imp:n=1 u=20 $ Assembly 10 - Axial Zone 12 1013 1013 -9.781 -7 +212 -213 imp:n=1 u=20 $ Assembly 10 - Axial Zone 13 1014 1014 -9.781 -7 +213 -214 imp:n=1 u=20 $ Assembly 10 - Axial Zone 14 1015 1015 -9.790 -7 +214 -215 imp:n=1 u=20 $ Assembly 10 - Axial Zone 15 1016 1016 -9.807 -7 +215 -216 imp:n=1 u=20 $ Assembly 10 - Axial Zone 16 1017 1017 -9.869 -7 +216 -217 imp:n=1 u=20 $ Assembly 10 - Axial Zone 17 1018 1018 -9.946 -7 +217 imp:n=1 u=20 $ Assembly 10 - Axial Zone 18 1021 3 -1.00 +7 -8 imp:n=1 u=20 1022 2 -6.56 +8 -15 imp:n=1 u=20 1023 3 -1.00 +15 imp:n=1 u=20 c Assy 11
Calc Package No.: VSC-03.3606 Page 155 of 191 Revision 0 1101 1101 -9.989 -7 -201 imp:n=1 u=21 $ Assembly 11 - Axial Zone 1 1102 1102 -9.903 -7 +201 -202 imp:n=1 u=21 $ Assembly 11 - Axial Zone 2 1103 1103 -9.877 -7 +202 -203 imp:n=1 u=21 $ Assembly 11 - Axial Zone 3 1104 1104 -9.868 -7 +203 -204 imp:n=1 u=21 $ Assembly 11 - Axial Zone 4 1105 1105 -9.868 -7 +204 -205 imp:n=1 u=21 $ Assembly 11 - Axial Zone 5 1106 1106 -9.869 -7 +205 -206 imp:n=1 u=21 $ Assembly 11 - Axial Zone 6 1107 1107 -9.869 -7 +206 -207 imp:n=1 u=21 $ Assembly 11 - Axial Zone 7 1108 1108 -9.869 -7 +207 -208 imp:n=1 u=21 $ Assembly 11 - Axial Zone 8 1109 1109 -9.870 -7 +208 -209 imp:n=1 u=21 $ Assembly 11 - Axial Zone 9 1110 1110 -9.871 -7 +209 -210 imp:n=1 u=21 $ Assembly 11 - Axial Zone 10 1111 1111 -9.871 -7 +210 -211 imp:n=1 u=21 $ Assembly 11 - Axial Zone 11 1112 1112 -9.872 -7 +211 -212 imp:n=1 u=21 $ Assembly 11 - Axial Zone 12 1113 1113 -9.872 -7 +212 -213 imp:n=1 u=21 $ Assembly 11 - Axial Zone 13 1114 1114 -9.872 -7 +213 -214 imp:n=1 u=21 $ Assembly 11 - Axial Zone 14 1115 1115 -9.882 -7 +214 -215 imp:n=1 u=21 $ Assembly 11 - Axial Zone 15 1116 1116 -9.908 -7 +215 -216 imp:n=1 u=21 $ Assembly 11 - Axial Zone 16 1117 1117 -9.964 -7 +216 -217 imp:n=1 u=21 $ Assembly 11 - Axial Zone 17 1118 1118 -10.034 -7 +217 imp:n=1 u=21 $ Assembly 11 - Axial Zone 18 1121 3 -1.00 +7 -8 imp:n=1 u=21 1122 2 -6.56 +8 -15 imp:n=1 u=21 1123 3 -1.00 +15 imp:n=1 u=21 c Assy 12 1201 1201 -9.991 -7 -201 imp:n=1 u=22 $ Assembly 12 - Axial Zone 1 1202 1202 -9.913 -7 +201 -202 imp:n=1 u=22 $ Assembly 12 - Axial Zone 2 1203 1203 -9.886 -7 +202 -203 imp:n=1 u=22 $ Assembly 12 - Axial Zone 3 1204 1204 -9.878 -7 +203 -204 imp:n=1 u=22 $ Assembly 12 - Axial Zone 4 1205 1205 -9.878 -7 +204 -205 imp:n=1 u=22 $ Assembly 12 - Axial Zone 5 1206 1206 -9.878 -7 +205 -206 imp:n=1 u=22 $ Assembly 12 - Axial Zone 6 1207 1207 -9.879 -7 +206 -207 imp:n=1 u=22 $ Assembly 12 - Axial Zone 7 1208 1208 -9.879 -7 +207 -208 imp:n=1 u=22 $ Assembly 12 - Axial Zone 8 1209 1209 -9.880 -7 +208 -209 imp:n=1 u=22 $ Assembly 12 - Axial Zone 9 1210 1210 -9.880 -7 +209 -210 imp:n=1 u=22 $ Assembly 12 - Axial Zone 10 1211 1211 -9.881 -7 +210 -211 imp:n=1 u=22 $ Assembly 12 - Axial Zone 11 1212 1212 -9.881 -7 +211 -212 imp:n=1 u=22 $ Assembly 12 - Axial Zone 12 1213 1213 -9.882 -7 +212 -213 imp:n=1 u=22 $ Assembly 12 - Axial Zone 13 1214 1214 -9.882 -7 +213 -214 imp:n=1 u=22 $ Assembly 12 - Axial Zone 14 1215 1215 -9.891 -7 +214 -215 imp:n=1 u=22 $ Assembly 12 - Axial Zone 15 1216 1216 -9.910 -7 +215 -216 imp:n=1 u=22 $ Assembly 12 - Axial Zone 16 1217 1217 -9.966 -7 +216 -217 imp:n=1 u=22 $ Assembly 12 - Axial Zone 17 1218 1218 -10.036 -7 +217 imp:n=1 u=22 $ Assembly 12 - Axial Zone 18 1221 3 -1.00 +7 -8 imp:n=1 u=22 1222 2 -6.56 +8 -15 imp:n=1 u=22 1223 3 -1.00 +15 imp:n=1 u=22 c Assy 13 1301 1301 -9.997 -7 -201 imp:n=1 u=23 $ Assembly 13 - Axial Zone 1 1302 1302 -9.920 -7 +201 -202 imp:n=1 u=23 $ Assembly 13 - Axial Zone 2 1303 1303 -9.901 -7 +202 -203 imp:n=1 u=23 $ Assembly 13 - Axial Zone 3 1304 1304 -9.893 -7 +203 -204 imp:n=1 u=23 $ Assembly 13 - Axial Zone 4 1305 1305 -9.893 -7 +204 -205 imp:n=1 u=23 $ Assembly 13 - Axial Zone 5 1306 1306 -9.893 -7 +205 -206 imp:n=1 u=23 $ Assembly 13 - Axial Zone 6 1307 1307 -9.894 -7 +206 -207 imp:n=1 u=23 $ Assembly 13 - Axial Zone 7 1308 1308 -9.894 -7 +207 -208 imp:n=1 u=23 $ Assembly 13 - Axial Zone 8 1309 1309 -9.895 -7 +208 -209 imp:n=1 u=23 $ Assembly 13 - Axial Zone 9 1310 1310 -9.895 -7 +209 -210 imp:n=1 u=23 $ Assembly 13 - Axial Zone 10 1311 1311 -9.896 -7 +210 -211 imp:n=1 u=23 $ Assembly 13 - Axial Zone 11 1312 1312 -9.896 -7 +211 -212 imp:n=1 u=23 $ Assembly 13 - Axial Zone 12 1313 1313 -9.897 -7 +212 -213 imp:n=1 u=23 $ Assembly 13 - Axial Zone 13 1314 1314 -9.897 -7 +213 -214 imp:n=1 u=23 $ Assembly 13 - Axial Zone 14
Calc Package No.: VSC-03.3606 Page 156 of 191 Revision 0 1315 1315 -9.906 -7 +214 -215 imp:n=1 u=23 $ Assembly 13 - Axial Zone 15 1316 1316 -9.925 -7 +215 -216 imp:n=1 u=23 $ Assembly 13 - Axial Zone 16 1317 1317 -9.981 -7 +216 -217 imp:n=1 u=23 $ Assembly 13 - Axial Zone 17 1318 1318 -10.043 -7 +217 imp:n=1 u=23 $ Assembly 13 - Axial Zone 18 1321 3 -1.00 +7 -8 imp:n=1 u=23 1322 2 -6.56 +8 -15 imp:n=1 u=23 1323 3 -1.00 +15 imp:n=1 u=23 c Assy 14 1401 1401 -9.981 -7 -201 imp:n=1 u=24 $ Assembly 14 - Axial Zone 1 1402 1402 -9.904 -7 +201 -202 imp:n=1 u=24 $ Assembly 14 - Axial Zone 2 1403 1403 -9.878 -7 +202 -203 imp:n=1 u=24 $ Assembly 14 - Axial Zone 3 1404 1404 -9.869 -7 +203 -204 imp:n=1 u=24 $ Assembly 14 - Axial Zone 4 1405 1405 -9.869 -7 +204 -205 imp:n=1 u=24 $ Assembly 14 - Axial Zone 5 1406 1406 -9.869 -7 +205 -206 imp:n=1 u=24 $ Assembly 14 - Axial Zone 6 1407 1407 -9.870 -7 +206 -207 imp:n=1 u=24 $ Assembly 14 - Axial Zone 7 1408 1408 -9.870 -7 +207 -208 imp:n=1 u=24 $ Assembly 14 - Axial Zone 8 1409 1409 -9.871 -7 +208 -209 imp:n=1 u=24 $ Assembly 14 - Axial Zone 9 1410 1410 -9.871 -7 +209 -210 imp:n=1 u=24 $ Assembly 14 - Axial Zone 10 1411 1411 -9.872 -7 +210 -211 imp:n=1 u=24 $ Assembly 14 - Axial Zone 11 1412 1412 -9.872 -7 +211 -212 imp:n=1 u=24 $ Assembly 14 - Axial Zone 12 1413 1413 -9.873 -7 +212 -213 imp:n=1 u=24 $ Assembly 14 - Axial Zone 13 1414 1414 -9.873 -7 +213 -214 imp:n=1 u=24 $ Assembly 14 - Axial Zone 14 1415 1415 -9.883 -7 +214 -215 imp:n=1 u=24 $ Assembly 14 - Axial Zone 15 1416 1416 -9.901 -7 +215 -216 imp:n=1 u=24 $ Assembly 14 - Axial Zone 16 1417 1417 -9.966 -7 +216 -217 imp:n=1 u=24 $ Assembly 14 - Axial Zone 17 1418 1418 -10.027 -7 +217 imp:n=1 u=24 $ Assembly 14 - Axial Zone 18 1421 3 -1.00 +7 -8 imp:n=1 u=24 1422 2 -6.56 +8 -15 imp:n=1 u=24 1423 3 -1.00 +15 imp:n=1 u=24 c Assy 15 1501 1501 -9.994 -7 -201 imp:n=1 u=25 $ Assembly 15 - Axial Zone 1 1502 1502 -9.917 -7 +201 -202 imp:n=1 u=25 $ Assembly 15 - Axial Zone 2 1503 1503 -9.890 -7 +202 -203 imp:n=1 u=25 $ Assembly 15 - Axial Zone 3 1504 1504 -9.882 -7 +203 -204 imp:n=1 u=25 $ Assembly 15 - Axial Zone 4 1505 1505 -9.882 -7 +204 -205 imp:n=1 u=25 $ Assembly 15 - Axial Zone 5 1506 1506 -9.882 -7 +205 -206 imp:n=1 u=25 $ Assembly 15 - Axial Zone 6 1507 1507 -9.883 -7 +206 -207 imp:n=1 u=25 $ Assembly 15 - Axial Zone 7 1508 1508 -9.883 -7 +207 -208 imp:n=1 u=25 $ Assembly 15 - Axial Zone 8 1509 1509 -9.884 -7 +208 -209 imp:n=1 u=25 $ Assembly 15 - Axial Zone 9 1510 1510 -9.884 -7 +209 -210 imp:n=1 u=25 $ Assembly 15 - Axial Zone 10 1511 1511 -9.885 -7 +210 -211 imp:n=1 u=25 $ Assembly 15 - Axial Zone 11 1512 1512 -9.885 -7 +211 -212 imp:n=1 u=25 $ Assembly 15 - Axial Zone 12 1513 1513 -9.886 -7 +212 -213 imp:n=1 u=25 $ Assembly 15 - Axial Zone 13 1514 1514 -9.886 -7 +213 -214 imp:n=1 u=25 $ Assembly 15 - Axial Zone 14 1515 1515 -9.895 -7 +214 -215 imp:n=1 u=25 $ Assembly 15 - Axial Zone 15 1516 1516 -9.913 -7 +215 -216 imp:n=1 u=25 $ Assembly 15 - Axial Zone 16 1517 1517 -9.978 -7 +216 -217 imp:n=1 u=25 $ Assembly 15 - Axial Zone 17 1518 1518 -10.040 -7 +217 imp:n=1 u=25 $ Assembly 15 - Axial Zone 18 1521 3 -1.00 +7 -8 imp:n=1 u=25 1522 2 -6.56 +8 -15 imp:n=1 u=25 1523 3 -1.00 +15 imp:n=1 u=25 c Assy 16 1601 1601 -9.997 -7 -201 imp:n=1 u=26 $ Assembly 16 - Axial Zone 1 1602 1602 -9.920 -7 +201 -202 imp:n=1 u=26 $ Assembly 16 - Axial Zone 2 1603 1603 -9.901 -7 +202 -203 imp:n=1 u=26 $ Assembly 16 - Axial Zone 3 1604 1604 -9.893 -7 +203 -204 imp:n=1 u=26 $ Assembly 16 - Axial Zone 4 1605 1605 -9.893 -7 +204 -205 imp:n=1 u=26 $ Assembly 16 - Axial Zone 5 1606 1606 -9.893 -7 +205 -206 imp:n=1 u=26 $ Assembly 16 - Axial Zone 6
Calc Package No.: VSC-03.3606 Page 157 of 191 Revision 0 1607 1607 -9.894 -7 +206 -207 imp:n=1 u=26 $ Assembly 16 - Axial Zone 7 1608 1608 -9.894 -7 +207 -208 imp:n=1 u=26 $ Assembly 16 - Axial Zone 8 1609 1609 -9.895 -7 +208 -209 imp:n=1 u=26 $ Assembly 16 - Axial Zone 9 1610 1610 -9.895 -7 +209 -210 imp:n=1 u=26 $ Assembly 16 - Axial Zone 10 1611 1611 -9.896 -7 +210 -211 imp:n=1 u=26 $ Assembly 16 - Axial Zone 11 1612 1612 -9.896 -7 +211 -212 imp:n=1 u=26 $ Assembly 16 - Axial Zone 12 1613 1613 -9.897 -7 +212 -213 imp:n=1 u=26 $ Assembly 16 - Axial Zone 13 1614 1614 -9.897 -7 +213 -214 imp:n=1 u=26 $ Assembly 16 - Axial Zone 14 1615 1615 -9.906 -7 +214 -215 imp:n=1 u=26 $ Assembly 16 - Axial Zone 15 1616 1616 -9.925 -7 +215 -216 imp:n=1 u=26 $ Assembly 16 - Axial Zone 16 1617 1617 -9.981 -7 +216 -217 imp:n=1 u=26 $ Assembly 16 - Axial Zone 17 1618 1618 -10.043 -7 +217 imp:n=1 u=26 $ Assembly 16 - Axial Zone 18 1621 3 -1.00 +7 -8 imp:n=1 u=26 1622 2 -6.56 +8 -15 imp:n=1 u=26 1623 3 -1.00 +15 imp:n=1 u=26 c Assy 17 1701 1701 -9.940 -7 -201 imp:n=1 u=27 $ Assembly 17 - Axial Zone 1 1702 1702 -9.863 -7 +201 -202 imp:n=1 u=27 $ Assembly 17 - Axial Zone 2 1703 1703 -9.836 -7 +202 -203 imp:n=1 u=27 $ Assembly 17 - Axial Zone 3 1704 1704 -9.828 -7 +203 -204 imp:n=1 u=27 $ Assembly 17 - Axial Zone 4 1705 1705 -9.828 -7 +204 -205 imp:n=1 u=27 $ Assembly 17 - Axial Zone 5 1706 1706 -9.828 -7 +205 -206 imp:n=1 u=27 $ Assembly 17 - Axial Zone 6 1707 1707 -9.829 -7 +206 -207 imp:n=1 u=27 $ Assembly 17 - Axial Zone 7 1708 1708 -9.829 -7 +207 -208 imp:n=1 u=27 $ Assembly 17 - Axial Zone 8 1709 1709 -9.830 -7 +208 -209 imp:n=1 u=27 $ Assembly 17 - Axial Zone 9 1710 1710 -9.830 -7 +209 -210 imp:n=1 u=27 $ Assembly 17 - Axial Zone 10 1711 1711 -9.831 -7 +210 -211 imp:n=1 u=27 $ Assembly 17 - Axial Zone 11 1712 1712 -9.831 -7 +211 -212 imp:n=1 u=27 $ Assembly 17 - Axial Zone 12 1713 1713 -9.832 -7 +212 -213 imp:n=1 u=27 $ Assembly 17 - Axial Zone 13 1714 1714 -9.832 -7 +213 -214 imp:n=1 u=27 $ Assembly 17 - Axial Zone 14 1715 1715 -9.841 -7 +214 -215 imp:n=1 u=27 $ Assembly 17 - Axial Zone 15 1716 1716 -9.868 -7 +215 -216 imp:n=1 u=27 $ Assembly 17 - Axial Zone 16 1717 1717 -9.924 -7 +216 -217 imp:n=1 u=27 $ Assembly 17 - Axial Zone 17 1718 1718 -9.994 -7 +217 imp:n=1 u=27 $ Assembly 17 - Axial Zone 18 1721 3 -1.00 +7 -8 imp:n=1 u=27 1722 2 -6.56 +8 -15 imp:n=1 u=27 1723 3 -1.00 +15 imp:n=1 u=27 c Assy 18 1801 1801 -9.960 -7 -201 imp:n=1 u=28 $ Assembly 18 - Axial Zone 1 1802 1802 -9.875 -7 +201 -202 imp:n=1 u=28 $ Assembly 18 - Axial Zone 2 1803 1803 -9.849 -7 +202 -203 imp:n=1 u=28 $ Assembly 18 - Axial Zone 3 1804 1804 -9.840 -7 +203 -204 imp:n=1 u=28 $ Assembly 18 - Axial Zone 4 1805 1805 -9.832 -7 +204 -205 imp:n=1 u=28 $ Assembly 18 - Axial Zone 5 1806 1806 -9.832 -7 +205 -206 imp:n=1 u=28 $ Assembly 18 - Axial Zone 6 1807 1807 -9.841 -7 +206 -207 imp:n=1 u=28 $ Assembly 18 - Axial Zone 7 1808 1808 -9.842 -7 +207 -208 imp:n=1 u=28 $ Assembly 18 - Axial Zone 8 1809 1809 -9.842 -7 +208 -209 imp:n=1 u=28 $ Assembly 18 - Axial Zone 9 1810 1810 -9.843 -7 +209 -210 imp:n=1 u=28 $ Assembly 18 - Axial Zone 10 1811 1811 -9.844 -7 +210 -211 imp:n=1 u=28 $ Assembly 18 - Axial Zone 11 1812 1812 -9.835 -7 +211 -212 imp:n=1 u=28 $ Assembly 18 - Axial Zone 12 1813 1813 -9.836 -7 +212 -213 imp:n=1 u=28 $ Assembly 18 - Axial Zone 13 1814 1814 -9.845 -7 +213 -214 imp:n=1 u=28 $ Assembly 18 - Axial Zone 14 1815 1815 -9.845 -7 +214 -215 imp:n=1 u=28 $ Assembly 18 - Axial Zone 15 1816 1816 -9.872 -7 +215 -216 imp:n=1 u=28 $ Assembly 18 - Axial Zone 16 1817 1817 -9.936 -7 +216 -217 imp:n=1 u=28 $ Assembly 18 - Axial Zone 17 1818 1818 -10.005 -7 +217 imp:n=1 u=28 $ Assembly 18 - Axial Zone 18 1821 3 -1.00 +7 -8 imp:n=1 u=28 1822 2 -6.56 +8 -15 imp:n=1 u=28
Calc Package No.: VSC-03.3606 Page 158 of 191 Revision 0 1823 3 -1.00 +15 imp:n=1 u=28 c Assy 19 1901 1901 -9.976 -7 -201 imp:n=1 u=29 $ Assembly 19 - Axial Zone 1 1902 1902 -9.899 -7 +201 -202 imp:n=1 u=29 $ Assembly 19 - Axial Zone 2 1903 1903 -9.873 -7 +202 -203 imp:n=1 u=29 $ Assembly 19 - Axial Zone 3 1904 1904 -9.864 -7 +203 -204 imp:n=1 u=29 $ Assembly 19 - Axial Zone 4 1905 1905 -9.864 -7 +204 -205 imp:n=1 u=29 $ Assembly 19 - Axial Zone 5 1906 1906 -9.865 -7 +205 -206 imp:n=1 u=29 $ Assembly 19 - Axial Zone 6 1907 1907 -9.865 -7 +206 -207 imp:n=1 u=29 $ Assembly 19 - Axial Zone 7 1908 1908 -9.865 -7 +207 -208 imp:n=1 u=29 $ Assembly 19 - Axial Zone 8 1909 1909 -9.866 -7 +208 -209 imp:n=1 u=29 $ Assembly 19 - Axial Zone 9 1910 1910 -9.866 -7 +209 -210 imp:n=1 u=29 $ Assembly 19 - Axial Zone 10 1911 1911 -9.867 -7 +210 -211 imp:n=1 u=29 $ Assembly 19 - Axial Zone 11 1912 1912 -9.867 -7 +211 -212 imp:n=1 u=29 $ Assembly 19 - Axial Zone 12 1913 1913 -9.868 -7 +212 -213 imp:n=1 u=29 $ Assembly 19 - Axial Zone 13 1914 1914 -9.868 -7 +213 -214 imp:n=1 u=29 $ Assembly 19 - Axial Zone 14 1915 1915 -9.878 -7 +214 -215 imp:n=1 u=29 $ Assembly 19 - Axial Zone 15 1916 1916 -9.905 -7 +215 -216 imp:n=1 u=29 $ Assembly 19 - Axial Zone 16 1917 1917 -9.961 -7 +216 -217 imp:n=1 u=29 $ Assembly 19 - Axial Zone 17 1918 1918 -10.031 -7 +217 imp:n=1 u=29 $ Assembly 19 - Axial Zone 18 1921 3 -1.00 +7 -8 imp:n=1 u=29 1922 2 -6.56 +8 -15 imp:n=1 u=29 1923 3 -1.00 +15 imp:n=1 u=29 c Assy 20 2001 2001 -9.944 -7 -201 imp:n=1 u=30 $ Assembly 20 - Axial Zone 1 2002 2002 -9.868 -7 +201 -202 imp:n=1 u=30 $ Assembly 20 - Axial Zone 2 2003 2003 -9.849 -7 +202 -203 imp:n=1 u=30 $ Assembly 20 - Axial Zone 3 2004 2004 -9.841 -7 +203 -204 imp:n=1 u=30 $ Assembly 20 - Axial Zone 4 2005 2005 -9.841 -7 +204 -205 imp:n=1 u=30 $ Assembly 20 - Axial Zone 5 2006 2006 -9.841 -7 +205 -206 imp:n=1 u=30 $ Assembly 20 - Axial Zone 6 2007 2007 -9.842 -7 +206 -207 imp:n=1 u=30 $ Assembly 20 - Axial Zone 7 2008 2008 -9.842 -7 +207 -208 imp:n=1 u=30 $ Assembly 20 - Axial Zone 8 2009 2009 -9.843 -7 +208 -209 imp:n=1 u=30 $ Assembly 20 - Axial Zone 9 2010 2010 -9.843 -7 +209 -210 imp:n=1 u=30 $ Assembly 20 - Axial Zone 10 2011 2011 -9.844 -7 +210 -211 imp:n=1 u=30 $ Assembly 20 - Axial Zone 11 2012 2012 -9.844 -7 +211 -212 imp:n=1 u=30 $ Assembly 20 - Axial Zone 12 2013 2013 -9.845 -7 +212 -213 imp:n=1 u=30 $ Assembly 20 - Axial Zone 13 2014 2014 -9.845 -7 +213 -214 imp:n=1 u=30 $ Assembly 20 - Axial Zone 14 2015 2015 -9.845 -7 +214 -215 imp:n=1 u=30 $ Assembly 20 - Axial Zone 15 2016 2016 -9.873 -7 +215 -216 imp:n=1 u=30 $ Assembly 20 - Axial Zone 16 2017 2017 -9.929 -7 +216 -217 imp:n=1 u=30 $ Assembly 20 - Axial Zone 17 2018 2018 -9.990 -7 +217 imp:n=1 u=30 $ Assembly 20 - Axial Zone 18 2021 3 -1.00 +7 -8 imp:n=1 u=30 2022 2 -6.56 +8 -15 imp:n=1 u=30 2023 3 -1.00 +15 imp:n=1 u=30 c Assy 21 2101 2101 -9.979 -7 -201 imp:n=1 u=31 $ Assembly 21 - Axial Zone 1 2102 2102 -9.902 -7 +201 -202 imp:n=1 u=31 $ Assembly 21 - Axial Zone 2 2103 2103 -9.875 -7 +202 -203 imp:n=1 u=31 $ Assembly 21 - Axial Zone 3 2104 2104 -9.867 -7 +203 -204 imp:n=1 u=31 $ Assembly 21 - Axial Zone 4 2105 2105 -9.867 -7 +204 -205 imp:n=1 u=31 $ Assembly 21 - Axial Zone 5 2106 2106 -9.868 -7 +205 -206 imp:n=1 u=31 $ Assembly 21 - Axial Zone 6 2107 2107 -9.868 -7 +206 -207 imp:n=1 u=31 $ Assembly 21 - Axial Zone 7 2108 2108 -9.868 -7 +207 -208 imp:n=1 u=31 $ Assembly 21 - Axial Zone 8 2109 2109 -9.878 -7 +208 -209 imp:n=1 u=31 $ Assembly 21 - Axial Zone 9 2110 2110 -9.869 -7 +209 -210 imp:n=1 u=31 $ Assembly 21 - Axial Zone 10 2111 2111 -9.870 -7 +210 -211 imp:n=1 u=31 $ Assembly 21 - Axial Zone 11 2112 2112 -9.870 -7 +211 -212 imp:n=1 u=31 $ Assembly 21 - Axial Zone 12
Calc Package No.: VSC-03.3606 Page 159 of 191 Revision 0 2113 2113 -9.871 -7 +212 -213 imp:n=1 u=31 $ Assembly 21 - Axial Zone 13 2114 2114 -9.871 -7 +213 -214 imp:n=1 u=31 $ Assembly 21 - Axial Zone 14 2115 2115 -9.881 -7 +214 -215 imp:n=1 u=31 $ Assembly 21 - Axial Zone 15 2116 2116 -9.907 -7 +215 -216 imp:n=1 u=31 $ Assembly 21 - Axial Zone 16 2117 2117 -9.964 -7 +216 -217 imp:n=1 u=31 $ Assembly 21 - Axial Zone 17 2118 2118 -10.034 -7 +217 imp:n=1 u=31 $ Assembly 21 - Axial Zone 18 2121 3 -1.00 +7 -8 imp:n=1 u=31 2122 2 -6.56 +8 -15 imp:n=1 u=31 2123 3 -1.00 +15 imp:n=1 u=31 c Assy 22 2201 2201 -9.984 -7 -201 imp:n=1 u=32 $ Assembly 22 - Axial Zone 1 2202 2202 -9.907 -7 +201 -202 imp:n=1 u=32 $ Assembly 22 - Axial Zone 2 2203 2203 -9.880 -7 +202 -203 imp:n=1 u=32 $ Assembly 22 - Axial Zone 3 2204 2204 -9.872 -7 +203 -204 imp:n=1 u=32 $ Assembly 22 - Axial Zone 4 2205 2205 -9.872 -7 +204 -205 imp:n=1 u=32 $ Assembly 22 - Axial Zone 5 2206 2206 -9.872 -7 +205 -206 imp:n=1 u=32 $ Assembly 22 - Axial Zone 6 2207 2207 -9.873 -7 +206 -207 imp:n=1 u=32 $ Assembly 22 - Axial Zone 7 2208 2208 -9.873 -7 +207 -208 imp:n=1 u=32 $ Assembly 22 - Axial Zone 8 2209 2209 -9.874 -7 +208 -209 imp:n=1 u=32 $ Assembly 22 - Axial Zone 9 2210 2210 -9.874 -7 +209 -210 imp:n=1 u=32 $ Assembly 22 - Axial Zone 10 2211 2211 -9.875 -7 +210 -211 imp:n=1 u=32 $ Assembly 22 - Axial Zone 11 2212 2212 -9.875 -7 +211 -212 imp:n=1 u=32 $ Assembly 22 - Axial Zone 12 2213 2213 -9.876 -7 +212 -213 imp:n=1 u=32 $ Assembly 22 - Axial Zone 13 2214 2214 -9.876 -7 +213 -214 imp:n=1 u=32 $ Assembly 22 - Axial Zone 14 2215 2215 -9.886 -7 +214 -215 imp:n=1 u=32 $ Assembly 22 - Axial Zone 15 2216 2216 -9.912 -7 +215 -216 imp:n=1 u=32 $ Assembly 22 - Axial Zone 16 2217 2217 -9.968 -7 +216 -217 imp:n=1 u=32 $ Assembly 22 - Axial Zone 17 2218 2218 -10.039 -7 +217 imp:n=1 u=32 $ Assembly 22 - Axial Zone 18 2221 3 -1.00 +7 -8 imp:n=1 u=32 2222 2 -6.56 +8 -15 imp:n=1 u=32 2223 3 -1.00 +15 imp:n=1 u=32 c Assy 23 2301 2301 -9.990 -7 -201 imp:n=1 u=33 $ Assembly 23 - Axial Zone 1 2302 2302 -9.914 -7 +201 -202 imp:n=1 u=33 $ Assembly 23 - Axial Zone 2 2303 2303 -9.895 -7 +202 -203 imp:n=1 u=33 $ Assembly 23 - Axial Zone 3 2304 2304 -9.887 -7 +203 -204 imp:n=1 u=33 $ Assembly 23 - Axial Zone 4 2305 2305 -9.887 -7 +204 -205 imp:n=1 u=33 $ Assembly 23 - Axial Zone 5 2306 2306 -9.887 -7 +205 -206 imp:n=1 u=33 $ Assembly 23 - Axial Zone 6 2307 2307 -9.888 -7 +206 -207 imp:n=1 u=33 $ Assembly 23 - Axial Zone 7 2308 2308 -9.888 -7 +207 -208 imp:n=1 u=33 $ Assembly 23 - Axial Zone 8 2309 2309 -9.889 -7 +208 -209 imp:n=1 u=33 $ Assembly 23 - Axial Zone 9 2310 2310 -9.889 -7 +209 -210 imp:n=1 u=33 $ Assembly 23 - Axial Zone 10 2311 2311 -9.890 -7 +210 -211 imp:n=1 u=33 $ Assembly 23 - Axial Zone 11 2312 2312 -9.890 -7 +211 -212 imp:n=1 u=33 $ Assembly 23 - Axial Zone 12 2313 2313 -9.891 -7 +212 -213 imp:n=1 u=33 $ Assembly 23 - Axial Zone 13 2314 2314 -9.891 -7 +213 -214 imp:n=1 u=33 $ Assembly 23 - Axial Zone 14 2315 2315 -9.892 -7 +214 -215 imp:n=1 u=33 $ Assembly 23 - Axial Zone 15 2316 2316 -9.919 -7 +215 -216 imp:n=1 u=33 $ Assembly 23 - Axial Zone 16 2317 2317 -9.975 -7 +216 -217 imp:n=1 u=33 $ Assembly 23 - Axial Zone 17 2318 2318 -10.037 -7 +217 imp:n=1 u=33 $ Assembly 23 - Axial Zone 18 2321 3 -1.00 +7 -8 imp:n=1 u=33 2322 2 -6.56 +8 -15 imp:n=1 u=33 2323 3 -1.00 +15 imp:n=1 u=33 c Assy 24 2401 2401 -9.989 -7 -201 imp:n=1 u=34 $ Assembly 24 - Axial Zone 1 2402 2402 -9.912 -7 +201 -202 imp:n=1 u=34 $ Assembly 24 - Axial Zone 2 2403 2403 -9.885 -7 +202 -203 imp:n=1 u=34 $ Assembly 24 - Axial Zone 3 2404 2404 -9.877 -7 +203 -204 imp:n=1 u=34 $ Assembly 24 - Axial Zone 4
Calc Package No.: VSC-03.3606 Page 160 of 191 Revision 0 2405 2405 -9.877 -7 +204 -205 imp:n=1 u=34 $ Assembly 24 - Axial Zone 5 2406 2406 -9.877 -7 +205 -206 imp:n=1 u=34 $ Assembly 24 - Axial Zone 6 2407 2407 -9.878 -7 +206 -207 imp:n=1 u=34 $ Assembly 24 - Axial Zone 7 2408 2408 -9.878 -7 +207 -208 imp:n=1 u=34 $ Assembly 24 - Axial Zone 8 2409 2409 -9.879 -7 +208 -209 imp:n=1 u=34 $ Assembly 24 - Axial Zone 9 2410 2410 -9.879 -7 +209 -210 imp:n=1 u=34 $ Assembly 24 - Axial Zone 10 2411 2411 -9.880 -7 +210 -211 imp:n=1 u=34 $ Assembly 24 - Axial Zone 11 2412 2412 -9.880 -7 +211 -212 imp:n=1 u=34 $ Assembly 24 - Axial Zone 12 2413 2413 -9.881 -7 +212 -213 imp:n=1 u=34 $ Assembly 24 - Axial Zone 13 2414 2414 -9.881 -7 +213 -214 imp:n=1 u=34 $ Assembly 24 - Axial Zone 14 2415 2415 -9.890 -7 +214 -215 imp:n=1 u=34 $ Assembly 24 - Axial Zone 15 2416 2416 -9.909 -7 +215 -216 imp:n=1 u=34 $ Assembly 24 - Axial Zone 16 2417 2417 -9.973 -7 +216 -217 imp:n=1 u=34 $ Assembly 24 - Axial Zone 17 2418 2418 -10.035 -7 +217 imp:n=1 u=34 $ Assembly 24 - Axial Zone 18 2421 3 -1.00 +7 -8 imp:n=1 u=34 2422 2 -6.56 +8 -15 imp:n=1 u=34 2423 3 -1.00 +15 imp:n=1 u=34 c
c c guide bars (modeled as cylinder w/ minimum 0.415" dia) c 1 2 -6.56 -19 imp:n=1 u=1 2 3 -1.00 +19 imp:n=1 u=1 c
c steel dummy rods (0.417" dia - H & L assys) c 3 6 -8.027 -17 imp:n=1 u=40 4 3 -1.00 +17 imp:n=1 u=40 c
c empty guide tube - G Assembly c
231 3 -1.00 -13 imp:n=1 u=2 232 2 -6.56 +13 -16 imp:n=1 u=2 233 3 -1.00 +16 imp:n=1 u=2 c
c empty guide tube - H, J1, K1 Assemblies c
234 3 -1.00 -13 imp:n=1 u=3 235 2 -6.56 +13 -17 imp:n=1 u=3 236 3 -1.00 +17 imp:n=1 u=3 c
c empty guide tube - I1-I3 Assemblies c
237 3 -1.00 -12 imp:n=1 u=4 238 2 -6.56 +12 -17 imp:n=1 u=4 239 3 -1.00 +17 imp:n=1 u=4 c
c instrument tube - A Assembly c
241 3 -1.00 -11 imp:n=1 u=5 242 2 -6.56 +11 -14 imp:n=1 u=5 243 3 -1.00 +14 imp:n=1 u=5 c
c instrument tube - D (EF) Assembly c
244 3 -1.00 -11 imp:n=1 u=6 245 2 -6.56 +11 -18 imp:n=1 u=6 246 3 -1.00 +18 imp:n=1 u=6
Calc Package No.: VSC-03.3606 Page 161 of 191 Revision 0 c
c instrument tube - E-G Assemblies c
247 3 -1.00 -10 imp:n=1 u=7 248 2 -6.56 +10 -15 imp:n=1 u=7 249 3 -1.00 +15 imp:n=1 u=7 c
c instrument tube - H Assembly c
250 3 -1.00 -8 imp:n=1 u=8 251 2 -6.56 +8 -15 imp:n=1 u=8 252 3 -1.00 +15 imp:n=1 u=8 c
c instrument tube - I-L Assemblies c
253 3 -1.00 -8 imp:n=1 u=9 254 2 -6.56 +8 -17 imp:n=1 u=9 255 3 -1.00 +17 imp:n=1 u=9 c
c fixed poison rod - A Assembly (1.7% B4C) c 260 14 -3.97 38 imp:n=1 u=66 261 11 -4.0003 -20 +38 -39 imp:n=1 u=66 262 14 -3.97 -20 +39 imp:n=1 u=66 263 3 -1.00 +20 -11 imp:n=1 u=66 264 2 -6.56 +11 -14 imp:n=1 u=66 265 3 -1.00 +14 imp:n=1 u=66 c
c fixed poison rod - E Assembly (7.7% B4C) c 266 13 -3.2707 -7 imp:n=1 u=67 267 3 -1.00 +7 -8 imp:n=1 u=67 268 2 -6.56 +8 -15 imp:n=1 u=67 269 3 -1.00 +15 imp:n=1 u=67 c
c G Assembly guide tube containing Insert 2 (4.7% B4C) c 271 14 -3.97 -1 -35 imp:n=1 u=68 272 12 -3.3406 -1 +35 -36 imp:n=1 u=68 273 14 -3.97 -1 +36 imp:n=1 u=68 274 3 -1.00 +1 -3 imp:n=1 u=68 275 2 -6.56 +3 -4 imp:n=1 u=68 276 3 -1.00 +4 -13 imp:n=1 u=68 277 2 -6.56 +13 -16 imp:n=1 u=68 278 3 -1.00 +16 imp:n=1 u=68 c
c H Assembly guide tube containing Insert 2 (4.7% B4C) c 281 14 -3.97 -1 -35 imp:n=1 u=69 282 12 -3.3406 -1 +35 -36 imp:n=1 u=69 283 14 -3.97 -1 +36 imp:n=1 u=69 284 3 -1.00 +1 -3 imp:n=1 u=69 285 2 -6.56 +3 -4 imp:n=1 u=69 286 3 -1.00 +4 -13 imp:n=1 u=69 287 2 -6.56 +13 -17 imp:n=1 u=69 288 3 -1.00 +17 imp:n=1 u=69 c
c I3 Assembly guide tube containing Insert 3 (4.7% B4C)
Calc Package No.: VSC-03.3606 Page 162 of 191 Revision 0 c
291 14 -3.97 -1 -35 imp:n=1 u=70 292 12 -3.3406 -1 +35 -36 imp:n=1 u=70 293 14 -3.97 -1 +36 imp:n=1 u=70 294 3 -1.00 +1 -3 imp:n=1 u=70 295 2 -6.56 +3 -5 imp:n=1 u=70 296 3 -1.00 +5 -12 imp:n=1 u=70 297 2 -6.56 +12 -17 imp:n=1 u=70 298 3 -1.00 +17 imp:n=1 u=70 c
c I1 Assembly guide tube containing Insert 4 (hafnium) c 331 3 -1.00 -2 -37 imp:n=1 u=96 332 0 -2 +37 imp:n=1 u=96 333 3 -1.00 +2 -3 imp:n=1 u=96 334 2 -6.56 +3 -4 imp:n=1 u=96 335 3 -1.00 +4 -12 imp:n=1 u=96 336 2 -6.56 +12 -17 imp:n=1 u=96 337 3 -1.00 +17 imp:n=1 u=96 c
c Zr-4 inert rods (0.417" dia - H - J - L assys) c 341 2 -6.56 -17 imp:n=1 u=97 342 3 -1.00 +17 imp:n=1 u=97 c
c c assembly lattice outside spacer grids c
11 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=41 fill=-9:9 -9:9 0:0 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 11 11 11 11 1 11 11 11 11 11 1 11 11 11 11 41 41 41 41 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 41 41 41 41 11 11 11 11 11 2 11 11 11 2 11 11 11 11 11 41 41 41 41 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 41 41 41 41 1 11 11 11 11 11 11 11 11 11 11 11 11 11 1 41 41 41 41 11 11 2 11 11 11 11 11 11 11 11 11 2 11 11 41 41 41 41 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 41 41 41 41 11 11 11 11 11 11 11 7 11 11 11 11 11 11 11 41 41 41 41 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 41 41 41 41 11 11 2 11 11 11 11 11 11 11 11 11 2 11 11 41 41 41 41 1 11 11 11 11 11 11 11 11 11 11 11 11 11 1 41 41 41 41 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 41 41 41 41 11 11 11 11 11 2 11 11 11 2 11 11 11 11 11 41 41 41 41 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 41 41 41 41 11 11 11 11 1 11 11 11 11 11 1 11 11 11 11 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 c
12 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=42 fill=-9:9 -9:9 0:0 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 12 12 12 12 1 12 12 12 12 12 1 12 12 12 12 42 42 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 42 42 42 42 12 12 12 12 12 2 12 12 12 2 12 12 12 12 12 42 42 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 42 42
Calc Package No.: VSC-03.3606 Page 163 of 191 Revision 0 42 42 1 12 12 12 12 12 12 12 12 12 12 12 12 12 1 42 42 42 42 12 12 2 12 12 12 12 12 12 12 12 12 2 12 12 42 42 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 42 42 42 42 12 12 12 12 12 12 12 7 12 12 12 12 12 12 12 42 42 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 42 42 42 42 12 12 2 12 12 12 12 12 12 12 12 12 2 12 12 42 42 42 42 1 12 12 12 12 12 12 12 12 12 12 12 12 12 1 42 42 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 42 42 42 42 12 12 12 12 12 2 12 12 12 2 12 12 12 12 12 42 42 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 42 42 42 42 12 12 12 12 1 12 12 12 12 12 1 12 12 12 12 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 c
13 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=43 fill=-9:9 -9:9 0:0 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 13 13 13 13 1 13 13 13 13 13 1 13 13 13 13 43 43 43 43 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 43 43 43 43 13 13 13 13 13 2 13 13 13 2 13 13 13 13 13 43 43 43 43 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 43 43 43 43 1 13 13 13 13 13 13 13 13 13 13 13 13 13 1 43 43 43 43 13 13 2 13 13 13 13 13 13 13 13 13 2 13 13 43 43 43 43 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 43 43 43 43 13 13 13 13 13 13 13 7 13 13 13 13 13 13 13 43 43 43 43 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 43 43 43 43 13 13 2 13 13 13 13 13 13 13 13 13 2 13 13 43 43 43 43 1 13 13 13 13 13 13 13 13 13 13 13 13 13 1 43 43 43 43 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 43 43 43 43 13 13 13 13 13 2 13 13 13 2 13 13 13 13 13 43 43 43 43 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 43 43 43 43 13 13 13 13 1 13 13 13 13 13 1 13 13 13 13 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 c
14 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=44 fill=-9:9 -9:9 0:0 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 14 14 14 14 1 14 14 14 14 14 1 14 14 14 14 44 44 44 44 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 44 44 44 44 14 14 14 14 14 2 14 14 14 2 14 14 14 14 14 44 44 44 44 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 44 44 44 44 1 14 14 14 14 14 14 14 14 14 14 14 14 14 1 44 44 44 44 14 14 2 14 14 14 14 14 14 14 14 14 2 14 14 44 44 44 44 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 44 44 44 44 14 14 14 14 14 14 14 7 14 14 14 14 14 14 14 44 44 44 44 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 44 44 44 44 14 14 2 14 14 14 14 14 14 14 14 14 2 14 14 44 44 44 44 1 14 14 14 14 14 14 14 14 14 14 14 14 14 1 44 44 44 44 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 44 44 44 44 14 14 14 14 14 2 14 14 14 2 14 14 14 14 14 44 44 44 44 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 44 44 44 44 14 14 14 14 1 14 14 14 14 14 1 14 14 14 14 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 c
Calc Package No.: VSC-03.3606 Page 164 of 191 Revision 0 15 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=45 fill=-9:9 -9:9 0:0 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 15 15 15 15 1 15 15 15 15 15 1 15 15 15 15 45 45 45 45 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 45 45 45 45 15 15 15 15 15 2 15 15 15 2 15 15 15 15 15 45 45 45 45 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 45 45 45 45 1 15 15 15 15 15 15 15 15 15 15 15 15 15 1 45 45 45 45 15 15 2 15 15 15 15 15 15 15 15 15 2 15 15 45 45 45 45 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 45 45 45 45 15 15 15 15 15 15 15 7 15 15 15 15 15 15 15 45 45 45 45 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 45 45 45 45 15 15 2 15 15 15 15 15 15 15 15 15 2 15 15 45 45 45 45 1 15 15 15 15 15 15 15 15 15 15 15 15 15 1 45 45 45 45 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 45 45 45 45 15 15 15 15 15 2 15 15 15 2 15 15 15 15 15 45 45 45 45 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 45 45 45 45 15 15 15 15 1 15 15 15 15 15 1 15 15 15 15 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 c
16 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=46 fill=-9:9 -9:9 0:0 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 16 16 16 16 1 16 16 16 16 16 1 16 16 16 16 46 46 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 46 46 46 46 16 16 16 16 16 2 16 16 16 2 16 16 16 16 16 46 46 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 46 46 46 46 1 16 16 16 16 16 16 16 16 16 16 16 16 16 1 46 46 46 46 16 16 2 16 16 16 16 16 16 16 16 16 2 16 16 46 46 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 46 46 46 46 16 16 16 16 16 16 16 7 16 16 16 16 16 16 16 46 46 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 46 46 46 46 16 16 2 16 16 16 16 16 16 16 16 16 2 16 16 46 46 46 46 1 16 16 16 16 16 16 16 16 16 16 16 16 16 1 46 46 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 46 46 46 46 16 16 16 16 16 2 16 16 16 2 16 16 16 16 16 46 46 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 46 46 46 46 16 16 16 16 1 16 16 16 16 16 1 16 16 16 16 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 c
17 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=47 fill=-9:9 -9:9 0:0 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 17 17 17 17 1 17 17 17 17 17 1 17 17 17 17 47 47 47 47 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 47 47 47 47 17 17 17 17 17 2 17 17 17 2 17 17 17 17 17 47 47 47 47 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 47 47 47 47 1 17 17 17 17 17 17 17 17 17 17 17 17 17 1 47 47 47 47 17 17 2 17 17 17 17 17 17 17 17 17 2 17 17 47 47 47 47 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 47 47 47 47 17 17 17 17 17 17 17 7 17 17 17 17 17 17 17 47 47 47 47 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 47 47 47 47 17 17 2 17 17 17 17 17 17 17 17 17 2 17 17 47 47
Calc Package No.: VSC-03.3606 Page 165 of 191 Revision 0 47 47 1 17 17 17 17 17 17 17 17 17 17 17 17 17 1 47 47 47 47 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 47 47 47 47 17 17 17 17 17 2 17 17 17 2 17 17 17 17 17 47 47 47 47 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 47 47 47 47 17 17 17 17 1 17 17 17 17 17 1 17 17 17 17 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 c
18 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=48 fill=-9:9 -9:9 0:0 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 18 18 18 18 1 18 18 18 18 18 1 18 18 18 18 48 48 48 48 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 48 48 48 48 18 18 18 18 18 2 18 18 18 2 18 18 18 18 18 48 48 48 48 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 48 48 48 48 1 18 18 18 18 18 18 18 18 18 18 18 18 18 1 48 48 48 48 18 18 2 18 18 18 18 18 18 18 18 18 2 18 18 48 48 48 48 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 48 48 48 48 18 18 18 18 18 18 18 7 18 18 18 18 18 18 18 48 48 48 48 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 48 48 48 48 18 18 2 18 18 18 18 18 18 18 18 18 2 18 18 48 48 48 48 1 18 18 18 18 18 18 18 18 18 18 18 18 18 1 48 48 48 48 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 48 48 48 48 18 18 18 18 18 2 18 18 18 2 18 18 18 18 18 48 48 48 48 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 48 48 48 48 18 18 18 18 1 18 18 18 18 18 1 18 18 18 18 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 c
19 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=49 fill=-9:9 -9:9 0:0 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 19 19 19 19 1 19 19 19 19 19 1 19 19 19 19 49 49 49 49 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 49 49 49 49 19 19 19 19 19 2 19 19 19 2 19 19 19 19 19 49 49 49 49 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 49 49 49 49 1 19 19 19 19 19 19 19 19 19 19 19 19 19 1 49 49 49 49 19 19 2 19 19 19 19 19 19 19 19 19 2 19 19 49 49 49 49 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 49 49 49 49 19 19 19 19 19 19 19 7 19 19 19 19 19 19 19 49 49 49 49 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 49 49 49 49 19 19 2 19 19 19 19 19 19 19 19 19 2 19 19 49 49 49 49 1 19 19 19 19 19 19 19 19 19 19 19 19 19 1 49 49 49 49 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 49 49 49 49 19 19 19 19 19 2 19 19 19 2 19 19 19 19 19 49 49 49 49 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 49 49 49 49 19 19 19 19 1 19 19 19 19 19 1 19 19 19 19 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 c
20 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=50 fill=-9:9 -9:9 0:0 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 20 20 20 20 1 20 20 20 20 20 1 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 50 50
Calc Package No.: VSC-03.3606 Page 166 of 191 Revision 0 50 50 20 20 20 20 20 2 20 20 20 2 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 50 50 50 50 1 20 20 20 20 20 20 20 20 20 20 20 20 20 1 50 50 50 50 20 20 2 20 20 20 20 20 20 20 20 20 2 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 7 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 2 20 20 20 20 20 20 20 20 20 2 20 20 50 50 50 50 1 20 20 20 20 20 20 20 20 20 20 20 20 20 1 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 20 2 20 20 20 2 20 20 20 20 20 50 50 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 50 50 50 50 20 20 20 20 1 20 20 20 20 20 1 20 20 20 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 c
21 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=51 fill=-9:9 -9:9 0:0 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 21 21 21 21 1 21 21 21 21 21 1 21 21 21 21 51 51 51 51 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 51 51 51 51 21 21 21 21 21 2 21 21 21 2 21 21 21 21 21 51 51 51 51 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 51 51 51 51 1 21 21 21 21 21 21 21 21 21 21 21 21 21 1 51 51 51 51 21 21 2 21 21 21 21 21 21 21 21 21 2 21 21 51 51 51 51 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 51 51 51 51 21 21 21 21 21 21 21 7 21 21 21 21 21 21 21 51 51 51 51 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 51 51 51 51 21 21 2 21 21 21 21 21 21 21 21 21 2 21 21 51 51 51 51 1 21 21 21 21 21 21 21 21 21 21 21 21 21 1 51 51 51 51 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 51 51 51 51 21 21 21 21 21 2 21 21 21 2 21 21 21 21 21 51 51 51 51 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 51 51 51 51 21 21 21 21 1 21 21 21 21 21 1 21 21 21 21 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 c
22 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=52 fill=-9:9 -9:9 0:0 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 22 22 22 22 1 22 22 22 22 22 1 22 22 22 22 52 52 52 52 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 52 52 52 52 22 22 22 22 22 2 22 22 22 2 22 22 22 22 22 52 52 52 52 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 52 52 52 52 1 22 22 22 22 22 22 22 22 22 22 22 22 22 1 52 52 52 52 22 22 2 22 22 22 22 22 22 22 22 22 2 22 22 52 52 52 52 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 52 52 52 52 22 22 22 22 22 22 22 7 22 22 22 22 22 22 22 52 52 52 52 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 52 52 52 52 22 22 2 22 22 22 22 22 22 22 22 22 2 22 22 52 52 52 52 1 22 22 22 22 22 22 22 22 22 22 22 22 22 1 52 52 52 52 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 52 52 52 52 22 22 22 22 22 2 22 22 22 2 22 22 22 22 22 52 52 52 52 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 52 52 52 52 22 22 22 22 1 22 22 22 22 22 1 22 22 22 22 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52
Calc Package No.: VSC-03.3606 Page 167 of 191 Revision 0 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 c
23 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=53 fill=-9:9 -9:9 0:0 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 23 23 23 23 1 23 23 23 23 23 1 23 23 23 23 53 53 53 53 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 53 53 53 53 23 23 23 23 23 2 23 23 23 2 23 23 23 23 23 53 53 53 53 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 53 53 53 53 1 23 23 23 23 23 23 23 23 23 23 23 23 23 1 53 53 53 53 23 23 2 23 23 23 23 23 23 23 23 23 2 23 23 53 53 53 53 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 53 53 53 53 23 23 23 23 23 23 23 7 23 23 23 23 23 23 23 53 53 53 53 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 53 53 53 53 23 23 2 23 23 23 23 23 23 23 23 23 2 23 23 53 53 53 53 1 23 23 23 23 23 23 23 23 23 23 23 23 23 1 53 53 53 53 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 53 53 53 53 23 23 23 23 23 2 23 23 23 2 23 23 23 23 23 53 53 53 53 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 53 53 53 53 23 23 23 23 1 23 23 23 23 23 1 23 23 23 23 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 c
24 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=54 fill=-9:9 -9:9 0:0 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 24 24 24 24 1 24 24 24 24 24 1 24 24 24 24 54 54 54 54 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 54 54 54 54 24 24 24 24 24 2 24 24 24 2 24 24 24 24 24 54 54 54 54 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 54 54 54 54 1 24 24 24 24 24 24 24 24 24 24 24 24 24 1 54 54 54 54 24 24 2 24 24 24 24 24 24 24 24 24 2 24 24 54 54 54 54 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 54 54 54 54 24 24 24 24 24 24 24 7 24 24 24 24 24 24 24 54 54 54 54 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 54 54 54 54 24 24 2 24 24 24 24 24 24 24 24 24 2 24 24 54 54 54 54 1 24 24 24 24 24 24 24 24 24 24 24 24 24 1 54 54 54 54 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 54 54 54 54 24 24 24 24 24 2 24 24 24 2 24 24 24 24 24 54 54 54 54 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 54 54 54 54 24 24 24 24 1 24 24 24 24 24 1 24 24 24 24 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 c
25 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=55 fill=-9:9 -9:9 0:0 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 25 25 25 25 1 25 25 25 25 25 1 25 25 25 25 55 55 55 55 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 55 55 55 55 25 25 25 25 25 2 25 25 25 2 25 25 25 25 25 55 55 55 55 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 55 55 55 55 1 25 25 25 25 25 25 25 25 25 25 25 25 25 1 55 55 55 55 25 25 2 25 25 25 25 25 25 25 25 25 2 25 25 55 55 55 55 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 55 55 55 55 25 25 25 25 25 25 25 7 25 25 25 25 25 25 25 55 55
Calc Package No.: VSC-03.3606 Page 168 of 191 Revision 0 55 55 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 55 55 55 55 25 25 2 25 25 25 25 25 25 25 25 25 2 25 25 55 55 55 55 1 25 25 25 25 25 25 25 25 25 25 25 25 25 1 55 55 55 55 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 55 55 55 55 25 25 25 25 25 2 25 25 25 2 25 25 25 25 25 55 55 55 55 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 55 55 55 55 25 25 25 25 1 25 25 25 25 25 1 25 25 25 25 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 c
26 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=56 fill=-9:9 -9:9 0:0 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 26 26 26 26 1 26 26 26 26 26 1 26 26 26 26 56 56 56 56 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 56 56 56 56 26 26 26 26 26 2 26 26 26 2 26 26 26 26 26 56 56 56 56 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 56 56 56 56 1 26 26 26 26 26 26 26 26 26 26 26 26 26 1 56 56 56 56 26 26 2 26 26 26 26 26 26 26 26 26 2 26 26 56 56 56 56 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 56 56 56 56 26 26 26 26 26 26 26 7 26 26 26 26 26 26 26 56 56 56 56 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 56 56 56 56 26 26 2 26 26 26 26 26 26 26 26 26 2 26 26 56 56 56 56 1 26 26 26 26 26 26 26 26 26 26 26 26 26 1 56 56 56 56 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 56 56 56 56 26 26 26 26 26 2 26 26 26 2 26 26 26 26 26 56 56 56 56 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 56 56 56 56 26 26 26 26 1 26 26 26 26 26 1 26 26 26 26 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 c
27 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=57 fill=-9:9 -9:9 0:0 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 27 27 27 27 1 27 27 27 27 27 1 27 27 27 27 57 57 57 57 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 57 57 57 57 27 27 27 27 27 2 27 27 27 2 27 27 27 27 27 57 57 57 57 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 57 57 57 57 1 27 27 27 27 27 27 27 27 27 27 27 27 27 1 57 57 57 57 27 27 2 27 27 27 27 27 27 27 27 27 2 27 27 57 57 57 57 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 57 57 57 57 27 27 27 27 27 27 27 7 27 27 27 27 27 27 27 57 57 57 57 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 57 57 57 57 27 27 2 27 27 27 27 27 27 27 27 27 2 27 27 57 57 57 57 1 27 27 27 27 27 27 27 27 27 27 27 27 27 1 57 57 57 57 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 57 57 57 57 27 27 27 27 27 2 27 27 27 2 27 27 27 27 27 57 57 57 57 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 57 57 57 57 27 27 27 27 1 27 27 27 27 27 1 27 27 27 27 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57
Calc Package No.: VSC-03.3606 Page 169 of 191 Revision 0 c
28 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=58 fill=-9:9 -9:9 0:0 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 28 28 28 28 1 28 28 28 28 28 1 28 28 28 28 58 58 58 58 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 58 58 58 58 28 28 28 28 28 68 28 28 28 68 28 28 28 28 28 58 58 58 58 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 58 58 58 58 1 28 28 28 28 28 28 28 28 28 28 28 28 28 1 58 58 58 58 28 28 68 28 28 28 28 28 28 28 28 28 68 28 28 58 58 58 58 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 58 58 58 58 28 28 28 28 28 28 28 7 28 28 28 28 28 28 28 58 58 58 58 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 58 58 58 58 28 28 68 28 28 28 28 28 28 28 28 28 68 28 28 58 58 58 58 1 28 28 28 28 28 28 28 28 28 28 28 28 28 1 58 58 58 58 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 58 58 58 58 28 28 28 28 28 68 28 28 28 68 28 28 28 28 28 58 58 58 58 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 58 58 58 58 28 28 28 28 1 28 28 28 28 28 1 28 28 28 28 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 c
29 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=59 fill=-9:9 -9:9 0:0 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 29 29 29 29 1 29 29 29 29 29 1 29 29 29 29 59 59 59 59 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 59 59 59 59 29 29 29 29 29 2 29 29 29 2 29 29 29 29 29 59 59 59 59 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 59 59 59 59 1 29 29 29 29 29 29 29 29 29 29 29 29 29 1 59 59 59 59 29 29 2 29 29 29 29 29 29 29 29 29 2 29 29 59 59 59 59 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 59 59 59 59 29 29 29 29 29 29 29 7 29 29 29 29 29 29 29 59 59 59 59 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 59 59 59 59 29 29 2 29 29 29 29 29 29 29 29 29 2 29 29 59 59 59 59 1 29 29 29 29 29 29 29 29 29 29 29 29 29 1 59 59 59 59 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 59 59 59 59 29 29 29 29 29 2 29 29 29 2 29 29 29 29 29 59 59 59 59 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 59 59 59 59 29 29 29 29 1 29 29 29 29 29 1 29 29 29 29 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 c
30 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=60 fill=-9:9 -9:9 0:0 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 30 30 30 30 1 30 30 30 30 30 1 30 30 30 30 60 60 60 60 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 60 60 60 60 30 30 30 30 30 2 30 30 30 2 30 30 30 30 30 60 60 60 60 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 60 60 60 60 1 30 30 30 30 30 30 30 30 30 30 30 30 30 1 60 60 60 60 30 30 2 30 30 30 30 30 30 30 30 30 2 30 30 60 60 60 60 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 60 60 60 60 30 30 30 30 30 30 30 7 30 30 30 30 30 30 30 60 60 60 60 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 60 60
Calc Package No.: VSC-03.3606 Page 170 of 191 Revision 0 60 60 30 30 2 30 30 30 30 30 30 30 30 30 2 30 30 60 60 60 60 1 30 30 30 30 30 30 30 30 30 30 30 30 30 1 60 60 60 60 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 60 60 60 60 30 30 30 30 30 2 30 30 30 2 30 30 30 30 30 60 60 60 60 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 60 60 60 60 30 30 30 30 1 30 30 30 30 30 1 30 30 30 30 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 c
31 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=61 fill=-9:9 -9:9 0:0 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 31 31 31 31 1 31 31 31 31 31 1 31 31 31 31 61 61 61 61 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 61 61 61 61 31 31 31 31 31 2 31 31 31 2 31 31 31 31 31 61 61 61 61 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 61 61 61 61 1 31 31 31 31 31 31 31 31 31 31 31 31 31 1 61 61 61 61 31 31 2 31 31 31 31 31 31 31 31 31 2 31 31 61 61 61 61 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 61 61 61 61 31 31 31 31 31 31 31 7 31 31 31 31 31 31 31 61 61 61 61 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 61 61 61 61 31 31 2 31 31 31 31 31 31 31 31 31 2 31 31 61 61 61 61 1 31 31 31 31 31 31 31 31 31 31 31 31 31 1 61 61 61 61 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 61 61 61 61 31 31 31 31 31 2 31 31 31 2 31 31 31 31 31 61 61 61 61 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 61 61 61 61 31 31 31 31 1 31 31 31 31 31 1 31 31 31 31 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 c
32 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=62 fill=-9:9 -9:9 0:0 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 32 32 32 32 1 32 32 32 32 32 1 32 32 32 32 62 62 62 62 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 62 62 62 62 32 32 32 32 32 2 32 32 32 2 32 32 32 32 32 62 62 62 62 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 62 62 62 62 1 32 32 32 32 32 32 32 32 32 32 32 32 32 1 62 62 62 62 32 32 2 32 32 32 32 32 32 32 32 32 2 32 32 62 62 62 62 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 62 62 62 62 32 32 32 32 32 32 32 7 32 32 32 32 32 32 32 62 62 62 62 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 62 62 62 62 32 32 2 32 32 32 32 32 32 32 32 32 2 32 32 62 62 62 62 1 32 32 32 32 32 32 32 32 32 32 32 32 32 1 62 62 62 62 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 62 62 62 62 32 32 32 32 32 2 32 32 32 2 32 32 32 32 32 62 62 62 62 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 62 62 62 62 32 32 32 32 1 32 32 32 32 32 1 32 32 32 32 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 c
33 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=63 fill=-9:9 -9:9 0:0 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 33 33 33 33 1 33 33 33 33 33 1 33 33 33 33 63 63
Calc Package No.: VSC-03.3606 Page 171 of 191 Revision 0 63 63 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 63 63 63 63 33 33 33 33 33 2 33 33 33 2 33 33 33 33 33 63 63 63 63 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 63 63 63 63 1 33 33 33 33 33 33 33 33 33 33 33 33 33 1 63 63 63 63 33 33 2 33 33 33 33 33 33 33 33 33 2 33 33 63 63 63 63 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 63 63 63 63 33 33 33 33 33 33 33 7 33 33 33 33 33 33 33 63 63 63 63 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 63 63 63 63 33 33 2 33 33 33 33 33 33 33 33 33 2 33 33 63 63 63 63 1 33 33 33 33 33 33 33 33 33 33 33 33 33 1 63 63 63 63 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 63 63 63 63 33 33 33 33 33 2 33 33 33 2 33 33 33 33 33 63 63 63 63 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 63 63 63 63 33 33 33 33 1 33 33 33 33 33 1 33 33 33 33 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 c
34 3 -1.00 -22 +21 -24 +23 imp:n=1 lat=1 u=64 fill=-9:9 -9:9 0:0 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 34 34 34 34 1 34 34 34 34 34 1 34 34 34 34 64 64 64 64 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 64 64 64 64 34 34 34 34 34 2 34 34 34 2 34 34 34 34 34 64 64 64 64 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 64 64 64 64 1 34 34 34 34 34 34 34 34 34 34 34 34 34 1 64 64 64 64 34 34 2 34 34 34 34 34 34 34 34 34 2 34 34 64 64 64 64 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 64 64 64 64 34 34 34 34 34 34 34 7 34 34 34 34 34 34 34 64 64 64 64 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 64 64 64 64 34 34 2 34 34 34 34 34 34 34 34 34 2 34 34 64 64 64 64 1 34 34 34 34 34 34 34 34 34 34 34 34 34 1 64 64 64 64 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 64 64 64 64 34 34 34 34 34 2 34 34 34 2 34 34 34 34 34 64 64 64 64 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 64 64 64 64 34 34 34 34 1 34 34 34 34 34 1 34 34 34 34 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 c
c fuel sleeves containing specific assemblies (w/ specific position shift) c 41 3 -1.00 +25 -26 +27 57 fill=41 (+0.5970 -0.5970 0.0) imp:n=1 u=71 71 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=71 131 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=71 c
42 3 -1.00 +25 -26 +27 57 fill=42 (-0.5970 -0.5970 0.0) imp:n=1 u=72 72 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=72 132 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=72 c
43 3 -1.00 +25 -26 +27 57 fill=43 (+0.5970 -0.5970 0.0) imp:n=1 u=73 73 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=73 133 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=73 c
44 3 -1.00 +25 -26 +27 57 fill=44 (+0.5970 -0.5970 0.0) imp:n=1 u=74 74 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=74 134 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=74 c
45 3 -1.00 +25 -26 +27 57 fill=45 (-0.5970 -0.5970 0.0) imp:n=1 u=75
Calc Package No.: VSC-03.3606 Page 172 of 191 Revision 0 75 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=75 135 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=75 c
46 3 -1.00 +25 -26 +27 57 fill=46 (-0.5970 -0.5970 0.0) imp:n=1 u=76 76 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=76 136 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=76 c
47 3 -1.00 +25 -26 +27 57 fill=47 (+0.5970 -0.5970 0.0) imp:n=1 u=77 77 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=77 137 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=77 c
48 3 -1.00 +25 -26 +27 57 fill=48 (+0.5970 -0.5970 0.0) imp:n=1 u=78 78 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=78 138 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=78 c
49 3 -1.00 +25 -26 +27 57 fill=49 (+0.5970 -0.5970 0.0) imp:n=1 u=79 79 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=79 139 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=79 c
50 3 -1.00 +25 -26 +27 57 fill=50 (-0.5970 -0.5970 0.0) imp:n=1 u=80 80 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=80 140 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=80 c
51 3 -1.00 +25 -26 +27 57 fill=51 (-0.5970 -0.5970 0.0) imp:n=1 u=81 81 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=81 141 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=81 c
52 3 -1.00 +25 -26 +27 57 fill=52 (-0.5970 -0.5970 0.0) imp:n=1 u=82 82 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=82 142 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=82 c
53 3 -1.00 +25 -26 +27 57 fill=53 (+0.5970 +0.5970 0.0) imp:n=1 u=83 83 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=83 143 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=83 c
54 3 -1.00 +25 -26 +27 57 fill=54 (+0.5970 +0.5970 0.0) imp:n=1 u=84 84 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=84 144 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=84 c
55 3 -1.00 +25 -26 +27 57 fill=55 (+0.5970 +0.5970 0.0) imp:n=1 u=85 85 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=85 145 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=85 c
56 3 -1.00 +25 -26 +27 57 fill=56 (-0.5970 +0.5970 0.0) imp:n=1 u=86 86 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=86 146 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=86 c
57 3 -1.00 +25 -26 +27 57 fill=57 (-0.5970 +0.5970 0.0) imp:n=1 u=87 87 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=87 147 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=87 c
58 3 -1.00 +25 -26 +27 57 fill=58 (-0.5970 +0.5970 0.0) imp:n=1 u=88 88 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=88 148 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=88 c
59 3 -1.00 +25 -26 +27 57 fill=59 (+0.5970 +0.5970 0.0) imp:n=1 u=89 89 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=89
Calc Package No.: VSC-03.3606 Page 173 of 191 Revision 0 149 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=89 c
60 3 -1.00 +25 -26 +27 57 fill=60 (+0.5970 +0.5970 0.0) imp:n=1 u=90 90 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=90 150 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=90 c
61 3 -1.00 +25 -26 +27 57 fill=61 (-0.5970 +0.5970 0.0) imp:n=1 u=91 91 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=91 151 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=91 c
62 3 -1.00 +25 -26 +27 57 fill=62 (-0.5970 +0.5970 0.0) imp:n=1 u=92 92 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=92 152 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=92 c
63 3 -1.00 +25 -26 +27 57 fill=63 (+0.5970 +0.5970 0.0) imp:n=1 u=93 93 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=93 153 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=93 c
64 3 -1.00 +25 -26 +27 57 fill=64 (-0.5970 +0.5970 0.0) imp:n=1 u=94 94 3 -1.00 +25 -26 +27 -28 +57 imp:n=1 u=94 154 4 -7.8212 (-25:+26:-27:+28) imp:n=1 u=94 c
c basket fuel sleeve lattice c
35 3 -1.00 -30 +29 -32 +31 imp:n=1 lat=1 u=99 fill=-4:3 -4:3 0:0 99 99 99 99 99 99 99 99 99 99 99 93 94 99 99 99 99 99 89 90 91 92 99 99 99 83 84 85 86 87 88 99 99 77 78 79 80 81 82 99 99 99 73 74 75 76 99 99 99 99 99 71 72 99 99 99 99 99 99 99 99 99 99 99 c
c inside MSB canister - outside outer structures c
36 3 -1.00 (-111:-109) (+110:-109) (+110:+108) (+108:-111)
(+107:-117:-106) (+105:-104:-119) (+107:+116:-106) (+105:+118:-104)
-101 +56 -58 fill=99 (11.5252 11.5252 0.0) imp:n=1 c
c MSB radial support plates c
181 4 -7.8212 +101 +103 +108 -109 -41 +56 -58 imp:n=1 182 4 -7.8212 +101 +102 +110 -111 -41 +56 -58 imp:n=1 183 4 -7.8212 +101 -103 +108 -109 -41 +56 -58 imp:n=1 184 4 -7.8212 +101 -102 +110 -111 -41 +56 -58 imp:n=1 c
c MSB corner support wall structures c
185 4 -7.8212 +109 +111 (-113:-115) -41 +56 -58 imp:n=1 186 3 -1.00 +113 +115 -41 +56 -58 imp:n=1 187 4 -7.8212 +109 -110 (-113:+114) -41 +56 -58 imp:n=1 188 3 -1.00 +113 -114 -41 +56 -58 imp:n=1 189 4 -7.8212 -108 -110 (+112:+114) -41 +56 -58 imp:n=1 190 3 -1.00 -112 -114 -41 +56 -58 imp:n=1 191 4 -7.8212 -108 +111 (+112:-115) -41 +56 -58 imp:n=1 192 3 -1.00 -112 +115 -41 +56 -58 imp:n=1
Calc Package No.: VSC-03.3606 Page 174 of 191 Revision 0 c
c MSB outer support bars c
193 4 -7.8212 -101 +117 +106 -107 +56 -58 imp:n=1 194 4 -7.8212 -101 -118 +104 -105 +56 -58 imp:n=1 195 4 -7.8212 -101 -116 +106 -107 +56 -58 imp:n=1 196 4 -7.8212 -101 +119 +104 -105 +56 -58 imp:n=1 c
c MSB canister shell (carbon steel) c 40 4 -7.8212 +41 -42 +54 -60 imp:n=1 c
c Radial Spacer / TS125 Cask Shells c
161 3 -1.00 +42 -43 +52 -60 imp:n=1 $ MSB/Spacer Gap (water) 162 6 -8.027 +43 -44 +52 -60 imp:n=1 $ Radial Spacer (SS-304) 163 3 -1.00 +44 -45 +52 -60 imp:n=1 $ Spacer/Cask Gap (water) 164 7 -8.027 +45 -46 +52 -60 imp:n=1 $ TS125 Inner Shell (XM-19) 165 5 -11.35 +46 -47 +52 -60 imp:n=1 $ TS125 Gamma Shld (lead) 166 7 -8.027 +47 -48 +52 -60 imp:n=1 $ TS125 Outer Shell (XM-19) 167 15 -1.9425 +48 -49 +52 -60 imp:n=1 $ TS125 Neutron Shld (NS4-FR) 168 4 -7.8212 +49 -50 +52 -60 imp:n=1 $ TS125 N-Shld Skin (Carbon Steel) c c end regions c
171 7 -8.027 +51 50 imp:n=1 $ Cask Bottom Plate (XM-19) 172 3 -1.00 +52 42 imp:n=1 $ Cavity Spacer Vol (water) 173 6 -8.027 +53 42 imp:n=1 $ Cavity Spacer Top Plate (SS-304) 174 4 -7.8212 +54 41 imp:n=1 $ MSB Bottom Plate (Carbon Steel) 175 3 -1.00 +55 41 imp:n=1 $ Assy Bottom Nozzle Zone (water) 176 3 -1.00 +58 41 imp:n=1 $ Cav. Above Fuel Sleeves (water) 177 4 -7.8212 +59 41 imp:n=1 $ MSB Top Lids (Carbon Steel) 178 7 -8.027 +60 50 imp:n=1 $ Cask Top Lid (XM-19) c c zero importance region c
180 0 (-51:+61:+50) imp:n=0 c surfaces c
c assembly rod/tube radii c
1 cz 0.34036 $ 0.268" dia - Insert 2 & 3 absorber pellet OR 2 cz 0.35052 $ 0.276" dia - Insert 4 absorber pellet OR 3 cz 0.36322 $ 0.286" dia - absorber clad IR (all types) 4 cz 0.42164 $ 0.332" dia - Insert 2 & 4 clad OR 5 cz 0.42418 $ 0.334" dia - Insert 3 clad OR 6 cz 0.4445 $ 0.35" dia - H-K pellet OR 7 cz 0.44514 $ 0.3505" dia - E-G, L pellet OR 8 cz 0.45466 $ 0.358" dia - D pellet OR, E-L clad IR, H-L inst IR 9 cz 0.45593 $ 0.359" dia - A pellet OR 10 cz 0.4572 $ 0.36" dia - E-G inst IR 11 cz 0.46419 $ 0.3655" dia - A-D clad IR, A-D inst IR 12 cz 0.49403 $ 0.389" dia - I guide tube IR 13 cz 0.49657 $ 0.391" dia - G, H, J1, K1 guide tube IR 14 cz 0.52515 $ 0.4135" dia - A clad OR, A inst OR 15 cz 0.52705 $ 0.415" dia - E-G clad OR, E-H inst OR 16 cz 0.52832 $ 0.416" dia - G guide tube OR
Calc Package No.: VSC-03.3606 Page 175 of 191 Revision 0 17 cz 0.52959 $ 0.417" dia - H-L clad OR, H-K guide tube OR, I-L inst OR 18 cz 0.53023 $ 0.4175" dia - D clad OR, D inst OR 19 cz 0.5776 $ 0.4548" dia - guide bar effective OR 20 cz 0.45212 $ 0.356" dia - A absorber pellet OR c
c pin pitch / fuel sleeve x-y surfaces c
21 px -0.6985 $ pin cell -x surface 22 px 0.6985 $ pin cell +x surface 23 py -0.6985 $ pin cell -y surface 24 py 0.6985 $ pin cell +y surface 25 px -11.0744 $ fuel sleeve -x inner surface 26 px 11.0744 $ fuel sleeve +x inner surface 27 py -11.0744 $ fuel sleeve -y inner surface 28 py 11.0744 $ fuel sleeve +y inner surface 29 px -11.52525 $ fuel sleeve -x outer surface 30 px 11.52525 $ fuel sleeve +x outer surface 31 py -11.52525 $ fuel sleeve -y outer surface 32 py 11.52525 $ fuel sleeve +y outer surface c
c poison material axial boundaries c
35 pz -152.908 $ Bottom of B4C Poison Material (Insert Types 2 & 3) 36 pz 151.892 $ Top of B4C Poison Material (Insert Types 2 & 3) 37 pz -159.258 $ Bottom of Hafnium Poison Material (Insert Type 4) 38 pz -152.4 $ Bottom of B4C Poison Material (A Assembly Fixed Rod) 39 pz 152.4 $ Top of B4C Poison Material (A Assembly Fixed Rod) c c MSB & TS125 Cask Radial Shell Surfaces c
41 cz 76.043 $ MSB radial shell IR 42 cz 78.740 $ MSB radial shell OR 43 cz 80.645 $ radial cavity spacer IR 44 cz 83.82 $ radial cavity spacer OR 45 cz 85.09 $ TS125 Cask Cavity IR 46 cz 88.9 $ TS125 Cask Inner Liner OR 47 cz 97.155 $ TS125 Cask Gamma Shield OR 48 cz 103.886 $ TS125 Cask Shell OR c
c Neutron Shiled Structure Surfaces (NOC models only) c 49 cz 119.126 $ Neutron Shield Material OR 50* cz 119.602 $ Neutron Shield Structure OR c
c Model axial surfaces c
51* pz -268.224 $ Bottom of TS125 Cask Body 52 pz -252.984 $ Bottom of TS125 Cask Cavity 53 pz -186.563 $ Bottom of Axial Cask Cavity Spacer Top Plate 54 pz -178.943 $ Bottom End of MSB 55 pz -177.038 $ Bottom of MSB Internal Cavity 56 pz -167.386 $ Bottom of Active Fuel Zone 57 pz 167.386 $ Top of Active Fuel Zone 58 pz 197.612 $ Top of Steel Fuel Sleeves 59 pz 205.486 $ Top of MSB Internal Cavity 60 pz 237.236 $ Top End of MSB / Top of TS125 Cask Cavity 61* pz 252.476 $ Top of TS125 Cask Body c
Calc Package No.: VSC-03.3606 Page 176 of 191 Revision 0 c MSB edge structure surfaces c
101 cz 73.597 $ inner surface of MSB radial support plates 102 px 0.0 $ X-axis - quadrant separator 103 py 0.0 $ Y-axis - quadrant separator 104 px -2.699 $ -x surface of -y and +y support bars 105 px 2.699 $ +x surface of -y and +y support bars 106 py -2.699 $ -y surface of -x and +x support bars 107 py 2.699 $ +y surface of -x and +x support bars 108 px -46.101 $ +x surface of -x/-y and -x/+y corner support wall structures 109 px 46.101 $ -x surface of +x/-y and +x/+y corner support wall structures 110 py -46.101 $ +y surface of -x/-y and +x/-y corner support wall structures 111 py 46.101 $ -y surface of -x/+y and +x/+y corner support wall structures 112 px -47.689 $ -x surface of -x/-y and -x/+y corner support wall structures 113 px 47.689 $ +x surface of +x/-y and +x/+y corner support wall structures 114 py -47.689 $ -y surface of -x/-y and +x/-y corner support wall structures 115 py 47.689 $ +y surface of -x/+y and +x/+y corner support wall structures 116 px -69.757 $ +x surface of -x support bar 117 px 69.757 $ -x surface of +x support bar 118 py -69.757 $ +y surface of -y support bar 119 py 69.757 $ -y surface of +y support bar c
c axial burnup profile zone boundaries (18 zones) c 201 pz -148.788 $ axial profile zone boundary - 1/2 202 pz -130.189 $ axial profile zone boundary - 2/3 203 pz -111.591 $ axial profile zone boundary - 3/4 204 pz -92.992 $ axial profile zone boundary - 4/5 205 pz -74.394 $ axial profile zone boundary - 5/6 206 pz -55.795 $ axial profile zone boundary - 6/7 207 pz -37.197 $ axial profile zone boundary - 7/8 208 pz -18.598 $ axial profile zone boundary - 8/9 209 pz 0.000 $ axial profile zone boundary - 9/10 210 pz 18.598 $ axial profile zone boundary - 10/11 211 pz 37.197 $ axial profile zone boundary - 11/12 212 pz 55.795 $ axial profile zone boundary - 12/13 213 pz 74.394 $ axial profile zone boundary - 13/14 214 pz 92.992 $ axial profile zone boundary - 14/15 215 pz 111.591 $ axial profile zone boundary - 15/16 216 pz 130.189 $ axial profile zone boundary - 16/17 217 pz 148.788 $ axial profile zone boundary - 17/18 c non-fuel materials c
m2 40000.60c -98.18 $ clad 50000.40c -1.4 24050.60c -0.004 24052.60c -0.084 24053.60c -0.01 24054.60c -0.002 26054.60c -0.011 26056.60c -0.184 26057.60c -0.004 26058.60c -0.001 8016.50c -0.12 c
m3 1001.50c -11.18983 $ fresh water
Calc Package No.: VSC-03.3606 Page 177 of 191 Revision 0 8016.50c -88.81017 c
m4 26054.60c -5.8032 $ Carbon Steel 26056.60c -90.2158 26057.60c -2.0656 26058.60c -0.2754 6000.50c -0.27 14000.50c -0.3 15031.50c -0.035 16032.50c -0.035 25055.50c -1.0 c
m5 82000.50c -1.0 $ lead c
m6 24000.50c -19.0 $ SS-304 25055.50c -2.0 26000.55c -69.75 28000.50c -9.25 c
m7 14000.50c -0.75 $ XM-19 24000.50c -22.0 25055.50c -5.0 26000.55c -57.5 28000.50c -12.5 42000.50c -2.25 c
m11 13027.50c -2.0863 $ Al2O3-B4C Absorber Material - 1.7% B4C 8016.50c -1.8557 6000.50c -0.0148 5011.56c -0.0435 c
m12 13027.50c -1.6964 $ Al2O3-B4C Absorber Material - 4.7% B4C 8016.50c -1.5089 6000.50c -0.0344 5011.56c -0.1009 c
m13 13027.50c -1.6157 $ Al2O3-B4C Absorber Material - 7.7% B4C 8016.50c -1.4371 6000.50c -0.0554 5011.56c -0.1626 c
m14 13027.50c -2.1001 $ Pure Al2O3 8016.50c -1.8689 c
m15 1001.50c -0.0903 $ Neutron Shield Mixture (NS4 + Iron) 5010.50c -0.0044 5011.56c -0.0196 6000.50c -0.4236 7014.50c -0.0301 8016.50c -0.6441 13027.50c -0.3236 26000.55c -0.4067 c
c c fuel material compositions (each assembly - each axial zone - 24x18) c c
c Cask 1 - Assembly 1 - 33997 MWd/MTU Avg - 3.00%
Calc Package No.: VSC-03.3606 Page 178 of 191 Revision 0 c Total Density: 9.8927 g/cc c Assembly 1 - Axial Zone 1 Fuel Material (22166 MWd/MTU - 3.00%)
m0101 92234.50c -2.040E+02 92235.50c -1.160E+04 92236.50c -3.260E+03 92238.50c -9.540E+05 93237.50c -2.650E+02 94238.50c -5.280E+01 94239.55c -4.630E+03 94240.50c -1.590E+03 94241.50c -1.680E+02 94242.50c -2.050E+02 95241.50c -6.230E+02 95243.50c -2.720E+01 42095.50c -5.370E+02 43099.50c -5.530E+02 44101.50c -5.200E+02 45103.50c -3.380E+02 47109.60c -5.200E+01 55133.50c -8.160E+02 60143.50c -6.130E+02 60145.50c -4.840E+02 62147.50c -2.210E+02 62149.50c -2.060E+00 62150.50c -1.840E+02 62151.50c -8.520E+00 63151.50c -2.360E+00 62152.50c -9.340E+01 63153.55c -6.750E+01 64155.50c -2.860E+00 8016.50c -1.345E+05 c Total Density: 9.8103 g/cc c Assembly 1 - Axial Zone 2 Fuel Material (32875 MWd/MTU - 3.00%)
m0102 92234.50c -1.910E+02 92235.50c -6.730E+03 92236.50c -3.930E+03 92238.50c -9.450E+05 93237.50c -4.380E+02 94238.50c -1.280E+02 94239.55c -4.950E+03 94240.50c -2.320E+03 94241.50c -2.580E+02 94242.50c -5.320E+02 95241.50c -9.500E+02 95243.50c -1.060E+02 42095.50c -7.540E+02 43099.50c -7.840E+02 44101.50c -7.670E+02 45103.50c -4.730E+02 47109.60c -9.110E+01 55133.50c -1.150E+03 60143.50c -7.720E+02 60145.50c -6.690E+02 62147.50c -2.660E+02 62149.50c -2.370E+00 62150.50c -2.960E+02 62151.50c -1.010E+01 63151.50c -2.780E+00 62152.50c -1.330E+02 63153.55c -1.180E+02 64155.50c -5.460E+00 8016.50c -1.345E+05 remainder of the 432 spent fuel material compositions - not shown c Total Density: 9.9735 g/cc c Assembly 24 - Axial Zone 17 Fuel Material (24150 MWd/MTU - 3.00%)
m2417 92234.50c -2.010E+02 92235.50c -1.050E+04 92236.50c -3.430E+03 92238.50c -9.530E+05 93237.50c -2.940E+02 94238.50c -6.470E+01 94239.55c -4.570E+03 94240.50c -1.760E+03 94241.50c -1.850E+02 94242.50c -2.580E+02 95241.50c -6.850E+02 95243.50c -3.740E+01 42095.50c -5.790E+02 43099.50c -5.980E+02 44101.50c -5.670E+02 45103.50c -3.650E+02 47109.60c -5.900E+01 55133.50c -8.810E+02 60143.50c -6.480E+02 60145.50c -5.210E+02 62147.50c -2.320E+02 62149.50c -2.090E+00 62150.50c -2.030E+02 62151.50c -8.870E+00 63151.50c -2.460E+00 62152.50c -1.010E+02 63153.55c -7.640E+01 64155.50c -3.270E+00 8016.50c -1.345E+05 c Total Density: 10.0346 g/cc c Assembly 24 - Axial Zone 18 Fuel Material (15118 MWd/MTU - 3.00%)
m2418 92234.50c -2.200E+02 92235.50c -1.600E+04 92236.50c -2.570E+03 92238.50c -9.590E+05 93237.50c -1.530E+02 94238.50c -2.080E+01 94239.55c -3.970E+03 94240.50c -1.030E+03 94241.50c -9.440E+01 94242.50c -7.280E+01 95241.50c -3.520E+02 95243.50c -6.310E+00 42095.50c -3.800E+02 43099.50c -3.890E+02 44101.50c -3.560E+02 45103.50c -2.360E+02 47109.60c -2.910E+01 55133.50c -5.750E+02 60143.50c -4.620E+02 60145.50c -3.460E+02 62147.50c -1.720E+02 62149.50c -1.850E+00 62150.50c -1.190E+02 62151.50c -7.560E+00 63151.50c -2.110E+00 62152.50c -6.440E+01 63153.55c -3.830E+01 64155.50c -1.570E+00 8016.50c -1.345E+05 c
c mt3 lwtr.01t c
c source specifications
Calc Package No.: VSC-03.3606 Page 179 of 191 Revision 0 c
ksrc 2.546 2.546 158.67 -2.546 2.546 158.67 6.737 2.546 158.67 -6.737 2.546 158.67 10.928 2.546 158.67 -10.928 2.546 158.67 (rest of 5184 neutron start location triplets (X,Y,Z) - not shown) 10.928 -65.411 -46.67 -10.928 -65.411 -46.67 15.119 -65.411 -46.67 -15.119 -65.411 -46.67 19.310 -65.411 -46.67 -19.310 -65.411 -46.67 c
c c control specifications c
kcode 5184 0.86 50 500 10000 print
Calc Package No.: VSC-03.3606 Page 180 of 191 Revision 0 File Sqp01 - SASQUASH Input File for Palisades MSB #1 Isotopic Concentrations 432 1 s01a Stop 7
u234 92234.50c 1.00 u235 92235.50c 1.00 u236 92236.50c 1.00 u238 92238.50c 1.00 np237 93237.50c 1.00 pu238 94238.50c 1.00 pu239 94239.55c 1.00 pu240 94240.50c 1.00 pu241 94241.50c 1.00 pu242 94242.50c 1.00 am241 95241.50c 1.00 am243 95243.50c 1.00 mo 95 42095.50c 1.00 tc 99 43099.50c 1.00 ru101 44101.50c 1.00 rh103 45103.50c 1.00 ag109 47109.60c 1.00 cs133 55133.50c 1.00 nd143 60143.50c 1.00 nd145 60145.50c 1.00 sm147 62147.50c 1.00 sm149 62149.50c 1.00 sm150 62150.50c 1.00 sm151 62151.50c 1.00 eu151 63151.50c 1.00 sm152 62152.50c 1.00 eu153 63153.55c 1.00 gd155 64155.50c 1.00 Stop
Calc Package No.: VSC-03.3606 Page 181 of 191 Revision 0
- 10.
ATTACHMENT B H01 Assembly 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 A
B C
D E
F G
H K
L M
N P
R S
L02 A-01 L02 B-01 L02 N-01 L02 P-01 L02 R-01 L02 S-01 L02 R-02 L02 S-02 L02 S-03 L02 S-04 L02 A-14 L02 A-15 L02 S-14 L02 S-15 L05 A-01 L05 B-01 L05 S-01 L05 S-02 L05 A-15 L05 B-15 L05 N-15 L05 P-15 L05 R-14 L05 S-15 L05 R-15 ID L05 S-14 L05 S-13 L05 S-12 L08 A-01 L08 A-02 L08 S-01 L08 S-02 L08 R-15 L08 S-15 L08 A-12 L08 A-13 L08 B-14 Stainless Steel Rod LEGEND Instrument Tube Guide Bar Guide Tube
Calc Package No.: VSC-03.3606 Page 182 of 191 Revision 0 H03 Assembly 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 A
B C
D E
F G
H K
L M
N P
R S
L08 A-15 L08 A-14 L08 B-15 L08 C-15 L08 D-15 L11 B-02 L11 A-01 L11 A-02 L11 B-01 L11 C-01 L11 D-01 L11 A-03 L11 A-04 L11 R-01 L11 S-01 L11 S-15 L11 R-15 L11 A-15 L11 A-14 L13 B-02 L13 A-01 L13 A-02 L13 B-01 L13 C-01 L13 D-01 ID L13 A-03 L13 A-04 L13 R-01 L13 S-01 L13 S-15 L13 R-15 L13 A-15 L13 A-14 L14 A-01 L14 B-01 L14 S-01 L14 S-02 Stainless Steel Rod LEGEND Instrument Tube Guide Bar Guide Tube
Calc Package No.: VSC-03.3606 Page 183 of 191 Revision 0 H31 Assembly 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 A
B C
D E
F G
H K
L M
N P
R S
L14 S-12 L14 S-13 L14 R-14 L14 S-15 L14 S-14 L14 R-15 L14 P-15 L14 N-15 L14 B-15 L14 A-15 L15 A-01 L15 B-01 L15 N-01 L15 P-01 L15 R-02 L15 S-01 L15 R-01 L15 S-02 L15 S-03 L15 S-04 L15 S-14 L15 S-15 L15 A-15 L15 A-14 L16 A-01 L16 A-02 L16 S-01 L16 S-02 L16 S-15 L16 R-15 L16 D-15 L16 C-15 L16 B-14 L16 A-15 L16 B-15 L16 A-14 L16 A-13 ID Stainless Steel Rod LEGEND Instrument Tube Guide Bar Guide Tube
Calc Package No.: VSC-03.3606 Page 184 of 191 Revision 0 H38 Assembly 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 A
B C
D E
F G
H K
L M
N P
R S
ID L16 A-12 L17 A-01 L17 B-01 L17 S-01 L17 S-02 L17 S-12 L17 S-13 L17 R-14 L17 S-15 L17 S-14 L17 R-15 L17 P-15 L17 N-15 L17 B-15 L17 A-15 L18 B-02 L18 A-01 L18 A-02 L18 A-03 L18 A-04 L18 B-01 L18 C-01 L18 D-01 L18 R-01 L18 S-01 L18 S-15 L18 R-15 L18 A-15 L18 A-14 L19 A-01 L19 A-02 L19 S-01 L19 S-02 L19 S-15 L19 R-15 L19 B-14 L19 A-15 Stainless Steel Rod LEGEND Instrument Tube Guide Bar Guide Tube
Calc Package No.: VSC-03.3606 Page 185 of 191 Revision 0 H39 Assembly 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 A
B C
D E
F G
H K
L M
N P
R S
L19 B-15 L19 C-15 L19 D-15 L19 A-14 L19 A-13 L19 A-12 L20 A-01 L20 B-01 L20 R-02 L20 S-01 L20 R-01 L20 P-01 L20 N-01 L20 S-02 L20 S-03 L20 S-04 L20 S-14 L20 S-15 L20 A-15 L20 A-14 L33 A-01 L33 B-01 L33 R-02 L33 S-01 L33 N-01 L33 P-01 L33 R-01 L33 S-02 L33 S-03 L33 S-04 L33 S-15 L33 S-14 L33 A-15 L33 A-14 L40 A-01 L40 B-01 L40 S-01 ID Stainless Steel Rod LEGEND Instrument Tube Guide Bar Guide Tube
Calc Package No.: VSC-03.3606 Page 186 of 191 Revision 0 H59 Assembly 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 A
B C
D E
F G
H K
L M
N P
R S
L40 S-02 L40 R-14 L40 S-15 L40 S-14 L40 S-13 L40 S-12 L40 R-15 L40 P-15 L40 N-15 L40 A-15 L40 B-15 L47 A-01 L47 A-02 L47 S-01 L47 S-02 L47 S-15 L47 R-15 L47 B-14 L47 A-15 L47 B-15 L47 C-15 L47 D-15 L47 A-14 L47 A-13 L47 A-12 ID L54 B-02 L54 A-01 L54 A-02 L54 A-03 L54 A-04 L54 B-01 L54 C-01 L54 D-01 L54 S-01 L54 R-01 L54 S-15 L54 R-15 Stainless Steel Rod LEGEND Instrument Tube Guide Bar Guide Tube
Calc Package No.: VSC-03.3606 Page 187 of 191 Revision 0 H65 Assembly 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 A
B C
D E
F G
H K
L M
N P
R S
L54 A-15 L54 A-14 ID Stainless Steel Rod LEGEND Instrument Tube Guide Bar Guide Tube
Calc Package No.: VSC-03.3606 Page 188 of 191 Revision 0 H32 Assembly 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 A
B C
D E
F G
H K
L M
N P
R S
ID Inert Rod LEGEND Instrument Tube Guide Bar Guide Tube
Calc Package No.: VSC-03.3606 Page 189 of 191 Revision 0 H34 Assembly 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 A
B C
D E
F G
H K
L M
N P
R S
ID Inert Rod LEGEND Instrument Tube Guide Bar Guide Tube
Calc Package No.: VSC-03.3606 Page 190 of 191 Revision 0 J09 Assembly 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 A
B C
D E
F G
H K
L M
N P
R S
J09 B-14 ID Inert Rod LEGEND Instrument Tube Guide Bar
Calc Package No.: VSC-03.3606 Page 191 of 191 Revision 0 L59 Assembly 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 A
B C
D E
F G
H K
L M
N P
R S
ID L59 D-08 Inert Rod LEGEND Instrument Tube Guide Bar