ML061360325

From kanterella
Jump to navigation Jump to search
Licensing Document Transmittal - Fermi 2 Technical Requirements Manual - Vol I, Revision 81
ML061360325
Person / Time
Site: Fermi DTE Energy icon.png
Issue date: 04/27/2006
From:
Detroit Edison
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
Download: ML061360325 (29)


Text

DjFTROI'T EDISON -

FERMI 2 AUTOMATED RECORD MANAGEMENT DISTRIBUTION CONTROL LIST 04/27/06 To: 00935 US NRC DOCUMENT CNTRL DESK PAGE 2

WASHINGTON, DC 20555 Media: 8 1/2 X 11 Number Cnt Issue DTC Doc. Serial Number Page Rev Copies Lvl Date Sec Status TMTRM TRM VOL I 81 1

IR 04/27/06 AFC Plase destroy or mark all revised, superseded, or cancelled documents as such.

CONTROLLED stamps must be voided by lining through and initialing.

Detroit Edison EF2, C/O Info Mgmt 140 NOC, 6400 North Dixie Highway,

==

Detroit Edison EF2, C/O Info Mgmt 140 NOC, 6400 North Dixie Highway, Newport MI 48166. (734) 586-4338 OR (734) 586-4061 for questions or concerns.

Ref: e58683 PooOI

if 5

LICENSING DOCUMENT TRANSMITTAL FERMI 2 TECHMNCAL REQUIREMENTS MANUAL - VOL I Revision 81 dated 4/27/06 Immediately, upon receipt of the item(s) below, please insert and/or remove the pages indicated.

Destroy the removed pages. Be sure that Revision 81 has been inserted prior to inserting these pages.

Location In Front of TRM Manual Remove Insert Title Page Rev 80 4/05/06 Title Page Rev 81 4/27/06 Immediately following Title Page List of Effective Pages LEP-1 through LEP-4 Rev 80 04/05/06 List of Effective Pages LEP-1 through LEP-4 Rev 81 04/27/06 Core Operating Limts Report COLR, Cycle 11, Revison 0 COLR, Cycle 12, Revision 0 END

IC

'A Fermi 2 Technical Requirements Manual Volume I Detroit Edison ARMS - INFORA" TION DTC: TMTRM I File: 1754 DSN: TRM VOL I I Rev: 81 Date 04/27/2006 Recipient

-f FkRmI 2 -

TECENICAL REQUIREMDTS MANUAL VOL I LIST OF EFFECTIVE PAGES Page Revision Page Revision TRM i TRM ii TRM iii TRM iv TRM v TRM vi TRM 1.0-a TRM 1.0-1 TRM 2.0-1 TRM 3.0-a TRM 3.0-1 TRM 3.0-2 TRM 3.0-3 TRM 3.0-4 TRM 3.1-a TRM 3.1-1 TRM 3.2-1 TRM 3.3-a TRM 3.3-b TRM 3.3-c TRE 3.3-d TRM 3.3-1 TRM 3.3-2 TRM 3.3-3 TRM 3.3-4 TRM 3.3-5 TRM 3.3-6 TRM 3.3-7 TRM 3.3-8 TRM 3.3-9 TRM 3.3-10 TRM 3.3-11 TRM 3.3-12 TRM 3.3-13 TRM 3.3-13a TRM 3.3-14 TRM 3.3-15 TRM 3.3-16 TRM 3.3-17 TRM 3.3-18 TRM 3.3-19 TRM 3.3-20 TRM 3.3-21 TRM 3.3-22 TRM 3.3-23 TRM 3.3-24 TRM 3.3-25 TRM 3.3-26 TRM 3.3-27 TRM 3.3-28 TRE 3.3-29 TRM 3.3-30 Revision 76 Revision 73 Revision 31 Revision 76 Revision 79 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 63 Revision 72 Revision 54 Revision 72 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 34 Revision 59 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 67

-Revision 74 Revision 67 Revision 67 Revision 31 Revision 31 Revision 31 Revision 52 Revision 31 Revision 31 Revision 59 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 76 Revision 76 Revision 31 TRM 3.3-31 TRM 3.3-32 TRM 3.3-33 TRM 3.3-34 TRM 3.3-35 TRM 3.3-36 TRM 3.3-37 TRM 3.3-38 TRM 3.3-39 TRM 3.3-40 TRM 3.3-41 TRM 3.3-42 TRM 3.3-43 TRM 3.3-44 TRM 3.3-45 TRE 3.3-46 TRM 3.3-47 TRM 3.3-48 TRM 3.3-49 TRE 3.4-a TRM 3.4-1 TRM 3.4-la TRM 3.4-lb TRM 3.4-2 TRM 3.4-3 TRM 3.4-4 TRM 3.4-5 TRM 3.4-6 TRM 3.4-7 TRM 3.4-8 TRM 3.4-9 TRE 3.4-10 TRM 3.5-1 TRM 3.6-a TRM 3.6-1 TRM 3.6-2 TRM 3.6-3 TRM 3.6-4 TRM 3.6-5 TRM 3.6-6 TRM 3.6-7 TRM 3.6-8 TRM 3.6-9 TRM 3.6-10 TRM 3.6-11 TRM 3.6-12 TRM 3.6-13 TRM 3.6-14 TRM 3.6-15 TRM 3.6-16 TRM 3.6-17 TRM 3.6-18 Revision 31 Revision 31 Revision 31 Revision 31 Revision 60 Revision 41 Revision 72 Revision 31 Revision 31 Revision 56 Revision 56 Revision 45 Revision 62 Revision 72 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 36 Revision 71 Revision 71 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 70 Revision 60 Revision 67 Revision 31 Revision 55 Revision 31 Revision 33 Revision 31 Revision 31 Revision 66 Revision 31 Revision 31 Revision 31 Revision 71 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 TRM Vol. I LEP-1 REV 81 04/27/06

FiEmI 2 -

TECHNICAL REQUIREVENTS KANUAL VOL I LIST OF EFFECTIVE PAGES Page Page Revision Revision TRM 3.6-19 TRM 3.6-20 TRM 3.6-21 TRM 3.6-22 TRM 3.6-23 TRM 3.6-24 TRM 3.6-25 TRM 3.6-26 TRM 3.6-27 TRM 3.6-28 TRM 3.6-29 TRM 3.6-30 TRM 3.6-31 TRM 3.6-32 TRW 3.6-33 TRM 3.6-34 TRM 3.6-35 TRM 3.7-a TRM 3.7-b TRM 3.7-1 TRM 3.7-2 TRM 3.7-3 TRM 3.7-4 TRM 3.7-5 TRM 3.7-6 TRM 3.7-7 TRM 3.7-8 TRM 3.7-9 TRM 3.7-10 TRM 3.7-11 TRM 3.7-12 TRM 3.7-13 TRM 3.7-14 TRM 3.7-15 TRM 3.7-16 TRM 3.7-17 TRM 3.7-18 TRM 3.7-19 TRM 3.7-20 TRM 3.8-a TRM 3.8-1 TRM 3.8-2 TRM 3.8-3 TRM 3.8-4 TRM 3.8-5 TRM 3.8-6 TRM 3.8-7 TRM 3.8-8 TRM 3.8-9 TRM 3.8-10 TRM 3.8-11 TRM 3.8-12 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 58 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 70 Revision 31 Revision 31 Revision 31 Revision 73 Revision 31 Revision 60 Revision 70 Revision 70 Revision 73 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 44 Revision 31 Revision 72 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 77 Revision 31 Revision 79 Revision 31 Revision 31 Revision 31 Revision 73 Revision 31 Revision 31 Revision 50 Revision 50 Revision 50 Revision 50 Revision 50 Revision 50 Revision 31 TRM 3.8-13 TEN 3.8-14 TRE 3.8-15 TRM 3.8-16 TRE 3.8-17 TRE 3.8-18 TRM 3.9-a TRE 3.9-1 TRM 3.9-2 TRM 3.9-3 TRM 3.9-4 TRE 3.9-5 TRE 3.10-1 TRM 3.11-a TRM 3.11-1 TRM 3.12-a TRM 3.12-1 TRE 3.12-2 TRM 3.12-3 TRE 3.12-4 TRE 3.12-5 TRE 3.12-6 TRE 3.12-7 TRE 3.12-8 TRE 3.12-9 TRE 3.12-10 TRE 3.12-11 TRE 3.12-12 TRE 3.12-13 TRM 3.12-14 TRM 3.12-15 TRE 3.12-16 TRX 3.12-17 TRM 3.12-18 TRE 3.12-19 TRM 3.12-20 TRM 3.12-21 TRE 3.12-22 TRM 3.12-23 TRE 3.12-24 TRM 3.12-25 TRM 3.12-26 TRE 3.12-27 TRE 3.12-28 TRE 3.12-29 TRE 3.12-30 TRM 4.0-1 TRM 5.0-a TRM 5.0-1 TRM 5.0-2 TRM 5.0-3 TRM 5.0-4 Revision 61 Revision 46 Revision 31 Revision 31 Revision 43 Revision 33 Revision 31 Revision 31 Revision 65 Revision 80 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 75 Revision 31 Revision 31 Revision 53 Revision 53 Revision 53 Revision 31 Revision 57 Revision 40 Revision 31 Revision 49 Revision 31 Revision 75 Revision 31 Revision 31 Revision 75 Revision 31 Revision 75 Revision 31 Revision 75 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 75 Revision 31 Revision 31 Revision 78 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 TRM Vol. I LEP-2 REV 81 04/27/06

FERMI 2 -

TECENICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES Page Page Revision Revision TRM 5.0-5 TRM 5.0-6 TRM 5.0-7 TRM 5.0-8 TRM 5.0-9 TRE B1.0-1 TRM B2.0-1 TRM B3.0-1 TRE B3.0-2 TRM B3.0-2a TRE B3.0-2b TRE B3.0-2c TRE B3.0-3 TRE B3.0-4 TRM B3.0-5 TRM B3.0-6 TRM B3.0-7 TRM B3.1-1 TRE B3.2-1 TRE B3.3.1-1 TRM B3.3.1-2 TRE B3.3.2-1 TRE B3.3.2-2 TRE B3.3.3-1 TRE B3.3.4-1 TRE B3.3.4-2 TRE B3.3.5-1 TRM B3.3.5-2 TRM B3.3.6-1 TRE B3.3.6-2 TRM B3.3.6-3 TRM B3.3.6-4 TRM B3.3.6-5 TRM B3.3.6-6 TRM B3.3.7-1 TRM B3.3.7-2 TRM B3.3.8-1 TRM B3.3.9-1 TRM B3.3.10-1 TRM B3.3.11-1 TRM B3.3.12-1 TRM B3.3.13-1 TRM B3.3.14-1 TRM B3.4.1-1 TRM B3.4.1-2 TRE B3.4.1-3 TRN B3.4.1-4 TRM B3.4.1-5 TRM B3.4.2-1 TRE B3.4.3-1 TRE B3.4.4-1 TRM B3.4.5-1 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 63 Revision 63 Revision 72 Revision 72 Revision 72 Revision 31 Revision 31 Revision 54 Revision 72 Revision 72 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 67 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 31 Revision 76 Revision 76 Revision 31 Revision 31 Revision 31 Revision 31 Revision 56 Revision 45 Revision 62 Revision 31 Revision 31 Revision 31 Revision 71 Revision 71 Revision 71 Revision 71 Revision 31 Revision 31 Revision 31 Revision 31 TRM TRM TRM TRM TRE TRM TRM TRM TRM TRM TRE TRM TRE TRK TRM TRM TRM TRM TRE TRM TRM TRM TRM TRM TRM TRM TRM TRM TRM TRM TRM TRM TRM TRM TRM TRM TRM TRE TRM TRM TRM B3.4.6-1 B3.4.7-1 B3.5-1 B3.6.1-1 B3.6.2-1 B3.6.3-1 B3.6.4-1 B3.6.5-1 B3.6.6-1 B3.6.7-1 B3.6.8-1 B3.7.1-1 B3.7.2-1 B3.7.3-1 B3.7.4-1 B3.7.4-2 B3.7.5-1 B3.7.6-1 B3.7.7-1 B3.7.8-1 B3.7.9-1 B3.8.1-1 B3.8.2-1 B3.8.3-1 B3.8.4-1 B3.8.5-1 B3.8.6-1 B3.9.1-1 B3.9.2-1 B3.9.3-1 B3.9.4-1 B3.10-1 B3.11.1-1 B3.12.1-1 B3.12.2-1 B3.12.3-1 B3.12.4-1 B3.12.5-1 B3.12.6-1 B3.12.7-1 B3.12.8-1 Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision Revision 31 31 31 31 67 68 31 31 70 31 31 31 31 73 31 31 31 31 31 31 79 31 31 31 31 31 43 31 65 31 31 31 31 31 44 31 31 31 31 31 31 TRM Vol. I LEP-3 REV 81 04/27/06

FERMI 5 -

TECENICAL REQUIREMNTS KANtAL VOL I LIST OF EFFECTIVE PAGES CORE OPERATING LIMITS REPORT COLR 12, Revision 0 Page Revision Notation Page 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

f0 10 0

11 0

12 0

13 0

14 0

15 0

16 0

17 0

18 0

19 0

20 0

21 0

22 0

TRM Vol. I LEP-4 REV 81 04/27/06

I g

COLR - 12 Revision 0 Page 1 of 22 FERMI 2 CORE OPERATING LIMITS REPORT CYCLE 12 REVISION 0 P. R. Kiel Prepared by:

Reviewed by:

Approved by:

T. W. Morrison Station Nuclear Engineer K. fTages-xof COLR Checklist Reviewer R. A. Gailliez E

e Supervisor - Reactor Engineering Date y/, zy/a, 6

Date 3/

3 t Date 3at6 6 Date April 2006

COLR - 12 Revision 0 Page 2 of 22 TABLE OF CONTENTS

1.0 INTRODUCTION

AND

SUMMARY

4 2.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE..............................

5 2.1 Definition.................................................

5 2.2 Determination of MAPLHGR Limit................................................. 5 2.2.1 Calculation of MAPFAC(P).................................................

7 2.2.2 Calculation of MAPFAC(F).................................................

8 3.0 MINIMUM CRITICAL POWER RATIO.

9 3.1 Definition 9

3.2 Determination of Operating Limit MCPR 9

3.3 Calculation of MCPR(P)..

10 3.3.1 Calculation of K.11 3.3.2 Calculation of t.

12 3.4 Calculation of MCPR(F) 13 4.0 LINEAR HEAT GENERATION RATE

........................................ 14 4.1 Definition.......................................................

14 4.2 Determination of LHGR Limit

...................... 14 4.2.1 Calculation of LHGRFAC(P)....................

.................... 16 4.2.2 Calculation of LHGRFAC(F)........................................

17 5.0 CONTROL ROD BLOCK INSTRUMENTATION........................................

18 5.1 Definition........................................

18 6.0 BACKUP STABILITY PROTECTION REGIONS 19 6.1 Definition......................

19

7.0 REFERENCES

21 7.1 Source References.............................

21 7.2 Basis References.

21

COLR-12 Revision 0 Page 3 of 22 LIST OF TABLES TABLE 1 FUEL TYPE-DEPENDENT STANDARD MAPLHGR LIMITS............................. 6 TABLE 2 FLOW-DEPENDENT MAPLHGR LIMIT COEFFICIENTS................................... 8 TABLE 3 OLMCPR1 oollo5 AS A FUNCTION OF EXPOSURE ANDT................................. 10 TABLE 4 FLOW-DEPENDENT MCPR LIMIT COEFFICIENTS......................................... 13 TABLE 5 STANDARD LHGR LIMITS FOR VARIOUS FUEL TYPES............................... 15 TABLE 6 FLOW-DEPENDENT LHGR LIMIT COEFFICIENTS.......................... e................ 17 TABLE 7 CONTROL ROD BLOCK INSTRUMENTATION SETPOINTS WITH FILTER.................................................................................................................... 18 TABLE 8 BSP REGION DESCRIPTIONS.....................................................

19 LIST OF FIGURES FIGURE 1 BSP REGIONS FOR NOMINAL FEEDWATER TEMPERATURE.20

COLR -12 Revision 0 COLR - 12 Revision 0 Page 4 of 22

1.0 INTRODUCTION

AND

SUMMARY

This report provides the cycle specific plant operating limits, which are listed below, for Fermi 2, Cycle 12, as required by Technical Specification 5.6.5. The analytical methods used to determine these core operating limits are those previously reviewed and approved by the Nuclear Regulatory Commission in GESTAR II (Reference 8).

The cycle specific limits contained within this report are valid for the full range of the licensed operating domain.

COLR - 12 Revision 0 Page 5 of 22 2.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE TECH SPEC IDENT OPERATING LIMIT 3.2.1 APLHGR 2.1 Definition The AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR) shall be applicable to a specific planar height and is equal to the sum of the LINEAR HEAT GENERATION RATEs (LHGRs) for all the fuel rods in the specified bundle at the specified height divided by the number of fuel rods in the fuel bundle at the height.

2.2 Determination of MAPLHGR Limit The maximum APLHGR (MAPLHGR) limit is a function of reactor power, core flow, fuel type, and average planar exposure. The limit is developed, using NRC approved methodology described in References 1 and 2, to ensure gross cladding failure will not occur following a loss of coolant accident (LOCA).

The MAPLHGR limit ensures that the peak clad temperature during a LOCA will not exceed the limits as specified in IOCFR50.46(b)(1) and that the fuel design analysis criteria defined in References 8 and 9 will be met.

The MAPLHGR limit during dual loop operation is calculated by the following equation:

MAPLHGRLMff = MIN (MAPLHGR (P), MAPLHGR (F))

where:

MAPLHGR (P) = MAPFAC (P) x MAPLHGRSTD MAPLHGR (F) = MAPFAC (F) x MAPLHGRPT Within four hours after entering single loop operation, the MAPLHGR limit is calculated by the following equation:

MAPLHGRIJMIT = MIN (MAPLHGR (P), MAPLHGR (F), MAPLHGR (SLO))

where:

MAPLHGR (SLO) = 1.0 x MAPLHGRs.D The Single Loop multiplier is 1.0 since the offrated ARTS limits bound the single loop MAPLHGR limit.

COLR - 12 Revision 0 Page 6 of 22 MAPLHGRS,,,, the standard MAPLHGR limit, is defined at a power of 3430 MWt and flow of 105 Mlbs/hr for each fuel type as a function of average planar exposure and is presented in Table 1.

When hand calculations are required, MAPLHGR,,, shall be determined by interpolation from Table 1.

MAPFAC(P), the core power-dependent MAPLHGR limit adjustment factor, shall be calculated by using Section 2.2.1.

MAPFAC(F), the core flow-dependent MAPLHGR limit adjustment factor, shall be calculated by using Section 2.2.2.

TABLE 1 FUEL TYPE-DEPENDENT STANDARD MAPLHGR LIMITS GEll Exposure GEll MAPLHGR GE14 Exposure GE14 MAPLHGR GWD/ST KW/FT GWD/ST KW/FT 0.0 19.72 27.22 63.50 13.42 13.42 12.29 8.90 0.0 19.13 57.61 63.50 12.82 12.82 8.00 5.00 Fuel Types 17 = GEL1-P9CUB380-IIGZ-lOOT-146-T6-2542 18 = GEl1-P9CUB404-12GZ-10OT-146-T6-2543 19 = GEll-P9CUB408-12GZ-10OT-146-T6-2604 20 = GEll-P9CUB380-12GZ-lOOT-146-T6-2605 1 = GE14-PlOCNAB400-16GZ-10OT-150-T6-2787 2 = GE14-PlOCNAB399-16GZ-10OT-150-T6-2788 3 = GE14-PlOCNAB380-1OG5/4G4-10OT-150-T6-2868 4 = GE14-PlOCNAB381-7G5/8G4-10OT-150-T6-2869 5 = GE14-PlOCNAB381-7G6/8G4-lOOT-150-T6-2877

COLR - 12 Revision 0 Page 7 of 22 2.2.1 Calculation of MAPFAC(P)

The core power-dependent MAPLHGR limit adjustment factor, MAPFAC(P) (Reference 3),

shall be calculated by one of the following equations:

For 0 < P < 25:

No thermal limits monitoring is required.

For 25 < P < 30:

With turbine bypass OPERABLE, For core flow < 50 Mlbs/hr, MAPFAC (P) = 0.606 + 0.0038 (P - 30)

For core flow > 50 Mlbs/hr, MAPFAC (P) = 0.586 + 0.0038 (P - 30)

With turbine bypass INOPERABLE, For core flow < 50 Mlbs/hr, MAPFAC(P)= 0.490 + 0.0050(P -30)

For core flow > 50 Mlbs/hr, MAPFAC(P) = 0.438+0.OO50(P-30)

For 30 < P < 100:

MAPFAC(P) = 1.0 +0.005224(P-100) where:

P = Core power (fraction of rated power times 100).

COLR - 12 Revision 0 Page 8 of 22 2.2.2 Calculation of MAPFAC(F)

The core flow-dependent MAPLHGR limit adjustment factor, MAPFAC(F) (Reference 3),

shall be calculated by the following equation:

WI' MAPFAC(F) = MIN(I.0, AFX -0 + BF) 100 where:

WT = Core flow (Mlbs/hr).

AF = Given in Table 2.

BF

=

Given in Table 2.

TABLE 2 FLOW-DEPENDENT MAPLHGR LIMIT COEFFICIENTS Maximum Core Flow*

(Mlbs/hr)

AF BF 110 0.6787 0.4358 As limited by the Recirculation System MG Set mechanical scoop tube stop setting.

COLR -12 Revision 0 Page 9 of 22 3.0 MINIMUM CRITICAL POWER RATIO TECH SPEC IDENT OPERATING LIMIT 3.2.2 MCPR 3.1 Definition The MINIMUM CRITICAL POWER RATIO (MCPR) shall be the smallest Critical Power Ratio (CPR) that exists in the core for each type of fuel.

The CPR is that power in the assembly that is calculated by application of the appropriate correlation(s) to cause some point in the assembly to experience boiling transition, divided by the actual assembly operating power.

3.2 Determination of Operating Limit MCPR The required Operating Limit MCPR (OLMCPR) (Reference 2) at steady-state rated power and flow operating conditions is derived from the established fuel cladding integrity Safety Limit MCPR and an analysis of abnormal operational transients. To ensure that the Safety Limit MCPR is not exceeded during any anticipated abnormal operational transient, the most limiting transients have been analyzed to determine which event will cause the largest reduction in CPR. Three different core average exposure conditions are evaluated. The result is an Operating Limit MCPR which is a function of exposure and A. ¶ is a measure of scram speed, and is defined in Section 3.3.2. Cycle 12 operating limits are based on the Dual Loop SLMCPR of 1.08.

The OLMCPR shall be calculated by the following equation:

OLMCPR = MAX(MCPR(P), MCPR(F))

MCPR(P), the core power-dependent MCPR operating limit, shall be calculated using Section 3.3.

MCPR(F), the core flow-dependent MCPR operating limit, shall be calculated using Section 3.4.

In case of Single Loop Operation, the Safety Limit MCPR (Reference 2) is increased to account for increased uncertainties in core flow measurement and TIP measurement, but OLMCPR does not change. This is due to the fact that sufficient conservatism exists in the power-dependent MCPR operating limits to allow for the increase in the SLMCPR without requiring a corresponding increase in OLMCPR.

COLR - 12 Revision 0 Page 10 of 22 3.3 Calculation of MCPR(P)

MCPR(P), the core power-dependent MCPR operating limit (Reference 3), shall be calculated by the following equation:

MCPR(P) = Kp x OLMCPR1ooo0 5 Kp, the core power-dependent MCPR Operating Limit adjustment factor, shall be calculated by using Section 3.3.1.

OLMCPR1 oo 0

1 05 shall be determined by interpolation from Table 3, and T shall be calculated by using Section 3.3.2.

TABLE 3 OLMCPR1 oo/lo5 AS A FUNCTION OF EXPOSURE AND T EXPOSURE (MWD/ST)

CONDITION OLMCPR1001105 Both Turbine Bypass and Moisture Separator Reheater OPERABLE BOC to 7300 T=1 I = I 1.36 1.47 7300 to 9300 T=O T = 1 1.38 1.49 1.44 1.61 9300toEOC T=0 T = 1 Either Turbine Bypass or Moisture Separator Reheater INOPERABLE BOC to EOC T=o T = 1 1.47 1.64 Both Turbine Bypass and Moisture Separator Reheater INOPERABLE BOC to EOC T=0 T=1 1.50 1.67

COLR - 12 Revision 0 Page 11 of 22 3.3.1 Calculation of K, The core power-dependent MCPR operating limit adjustment factor, K, (Reference 3), shall be calculated by using one of the following equations:

For 0 < P < 25 No thermal limits monitoring is required.

For 25 < P < 30:

When turbine bypass is OPERABLE, K

- (KBYP+(O.O32x(30-P)))

OLMCPRoolos where:

KBP = 2.16 for core flow < 50 Mlbs/hr

= 2.44 for core flow > 50 Mlbs/hr When turbine bypass is INOPERABLE, K

(KBYP+ (O. O76 x (30 - P)))

OLMCPRiooio.

5 where:

KBYP = 2.61 for core flow :< 50 Mlbs/hr

= 3.34 for core flow > 50 Mlbs/hr For 30 < P < 45 Kp= 1.28 + (0.0134 x (45-P))

For 45 < P < 60:

KP= 1.15 + (0.00867 x (60-P))

For 60 < P < 100:

Kp =1.0 + (0.00375 x (100-P))

where:

P = Core power (fraction of rated power times 100).

COLR -12 Revision 0 Page 12 of 22 3.3.2 Calculation of T The value of t, which is a measure of the conformance of the actual control rod scram times to the assumed average control rod scram time in the reload licensing analysis, shall be calculated by using the following equation:

Orae -TB)

VT - T where:

A=

1.096 seconds

= 0.830 + 0.019 x 1.65 seconds ZlNi Ei=1 n

ZNZT ave ZNi EMi i=1 n = number of surveillance tests performed to date in cycle, N, = number of active control rods measured in the is surveillance test, To = average scram time to notch 36 of all rods measured in the it' surveillance test, and N = total number of active rods measured in the initial control rod scram time test for the cycle (Technical Specification Surveillance Requirement 3.1.4.4).

The value of t shall be calculated and used to determine the applicable OLMCPR,1,,1, value from Table 3 within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> of the conclusion of each control rod scram time surveillance test required by Technical Specification Surveillance Requirements 3.1.4.1, 3.1.4.2, and 3.1.4.4. Prior to performance of the initial scram time measurements for the cycle, a t value of 1.0 shall be used to determine the applicable OLMCPRi,,,is value from Table 3.

COLR - 12 Revision 0 Page 13 of 22 3.4 Calculation of MCPR(F)

MCPR(F), the core flow-dependent MCPR operating limit (Reference 3), shall be calculated by using the following equation:

MCPR(F) = MAX(I.21, (AF X 1

+ BF))

100 where:

WT = Core flow (Mlbs/hr).

AF = Given in Table 4.

BF

=

Given in Table 4.

TABLE 4 FLOW-DEPENDENT MCPR LIMIT COEFFICIENTS Maximum Core Flow*

(Mlbs/hr)

Al BF 110

-0.601 1.743 As limited by the Recirculation System MG Set mechanical scoop tube stop setting.

COLR - 12 Revision 0 Page 14 of 22 4.0 LINEAR HEAT GENERATION RATE TECH SPEC IDENT OPERATING LIMIT 3.2.3 LHGR 4.1 Definition The LINEAR HEAT GENERATION RATE (LHGR) shall be the heat generation rate per unit length of fuel rod. It is the integral of the heat flux over the heat transfer area associated with the unit length. By maintaining the operating LHGR below the applicable LHGR limit, it is assured that all thermal-mechanical design bases and licensing limits for the fuel will be satisfied.

4.2 Determination of LHGR Limit The maximum LHGR limit is a function of reactor power, core flow, fuel and rod type, and fuel rod nodal exposure. The limit is developed, using NRC approved methodology described in References 1 and 2, to ensure the cladding will not exceed its yield stress and that fuel thermal-mechanical design criteria will not be violated during any postulated transient events.

The LHGR limit ensures the fuel mechanical design requirements as defined in References 1 will be met.

The LHGR limit during dual loop operation is calculated by the following equation:

LHGR.LMP = MIN (LHGR (P), LHGR (F))

where:

LHGR (P) = LHGRFA C (P) x LHGRsTD LHGR (F) = LHGRFAC (F) x LHGRsID LHGRD, the standard LHGR limit, is defined at a power of 3430 MWt and flow of 105 Mlbs/hr for each fuel and rod type as a function of fuel rod nodal exposure and is presented in Table 5. Table 5 contains only the most limiting Gadolinia LHGR limit for the maximum allowed Gadolinia concentration of the applicable fuel product line. When hand calculations are required, LHGRl, shall be determined by interpolation from Table 5. LHGRFAC(P), the core power-dependent LHGR limit adjustment factor, shall be calculated by using Section 4.2.1. LHGRFAC(F), the core flow-dependent LHGR limit adjustment factor, shall be calculated by using Section 4.2.2.

COLR - 12 Revision 0 Page 15 of 22 TABLE 5 STANDARD LHGR LIMITS FOR VARIOUS FUEL TYPES GEl 1 Uranium Only Fuel Rods Exposure LHGR GWD/ST KW/FT 0.0 14.40 13.24 14.40 27.22 12.29 63.50 8.90 GEl1 Most Limiting Gadolinia Bearing Fuel Rods Exposure LHGR GWD/ST KW/FT 0.0 12.74 10.59 12.74 23.99 10.87 58.81 7.88 GE14 Uranium Only Fuel Rods Exposure LHGR GWD/ST KW/FT 0.0 13.40 GE14 Most Limiting Gadolinia Bearing Fuel Rods Exposure LHGR 14.51 57.61 63.50 13.40 8.00 5.00 GWD/ST 0.0 12.28 55.00 60.84 KW/FT 12.26 12.26 7.32 4.57 Fuel Types 17 = GEL1-P9CUB380-11GZ-IOOT-146-T6-2542 1 = GE14-PIOCNAB400-16GZ-10fT-150-T6-2787 18 = GEl1-P9CUB404-12GZ-10OT-146-T6-2543 2 = GE14-PlOCNAB399-16GZ-lOOT-150-T6-2788 19 = GElI-P9CUB408-12GZ-10OT-146-T6-2604 3 = GE14-PIOCNAB380-lOG5/4G4-10OT-150-T6-2868 20 = GEl1-P9CUB380-12GZ-IOOT-146-T6-2605 4 = GE14-PlOCNAB381-7G5/8G4-lOOT-150-T6-2869 5 = GE14-PlOCNAB381-7G6/8G4-10OT-150-T6-2877

COLR - 12 Revision 0 Page 16 of 22 4.2.1 Calculation of LHGRFAC(P)

The core power-dependent LHGR limit adjustment factor, LHGRFAC(P) (Reference 3), shall be calculated by one of the following equations:

For 0 < P < 25:

No thermal limits monitoring is required.

For 25 < P < 30:

With turbine bypass OPERABLE, For core flow < 50 Mlbs/hr, LHGRFAC(P) = 0.606 + 0.0038 (P - 30)

For core flow > 50 Mlbs/hr, LHGRFAC (P) = 0.586 + 0.0038 (P - 30)

With turbine bypass INOPERABLE, For core flow < 50 Mlbs/hr, LHGRFAC(P) = 0. 490 + 0. 0050(P - 30)

For core flow > 50 Mlbs/hr, LHGRFA C(P) = 0.438 + 0.005O(P - 30)

For 30 < P < 100:

LHGRFAC(P)= 1.0 +0.005224(P -100) where:

P = Core power (fraction of rated power times 100).

COLR - 12 Revision 0 Page 17 of 22 4.2.2 Calculation of LHGRFAC(F)

The core flow-dependent LHGR limit adjustment factor, LHGRFAC(F) (Reference 3), shall be calculated by the following equation:

WT LHGRFAC(F) = MIN(L O, AFX 100 + BF) where:

WT = Core flow (Mlbs/hr).

A, = Given in Table 6.

BF =Given in Table 6.

TABLE 6 FLOW-DEPENDENT LHGR LIMIT COEFFICIENTS Maximum Core Flow (Mlbs/hr)

AF BF 110 0.6787 0.4358 As limited by the Recirculation System MG Set mechanical scoop tube stop setting.

i ICOLR

-12 Revision 0 Page 18 of 22 5.0 CONTROL ROD BLOCK INSTRUMENTATION TECH SPEC IDENT SETPOINT 3.3.2.1 RBM 5.1 Definition The nominal trip setpoints and allowable values of the control rod withdrawal block instrumentation are shown in Table 7.

These values are consistent with the bases of the APRM Rod Block Technical Specification Improvement Program (ARTS) and the MCPR operating limits. (References 2, 6, 7 & 15).

TABLE 7 CONTROL ROD BLOCK INSTRUMENTATION SETPOINTS WITH FILTER Setpoint LPSP IPSP HPSP LTSP ITSP HTSP DTSP Trip Setpoint 27.0 62.0 82.0 117.0 112.2 107.2 94.0 Allowable Value 28.4 63.4 83.4 118.9 114.1 109.1 92.3 where:

LPSP IPSP HPSP LTSP ITSP HTSP DTSP Low power setpoint; Rod Block Monitor (RBM) System trip automatically bypassed below this level Intermediate power setpoint High power setpoint Low trip setpoint Intermediate trip setpoint High trip setpoint Downscale trip setpoint

COLR - 12 Revision 0 Page 19 of 22 6.0 BACKUP STABILITY PROTECTION REGIONS TECH SPEC REFERENCE OPERATING LIMIT 3.3.1.1 Action Condition J Alternate method to detect and suppress thermal hydraulic instability oscillations TRM REFERENCE OPERATING LIMIT 3.4.1.1 Scram, Exit, and Stability Awareness Regions 6.1 Definition The Backup Stability Protection (BSP) Regions are an integral part of the Tech Spec required alternative method to detect and suppress thermal hydraulic instability oscillations in that they identify areas of the power/flow map where there is an increased probability that the reactor core could experience a thermal hydraulic instability. Regions are identified (refer to Table 8 and Figure 1) that are either excluded from planned entry (Scram Region), or where specific actions are required to be taken to immediately leave the region (Exit Region). A region is also identified where operation is allowed provided that additional monitoring is performed to verify that the reactor core is not exhibiting signs of core thermal hydraulic instability (Stability Awareness Region). (Reference 5)

The boundaries of these regions are established on a cycle specific basis based upon core decay ratio calculations performed using NRC approved methodology. The Cycle 12 regions are valid to a cycle exposure of 12,600 MWd/st. (Reference 2)

These regions are only applicable when the Upscale Trip function of the Oscillation Power Range Monitoring System (OPRM) is inoperable. It must be noted that the Cycle 12 region boundaries defined in Table 8 and illustrated in Figure 1 are not applicable to operation with Feedwater Heaters Out-Of-Service (FWHOOS) or with Final Feedwater Temperature Reduction (FFWTR).

TABLE 8 BSP REGION DESCRIPTIONS Scram Region:

> 96% Rod Line, < 43 % Core Flow

> 67 % Rod Line, < 41% Core Flow Exit Region:

> 77% Rod Line, < 48% Core Flow Not in Scram Region -and-

> 103% Rod Line, < 50% Core Flow

> 62% Rod Line, < 46% Core Flow Stability Awareness Region

> 72% Rod Line, < 53% Core Flow Not in Scram or Exit Region

> 98 % Rod Line, < 55 % Core Flow

COLR - 12 Revision 0 Page 20 of 22 FIGURE 1 - BSP REGIONS FOR NOMINAL FEEDWATER TEMPERATURE i:

I.Ed C

IE:

as I-W F-cula 30 40 50 60 Percent (%) of Rated Core Flow

COLR - 12 Revision 0 Page 21 of 22

7.0 REFERENCES

7.1 SOURCE REFERENCES

1. "Fuel Bundle Information Report for Enrico Fermi 2 Reload 11 Cycle 12," Global Nuclear Fuel, 0000-0038-3146-FIBR, Revision 0, January 2006 (LHGR Limits)
2.

"Supplemental Reload Licensing Report for Enrico Fermi 2 Reload 11 Cycle 12," Global Nuclear Fuel, 0000-0038-3146-SRLR, Revision 0, January 2006 (MAPLHGR Limits, SLO Multiplier, MCPR Limits, SLMCPR)

3. "GE14 Fuel Cycle-Independent Analyses for Fermi Unit 2", GE-NE-0000-0025-3282-00 dated November 2004 (ARTS Limits)
4. Letter from Greg Porter to B. L. Myers, "Scram Times for Improved Tech Specs." GP-99014, October 22, 1999 containing DRF A12-00038-3, Vol. 4 information from G. A. Watford, GE, to Distribution,

Subject:

Scram Times versus Notch Position (TAU Calculation)

5. Evaluation Report, "BSP Stability Evaluation for Fermi 2 Cycle 12," GENE-0000-0048-1142-RO, January 2006 (BSP Limits)
6. CSCCD-C51 K622/C51 R809C Revision 2, "Programming for Rod Block Monitor (RBM-A)

PIS # C51K622 and Operator Display Assembly (ODA) PIS # C5 1R809C" (RBM A Setpoints)

7. CSCCD-C51 K623/C51 R809D Revision 2, "Programming for Rod Block Monitor (RBM-B)

PIS # C51K623 and Operator Display Assembly (ODA) PIS # C5lR809D" (RBM B Setpoints) 7.2 BASIS REFERENCES

8. ""General Electric Standard Application for Reactor Fuel (GESTAR II)," NEDE-24011-P-A, Revision 14 as amended by Amendment 25
9. "The GESTR-LOCA and SAFER Models for the Evaluation of the Loss-of-Coolant Accident - SAFER/GESTR Application Methodology," NEDE 23785-1-PA, Revision 1, October 1984
10. "Fermi-2 SAFER/GESTR-LOCA, Loss-of-Coolant Accident Analysis," NEDC-31982P, July 1991, and Errata and Addenda No. 1, April 1992
11. "DTE Energy Enrico Fermi 2 SAFER/GESTR Loss of Coolant Accident Analysis for GE14 Fuel" GE-NE-0000-0030-6565 Revision 0 dated September 2004
12. "DTE Energy Enrico Fermi 2 SAFER/GESTR Loss of Coolant Accident Analysis for GE11 Fuel" GE-NE-0000-0047-1716 Revision 0 dated December 2005
13. Letter from T. G. Colburn to W. S. Orser, "Fermi Amendment No. 87 to Facility Operating License No. NPF-43 (TAC NO. M82102)," September 9, 1992

COLR - 12 Revision 0 Page 22 of 22 7.2 BASIS REFERENCES

14. Letter from J. F. Stang to W. S. Orser, "Amendment No. 53 to Facility Operating License No. NPF-43: (TAC No. 69074)," July 27, 1990
15. "Maximum Extended Operating Domain Analysis for Detroit Edison Company Enrico Fermi Energy Center Unit 2," GE Nuclear Energy, NEDC-31843P, July 1990
16. "Power Range Neutron Monitoring System," DC-4608, Vol. XI DCD, Rev. B and DC-4608 Vol. I Rev. D.
17. Letter from Greg Porter to B. L. Myers, "Scram Times for Improved Tech Specs." GP-99014, October 22, 1999 containing DRF A12-00038-3, Vol. 4 information from G. A.

Watford, GE, to Distribution,

Subject:

Scram Times versus Notch Position

18. Methodology and Uncertainties for Safety Limit MCPR Evaluations, NEDC-32601P-A, August 1999
19. Power Distribution Uncertainties for Safety Limit MCPR Evaluation, NEDC-32694P-A, August 1999
20. R-Factor Calculation Method for GE1 1, GE12, and GE13 Fuel, NEDC-32505P-A, Revision 1, July 1999
21. "Improved LHGR Limits (designated as "GEl 1/13-UPGRADE") for GEl 1 Fuel in Fermi,"

Global Nuclear Fuel, GNF-J1 103057-265, August 2001

22. "Turbine Control Valve Out-Of-Service for Enrico Fermi Unit-2," GE - Nuclear Energy, GE-NE-J1 1-03920-07-01, October 2001
23. Licensing Topical Report, "Qualification of the One-Dimensional Core Transient Model for Boiling Water Reactors," Volume 1, NEDO-24154-A 78NED290R1, August 1986
24. Letter from David P. Beaulieu (USNRC) to William T. O'Connor, Jr. (Detroit Edison),

"Fermi Issuance of Amendment RE: Changes To The Safety Limit Minimum Critical Power Ratio (TAC NO. MC4748), " dated November 30, 2004 (SLMCPR Limit)