ML050140247

From kanterella
Jump to navigation Jump to search

Flowserve RAL-7483 Rev 0 Design Modification Report Assy 93-14347, 10/26/2004
ML050140247
Person / Time
Site: Hope Creek PSEG icon.png
Issue date: 10/26/2004
From:
Flowserve Corp
To:
Office of Nuclear Reactor Regulation
References
TAC MC5111 RAL-7483, Rev 0
Download: ML050140247 (59)


Text

FLOWSERVE

, e Anchor/Darling Valves SWA7P Valves Edward Valves Vahtek Control Products Worcester Valves Flow Control Division RAL-7483 Rev 0 Design Modification Report PSEG Nuclear LLC Hope Creek Generating Station Customer P.O. No: 4500257459 Size 20 Class 900 Carbon Steel Gate Valve S.O. 31042-02 Assembly Drawing 93-14347 Prepared by:

Date:

Reviewed by:

Date:

Approved by:

Date:

"I, the undersigned, a Registered Professional Engineer experienced in the design of valves, verify that to the best of my knowledge, information, and belief, this design report complies with the requirements of the ASME Code for Nuclear Power Plant ComponentsSection III, 1974 Edition with Summer 1975 Addenda and the conditions of the design specifications. Pursuant to paragraph NCA-3350 of said Code, this certification is solely for the purpose of complying with paragraph NB-3560 of said Code and is not lo be construed as involving, modifying, or changing contractual relationships or legal liabilities."

Certified By:

Date:

Certified Dy:

Date:

REPORT NO.:

RAL-7483 FLOAISERVE REV. 0 DATE: 10/2612004 PAGE i Flow (:ontrnl Division Rale:igh. XVC Design Source:

Design Inputs:

  • Customer P.O.: 4500257459 Design Specification: BFN-50-C-7105 Rev. 7 ASME Section III, 1974 Edition, Summer 1975 Addenda.

Literature Searches:

Not Applicable Assumptions:

None Computer Calculations/Programs:

Valve Data:

ANSYS Workbench 8.1 Size 20 Class 900 Carbon Steel Gate Valve Sales Order 31042-02 Assembly Drawing 93-14347 Rev. D

REPORT NO.:

RAL-7483 FLOV SE W E REV. 0 DATE: 1012612004 "I

tPAGE ii Flow Control Division Rale~igh. NVC RECORD OF REVISIONS Rev.

Pages Description 0, 10-25-04 All Initial Issue

- REPORT NO.:

RAL-74B3 FLOVWSERVE REV. 0 DATE: 1012612004 PAGE 3 Flow Control Division Raleigh. XC 1 DISCUSSION This report is prepared to provide analysis results that support a proposed modification (see ) to the subject valve. The goal of the modification is to reduce the effect that vibration due to pump induced chugging has on the valve's bevel gear actuator cover assembly. Based on historical damage, the original configuration is subject to fatigue damage and fretting contact due to the vibration. It is assumed that, because the valve's natural frequency is in a range that matches chugging frequencies, significant accelerations can result.

This analysis may be considered a supplement to the existing Class I design and seismic analysis prepared by Anamet Laboratories Inc., Lab No. 79.016. It is concluded here that the valve can withstand the specified chugging loading in addition to the seismic loading addressed in the Anamet report.

The analysis was performed using the finite element based design simulation package called Workbench by ANSYS, Inc. along with the solid model design package Pro/E. The procedure involved creating the solid model of the valve extended structure in Pro/E, porting the model into Workbench, setting up analysis scenarios, solving the model, and preparing a report. contains the report that was generated from Workbench that documents the analysis performed. The report contains six scenarios: the first three address the proposed modification, while the last three address the original state. Each set of three scenarios address (1> natural frequencies of the valve extended structure, (2) response of the extended structure due to a broad spectrum acceleration input at the base of the extended structure, and (3) stress analysis due to conservative accelerations based on broad spectrum response at the top of the extended structure.

In addition to the workbench analysis, the capscrews that mount the actuator cover are investigated in section 2 using classical methods using input from the Workbench results. Only the original configuration is analyzed. The modified configuration is not addressed because the added struts add significant support due to their attachment to bevel gear housing, which greatly relieves the load on the capscrews.

The broad spectrum acceleration input (0.3 g's) is based on accelerometer measurements.

Measurements were taken at low frequency and high frequency pump speeds, and the high frequency speed resulted in the higher acceleration. The 0.3 g's input envelopes the square root of two times RMS measured values, which all parties involved have agreed is adequate input for evaluating fatigue damage. In addition, results are such that it may be concluded that response to peak input is not a critical design concern without performing additional analyses.

Due to the valve's extended structure height, the input acceleration is greatly amplified. The analysis uses the response at the top of the structure as input for the static stress analysis. This is conservative as the amplification decreases rapidly from structure top to bottom. For instance, results show that the amplification at the base of the stem protector is about half that at the top of the stem protector. Thus, results are extremely conservative for portions lower on the structure such as the yoke legs a-n'd ldyd;even so, stress is shown to be lovw in these structures.

Section 1.1 provides an overview of results. It is concluded that the proposed modification does not significantly increase the topworks natural frequency: the natural frequency of the original configuration meets the specified criteria. In addition, deflections are reduced slightly, but it may not be significant enough to reduce the possibility of fretting contact. However, it is demonstrated that the modified assembly improves the ability of the assembly to withstand the measured high cycle loading.

The given stress limits are based on allowed fatigue stress at one million cycles, which is considered infinite fatigue life, from the ASME Boiler and pressure vessel code,Section III appendicies, Appendix

9. Note that these fatigue curves are conservative by the greater of a factor of two on stress or a factor of 10 on number of cycles (RE Section III Code Appendix III).

0 REPORT NO.:

RAL-7483 FLOWSERVE REV. 0 DATE: 1012612004 PAGE 4 Flow Cnimtm lDivision Raleigh. NC 1.1

SUMMARY

Description Value Limit Criteria (original/modified)

Natural Frequency [Hz]

First: 94. / 106.

> 90 Hz Second: 97.6 /115.

Peak Acceleration Response Gy:.91 /0.65 N/A

[g's]

G,,

17.1 / 15.5 Gm: 12.2 /10.35 Stress Range in Topworks (Conservative),

6.0 /4.0 12.5 other than bolting [ksil (re fig. 1-9.2)

Capscrew Stress Range [ksi]

14.98 / N/A 20.

(re fig. 1-9.1)

Deflection at Top [in]

0.54 /0.36 N/A Other

Conclusions:

  • Because stress in the added struts is low at the locations of required welding, it is not required to provide weld metal equal in cross-section to the area of the strut. Conservatively, since the maximum topworks stress is one third the limit, it is permissible to provide weld area equal to only one third the strut area. However, it is important to place the welds at the corners of the struts for maximum strength.

Because the handwheel is loosely connected to the impactor by a retaining ring, it is highly recommended to remove the handwheel so as to remove potential fretting contact.

1V

4 REPORT NO.:

RAL-7483 FLOWSERVE REV. 0 DATE: 1012612004 NoPAGE 5

Iglow Lontrol Division RAeigh. VC 2 ACTUATOR COVER MOUNTING BOLTING ANALYSIS The basic approach is to determine the axial force due to bending and thrust for one bolt located at the maximum distance from the pivot point. This assures that the maximum force is considered.

Reaction forces are determined using data from the solid model and from the analysis input.

Assumptions:

1.

The stiffness of the flange is much greater than the stiffness of the bolts. Hence, Hooke's law and bolt spacing geometry are used to determine bolt forces.

2.

The bending pivot point is located on the bolt circle.

Maximum Reaction Force Due to Moment (Al) for One Bolt:

1.

Sum of Moments about pivot = 0 yields:

K M

=

g2F;Xj, K=n/2 -1I.....................................2.1 ToLa1 oF NB BoiLs 7

rA/

Bolts X1 k

Top View Showing Typical 601 PivoL 6

X/,-Po i nL Ff t

Xi 2F1k 2F1 2F1

R 1 t t

Thr-usL IT I d VIe Someng A I

1 Side View Showing Assumed Bolt Deflections and Reaclion Forces Bolt Pattern

.1.

REPORT NO.:

RAL-7483 FLOW'SERVE REV. 0 DATE: 10/26/2004 PAGE 6 FlowA Contriol Division Raleigh. NC Maximum Reaction Force Due to M: (Cont'd)

2.

Applying Hooke's Law:

F

=

EA,(611L)

Fj1F,

=

(A,6/(Aj6.5)

(AXd(Aj)........................

2.2 where A]J

= Boltarea = 2AB forall ij E

=

Young's Modulus L

=

Bolt Length (All Assumed equal)

3.

Maximum Moment Induced Bolt Force:

FK

=

M(AKXV1/(T,2X/Ad........................

2.3 For a four-bolt flange with all bolt areas equal, this reduces to F, = Al/f(X).

Stress in Bolt:

a

=

FKIAB + Thrus/l[nAa]........................

2.5 T

=

Shear/[nAB] + 2*Torquel[ndAa].......................

2.6

REPORT NO.:

RAL-7483 FLOVJS ERVE REV. 0 DATE: 1012612004

>.PAGE 7

IFlow lontrol Division Raleigh. NC 2.1 COVER CAPSCREWS ANALYSIS RESULTS (ORIGINAL)

Top Works Data Parameter Description W

Weight XV Vertical C.G.

XH Horizontal C.G.

GRII Acceleration (resultant of horizontal values)

GRV Acceleration (resultant of horizontal values) 68.

12.9 2.6 21.0 lb in In g's Rld Solid Model Solid Model Solid Model Analysis Analysis

.91 g's External Forces Vi, Sh TN TI MN M

QN Tc Bolting Properties n

Ni D

BC A8 St d

Be X2 B(

X3 B(

rameter Description hear Force (WGRH) trust Force (WGRv) oment (WGRHXv) orque (WGRHXH) rameter Description Lumber of Bolts olt Size ress Area of One Bolt 1t Circle Diameter olt Group I Pivot Alt Group 2 Pivot-Alt Group 3 Pivot Value 1428.

61.88 18,421.

3713.

Value 6

.25 3.182E-2 12.75 7.509 18.13 25.64 bnits lb lb in-lb in-lb Units in in2 in in in in Bolting Statics Analysis Results Parmeter escrintion r, K Max. Bolt Force From Moment Bolting Stress Analysis Results CT Bolt Axial ri

  • B6lt Slhear Ss<,AX Stress Intensity SI, Stress Range (SUAjx2)'

Value Knin 667.3 lb RQE 2.3 B&L 2.5 2.6 Value 21.29 10.53 29.95 14.98 Units ksi ks'i -

ksi ksi

' Since the capscrews experience tension only, it is appropriate to divide the resulting stress by two to yield the appropriate alternating stress range for entering the design fatigue curve.

REPORT NO.:

RAL-7483 FLOWSERVE REV. 0 DATE: 10/26/2004 PAGE 8 Flow Control Di~vision l.eg.N ATTACHMENT 1 SKETCH OF PROPOSED MODIFICATION

1-~REPORT NO.:

RAL-7483 FLOWSE RVE REV. 0 DATE: 1012612004 PAGE 9 Ilox. (Cont)rol Divisioti Rea ik h. iVC FindJ Descriplion McIeriol Oly A

Plale (3 x.375)

C.S.

4 B

Box Iron (2x2x.25)

C.S.

A 8.5 NOTE:

MODIFICA7ION INCLUDES REMOVAL Or THE HANDWHEEL (26 LOS).

NET ADDED WEIGHT EQUALS 30 LBS.

01 TOPWORKS MODIFICATION SIZE 20 CLASS 900 GATE VALVE

REPORT NO.:

RAL-7483 F LOaiW SE WvE REV. 0 DATE: 1012612004 PAGE 10 Flown Contrul Division Raleaigh. NC ATTACHMENT 2 ANSYS SIMULATION REPORT

I l., Summarv This report documents design and analysis information created and maintained using the ANSYSO engineering software program. Each scenario listed below represents one complete engineering simulation.

Scenario 1 Based on the Pro/ENGINEER' assembly 'zvhomelrfarreIlA31042 (20-900-FW)AFTXED.ASM.2".

Considered the effect of body-to-body contact, acceleration and structural supportS.

Calculated harmonic results.

No convergence criteria defined.

No alert criteria defined.

See Scenario 1 below for supporting details and Appendix Al for corresponding figures.

Scenario 2 Based on the Pro/ENGINEER' assembly vz:khome~rfarre11131042 (20-900-FWiFIXED.ASM.2'.

Considered the effect of body-to-body contact, acceleration and structural supoorts.

Calculated structural results.

No convergence criteria defined.

No alert criteria defined.

See Scenario 2 below for supporting details and Aooendix A2 for corresponding figures.

Scenario 3 Based on the Pro/ENGINEERO assembly "z:lhomelrfarreMl131042 120-900-fWM)FIXED.ASM.2.

Considered the effect of body-to-body contact and structural supoOrts.

Calculated frecuenc results.

No convergence criteria defined.

No alert criteria defined.

See Scenario 3 below for supporting details and Appendix A3 for corresponding figures.

Scenario 4 Based on the Pro/ENGINEER 6 assembly 'z:jhome~rfarrel131042 oria (20-900-FWMIASMOOOI.ASM.13'.

Considered the effect of body-to-body contact, acceleration and structural supports.

Calculated harmonic results.

No convergence criteria defined.

No alert criteria defined.

See Scenario 4 below for supporting details and Appendix A4 for corresponding figures.

Scenario 5 Based on the Pro/ENGINEER6 assembly z:\\home~rfarreI\\31 042 orig (20-900-FW)MASMOOO.ASM. 13".

Considered the effect of body-to-body contact, acceleration and stnictural supports.

Calculated structural results...

No convergence criteria defined.

No alert criteria defined.

See Scenario 5 below for supporting details and Appendix A5 for corresponding figures.

Scenario 6 Based on the Pro/ENGINEERO assembly "z:\\home~rfarrellA31042 oria (20-900-FW)MASMOOO.ASM.13".

Considered the effect of body-to-body contact and structural supports.

Calculated freQuency results.

No convergence criteria defined.

No alert criteria defined.

See Scenario 6 below for supporting details and Appendix A6 for corresponding figures.

PMI 2.1. "Supported Case" "Supported Case" obtains geometry from the Pro/ENGINEERO assembly "z:rhome~rfarrell\\31042 (20-900-FW) FIXED.ASM.2*.

"HW[16]P was suppressed. Suppressed parts do not effect the results In this scenario In any way.

a The bounding box for all positioned bodies In the model measures 100.0 by 32.96 by 32.69 in along the global x, y and z axes, respectively.

The model has a total mass of 3,861.07 Ibm.

The model has a total volume of 13,603.56 in3.

Table 2.1.1. Bodies Name Material Boundlna Box (in) I Mass (Ibm) lVolume (in 3 )

Nodes Elements "BODY(I]"

'Structural Steel' 28.0, 28.88, 28.88 1,799.28 6,339.34 2514 1192 "YOKE[2]"

-Structural Steel-36.16, 27.88, 27.88 670.62 2,362.78 3489 1603

-GEARBOX[3j1" "Structural Steel' 11.5, 22.98, 22.98 101.75 358.49 2685 1304 "GEARBOXCOVER[7].

"Structural Steel" 11.51, 9.25, 3.5 17.71 62.4 657 288 "STEM[12]"

'Structural Steel' 1.5, 1.5, 6.81 2.78 9.79 528 257 "IMPACTOR[13t3" "Structural Steel' 13.5, 5.0, 2.38 13.29 46.81 559 257 "COVER17)"

'cover___

29.59, 16.5, 13.5 68.04 239.73 6187 2986 "STEM1VLVW[23J" "Structural Steel' 76.5, 6.06, 4.75 148.52 523.29 1001 455

'RHN017(29."

'Structural Steel' 0.64, 1.3, 1.3 0.12 0.42 2469 1407 lRHN017(33)"

'Structural Steel' 0.64, 1.3, 1.3 0.12 0.42 2469 1407 "RHNO17[34)"

'Structural Steel' 0.64, 1.3, 1.3 0.12 0.42 2469 1407 CLAMP[94])

"Structural Steel" 2.5, 32.96, 14.88 50.48 177.85 3498 2124 "CLAMP[9861

'Structural Steelm 2.5, 32.96, 14.88 50.48 177.85 3498 2124 "BONNETLUMPU20]"

"Structural Steel" 8.0, 21.25, 21.25 787.88 2,775.89 1219 213 "BEVELLUAPY21]'"

'Structural Steel' 3.0, 12.0, 12.0 89.77 316.28 583 90 t SPURLUMP [223"

-Structural Steel" 7.75, 7.75, 2.0 23.19 81.71 588 88 TOP BRACESJ[93]"

'Structural Steel" 29.76, 23.51, 23.51 36.93 130.12 648 204 l Table 2.1.2. Body Groupings I

Name IBody i.names ;IBoundinn fox -(In) l Mass (Ibm) lVolume (in')

INodes IElements Il 2.1.1. Contact

'Contact" uses a tolerance of 0.0 for automatic detection.

Table 2.1.1.1. Contact Conditions Name Type Associated Bodies NScope Behavior l Formulation ermal Pinball Iaeie o

Stiff ness Mode Conductance Region

3 "Contact lBoKnded "YOEf[2]" and

Face, Progra m uPurePenalty Program Program Region" c0nd-UOKYfl2" Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled

'Contact B !GEARBOX!

31" and

Face, Program Automatic Symmetric Pure Pe Program Program Region BonOde(d YOEE[2)"

Face Controlled S

P Controlled

'Contact B GEARBOXCOVERa

Face, Program A

Program Program Region Bonded

Face, Pogram Automatic Symmetric Pure Penalty P

l and BGEARBOX[3]"a Face Controlled lymmeric Controlled Controlled

'Contact I "CO VER(17 7)"and

Face, Program Program Program Region Bonded RHE0R 7[3.an Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled C

ct B STEM[12]' and

Face, Program Automatic Symmetric Pure Penalty Pogram Program Region Bonded Automatic Symmetric Pure Penalty B"

B GEARBOXCOVER[7]

Face Controlled Controlled Controlled RCgniotnct Bonded "IMPACTOR[13 and

Face, Program Automatic Symmetric Pure Penalty Program Program Regiont nded l Face Controlled ure enaY Controlled Controlled Re"Contact Bonded COVER

[2" and Face Controlled Automatic Symmetric Pure Penalty Cogram CProgral Regontc

'RN1[9'ad FcPorm Progra rga 112on" CB d

ERV73 Face Controlled auai Symmetric Pure Penlty Controlled Controlled

'Contact Region Bonde l "BRHNON 7L3' and

Face, Program Automatic Symmetric Pure Penalty Program Program 15" "STEM...VLV[233" Face Controlled Controlled Controlled aHN017(34]"

and

Face, Program AProgram Program Rpebn lBonded laSTEM IVLV23]

l Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled Regonont ded "CHNOI7(34)" and

Face, Program Auoai ymti uePnly Program Program R7"on Bonded lSTELV[23" Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled

'Contact

'CLAMP[98]'and

Face, Program Atonrol Control Region Bode "BODY[.I)'

Face Controlled Auoaic Symmetrc Pure Penaly Cotled onrld 20" Regont Bonde

'CLAMP(98)" and

Face, Program Auoai ymti uePnly Program Program 21io' onl "BOOKE(1J Face Controlled Auoai ymti uePnlyControlled Controlled

'Contact CLAMP[ 94)" and

Face, Program ti ymti uePnly Program Program Region Bonded "YOKE[2]"

Face Controlled Automati Symti uePnly Controlled Controlled

'Contact "CLAMP! 98) " and

Face, Program Pnly Program Program Region Bonde CAP9]Fae onrled Automatic Symmetric Pure Penlt Controlled Controlled 430' "LPI[41 ae Cnrle "Contact

'TFBAE~[3'Fc, Porm

'S

.Program IProgram IRegion Bonded T

.RAE93" Fc, Por Manual SmercPure Penalty Cotled onrld G9&an "COVERt 1 7.]

Face Controlled ControlledControlled

'Cnat'BONNETLUMP~J20]" Face, Program Program Program ReConac BnddadBDY]'

Fc CotledAutomatic Symmeti PuePnalty Controlled Controlled

'"ContactI IRegion Bonded BVLUP[1" Fc, Por Automatic Symmetric Pure Penalty Po~a rga 19",

and "GEARBOX[31" Face Controlled Controlled Controlled "Contact 'Bne SPURLUMP..122]"

Face, 1Program Atmtc1Pr eat Program fProgram Region Boddand 'GEARBOX[3)'

Face Controlled Auoatcsymmetric Pr eat otold Cnrle

4

'23-t1 Rei'on Bnded TOP_BRACESJ[93]J

Face, Program Program Program Region Bo~nde~d and LUMPRB

]

l Face, Controlled Automatic Symmetric Pure Penalty Controlled Controlled

'Cnat'PRUP[2'

Face, Crontroledm Program Program.,

16io Bonded "SanR EfIV[2)7" Face Prongraold Automatic Symmetric Pure Penalty Controlled Controlled Contact Bonded aBONNETLUMP20J" V

Face, Program Automatic PurePenalty Program Program Rein Eoddand 'S&_VLV[23]`

ac Controlled JuoatcSymmetric PuePnly Controlled Controlled ReIon ondd "BEVELLUMU~21)"

Face, Program Auoai I Program Program I8 Rgo Boiand "STEM.._VL V[23J' Face Controlled Auoai ymmetric Pure Penalty Controlled Controlled

_28 I

I_

I_

2.1.2. Mesh "Mesh"(Figure Ala), associated with 'Supported Case' has an overall relevance of 0.

'Mesh' contains 35061 nodes and 17406 elements.

No mesh controls specified.

2.2. "Frequency Response"

'Frequency Response" contains all loading conditions defined for 'Supported Case" In this scenario.

Acceleration - Constant Linear Acceleration Magnitude: 200.92 In/s2 Vector: [116.0 In/s2 x, 116.0 in/S2 y, 116.0 In/s2 zI In the global coordinate system The time type Is harmonic The following tables list local loads and supports applied to specific geometry.

2.2.1. Structural Supports Table 2.2.1.1. Structural Supports IName Type Associated Bodies

" Fixed Support" Fixed Surface "BODY[I)"

2.:3:."'Sol'ution'" .

'Solution' contains the calculated response for "Supported Case" given loading conditions defined in "Frequency Response".

It was selected that the program would choose the solver used in this solution.

2.3.1. Harmonic Results

,Table 2.3.1.1. Definition

5 Toble.2.3.1.2. Frequency Response Values Name Type Scope Multiple Minimum Maximum Maximum Frequent y

ge R

at Max at Max Inifes Feqeny Frquny mpiud I t

Max TpeeEntities requency Frequeny Am litude Amplitude Amplitude Amplitude Amplitude "hequencfy Directional le;o1i7se Acceleration, Surface(s)on Use 30.0Hz 250.1z 2114.67in/sO 198.77Hz 52.270 131.37inis' 169.78in/s'

'AXU/'

X Axis

'CO Yi/II?]"

Average iY Directional Surfac1)o Use 395.06

  • 55..6io/s' fesPOI/I' Acceleration, SurVie/s)Ion UAerage 30.0Hz 250.0Hz 5,753.78in/sl 106.54Hz

-B9.07° 28.6 s

73 inIs' leam (

YA is Y~f1j vrg

,3.5ns Top.

-frequeotry Directional lleoooe Acceleration, Surface(s) an Use 30.3Hz 250.0Hz 3,749.96in/s/

115.02Hz 795.440

  • 355.66in/st 1

fumae

~

xi CO Y[1/'I 71/

Average 3,733.Clin/sl Top

__Axis__

Iha quelity Directianal AxIofeso SurfcV(s)/on AUse 30.0Hz 250.0Hz 59.22in/s 250.04Hz

-5.130 58.98inIsO

  • 5.29inIsO

_.X Axis Average ftespw q

Dielrectional Surfa ce(s) on Use 3001 S~lz 1,766.3in/sl 106.34Hlz

-09.070 28.62in/S2 leampon Y Accleaion "COY Wi/I?]

Average 300z 25.H1,766.O7in/s t

lose" Of"fraqaq Directional fesponse AclrinSurface(s) on Use 30.0Hz 250.0Hz 1,876.62in/sl 169.76Hz

.100.360

  • 337.55in/S2 ffcc Z

ratis n

'CO VY[/I7]"

Average 1, 4 6.0Olinfs' Ifre queity Direcdianal I

lpore JAcceleration,

'SrfAces) Y1Y?1' Aeag 301z0.0Hiz~)fe 4,643.62in/sl 106.44Hz

-91.880

-15.4nhn 14,64 1.1 lIoWSl fhrer" Y Axis11 B~og e 2....reunyR sos xa o

Table 2.3.1.3. Frequency Response Axial  Top I

6 136.69 119.60 v--s 102.52 IC 85.43 a~ 68.34

!&1.26 E

'4 34.17 17.09 n nnl L..

-I 0.00b 31.25' 62.50. 93.75. 15.00 156.25 '187.50' 18.75 -250.00 Frequency- (Hz)

Ta~ble 2.3.1.4. Frequencv Response Axial @ Top 43,99 27.7.6

.11.54 '

a; -4.69.

,<-;20.92. -,

a) zm -37.15-

-. 53.38 -

-69.61-S.

-85.84 0

.1 I.

II i

a1 I

i I

ii

.00 31.25 p2.50 93.75.-125.00 156.25 187.50 218.75 -250.00 F~requency (Hz)

.Table 1-3.1.5. Fretuenew flesponse Beam @ Tot)

7 4 201.8e 3676.65 -

e'%3151.41 -

I.W e 2626.18 -

LRO la 2100.94 -

&1575'.7.1--

E c 1050.'47 -

525.24 0.00 d

it it

'ft

.t f

f.

.t

  • tf

,t

.t

.ft

  • 5 Il
  • t a

2---------*

t t

t ft-f.--*o-*-Z ;--T---

.t.

.t ft

.8

-1 f*

ft fti

-f i

~^--*---*---l--~----t---

t ft t

ft.,

Is.

4

.ft f

~

.ft ft

.t

.t ft

,,,t

.t i

fi aI 0.00 31.25 62.50. 93.75 "125;00.156.25.187.50 218.75-250.00 Frequency (Hz).

Table 2.3.1.6. Frequency Response Beam @ Top

17. 5.

-ftt

.. ~

-179;58B f

X nt¢ f*

ft jt ft ftl,4 B94.B3 44.96 Rl it 9

4.0.08


* *^ a YT

.t ft IA YA

-;7 b

r----r

-89.67 --.

-a.

.f13 179.42 ft 0.oo 31.25 62.50 93.75 125.00.156.25 1B7.50218.75 250.00 l

Freq~uency -(Hz) 2 7e f

fTot f

Wal rqes Repos Fram

@t Top f

f

8

.5240.92_

,3 3

'4 4585.81

...I-------

1 9-

,3930.69-g2620.46

&1965.35

-A 1310~~~~~~~.2_.

j.'.:....

131 D 655.12 j

ji 0.00 I

0.00 31.25 62.50 93.75< 125.00.156.25 187,.50.218.75 250.00-Frequency!(Hz)

Table 2.3.1.8. Frequency Response Frame @ Top 179.88 i'

,,S j

j.

j:.3 134.90 3

3' S'e w

89.92 -

4 4,94

-9v0

3.

3 3

3 v--wj

-rl----l--

-010

-to3.45.0.

-0.0 I---

-179.9:6 Ji 0,00 31.25 62.50 93.75 i25.00 156.25 lB7.50 218.75 250.00 Freque ncy.

)

'rabie 2.3.1.9. Frequency Response Axdal 2

Base

9 I

6 6

6 6

143.21 125.31 r-107.41 r 89.51

=1 l 71.61 a 53.70 E

' 35.80 17.90 n nn Tb 6

v 6

.6 N

,---4~

.4

  • -I 6

6

.6

-1 u.uu i

1.

I J.

1,

.1 0.00 31.25 62.50 93.75 125.00.156.25'187.50 218.75 250.00 Frequency (Hz)

Table 2.3.1.10. Frequency Response Axial a Base 69;14 48.33 27.52 '

0 w 6.71

< -14.10 o

fu -34.9.1 S.

-55.72

-76.53

-97.35 0

6 6

.6 6

...6 6

.... ;......:,....av.

6 6

I

.'I.

il'.'1...

L


r--~-.*

6.XX]~-*-*

---*---r

. 1 t

.i I

i IE I

I I

.00 31.25 62.50 93.75 125.00 156.25 187.50 218.75 250.00 Frequency (FHz)

Table -. 3.1.11. Freqtaency flsponse Leam @ Base

10 19.16.31 7 1676.77 S

I a

4irS 2-5 C 1197a69 a

2 I.L S

S S

958.15

<479.08 239.54 4

S S

.1S.

0.00 0.00 31.25' 62.50 93.75:125.00.156.25 187.50 218.75 250.00 Frequency (Hz) able 2.3.1.12. Frequency Response Beam @ Base 0'.00

  • ...S a......

-22.03 F..

-66'.08.'

-44..5--.-.5-7 6.,,

j 0,00 31.25 152,50 93.75 125.00 156.25 1a7.50 218.75 250.00 Frequency (Hlz)

,Table 2.3.1.13. Frequency Response Frame @ Base

2037.89 1

1783~~.15~............'..'.'...i,

-Ia 1783.15

..236

.I.

2 3

6 ir 1018.94 -

!& 764.21

...,. i 1

.---.-i -

5 0

9 47

~~~~~- -.-.--- r - --- --- r---- -

n-

--- ;-- s~- ~-

5 127.68 - ------

i, J

i ai i

0 q

254.74 0.0

.i i,.............'i, o50.4o

-i 0.00 31.25. 62.50 93.75 :125 00.156;25 187.50218.75 250.00 Frequency (Hz)-

Table 2.3.1.14. Frequency Response Frame @ Base-0.00a 43765.

S o-S

.t-87;53----------------.tj_:,__,

10.4..

.. _... 1.....

r J

n I

_,i

-175,05 f

p'-

  • 0.00 31.25 62.50 93.75 125.00156.25 187.50218.75 250.00 l

Frequ~ency -(-Hz)

-. abie 2.3.1.1S. Frequency response Beam @ Finger

12 -

42 4.56 3608.99 v-'3093.42 N-u C.

2577.85 M :2062.28

.. 1546.71

.E 41031.14 515.57.

0 0

.0 0

0 0

.0 0

l 0

0 0

3 rI 0

0 0

0 0

  • 0 fl 0

0 3

0.00

'I 1Ii.

4 1l

.. I 0.00 31.25 62.50 93.75 125;00:156.25 187.50 218.75 250.00 Frequency (Hz)

Table 2.3.1.16. Frequency Response Beam @ Finger 178g.49 b

j T 00*.

44.-,

CL

_133877 41*

~8.

.~...

,}

bS

.0..

0...................

-178.38 0,00 31,25 62.50 93075 125,00 156,25 1B7.50218.75 250,00 irequency '(Hz)

13

3. Scenario 2 3.1. "Supported Case"

'Supported Case" obtains geometry from the Pro/ENGINEERO assembly "z:jhomekrfarrell\\31O42 (20-900-FW)IFIXED.ASM.2'.

"HW[16]" was suppressed. Suppressed parts do not effect the results in this scenario in any way.

The bounding box for all positioned bodies in the model measures 100.0 by 32.96 by 32.69 in along the global x, y and z axes, respectively.

The model has a total mass of 3,861.07 Ibm.

The model has a total volume of 13,603.56 in3.

Table 3.1.1. Bodies Name Material Bounding Box (In) Mass (Ibm) Volume (In') Nodes Elements "BODY[l]"

'Structural Steel' 28.0, 28.88, 28.88 1,799.28 6,339.34 2514 1192 "YOKEf2]."

Structural Steel" 36.16, 27.88, 27.88 670.62 2,362.78 3489 1603 "GEARBOX[3)"

'Structural Steel" 11.5, 22.98, 22.98 101.75 358.49 12685 1304 GEARBOXCOVERf7)"

"Structural Steel" 11.51, 9.25, 3.5 17.71 62.4 657 288 "STEM[12)"

"Structural Steel" 1.5, 1.5, 6.81 2.78 9.79 528 257 "IMPACTOR[13]J

'Structural Steel" 13.5, 5.0, 2.38 13.29 46.81 559 257 "COVER[17r

'cover 29.59, 16.5, 13.5 68,04 239.73 6187 l2986 1"STEM_VLVI23)"

"Structural Steel" 76.5, 6.06, 4.75 148.52 523.29 1001 455 iRHN017[29)"

'Structural Steel" 0.64, 1.3, 1.3 0.12 0.42 2469 1407 "RHN017[3319" Structural Steel" 0.64, 1.3, 1.3 0.12 0.42 2469 1407 "RHN017[34]"

"Structural Steel" 0.64, 1.3, 1.3 0.12 0.42 2469 1407

-CLAMP[94]'

1 "Structural Steel" 2.5, 32.96, 14.88 50.48 177.85 3498 2124 "CLAMP[98]"

'Structural Steel" 2.5, 32.96, 14.88 50.48 177.85 3498 2124 "BONNETLUMP.J20]"

-Structural Steel' 8.0, 21.25, 21.25 787.88 2,775.89 1219 213 "BEVELLUMP_21]"

'Structural Steel' 3.0, 12.0, 12.0 89.77 316.28 583 90

-"SPURLUMPU22])

"Structural Steel" 7.75, 7.75, 2.0 23.19 81.71 588 88 "TOP_BRACESJ[93)"

"Structural Steel" l29.76, 23.51, 23.51 36.93 130.12 648 204 i~~~~~~~~~-

Table 3.1.2. Body Groupings Name I Body Names Bounding Box (in) Mass (Ibm) I Volume (in 3 ) Nodes Elements I 3.1.1. Contact "Contact" uses a tolerance of 0.0 for automatic detection.

! Table 3.1.1.1. Contact Conditions I

l Normal Scop e

Thermal I Pinb l

Name Type Associated Bodies Scope Scoe Behavior Formulation Thermal Peinball i

I I

I Stiffness 1Mode Conductance Rein

14

Cont ctBon YOKE[21" and

Face, Program Program Program lCotact Bonded T 1 Automatic Symmetric Pure Penalty Program Program Regiont t

BODY[11" FCe Controlled A Symmetric P 1Controlled Controlled "Contact t GEARBOX(3]"

and

Face, Program Automati c

Pure Penalty Program Program Regiontc Bonded GERBXO.R7n ac'Porr Automatic Symmetric Pure Penalty Cotled onrld go YOKE[2ded j'YE

]

n FaCef controlled CSymmetric Controlled Controlled

'Contact "GEARBOXCOVER[7Ja

Face, Pogram Automatic Symmetric Pure Penalty Ponram Program Region Bonded and aGEARBOX[3nd Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled

'Contact Region Bonde CO VER[17]3 and

Face, Program Automatic Symmetric Pure Penalty Program Program "GEARBOX[31 l Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled

'Contact "STEM[12J" and

Face, Program Auoai ymti uePnly Program Program Region Bonded Automatic Symmetric Pure Penalty Controlled Controled
8.

"GEARBOXCOVER[7]"

Face Controlled Cont ed Controlled F

Regio Bonded tIPACTOR[13" and

Face, Program Autom Program' Program l9.

- TEN[Z 2"]

Fac Controlled atic Symmetric Pure Penalty Controlled Controlled "Contact

'ST EM.VL V[f23)" and

Face, Program Program Program Region B

OCOVER[17]"

Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled 12"

'Contact RH072]ad FcPormProgram Program R~e"g[o2n3" Bonded ;dTEA f3j-Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled

'Contact "RHNOI 7(33]' and

Face, Program Program Program Region Bond "SE.LV2)

Fc onrled Automatic Symmetric Pure Penalty Cotled onrld I6 "Contact1 ac onrledCntold otrle Regontc Bode RHNOI 7(34)" and

Face, Program Program Program 17Region Bonded" STE VLV[23]"

Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled 1

'Cegontac "CLAMP[94)' and

Face, Program Program Program 20"io Bode BODYf I)"

Face Controlled Automatic Symmetric Pure Penalty Controll ed Controlled

'Contact Bonded an ac, rgrmProgram Program 121io Bode BODY~l)"

Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled "Cegontc Bode CLAMPP[ 94)" and

Face, Program AuoProgram Program 22gio Bodd YOKE[2]"

Face Controlled Atmatic Symmetric Pure Penalty Controlled Controlled

' Contact

'CLAM'P[98)" and

Face, Program Program Program Region Bonded~

YOKE[2J" Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled 24' Regontc Bnde CLAMP(98J" and

Face, Program AtmtcSmercPr eat rga rga 30"io Bode CLAMP[94J" Face Controlled Auoai ymti uePnly Controlled Controlled "Contact ITOPBRACES [93J"
Face, Program Program Program Region Bonded an "C Ej17" Fc otoldManual Symmetric Pure Penalty Cotled onrld "ContactI

,Region Bonded "BONNETLUNFIL20J"

Face, Program AtmicS metriclPr eat Program Program 8"and "BODY! 1)"

race Controlled Atmic ym Pueenly Controllcd Conitrollad

'Contact IBEE1LM1 "BVLUP.J211"

Face, Program Program Program Region Bonded and "GEARBOXf3)"

Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled I "Contact Boe

-SPURLUMPU22]" IFace, IProgram Auoai ymti uePnlyJProgram Prgam Region and 'GEARBO(3)"

Face Controlled 1 1Conroled Co.ntrrolled

15 I__

_0.

l 1.I

'Contact

'ORCS9I ae rga

}_Region Donded anOPBRAEAR

_[93]l Face, Program Automatic Symmetric Pure Penalty gram Program 2e5 and 'GEARO[3]'

l Face Cootrolled Controlled Controlled

'Cnac SPURLUAIP_[223"

Face, Program

~

1 Pro gram

-Program Region Bonded and '"CO VER(1[73]

Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled ReContc BondedUMU 0]

Face, Program Program Program 27gio Bonedand "STEt'LVLV(23)" Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled

'Contact

` BEVELLUMPJ[21)"

Face, Program Aua*

S r

1 Pro gram Program Region Bonded and "STEMVLV[23j' Face Controlled omic Symmetric Pure Penalty Controlled Controlled 28" 3.1.2. Mesh "Mesh'(Figure A.3), associated with "Supported Case" has an overall relevance of 0.

'Mesh' contains 35061 nodes and 17406 elements.

No mesh controls specified.

3.2. "Stress Analysis" "Stress Analysis' contains all loading conditions defined for "Supported Case" in this scenario.

Acceleration - Constant Linear Acceleration Magnitude: 7,215.43 In/s2 Vector: [250.0 in/s2 x, 6,000.0 in/s2 y, 4,000.0 In/s 2 Z] In the global coordinate system The following tables list local loads and supports applied to specific geometry.

3.2.1. Structural Supports Table 3.2.1.1. Structural Supports Nae Tp Reaction Reaction Force lReaction lReaction Moment Name Type Force Vector l Moment Vector "Fixed Fixed

[2,499.64 Ibf x,

[-12,015.7 lbf'in x, Support/

Surface 72,144.02 Ibf 59,991.41 Ibf y, 2.09x106 Ibf-In 1.16x106 Ibf'in y, -

39,994.27 Ibf z) 1.73x 106} Ibfin :]

3.3. "Solution" "Solution' contains the calculated response for "Supported Case" given loading conditions defined In "Stress Analysis".

It was selected that the program would choose the solver used in this solution.

3.3.1. Structural Results

16 Convergence tracking not enabled.

17

4. Scenario 3 4.1. "Supported Case"

'Supported Case" obtains geometry from the Pro/ENGINEERO assembly "z:jhomejrfarrel131O42 (20-900-FW)jF1XED.A5M.2-.

"HWf16.)" was suppressed. Suppressed parts do not effect the results In this scenario In any way.

N The bounding box for all positioned bodies in the model measures 100.0 by 32.96 by 32.69 In along the global x, y and z axes, respectively.

a The model has a total mass of 3,861.07 Ibmn.

a The model has a total volume of 13,603.56 In.

Table 4.1.1. Bodies Name Material

]

Bounding Box (in) Mass (Ibm) Volume (in 3)

Nodes Elements "BODY(I)"

"StructuraflSteef" 28.0, 28.88, 28.88 1,799.28 6,339.34 2514 1192 "YOKE[2]"

SrcuaSte'316 27.88, 27.88 670.62 2,362.78 3489 1603

-GEA4RBOX[.3)"-

'Structural Steel" 11.5, 22,98, 22,98 101.75 358.49 2685 1304

'GEARBOXCOVER[7]" '

Structural Steel" 11.51, 9.25, 3.5 17.71 62.4 1657 288

-STEM[12]"

' Structural steel' 1.5, 1.5, 6.81 2.78 9.79 528 257 "IMPACTORt1.3)"

  • Structural Steel' 13.5, 5.0, 2.38 13.29 46.81 559 257

'CO VER (. 7)"

coe 29.59, 16.5, 13.5 68.04 239.73 6187 2986

-ST-EMJL/L[23.1" "Structural Steel" 76.5, 6.06, 4.75 148.52 523.29 1001 455

-RHN017(291" "Structurat Steel* 0.64, 1.3, 1.3 0.12 0.42 2469 1407 "RHN017f.33]-

"Structural Steel' 0.64, 1.3, 1.3 0.12 0.42 2469 1407 "RHN017f34.1" "Structural Stee~l" 0.64, 1.3, 1.3 0.12 0.42 2469 1407 "SAP[9]'ntructural Steel' 2.5, 32.96, 14.8 5.4 1.8 48 2124 "CLAMP[ 98)"

"Structural Steel" 2.5, 32.96, 14.88 50.48 177.85 3498 2124 "BONNETLUMP..120)

"Structural Steel' 8.0, 21.25, 21.25 787.88 2,775.89

.1219 213 I "EVELLUMPJ_21)"

"Structural Steel" 3.0, 12.0, 12.0 89.77 316.28 583 90

["SPURLUMPJ22J" "Structural Steel' J7.75, 7.75, 2.0 23.19 81.71 588 88 "TOP..BRACES_[93)" J "tructural Steel" 29.76, 23.51, 23.51 36.93 130.12 j 648 204

.1Table 4.1.2. Body Groupings IName Body Names Bounding Box (in) Mass (Ibm) Volume (in 3) Nodes Elements 4.1.1. Contact Contact" uses a tolerance of 0.0 for automatic detection.

18 Cntc 1 Bonded T YOKE[2]"and

[Face, 1Program Auomti Symti.

ur1 eat Program Program Region n

"BODY[lJ" Face Controlled Automatic Symmetric Pure Penalty Controlled !

Controlled Regon o

GEARBOX[3]" and

Face, Program l Automatic SmtrP Penalty Prolgram CProgram R B edd "

'YOKE(2J" Face Controlled Aymmericlure Controlled Controlled

'Contact R

bn Bonded "GEARBOXCOVER[77

" Face, Program Automatic Symmetric Pure Penalty Program Program 4gio and 'GEARBOX[3)"

Face Controlled Aomtc y

eeny Controlled Controlled

'Contact

'CO VERF[I7J" and

Face, Program AutomProgram Program Regiont Bonded GEARBOX]

a Face Controlled Automatic Symmetric Pure Penalty Controlled Controgr Regiontact n

STEM[12and

Face, Conrol Program Program Reio f5" onded

.TMV~2]"

FaePorr Automatic Sym metric Pure Pena ltyCotled onrld

."EA

[3J" Program A

matic !Symme r

P t

PControlled Controlled RegCon onnded STEA ICTO[2)J and

Face, Program Automaticr Smmetric Pu Pet Program Program Reio Bonded "LM9B ad Fc lCotledAutomatic lSymmetric lPure Penalty PrgaPorm 9"

"GTEMRBXCOE] f.lFace Controlled reny Controlled Controlled Contact 1'STEACTORV[23)" and

Face, Program ProgaPrrm Region Bonded 'CO VERan Face, loProlled Automatic Symmetric Pure Penalty Cogram Controlled 12'-

"Contact Region Bonded Z 729

Face, Program Automatic Symmetric Pure Penalty Program Program 12" COS lonVef
7) d Face Controlled y

c U

Y Controlled Controlled RIont l Bonded RN017[3 and

Face, Program aual etric Pure Penalty Program Program I

l I..

,.01-Region Bondd l"STEALVLVf23) l Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled Regontc

'RN07[41an aticPoga Program Program ReCionact "HNEA

[23" an Face Crontraolmed Autom Symmetric Pure Penalty Controlled Controlled

'R"Contact l'CANI941'and Face Progrmi Program Program Region Bonded "R-BOYIN07f4 ad

Face, Ponrogrem Auoatic SymmercPePnat Corled otold

'Contat

__CetPrici aureacPenaltyamPro gram Program Rei7" one "STODYVL(1]"

Face Controlled AutomatcSmerc uePnlyControlled Controlled

'Contact ICA

[91"an.1ce.Poga Proga Program Region Bode YOKEM[94 an Face Ponrogram Autoatic SymmercPe Penalty Controlled Controlled

'Contact

'CAP9]ad FcPormProgram Program Region Bonded "CLAMP[94 an

Face, Ponrogram Automatic Symmetric Pure Penalty Controlled Controlled Regontc Bonded]'an Fce Program aiSymProgram Program Re 24 Bode

,CYOKEP(94]

Face Controlled AutomatcSmetric Pure Penalty Controlled Controlled

'ContactPrra

'Tol-BRAES~J3]'Face ProramProgram Program Rein0 ode"n "CO.MP[194)"

Face Controlled Manutom Smetric Pure Penalty Controlled Controlled

-Contact Region Bonded "SONNRAETSUMU20"

Face, Program MAnutoali Symti IPur Pealty Pro gram Program 2"and "COVEP.(l7)

Face Controlled mmrc ue ny Controlled Controlled Region Bonded Programatic Symmetric Pure Penalty Cotled onrld 19.1 and 'GABODXfi)"

Face Controlled Cotuted Cotole Regontc Bonded "BEVELLUt'1P22)"

Face, Program Auoatic symmetric Pure Penalty Crontrolle Conrolle Region and 'GEARBOX(3]"

lFace IControlledIIICotled O

19 i 'Ciontact ed TOP _BRCE5_j93]-

Face '

Plrogiram utmatic Symmetricl PurePenalty Progiraml Progtraml Region Bonded "nd

-EARBOX[]-

Fac Ceontrolled Autom~i ConmtriclPued CeaIy rgontrolled 27'Cotc loncled "S NTEUM VL_[20))"

Fa ce, Program Automatic Symmetric lPure Penalty Program Program

!Reg orn de"EELM_2]"Fc, Bondried Automa tic Symmetric Pure PenalIty Controlled Cront r~olled and

_____________`_FaceControlled 2 8

_ f I _

4.1.2. Mesh

'Mesh"(Figure A232), associated with 'Supported Case' has an overall relevance of 0.

"Mesh" contains 35061 nodes and 17406 elements.

No mesh controls specified.

4.2. "Natural Frequency" "Natural Frequency" contains all loading conditions defined for "Supported Case" In this scenario.

The following tables list local loads and supports applied to spedfic geometry.

4.2.1. Structural Supports ITable 4.2.1.1. Structural Supports I Name Type Associated Bodies

" Fixed Support" Fixed Surface

'BODY[f]I 4.3. "Solution"

'Solution" contains the calculated response for "Supported Case" given loading conditions defined in "Natural Frequency".

It was selected that the program would choose the solver used in this solution.

4.3.1. Frequency Results Frequency results apply to all active bodies in "Supported Case".

Table 4.3.1.1. First 6 Natural Frequencies Narne Figure Mogde Frequency Alert Criteria list Frequency Mode In Range" A31 1

1 06.34 Hz none "2nd Frequency Mode In Range"jA32 j2 114.8 Hz.Jnone

20 A"3rd Frequency Mode In Range' [None j3 1152.03Hz Inone "4th Frequency Mode In Range' None 4

l153.9 Hz Inone l5th Frequency Mode In Range' None 5

159.36 Hz Inone 06th Frequency Mode In Range' None 6

162.43 Hz I none a

Convergence tracking not enabled.

21

$, Scenario 4.i. "Original Case" "Original Case obtains geometry from the Pro/ENGINEERO assembly "z:jhomejrfarrell~31042 orig (20-900-FW)\\ASM0001.ASM.13".

The bounding box for all positioned bodies In the model measures 100.0 by 29.75 by 34.29 in along the global x, y and z axes, respectively.

The model has a total mass of 3,858.39 Ibm.

The model has a total volume of 13,594.1 In3.

'Table 5.1.1. Bodies Name Material Bounding Do (In) Mass (Ibm) Volume (In 3)

Nodes Elements "BODY[l]-

"Structural Steel" 28.0, 28.68, 28.88 1,799.28 6,339.34 2532 1215 "YOKE[2)"

'StructuralSteel' 36.16, 27.88, 27.88 670.62 2,362.78 3740 1747 l "GEARBOX!3]-

'Structural Steel" 11.5, 13.5, 17.0 84.29 296.96 2182 1037 "GEARBOXCOVER[7]"

"Structural Steel" 11.51, 9.25, 3.5 17.71 62.4 657 288 I

7STEM[12.1"

-Structural Steel" 1.5, 1.5, 6.81 2.78 9.79 528 257 I1A7,PACT70R[13.71 "Structural Steel" 13.5, 5.0, 2.38 13.29 46.81 559 257 "HW[16)"

'StructuralSteel" 20.0, 20.0, 1.05 26.13 92.06 16565 9137 "COVER[I73" "StructuralSteel" 29.59, 16.5, 13.5 93.62 329.86 4019 1904 IBONNETLUMP[20J"

'Structural Steel" 8.0, 21.25, 21.25 787.88 2,775.89 1219 213 lBEVELLUMP[21)"

"Structural Steel' 3.0, 12.0, 12.0 89.77 316.28 583 90 "SPURLUMP[22J"

'Structural Steel" 7.75, 7.75, 2.0 23.19 81.71 588 88 "STEMLVLV[23]'

"Structural Steel" J76.5, 6.06, 4.75 148.52 523.29 1003 451 "RHN017[29])

'StructuralSteelw 0.64, 1.3, 1.3 0.12 0.42 2469 1407

-RHN017[33]-

'Structural Steel" 10.64, 1.3, 1.3 0.12 0.42 2469 11407 "RHN017[34)"

'Structural Steel" 0.64, 1.3, 1.3 0.12 l0.42 2469 1407

'CLAPP94]"

"StructuralSteel" 2.5, 14.88, 32.96 50.48 177.85 1662 850

_CLAMP_98_

"Structural Steer 2.5,_14.88, 32.96 50.48 177.85 1662 850 CLP[8"Strtua I

Table 5.1.2. Dody Groupings I

Name Body Names Boundina Box (in) Mass (Ibm) Volume (i3') 1Nodes Elements 5.1.1. Contact w "Contact" uses a tolerance of 0.0 for automatic detection.

I Table 5.1.1.1. Contact Conditions I

NaeAsoiteI coeINormal Scope I

IorlainThermal IPinball Jtp ode Stiffness Mode r

Conductance Region I

22

'ContactBne

'YOKe.E! 2] and

Face, 1Progra m I uoai Srnmetric Pur eaty JProg ram Program

,Region" Bonded "BODY[1"l Face Controlled l AUtoatic ly Pure enay Controlled Controlled Contact l'BONNETLUMP[201 l Face, Program Symmetric Pure Penalty Program Program Region BoddlCoDgp[4 and "BDY

Face, Controlled Automatic SmerclPr Penalty Conrolled Controlled "Conta ct Bonded CL P[9" and Fac~e, Progtramd 'Automatic I

nedZERO[]

n ae mgaIe uoacSmercPr eat Program CPogtramle Region Bonded "BODYrI Face Controlled Symmetric Pure Penalty Controlled Controlled "Contact "CLAMP(94]" and

Face, Program Program Program Region Bonded GBODY['1-Face Pmgram Automatic Symmetric Pure Penalty Controlled Controlled lContact I9' Bndd"GRB X

1 and

Face, Program I

Program Program Region Bonded "PYOKl]

Jn" Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled "Contact Bonde, GEARBOX[

d

Face, Cogram Program Program Region Bonded YLEMPa2]"
Face, Controlled Automatic Symmetric Pure Penalty Controlled Controlled "Contact CLAMP[94]' and
Face, Pmgram Program Program Region Bonded "CLYO 9E 8an Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled 6-jRegon Bonded GCEAMRBOXCO anR d
Face, Program Automatic Symmetric Pure Penalty Program Program Regon Bonded GOKE2Of 3 Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled

'Contact OGABXOE[1 ac, PormProgram Prga Region Bonded 7

and

Face, Progra Automatic Symmetric Pure Penalty Controlled GE and l

ERBOX[3]1 Face Controlled Controlled Controlled "Contact Region Bonded "EELM[1" Fc, Por Automatic Symmetric Pure Penalty Cotled onrld 9

and GEARBOX[3)"

Face Controlled Ponrogram Ponrog lem "Contact

-BEURLLUMIP[21J'an

Face, Program A

t etc P

t Program Program Reg ion So.rid an GEARBOXf 3)'

Face Controlled Automatc Symmeri Pure Penaly Controlled Controlled Regonon nded "SPUELMP122]'and

Face, Program Automatic SmercPure Penalty CrgamPontrolle Re2io Bode GEARBOXCOVE[7J'Face Controlled SmercControlled Cnrle I'egonBo ndedt"ISTMPA R[13)"

and

Face, Program Pl Pro gram Program 13"o one "STEAR(XC2)R"

-Face Controlled Automatic Symmetric Pure Penaty Controlled Controlled I'Contact IMATR3]adFc, PormProgram Program Region Bonded

'HW(M1

]" n

Face, Ponrogram Auoatic Symmeti uePnly Controlled Controlled Regio Boned JMPACTORf13)"

Face Controlled Automai Smetric Pure Penalty Cotled onrld Regontc Bode SPURLUMP! 22)" and

Face, Program Auoai ymProgram Program Reio Bode CO VERf1 7]'

Face Controlled Auomti Smetric Pure Penalty Controlled Controlled "ContactPrgaPorm Reio Bndd STLVLV[23)" and Face, ProgramPrgaPorm 16"io Bodd CO VEPl 7)'

Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled "Contactm PrgaPorm Region Bonded "STEI'LVLV(23J" and

Face, Program Automatic Symmetric Pure Pealy Crontrolle Crontrolle

.17' "BOfINETLUMPf2O]"

Face Controlled Contr____ le____Controlled____

"ContactamIPrgaPorm Region Bonded "ST&tLVLV[23.1" and

Face, Progra Automatic'SymmetrcPue Penalty Crontrolle Crontrolle 1""EELtP(1' Face Controlled Conrtro

_____ed_

Controlled "Contact I oded I "RHNOIJ7[29]" and Face, IProgram At Pe It Program IProgram IRegion D

"n STVILVLV(23J" Face Controlled I utomatic S~ymmetric 1Pure Pealy Controlled Controlled

23 ReiContact n

RHN017[33] and

Face, Pogram Automatic Symmetric Pure Penalty Program Program 20io BonSdedSTEALVLVF23;`

Face Controlled matic Symmetric Pure Penalty Controlled Controlled 1Contact RHN01 7[3l an4]

d

Face, l Program Prongram Program Regi Bode STEAL V/LV[23]'

Face Controlled Automatic Symmetric Pure Penaly Controlled Controlled Region Bonded 'CAM[9]and

Face, Program Automatic Symmetric Pure Penalty Prgram Prga 22" "CLAMP[94]

j Face Controlled Controlled Cnrle 5.1.2. Mesh

" HMesh"(Figure A43), associated with 'Original Case' has an overall relevance of 0.

'Mesh' contains 44906 nodes and 22605 elements.

No mesh controls specified.

5.2. "Frequency Response"

'Frequency Response" contains all loading conditions defined for "Original Case' In this scenario.

Acceleration - Constant Linear Acceleration Magnitude: 200.92 In/s2 Vector: (116.0 in/s2 x, 116.0 In/s2 y, 116.0 In/s2 z] In the global coordinate system The time type Is harmonic The following tables list local loads and supports applied to specific geometry.

5.2.1. Structural-Supports Table 5.2.1.1. Structural Supports Name I Type I Associated Bodies

'Fixed Support' Fixed Surface "BODY[!])

5.3. "Solution" "Solution" contains the calculated response-for "Original Case" given loading conditions defined in 'Frequency Response".

It was selected that the program would choose the solver used in this solution.

5.3.1. Harmonic Results

24 Superposition I

i Table 5.3.1.2. Frequency Response Values Multiple Minimum Maximum Maximum Frequency ase Real at Imaginary Nlame Type Scope E

n ltiples Minimuen t Maximum MAxmpiude at Mttz AnlexMs at Max oMx Entities Frequency Frequency Amplitude Amplitude Max Amplitude Amplitude

'to e

AIerotionl Suraces)a Use 30.0OHZ 250.013z 33.58iii/s?

174.43Hz

  • 74.64' 8.9in/sl

-32.38in S' Axial X"i CO Fill /1/

Average Oo Directional Sufcs)o Ue Acceleration,

-CO7,'Xi71 A

3 250.0HZ 6,572.05in/s' 94.21 Hz

.95.12° 5801.01in/sl

-6,545.17in/1s e

Direional Surface(s) an Use 300H 2

463203i 94.lH l933B° 623 9Tn's fme Acceerafioin, Average O~z 250.0H12 4,6.03os?

9.15z

-9.3

.273.13in/s' 4,62.974 Om Directioanl Surface(s) an Use 17.1z RAm' Acceleration,

'Ofito I if Average 30.0Hz 250.0Hz 1.Oins 147.1z

  • 1n10.710

-2.83in/sl

-7.4lin/s' Dire.

Actleionral Surf ace(s) on use 30.0HI 250.0Hz 1,252.01in/s' 175.910Hz l9 12.7

  • ° 483.2in/s'

-1,12s11.1als' froeAmec'3 Ac ration,

'YOVEI,7' U

Average 30.1_z 230 03z 2,_

i.33in/Y IA3.314t

  • 98.7'

_339_5_in/sl

-2_ill_9in/

'Z7qrDirectional Surface(s) an Use I*1.Iis

,i~

t.eam' (Axertion,

'STIAL VI YV/7J" Average 30.0Hz 250.0Hz 4,829.64in/s7 94.15Hz l93.71e

-312.09in/s

-4954i

,A is.,.

Table 5.3.1.3. Tot) Axial 4596J;64 4022.06

  • - 3447.48 1A Ut1

.C 2872,90 Ci M -2298.32 1723.74

< 1149;16 574.58 0.00 a:

I

.61 I

6

-j -

,i

  • ~

6

6.

I t

r 6

6

.6 6

6 l

6_

_._.6

__t4.

'____l_

-_j I It 0.00 31.25 62.50 93.75 125.00.156.25 187.50 218.75 250.00 Frequency.(Hz)

25

,_Tabe 5.3.1.4. Top Axial 179.80-135.04 90.28 45.52 M -44.00 v-

'-r-

-T'--

't-'-

-133. 5 2

-178;28 0.00

.31.25 6.50 93.75

-- 25.00i5625 187.50218.75 250.00 Frequency (Hz)

Table 5.3.1.5. Top Beam 4565.35 3994.68 r'%3424.01 -

I11*

- 2853.35 -

u 2282.68 -

m-1712iOi -

E 1141.34 -

I.

a.

,1 a.-

-r----*--___,_

^;a*~~@

~

w.

f

_~~~~~~~~~~~~

a.___'._..._...................... __._ _

i a

a^

~~~~~~~~~~~~~~~-.._______

,____ g.._._______.__

aj

.a j'

§ a

a!J~'~j' 'h-1 _........................ _ _,,r,,

,_,,1 1-.

  • ' _... 'l.

570.67 0.00 1l I

l I

i IT i--

I--1

.0.00 31.25 62.50 93.75 125,00 156.25 187;50 216.75 250,00 Frequency (Hz)

'Table 5.3.1.6. Top Beam

26 179.05-134.32 -

89.60 w j44.88 I

0. 5--

.I-

-4457 ar 9

0

.30---------.

Table 5.3.1.7. Top Frame 4370.2E

-3824.OC t--%3277.71 C 273'i.4'-

M.218.5;1~

&1638.8E M~1092.5~

546.29 0.00 i.

I I

I F -

F 0.00 31,25 62.50 93.75 125.00,156,25 187.50 218.75 250.00 Frequency (Hz)

Table 5....Top Frzme

27 e.

179. 52

'.I 134.64 ----------

-875 F

I 3eo\\R 3

4 8 3 Z

I............

....;-.P 89.75 I

u -443 71

- --- ~-


i----- --


rw---

-3

.9..

'.r - ;--.-

-134 68

-179 I.

.5 0'.00 '31'.25 :6:2.'t0 '93.75.125'.00.15'6.25.187.50,218.75 250 Frequency :(Hz)

I~.

S

.00

_- -. 1

_I.._.. _._...._

- _- -- --- -o _--

Table 5.3.1.9. Base Axial 1300.51 1137 4 r% 975.38 M

'.w

.812.82 la 650.25 t!

M 487.69 E

'< m325:13 162;56' 0.00 V

.3 I,,,

P

.3 I

S.

r 41.,

.3 P

'j I

S.

3____ _.

3__

__-.-'4'!

S__

~~

.3 I

i P

I

..,., I F'.

I F

0.00 31.25 O2.50 93.75 125.00-156;25 187.50 218.75 250.00 Frequencyr (Hz)

,Table 5.3.1.1.

Base Axial

28 179.5X 13l0~w~ew @wx*

,s a

,p.1.,I**

e ;

S sXoe*

9 S

13 5.59 90.34----

_ 45.59 i

A.

0383 v

5.5.8520 Frqc43.93

-.-Hz)

-88.68.1

  • w I r---o-o-

-m---

-133.44 ~~roZ t

z

-i78.20 *0i<

-, t.......

0.00 31.25.62 50

-93;7.5 125.00 156:25 18B7 50f218.b75>25000 Frequency (Hz)

Table 5.3.1.11. Base Beam 2134.8E 1867.,9c r" 1601.1, "4-C 1334.2E p 1067.4, EB00.57 E

¢q 533.71

266.86 0.00 g~~

1

--4

L. -.

4

  • ~

1 1-a 2 - --------

l


w---

a I

Si X

_ -__-- _-------t---\\-w-2-'-----w-----t------

  • [

I o

....._IG S

F

  • .00 31.°S 62.50 93.75 -12.00 156.25 IB7.50 218.75 250,0 Frequency (Hz) iTable 5.3.1.=. Drse Beam

29 178.77 134.23 89.70 C145,1 7

-9

-8b6 3

~'

tW -43.90

.-~

-r

-132.97

-17.7.50.

0.00 31.25 62.50 :r93,75 125.00 156.25 187.5i0218.75 250.00 Frequency (Hz)

ITable 5.3.1.13. Base Frame 1527.96-

.1336.97 e-%,1145.97 M954.98 CL57.99


j ----

.I j

.j AR CZ9.938 1.....

0.00 I.:

i I

i obl653.1.49 as8 rm

-3 7 6 3;90I-@

,,_-----e-r jI 1

1

<;381.99

$ 19 1.0 l.A..................,.Z 0,0, I I J 0.00.00 31.25 62.50 93,75 125,00 156,25 187.50 218.75 250.00 F~requency (Hz2) ,Table 5.3.1.1

4.

Base Frame j

30 176.09-133.42 .88.76 44'09 4.05 L....----.. m -45.23 -89.90 w;- r- --r--* -17,9.22 - 0.00 31.25 62.50 93 75 125 00 15625 187.50 218.75 250.00 Frequency (H Iz) Table 5.3.1.15. Flnqer Beam 2909.27, 2545.61 '-.2181..96 1818.30-1J .1454.64. - I og1090.98 .727.32 363.66 - - -------- - 0.00 31.25 62.50 93.75 125.00 156;25.187.50 218.75 250.00 Frequency (Hz) ',Table 5.3.1.ri. Flnger Beam

31 178.82 134;12 .89.43 --.---..7.............l y 0,04 q ,~~.......... r._.. _._ 8 :.4.73 -178*79. I 0.O 0 31.25 {62.50,93J7.5 :125.0O i56.25 1i8B75b5 218.'75 25 0.00 Frequency : Hz)

32

6. Scenario 5 6.1. "Original Case" "Original Case' obtains geometry from the Pro/ENGINEERO assembly "z:lhomelrfarie/131042 orig (20-900-FW)\\ASM0001.ASM.13".

a The bounding box for all positioned bodies In the model measures 100.0 by 29.75 by 34.29 In along the global x, y and z axes, respectively. The model has a total mass of 3,858.39 Ibm. The model has a total volume of 13,594.1 in3. l Table 6.1.1. Bodies Name Material Bounding Box (in) Mass (Ibm) Volume (In') Nodes Elements j "BODOYf" 'Structural Steel' 28.0, 28.88, 28.88 1,799.28 6,339.34 2532 1215 "YOKE[2." "Structural Steel' 36.16, 27.88, 27.88 670.62 2,362.78 3740 1747 "GEARBOX[3]) OStructural Steel" 11.5, 13.5, 17.0 84.29 296.96 2182 1037 "GEARBOXCOVER[(]1 "StructuralSteel' 11.51, 9.25, 3.5 17.71 62.4 657 288 'STEM[12]" "Structural Steel" 1.5, 1.5, 6.81 2.78 9.79 528 257 -IMPACTOR [13]" "Structural Steel' 13.5, 5.0, 2.38 13.29 46.81 559 257 "H WfI 61 "Structural Steel 20.0, 20.0, 1.05 26.13 92.06 16565 9137 "COVERtI 7)" "Structural Steel" 29.59, 16.5, 13.5 93.62 329.86 4019 1904 OBONNETLUMP[20)" "Structural Steel" 8.0, 21.25, 21.25 787.88 2,775.89 1219 213 "BEVELLUMP[21]' "Structural Steel" 3.0, 12.0, 12.0 89.77 316.28 583 90 iSPURLUMP(22]" ^Structural Steel" 7.75, 7.75, 2.0 23.19 81.71 588 88 "STEMVLV[23]" "Structural Steel' 76.5, 6.06, 4.75 148.52 523.29 1003 451 "RHN017[29)" "Structural Steel" 0.64, 1.3, 1.3 0.12 0.42 2469 1407 lRHN017[33)" 'Structural Steel" 0.64, 1.3, 1.3 0.12 0.42 2469 1407 "RHNOI7f34)" "Structural Steel" 0.64, 1.3, 1.3 0.12 0.42 ]2469 1407 "CLAMP[94J" 'Structural Steel" 2.5, 14.88, 32.96 50.48 177.85 1662 850 -CLAMP[98)" "Structural Steel 2.5, 14.88, 32.96 50.48 177.85 l 1662 850 l 6 ...o n I Table 6.1.2. Body Groupings I f _4 Nam God Name punBox (In Mass (lbmn) Volu ie (In)0 oe Elements am. Do _~~ lr oe 6.1.1. Contact a "Contact" uses a tolerance of 0.0 for automatic detection. ITable 6.1.1.1. Contact Conditions I II eStfNerm s Mcode vir1IThermal IPinball Name Tye Associated Boi scoe omScope BehavirFormulation CnutneIRgo

1I I

I I Stfn s I o e IIIo d ca c Rgo I

33 'Contact m 1 Prog.. Program I Region' Bonded YOKE[2] and

Face, Controlled Automatic ISymmetric IPure Penalty Cogram Controller Region Bonded BONNETLUMP[201'
Face, Program Automatic Symmetric Pure Penalty Program Controe 2;

and l BODY(1"a Face Controlled Controlled Controlled 'Contact lRegion Bonded CCLAMPo9]l and Face Prograed Automatic Symmetric Pure Penalty Cogram Program i B BODYf 1 a Face Controlled Controlled Controlled Contact B d "CLAP[98]" and

Face, Program Program Program Region Bonded "BODYl.]"

Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled 'Cegontc Bode GEARBOX 3].) and

Face, Program AomProgram Program 8

YOKE[2." Face Controlled atic Symmetric Pure Penalty Controlled Controlled "Contact Rego Bode CLAMP[94)" and

Face, Program uoai ymti ueP at Program Program gion Bonded YOKER[2]

Face Controlled Automatc Symmetric Pure Penalty Controlled Controlled Cegonct Bonded CLAMP[98J and

Face, Program Automatic Symmetric Pure Penalty Program Program 7egi]on' Face Contr Penarlty Controlled Controlled

'Contact GAROCVR7 Fc, PormProgram Prga Region Bonded GEARBOXCOVER(7J"

Face, Pogram Automatic Symmetric Pure Penalty trolled Program S.

and "GEARBOX[3]" Face Controlled Contrlld Controlled Region Bonded "COVER[17) and

Face, Program Automatic Symmetric Pure Penalty Program Program B GEARBOX(3]"

Face Controlled Controlled Controlled 'Contact1 Region Bonded -BEVELLUMP[2J]a

Face, Program Automaic Symmetric P Program Program Jo" and BGEARBOX[3J]

Face Controlled AutomaticCymmerncure enay Controlled Controlled I "ontact Region Bonded lSPURLUMP[22' and

Face, Program Automatic Symmetric Pure Penalty Controlled Controlled IIGEARBOX[3]"

Face Controlled Automtrogram Ponrogram Regontc Bode STEM[12])"and

Face, Program At ai ymti uePnly Pro gram Program Region londd lGEARBOXCOVER[7)]"

Face Controlled uAtomatjc Symmetric Pure Penalty Controlled Controlled "Contact Region Bonded "IMlPA CTOR[1 3)"and

Face, Program Automatic Symmetric Pure Penalty PrgaPorm 13" "STEM[12]-

Face Controlled Controlled Controlled Regontc Bode H"- W[1 6)" and

Face, Program acSymProgram Program 14"io Bonde

-MPA CTOR(13]- Face Controlled Automai Smetric Pure Penalty Controlled Controlled 'Contact "SPURLUMP[22])"and

Face, Program IProgram Program Region Bonded CVE[7 Fc CotledAutomatic Symmetric Pure Penalty Controlled Controlled Regontc Bode STEM...VLV[23]' and ~Face, Program A

PrPelt Program~ Program Region B "CO ~vEflij 7 Face Controlled Automatic Symmetric PuePnly Controlled Controlled "Contact Bd ' STEP.LVLW23)" and

Face, Program Pro gram Program rReoion Bonded "BONWETLUMIPf20J" Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled Regontc Bode STEDLVLVt23)" and
Face, Program Arotram ProPrt "CgonBotacdt utomatic Symmetric Pure Penaly Poga rga "BEVELLUMP[21)"

Face Controlled Controlled Controlled iBonded I____Face,_______ Program___ 1 A__to__atic SymeticPue enaty Prgrm ro Region "S TEN... VL V[23J" Face Controlled orac ue ny Controlled Controlled "Cotac IRN I 29"an ae Prga Att I rga rga

34 Contact "HO~3J n ae rga rga rga 20Regi BdedRHN017[33j" a nd

Face, Proraed m

Automatic Symmetric Pure Penalty Program Program ReinSodd~ TEA~LVLV23]- Face CoenrolledControlled Controlled 'Contact "RHN017[343" and

Face, Program Atmic'y ercPueenly Program Program I Region lBo!de

" STEMiVLV[23j" Face Controlled Automatic Symmetric Pure PenaltyControlled Controlled 21P "Contact "CLAMP[98)"and

Face, Program Program Program Region Bonded-LM[4-Fc otold Automatic Symmetric Pure Penalty Controlled Contrld 22" CAP9yFae Cnrle 6.1.2. Mesh
  • "Mesh"(Figure A4.3), associated with "Original Case' has an overall relevance of 0.

' "Mesh" contains 44906 nodes and 22605 elements. No mesh controls specified. 6.2. "Stress Analysis" "Stress Analysis" contains all loading conditions defined for 'Original Case' In this scenario. Acceleration - Constant LInear Acceleration N Magnitude: 8,110.02 In/s2 Vector: (350.0 In/s2 x, 6,600.0 In/s2 y, 4,700.0 in/s2 z) in the global coordinate system The following tables list local loads and supports applied to specific geometry. 6.2.1. Structural Supports Table 6.2.1.1. Structural Supports Reaction Reaction Force Reaction ReactIon Moment Associated Name Type Force Vector Moment Vector Bodies "Fied xed[3,495.83 Ibf x, [-18,803.9 Ibf-in x, support surFae 81,003.67 Ibf 65,921.4 Ibf y, 2.36x 106 lbf-ln 1.37x 106 ibf in y, - "BODY[fi) Supr'Srae46,944.03 Ibf z) 1.92x 106 Ibf-ln z] 6.3 "Solutionn" "Solution' contains the calculated response for 'Original Case" given loading conditions defined in 'Stress Analysis". It was selected that the program would choose the solver used in this solution. 6.3.1. Structural Results Table 6.3.1.1. Values l I Name Figure Scope Minimum Maximum Alert Criteria

35

  • Equivalent Stress' A5.1 All Bodies In 1Original Case1.39 psi l 9,992.79 psi l None Total Deformations All Bodies In 'Original Casqeg 0.0 in 0.05 In None Convergence tracking not enabled.

36 7" Scenario 6 7.1. "Original Case" 'Original Case' obtains geometry from the Pro/ENGINEERO assembly ^z:\\homejrfarrell\\31042 orig (20-900-FWJ)\\ASM0001.ASM. 13". a The bounding box for all positioned bodies In the model measures 100.0 by 29.75 by 34.29 in along the global x, y and z axes, respectively. The model has a total mass of 3,858.39 Ibm. The model has a total volume of 13,594.1 in3. Table 7.1.1. Bodies Name Material Bounding So (In) Mass (Ibm) Volume (In3 ) Nodes Elements "BODYtI)" 'Structural Steel" 28.0, 28.88, 28.88 1,799.28 6,339.34 2532 1215 "YOKE[23" "Structural Steel^ 36.16, 27.88, 27.88 670.62 2,362.78 3740 1747 -GEARBOX[3]" "Structural Steel" 11.5, 13.5, 17.0 84.29 296.96 2182 1037 "GEARBOXCOVER[71' !"Strctural Steel' 11.51, 9.25, 3.5 17.71 j62.4 6 57 288 "STEMf12]" "Structural Steel' 1.5, 1.5, 6.81 2.78 9.79 528 257 "IMPACTOR(13J" "Structural Steel" 13.5, 5.0, 2.38 13.29 46.81 559 257 "H W(163" "Structural Steel" 20.0, 20.0, 1.05 26.13 92.06 16565 9137 "COVER[17]" "StructuralSteel" 29.59, 16.5, 13.5 93.62 329.86 4019 1904 "BONNETLUMPf20) "Structural Steel' 8.0, 21.25, 21.25 787.88 2,775.89 1219 213 -BEVELLUMP[21]" "Structural Steel' 3.0, 12.0, 12.0 89.77 316.28 583 90 "SPURLUMPr22]J "Structural Steel' 7.75, 7.75, 2.0 23.19 81.71 588 188 "STEMVLV[23)". "StructuralSteel' 76.5, 6.06, 4.75 148.52 523.29 1003 1451 "RHN017[29]" 'Structural Steel" 0.64, 1.3, 1.3 0.12 0.42 2469 1407 -RHN017[33j" "Structural Steel" 0.64, 1.3, 1.3 0.12 0.42 2469 1407 "RHN017[34]J ^Structural Steel" 0.64, 1.3, 1.3 0.12 0.42 2469 1407 "cLAMPr94]" "Structural Steel" 2.5: 14.88, 32.96 50.48 177.B5 1662 850 "CLAMPP98]" _StructuraI Stl_ 2.5, 14.88, 32.96 50.48 l177.85 11662 850 Table 7.1.2. Body Groupings -I N .___s__ e. S Nae BN )m) l Volunie (hn3) Elements lName Ia iens BX (inj Mss (lbm Id 7.1.1. Contact U "Contact" uses a tolerance of 0.0 for automatic detection. II Table 7.1.1.1. Contact Conditions I IName lType lAssociated Bodies l Scope l Normal Scope Behavior Formulation Thermal uPinbal I 1onucance I I StiffnessIMode eaI or I~nut RegIon

37 'Contct Bonded YOKE[2]) and

Face, Program Automatic Symmetric Pure Penalty Program Program I "Contact 1

"BONNETLUMP(20)" 1

Face, Progtramie Automatic l ymti Pur Pen1t 1 nProgram P onrolram Region Bonded ad "ODY[f]'

Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled lTContact 1 MCPMPf94)" and

Face, Program Program Program Region Bonded aBODY![])

Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled 'Conac taRgio 'oi~ CLAMP[943" and

Face, Program Program Program R__egion t "ODnd Yf[] "

Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled e~giotn Bonded "GEARBOX[ ' and

Face, Program Automatic Symmetric Pure Penaty Program Program t

lYOKE([2J" Face Controlled atic Symmetric Pure Penalty Controlled Controlled 'RContact Baonded 'GERB X3 d

Face, Pgram Autom Program Program Region21 Bonded YO Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled

'Con tact IRe~g~iotn~t Bonde GCLAMP[94]' and

Face, Program Autom Pogram Pogram Region Eonde "YOKEf2) a Face Controlled Automatic Symmetric Pure Penalty Program oControlled 6"Contlldaonrole Re'onBonded "GEARBOXCOVERand
Face, Program AtmProgram Program B

agn Bonded JM E BO[3]" Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled Regontc 'GEACO XCVER [7])"an

Face, Program Program Program egio n Bonded Face Crolled Automatic Symmetric Pure Penalty Controlled Controlled anContact

___FacCotroledControlled Controlled Region Bonded lBEV.ELLU J21an

Face, Program Automatic Symmetric Pure Penalty Proram Ponram l9.

GERBOXf3) Face Controlled ed. Controlle. 'Contact -BEVELLUMP(21)"an

Face, Program AomProgram Program Region Bonded and rRBOXf3)"

Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled CRegon Bonded l STEM1[2] and

Face, Program Program Program 12gio Bode GEARBOXCOVE(7J"Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled

'Contact ReioSon TdEMPACOR23J"and

Face, Program atcPyrontrolle Crontrolle 13io" one GSEARBXCOER[]-Face Controlled Automai Smetric Pure Penalty Ponrogram Ponrogram Regontc Bonded THRf13)" and
Face, Program aiSymProgram Program 14" Bonded A

s TEMO[12 3" Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled 'Co ndadt PHW L16] P[and adFace, Program I

  • P Pt Program Program "Cgontc BoddAutomatic Syrmmnat Regio "IPCO TOR[13]"

Face Controlled Controlled Controlnaled_____ 15gio Bode R-7 Fc Cotole uoatc-meti ue eat Controlled Controlled "Contact_ 16gio B Conded ae onrlldAutomai Smetric Pure Penalty PrrrrPoga ReioCone STER 7]vv23 n

Face, Ponrogrmlatceyd Controlled Controlled

'ContactI- -I Region Bonded "STDtL1VLV(23.1" and

Face, Program Automatic Symti uePenalty Program Program 17'

'BOVNNETIUMP[2Q0)" Face Controlled SmercPu Controlled Controlled "Contact "STEMLVLVf23J" and

Face, Program 1Pnl rga rga Reg

_____d~ Automatic SmercPr eat rga rga Regio Bode BEVELLLUMP[21)" Face Controlled 1 'Controlled Controlled "Contact I RHNOI17129)" and

Face, Program 1111Program IProgram

'Bonde'd AtmicSymmetric Controlledt

38 'Contact RPHN017[33)" and

Face, Program Auoac Symmetric Pure Penalty Program Program Region Bonded SEAV[21 Fae CnrldAuotic Controlled Controlled 21 STEM..VL V[23]'

Face Controlled ymlueControlled Controlled 'Contact JCAP91-ad Fc Prga IProgram Program Region Bonded -CLAMP[941-n

Face, Ponrogram

'Automatic Symmetric Pure PenaltyCotled onrld 22" CA4[4" jFc otole otold Cnrle 7.1.2. Mesh O Mesh"(Figure A5),associated with 'original Case' has an overall relevance of 0. 'Mesh' contains 44906 nodes and 22605 elements. No mesh controls specified. 7.2. "Natural Frequency" 'Natural Frequency' contains all loading conditions defined for 'Orlglnal Case' In this scenario. The following tables list local loads and supports applied to specific geometry. 7.2.1. Structural Supports Table 7.2.1.1. Structural Sup ports Name 1Type Associated Bodles 'Fixed Support' Fixed Surface "BODY[i]" 7.3. "Solution" 'Solution' contains the calculated response for 'Original Case" given loading conditions defined in 'Natural Frequency'. It was selected that the program would choose the solver used In this solution. 7.3.1. Frequency Results Frequency results apply to all active bodies In "Original Case'. Table 7.3.1.1. First 6 natural Frequencies Name Figure Mode Frequency Alert Criteria] f 1st Frequency Mode In Range" A6.1 1 94.03 Hz none ("3rd Frequency Mode In Range" Aone 2 764H nn "2nd Frequency Mode In Range" Non 2 2 197.647 Hz none "4th Frequency Mode In Range" None 4 4.7z Jnone

39 None

"5th Frequency Mode In Range' None 6th Frequency Mode In Range" I None 1 6 160.2 Hz Inone I 164.59 Hz I none
  • 1 a Convergence tracking not enabled.

40 Appendices Al. Scenario 1 Figures T -......

41 A2. Scenario 2 Figures Tigure A2.1. "Equivalent Stress" Contours I

42 ,I

43 A3. Scenario 3 Figures A4. Scenario 4 Figures

44 f

45 A5. Scenario 5 Figures rot.;. I --.. 1 ,; : ;.:'v-N'. - M r I t .D .o a .t.C n.t 'Figure A5.2. "Trotal Deformat-lon" Contours

46 A6. Scenario 6 Figures 2 w

47 .22JI3Xln) y '* A7. Definition of "Structural Steel" Table A7. 1. "Structural Steel" Properties Name Type Value Modulus of Elasticity Temperature-Independent 2.9x101' psi Poisson's Ratio Temperature-Independent 0.3 Mass Density Temperature-Independent 0.28 Ibm/in3 Coefficient of Thermal Expansion Temperature-Independent 6.67x10' 1/°F I Thermal Conductivity Temperature-Independent 8.09x104 BTU/s in-°F !Specific Heat Temperature-independent 0.1 BTU/lbm*°F A8. Definition of "cover" Table A8.1. "cover" Properties Name Type Value Modulus of Elasticity Temperature-Independent 2.9xlO7 psi Poisson's Ratio Temperature-Independent 0.3 Mass Density Temperature-Independent 0.28 Ibm/in3 Coefficient of Thermal Expansion Temperature-Independent 6.67x10' 1/F Thermal Conductivity Temperature-Independent 8.09x 10- BTU/s in-°F Specific Heat Temperature-independent 0.1 BTU/lbm °F

48 A9. Defcinition of "bonnet lump" Table A9.1. "bonnet lump" Properties Name Type Value I Modulus of Elasticity Temperature-Independent 2.9x 107' psi Poisson's Ratio Temperature-Independent 0.3 T I Mass Density Temperature-Independent 0.41 Ibm/in 3 lCoefficient of Thermal Expansion lTemperature-Independent 6.67x10-' 1/°F Thermal Conductivity l Temperature-Independent 8.09x104 BTU/s in °0F I Specific Heat Temperature-Independent 0.1 BTU/lbm*°F A1O. Definition of "bevel lump" Table A10.1. "bevel lump" Properties Name Type Value Modulus of Elasticity Temperature-Independent 2.9x107 psi Poisson's Ratio Temperature-Independent 0.3 Mass Density Temperature-Independent, 0.3 Ibm/in3 Coefficient of Thermal Expansion Temperature-Independent 6.67x10' 1/°F Thermal Conductivity Temperature-Independent 8.09x10 4 BTU/s.in*°F Specific Heat Temperature-Independent 0.1 BTU/lbm-°F All. Definition of "spur lump" Table A11.1. "spur lump" Properties Name Type Value Modulus of Elasticity Temperature-Independent 2.9x10 psi Poisson's Ratio DTemperature-Independent 0.3 Mass Density Temperature-Independent 0.3 Ibm/in3 i Coefficient of Thermal Expansion Temperature-Independent 6.67x10 4 1/OF Thermal Conductivity-Ternperature-lndependent 8.09xl0o BTU/s in;°F Specific Heat iTemperature-Independent 0.1 BTU/lbm.°F}}