ML050140245

From kanterella
Jump to navigation Jump to search

Flowserve RAL-7482 Rev 0 Design Modification Report Assy 93-15122, 10/26/2004
ML050140245
Person / Time
Site: Hope Creek PSEG icon.png
Issue date: 10/26/2004
From:
Flowserve Corp
To:
Office of Nuclear Reactor Regulation
References
TAC MC5111 RAL-7482, Rev 0
Download: ML050140245 (58)


Text

FLOWSERVE Flow Control Division Anchor/Darling Vahtes SW1IP Valves Edward Valves Valtek Control Products Worcester Valves RAL-7482 Rev 0 Design Modification Report PSEG Nuclear LLC Hope Creek Generating Station Customer P.O. No: 4500257459 Size 12 Class 900 Carbon Steel Gate Valve S.O. 31042-01 Assembly Drawing 93-15122 Prepared by:

Date:

Date:

Reviewed by:

Approved by:

Date:

"I, the undersigned, a Registered Professional Engineer experienced in the design of valves, verify that to the best of my knowledge, information, and belief, this design report complies with the requirements of the ASME Code for Nuclear Power Plant ComponentsSection III, 1974 Edition with Summer 1975 Addenda and the conditions of the design specifications. Pursuant to paragraph NCA-3350 of said Code, this certification is solely for the purpose of complying with paragraph NB-3560 of said Code and is not to be construed as involving, modifying, or changing contractual relationships or legal liabilities."

Certified By:

Date:

Certified By:

Date:

REPORT NO.:

RAL-7482 FLOWSERVE REV. 0 DATE: 10126/2004 PAGE I F10\\ow Conitrol Division Rallkih. NC Design Source:

Design Inputs:

Literature Searches:

CustomerP.O.: 4500257459 Design Specification: BFN-50-C-7105 Rev. 7 ASME Section III, 1974 Edition, Summer 1975 Addenda.

Not Applicable Assumptions:

None Computer Calculations/Programs:

Valve Data:

ANSYS Workbench 8.1 Size 12 Class 900 Carbon Steel Gate Valve Sales Order 31042-01 Assembly Drawing 93-15122 Rev. G

REPORT NO.:

RAL-7482 FLOWSE RVE REV. 0 DATE: 1012612004 PAGE C o Rocw Control Division Raleigh. NC RECORD OF REVISIONS Rev.

Pages Description 0, 10-25-04 All Initial Issue

REPORT NO.:

RAL-7482 FLOWSERVE REV. 0 DATE: 10126/2004 PAGE 3 Flow-Control Division Raleigh. NC 1 DISCUSSION This-report is prepared to provide analysis results that support a proposed modification (see. ) to the subject valve. The goal of the modification is to reduce the effect that vibration due to pump induced chugging has on the valve's bevel gear actuator cover assembly. Based on historical damage, the original configuration is subject to fatigue damage and fretting contact due to the vibration. It is assumed that, because the valve's natural frequency is in a range that matches chugging frequencies, significant accelerations can result.

This analysis may be considered a supplement to the existing Class I design and seismic analysis prepared by Anamet Laboratories Inc., Lab No. 78.183. It is concluded here that the valve can withstand the specified chugging loading in addition to the seismic loading addressed in the Anamet report.

The analysis was performed using the finite element based design simulation package called Workbench by ANSYS, Inc. along with the solid model design package Pro/E. The procedure involved creating the solid model of the valve extended structure in ProlE, porting the model into Workbench, setting up analysis scenarios, solving the model, and preparing a report. contains the report that was generated from Workbench that documents the analysis performed. The report contains six scenarios: the first three address the proposed modification, while the last three address the original state. Each set of three scenarios address (1) natural frequencies of the valve extended structure, (2) response of the extended structure due to a broad spectrum acceleration input at the base of the extended structure, and (3) stress analysis due to;'

conservative accelerations based on broad spectrum response at the top of the extended structure.

In addition to the workbench analysis, the capscrews that mount the actuator cover are investigated in section 2 using classical methods using input from the Workbench results.

The broad spectrum acceleration input (0.3 g's) is based on accelerometer measurements.

Measurements were taken at low frequency and high frequency pump speeds, and the high frequency speed resulted in the higher acceleration. The 0.3 g's input envelopes the square root of two times RMS measured values, which all parties involved have agreed is adequate input for evaluating fatigue damage. In addition, results are such that it may be concluded that response to peak input is not a critical design concern without performing additional analyses.

Due to the valve's extended structure height, the input acceleration is greatly amplified. The analysis uses the response at the top of the structure as input for the static stress analysis. This is conservative as the amplification decreases rapidly from structure top to bottom. For instance, results show that the amplification at the base of the stem protector is about half that at the top of the stem protector. Thus, results are extremely conservative for portions lower on the structure such as the yoke legs and body; even so, stress is shown to be low in these structures.

Section 1.1 provides an overview of results. It is concluded that the proposed modification would significantly increase the topworks natural frequency and reduce deflections such that the posbsibility of 'tig damagei ad fretting contract is iedic'dI In additionit is' is oiistiated that the modified assembly can withstand the measured high cycle loading without experiencing fatigue damage. The given stress limits are based on allowed fatigue stress at one million cycles, which is considered infinite fatigue life, from the ASME Boiler and pressure vessel code,Section III appendicies, Appendix 9. Note that these fatigue curves are conservative by the greater of a factor of two on stress or a factor of 10 on number of cycles (RE Section III Code Appendix III).

I REPORT NO.:

RAL-7482 FLOWSERVE REV. 0 DATE: 1012612004 I

PAGE 4 Flow Control Division Rahleigh. NC 1.1

SUMMARY

Description Value Limit Criteria (original/modified)

Natural Frequency [Hz]

First: 60.5 / 92.

> 90 Hz Second: 62.2 /131.

Peak Acceleration Response Gy:

11.9 /0.36 N/A

[gWS]

G

11.9/411.0 Gml: 11.4/ 13.7 Stress Range in Topworks (Conservative),

6.0/2.

12.5 other than bolting fksil (re fig. 1-9.2)

Capscrew Stress Range [ksil 5.42515.68 20.

(re fig. 1-9.1)

Deflection at Top [in]0.95

/0.33 Other

Conclusions:

  • Because stress in the added struts is low at the locations of required welding, it is not required to provide weld metal equal in cross-section to the area of the sthut. Conservatively, since the maximum topworks stress is less than one forth the limit, it is permissible to provide weld area equal to only one forth the strut area. However, it is important to place the welds at the corners of the struts for maximum strength.

e Because the handwheel is loosely connected to the impactor by a retaining ring, it is highly recommended to remove the handwheel so as to remove potential fretting contact.

Jr

.~~~~~~~_

REPORT NO.:

RAL-7482 FLO FSERVE REV. 0 DATE: 10/2612004 "11%4_r:

.PAGE 5

Flov Control Division Raleigh. VC

2. ACTUATOR COVER MOUNTING BOLTING ANALYSIS The basic approach is to determine the axial force due to bending and thrust for one bolt located at the maximum distance from the pivot point. This assures that the maximum force is considered.

Reaction forces are determined using data from the solid model and from the analysis input.

Assumptions:

1.

The stiffness of the flange is much greater than the stiffness of the bolts. Hence, Hooke's law and bolt spacing geometry are used to determine bolt forces.

2.

The bending pivot point is located on the bolt circle.

Maximum Reaction Force Due to Moment (M) for One Bolt:

I.

Sum of Moments about pivot = 0 yields:

K M

=2FX,.

K= n2-1......

2.1 ToLal oF NB BolLs 8k a,

Poir nt.

IP voL dkPt lPLv l

BoiLs X

2 Fk 2F1 2F R

¢ Thru~sL T ]_.

-X j T../ioen Top View Showing Typical

.Side View Showing Assumed Bolt Bolt Pattem Denlections and Reaction Forces

REPORT NO.:

RAL-7482 FLOWSERVE REV. 0 DATE: 1012612004 PAGE 6 Flomm ContrdI Division Rleigh.,VC Maximum Reaction Force Due to M: (C'ont'd)

2.

Applying Hooke's Law:

F

=

EA,4(6/L)

FlFj

=

(iN/A.1) = (AXd)/(AjX,)......................

2.2 where Aj

= Bolt area = 2AB for all ij E

=

Young's Modulus L

=

Bolt Length (All Assumed equal)

3.

Maximum Moment Induced Bolt Force:

F.

M(AXX,W'F 2X/Ad.......................

2.3 For a four-bolt flange with all bolt areas equal, this reduces to FK = M/(2Xd).

Stress in Bolt:

a

=

FI/Ao + Thntst/[nAA7.2.5 T

=

Shear/[nAA7 + 2*Torque/[ndAn..2.6

_1~REPORT NO.:

RAL-7482 FLV iSERVE REV. 0 DATE: 10/2612004 PAGE 7 FMowv (Contrnl Division Ralcigh. NC 2.1 COVER CAPSCREWS ANALYSIS RESULTS (MODIFIED)

Top Works Data PrameDescriaion WY Weight Xv Vertical C.G.

XH Horizontal C.G.

GRH Acceleration (resultant of horizontal values)

GAy Acceleration (resultant of horizontal values)

Value

=

73.

=

6.3

=

1.1

=

17.6 Ilhits lb in In i's Solid Model Solid Model Solid Model Analysis Analysis

=

.33 g's External Forces Parameter Description VN ShearForce (WG82 )

TN Thrust Force (W'GRv)

MN Moment (WGwXv)

QA, Torque (WGRHXfi)

=

1285.

=

24.1

=

8094.

=

1413.

bnits lb lb in-lb in-lb Bolting Properties Parameter Descrintion n

Number of Bolts D

Bolt Size AB Stress Area of One Bolt d

Bolt Circle Diameter Xi Bolt Group 1 Pivot X2 Bolt Group 2 Pivot X3 Bolt Group 3 Pivot Bolting Statics Analysis Results Parameter Descriation Fir Max. Bolt Force From Moment 8.

=

.25

=

3.182E-2

=

27.75

=

7.509

=

18.13

=

25.64

  • in in2 In in in in in yhle
  • ]Jnhls

=

99.54 lb 2.3 Bolting Stress Analysis Results vtrss Description

- -Bolt Axial --

r Bolt Shear SMAX Stress Intensity SA1 Stress Range (SaLc/2)1

-=

-- 3.223._

=

5.448

=

11.36

=.

5.68 Units lcsi ksi ksi ksi 2;5 2.5 2.6

' Since the capscrews experience tension only, it is appropriate to divide the resulting stress by two to yield the appropriate alternating stress range for entering the design fatigue curve.

REPORT NO.:

RAL-7482 FLOWYSERVE REV. 0 DATE: 10/2612004 PAGE 8 Flotw Control Division Raledigh. NVC 2.2 COVE R CAPSCRE WS ANALYSIS RESULTS (ORlGINAL)

Top Works Data barameterDcsaain1on W

Weight Xv Vertical C.G.

X,,

Horizontal C.G.

GRH Acceleration (resultant of horizontal values)

GRV Acceleration (resultant of horizontal values)

YVTh~e

=

65.

=

6.0

=

1.5

=

16.5

=

11.9 lb in In g's g's Solid Model Solid Model Solid Model Analysis Analysis External Forces parameter Description vIV TN AMNV QNV Shear Force (WGw)

Thrust Force (WGRy)

Moment (WYGmjg,4)

Torque (WGRHXH)

Bolting Properties Parmeter Descrition n

Number of Bolts D

Bolt Size AB Stress Area of One Bolt d

Bolt Circle Diameter XI Bolt Group 1 Pivot X2 Bolt Group 2 Pivot X3 Bolt Group 3 Pivot Bolting Statics Analysis Results parameter Description FaT Max. Bolt Force From Moment Value 1073.

=

773.5

=

6435.-

=

1609.

=

8.

=

.25

=

3.182E-2

=

27.75

=

7.509

=

18.13

=

25.64

=

79.14 lb lb in-lb in-lb in-l in i in in in in Units lb 2.3 Bolting Stress Analysis Results YtIn a

Bolt Axial

=

5.526 Bolt Shear

=

4.671 Sw

- -- Stress Intensity y

1 0-

- _~

0.85-S, Stress Range (SAmxI2)'

5.425 s

R&L ksi 2.5 ksi 2.6 ksi l Since the capscrews experience tension only, it is appropriate to divide the resulting stress by two to yield the appropriate alternating stress range for entering the design fatigue curve.

REPORT NO.:

RAL-7482 rLQOWSEPVE REV. 0 DATE: 10126/2004 PAGE 9 IFlow Control Division R.leigh. NC ATTACHMENT 1 SKETCH OF PROPOSED MODIFICATION

_<REPORT NO.:

RAL-7482 FLOWVSERVE REV. 0 DATE: 101 6/20D4 PAGE 10 FIlow Control Division Raleigh, VC FIND DESCRIPTION MATERIAL OTY A

PLATE (2 X.375)

C.S.

2 B

PLATE (2 X.375)

C.S.

I I_

J.

I 4.0 2.0 NOTE:

MODIFICATION INCLUDES REMOVAL OF THE HAN1DWHEEL (7 LBS).

NEIT ADDED WEIGHT EOUALS 31LBS.

TOPWORKS MOD IF ICAT ION SIZE 12 CLASS 900 GATE VALVE

F REPORT NO.:

RAL-7482 IO S2VE REV. 0 DATE: 1012612004 PAGE 11 F-low Control Division 1ul,1 h

I C

ATTACHMENT 2 ANSYS SIMULATION REPORT

I i6 Summary This report documents design and analysis information created and maintained using the ANSYS6 engineering software program.

Each scenario listed below represents one complete engineering simulation.

Scenario 1 Based on the Pro/ENGINEERO assembly "z:ihomelrfarrei-131042 (12-900-FW)AS4MOOOI.ASM.10".

Considered the effect of body-to-body contact and structural supports.

Calculated frequenc results.

No convergence criteria defined.

No alert criteria defined.

See Scenario I below for supporting details and AnDendix Al for corresponding figures.

Scenario 2 Based on the Pro/ENGINEER assembly 'z:lhome~rfarre131042 (12-900-FWIIASMOOOI.ASM. 10.

Considered the effect of body-to-body contact, acceleration and structural supports.

Calculated harmonic results.

No convergence criteria defined.

No alert criteria defined.

See Scenario 2 below for supporting details and Avpendix A2 for corresponding figures.

Scenario 3 Based on the Pro/ENGINEER' assembly *zvhorne~rfarrell31042 (12-900-FW)IASM0001.ASM.10".

Considered the effect of body-to-body contact, acceleration and structural supports.

Calculated structural results.

No convergence criteria defined.

No alert criteria defined.

See Scenario 3 below for supporting details and Appendix A3 for corresponding figures.

Scenario 4 Based on the Pro/ENGINEER 0 assembly "z:home-rfarrel1131042 orig (12-900-FW)NASMOOOL.ASM.10".

  • Considered the effect of body-to-body contact and structural supports.

Calculated frequency results.

No convergence criteria defined.

No alert criteria defined.

See Scenario 4 below for supporting details and Appendix A4 for corresponding figures.

Scenario 5 Based on the Pro/ENGINEERO assembly "z:1homeirfarrell,31042 oria (12-900-FW)IASM0001.ASM.10".

Considered the effect of body-to-body contact, acceleration and structural SUpoOrts.

Calculated harmonic results.

No ebnerrene criterta defined.

No alert ciria defined.

See Scenario 5 below for supporting details and Appendix AS for corresponding figures.

Scenario 6 Based on the Pro/ENGINEER9 assembly "g:Ihome~rfarre11131042 rog (12-900-FWINASM0001.ASM.10'.

Considered the effect of body-to-body contact, acceleration and structural supports.

Calculated structural results.

No convergence criteria defined.

No alert criteria defined.

See Scenario 8 below for supporting details and Appendix A6 for corresponding figures.

L Scen ar o o 2.1. "Supported"

'Supported' obtains geometry from the Pro/ENGINEER* assembly *z:thomejrfarrell\\31042 (12-900-FW)\\ASMO001.ASM.10".

HW[I1O1' was suppressed. Suppressed parts do not effect the results In this scenario in any way.

The bounding box for all positioned bodies In the model measures 67.06 by 23.S1 by 29.44 in along the global x, y and z axes, respectively.

The model has a total mass of 1,384.89 Ibm.

The model has a total volume of 4,552.75 In3.

Table 2.1.1. Bodies Name Material Bounding Box (in) Mass (Ibm) 1 Volume (In3 ). Nodes Elements "BoDY[i]-

'Structural Steel' 17.0, 18.13, 18.13 428.3 1,509.01 4776 2446 "YOKE[21" "Structural Steel 23.0, 18.13, 18.13 208.06 733.06 3334 1575 GEARBOX[3]'

"Structural Steel 5.94, 23.5, 26.29 82.06 289.13 4598 2241

-HWSTEM[4]'

'Structural Steel" 3.0, 3.0, 7.06 8.27 29.15 1138 658 I"MPACTOR[7]

'Structural Steel. 6.25, 4.0, 2.0 4.93 17.36 680 316

'GEARBOXCOVER[13]"

'cover 21.25, 23.51, 23.5 73.34 258.41 7201 3450

'BONNET-LUMP[23]'

'bonnet l=12Q 6.0, 13.5, 13.5 320.14 829.38 1431 260 "GEAR_LUIMtP[31]"

"pear lumD" 1.5, 20.58, 20.58 147.53 491.78 904 117 "STEM (35]"

'Structural Steel' 50.5, 5.49, 6.35 61.96 218.29 981 446 "RHN017[f46]'

'Structural Steel' 0.64, 1.3, 1.3 0.12 0.42 2469 1407 "RHN017[50])

Structural Steel 0.64, 1.3, 1.3 0.12 0.42 2469 1407

-RHN002[51])

'Structural Steel' 0.64, 1.69, 1.62 0.12 0.42 3920 2238

'CLAMP[171]'

'Structural Steel' 2.5, 9.69, 23.5 24.97 87.98 1326 684 "CLAMPfZ75]

Structural Steel 2.5, 9.69, 23.5 24.97 l

87.98 1326 684 Table 2.1.2. Body Groupings I

Name IBody Names lnoundingt Box (in)

Mass (Ibm)

Volume (In3) lNodes Elements 2.1.1. Contact

'Contact' uses-a tolerance of 0.0 for automatic detection; Table 2.1.1.1. Contact Conditions Name Type Associated Bodies lScope rfmnals SMcodpe jfBehavior Formulation Thermal Pinball

'CntctI one YOKE 2.1" and

Face, Program AuoatcSmmti PuePeat Program Program Region' "BODYfIa" Face Controlled Automatic lSymmetric Pure Penalty Controlled l Controlled "Cgon Bonded and 'BODYl]'
Face, CPrormed Automatic Symmetric Pure Penalty Controlled Controlled 2ONTLUP2)

3 i 'Contact n

GEARBOX[3" arid

Face, Program Srogradm Program lRegon Bonded HYOE-[2 a

Face lControlled Automatic Symmetric Pure Penalty Controlled Controlled 1Roddont aYOE[2"

'Face, ControlledAl Contact B HWSTEM[41 nand

Face, Program Auto S

P P

Program Program Region Bonded "GEARBOX([3 Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled

'Contact B

GEARBOXCOVER[13a.7

Face, Program PrSymmetricllPure Penay C

PrCgram Region Bonded and 'GEARBOX[3]"

Face Controlled Automatic lSymmeric l Pure Pnal ontrolled Controlled "Contact 1GA 1M[3]adFce rga Prga1rga Region Bonded "GEAR_LUMP[31)n

Face, Pogram Automatic Symmetric Pure Penalty Program Program 163 o

GEARBOX[3"]a Face Controlled Controlled Controlled Region t

"IMPACTOR[7]" and

Face, Program AutomPatic Symmmetric Pure Penalty Pogram Pronram on Bonded HWSTEM[4]"

Face Controlled Automatic Symmetric PurePenalty Controlled Controlled

'Contact Rein Bodd!STEM[35]" a nd

Face, Program AuoProgram Program 19 GEARBOXCOVER[13)"

Face Controlled Cotmatic Symmetric Pure Penalty C

rolled Controlled Regonc Bode ST'EM[35)" and

Face, Program AuoProgram Program lgo B

Bondd O

NETLUMP[23].

Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled Regontc Bode STEMf35)" and

Face, Program AuoProgram Program Rein Bne "GEARLUMIP[311" Face Controlled Atmatic Symmetric Pure Penalty Controlled Controlled

'Contact Region Sonded "RHN017[4 61"and

Face, Program Automai Symti uePnly Program Program 12"

"-5TEAW(35]"

Face Controlled mai ymti uePnly Controlled Controlled "Contact

-RHN017(50]0 and

Face, Program Auoai ymti uePnly Program Program Region Bonded "S TEI4 3 5)

Face Controlled Auoai ymti uePnly Controlled Controlled 13" "Contact "RHN002 (51)" and

Face, Program AuoProgram Program Region Bonded "STEM[35]"

Face Controlled Atmatic Symmetric Pure Penalty Controlled Controlled Regontac "CLAMPf1 71)" and

Face, Program Program Program Region Bonded "CLAM[1]a Face C

rolled Automatic Symmetric Pure Penalty Controlled Controlled

'Contact Region Bode "CLAM4P[175)" and

Face, Program Automatic Symmetric Pure Pnly Program' Program 20"

.O"Y0Kf2".]

Face Controlled-Controlled---

Controlled Re9io Boned KCLA2fI1)

Face Controlled oacSyrPnly Controlled Controlled

.Contact "CLAMP(175]' and

Face, Program Au mt~{ueProgram JPro 2.1.2. Mesh a

"Mesh"(Figure A13), associated with 'Supported' has an overall relevance of 0.

X "Mesh" contains 36553 nodes and 17929 elements.

No mesh controls specified.

4 2.2. "Natural Frequency"

'Natural Frequency' contains all loading conditions defined for 'Supported" In this scenario.

The following tables list local loads and supports applied to specific geometry.

2.2.1. Structural Supports I Table 2.2.1.1. Structural Supports Name Type Associated Bodies Fixed SupportI Fixed Surface "BODY[l]"

2.3. "Solution" 1.

'Solution' contains the calculated response for 'Supported' given loading conditions defined In "Natural Frequency".

It was selected that the program would choose the solver used In this solution.

2.3.1. Frequency Results Frequency results apply to all active bodies In 'Supported".

Table 2.3.1.1. First 6 Natural FrequencIes Name Figure Mode Frequency Alert Criteria "Ist Frequency Mode In Range" A1.4 1

92.12 Hz none

'2nd Frequency Mode In Range" A1.5 2

130.66 Hz none "3rd Frequency Mode In Range" None 3

162.82 Hz none "4th Frequency Mode In Range" None 4

230.28 Hz none

'5th Frequency Mode In Range" None 5

234.61 Hz none "6th Frequency Mode In Range" None 6

280.48 Hz Inone Convergence tracking not enabled.

5 3 Scenario 2 3.1. "Supported" "Supported" obtains geometry from the Pro/ENGINEER' assembly "z:jhomejrfarrell3Q1042 (12-900-FW)VASM0001.ASM.10".

"HW[10.1 was suppressed. Suppressed parts do not effect the results in this scenario in any way, The bounding box for all positioned bodies In the model measures 67.06 by 23.51 by 29.44 In along the global x, y and z axes, respectively.

The model has a total mass of 1,384.89 Ibm.

The model has a total volume of 4,552.75 In3.

Table 3.1.1. Bodies Name Material Bounding Box (In) Mass (Ibm) Volume (In') Nodes Elements "BODY1.]"

'Structural Steel' 17.0, 18.13, 18.13 428.3 1,509.01 4776 2446 "YOKE[2)"

  • Structural Steel' 23.0, 18.13, 18.13 208.06 733.06 3334 1575

-GEARBOX[3)"

Structural Steel' 5.94, 23.5, 26.29 82.06 289.13 4598 2241 IHWSTEMF4]

"Structural Steel' 3.0, 3.0, 7.06 8.27 29.15 1138 658 IMPACTOR[7)"

Structural Steel' 6.25, 4.0, 2.0 4.93 17.36 680 316

'GEARBOXCOVER[13]" scover 21.25, 23.51, 23.5 73.34 258.41 7201 3450 "BONNETLUMP[23)"

bonnet lump 6.0, 13.5, 13.5 320.14 829.38 1431 260 "GEARLUMPf31]"

'cear lump 1.5, 20.58, 20.58 147.53 491.78 904 117 "STEM[35) 0Stnlctural Steel5.5, 5.49, 6.35 61.96 218.29 981 446

.RHN017f46J" "Structural Steel" 0.64, 1.3, 1.3 0.12 0.42 2469 1407 "RHNO17[(50"

'Structural Steel' 0.64, 1.3, 1.3 0.12 0.42 2469 1407

-RHN002[51]"

'Structural Steel 0.64, 1.69, 1.62 0.12 0.42 3920 2238 "CLAMP[I71)"

  • Structural Steel" 2.5, 9.69, 23.5 24.97 87.98 1326 684 "CLAMP[I 75)

"Structural Steel" 2.5, 9.69, 23.5 24.97 87.98 1326 684 Table 3.1.2. Body Groupings I

Name IBody Names I Bounding Box (in)

Mass (Ibm)

Volume (In') Nodes IElements 3.1.1. Contact

" Contact" uses a tolerance of 0.0 for automatic detection.

Table 3.1.1.1. Contact Conditions N ae yp Jsson adSoI~~ Scop I

.PC,

~

r it T h irmr Pinball e

Type l Associated Bodies Scope Stffness Mode Deaiorlormnuaolla Conductance Region Region"'

Bonded YOKE[2]; and

Face, Program Automatic Symmetric Pure Penalty Prograom Program 9 Region' "BODY! )

Face Controlled Iotoleotrle

'Contact Bode "BONNET:_LUMP(23.1" Face, 1Program 1AutomtcSmerc uePnlyProgram Program Region and "BODY(1)"

Face JControlled oaiSymtcPueenlyControlled Controlled

1*

!1

'Contact B GEARBOX[3]. and

Face, Program Autor iogr rogr Region Bonded YOE

[2]

Face' Automatic Symmetric Pure Penalty rogram Ponram "YK[2.Fae Controlled jControlled Controlled "Cntc

-HWonde4j dandndAB~f

Face, Prontramc uoacSmmtcPr eat Program Program~e Region Bonded

'GEARBOX[31]

Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled l"Con tact Bode "HWSTEM[41" an

Face, Progtroleam tm i Sym tri ure Peonty rolledm Cron~trollmed 4,,

"Contact Rein Bne GEARBOXCOVER[13.j"

Facei, Program AtacSymriPueenly Program Program Region Bonnded aNNGEARBOX[3])

Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled RCegon nded "GEARLUMP(31 an and

Face, Pogrom matic Symmetric Pure Penalty rogram Program 6eg" Bonded "GEARBOX[3^

Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled RContact IMPACTOR7[7" and

Face, Program Auto Program Program Region Boe HWSTEM[4]'

Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled "Contact Region Bonded lSTEM 35)] and

Face, Program Automatic Symmetric Pure Penalty Program Program 9"

nGEARBOXCOVER[13]"

Face Controlled Controlled Controlled "Contact Region Bonded "STEM[ 35)]^

and

Face, Program Automatic Symmetric Pure Penalty Controlled Controlled 10" "BONNETLLUMP[231' Face ControlledCotled onrld Region onde STEM[351" and
Face, Program Autoatic Pure Penalty Program Program Regio~n"G Bonded E4RLUMP[31]

)

Face Controlled Automatic Symmetric Pure PenaCty Controlled Controlled "Contact Region Bonded "RHN017[46]" and

Face, Program Automatic Symmetric Pure, Penalty Program Program 12" "STEM[35.7" Face Controlled' ymControlled Controlled "Contact Region Bonded

'RHN017[5SO) and

Face, Program AutomtcSmerc uePnly Program Program 13' "STEM! 35) "

Face Controlled mai Sy etcPueenly Controlled Cont~rolled Regontc Bode RHN002 (51)" and

Face, Program AtProgram Program 14"o Bodd"STEM[35)"

Face Controlled Auomatic Symmetric Pure Penalty Controlled Controlled "Contact Rein"22 CLAMPfI71)" and

Face, Program At.Program Program 17"io Bode BODYf 1)"

Face Controlled Auomatic Symmetric Pure Penalty Cotlld onrle

'ContactPrgm Pora Region Bode "CLAMPjf175]'"and

Face, Program Automatic Symmetric Pure Penalty Crontrolle Crontrolle 18" "BODYfl]

r) ace ControlledCotled onrld

'Contact "CLAMPfJ171)" and

Face, PormProgram Program Region Bonded POE2-Fae Cnrogram Automatic Symmetric Pure Penalty Controlled Controlled

.19" YK()

ae Cnrle I'-Contact Region Bonded "CLAMP(.175)" and

Face, Program.

Automatic Symmetri-c Pure Penalty Program Program 20' "YOKE[2)"

Face Controlled Controlled*

Controlled f"otct "CLAMP[1 75)" and

Face, Program Au

]Program Program Region iBonded "CLAMPtJ171)"

Face Controlled Auomatic, Symmetric Pure, Penalty Controlled IControlled 2 1 "

3.1.2. Mesh "Mesh"(Figure A1.3), associated with 'Supported" has an overall relevance of 0.

a "Mesh" contains 36553 nodes and 17929 elements.

7 No mesh controls specified.

3.2. "Frequency Response"

'Frequency Response" contains all loading conditions defined for "Supported" in this scenario.

Acceleration - Constant Linear Acceleration Magnitude: 200.92 In/s2 Vector: [116.0 In/s2 x, 116.0 in/s2 y, 116.0 in/s2 z] in the global coordinate system The time type is harmonic The following tables list local loads and supports applied to specific geometry.

3.2.1. Structural Supports Table 3.2.1.1. Structural Supports Name Type Associated Bodies "Fixed Support" Fixed Surface IBODY[I](

3.3. "Solution" "Solution" contains the calculated response for "Supported" given loading conditions defined in 'Frequency Response".

It was selected that the program would choose the solver used In this solution.

3.3.1. Harmonic Results Table 3.3.1.1. Definition Range Range S lui Mehod Cluster Cluster Damping Beta Minimum Maximum olution etho Number Results Ratio Damping 0.0 250.0 Mode iS Yes O.03 O.

Superposition Table 3.3.1.2. Frequency Response Values J Phase NaeSoeMultiple Minimum Maximum Maximum Frequency Angle at Real at Imaginary Name Type ScopeE Frequency Frequency A

lu at Max Max ameud AMnpixud E

FrequAmpeitnuc de AmplituAmplitutle Amplitude Dire Actioernale4 Sa(s) an Use 0.0Nz 250.03Nz 13A.6Din/sl 237.1 9Hz 14.480 132.35inl/s2 34.17iin/sl axial,," Axceois n, "CA A'hX(OYf l/lJf' Average Directional Surlacefs) an Use be=m Acceluertion, "FAnroY113]"

Average 1.311Z 250.0i2 z

4,2l11.0)ir/s!

92.2Hz J91.93" -141.32inslt

-4,199.5iin/sl Y

Axis "l0ap Directioinal Surface(s) an Use 11oeme" Arceleralion, 7urCftotOOfI/1.n Average O.OHz 250.0Hz 5,240.92inIS7 130.85HZ

-94.06°

-371.33ini 2

.-5227.75in/s7 l A x is U e_

ltef Diretdional Surface($) on Use D.OHz 250.0H1z 143.21in/s7 235.181z 27.150 127.43in/sl 65.34in/s'

8 axial' Acceleralion, 0T6A.RBOXCOMVAfIp" Average O e Diredtional Surface(s) an Use cceleration.

OFa' I

Anerae 0.Hz 250.0Hz 1,916.31infst 92.2Hiz

  • 91.480

.49.48ian/s2 1,915.67in/s' Me Directional Surface(s) on Use frame Acceleration, TFtAIFOx.ttOY[f?13/

AUeoage G.OHz 250.0Hz 2,037.89in/sl 130.71Hz

-91.49°

.52.82inlsz

-2,037.2in/sl Z Axis

-;In Direcliona!

Surface(s) an Use D.0Hz 250.Ollz 1,124.5fi/s2 13.85H6

'ram.t Iarlo.001Z 2001

,2.5i/7 108H 93.42"

.246.04inls2

-4,117.22in/sl fram0 Aceleatio,

~l~f[b7'Average l A x is iTable 3.3.1.3. top axial 136.69.

^

il9.60

'-;4 N

.1 j

e

{

..i i.

E5i.26..- --

-- n-.-----.--------

34;17 T17.09'.

0.00

7..i1
O.00 31 25 62!50 93 75 125;00 156 25 187.-50 218.75.250D00 Frequency(Hz)

9 LTable 3.3.1.4. top axlal 43 99 27,76 ----

-- --b----

.........I.,.....

4l---^01'l-277 -i5

-- il l~-

11;54 W -4..69,,r

--- 7---r-5 2.92 r

.n--37.15 t--r--rr--w

-J-t--bs-r-c*-

-53.38 W-eI* w*f ;r

-69.61

'0100 '31.25 62.50. 93.75>125.00 156;25. 187.50 218'75 25C.O

'Frequency.QH):

Table 3.3.1.5. top beam A201.19.-

J 4

.367.5

2

'.".1.,

2-.310.41 15

-5J Ir 5

l

§ 0l

<~~~~~~~.

...... g:-:...

. -.. -.:...::.I

.10508

.4.

-525.2.4'---

F.;r------.;--

U O

=

I 5,

I,

01

[1;00 31,25. 62,50 93.75..125.00-156;25.187.5>0 218.7,7!2501.00 Trequency(H z)

10 ITable 3.3.1.6. top bea~m 179.58-134.71

.4....

S::-

89.83

.l u4.6 w44.9 6 0.08 7

0.

4wi i

<~~~~~~~~

- -s -r- ---- - * -e..

-89.67

,...,..;,...,.,--.---r-

-134.54 -

0.0.3 1.25 62.50 93.75 125.00 156.25'187.50.218.75 250.00 Frequency1.(Hz)

Table 3.3.1.7. top frame 5:2-40,92i 4585.81-

-'3930.69 14

-r'3275.589 CO

-M 2620.46 M1965.35

.!E

.1310.23'

- - '-655.12-'

.0.00 4

5 4

I

S..

.4

.4 5

S S



.5 5

'5'*'

5 4

4 S..S S

S.

r.-...-t.



A I

I j

I

'.0.00 31.25 62.50 93.75 125.00156.25 187.50 218.75 2aU.UU Frequency' (Hez

11 Table 3.3.1.8. top frame 179.88 134.90 f

t

-89.92


------ -- --- --S---- --W--'

lay:

.J.

01 cu.45,02 r*-;

r

^t s,

t*.-

-t

-9.0 9

4 O.OD 31 25 562.50

-,937.7S 125.00 156 25 187-50 218.7;5.250.0M Frequency (Hz)

S*

.2 389.

511,.

5-8 9 51;SL__

A 7-1.61

. 53.70 -

E 17.90-0.00 31,25 62;50.93,75 125.00,-156.25 :187 50.218.75 250.00 Frequency (Hz)

12

- I 69.14 48.33 "8

.27.52

_ -14'.

I.'

61

,.,,j;...j 5_.:

_ -34.91

10-* - --.---

r

-55.72

,.¢

s :...,, :0.;

9g7.35

o

.'31.25: 62.50 93-75.15b b 1'56.25-187 50 218.75 250 Frequency (Hz)

.oo Table 3.3.1.11. base beam

'1916.3':

i676!7.

f'51437.;2:

-X 1197.'61 o 958.15

.f718.61

< 47908

- 239.54 0.00.

I>

3:1

.5 S

S 4

S

.5 4-S S¶ d4.

S 5

.4 5

4 S

S

.5.

5.

4 4

5..

1.*

tt 4

I,

.5 5

I.

.4 4

j 5

4 4

4 5

S S

S 3

5 5

4

a.

S S

I

.1 I

I a

im-,-i

% 1 4

i

7.

I 1

,0.00 31.25 62.50 93.75.,125,00156.25.187.50 218.75 250.00 Frequenrc -(H*)

13 ITable 3.3.1.12. base beam 0.00

-w22.'03 0;

-22.0...,_:.... 0 -F--,-* -- :------

.-44..05.................------... ----;

o

-110.13.S

-154:18.l

-7 ;2L-3i.25 62;50 93.n7 125.00 5625 187,50 218i7z250 Q00 Frequencyd(Hz)

Table 3.3.1.1.3. base frame 2037.8B9-P4 152842 7t 8 3,.1 5,

c 1i273 68

L l
a;-_

I....

G764.21 i.s':.,,.r{=

'.~

^s r-..,

254;74 c000 312 62;50 93.75 1250.156.25 187;50:218.75-250.00 Frequency (,Hz,>)

14 iTable 3.3.1.14. base frame 0;00

l,

-21;.88

-4376 -- --

V--

6250 -7 0

28 cu

!6 65.3 1

-131@29.

-- -r----~~ r --------------.----

1

-153i-17

._.r--e:-r~,

Dioo'.31i.2 MD...... 65

-.ig.75 15.00"'156.25 iB7.50 21.75.'250,o0 Preqpency,,,(Hz) rable 3.3.1.15. finger frame 360b:99

.~ 577.85

.ZI546.'71 -

101.4E t

0 It

.0, I.

I 4

4 0

L.1.a

  • p.J 0

0

'I

4.

I

0.

0-

.0 0

  • .j I

0

0 0*

0 0*

p

,0 0*

0.

.0

.0

.1.

I.

0 0.



0.*

I-I I

0 4

0 1**

I I

0

.0..J..,.0..

*

1 6

0 0

.i.

I I

I I

  • .I 551.57

.D.OO.1_

,I, I

i,.

I

.j.

I 0.00 31.25 -62.50. 93.75 p125;00 156.25 187..50 218.75 250.00 Frequency (H-1z)

,Table 3.3.1.16. fintger frame 4...6.

17'8.4g

~

s

--- -*-- ; ----*.. I.h...

.133.

7 i

I I

I j'

I' If I.

89.27 I9.

I I

,w.

s.wJw.

l~

@6i 0._,

.312

~6.5

., 3t7 j2-.0162 175,8.75 5.. :

'e u

.. s.

,',.i.,.

17 3 : i,5, -.:*

0-0 312 62.5 S3;5'2i052 l75,1X520 Frecueti#,z

16 4+. Scenario-3 4.1. "Supported"

'Supported' obtains geometry from the Pro/ENGINEER` assembly "z:jhomnejrfarrel131O42 (12-900-FWV)VASOOO1.ASM.10'.

'HWfJO0)" was suppressed. Suppressed parts do not effect the results In this scenario In any way.

The bounding box for all positioned bodies In the model measures 67.06 by 23.51 by 29.44 in along the global x, y and z axes, respectively.

The model has a total mass of 1,3B34.89 ibm.

The model has a total volume of 4,552.75 in.

Table 4.1.1. Bodies NameJ Material Bouniung..Bo.x (in)

Mass (ibm)

Volume (in3 ) INodes Elements "BODYFI)"

'Structural Steel' 17.0, 18.13, 18.13 428.3 1,509.01 J4776 2446 "YOKEr2)"

T"Structural Steel' 23.0, 18.13, 18.13 208.06 733.06 3334 1575 "GEARBOX[33"

' Structural Steel' 5.94, 23.5, 26.29 82.06 289.13 14598 2241 1-1HWSTEM4[4."

j"Structural Steel" 3.0, 3.0, 7.06 8.27 29.15 1138 658

-IMPACTOR[7]"

'Structural Steel' 6.25, 4.0, 2.0 4.93 17.36 680 316 "GEARBOXCO VERfi 3)"

'cover" 21.25, 23.51, 23.5 73.34 258.41 7201 3450

  • BONNET...LUMP[f23)"

"bonnet lump" 6.0, 13.5, 13.5 320.14 829.38 1431 260

-GEA&LUMP[31)"

ger lump 1.5, 20.58, 20.58 147.53 491.78 904 117

'STEM[35.1'

'Structural Steel' 50.5, 5.49, 6.3S 61.96 218.29 981 446

-RHN017[46.1"

'Structural Steel' 0.64, 1.3, 1.3 0.12 0.42 2469 1407

-RHN017[50)".

"Structural Steel' 0.64, 1.3, 1.3 0.12 0.42 2469 1407 "RHN002[51)"

'Stru ctural Steel 0.64, 1.69, 1.62 0.12 0.42 3920 2238

-CLAMP4P171]"

"Structural Steel" 2.5, 9.69, 23.5 24.97 187.98 1326 6834

-CLAMP[175)"

'Structural Stee~l" 2.5, 9.69, 23.5 24.97 187.98 1326

.1684 Table 4.1.2. Body Groupings I

Name Bod Names unding Boix (in)IMass (ibm)IVolume (in3) INoe Elements 4,1.1. Contact a

'Contact" uses a tolerance or oxo for automatic detection.

~Table 4.1.1.1. Contact Conditions I

flame Tye Associated Bois SoeNormal SCoPe Beha io Frmltn Thermal IPinkall

____Tp oes cpeStiffness Moeade Frulto Conductance jRegion "Contact Bode YOKE(2)" and

Face, Program Automatic Symmetric Pure Penalty' Program Program Region'"O~

)

ae Cnrle Controlled Controlled

'Contact "BONNETLUAIP[23)"

Face, Program AtProgram Program Region Iod and "BODY! 1)"

Face Controlled Auomatic Symmetric Pure Penalty Controlled Controlled

17 "Contact IIProga rga Region Bonded

'GEARBOX[3J" and

Face, Program Automatic Symmetric Pure Penalty ogram Prorm Region Bonded YOKE[23" Face Controlled Controlled Controlled

'Contact B HWSTEM[4]" and

Face, Program r ogram Program Region Bned -GEARBOX3]"a Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled Rgont onded tGEARBOXCOVERf3
Face, Program Auto Program Program S

and "GEARBOX( 3]"

Face Controlled matic Symmetric Pure Penalty Controlled Controlled

'Contact

'GEAR_ LUMPf31J'and

Face, Program Program Program Region Bonded BNERBO43)"

Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled T-

"ContactFc CnrlldCntole otrle

'RCgont nded IPACTOR[7)" and

Face, Program Program Program Region Bonded WSrEM[4] "

Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled

'Contact Bdd H

I[5]' and Face Program Program Program Region Bonded AsTEM3om" anFace or tatic Symmetric Pure Penalty "9

B GEARBOXCOVER[13]

Face Controlled Automatic y

y Controlled Controlled "Contact Region Bonded "STEM[35)1 and

Face, Program Auomt Symmetric Pure Penalty Program Program lBONNET..LUMP[23]a Face Controlled Automatic Symmetric Puren Penalty trolled Controlled

'Contact Region Bonded "STEM4[35]'"and

Face, Program Automai ymti uePnly Program Program II" "GEAJLUMP[31)"

Face Controlled mai ymti uePnly Controlled Controlled

'Cgontact RHNO017f46]" and

Face, Program AtmicS mecPueenly Program Program Regonac Bode STEMf35]'

Face Controlled Auoai ymmti uePnlyControlled Controlled "Cnac RHN017f50]'"and

Face, Program Auoai ymti ueProgram Program Region Bonde SE[5"Fce Cnrle uoatcSmercPr Penalty Controlled Controlled

.13" SEI5"Fae Cnrle TContact Bode RHN002[51]'"and

Face, Program Auoai ymti uePnly Program Program Regio Bode STEM[35)"

Face Controlled Auoai ymti uePnly Controlled Controlled Regontact CLAMP[171)" and

Face, Program Auoai ymti uePnly Program Program RegC n Botact "CDYLANL15) ad
Face, Ponrogram Automai ymetric Pure Penalty Controlled Controlled

'8CoODn1taFce Cntole Region Bonded "CLAMP[175)" and

Face, Program Automatic Symmetric Pure Penalty Program Program "Cotac BOD___acCntoledControlled Controlled

' Contact I ein Bne CLAMP[175J" and

Face, Program mai y)Program Program Re0io Bodd YOKCE[23" Face Controlled Automai ymetric Pure Penalty Controlled Controlled "CLAM1Pf175)" an6d
Face, Program At~

eri ue eat Program Program Rein Bonded YOEI'ae

[otole Auomatic SymmercPrePnly Controlled Controlled Regin Boded CLAMP[171)'

Face Controlled AtmtcSmercPr eat otold Cnrle 4.1.2. Mesh D

"Mesh"(Figure Al.3), associated with 'Supported' has an overall relevance of 0.

a

'Mesh' contains 36553 nodes and 17929 elements.

18 No mesh controls specified.

4.2. "Stress Analysis" "Stress Analysis' contains all loading conditions defined for "Supported' In this scenario.

acceleration - Constant Linear Acceleration Magnitude: 6,795.01 In/s2 Vector: [140.0 in/s2 x, 4,250.0 in/s2 y, 5,300.0 In/s2 z] in the global coordinate system The following tables list local loads and supports applied to specific geometry.

4.2.1. Structural Supports Table 4.2.1.1. Structural Supports Reaction l Reaction Force Reaction n Moment Vector Associated Name Type Farce Vector Moment RecinMmn etrBodies (466.53 Ibf x,

(-3,525.13 Ibf-in x, "Fixed Fixed 23,909.18 Ibf 13,995.93 Ibf y, 558,742.2 Ibf in 453,730.2 lbf in y, -

'BODY[l]

Support' Surface (not updated) 19,378.99 Ibf z] (not (not updated) 326,051.11 lbf in z] (not updated) updated) 4.3. "Solution" "Solution" contains the calculated response for 'Supported' given loading conditions defined In "Stress Analysis'.

It was selected that the program would choose the solver used In this solution.

4.3.1. Structural Results Table 4.3.1.1. Values Name Figure j Minimum Maximum J

Alert Criteria "Equivalent Stress" All Bodies In "Supported' 0.65 psi (not updated) 8,911.19 psi (not updated) ] None

'Total Deformation' 2

All Bodies In 'Supported' 0.0 in (not updated) 3.27xlO-2 In (not updated) None Convergence tracking not enabled.

19 5, Scenario 4 5.1.I"Origina~l" "Original" obtains geometry from the Pro/ENGINEERO assembly "z:jhornejrfarrellj3 1042 orig (12-900-F W) 1 SM0001.A5M4.10'.

w The bou~nding box for all positioned bodies In the model measures 67.06 by 23.5 by 29.44 In along the global x, y and z axes, respectively.

w The model has a total mass of 1,290.51 Ibmn.

a The model has a total volume of 4,546.8 In.

Table 5.1.1. Bodies Name Material Boundingr Box (in) Mass (Ibm)

Volume (ins) -Nodes Elements "BODYrI)"

'Structural Steel' 17.0, 18.13, 18.13 428.3 1,509.01 4763 2435 "YOKE[2.)"

"Structural Steel" 23.0, 18.13, 18.13 208.06 733.06 3341 1580

-GEARBOX[31-

'"Structural Steel' 5.94, 23.5, 26.29 82.06 289.13 4615 2252

-HWSTEM[4.1" Structural Steel" 3.0, 3.0, 7.06 8.27 29.15 1138 658 "JMPACTOR[7J" "Structura ISteel" 6.25, 4.0, 2.0 4.93 17.36 680 316 "HW[/fIG)

"Structural Steel' 12.0, 12.0, 1.05 6.98 24.59 8196 4369 OGEARBOXCO VER[13)"

"Structural Steel" 21.25, 23.5, 23.5 64.68 227.87 7266 3456 "B0NNE7ILUA1P[2S)"

'Structural Steel' 6.0, 13.5, 13.5 235.4 829.38 1431 260 "GEARLLUMP[31)"

OStructural Steel' 1.5, 20.58, 20.58 139.58 491.78 904 117

-STEAI'I35.1 "SrcualSel 50.5, 5.49, 6.35 61.96 218.29 964 433 "RHN017[46)"

"Structural Steel" 0.64, 1.3, 1.3 0.12 0.42 2469 1407 "RHlN017t50.1" "Structur-al Steel' 0.64, 1.3, 1.3 0.12 0.42 2469 11407

-RHN002[51)"

  • Structural Steel" 0.64, 1.69, 1.62 0.12 0.42 3920 2238

-CLAMP[1 71)"

"Structural Steel' 2.5, 9.69, 23.5 24.97 87.98 1326 684 "CLAIIP[1 75)"

"Structural Steel" 2.5, 9.69, 23.5 24.97 187.98 1326 1684 Table 5.1.2. Body Groupings I

IName IBody Names ~.jI~ondin~g Box (in) IMass (ibm) IVolume (1n3) INodes IElements 5.1.1. Contact U 'Contact' uses a tolerance of 0.0 for automatic detection.

Table 5....Contact Conditions Name Type Associated Bodies Scp ormal Scope Belhavior Formulation Thermal Pinball "Cnat Bode YOKEf2)" and

IFace, Program Program IProgram Regonta BondedFae onrole Automatic* Symmetric Pure Penalty Cotled onrld ReCont'c BO

]

Fac CotoldCnroglam Ponrogram BontctDnded "BONNET_-LUM4P[23)"

Face, Program Automatic Symmetric Pure Penalty Prga 1rga Region and "BODYfl 1)

Face Controlled IControlled Cnrle

20 Contact 1

r1 1

Region Bonded "CL MP[171j' and

Face, Pogram Automatic Symmetric Pure Penalty rogram rogram t

B BODY[i]"

Face Controlled A

Controlled Controlled "Cota e

CLAMP[175)" and

Face, Program Program Program Region Bonded 'BODY![3" Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled 4"

'Contact Regionta Bonded aGEARBOX[3'and

Face, Program matic Symmetric Pure Penalty ronram Program O

Bonded Automatic Symmetrc Pure Pena Controlled C5t.

n r ncYOKE[2)]

Face Controlled Autontroll Controlled

'Contact d

CLAMP[4P171 and

Face, Program Program Program Region Bonded

.AtmtcSmercPr eat 6R E

YOKE[2]"

Face Controlled Automac Symmetric Pure Penalty Controlled Controlled Cgionact Bonded CLMP[175J" and

Face, Program Automatic Symmetric Pure Penalty Program Program ReOgionE 6Bonded

!E[2]"

Face Controlled Automatic Symmetric Pure Penal Controlled Controlled

'Contact Region Bonded "HWSTEM[3" and

Face, Program Automatic Symmetric Pure Penalty Program Program B"

GEARBOX [35" Face Controlled Automatic Symmetric Pure Penalt Controlled Controlled

'Contact "GEARBOXCOVER[13)"

Face, Program AuoaiPymti uePnly rogram Program ReiCS9on:

Bon~ld TE 35 Fc, Pog aled Automatic Symmetric Pure Penalty Cnrie oto e 0Region Bode and "GEARBOX[31a Face Controlled Controlled Controlled

'Co nta ct "GEAR._LUMP(31)" and

Face, Program Auoai r

uePnl'P rogram Program Region Bonded "GEA4RBOX! 3)"

Face Controlled AtmicSymmetrc PrPeat Controled Cnrle 10" C i Cnrle Regontact IMPA CTOR(7J" and

Face, Program Auoai ymti uePnly Program Program Re"nBne HWSTEM[4]-

Face Controlled Auoai ymti uePnly Controlled Controlled Regontact HW[a 0]" and

Face, Program AuoaiPy uePnly rogram Program 12"o one "INPACTOR[7]-

Face Controlled Auoai ymetric Pr eat Controlled Controlled "Contact Region Bonded "STEM!

35.1 "and

Face, Program Automatic Symmetric Pure Penalty Program Program 13"_Ovv" GEARBXCOVER1'J Face Controlled Controlled Controlled "Contact Region Bonded "STEM[35.1" and
Face, Program Automatic Symmetric Pure Penalty Program Program 15" "GEAR_-LUMP[31)"

Face Controlled Controlled Controlled "Con tact RN146 an Fae PrgaPrgaPorm Region Bonded RNO746"ad Fc, Porm Automatic Symmetric Pure Penalty rga rga I16",

-STEM[35)"

Face Controlled.

Controlled Controlled I`C~n~

RHNOI17[50)" and~ Face2--

Progra m rogram program-17"io

-STEM[35)"

Face Controlled Automatic Symmetric Pure Penalty Controlled Cnrle "Cgontact nded- "RHNOO02[51)" and

Face,

-Program Automatic' Symmetric' Pure Penalty Crontrolle Crontrolle 11" oe STEM[35.1" Face Controlled Cnrle Cnrle "Contact CAP15'n ae rga rga rga Region Bnndc CAP17."ad Fce rga Automatic Symmetric Pure Penalty PrgaPorm 19",

-CLAM4P[171)-

Face Controlled Controlled Controlled 5.1.2. Mesh

21 a NAesh"(Figure A4.3), associated with 'Original' has an overall relevante of 0.

Al

'Plsh" contains 44808 nodes and 22296 elements.

No mesh controls specified.

5.2. "Natural Frequency" "Natural Frequency' contains all loading conditions defined for "Original' in this scenario.

The following tables list local loads and supports applied to specific geometry.

5.2.1. Structural Supports I1 Table 5....Structural Supports IName-Type Associated Bodies~

"'Fixed Support' Fixed Surface "BODY(J)"

5.3. "Solution" "Solution' contains the calculated response for "Original" given loading conditions defined In 'Natural Frequency"%

It was selected that the program would choose the solver used In this solution.

5.3.1. Frequency Results Frequency results apply to all active bodies In "Original".

Table 5.3.1.1. First 6 Natural Frequencies Name Figure Made Frequency Alert Criteria]

01st Frequency ModeIn Range' A4.4 1

60.49 Hz none "2nd Frequency Mode In Range"

AL4, 2

62.24 Hz none "3rd Frequency M~ode In Range" None 3

116.15 Hz none "4th Frequency ModelIn Range' None 14 133.57 Hz none "5th Frequency Mode In Range' None IJ5 151.4 Hz noneI

'6th Frequency Mode In Range' None 6

1182.39 Hz Inane Convergence tracking not enabled.

22

6. Szcenario 5 6.1. "Original"

'original" obtains geometry from the Pro/ENGINEERO assembly "z:jhomejrfarrellj31042 orig (12-900-FW)JASM0001.ASM.10".

The bounding box for all positioned bodies In the model measures 67.06 by 23.5 by 29.44 In along the global x, y and z axes, respectively.

The model has a total mass of 1,290.51 Ibm.

The model has a total volume of 4,546.8 inW.

Table 6.1.1. Bodies Name 1

Material Bounding Box (in)

Mass (Ibm)

Volume (In)

Nodes Elements "BODYl]""

"Structural Steel" 17.0, 18.13, 18.13 428.3 1,509.01 4763 2435 "YOKEf2]"

"Structural Steel" 23.0, 18.13, 18.13 208.06 733.06 3341 1580

'GEARBOX[31' "Structural Steel" 5.94, 23.5, 26.29 82.06 289.13 4615 2252

-HWSTEM[4]."

3Structural Steele.0, 3.0, 7.06 0.27 29.15 1138 658 "IMPACTOR

[71" "Structural Steel' 6.25, 4.0, 2.0 4.93 17.36 680 316

'HWr10o1 nStructural Steel" 12.0, 12.0, 1.05 6.98 24.59 8196 4369

-GEARBOXCOVER[13]r "Structural Steel' 21.25, 23.5, 23.5 64.68 227.87 7266 3456 "BONNET LUlMIP[23]

"Structural Steel" 6.0, 13.5, 13.5 235.4 829.38 1431 260 "GEAR&LUMP[31]"

"Structural Steel" 1.5, 20.58, 20.58 139.58 491.78 904 117 "STEM(35]1" Structural Steel" 50.5, 5.49, 6.35 61.96 218.29 964 433

.RHN017t46.1 "Structural Steel' 0.64, 1.3, 1.3 0.12 0.42 2469 1407 "RHN01 7(50]"

"Structural Steel" 0.64, 1.3, 1.3 0.12 0.42 2469 1407 "RHN002[51]"

Structural Steel" 0.64, 1.69, 1.62 0.12 0.42 3920 2238 "CLAMP[171]"

"Structural Steel" 2.5, 9.69, 23.5 24.97 87.98 1326 684 "CLAMP[175]"

"Structural Steel" 2.5, 9.69, 23.5 24.97 87.98 1326 684 Table 6.1.2. Body Groupings I

Name lBody Names Bounding Box (in) Mass (lbm) Volume (In 3)

Nodes Elements 6.1.1. Contact "on

s.

t o

.0 f.....

auIot, d e i OContact' uses a tolerance of 0.0 For automatic detection.

Table 1.1.-. Contact Conditions Name Typ1 Associated Bodies Scope Normal Scope Behavior l Formulation Thermal Pinball Tye Ascae ois SoeStiffness Mode ICnutceRegion I"Contact "od YOKE[2)" and

Face, Program Autoai ymti uePnly Program Program Region'

-B "BODY[l" Face Controlled tomaticoSymmetric Pure Penalty C

rolled Controlled Bont n

"O ETLUMP23)"

Face, Program Automatic Symmetricl Pure Penalty Program Program Reinand "BODYf I)"

Face Controlled Controlled Controlled

23 1

1-1 1ll 1

oContact

'CLAMP[171]" and

Face, Program Program Program Region Bonded
  • 'BoDY[1)"

Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled CContact B

d AMP[175 and

Face, Program Automatic Symmetric Pure Penalty Program Program RegBotatBnded BODY 1"an Face Controlled Auto metric Pure Penalty Controlled Controlled Cgiontct Bonded GEARBOX YO

[

and

Face, Program Automatic Symmetric Pure Penalty Program Program Region Bonded a"YOKE[2 Face Controlled Automatic Symmetric Pure Penaoty ntrolled Controlled

'Contact dCLAMP(1 71)" and

Face, Program Symmetric Pure Penalty Program Program Region Bonded "YOKE[2]

R Face Controlled Automatic Sym Controlled Controlled Contact B

CLAMP[175]" and

Face, Program Auto Program Program Region Bonded

'YOKE([2) n Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled Rgont Bonded RHWSTEM[4]" and

Face, Program Program Program Region Bonded

.AR O

)"

a ntrolled Automatic Symmetric Pure Penalty C

roont "Cntc Bode "GERBOXoVE1fIand

Face, Programle Automatic Symmetric Pure Penalt
Program, Program and GEARBOX_

3)"

Face Controlled Controlled Controlled

'Contact IGEARBOXCOVER31)" an

Face, ProgramPrgaPorm Region Bonded Faeuotrlld matic Symmetric Pure Penalty Cotled onrld 10"an "GEARBOX[3]"

AutoonroleCnrogram Ponrogram

'Contact

Face, Region Bode

_JMPACTO 3f]fand Fae Program Atmatic SymmercPrePnly Program Program 11" "HGSEMJ 4)"3]

Face Controlled Auomti uePnly Controlled Controlled

'ContactPrga Porm Region Bode "H IMPAT)R and

Face, Program Automatic Symmetric Pure Penalty Crontrolle Crontrolle 12" OHWPATOR[4)"

Face ControlledCotled onrld

'Con tact "STHW[35I and

Face, Program PrgaPorm 13io" Bnd "GEPAROCTOVE[7 J3 Face Controlled AtmicSymmetric Pure Penalty Controlled Controlled Regontact STEMt35)" and
Face, Program Auoai ymti uePnly Program Program 14"o one "GABONNETLUM[233" Face Controlled AtmicS mercPe-enly Controlled Controlled

'RCgontact "STEM[351" and

Face, Program Auoai ymti uePnly Program Program Rein"nd GBNEA R._LUMP[231)"

Face Controlled Auoai ymti uePnlyControlled Controlled Regontc Bondd E"RN01746) and

Face, Program mtc ymProgram Program 16io" one "SGEA-LMPf35J"Face Controlled Automai ymetric Pure Penalty Controlled Controlled "Contact Program Program Region Bonded ORHN017[46) and
Face, Program Automatic Symmetric Pure Penalt 11" STEM[35)"

Face Controlled-lt Controlled Controlled 16'

-Contact.

RH075Iad-ae P6irK rga rga Region Bonded "CAMP[135)"an

Face, Ponrogram Auomatic S~ymmercPrePnly Controlled Controlled 119"n "Boded LATM[3I 71"Face Controlled Automtc ymetric Pure Penalty Ponrogram Ponrogram 6.1.2. Mesh I/

24 4

Mesh"(Figure Aia), associated with "Original" has an overall relevance of 0.

"Mesh" contains 44808 nodes and 22296 elements.

No mesh controls specified.

6.2. "Frequency Response"

'Frequency Response" contains all loading conditions defined for "Original" in this scenario.

Acceleration - Constant Linear Acceleration Magnitude: 200.92 In/s2 Vector: (116.0 In/s2 x, 116.0 In/S 2 y, 116.0 in/S 2 z] In the global coordinate system The time type Is harmonic The following tables list local loads and supports applied to specific geometry.

6.2.1. Structural Supports Table 6.2.1.1. Structural Supports Name Type IAssociated Bodies

'Fixed Support" Fixed Surface IBODY[J)"

6.3. "Solution" "Solution" contains the calculated response for "Original" given loading conditions defined In 'Frequency Response".

It was selected that the program would choose the solver used In this solution.

6.3.1. Harmonic Results Table 6.3.1.1. DefinitIon Range l

Range SlIon Mehod Cluster Cluster Damping Beta Minimum 1 Maximum olution etho Number Results Ratio Damping Mode 00 0.0 l250.0 Yes 0.03 0.0 Superposition Table 6.3.1.2. Frequency Response Values

.r.....

_e Imginary Multiple Minimum Maximum Maximum PI Max Angle at M

Name tScoentities Frequency Frequency Amplitude Amplitude Mpx Amplitude Amplitude Amplitude I"

cel Airetionl Surofae(s) an Use 0.0Z 250.0Hz 4,596.64in/s7 182.122Hz a 1.93° 645.63in/sl *4,551.07inhs?

XAxi r TMon "OFRIOTCDVE/31'"

Ave rage Directional Sracs)oUe I

V 7a Aleratsn aIn Ae

.Ol 250.0HZ 4,65.35in/s' 60.58Hz

-92.220

  • 176.57in/s'

-4561.94in/sl

'Iop Direclional 1Surfae(s) on Use O

.O1z 250.011; 4,

67.29Hz

.45.49int

.s'

25 from," Acceleratlion, TC4A'OO VE'/.131 Average l

Z AxisI Directional Surface(s) on Use Acceleration,

" lot on A

ge 0.0Hz 250.0Hz 1,300.51 in/s?

102.12Hz

.82.29' 1 74.58in/s?

  • 1,281.73in/s' Oh Directional Surface(s) on Use 0.0Hz 250.0Hz 3,131.BSin/u' 116.32Hz

.9.56

..22.4In/s' t,30.74infs' seam Acceleration, D"GF25.01z 2,3OX5(OVF11.3Hz

-9/5I

.12.fAverage31.71as I

Y Axis QM XOf?1j Avrg 17 Directionol Surface(s) on Use oMe"I Acceleration, "cMAOx(OVX M13f Averoage C.Hz 250.0Hz 1527.96iui/s5 151.2711z

-84.120 156.58in/s'

-1,519.92in/sl

'fnerDirectional Surface(s) on Use 00z651 7

l Acceleration, lS TI A

°3" U

O.OHA 250.01Hz 2,909.27in/sl 60.5B1IZ

-90.17°

-B.Sin/sl

-2,909.26in/s2

.on Y Axis

,IAvera g

1 Trable 6.3.1.3. top axial

-4596'. 4022.0(6 t-N:34471.4B c -2872 90 Mo 2208'.t2' 57,4.58 0.00 IIV 6-6 ~

A*

.6 I

I.__

.00 31.25" 62.50 93?75 *125.00.156;254l7.50,21B.75 250.00 Frequency.(Hz)

26 iTable 6.3.1.4. top ?xlal 179.80 135.04.........

_90.28

-rs r--

r--

m--44.00

.133:52:

-~-

0 131.25 62.50 <93i75 125;bO,156.25 1B7.50 218e.75 250 00 Frequency;(Hz)

Table 6.3.1.5. top beam

~565.35 3, -

3994:68- -*- *t 1c 2853.95 -

L__

1li.34:

w........

.vx.........;

1 N..

Vt 7

7

_a70;6.

a, w

^i-8 ^ --- J7 0

0.10 3125. 62.50 93,75. L25;01056.25 i8Ju50 218275 250500 3

i~-rrecquricy (-)

27 tTable 6.3.1.6. top beats 179.05 134;32

-0

.6 0.1ju~

-4.8 AM e89*fiD ~~~~ ~ ~-- -.

..............* r w%

-m -44.57

-7

-134.02' t

00

3 625
.62;50 t.93;75 125;00156l*25187"50,218.75 250,00 Frequency.(HZ) rable 6.3.1.7. top frame f-N

.4J

  • 243i728 5A i

i 3

3.i

't---

r1 2185,1 -:

l t

,138.86 Xr-w-,^,

rrn---5-,5

-"---r'r 1092.57.

  • [)700

.J----

9-I

.46293~

.0.0.

0.00 31.25 62.50 93.75 i,25.00,156.25 187.50 218,75 250;00 Frequency (Hz)

Tble 6.3.1.8. top frame 179.52 134.64

.89.75 -- i e- - .'

,-_'a.'-'

I..

99*W 5

4.

.I.1;2~:-

I.

-134:61

.- 1-7o;oa; E

.I,

f

'56,-

I1 t-7-.

c;

-I

.0.0D.0 314e5 62;50 93.75. 125 ooi 156.@25 187;50 218.75 250O.D0 Frequenq (Hz)

Table 6.3.1.9. base axial 13-00.51 J

1137.9 f '16275

.- 8------------

.40 4

60.25 0

S.56.093.'25'016-2 87 20b F4-7.69n-y Hz ')

29 r'.T 6.3.1.10. base axial 179.86 135j:10at^

-90.34 o

I j

8'U

-t 0;8 4_;>

,t t

f8X

  • I:.83 33
44

-i

3.

3

-178.20' 0.00 31 25 6250 375 125^00 15e25.1750 2875 250.

Frequency(Hz)

.oo Table 6.3.1.11. base beam 21348.5:,

M1067i92 "533;7i 3

3

  • 4,
3.

3.

f 3*,

3.

3

.4

'3

..3

.. i l.

S...

3 I.

'*.

3

9

4.*

.3 4

4

.3

..,...,,.

'3 4

1 4:

3*.*

4 3-1 3

'3

  • 3 3

3 3

.4 4

I I

3

'3

.3 3

.3

.3

.3.

.3

4.

4 3

4 4

3 3.

. 3 p

4 266;86 0.00 j..

....1.

P'.

. I,

'.I.

'1..

'-0.00 31.25 62.50. 93.75.125.00.156,25.187.50 218.75,250.00 Frequency.(H-Z)

I

3.0 aTible 6.3.1.12. base. beam 178.77

-134.23 89*

705

.S o

2S 5 15 5

750.213 Table

.3.1.3.

bas.fram 76-3.98

0.

a

.0.00 ~31.25 62.50. 93.75 -125,00 156..25.167.50,218.75 250.00 Frequency i(Hz)

31 ITaible F-3.1.14. base frame 178.09 133.,42 838376 ciu44.09

~

L9 C....i'..

I I

C S-0.57

-t te45;23

-89.90r

-i79-;22-L

.0.00 312-5 62t50 493*75 125.001 56E25187-50t216.75250.00 F~requency(Hz)

Table 6.3.1.15. finger beam

-2909;2 2545@6 v<>2181.9 rt --,,,

I.

1, 1L'090.9

.E 4 727.32 3653.66 0.00 7.

ji.

36.

0 4

38 S

I I

I

'I, I

...,.

.44-4 S

I

.5 Ua I

'S I

S S

I I

1 I

I

-a I

i I

0

.:0.00 31.25. 62;50 93.75.125.00 156.25 187;50.C218.75 250.00 Frequ ancy.r(H-)

32 leTblc 6.3..16. fInger benm

~~...

.5...-

178.82

~

,134 1i2

i. r. J... ;....-

.89;43;-

I S..

,8,9;,;3 -

-o-w

.s...

.T-r

.5 b

7 4e-73 1

i 8

S i

4,.,....

S }.T._

-x0-1S 25

,37 Z.O 5'2>175.l;.

200

-Fre

  • ue y

ii

33

7. Scenario 6 7.1. "Original"

,original, obtains geometry from the Pro/ENGINEERe assembly "z:jhornejrfarre1lA31042 orig (12-900-FW)~ASMOOO1.ASM.10".

The tounding box for all positioned bodies In the model measures 67.06 by 23.5 by 29.44 In along the global x, y and z axes, respectively.

a The model has a total mass of 1,290.51 Ibm.

a The model has a total volume of 4,546.8 In.

Table 7.1.1. Bodies Namef Material Boundinot BoQ (in)

Mass (ibm). Volume (In 3) Nodes jElements "SOD Y[I.1" Structural Steel' 17.0, 18.13, 18.13 428.3 1,509.01 4763 2435 NYOKE(2.)"

NStrct ural Steel" 23.0, 18.13, 18.13 208.06 733.06 3341 1580 NGEA4RBOX[3.1"

'Structural Steel' 5.94, 23.5, 26.29 82.06 289.13 4615 2252 "H WS TEM (4].1Structural Steel' 3.0, 3.0, 7.06 8.27 29.15 1138 658

".IMPACTOR[71"

'Structural Steel" 6.25, 4.0, 2.0 4.93 17.36 680 316 "HW~iO]"

'Structural Steel' 12.0, 12.0, 1.05 6.98 24.59.

8196 4369 "GEARBOXCOVER[133"

-Structural Steel" 21.25, 23.5, 23.5 64.68 227.87 7266 3456 "BONNET-.LUMP[23.7"

'Structural Steel" 6.0, 13.5, 13.5 235.4 829.38 1431 260 NGEARLUMP[31]'

'Structural Steel' 1.5, 20.58, 20.58 139.58 491.78 904 117 "STEM (35)"

'Structural Steel' 50.5, 5.49, 6.35 61.96 218.29 964 433

-RHN017[46.1"

'Structural Steel' 0.64, 1.3, 1.3 0.12 0.42 2469 1407

["RHN01 7[50]i

" Structural Steel" 0.64, 1.3, 1.3 0.12 0.42 2469 1407

["RHN002[5ii"

'Structural Steel" 0.64, 1.69, 1.62 0.12 0.42 3920 2238

-CLAMP[1 71)"

'Structural Steel' 2.5, 9.69, 23.5 24.97 87.98 1326 684 "CLA MP[1 751'

'Structural Steelm 12.5, 9.69, 23.5 124.97 87.98 11326 1684.

Table 7.1.2. Body Groupings I

Name IBody Names I Bounding Box (in) IMass (ibm)IVolume (In3 ) I NodesIElementsI 7.1. 1. Contact..

'Contact' uses a tolerance of 0.0 for automatic detection.

Table 7.1.1.1. Contact Conditions Normal Scope I

F ll Thermal VPinball Name Type Associated Bodies Scope Stiffness. Mode iBehavior F ormua I~on Conductance Region

.Con tact Bode YOKE[2 1" and

Face, Program Auoai ymti uePnly Program Program Region' BoddBODYf 1)"

Face Controlled Auoai ymti uePnlyControlled Controlled "Contact Bode

`B0NAETLW-IP(233'

Face, Program AtProgram Program Region and "BODYfI)"

Face Controlled Auomatic Symmetric Pure Penalty Controlled Controlled

34

_2 1 --

  • _~~~~

II__

'ContactII Region Bonded "CLAMP[171]" and

Face, Program Automatic Symmetric Pure Penalty Program Program

'BODY[1J" Face Controlled IControlled Controlled

'Contact "CBMPnd 75." and

Face, Program Automatic Symmetric Pure Penalty rogram Program Region Bonded BO X[32 Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled "Contact F

GEARBOX[

3]" and

Face, Program aAu tomaPtic Symmetric Pure Pet Pogram rogram Region Bonded "YOKE[2)"

Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled

'Contact "CLAMP[171" dand

Face, Program Pure Penalty rogram Program Region Bonded an YOKE[2)

Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled RContact lCLAMP[175.]? and

Face, Program AutPt S

metric Pure Penalty Program Program Region Bonded l'OKE[2' Face Controlled Automatic Symmet Ic Pure Penalty Controlled Controlled

'Contact Region Bonded GHWSTEM[4BO and

Face, Program Automatic Symmetric Pure Penalty Program Program B.

B GEARBOX[3]

12 Face Controlled omatic Symmetric Pure Penalty Controlled Controlled "Contact I GEARBOXCOVER[13.1

Face, Program Aut Symmetric Pure Penalty Controlled Contgroled Regio Bonded "T

r3J ace CotledAutomatic Symmetric Pure Penalty Cotled Contrlld Reio Boddand "GEARBOX(3]"

Face Controlled omanctrogram Ponrogram 9..

Rgotan c tGEARHLUMP[31]"

and

Face, Program Automatic Symmetrc Pure Penalty Pogram Program RegAon Bonded E4RBOX[3-1" Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled R10l Rein MJPACTOR[7)" and
Face, Program Program Program ReConac Bonded "HleSTEM[4)"

Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled 12' "Contact Region5

'and Face Crongroleamamy Program Program Re2io Bo He GEARBXCOVEand

]

Face' Ponrogram Automtc ymetric Pure Penalty Controlled.

Controlled Regonac Booe STEM[353" and

Face, Program Automatic Symmetric Pure Penalty -

rogram Program Regio

'BONNEARBOXCOV2R(13 Face Controlled Controlled Controlled

'Contact "STEM [35.1" and

Face, Program Auoai ymti uePnly-Program Program

~Region Bonded -GAU~3]

ae Cnrle uoai ymti uePnly Controlled Controlled "Contact "STEM! 35)"6] and

Face, Program AtmtcSm~rcPr Program Program Region Bode "GTEARLM5 f1)

Face Controlled Auoai ymti uePenalty Controlled Controlled

.16" "Crtc Bne RHN017(456)" and Fae Porm Auoai ymti uePnly Program Program Regio Bo "e

STEPI(35T' Face Controlled Auoai ymti uePnly Controlled Controlled omnacati02c1" n

Fc, rgrmProgram Program' Regontc BondedO an Fc, rgrm AutomtcSymmetric Pure Penalty Cotlld onrld 17"SEM3]

Face ControlledCotled onrld

,Contact "RIAMP1N0 51)" and

Face, Program 1Progra Program Region Bonde sEM35 Fae Cnrled Automatic Symmetric~ Pure Penalty Conroleaonrle "Cotac CLAMP[171)"

Face Controlled Atmic1 y ercPueenly Controlled Controlled 7.1.2. Mesh

35 lMesh"(Figure A4.3), associated with 'Original' has an overall relevance of 0.

a "lMesh" contains 44808 nodes and 22296 elements.

No mesh controls specified.

7.2. "Stress Analysis"

'Stress Analysis" contains all loading conditions defined for "Original' in this scenario.

acceleration - Constant Linear Acceleration Magnitude: 7,853.66 in/s2 Vector: (4,600.0 In/s2 x, 4,600.0 In/s2 y, 4,400.0 in/s2 z] In the global coordinate system The following tables list local loads and supports applied to specific geometry.

7.2.1. Structural Supports Table 7.2.1.1. Structural Supports l I Name Type oReact Reaction Force Vector Reaio Reaction Moment Vector Associated Ireato Vecor meanto Bodies I

'Fxd Fxd 1(15,383.91 lbf x,

{

-5,621.9 ibf-In x, I

d F

e 26,265.22 Ibf 15,383.91 Ibf y, 505,106.62 ibf'in 352,819.24 lbf'In y, -

"BODY(IJ" uppo urace 14,715.04 lbf z]

361,413.44 Ibflin z]

7.3. "Solution" "Solution' contains the calculated response for "Original' given loading conditions defined in 'Stress Analysis".

It was selected that the program would choose the solver used in this solution.

7.3.1. Structural Results Table 7.3.1.1. Values Name Figure Scope Minimum Maximum Alert Criteria "Equivalent Stress" l

A6.All Bodies In "Original" 2.34 psi 65,153.61 psi None "Total Deformation" Af' 2

All Bodies In "Original- 0.0 In 9.51x10 in None a

Convergence tracking not enabled.

36 Appendices Al. Scenario 1 Figures

. 37

38 A2. Scenario 2 Figures No figures to display.

39 A3. Scenario 3 Figures igure A3.1. _Equivalent Stress" Contours (not updated)

~.

A4. Scenario 4 Figures

40

41

42 I

I I

A5. Scenario 5 Figures

. No figures to display.

43 A6. Scenario 6 Figures IFigure A6.1. "Equivalent Stress" Contours

'~~'s A.y-,I I.*j-.

  • ;I 4.ZI

44

45 A7b Definition o " Structural Steel" Table A7.1. "Structural Steel" Properties Name Type Value Modulus of Elasticity Temperature-independent 2.9x 107 psi Poisson's Ratio Temperature-Independent 0.3 Mass Density Temperature-Independent 0.28 Ibm/in3 Coefficient of Thermal Expansion Temperature-Independent 6.67x10"I 1/ 0 IF Thermal Conductivity Temperature-Independent 8.09x IO"' BTU/s in°0F

[Specific Heat Temperature-Independent 0.1 BTLJ/ibm'°F A8. Definition of "cover" Table A8.1. "cover' Properties Name Type Value Modulus of Elasticity Temperature-Independent 2.9xl0O psi Polsson's Ratio Temperature-Independent 0.3 Mass Density Temperature-Independent 0.28 Ibm/in3 Coefficient of Thermal Expansion Temperature-Independent 6.67xI0-' 1/°F l Thermal Conductivity Temperature-Independent 8.09x104 BTU/s.in*°F Specific Heat Temperature-Independent 0.1 BTU/lbmr°F A9. Definition of "bonnet lump" Table A9.1. "bonnet lump" Properties Name Type JValue Modulus of Elasticity Temperature-Independent 2.9xlO psi Poisson's Ratio Temperature-Independent 0.3 Mass Density Temperature-Independent 0.39 Ibm/in3 Coefficient of Thermal Expansion Temperature-Independent 6.67x10.6 1/0F Thermal-Conductivity.

-Temperature-Indcpendent-8.09x10" I

BTU/s.in.°F Specific Heat JTemperature-Independent 0.1 BTU/lbmr°F

46 A10. Definition of "gear lum-,ip" Table A10.1. "gear lump" Properties Name Type Value Modulus of Elasticity Temperature-Independent 2.9x 10' psl

[Poisson's Ratio Temperature-Independent 0.3

[Mass Density Temperature-Independent 0.3 Ibm/in3 Coefficient of Thermal Expansion Temperature-Independent 6.67x10 ' 1/0F Thermal Conductivity Temperature-Independent 8.09x10 4 BTU/s.In-OF Specific Heat Temperature-Independent 0.1 BTU/lbm °F